# Electrical Systems Existing Conditions and Building Load Summary 

AE 481W<br>Tech Report 2

Bucks County Justice Center
Doylestown, PA

Joshua Lange
Lighting/Electrical
Thesis Adviser: Dr. Richard Mistrick
Electrical Adviser: Gary Golaszewski

> 10/17/2014

## Executive summary

This report is an analysis of the electrical system of the Bucks County Justice Center. Part 1 of the analysis develops design criteria base on the NEC, the IBC, and design practices as well as performing preliminary load calculations. Part 2 of this analysis documents the electrical system as designed including load calculations. Part 3 compares the design to the criteria and discusses areas that could be investigated further in order to see if efficiency or reliability can be improved.

The main electrical system utilizes a 3200 A unit substation that is fed by a 2000 KVA building transformer with a 34.5 KV primary and a $277 / 480$ secondary. The building utilizes a dual voltage distribution system of $277 / 480 \mathrm{~V}$ and 120/208 V. A 1000 KW generator and a 100 KW UPS serve the emergency power distribution system. There are various low voltage systems throughout the building including audio visual, telecommunications, fire alarm, and an expansive security system.
Table of contents
Executive summary ..... 1
Table of contents ..... 2

1. Part 1 - Electrical Systems Criteria and Scope of Work ..... 3
1.1 Preliminary Load Calculation ..... 3
1.2 Local Utility ..... 4
1.3 Preliminary Selection of Utility Rate Schedule ..... 4
1.4 Voltage ..... 4
1.5 Emergency Power Requirements - IBC ..... 5
1.6 Special occupancy requirements - NEC Chapter 5: ..... 6
1.7 Optional Backup Power. ..... 6
1.7 Priority Assessment ..... 7
1.8 Low Voltage/Communication Systems ..... 8
1.9 Electrical Equipment Space Requirements ..... 9
2. Part 2 - Existing Electrical System ..... 10
2.1 Load Summary ..... 10
2.2 Utility Rate Schedule ..... 12
2.3 Voltage ..... 12
2.4 Emergency Loads ..... 12
2.5 Special Occupancy ..... 13
2.6 Special Equipment ..... 13
2.8 Electrical Equipment ..... 14
2.8 Optional Backup Power. ..... 23
2.9 Low Voltage Systems ..... 24
2.10 Electrical and Communication Spaces ..... 26
2.11 Alternative Energy Sources ..... 28
2.12 Single line/ riser Diagram ..... 28
3. Part 3 - Evaluation of the Designed System Against Part 1 Criteria ..... 31
3.1 Building Loads ..... 31
3.2 Utility Rate Schedule ..... 31
3.3 Voltage ..... 31
3.4 Electrical Equipment ..... 32
3.5 Emergency Power System ..... 32
3.6 Optional Back-up Power ..... 32
3.7 Controls System Integration ..... 33
3.8 Alternative Energy Sources. ..... 33

## 1. Part 1 - Electrical Systems Criteria and Scope of Work

### 1.1 Preliminary Load Calculation

Preliminary load calculation based on building type, SF, NEC lighting and receptacle loads/demand factors, HVAC, and specialty equipment

## SF Method Electrical Loads

|  | Bulding Area | Electrical Load | Mechanical Load |  | Mech. Equip. Electrical load |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Building Type | (SF) | (W/SF) | (SF/Ton) | (Tons) | (W/ton) |
| Office Building | 273000 | 7 | 300 | 910 | 1750 |


| Total Loads |  |  |
| :---: | :---: | :---: |
| Electrical <br> Load <br> (KW) | Mechanical <br> Load <br> (KW) | Total Load <br> (KW) |
| 1911 | 1593 | 3504 |

## NEC Loads

| Lighting Loads (NEC Table 220.12) |  |  |  |
| :---: | :---: | :---: | :---: |
| Occupancy Type | Area <br> SF | Electrical Load <br> VA/SF | Electrical Load <br> KVA |
| Office Buildings | 273000 | 3.5 | 956 |

Lighting loads are continuous so the demand factor is $125 \%$
$(956 K V A)(125 \%)=1195$ KVA

| Receptacle Loads (NEC 220.14(K)) |  |  |  |
| :---: | :---: | :---: | :---: |
| Occupancy Type | Area <br> SF | Electrical Load <br> VA/SF | Electrical Load <br> KVA |
| Office Buildings | 273000 | 1 | 273 |

Receptacle demand factor $100 \%$ for first 10 KVA and 50\% for remaining KVA
$(10 K V A)+(263 K V A)(50 \%)=141.5$ KVA
The Bucks County Justice Center will have telecom rooms on every floor and will house servers. Both of these items will greatly influence the load.

There are nine elevators in the building assume 30 HP 480 V ЗФ motors
(9) $(40 F L A)\left(\frac{(\sqrt{3})(480)}{1000}\right)=299 K V A$

For nine elevators a demand factor of $73 \%$ may be used
$(299 K V A)(73 \%)=\mathbf{2 1 8} \boldsymbol{K V} \boldsymbol{A}$

### 1.2 Local Utility

The local utility company is PECO Energy Company.

### 1.3 Preliminary Selection of Utility Rate Schedule

RATE-GS is only available for a maximum of 750 kVA for transformers inside the building or 1500 kVA for transformers outside of the building. Above this RATE-HT must be used which requires the customer to install, own, and maintain the transformer. Based on the preliminary load calculation this project will be RATE-HT.

### 1.4 Voltage

The primary distribution voltage for the building should be $277 / 480 \mathrm{~V}$ with all large mechanical equipment utilizing 480 V and smaller $1 \Phi$ equipment and lighting utilizing 277 V . A sub distribution system of $120 / 208 \mathrm{~V}$ should be used for receptacles and any remaining lighting and equipment.

### 1.5 Emergency Power Requirements - IBC

Group H (highrise)
IBC 403.4.8.2 requires standby power for the following:

1. Power and lighting for the fire command center (Section 403.4.6, Section 911)
2. Ventilation and automatic fire detection equipment for smokeproof enclosures
3. Elevators (Sections 1007.4)

IBC 403.4.9.1 requires emergency power for the following:

1. Exit signs and means of egress illumination required by Chapter 10
2. Elevator car lighting
3. Emergency voice/alarm communications systems (Section 907.5.2.2)
4. Automatic fire detection systems (Section 907.2.13.1)
5. Fire alarm systems (Section 907.2.13)
6. Electrically powered fire pumps

## Estimation of Loads

For lighting assume $2 \%$ of the total lighting load
(1195 KVA) $(2 \%)=\mathbf{2 4} \boldsymbol{K V} \boldsymbol{A}$
For elevators assume all of the elevators with demand factor

## 218 KVA

For the fire pump assume $125 \mathrm{HP} 480 \mathrm{~V} 3 \Phi$ motor
(156 FLA) $\left(\frac{(\sqrt{3})(480)}{1000}\right)=\mathbf{1 3 0} \boldsymbol{K V A}$
For pressurization fans assume five $7.5 \mathrm{HP} 480 \mathrm{~V} 3 \Phi$ motors
(5)(11 FLA) $\left(\frac{(\sqrt{3})(480)}{1000}\right)=\mathbf{4 6} \boldsymbol{K V} \boldsymbol{A}$

Total load of 418 KVA
Voltage:
277/480 volts
Power Source:
Diesel Generator

### 1.6 Special occupancy requirements - NEC Chapter 5:

## Article 518 - Assembly Occupancies

The section only applies to the portion of the building that is Assembly Occupancy (the courtrooms).

