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ABSTRACT 
 
Control of critical dimension (CD) variation is of extreme importance in modern semiconductor 
manufacturing processes.  To be controlled, the nature of CD variation must be understood. This paper 
outlines a method for characterizing systematic spatial variation by means of dense electrical linewidth 
measurements, including actual sample data.  In addition, since exhaustive sampling is prohibitively 
expensive for routine use, a method is discussed for finding an optimum economical sampling plan and 
using this plan to track systematic CD variation over time. 
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1.  INTRODUCTION 
 
As feature sizes continue to decrease in modern lithography processes, the ability to maintain control over 
the variation of critical dimensions (CD) becomes increasingly important.  According to the 2002 update to 
the ITRS Roadmap [1], gate CD must be controlled to 3.7 nm (3σ) for the 100 nm node expected in 2003, a 
level for which no manufacturable solution is available.  In order to control CD variation, the variation 
must first be characterized to determine its spatial and temporal nature.  CD variation also has systematic 
and random components. The systematic components are of special interest, since they reveal critical 
process limitations relating to optics, mask making, bake control, etc. Because of that, it is desirable to 
track changes in the systematic variation components over time. 
This paper outlines a framework for characterizing systematic variation in a gate patterning process, 
focusing primarily on systematic spatial variation using electrical linewidth metrology.  Although similar 
work has been done previously [2,3], our work includes a novel modeling approach for components of 
systematic variation.  A systematic variation model is described in section 2, followed by the experimental 
design needed to validate it in section 3.  The experimental results are briefly described in section 4, 
followed by a method for finding an optimal economical sampling plan in section 5.  Finally, conclusions 
will be presented in section 6. 
 

2.  SYSTEMATIC VARIATION MODEL 
 
A variety of sources throughout the semiconductor manufacturing process contribute to overall CD 
variation, including mask errors [4,5], lens aberrations [6,7], scanner illumination variations [8,9], PEB 
temperature non-uniformity [10], and plasma etch rate non-uniformity, to name only a few.  While some of 
the variation is assumed to be random, it has become apparent that much of the variation in the lithographic 
patterning process is systematic (i.e., not due to chance, and thus repeatable) in nature.  This gives hope that 
if the sources of the systematic variation can be found, methods for controlling systematic variation can be 
developed. 
Systematic CD variation has been found at several different scales in the lithographic patterning process.  
One type of systematic variation that has received much attention is variation within the lithographic field.  
This type of variation affects each field on the wafer in the same way, and may be related to the optics of 
the exposure system or to the mask used in the exposure.  In addition, there may be systematic variation 
across the wafer as a whole.  This type of variation may be due to non-uniformities in temperature during a 
processing step, film thickness non-uniformity, and other problems that affect the whole wafer.  Systematic 
variation is also seen from wafer to wafer within a lot, possibly due to some tool problem that affects every 



wafer processed on that tool.  Finally, systematic variation can be seen over longer periods of time from lot 
to lot.  This may be due to long-term machine drifts, operator practices, and similar long-term effects. 
In order to help understand the nested character of the CD variation, the following model is proposed, in 
which the variation from the nominal CD at a given point on the wafer is assumed to be the sum of the 
nominal CD, plus each of the systematic variance components and a random component: 
 

ε+++++= lkjinomijkl LlwfCDCD                                               (1) 
 
where 
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  The symbols used in this model are explained in .  Note that the random variation ε is 
assumed to be normally distributed with mean 0 and variance σε

2.  In this paper, we focus on the spatial 
components of systematic variation (fi and wj in Eq. 1). 
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Table 1.  List of symbols for systematic variation model given in Eq. 1. 

Symbol Meaning 
CDijkl CD at a given point on the wafer 
CDnom True mean of all critical dimensions in the process 

fi Across-field systematic variation at index i within the field 
wj Across-wafer systematic variation at index j within the wafer 
lk Systematic variation from wafer to wafer within a lot at index k within the lot 
Ll Systematic variation from lot to lot at index l within the manufacturing run 
ε Random variation (including variation in the measurement process) 
Nf Number of points sampled in the field 
Nw Number of fields sampled on the wafer 
Nl Number of wafers sampled in the lot 
NL Number of lots sampled in the manufacturing run 

 
 

