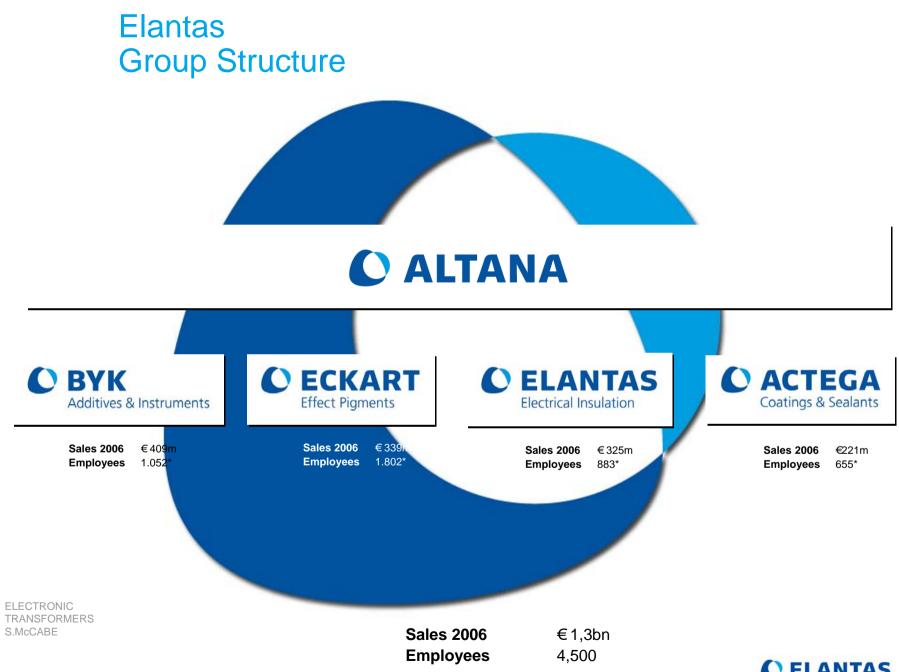


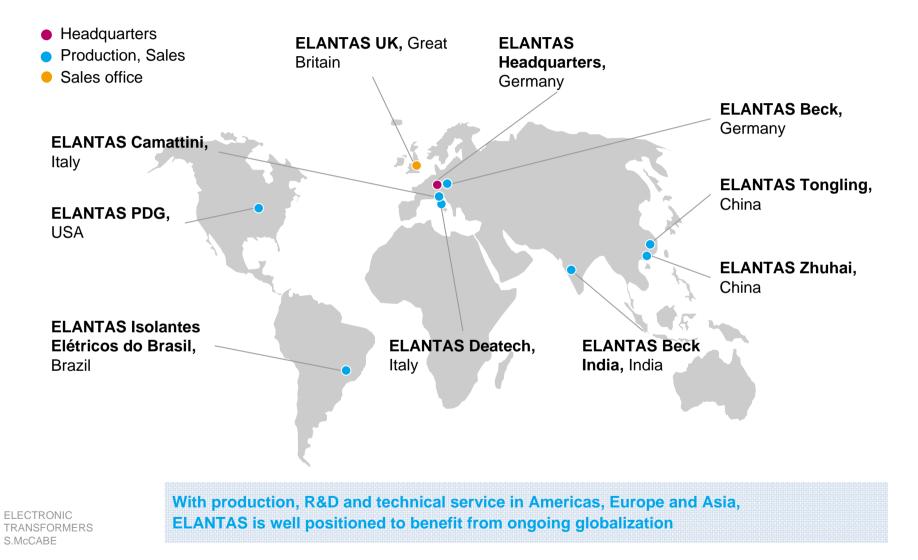
ELECTRICAL RESINS FOR TODAY AND TOMORROW


SWITCH MODE POWER SUPPLY

Presented by: Sean McCabe Head of Technical Department Impregnating Resins and Compounds