Control of the emergency systems must comply with Article 700.
The fixed wiring shall be metal raceways, flexible metal raceways, nonmetallic raceways encased in at least 2 inches of concrete, or Type MI, MC, or AC cable. Audio cable must comply with Article 640, communications must comply with Article 800, class 2 and class 3 circuits must comply with Article 725 and fire alarm circuits must comply with Article 760. Nonmetallic conduit and tubing may be used in courtrooms if they are concealed within a wall, ceiling, floor, etc. with at least a 15 minute fire rating.

The neutral conductor of feeders supplying solid-state phase control, 3-phase, 4-wire dimmer systems shall be considered as current carrying conductors for the purpose of ampacity adjustment.

### 1.7 Optional Backup Power

Potential non-code-required loads for backup would include the access control system, security screening equipment, surveillance systems, servers, and telecom equipment. A UPS would most likely be the best choice of backup power for these loads. Additionally, it may be desirable to backup certain computer workstations in order to minimize the chance of data loss. These may be backed up with individual UPS's or tied into the building UPS system depending on the owner's preference and budget.

## Loads

Assume seven telecom rooms with three racks per room with an equipment load of 8 KW/rack and a cooling load of $4 \mathrm{KW} /$ rack
(7)(3)(12) $=\mathbf{2 5 2} \boldsymbol{K} \boldsymbol{W}$

### 1.7 Priority Assessment

Reliability: High
Reliability is highly important because the right to a fair and timely trial is central to the justice system and a loss of power would cause a delay in court proceedings.
Additionally, a delay could cause security problems and have large financial consequences.

Power quality - Medium
Power quality is of medium importance because the various computers and servers and other electronic devices require descent quality power.

Redundancy - High
Redundancy is highly important for the same reasons that reliability is important. A loss of power would cause a delay in court proceedings.

Low first cost - Medium
Low first cost is of medium importance because this is a taxpayer funded project and taxpayers don't like high costs.

Low life cycle cost - High
Low life cycle cost is highly important because the building will be owned and operated by the county for the life of the building.

Flexibility - Low
Flexibility is of low importance because the building will be owned and operated by the same entity for the life of the building and the basic functions of the building will not change for the foreseeable future.

### 1.8 Low Voltage/Communication Systems

There are numerous low voltage and communication systems in this building as listed below:

Telephone/Data: To accommodate typical office functionality
Audio-visual equipment: For presentations in the courtrooms
Fire Alarm and Detection: Per IBC Section 907
Access Control: There are areas of varying security in this facility
Security/surveillance: A sophisticated system for monitoring and protecting the facility including security screening equipment.

### 1.9 Electrical Equipment Space Requirements

The required electrical equipment will require a substantial amount of space. It is recommended that a main electrical room house the generator, UPS, main transformer, and main switchgear. Every floor will have at least 2 electrical rooms (one per wing) with a transformer and at least one high voltage and one low voltage panel. NEC Article 110 has minimum required clearances for electrical equipment based on the equipment's voltage. There are also fire rating requirements for the rooms that house electrical equipment. NEC Article 250 Part II gives requirements for rooms housing transformers. IBC 402.4.8.1 requires the room that houses the generator be at least $2-\mathrm{hr}$ fire rated.

## Space Estimate

Main electrical room: building transformer, switch gear, generator, UPS, ATS's, and working space

Transformer and Switchgear
(10)(20) $=200 S F$

Generator
(10)(30) $=300 S F$

UPS and ATS's
(10)(20) $=200 S F$

Main electrical Room Total $=\mathbf{7 0 0 S F}$
Electrical distribution: two rooms per floor with transformers, high and low voltage panels for both normal and backup power, and working space
(2)(7)(100) $=\mathbf{1 4 0 0 S F}$

Telecom: one room per floor with three racks, appropriate power panels, and working space
(7)(150) $=\mathbf{1 0 5 0 S F}$

## $\underline{\text { Building Total }=\mathbf{3 1 5 0 S F}}$

## 2. Part 2 - Existing Electrical System

### 2.1 Load Summary

The following tables are a summary of the connected load for the building according to the panel schedules.

| ITEM |  |  |  |  |  |  | VOLTAGE | Load <br> (KW) | LOSS DUCT\#1 (277/480V) | Load Code |
| :---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PANEL '6LP2' | $120 / 208$ | 35.4 | RECEPTACLES, OFFICE FURNTURE |  |  |  |  |  |  |  |
| PANEL '5LP2' | $120 / 208$ | 23.6 | RECEPTACLES, OFFICE FURNTURE | R |  |  |  |  |  |  |
| PANEL '4LP2' | $120 / 208$ | 21.4 | RECEPTACLES, OFFICE FURNTURE | R |  |  |  |  |  |  |
| PANEL '3LP2' | $120 / 208$ | 21.7 | RECEPTACLES, OFFICE FURNTURE | R |  |  |  |  |  |  |
| PANEL '2LP2' | $120 / 208$ | 34.6 | RECEPTACLES, OFFICE FURNTURE | R |  |  |  |  |  |  |
| PANEL '1LP2' | $120 / 208$ | 42.8 | RECEPTACLES, OFFICE FURNTURE | R |  |  |  |  |  |  |
| PANEL 'B1LP2' | $120 / 208$ | 41.7 | RECEPTACLES, OFFICE FURNITURE | R |  |  |  |  |  |  |
| PANEL 'DPB21' | $277 / 480$ | 179.6 | FANS FOR AHU7, COMPACTOR, VAV CONTROLS, EF'S, SUB PANELS | S |  |  |  |  |  |  |


| ITEM |  |  |  |  |  |  | VOLTAGE | Load <br> (KW) | LOSS DUCT\#2 (277/480V) | LOADS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PANEL '6LP1' | $120 / 208$ | 18.8 | RECEPTACLES | R |  |  |  |  |  |  |  |
| PANEL '5LP1' | $120 / 208$ | 20.5 | RECEPTACLES, AV RECEPTACLES | R |  |  |  |  |  |  |  |
| PANEL 4LP1' | $120 / 208$ | 20.9 | RECEPTACLES, AV RECEPTACLES | R |  |  |  |  |  |  |  |
| PANEL 3LP1' | $120 / 208$ | 21.4 | RECEPTACLES, AV RECEPTACLES | R |  |  |  |  |  |  |  |
| PANEL 2LP1' | $120 / 208$ | 16.6 | RECEPTACLES, OFFICE FURNTURE | R |  |  |  |  |  |  |  |
| PANEL '1LP1' | $120 / 208$ | 21.9 | RECEPTACLES, OFFICE FURNTURE | R |  |  |  |  |  |  |  |
| PANEL 'B1LP1' | $120 / 208$ | 16.7 | RECEPTACLES |  |  |  |  |  |  |  |  |


