
Electrical

OSHA 10-hour Outreach Training General Industry

Electrical

Introduction

Lesson objectives:

- 1. Identify major electrical hazards
- 2. Describe types of electrical hazards
- 3. Describe electrical protection methods
- 4. Recognize employer requirements to protect workers from electrical hazards

Introduction

Definitions:

 Electricity – movement of the free electrons between atoms;

- Related terms:
 - Current the movement of
 - electrical charge
 - Resistance opposition to current flow
 - Voltage a measurement of electrical force

Introduction

- Conductors substances, such as metals, that have little resistance to electricity
- Insulators substances, such as dry wood, rubber, glass and Bakelite, that have high resistance to electricity
- Grounding a conductive connection to the earth which acts as a protective measure

Electrical Hazards

Electrical Hazards

Examples of electrical hazards that could cause workers to be electrocuted.

- <u>https://www.osha.gov/video/shipyard_a</u> ccidents/08_welder_electrocuted.html
- <u>https://www.osha.gov/video/shipyard_a</u> ccidents/15_lockout_tagout_failure.html

Electrical Hazards

BE SAFE:

- Burns
- Electrocution
- Shock
- Arc flash/arc blast
- Fire
- Explosions

Electrical Hazards

Burns:

- Most common shock-related injury
- Three types of electrical burns:
 - Electrical
 - Arc flash
 - Thermal contact

Electrical Hazards

Electrocution:

- Is fatal
- Meaning: to kill with electrical shock
- Results when a human is exposed to a lethal amount of electrical energy

Electrical Hazards

Shock:

- Body becomes part of electrical circuit
- Reflex response to passage of electric current through the body

Electrical Hazards

Arc Flash/Arc Blast

Arc flash

- Sudden release of electrical energy through air when a high-voltage gap exists and there is a breakdown between conductors
- Gives off thermal radiation (heat) and bright, intense light that can cause burns
- Temperatures as high as 35,000°F

Electrical Hazards

 Arc blast – high-voltage arcs can also produce considerable pressure waves by rapidly heating the air and creating a blast

Electrical Hazards

Fire:

- Most result from problems with "fixed wiring"
- Problems with cords, plugs, receptacles, and switches also cause electrical fires

Electrical Hazards

Explosions:

- Occur when electricity ignites explosive mixture of material in the air
- Note:
 - Electricity is source of these hazards
 - All hazards are of equal importance
 - Lesson focuses on eliminating electrical hazards

Electrical Hazards

Examples of fatal accidents:

- Case #1: Worker electrocuted when the ladder came in contact with overhead power lines
- Case #2: Worker electrocuted when mast came in contact with high voltage overhead lines

Electrical Hazards

• Case #3: Worker changing energized ballast on light fixture was electrocuted and fell to the concrete floor while working from an 8' fiberglass stepladder.

Electrical Hazards

U.S. Bureau of Labor Statistics:

- 156 electrocutions for 2014
- Up from 141 in 2013

Types of Electrical Hazards

Contact with overhead power lines:

- Overhead and buried power lines carry extremely high voltage
- Risks
 - Electrocution (main risk)
 - Burns and falls

Types of Electrical Hazards

- Cranes are not the only equipment that can reach overhead power lines.
- Use of ladders or suspension in a man-basket under or near power lines are risks.

Types of Electrical Hazards

- **Important**: the covering on an overhead power line is primarily for weather protection; therefore, workers need to know that if they touch a power line, covered or bare, death is probable.
- <u>https://www.osha.gov/dts/vtools/construct</u> ion/ladder powerline fnl eng web.html

Types of Electrical Hazards

Contact with energized sources:

- Live parts
 - The major hazards
 - Electrical shock and burns
 - Electrical shock occurs when the body becomes part of the electric circuit

Types of Electrical Hazards

- Severity and effects of an electrical shock depend on a number of factors
 - Pathway through the body
 - Amount of current
 - Length of time of the exposure
 - Whether skin is wet or dry
- Water
 - Great conductor
 - Allows current to flow more easily in wet conditions and through wet skin

Current	Reaction
Below 1 milliampere	Generally not perceptible
1 milliampere	Faint tingle
5 milliampere	Slight shock felt; not painful but disturbing. Average individual can let go. Strong involuntary reactions can lead to other injuries
6-25 milliamperes (women)	Painful shock, loss of muscular control
9-30 milliamperes (men)	The freezing current or "let-go" range. Individual cannot let go, but can be thrown away from the circuit if extensor muscles are stimulated.
50-150 milliampres	Extreme pain, respiratory arrest, severe muscular contractions. Death is possible.
1,000-4,300 milliamperes	Rhythmic pumping action of the heart ceases. Muscular contraction and nerve damage occur; death likely
10,000 milliamperes	Cardiac arrest, severe burns; death probable
This table shows the body's reaction when exposed to various levels of current. Source: CSHA	

Types of Electrical Hazards

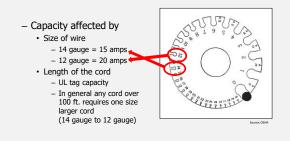
- Damaged or bare wires
 - Fault current may travel through a body,
 - causing electrical burns or death, if
 - Power supply is not grounded
 - Path has been broken
 - There are live parts or bare wires
 - Extreme conditions and rough treatment can change electrical equipment from safe to hazardous

Types of Electrical Hazards

· Defective equipment or tools

Types of Electrical Hazards

- · Improper repairs
 - Examples of incidents
 - Ballast strap not replaced after repair = Electrocution of 11 year old boy
 - Cutting off bleed resistor on capacitor= causes 370-volt shock
 - Removing and leaving off terminal insulator on capacitor = causes 440-volt shock


Types of Electrical Hazards

Improper use:

- · Extension and flexible cords
 - Care
 - Connection
 - Capacity

Types of Electrical Hazards

Types of Electrical Hazards

• Power strips:

 Can be over loaded because of multiple plug arrangement

- Most have overload protection
 but often malfunction causing fire
- Use fixed wiring when possible

Types of Electrical Hazards

- Portable heaters and appliances:
 _ Manufacturer recommendations
 - not followed – Do not plug into a power strip!
 - This causes overloads and fires.