ELANTAS, ZHUHAI

A member of **C** ALTANA

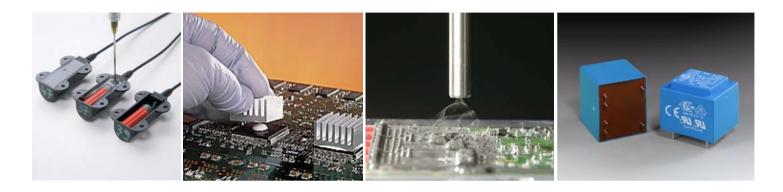

Elantas at a Glance

	Sales 2006 Employees	€1,3bn 4,500		
Additives & Instruments	ECKART Effect Pigments	ELANTAS Electrical Insulation	Coatings & Sealants	
Sales 2006 € 409m Employees 1.052*	Sales 2006 € 339m Employees 1.802*	Sales 2006 € 325m Employees 883*	Sales 2006 €221m Employees 655*	
BYK-Chemie GmbH	ECKART GmbH & Co. KG	ELANTAS GmbH	ACTEGA GmbH	
BYK Asia Pacific	ECKART America	ELANTAS Beck	ACTEGA Artistica ACTEGA DS ACTEGA Foshan ACTEGA Kelstar	
BYK-Cera	ECKART Asia	ELANTAS Beck India		
BYK-Chemie de Mexico	ECKART Benelux	ELANTAS Camattini ELANTAS Deatech		
BYK-Gardner	ECKART Cosmetics			
BYK Gardner USA	ECKART France	ELANTAS Isolantes Eletricos do Brasil	ACTEGA Radcure	
BYK Japan	ECKART Italia	ELANTAS PDG	ACTEGA Rhenacoa	
BYK Solutions	ECKART Mexico	ELANTAS FOG	ACTEGA Rhenania	
BYK Tongling	ECKART Pigments	ELANTAS Toriginig ELANTAS UK ELANTAS Zhuhai	ACTEGA Terra	
BYK USA	ECKART Suisse			
	ECKART Switzerland			
	ECKART UK			
* (2006-12-31)	ECKART Zhuhai			

C ELANTAS Electrical Insulation

Primary Insulation Products and Applications

Wire enamels for the primary insulation of magnet wire
Magnet wire is applied in electric motors, generators and transformers


Secondary Insulation Products and Applications

- Secondary Insulation of winding wire after it is mounted in a device (electric motor, generator or transformer)
- Applied through various application techniques
- (dip, roll-dip, hot-dip, trickle, VPI etc.)

Electronic and Engineering Materials Products and Applications

- Resin systems for the overall protection of electronic circuits and electric devices
- Resin systems with specific functionalities in electronic components/assemblies

ELANTAS, ZHUHAI: INVESTMENT AND PRODUCTION CAPABILITY

Registered Capital: 5.70 Million USD

Total Investment:9.50 Million USD Fluid working capital:3.2 Million USD

Area of Land: 70,000m² Building area of the first stage:12,500m²

Production Capability: 15,000 tons of high performance impregnating varnish per year. 10,000 tons of wire enamels per year

CONSTRUCTION HISTORY

- In October 2002, Decision was made to set up Elantas Electrical Insulation (Zhuhai) Co. Ltd.
- In August 2003, Construction of Zhuhai plant was formally started
- By the end of July 2004, construction of the plant was finished and commissioning started
- In September, 2004, Zhuhai plant began the trial production.