| BUSS DUCT \#3 (277/480V) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| ITEM | VOLTAGE | Load (KW) | LOADS | LOAD CODE |
| PANEL '6HP1' | 277/480 | 96.4 | LIGHTING, VAV CONTROL XFMR | L |
| PANEL '4HP1' | 277/480 | 26.2 | LIGHTING, LIGHTING RELAY CONTROLS, VAV CONTROL XFMR | L |
| PANEL '3HP1' | 277/480 | 60.1 | LIGHTING, LIGHTING RELAY CONTROLS, VAV CONTROL XFMR | L |
| PANEL '1HP1' | 277/480 | 44.0 | LIGHTING, LIGHTING RELAY CONTROLS, VAV CONTROL XFMR | L |
| PANEL 'DIM6' | 277/480 | 15.0 | LIGHTING | L |
| PANEL 'DIM4' | 277/480 | 15.0 | LIGHTING | L |
| PANEL 'DIM3' | 277/480 | 15.0 | LIGHTING | L |


| BUSS DUCT \#4 (277/480V) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| ITEM | VOLTAGE | $\begin{aligned} & \hline \text { Load } \\ & \text { (KW) } \end{aligned}$ | LOADS | LOAD CODE |
| PANEL '6LP4' | 120/208 | 22.6 | RECEPTACLES, BAS PANEL | R |
| PANEL '5LP4' | 120/208 | 15.7 | RECEPTACLES, BAS PANEL | R |
| PANEL '4LP4' | 120/208 | 18.0 | RECEPTACLES, AV RECEPTACLES, BAS PANEL | R |
| PANEL '3LP4' | 120/208 | 22.8 | RECEPTACLES, AV RECEPTACLES, BAS PANEL | R |
| PANEL '2LP4' | 120/208 | 48.7 | RECEPTACLES, OFFICE FURNTURE | R |
| PANEL '1LP4' | 120/208 | 42.8 | RECEPTACLES, OFFICE FURNTURE | R |
| PANEL 'B1LP4' | 120/208 | 40.6 | RECEPTACLES, OFFICE FURNTURE | R |
| PANEL 'DPB22' | 277/480 | 72.7 | FANS FOR AHU 8, BOOSTER PUMP, VAV CONTROLS, SUB PANELS | S |


| AUTOMATIC TRANSFER SWTCH 'ATS-CR' (277/480V) |  |  |  |  |  |
| :---: | :---: | ---: | ---: | ---: | :---: |
| ITEM | VOLTAGE | Load <br> (KW) | LOADS | LOAD CODE |  |
| UPS | $277 / 480$ | 77.2 | TELECOM, SECURITYSYSTEM, LIGHTING, |  |  |
| PANEL CR6 | $120 / 208$ | 89.1 | HEAT PUMPS |  |  |
| PUMP P-18 | 480 | 11.6 |  | M |  |
| PUMP P-19 | 480 | 11.6 |  | M |  |
| FC-1 | $120 / 208$ | 14.0 | HEAT PUMPS | M |  |
| PANEL CR1 | $120 / 208$ | 44.3 | M |  |  |


| AUTOMATIC TRANSFER SWITCH 'ATS-EP' (277/480V) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| ITEM | VOLTAGE | Load <br> (KW) | LOADS | LOAD CODE |
| PANEL 'EPPH1' | 277/480 | 252.7 | ELEVATORS, SUB PANEL | M |
| PANEL 'EPPH2' | 277/480 | 145.3 | ELEVATORS, SUB PANEL | M |
| SF-1 | 277/480 | 11.6 |  | M |
| SF-5 | 277/480 | 9.2 |  | M |
| SF-3 | 277/480 | 9.2 |  | M |
| SF-4 | 277/480 | 6.3 |  | M |
| PANEL 'EPB21' | 277/480 | 9.3 | SF-2 | M |


| AUTOMATIC TRANSFER SWITCH 'ATS-LS' (277/480V) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ITEM | VOLTAGE | Load <br> (KW) | LOADS | LOAD CODE |  |
| NORTH RISER | $277 / 480$ | 59.4 | LIGHTING, RELAY PANELS, MOD'S | S |  |
| SOUTH RISER | $277 / 480$ | 27.1 | LIGHTING, RELAY PANELS, MOD'S | S |  |
| GENERATOR INTEGRAL PANEL | $120 / 208$ | 25.0 |  | M |  |


| ITEM |  |  |  |  |  |  |  | VOLTAGE | Load <br> (KW) | OTHER LOADS (277/480V) | LOADS | LOAD CODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FIRE PUMP | 480 | 140.0 |  | M |  |  |  |  |  |  |  |  |
| CHILLER NO. 1 | 480 | 208.0 |  | M |  |  |  |  |  |  |  |  |
| CHILLER NO. 2 | 480 | 208.0 |  | M |  |  |  |  |  |  |  |  |
| PANEL 'PHM1' | $277 / 480$ | 451.8 | AHU'S, PUMPS, CT'S, SUB PANEL | M |  |  |  |  |  |  |  |  |
| PANEL 'PHM2' | $277 / 480$ | 268.4 | AHU'S, PUMPS, SUB PANEL | M |  |  |  |  |  |  |  |  |


| LOAD TOTALS |  |
| :---: | ---: |
| LOAD TYPE | LOAD <br> (KW) |
| RECEPTACLES (R) | 569.1 |
| LIGHTING (L) | 271.7 |
| SPECIAL EQUIPMENT (S) | 415.9 |
| MECHANICAL (M) | 1915.4 |
|  |  |
| TOTAL: | 3172.2 |

### 2.2 Utility Rate Schedule

PECO RATE-HT is being utilized for this building.

### 2.3 Voltage

The building is served by a 34.5 KV utility line. The building utilizes a combination distribution system of $277 / 480 \mathrm{~V}$ and $120 / 208 \mathrm{~V}$. The large mechanical equipment is 480 V , smaller single phase equipment is 277 V , most of the lighting is 277 V , and receptacles are 120 V .

### 2.4 Emergency Loads

There are four sets of loads on the generator; fire pump, life safety, emergency, and critical. The fire pump, life safety, and emergency are all code required loads. The critical loads are optional backup loads. The generator directly feeds the ATS for the fire pump. The remaining loads are fed from a 1600 A 480/277 V distribution switchboard.

The fire pump is a $125 \mathrm{HP} 480 \mathrm{~V} 3 \Phi$ motor so its load is 130 KVA .
The life safety distribution system typically has 4 panels on every other floor. The panels are in high and low voltage sets for each wing of the building. The high voltage panels are for the lighting and feed the low voltage panels through a transformer. The low voltage panels are for the MOD's. The life safety system also feeds 32 circuits of each lighting dimming panel. Table 1 below shows the loads of the life safety system.