Electrical Protection Methods

Maintain safe distance from overhead power lines:

- Staying away
- Following table shows the safe power line clearance distance for various line voltages.
- <u>https://youtu.be/Y2MwX738e1Y</u>

Electrical Protection Methods

Voltage (nominal, kV, alternating current)	Minimum Clearance Distance (feet)
Up to 50	10
Over 50 to 200	15
Over 200 to 350	20
Over 350 to 500	25
Over 500 to 750	35
Over 750 to 1000	45
Over 1000	(As established by the power line owner/operator or registered professional engineer who is a qualified person with respect to electrical transmission and distribution)
This table shows the minimum clearance distances, in feet, for different power line voltages. Source: OSHA	

Electrical Protection Methods

Use ground-fault circuit interrupters (GFCI):

- Designed to protect people from electrical shock
- Detects ground faults and interrupts electric current
- Limits duration of electrical shock

Electrical Protection Methods

Three types of GFCI:

- Receptacle GFCI
- Temporary/portable GFCI
- Circuit Breaker GFCI

Inspect portable tools and extension cords:

- Workers need to inspect extension cords prior to their use for any cuts or abrasion.
- Electric hand tools that are old, damaged, or misused may have damaged insulation inside.

Electrical Protection Methods

Use power tools and equipment as designed:

- Follow tool safety tips to avoid misusing equipment
- Follow manufacturer's instructions

Electrical Protection Methods

 Common examples of misused equipment

Electrical Protection Methods

Tool safety tips

- Never carry a tool by the cord.
- Never yank the cord to disconnect it.
- Keep cords away from heat, oil, and sharp edges.
- Disconnect when not in use and when changing accessories such as blades and bits.

Electrical Protection Methods

- Avoid accidental starting. Do not hold fingers on the switch button while carrying a plugged-in tool.
- Use gloves and appropriate footwear.
- Store in dry a place when not using.

Electrical Protection Methods

- Don't use in wet/damp environments.
- Keep working areas well lit.
- Ensure that cords do not cause a tripping hazard.
- Remove damaged tools from use.
- Use double-insulated tools.

Electrical Protection Methods

Follow lockout/tagout (LOTO) procedures:

- Lockout/tagout
 - Essential safety procedure
 - Protects workers from injury while working on or near electrical circuits and equipment
 - Prevents contact with operating equipment parts such as, blades, gears, shafts, etc.

Electrical Protection Methods

 LOTO prevents the unexpected release of hazardous gases, fluids, or solid matter in areas where workers are present.

Electrical Protection Methods

Power source identification:

- Mark all breakers accordingly for the circuits they protect
- Mark all disconnect means accordingly for the equipment they service
- Identify all voltages with proper labeling

Employer Requirements

Employer requirements to protect workers:

- Ensure overhead power line safety
- · Isolate electrical parts
- Supply ground-fault circuit interrupters (GFCI) protection
- · Establish and implement an AEGCP
- Ensure power tools are maintained in a safe condition

Employer Requirements

- Ensure proper guarding
- Provide training
- Enforce LOTO safety related work practices
- Ensure proper use of flexible cords and power strips
- Ensure proper identification of power sources

What's Wrong?

What's Wrong?

Knowledge Check

- 1. What is electricity?
 - a. The movement of atoms within an object
 - b. The movement of free electrons between atoms
 - c. Solid mass
 - d. Movement within the nucleus of an atom

Answer: b. The movement of free electrons between atoms

Knowledge Check

- 2. "Electrocution" means ____.
 - a. received a mild electrical shock
 - b. killed by electrical shock
 - c. exposed to electrical current
 - d. any accident involving electricity

Answer: b. killed by electrical shock

R.I.P.

Knowledge Check

- Arc flash/arc blast can reach maximum temperatures up to 350°F?
 - a. True
 - b. False

Answer: b. False - temperatures can reach up to 3,500°F

Knowledge Check

- 4. Which gauge of wire will carry the most current?
 - a. 14 gauge
 - b. 12 gauge
 - c. 10 gauge
 - d. 00 gauge

Answer: d. 00 gauge – the lower the wire gauge number, the more current it can carry

Knowledge Check

- 5. What does GFCI stand for?
 - a. Ground Flexible Conduit Insulator
 - b. Ground Flow Current Interceptor
 - c. Ground Fault Circuit Interrupter
 - d. Ground Floor Connection Intersector

Answer: c. Ground Fault Circuit Interrupter

Knowledge Check

- 6. Which of the following is a safe practice?
 - a. Carrying power tool by the cord
 - b. Holding fingers on switch button while carrying a plugged-in tool
 - c. Keeping cords away from heat, oil, and sharp edges
 - d. Yanking cord to disconnect plug from outlet

Answer: c. Keeping cords away from heat, oil, and sharp edges

Knowledge Check

- 7. Who is responsible for ensuring that overhead power lines are de-energized?
 - a. Power company
 - b. Employer
 - c. Employee
 - d. Municipality

Answer: b. Employer

Created by OTIEC Outreach