EQUIPMENT STATUS

- Six reactors

 (3 × 15 cubic meters, 1× 8 cubic meters, 1× 4 cubic meters, 1× 500 liters)
- Eight dilutors (5× 35 cubic meters, 2× 15 cubic meters, 1 × 1 cubic meter)
- Ten mixers

(2× 3 cubic meters, 2× 5 cubic meters, 3× 8 cubic meters, 3×1 cubic meters)

EQUIPMENT STATUS

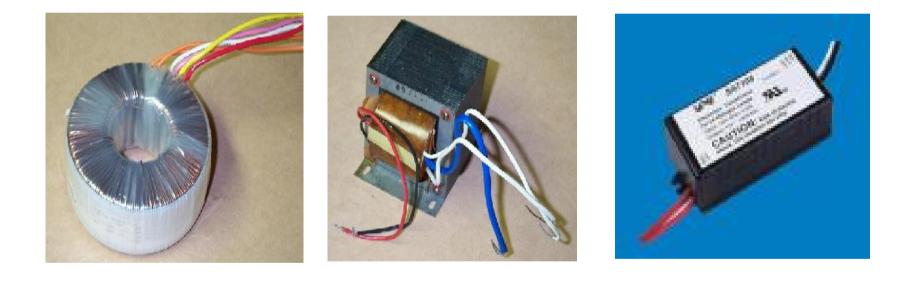
- > Ten intermediate storage tanks
- \succ (10 \times 50 cubic meters)
- Fourteen raw material storage tanks
- (7 × 60 cubic meters, 7 × 100 cubic meters)
- > One waste fluid collecting tank
- > (60 cubic meters)
- > One safety tank (50 cubic meters)

QUALITY CONTROL STATUS

- ISO 9000 was issued in May, 2005
- OHSAS 18000 & ISO14000 in 2006;
- **TS16949 in May, 2007.**
- Major test equipment for lab is positioned such as FTIR, TGA, DSC, Bond strength tester etc. which is enough for current quality control requirements;
- Technical development & management systems are applied to insure future quality.

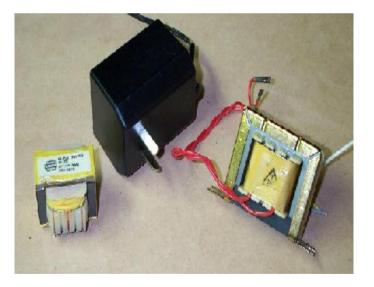
QUALITY CONTROL STATUS

- Both Chinese and English versions of raw material specifications, testing procedure and product specification, testing procedure and production process are available;
- UL approval work is done and we are authorized to produce and sell all products transferred / approved from P.
 D. George and other sister companies.
- A new lab has been established with more advance equipment like VPI and Enameling machine.



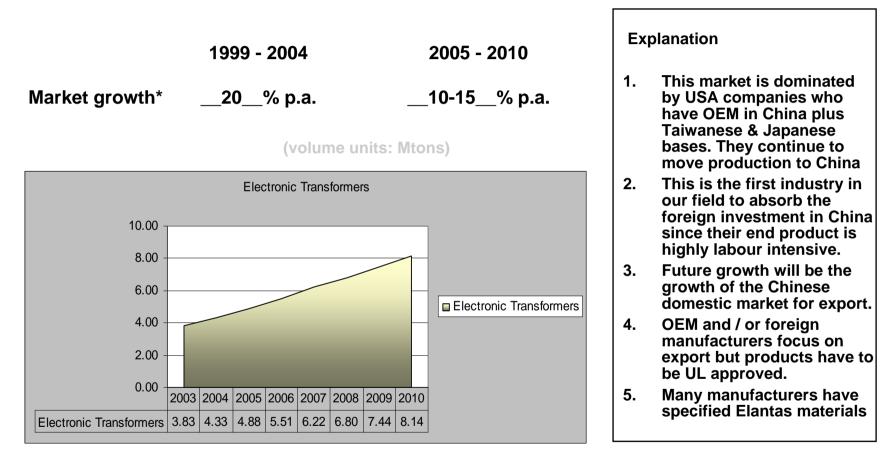
A Strategic Approach to Specific Applications –

Electronic Transformers



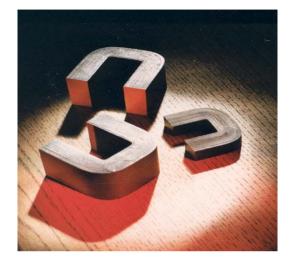
Topics:

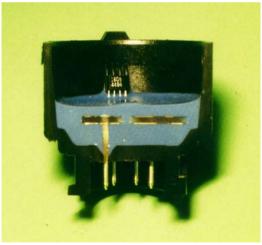
Market size and development


> Electronic transformers – what are they?