Table 1 - ATS-LS Loads

| AUTOMATIC TRANSFER SWITCH 'ATS-LS' (277/480V) |  |  |  |  |  |  |  |  |
| :---: | ---: | ---: | ---: | :--- | :---: | :---: | :---: | :---: |
| ITEM | VOLTAGE | Load <br> (KW) | LOADS | LOAD CODE |  |  |  |  |
| NORTH RISER | $277 / 480$ | 59.4 | LIGHTING, RELAYPANELS, MOD'S |  |  |  |  |  |
| SOUTH RISER | $277 / 480$ | 27.1 | LIGHTING, RELAY PANELS, MOD'S | S |  |  |  |  |
| GENERATOR INTEGRAL PANEL | $120 / 208$ | 25.0 |  | S |  |  |  |  |
| TOTAL LOAD (KW): |  |  |  |  |  | 111.4 |  | M |

The emergency distribution system has two sets of high and low voltage panels, with the high voltage panels feeding the low voltage panels through a transformer, in the penthouse for the elevator motors and associated devices. This system also provides power to the stair pressurization fans via a 480/277 V panel located in level B2. Table 2 below shows the loads for the emergency power system

Table 2 - ATS-EP Loads

| AUTOMATIC TRANSFER SWITCH 'ATS-EP' (277/480V) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| ITEM | VOLTAGE | Load <br> (KW) | LOADS | LOAD CODE |
| PANEL 'EPPH1' | 277/480 | 252.7 | ELEVATORS, SUB PANEL | M |
| PANEL 'EPPH2' | 277/480 | 145.3 | ELEVATORS, SUB PANEL | M |
| SF-1 | 277/480 | 11.6 |  | M |
| SF-5 | 277/480 | 9.2 |  | M |
| SF-3 | 277/480 | 9.2 |  | M |
| SF-4 | 277/480 | 6.3 |  | M |
| PANEL 'EPB21' | 277/480 | 9.3 | SF-2 | M |
| TOTAL LOAD (KW): |  | 443.6 |  |  |

The fire alarm system is powered through the UPS. See Section 2.8 Optional Backup Power.

## Describe the Generator

A 1000kW/1250kVA diesel generator provides emergency and backup power for the building. The generator is located on the roof, enclosed in a silencer cabinet, and sits on a 400 gallon fuel tank.

### 2.5 Special Occupancy

## NEC Chapter 5

Article 518 - Assembly Occupancies
Dimmers are used to supply power to the lighting for the courtrooms. It is unclear if the dimmers are phase control or not; if they are then the neutral must be counted as a current carrying conductor for ampacity sizing.

### 2.6 Special Equipment

## NEC Chapter 6

Article 605-Office Furnishings
There is modular office furniture with integrated electrical distribution located in the various open office areas throughout the building.

Article 620 - Elevators, Dumbwaiters, Escalators, Moving Walks, Platform Lifts, and Stairway Chairlifts
There are nine elevators located throughout the building.
Article 640 - Audio Signal Processing, Amplification, and Reproduction Equipment Each of the courtrooms is equipped with an audio amplification system.

Article 645 - Information Technology Equipment
There are several telecom rooms located throughout the building with data distribution racks and other related hardware.

Article 646 - Modular Data Centers
There are servers that are for the security system and also for general data located in the telecom rooms.

Article 660 - X-Ray Equipment
Security screening equipment which includes X-Ray machines are present at the entrances.

Article 695 - Fire Pumps
A 125 HP fire pump is located on Level B1

### 2.8 Electrical Equipment

The main transformer (T1) for the building is $34.5 \mathrm{KV}: 277 / 480 \mathrm{~V} 2000 \mathrm{KVA}$ and is located in the main electrical room in the penthouse. Note that the transformer schedule in the design documents specifies, in error, the primary as 480 Y 277 V and the secondary as 208 Y 120 V .

Unit Substation No. 1 (USS1) is a 3200 A 277/480 V distribution panel located in the main electrical room.

Panel EO is a 1600 A 277/480 V panel that distributes power from the generator.

## Main Risers and Feeders

There are four 277/480 V 800 A vertical busways that distribute power from USS1 to the main lighting and power panels.
Table 3 below lists the riser and feeder specifications for the building.
Table 3 - Risers and Feeders

| Item Served | \# Sets | Phase Size | Neutral Size | Ground Size | Conduit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Normal Distribution |  |  |  |  |  |
| CH-1 | 1 | 500 KCMIL | - | 2 | 3" |
| CH-2 | 1 | 500 KCMIL | - | 2 | 3" |
| PHM1 | 3 | 300 KCMIL | 300 KCMIL | 1/0 | 2-1/2" |
| ATS-LS | 1 | 1/0 | 1/0 | 6 | 2" |
| ATS-EP | 2 | 350 KCMIL | 350 KCMIL | 1 | 2-1/2" |
| ATS-CR | 2 | 3/0 | 3/0 | 3 | 2" |
| Bussways | 3 | 300 KCMIL | 300 KCMIL | 1/0 | 2-1/2" |
| PHM2 | 3 | 300 KCMIL | 300 KCMIL | 1/0 | 2-1/2" |
| Fire Pump | 1 | 4/0 | - | 4 | MI Cable |
| Generator Distribution |  |  |  |  |  |
| ATS-LS | 1 | 1/0 | 1/0 | 6 | 2" |
| ATS-EP | 2 | 350 KCMIL | 350 KCMIL | 1 | 2-1/2" |
| ATS-CR | 2 | 3/0 | 3/0 | 3 | 2" |
| Fire Pump | 1 | 4/0 | - | 4 | MI Cable |

## Step-down Transformers

There are 39 step down transformers located throughout the building. All of them are $480: 208 \mathrm{Y} 120 \mathrm{~V}$ dry type transformers ranging in size from 15 to 75 KVA. See Table 4 below. Transformer 31 through transformer 40 are for emergency distribution.

Table 4 - Transformer Schedule

| DESIGNATION | KVA | PRIMARY <br> VOLTAGE | $\begin{aligned} & \text { SECONDARY } \\ & \text { VOLTAGE } \\ & \hline \end{aligned}$ | PHASE | TYPE | MOUNTING |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T2 | 30 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T3 | 30 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T4 | 45 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T5 | 45 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T6 | 45 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T7 | 45 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T8 | 45 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T9 | 45 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T10 | 45 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T11 | 45 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T12 | 45 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T13 | 45 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T14 | 45 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T15 | 45 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T16 | 45 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T17 | 45 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T18 | 45 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T19 | 45 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T20 | 45 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T21 | 45 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T22 | 45 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T23 | 45 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T24 | 45 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T25 | 45 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T26 | 45 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T27 | 30 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T28 | 30 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T29 | 15 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T30 | 15 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T31 | 75 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T32 | 15 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T33 | 15 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T34 | 15 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T35 | 15 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T36 | 15 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T37 | 15 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T38 | 30 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T39 | 15 | 480 | 208Y/120 | 3 | DRY | HUNG |
| T40 | 75 | 480 | 208Y/120 | 3 | DRY | HUNG |

## Branch Panelboards - Specification Section 262416

A variety of branch panelboards in a variety of sizes are used. The most common panel size is 84 spaces. The NEMA rating for the surface mounted and recessed panelboards are based on the location type. See Table 5 below.