3.  EXPERIMENTAL DESIGN 
 
An experiment was designed to evaluate systematic variation in the lithographic pattern transfer process.  A 
mask was designed to allow for dense CD measurements with a variety of metrology methods.  This mask 
was then used to print a number of wafers, which were then measured to extract systematic variation. 
In order to characterize the systematic variation in the pattern transfer process, dense measurements are 
needed to obtain a detailed picture of CD variation (a “variance map”) for each of the desired variance 
scales (across chip, across wafer, etc.).  In addition, it is desirable to compare various metrology methods to 
evaluate their effectiveness in characterizing systematic variation. 
With this in mind, a test mask was designed to facilitate the investigation of systematic linewidth variation 
through a 23 factorial experiment with pattern density (isolated and dense), orientation (horizontal and 
vertical), and the presence or absence of optical proximity corrections (OPC) as the three factors.  This 
mask is composed of a group of test structures, or module, repeated many times.  Each module consists of 
two similar sub-modules.  Both sub-modules have eight test structures (two of each combination of pattern 
density and orientation) for measuring the linewidth either electrically or via CD-SEM.  In addition, both 
sub-modules have a Van der Pauw structure for measuring the resistivity of the film in which the test 
structures are fabricated (polysilicon in the case of this experiment) to facilitate electrical linewidth 
metrology (ELM) [11]. The sub-modules also contain a variety of periodic gratings for scatterometry 
measurements and several lines that run the full width of the sub-module and are continuous across the 
mask, so that the wafer may be cross-sectioned at any point and still yield usable cross-sectional SEM 
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features.  The factorial design is completed by alternating sub-modules (which are otherwise identical) 
between the presence or absence of OPC.  A block diagram of the figure is shown in Figure 1Figure 1. 
This module is then repeated in a 22×19 array across the mask.  This array is designed to be large enough 
to cover the maximum field size for modern steppers and scanners.  When the mask pattern is reproduced 
many times on the wafer using a stepper or scanner exposure system, the result is that many thousand 
linewidth test structures are created on the wafer.  This allows a highly detailed linewidth variance map to 
be created. 
 

4. EXPERIMENTAL RESULTS 
 
A number of eight-wafer sub-lots were exposed over a period of a few weeks.  The exposures were 
performed using a 248 nm lithography tool and had a resist target CD of 180 nm and a post-trim target CD 
of 130 nm.  After development, the wafers were randomized into new lots of 24 wafers to eliminate the 
effects of temporal variation in the lithography process from subsequent processing steps.  These wafers 
were measured using CD-SEM and scatterometry after development, after resist trim etch, and after poly 
etch.  In addition, the wafers were measured after poly etch using electrical linewidth metrology (ELM), 
which offers increased speed over CD-SEM.  ELM has previously been used to characterize systematic 
spatial variation, however, this work offers more complete metrology at each processing step along with 
complete wafer-processing history.  The use of multiple metrology methods allows for a comparison of the 
effectiveness of each method, as well as investigation of the correlation between methods.  Also, care was 
taken to record the processing history of each wafer in detail in order to allow find similarities in 
processing which might account for a systematic variation signature.  Results from one of these 24-wafer 
lots (a baseline trim etch lot) are presented in this study. 
After the completion of wafer processing and CD-SEM and scatterometry measurements, the wafers were 
measured using ELM with an “exhaustive” sampling plan.  The exhaustive sampling plan is designed to 
allow a very high degree of spatial resolution to provide detailed variance maps.  This plan measures DUT1 
(horizontal isolated), DUT3 (vertical isolated), and DUT4 (vertical dense) features for the no-OPC sub-
modules.  These features were chosen to match the features measured on the mask.  The OPC sub-modules 
were not sampled due to the fact that some OPC features (particularly dense features) did not print 
correctly. 
Every module in the field (22 rows × 14 columns = 308 modules per field as printed) was measured, and 
every field on the wafer (23 fields) was sampled. This means that the total number of measurements in the 
exhaustive sampling plan is 3 features/module × 308 modules/field × 23 fields/wafer = 21,252 
features/wafer.  The measurements are performed on an Electroglas autoprobe with an Agilent 4142B 
source/monitor unit.  The required measurement time for this sampling plan is about 24 hours and 45 
minutes per wafer.  The first five wafers from the lot were measured using this plan. 
The first step in characterizing the systematic variation is to calculate the “average” wafer (Figure 2Figure 
2).  This is calculated by averaging the ELM measurements for the five exhaustively sampled wafers at 
each point on the wafer.  Inspection of the CD contour maps for the five wafers showed that the wafers 
were similar enough to justify averaging them together.  The average wafer contour map in Figure 2Figure 
2 reveals that there is a spot effect in the center of the wafer where the CD is smaller than the surrounding 
fields.  Also, the right edge shows a smaller CD than the rest of the wafer.  Note that the CD values in 
Figure 2Figure 2 are much smaller than the target CD of 130 nm due to the bias between electrical and 
physical CD [12]. 
The next step is to use this information to calculate the “average'” field by averaging the CD measurements 
for the five wafers at each point in the field (Figure 3Figure 3).  Fields that seem atypical (those in the 
center and at the far right edge) are excluded in calculating the average field. 
At this point measurements of the ELM2 mask can be used to isolate the effects of mask errors.  As 
previous works have shown, the mask errors are magnified by the mask error factor (MEF) [13].  However, 
the MEF applies to the aerial image, whereas electrical measurements are performed after several 
subsequent processing steps.  Therefore, the aerial image MEF may not be the correct factor to use in 
scaling the mask errors. 
For the purposes of this analysis, we are defining the mask error scaling factor (MESF), which is the factor 
which minimizes the variance of the residuals when the scaled mask errors are subtracted from the average 
field data.  Figure 4Figure 4 shows the variance of the residuals for varying scaling factors.  The value of 
the scaling factor that minimizes the variance of the residuals is found to be 0.68.  The mask errors scaled 