- > Resin requirements
- Products offered by ELANTAS
- Future resin systems

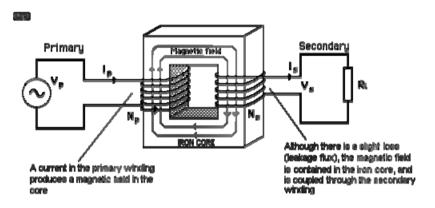
Market size and development Electronic Transformers


Secondary data: CHEAA – appliance reference



Electronic Transformers – What are they?

Component name: Transformers Transducers Lightning and Surge Protection devices Ballasts/Lighting Capacitors/Suppressors Switchgear


Used in: Telecommunications Office equipment Automotive Appliances The control circuit of anything electrical!!!!

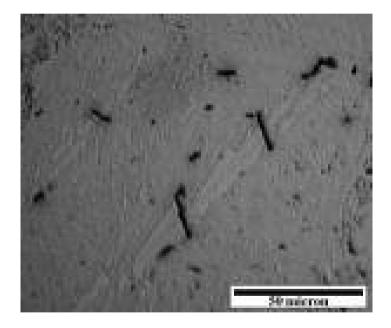
Electronic Transformers – Operation?

- Inductance is the ability of a coil to establish (or induce) a voltage within itself to oppose changes in current through its windings.
- When varying current (AC) flows through a coil, a voltage is induced within the coil in a direction so as to oppose the change of current through it.
- Transformers are one of the major applications. These are made from "mutually coupled" coils where the magnetic field established in one coil, 'cuts' through the other coil and hence induces a voltage in the other coil. This is called 'mutual inductance'.
- They are used in electronics to step-up or step-down voltages. When a varying voltage (like AC) is applied to one of the coils of the transformer a voltage is 'induced' in the other coil due to mutual inductance.

Resin functions:

- > Transformers are noisy! : Electrical varnishes help the unit resist vibration
- Transformer consolidation : Electrical varnishes help the unit resist wire separation, by solidifying the core and holding the conductors together within the coil.
- Environmental: Electrical varnishes insulate the winding and core from the environment. This insulation prevents the oxidation of core material and deterioration of magnet wire insulation due to contact with moisture or airborne impurities.
- Insulation of minute "nicks" on the magnet wire, increased dielectric strength of enamelled wire and fibrous and porous sheet insulation.
- Raised operating temperature of low-temperature sheet insulation.
- Fill of internal voids within the component : Playing a major role in heat transfer from "hot spots" within the part to the surface.

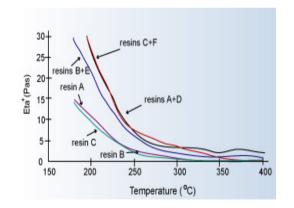
Resin requirements:


- Flexible: To aid noise reduction and prevent wire movement
- Low viscosity: To facilitate penetration between fine wires
- Low exotherm / shrinkage: To prevent damage to fine wires and limit changes in inductance
- High chemical and moisture resistance: To repel the environment
- Increased electrical performance: Dielectric strength.
- Increased thermal conductivity: Dissipate heat quickly and prevent hot spots.
- Coefficient of Thermal Expansion: Solids expand in response to heating and contract on cooling; this response to temperature change is expressed as its coefficient of thermal expansion
 ELECTRONIC TRANSFORMERS S.MCCABE

Flexible: To aid noise reduction and prevent wire movement

Base resin used must be able to "flex" according to the frequency power of the transformer to prevent micro-cracking.