Table 5 - Panelboard NEMA Ratings

| Location Type | NEMA 250 Rating |
| :---: | :---: |
| Indoor Dry and Clean Locations | Type 1 |
| Kitchen Areas | Type 4X |
| Other Wet or Damp Indoor Locations | Type 4 |
| Indoor Locations Subject to Dust, Falling |  |
| Dirt, and Dripping Noncorrosive Liquids | Type 12 |

Phase, neutral, and ground buses are tin-plated aluminum.

## Distribution Panelboards

NEMA PB 1, power and feeder distribution type.
Main circuit breaker
Bolt-on circuit breakers for 125 AF and smaller
Lighting and Appliance Branch Circuit Panelboards
NEMA PB 1, lighting and appliance branch-circuit type
Main circuit breaker
Bolt-on circuit breakers, replaceable without disturbing adjacent units
There are three 96 circuit $480 / 277 \mathrm{~V}$ dimming panels each of which has 32 circuits that are on the life safety system. The lighting control diagram designates the dimmers as 120 V , but the electrical riser diagram and the specified lighting fixtures indicate that the dimmers are 277 V

Table 6 and Table 7 on the following pages list the branch panelboards. The missing information was not available in the design documents.

Table 6 - Branch Panelboards

| DESIGNATION | VOLTAGE | MAIN |  | BUSING | TYPE | SCR | MOUNTING | FED FROM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | RATING | TYPE |  |  |  |  |  |
| 1HP1 | 480/277 | 100 | MLO | 100 | 3-PH 4-W | 30000 | SURFACE | BUSSWAY \#3 |
| 1LP1 | 480/277 | 150 | MCB | 225 | 3-PH 4-W | 10000 | SURFACE | BUSSWAY\#2 VIA T20 |
| 1LP2 | 208/120 | 150 | MCB | 225 | 3-PH 4-W | 10000 | SURFACE | BUSSWAY\#1 VIA T19 |
| 1LP4 | 208/120 | 150 | MCB | 225 | 3-PH 4-W | 10000 | SURFACE | BUSSWAY \#4 VIA T22 |
| 2LP1 | 208/120 | 150 | MCB | 225 | 3-PH 4-W | 10000 | SURFACE | BUSSWAY\#2 VIA T20 |
| 2LP2 | 208/120 | 150 | MCB | 225 | 3-PH 4-W | 10000 | SURFACE | BUSSWAY\#1 VIA T17 |
| 2LP4 | 208/120 | 150 | MCB | 225 | 3-PH 4-W | 10000 | SURFACE | BUSSWAY \#4 VIA T18 |
| 3HP1 | 480/277 | 100 | MLO | 100 | 3-PH 4-W | 30000 | SURFACE | BUSSWAY \#3 |
| 3LP1 | 208/120 | 150 | MCB | 225 | 3-PH 4-W | 10000 | SURFACE | BUSSWAY \#2 VIA T14 |
| 3LP2 | 208/120 | 150 | MCB | 225 | 3-PH 4-W | 10000 | SURFACE | BUSSWAY\#1 VIA T13 |
| 3LP4 | 208/120 | 150 | MCB | 225 | 3-PH 4-W | 10000 | SURFACE | BUSSWAY \#4 VIA T16 |
| 4HP1 | 480/277 | 100 | MLO | 225 | 3-PH 4-W | 30000 | SURFACE | BUSSWAY \#3 |
| 4LP1 | 208/120 | 150 | MCB | 225 | 3-PH 4-W | 10000 | SURFACE | BUSSWAY \#2 VIA T11 |
| 4LP2 | 208/120 | 150 | MCB | 225 | 3-PH 4-W | 10000 | SURFACE | BUSSWAY\#1 VIA T10 |
| 4LP4 | 208/120 | 150 | MCB | 225 | 3-PH 4-W | 10000 | SURFACE | BUSSWAY \#4 VIA T12 |
| 5LP1 | 208/120 | 150 | MCB | 225 | 3-PH 4-W | 10000 | SURFACE | BUSSWAY \#2 VIA T6 |
| 5LP2 | 208/120 | 150 | MCB | 225 | 3-PH 4-W | 10000 | SURFACE | BUSSWAY \#1 VIA T8 |
| 5LP4 | 208/120 | 150 | MCB | 225 | 3-PH 4-W | 10000 | SURFACE | BUSSWAY \#4 VIA T9 |
| 6HP1 | 480/277 | 100 | MLO | 225 | 3-PH 4-W | 30000 | SURFACE | BUSSWAY \#3 |
| 6LP1 | 208/120 | 150 | MCB | 225 | 3-PH 4-W | 10000 | SURFACE | BUSSWAY \#2 VIA T5 |
| 6LP2 | 208/120 | 150 | MCB | 225 | 3-PH 4-W | 10000 | SURFACE | BUSSWAY\#1 VIA T4 |
| 6LP4 | 208/120 | 150 | MCB | 225 | 3-PH 4-W | 10000 | SURFACE | BUSSWAY \#4 VIA T7 |
| B1LP1 | 208/120 | 150 | MCB | 225 | 3-PH 4-W | 10000 | SURFACE | BUSSWAY \#2 VIA T21 |
| B1LP2 | 208/120 | 150 | MCB | 225 | 3-PH 4-W | 10000 | SURFACE | BUSSWAY\#1 VIA T23 |
| B1LP4 | 208/120 | 150 | MCB | 225 | 3-PH 4-W | 10000 | SURFACE | BUSSWAY\#4 VIA T24 |
| B2HP1 | 480/277 | 100 | MLO | 100 | 3-PH 4-W | 25000 | SURFACE | DPB21 |
| B2LP2 | 208/120 | 150 | MCB | 225 | 3-PH 4-W | 10000 | SURFACE | DPB21 VIA T25 |
| B2LP4 | 208/120 | 150 | MCB | 225 | 3-PH 4-W | 10000 | SURFACE | DPB22 |
| CR1 | 208/120 | 250 | MCB | 400 | 3-PH 4-W | 10000 | SURFACE | NECR VIA T40 |
| CR6 | 208/120 | 250 | MCB | 400 | 3-PH 4-W | 10000 | SURFACE | NECR VIA T31 |
| DIM3 | 480/277 | 100 | MCB | - | 3-PH 4-W | 25000 | SURFACE | BUSSWAY \#3 |
| DIM4 | 480/277 | 100 | MCB | - | 3-PH 4-W | 25000 | SURFACE | BUSSWAY \#3 |
| DIM6 | 480/277 | 100 | MCB | - | 3-PH 4-W | 25000 | SURFACE | BUSSWAY\#3 |
| DPB21 | 480/277 | 225 | MLO | 225 | 3-PH 4-W | 25000 | SURFACE | BUSSWAY\#1 |
| DPB22 | 480/277 | 225 | MLO | 225 | 3-PH 4-W | 25000 | SURFACE | BUSSWAY \#4 |
| EPB21 | 480/277 | 100 | MLO | 100 | 3-PH 4-W | 22000 | SURFACE | NEEP |
| EPPHH1 | 480/277 | 400 | MLO | 400 | 3-PH 4-W | 40000 | SURFACE | NEEP |
| EPPHH2 | 480/277 | 225 | MLO | 225 | 3-PH 4-W | 40000 | SURFACE | NEEP |
| EPPHL1 | 208/120 | 60 | MCB | 100 | 3-PH 4-W | 10000 | SURFACE | EPPHH1 VIA T29 |
| EPPHL2 | 208/120 | 60 | MCB | 100 | 3-PH 4-W | 10000 | SURFACE | EPPHH2 VIA T30 |