by the appropriate factor are shown in .  The scaled mask errors are then subtracted from 
the average field data ( ).  The remaining variance is assumed to be the result of other 
imperfections in the imaging system (e.g. lens aberrations, illumination variations, etc.). 

Figure 5Figure 5
Figure 6Figure 6

An ANOVA model is used in an attempt to extract the across-field systematic variation.  The model chosen 
for the treatment effect is of the form 
 

ffffff ydxcybxayxf ⋅+⋅+⋅+⋅= 22),(                                            (2) 
 
where (xf, yf) are coordinates within the field in millimeters and a, b, c, and d are coefficients to be 
estimated using linear regression.  The parameter estimates from the model fit are shown in , 
while an ANOVA table for the fit is shown in .  In addition, a graphical representation of 
this model is shown in . 

Table 2Table 2
Table 3Table 3
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Table 2.  Linear regression parameter estimates for across-field polynomial model shown in Eq. 2. 

Parameter Estimate Standard Error p-value 
Intercept 55.58 nm 0.0515 < 0.0001 

xf
2 0.0019 nm/mm2 0.0004 < 0.0001 

yf
2 0.0264 nm/mm2 0.0006 < 0.0001 

xf -0.0408 nm/mm 0.0122 0.0008 
yf -0.6225 nm/mm 0.0154 < 0.0001 

 
 

Table 3.  ANOVA table for across-field polynomial model. 

Source DOF Sum of Squares Mean Square F Ratio 
Model 5 0.521×105 10420 369.15 
Error 34414 9.714×105 28.227 p>F 
Total 34419 1.0235×106  <0.0001 

 
 
This across-field systematic variation model is then subtracted from the average field data with scaled mask 
errors removed.  The results are shown in . Figure 8Figure 8
The scaled mask errors and the polynomial model of across-field systematic variation can then be 
subtracted from each field in the average wafer data shown in .  The results are shown in 

. 
Figure 2Figure 2

Figure 9Figure 9
The wafer map in  reveals a localized effect in the center of the wafer where the CD is 
smaller than the surrounding area. An ANOVA model is again used to model this effect.  A bivariate 
Gaussian is used to model the treatment effect.  This model is of the form 

Figure 9Figure 9
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where (xw, yw) are coordinates on the wafer surface with origin at the center of the wafer, c1 is a scaling 
factor, c2 is a constant term, (xc, yc) is the center of the Gaussian function, σx and σy describe the “spread” 
of the Gaussian in the x and y directions, respectively, and σxy is an interaction term between spread in the x 
and y directions.  This model is fit to the data using nonlinear regression.  The parameter estimates from the 
model fit are shown in , and an ANOVA table is shown in .  In addition, a 
graphical representation of the model is shown in .  The bivariate Gaussian model is 
then subtracted from the average wafer with across-field effects removed, and the results are shown in 

. 

Table 4Table 4 Table 5Table 5
Figure 10Figure 10

Figure 11Figure 11

 
Table 4.  Nonlinear regression parameter estimates for bivariate Gaussian model shown in Eq. 3-5. 

Parameter Estimate 
c1 -1391.04 
c2 54.51 nm 
xc 1.71 nm 
yc 6.26 nm 
σx 5.13 nm 
σy 8.17 nm 
σxy 27.12 nm2 

 

Table 5.  ANOVA table for center spot Gaussian model shown in Eq. 3-5. 