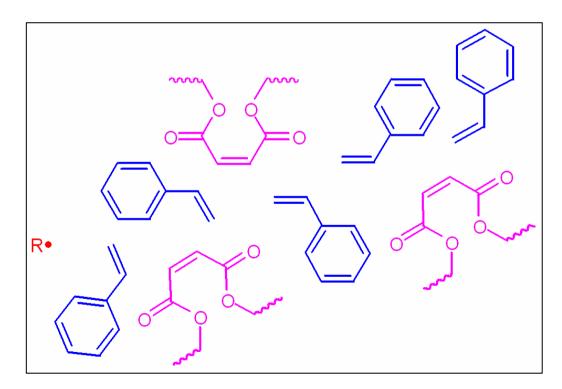
Flexibility is measured using:	
Hardness Measurements	DIN 53505
Tensile strength	ISO527
Glass transition temperature	IEC1006



Low viscosity: To facilitate penetration between fine wires

Viscosity is the measure of a material's resistance to flow. It is a result of the internal friction of the material's molecules. Materials with a high viscosity do not flow readily; materials with a low viscosity are more fluid.

The higher the viscosity the thicker the material Viscosity decreases as temperature increases



Low exotherm / shrinkage: To prevent damage to fine wires and limit changes in inductance

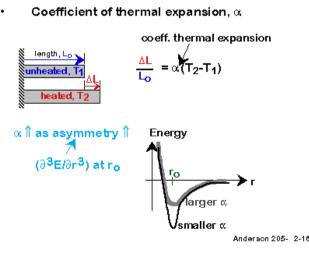
When certain polymers cure they give out heat as an exotherm - the energy dissipated in a chemical reaction. This heat is sufficient to break wires and therefore change the overall inductance



Increased thermal conductivity: Dissipate heat quickly and prevent hot spots.

Thermal conductivity is a measure of the heat transfer capability of the resin to prevent over-heating of the core. It is measured according to ISO 8894-1.

Inorganic fillers are used to increase this property but this can also increase viscosity.



Coefficient of Thermal Expansion

Materials expand / contract due to changes in temperature which leads to changes in thermal vibration of the atoms in a material, and hence to an increase in the average separation distance of adjacent atoms.

The <u>linear coefficient of thermal expansion</u> a describes by how much a material will expand for each degree of temperature increase

Resin profiles:

	Non-reactive Solvents	Solvent-less	Water-Reducible
Common Resins	Phenolic, Epoxies, Saturated Polyesters	Epoxies Polyurethane Unsaturated polyesters PBD resins	Saturated polyesters Epoxies
Common Solvents	Xylene, toluene	Styrene, Vinyl toluene	Small amounts of non- reactive organic solvent
Typical Cure Methods	Heat / room temperature	Heat / room temperature	Heat
Typical Process	Dip and Bake	Potting / Dip and Bake/VI	Dip and Bake
Material Tank Stability (Pot Life)	Very good	Very good	Very good
Tank Maintenance	Simple	Moderate	High
Environmental Emissions	Yes	No	Νο
Price	Low	High	Moderate
Disposal Costs	High	Low	Low
Typical Number of Parts	One	Тwo	One / two

Resins and Compounds for the Electronic Transformer Industry

Elantas 468 range

Uses

Impregnation of electronic components

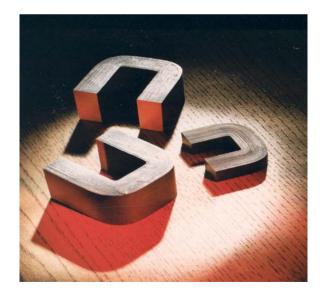
Advantages

Outstanding Noise Reduction Outstanding Thermal Dissipation High Dielectric Strength Excellent Chemical and Moisture Resistance Excellent Tank Stability Long product history