Table 7 - Branch Panelboards cont.

| DESIGNATION | VOLTAGE | MAIN |  | BUSING | TYPE | SCR | MOUNTING | FED FROM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | RATING | TYPE |  |  |  |  |  |
| HNE21 | 480/277 | 100 | MCB | 225 | 3-PH 4-W | 22000 | SURFACE | NELS |
| HNE22 | 480/277 | 100 | MCB | 225 | 3-PH 4-W | 22000 | SURFACE | NELS |
| HNE41 | 480/277 | 100 | MCB | 225 | 3-PH 4-W | 22000 | SURFACE | NELS |
| HNE42 | 480/277 | 100 | MCB | 225 | 3-PH 4-W | 22000 | SURFACE | NELS |
| HNE61 | 480/277 | 100 | MCB | 225 | 3-PH 4-W | 22000 | SURFACE | NELS |
| HNE62 | 480/277 | 100 | MCB | 225 | 3-PH 4-W | 22000 | SURFACE | NELS |
| HNEB11 | 480/277 | 100 | MCB | 100 | 3-PH 4-W | 22000 | SURFACE | NELS |
| HNEB12 | 480/277 | 100 | MCB | 225 | 3-PH 4-W | 22000 | SURFACE | NELS |
| LNE21 | 208/120 | 60 | MCB | 100 | 3-PH 4-W | 10000 | SURFACE | HNE21 VIA T36 |
| LNE22 | 208/120 | 60 | MCB | 100 | 3-PH 4-W | 10000 | SURFACE | HNE22 VIA T37 |
| LNE41 | 208/120 | 60 | MCB | 100 | 3-PH 4-W | 10000 | SURFACE | HNE41 VIA T34 |
| LNE42 | 208/120 | 60 | MCB | 100 | 3-PH 4-W | 10000 | SURFACE | HNE42 VIA T35 |
| LNE61 | 208/120 | 60 | MCB | 100 | 3-PH 4-W | 10000 | SURFACE | HNE61 VIA T32 |
| LNE62 | 208/120 | 60 | MCB | 100 | 3-PH 4-W | 10000 | SURFACE | HNE62 VIA T33 |
| LNEB11 | 208/120 | 100 | MCB | 100 | 3-PH 4-W | 10000 | SURFACE | HNEB11 VIA T38 |
| LNEB12 | 208/120 | 60 | MCB | 100 | 3-PH 4-W | 10000 | SURFACE | HNEB12 VIA T39 |
| LNEB21 | 208/120 | - | MLO | 100 | 3-PH 4-W | 10000 | SURFACE | LNEB11 |
| PHLP1 | 208/120 | 100 | MCB | 100 | 3-PH 4-W | 10000 | SURFACE | PHM1 VIA T2 |
| PHLP2 | 208/120 | 100 | MCB | 100 | 3-PH 4-W | 10000 | SURFACE | PHM2 VIA T3 |
| PHM1 | 480/277 | - | MLO | 800 | 3-PH 4-W | 40000 | SURFACE | USS1 |
| PHM2 | 480/277 | - | MLO | 800 | 3-PH 4-W | - | SURFACE | USS1 |
| SHPB21 | 480/277 | - | MLO | 100 | 3-PH 4-W | 25000 | SURFACE | DPB21 |
| SHPB22 | 480/277 | 100 | MLO | 100 | 3-PH 4-W | 25000 | SURFACE | DPB22 |
| SLPB21 | 208/120 | 100 | MCB | 100 | 3-PH 4-W | 10000 | SURFACE | SHPB21 VIA T27 |
| SLPB22 | 208/120 | 100 | MCB | 100 | 3-PH 4-W | 10000 | SURFACE | SHPB22 VIA T28 |
| UPS1A | 208/120 | 225 | MLO | 225 | 3-PH 4-W | 10000 | SURFACE | PDU6A |
| UPS1B | 208/120 | 225 | MLO | 225 | 3-PH 4-W | 10000 | SURFACE | PDU6B |
| UPS2A | 208/120 | 225 | MLO | 225 | 3-PH 4-W | 10000 | SURFACE | PDU6A |
| UPS2B | 208/120 | 225 | MLO | 225 | 3-PH 4-W | 10000 | SURFACE | PDU6B |
| UPS3 | 208/120 | 225 | MLO | 225 | 3-PH 4-W | 10000 | SURFACE | PDU6B |
| UPS4 | 208/120 | 225 | MLO | 225 | 3-PH 4-W | 10000 | SURFACE | PDU6A |
| UPS5A | 208/120 | 225 | MLO | 225 | 3-PH 4-W | 10000 | SURFACE | PDU6A |
| UPS5B | 208/120 | 225 | MLO | 225 | 3-PH 4-W | 10000 | SURFACE | PDU6B |
| UPSB1A | 208/120 | 225 | MLO | 225 | 3-PH 4-W | 10000 | SURFACE | PDU6A |
| UPSB1B | 208/120 | 225 | MLO | 225 | 3-PH 4-W | 10000 | SURFACE | PDU6B |
| UPSB2A | 208/120 | 225 | MLO | 225 | 3-PH 4-W | 10000 | SURFACE | PDU6A |
| UPSB2B | 208/120 | 225 | MCB | 225 | 3-PH 4-W | 10000 | SURFACE | PDU6B |

Conductors - Specification Section 260513 \& 260519
260513 - Medium Voltage
Table 8 - Medium Voltage Specifications

| Item | Specification |
| :---: | :---: |
| Cable Type MV105 | UL 1072, AEIC CS 8, ICEA S-93-639, and ICEA S- |
| 97-682. |  |

260519 - Low Voltage
Table 9 - Low Voltage Specifications

| Item | Specification |
| :---: | :---: |
| Copper Conductors | NEMA WC 70. |
| Conductor Insulation | NEMA WC 70 for Types THHN-THWN and XHHW. |
| Multiconductor Cable | NEMA WC 70 for metal-clad cable, Type MC with |
| ground |  |

Table 10 - Low Voltage Conductors

| Use | Type |
| :---: | :---: |
| Feeders | Copper <br> Solid for 10 AWG and smaller <br> Stranded for 8 AWG larger |
| Copper |  |
| Branch Circuits | Solid for 10 AWG and smaller <br> Stranded for 8 AWG larger |