Source DOF Sum of Squares Mean Square F Ratio 
Model 7 9.2×103 1314.29 47.06 
Error 34414 9.611×105 27.93 p>F 
Total 34408 9.714×105  <0.0001 

 
 
Finally, another ANOVA model is used to extract the remaining across-wafer systematic variation.  A 
second-order polynomial model was chosen to model this treatment, and it is of the form: 
 

wwwwwwww yxeydxcybxayxw ⋅⋅+⋅+⋅+⋅+⋅= 22),(   ,                            (6) 
 
where (xw, yw) are coordinates on the wafer in millimeters and a, b, c, d, and e are coefficients to be 
estimated using linear regression.  The parameter estimates from the model fit are shown in , 
and an ANOVA table for the fit is shown in . A graphical representation is shown in 

. 
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Table 6.  Linear regression parameter estimates for across-wafer polynomial model shown in Eq. 6. 

Parameter Estimate Standard Error p-value 
Intercept 55.59 nm 0.0515 < 0.0001 

xw
2 -0.00055 nm/mm2 0.00002 < 0.0001 

yw
2 -0.00021 nm/mm2 0.00002 < 0.0001 

xw -0.0281 nm/mm 0.0007 < 0.0001 
yw 0.0137 nm/mm 0.0007 < 0.0001 

xwyw -0.00009 nm/mm2 0.00003 0.0002 
 

Table 7.  ANOVA table for across-wafer polynomial model. 

Source DOF Sum of Squares Mean Square F Ratio 
Model 6 6.72×104 11200 430.99 
Error 34402 8.94×105 25.99 p>F 
Total 34408 9.61×105  <0.0001 



 
 
This across-wafer polynomial model is subsequently removed from the data, and the results are shown in 
Figure 13Figure 13.  The remaining variance is assumed to be random.  A summary ANOVA table of the 
systematic variation extracted from the lot is shown in Table 8Table 8, while a Pareto chart showing the 
components of CD variation present in the lot is shown in Figure 14Figure 14. 
 

Table 8.  Summary ANOVA table for systematic variation. 

Source DOF Sum of Squares Mean Square F Ratio p-value 
Mask Errors 305 2.36×105 773.77 29.77 < 0.0001 

Field Polynomial 5 5.21×104 10420 400.92 < 0.0001 
Wafer Gaussian 7 9.20×103 1314.29 50.57 < 0.0001 

Wafer Polynomial 6 6.72×104 11200 430.93 < 0.0001 
Error 34401 8.94×105 25.99   

 
 

5.  OPTIMUM ECONOMICAL SAMPLING PLAN SELECTION 
 
It is not generally practical to measure all of the test structures on the ELM2 test wafers.  For example, 
consider the cost of exhaustively measuring an entire wafer patterned with the ELM2 mask.  Each module 
contains 16 features, and there are 22×14 = 308 modules per field (Nf = 308 in Equation 1).  If the each 
wafer has 23 complete fields (Nw = 23), this corresponds to 113,344 features per wafer.  This would take 
several days to measure even with high-speed electrical measurements, and possibly an order of magnitude 
longer using CD-SEM.  In a high-volume production environment processing tens of thousands of wafers 
per month, this would be out of the question. Even the “exhaustive” sampling plan used to characterize 
systematic variation required over 20,000 measurements (roughly 25 hours of measurement time).  Clearly, 
this is not a practical solution. 
Therefore, decisions must be made concerning how many structures to measure and how to distribute the 
measurements across the wafer.  The need to accurately capture the systematic variance must be balanced 
against the cost of making the measurements.  Knowledge about the structure of the systematic variance 
allows the selection of a so-called optimum sampling plan that will “best” capture the systematic variance 
at a fixed cost. 
Once a detailed variance map has been created and the systematic variance has been extracted as described 
in section 3, an optimum sampling plan can be selected.  The first step is to set a fixed measurement cost, 
i.e. the maximum allowable measurement time for each wafer.  This is important because it describes the 
delay in processing required to measure each wafer, and increased delay means that the wafer throughput 
(and, therefore, profit) is decreased.  In setting the measurement cost, the need to sample each wafer many 
times (requiring a high measurement cost per wafer) to capture within-wafer systematic variation must be 
balanced against the need to sample many wafers (requiring a low measurement cost per wafer) to capture 
wafer-to-wafer systematic variation.   
Once a fixed cost is determined, different sampling plans that have the same cost but varying distributions 
of the measurements can be evaluated.  This is done by trying the sampling plans on the data from the 
exhaustively sampled wafers and fitting the various systematic variation models to the data from the 
reduced sampling plans.  The best plan is then defined as the plan that obtains the best fit for the different 
models.  One measure of best fit is the length of the 95% confidence intervals for the different model 
parameters.  Of course, different priority may be given to different model parameters, and this may be 
taken into account when selecting the best plan.   
To test this method, four “economical” sampling plans were designed.  These plans are summarized in 
Table 9Table 9 and shown graphically in Figure 15Figure 15.  Note that these sampling plans have roughly 
the same number of measurements and take about one hour to measure (recall that the exhaustive plan 
required nearly 25 hours).   