Application Method

Dip / Vacuum process

Chemical type


Resilient epoxy resin

Single component

Cure: 3-5hours at 135C

UL

recognized up to Class 200C

Elantas V1630 / V1380 / 009-0008

Uses

Impregnation of motors and transformers

Advantages

Fast air dry Good penetration Good moisture resistance

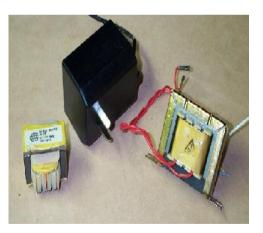
Application Method

Dip Spray

Chemical type

Modified saturated polyesters

Single component


Cure 20-30 minutes at 25 $^\circ\,$ C

UL

recognized up to Class 180C

CUSTOMERS

ATC Frost Delco Remy Signal Transformer Johnson Electric Various distributors

Elantas 003-1010

Uses

Impregnation of motors and transformers

Advantages

High flexibility High bond strength Good moisture resistance

Application Method

Dip VI **Chemical type**

Solvented saturated polyester

Single component


Cure 2-3 hours at 130-160 $^\circ\,$ C

UL

recognized up to Class 200C

CUSTOMERS

Phillips Shanghai Sanyo Various distributors

Elantas U510S

Uses

Potting of electronic components

Advantages

Very flexible Good adhesion to various substrates Excellent thermal shock characteristics Room temperature cure

Application Method

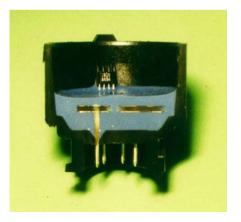
Potting

Chemical type:

Flexible polybutadiene

Dual component (100:24 pbw)

Cure 72-168 hours at 25C


UL

Not recognized by UL

Customers

Delco Delphi Electronics

Hamlin

Elantas PED 300

Uses

Impregnation and potting of transformers

Advantages

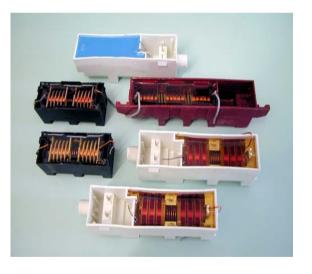
Very Flexible Excellent for noise dampening Can be highly filled Excellent field history Cost effective

Application Method

Potting

ELECTRONIC TRANSFORMERS S.McCABE

Chemical type:


Unsaturated polyester – in styrene **Dual component (100:1)**

Cure 24 hours at 25° C (77° F)

UL

Recognized up to Class 180C **CUSTOMERS**

Holophane Sola Jefferson Actown

Altana E471-5LL

Uses

Impregnation and potting of electronic transformers

Advantages

Minimal exotherm and shrinkage. Excellent for noise dampening

highly filled – excellent heat transfer

Long pot life and low viscosity makes this compound ideal for fine wire applications.

Application Method Potting

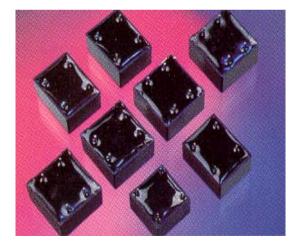
Polling

ELECTRONIC TRANSFORMERS S.McCABE

Chemical type

Highly filled epoxy resin

Dual component (100:15)


Cure 24 hours at 25° C (77° F)

UL

Recognized to UL94 V-0

CUSTOMERS

Various agents

Altana 200 Polyurethane

Uses

Impregnation and potting of high voltage electric and electronic transformers

Advantages

Good electrical properties at elevated temperatures Excellent mechanical resiliency. Excellent heat shock. Low temperature cure.