Table 11 - Low Voltage Insulation

| Use | Type |
| :---: | :---: |
| Exposed Feeders | THHN-THWN, Single Conductors in raceway |
| Feeders Concealed in Ceilings, Walls, <br> Partitions, and Crawlspaces | THHN-THWN, Single Conductors in raceway |
| Exposed Branch Circuits, Including in <br> Crawlspaces | THHN-THWN, Single Conductors in raceway <br> Or <br> MC |
| Branch Circuits Concealed in Ceilings, <br> Walls, and Partitions | THHN-THWN, Single Conductors in raceway <br> Or <br> MC |
| Branch Circuits Concealed in <br> Concrete, below Slabs-on-Grade, and <br> Underground | XHHW-2, Single Conductors in raceway |
| Class 1 Control Circuits | THHN-THWN, in raceway |
| Class 2 Control Circuits | THHN-THWN, in raceway |
| Fire Pump Feeders | Metal Sheathed Mineral Insulated Cables |

## Conduit - Specification Section 260533

Table 12 - Conduit Specifications

| Type | Specification |
| :---: | :---: |
| Galvanized Rigid Conduit (GRC) | ANSI C80.1 and UL 6 |
| Intermediate Metal Conduit (IMC) | ANSI C80.6 and UL 1242. |
| PVC Coated Steel Conduit | NEMA RN 1, 0.040 inch minimum coating |
| Electrical Metallic Tubing (EMT) | ANSI C80.3 and UL 797 |
| Flexible Metal Conduit (FMC) | UL 1; zinc-coated steel |
| Liquidtight Flexible Metal Conduit |  |
| (LFMC) | PVC jacket, UL 360 |
| Rigid Nonmetallic Conduit (RNC)t | Type EPC-40-PVC NEMA TC 2 and UL 651 |

Table 13 - Conduit Locations

| Location | Type |
| :---: | :---: |
| Outdoors |  |
| Exposed Conduit | GRC |
| Concealed Conduit, Above Ground | GRC, IMC |
| Underground Conduit | RNC |
| Connection to Vibrating Equipment |  |
| Indoors | EMT, RNC |
| Exposed, Not Subject to Physical Damage | EMT |
| Exposed, Not Subject to Severe Physical Damage | GRC |
| Exposed and Subject to Severe Physical Damage | EMT |
| Concealed in Ceilings and Interior Walls and Partitions | FMC or LFMC |
| Connection to Vibrating Equipment | GRC |
| Damp or Wet Locations |  |

## Wiring Devices - Specification Section 262726

Table 14 - Receptacle Types

| Item | Requirements | Configuration |
| :---: | :---: | :---: |
| Convenience Receptacles <br> 125 V, 20 A | NEMA WD 1, NEMA WD 6, | $5-20 R$, UL 498, and <br> FS W-C-596 |
| Isolated-Ground, Duplex <br> Convenience Receptacles, <br> $125 \mathrm{~V}, 20 \mathrm{~A}$ | NEMA WD 1, NEMA WD 6 | $5-20 R$, UL 498, and <br> FS W-C-596 |
| GFCI Receptacles | NEMA WD 1, NEMA WD 6 | UL 498, UL 943 Class <br> A, and FS W-C-596 |
| TVSS Receptacles | NEMA WD 1, NEMA WD 6 | UL 498, UL 1449, and <br> FS W-C-596 |
| Twist-Locking Receptacles | NEMA WD 1, NEMA WD 6 | L5-20R, and UL 498 |

Wall plates for finished spaces are to be type 301 stainless steel with a satin finish, for unfinished spaces galvanized steel, and for damp locations cast aluminum with spring loaded lift cover and listed for use in wet and damp locations. The securing screws are to be metal with heads to match the plate.

Table 15 below lists the colors for the wiring devices unless otherwise indicated or required by NFPA 70

Table 15 - Wiring Device Colors

| Type | color |
| :---: | :---: |
| Normal power | Gray |
| Emergency power | Red |
| TVSS | Blue |
| Isolated-ground | Orange |

## Faceplate Type - Specification Section 260553

Equipment identification: Self-adhering or screw mounted laminated acrylic or melamine label with white letters on a dark gray background with a minimum letter height of $3 / 8^{\prime \prime}$.

Motor Starters - Specification Section 262913 \& 262923
Individual motor starters are utilized.
262913 - Enclosed Controllers
Full-voltage controllers must comply with NEMA ICS 2, general purpose, Class A. Enclosed controllers must be "quick-make, quick-break" non-reversing type with markings to indicate if they are on or off.

## 262923 - Variable-Frequency Motor Controllers

VFC's must comply with NEMA ICS 7, NEMA ICS 61800-2, and UL 508C. They must have a minimum efficiency of 97 percent at 60 Hz , full load. They must have the capability for input from the BAS system to be delivered via 0 to $10-\mathrm{V}, 4$ to $20-\mathrm{mA}$, potentiometer using up/down digital inputs, or fixed frequency using digital inputs. The VFC's must have two 0 to $10-\mathrm{V}$ or 4 to $20-\mathrm{mA}$ outputs that can be programmed to be any of the following: output frequency (Hz), output current (load), DC-link voltage (V dc), motor torque (percent), motor speed (rpm), and set point frequency (Hz).

## UPS System - Specification Section 263353

Size: 160KVA/144KW

## Automatic Operation Requirements

Normal: load is supplied normal power through the rectifier-charger and inverter with the battery in parallel with the rectifier-charger

Abnormal: when the normal power deviates from the specifications the battery maintains constant power to the load without disturbance

If any component of the UPS fails normal power will be provided to the load without interruption.

Manual Operation
Turning the inverter off causes the static bypass transfer switch to transfer the load to normal power without interruption
Turning the inverter on causes the static bypass transfer switch to transfer the load to the inverter.

### 2.8 Optional Backup Power

The optional backup power is provided through the critical loads automatic transfer switch. These loads consist of the telecom equipment, servers, security system (including the XRAY and other scanning equipment), the heat pumps for the telecom/server rooms, and some lighting. The UPS system provides power for all of the critical loads except for the heat pumps. The UPS feeds two power distribution units which distribute the power to the rest of the panels. In general, there are two critical load panels per floor.

| AUTOMATIC TRANSFER SWITCH 'ATS-CR' (277/480V) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| ITEM | VOLTAGE | $\begin{aligned} & \hline \text { Load } \\ & \text { (KW) } \end{aligned}$ | LOADS | LOAD CODE |
| UPS | 277/480 | 77.2 | TELECOM, SECURITY SYSTEM, LIGHTING, | S |
| PANEL CR6 | 120/208 | 89.1 | HEAT PUMPS | M |
| PUMP P-18 | 480 | 11.6 |  | M |
| PUMP P-19 | 480 | 11.6 |  | M |
| FC-1 | 120/208 | 14.0 |  | M |
| PANEL CR1 | 120/208 | 44.3 | HEAT PUMPS | M |
| TOTAL LOAD (KW): 247.8 |  |  |  |  |

### 2.9 Low Voltage Systems

## Security system

Access control
Both exterior and interior doors utilize electronic locks and card swipes to limit access to secure areas. In general, each door has a 120 V circuit supplied to the control pack which feeds the equipment 24 V , but for doors in close proximity a central power pack is used.