Table 9.  Summary of economical sampling plans. 

 Points per Field Fields per Wafer Total Measurements 



Plan 1 40 23 920 
Plan 2 60 15 900 
Plan 3 103 9 927 
Plan 4 154 5 785 

 
These plans were used to analyze the respective subset of the complete data set generated by the exhaustive 
sampling plan. The polynomial models for across-field and across-wafer systematic variation were fitted to 
the sampled data sets, and the widths of the 95% confidence intervals were compared.  The results are 
shown in Figure 16Figure 16.  Only Plan 1 was able to successfully estimate all of the parameters of the 
across-wafer systematic variation, and still obtains a good estimate of the across-field parameters compared 
to the other economical plans. Therefore, this is the most appropriate plan to use if the goal is to 
characterize both across-field and across-wafer systematic variation.  Although this simple example serves 
to illustrate the concept of finding an “optimum” sampling plan, a more complete implementation would 
include an optimizing algorithm to compare many more sampling plans to find a better optimum. 
 

6.  CONCLUSIONS 
 Electrical linewidth metrology with an exhaustive sampling plan was used to characterize spatial CD 
variation in a lithographic patterning process.  Mask errors were the largest source of systematic variation 
present in the process, although the mask errors seem to be de emphasized on the final product because of 
the interaction between the aerial image and the final poly features.  There are also significant systematic 
across-field and across-wafer components of spatial variation which may be modeled with simple basis 
functions such as polynomials.  A wafer center-spot effect, most likely an artifact of the developing fluid 
dispense mechanism, was also modeled using a bivariate Gaussian. 
The information gained in the systematic variation characterization was then used to select a reduced 
economical sampling plan.  This plan may then be used to track changes in the systematic variation present 
in the process. 
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Figure 1.  Test mask module.  The lower sub-module has OPC, while the upper sub-module does not.



  
  
  
  
 

  
Figure 2.  A CD contour map of the “average” 
wafer from the baseline trim etch lot.  The 
average is computed by averaging the ELM 
measurements for the five exhaustively sampled 
wafers at each point on the wafer. 

Figure 4.  Plot used to find the mask error 
scaling factor which minimizes the variance of 
the residuals when the scaled mask errors are 
subtracted from the average field data. 

  
  
  
  
  
  

 

 
 

 Figure 5.  DUT3 (vertical isolated) feature mask 
errors scaled by the factor which minimizes 
variance in the residuals when the scaled mask 
errors are subtracted from the average field. 

Figure 3.  A CD contour map of the “average” 
field from the baseline trim etch lot.  The 
average is computed by averaging the ELM 
measurements for the five exhaustively sampled 
wafers at each point in the field.  Atypical fields 
are excluded in calculating the average. 

 
 
 
          



  

  
Figure 6.  Average field with scaled mask errors 
removed. 

Figure 8.  Residuals after the second-order 
polynomial model (Eq. 2) of across-field 
systematic variation is removed from average 
field data with scaled mask errors removed.  

 
  
  
  
  
  
  
  
  
  

  
Figure 7.  Graphical representation of second-
order polynomial model (Equation 2) of across-
field systematic variation for DUT3 (vertical 
isolated) features. 

Figure 9.  Average wafer after removal of scaled 
mask errors and polynomial model of across-
field systematic variation from each field on the 
wafer. 

  
  
  
  
  
  
  
  



  

  
Figure 10.  Graphical representation of bivariate 
Gaussian model used to model spot effect in the 
center of the wafer. 

Figure 12.  Graphical representation of second-
order polynomial model (Eq. 6) of across-wafer 
systematic variation for DUT3 (vertical isolated) 
features.  

  
  
  
  
  
  
  
  
  
  
  

  
Figure 11.  Average wafer after removal of 
across-field systematic variation and bivariate 
Gaussian spot effect model. 

Figure 13.  Residuals after removal of scaled 
mask errors, polynomial across-field systematic 
variation model, and Gaussian and polynomial 
across-wafer systematic variation models.  

 
 
 
 
 
 



 

 
Figure 14.  Pareto chart of components of CD variation present in the process. 

 
Figure 15.  Candidate economical sampling plans. 
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ure 16. Comparison of candidate economical sampling plans.  Vertical axis shows the relative width of 
 95% confidence interval for each parameter estimate. 