Application Method Potting

ELECTRONIC TRANSFORMERS S.McCABE

Chemical type

Filled polyurethane resin

Dual component (100:16.7)

Cure 1-2 hours at 107-121 $^\circ\,$ C

UL

Not recognized by UL

CUSTOMERS

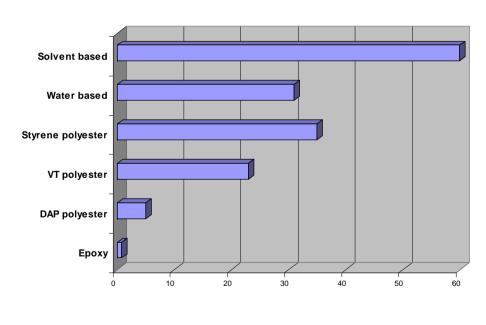
Various agents

Environmentally Driven

Water Based resin systems

Low emission Resins

Low viscosity solventless epoxy systems

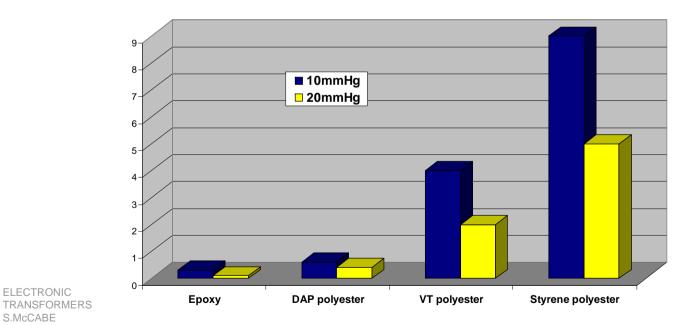


Environmentally Driven

EPA programs have been set up to improve air quality.

The clean air act has added an extra dimension in making a decision as to the type of varnish to use in the manufacturing of transformers and other electrical devices.

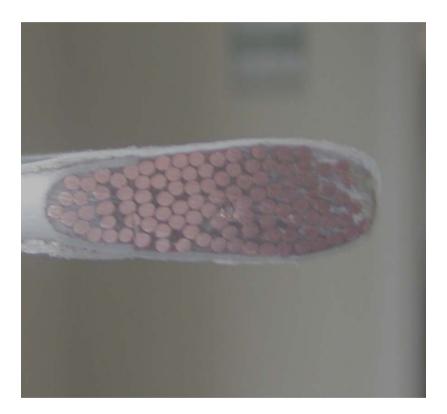
The figure below shows the typical % of VOC (Volatile Organic Compound) for each type of varnish.


Percentage Volatiles Of Varnishes

Environmentally Driven

The figure below shows the % volatiles stripped off under vacuum levels of 10 and 20mmHg. Solvent based and water based were not tested as the vapour pressure of the solvents and water.

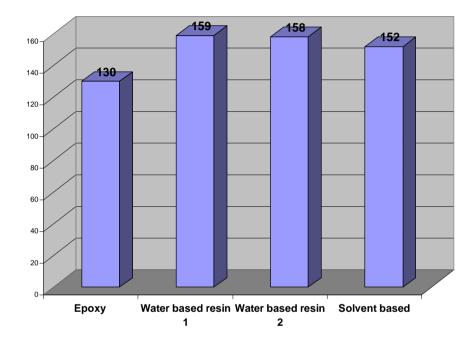
The solventless epoxy and DAP systems exhibited good results



Chemical Loss under Vacuum

Temperature Rating Driven

- Filled resins to improve thermal conductivity
- High Temperature co-polymer systems
- High Temperature Epoxy Resins

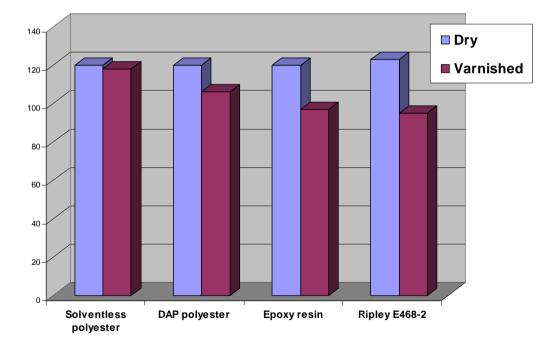


Future Developments

Temperature rating driven

- The transformer processed in the solvent-less epoxy exhibited heat rise of 20C less than the other systems.
- The reason for this is that the solvented polyester and the water based varnishes didn't meet the temperature requirement of 150C for the transformer is that when these are cure they also out-gas. These emissions cause a honeycomb effect, trapping air which is a poor thermal conductor and traps heat

Heat rise Comparison of Varnishes


Note that the acceptable upper limit for heat rise in this case was 150C.

Future Developments

Temperature rating driven

The figure (below) shows how the correct choice of impregnant even amongst different 100% solids varnishes of like and dissimilar chemistries, can have varied results pertaining to heat rise.

Heat Reduction Comparison (Celcius)

Future Developments

Temperature rating driven

- The correct choice of resin has a direct effect on the heat rise of the transformer. Whilst this is a physical function of the varnish, the results directly impact the decision of the varnish choice by reflecting into the final cost of the transformer.
- How does heat rise and heat reduction calculate into the costing factor of the varnish?

Providing that the heat rise is within specified limits, the engineer will be able to achieve a significant cost reduction of the transformer by eliminating some of the core steel and magnetic wire. The major cost of the transformer is in the insulation, steel and copper. If you can eliminate even a small percentage the cost savings are real.

So? Investigate!!!

As can be seen different applications require different properties from the system used.

Investigate what exact properties are important and define in order of importance.

ALSO: The resin will be used with other insulation materials -

Good compatibility between these is essential!!!!

Check Compatibility in the wet state Compatibility of by-products after cure due to thermal degradation

What else must be considered?

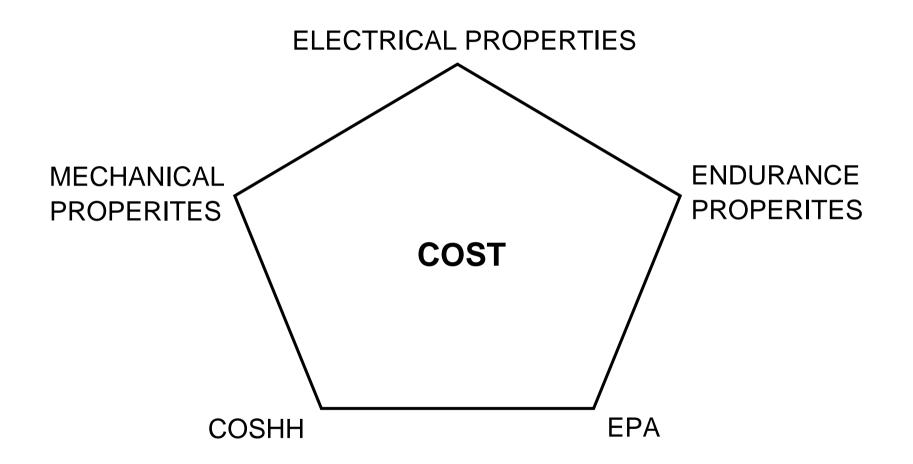
1. COSHH – Control of Substances Hazardous to Health These place obligations on employers to use more safe chemicals

2.EPA – Environmental Protection Act

Limits to the release of hazardous substances into the environment

3. COST!!!

This covers the cost of the resin and also the cost of the equipment



CONSTRAINTS ON A SYSTEM

Conclusion – Choice of resin?

Challenges of performance criteria, cost, and environmental issues fact the engineers decision.

- What are the performance characteristics of the resin?
- What does the varnish cost?

- What are the costs with disposal of varnish?
- Will I need to change in the future due to environmental legislation?
- Will this varnish suit my process without impacting the air quality?

Thank you for your attention.

A member of **C ALTANA**