Surveillance
A thorough surveillance system is utilized throughout the building. There are glass break sensors for the windows that are accessible from the outside, door contacts on doors for sensitive areas, and video cameras for the majority of the building. The surveillance devices are fed to security servers located in the telecom rooms. There are various displays and controls for the security system located in the control rooms on level B2. For the internal and exterior building mounted surveillance cameras CAT 6 UTP cable is used for video and CL3 cable is used to provide low voltage power. Fiber optic cable is used for exterior surveillance cameras that are mounted away from the building.

## Fire System

The fire system consists of duct detectors, motor operated dampers, elevator control systems, strobes, horn strobes, and speakers among other components. All wiring is to be per manufacturer's recommendations and in minimum of $3 /{ }^{\prime \prime}$ conduit. All of the fire systems are tied into the fire command center that is located on level B2.

## Telecom/data

There are sufficient data and telecom equipment for distribution throughout the building. All of the cables run to the telecom rooms on each floor. The backbone cabling is typically 25 strand CAT 3 cable, 12 strand single mode fiber cable and 6 strand multimode fiber cable. The conduit is typically EMT. Minimum separation between telecom cables and power devices must be maintained. For power cables when either cable is in metal conduit a clearance of $2^{\prime \prime}$ is required. 5 " clearance is required for fluorescent light ballasts. When neither cable is in metal conduit the required clearance varies from 2 " to 20 ' depending on the amount of power that the cable carries.

## A/V

All of the courtrooms have an A/V system that includes cameras, microphones, speakers, amplifiers, input stations, touch panel control stations, an assistive listening system, and a projector.

## Lighting Control

For lighting control, there are various types of low voltage push button stations, occupancy sensors, and daylight sensors that are networked with control units. For the courtrooms there are central dimming panels located on every other floor. For the conference rooms, offices, and other spaces there are control packs with four zones are utilized. All of the lighting controls are tied into the central lighting management system.

## Integration of Controls Systems

The motorized projector screen and shades are controlled by the lighting system through a contact closure interface.

The same occupancy sensors are used for the HVAC and lighting systems. Each occupancy sensor has an isolated relay to separate the systems.

### 2.10 Electrical and Communication Spaces

The unit substation, generator, ups, and ATS's are located on the penthouse level. See Image 1 below.

Image 1 - Main Electrical Equipment Locations


Table 16 - Electrical and Communications Equipment Rooms

| Room Number | Room Name | $\begin{aligned} & \hline \text { Size } \\ & (\mathrm{SF}) \end{aligned}$ | Contents |
| :---: | :---: | :---: | :---: |
| B2060 | Fire Command Rm | 77 | ANN, FACP, Panelboard |
| B2035 | Mech. Rm | 396 | T25, T27, Panelboards |
| B2033 | Storage | 89 | T26, T28, Panelboards |
| B2 | Telecom Rm | 125 |  |
| B2 | Telecom Rm | 90 | Panelboards |
|  | B2 Total | 777 |  |
|  |  |  |  |
| B1502 | Elec. Rm | 57 | T38, T23, Panelboards |
| B1419 | Telecom Rm | 183 | Panelboards |
| B1154 | Elec. Rm | 89 | T24, T39, Panelboards, vertical busway\#4 |
|  | B1 Total | 329 |  |
|  |  |  |  |
| 1502 | Elec. Rm | 57 | T19, Panelboards, Busway \#1 |
| 1441 | Elec. Rm | 175 | T20, T221, Panelboards, Busway \#2 \& \#3 |
| 1153 | Elec. Rm | 49 | T22, Panelboards, Busway \#4 |
| 1 | Telecom Rm | 155 |  |
|  | Level 1 Total | 436 |  |
|  |  |  |  |
| 2552 | Elec. Rm | 55 | T36, T17, Panelboards, Busway \#1 |
| 2303 | Telecom Rm | 144 | Panelboards, Busway \#2 \& \#3 |
| 2120 | Elec. Rm | 49 | T37, T18, Panelboards, Busway \#4 |
|  | Level 2 Total | 248 |  |
|  |  |  |  |
| 3557 | Elec. Rm | 53 | T13, Panelboards, Busway \#1 |
| 3051 | Elec. Rm | 104 | T14, T15, Panelboards, Dim3, Busway \#2 \& \#3 |
| 3157 | Elec. Rm | 60 | T16, Panelboards, Busway \#4 |
|  | Level 3 Total | 217 |  |
|  |  |  |  |
| 4557 | Elec. Rm | 53 | T10, T34, Panelboards, Busway \#1 |
| 4051 | Elec. Rm | 104 | T11, Panelboards, Dim4, Busway \#2 \& \#3 |
| 4157 | Elec. Rm | 60 | T12, T35, Panelboards, Busway \#4 |
|  | Level 4 Total | 217 |  |
|  |  |  |  |
| 5557 | Elec. Rm | 53 | T8, Panelboards, Busway \#1 |
| 5051 | Telecom Rm | 104 | Panelboards, Busway \#2 \& \#3 |
| 5158 | Elec. Rm | 60 | T9, Panelboards, Busway \#4 |
|  | Level 5 Total | 217 |  |
|  |  |  |  |
| 6504 | Elec. Rm | 53 | T4, T32, Panelboards, Busway \#1 |
| 6351 | Telecom Rm | 170 | T5, T6, PDU's, Panel Boards, Dim6, Busway \#2 \& \#3 |
| 6108 | Elec. Rm | 47 | T7, T33, Panelboards, Busway \#4 |
|  | Level 6 Total | 270 |  |
|  |  |  |  |
| PH108 | Electrical | 760 | Unit Substation |
| PH109 | Emr. Elec. | 315 | ATS's, UPS, Panelboards |
| PH_Courtyard | Generator | 950 | Generator |
|  | Penthouse Total | 2025 |  |


|  | 4736 |
| :---: | :--- |
| Gercentage of gross SF: | $1.7 \%$ |

### 2.11 Alternative Energy Sources

There are not any plans to utilize solar, wind, or hydro power onsite for this project. A cogeneration system is not planned for this project. LEED certification is not being pursued for this project.

### 2.12 Single line/ riser Diagram

The normal power and the backup power single line diagrams are included on the following pages.


Project
BUCKS COUNTY
BUSTCE
BUCKICE CENTER
JUST
Dovestown, PA
Pounty of Bucks
+

 - -1202398800

## 

H.F. LENZ

COMPANY


NATB N


(1) $\frac{\text { EMERGENCY POWER }}{\text { NOTI SCAE }}$

## 3. Part 3 - Evaluation of the Designed System Against Part 1 Criteria 3.1 Building Loads

## Square Foot Method

The square foot method in Part 1 found the building load to be 3504 KVA where the design load is 3172 KVA . This estimate is quite reasonable.

## NEC Method

The NEC method for Part 1 found the lighting load to be 1195 KVA where the design lighting load is 272 KVA. The estimate was incredible high, this is most likely due to the use of lighting fixtures with high efficacies and efficiencies. Another contributing factor could be that the whole building was estimated as an office building where a sizeable portion of the building is courtrooms which have an NEC lighting load of about $57 \%$ of what office buildings have. For receptacle load the estimate in Part 1 was 141.5 KVA where the design load is 569 KVA. In this case, the estimate was far lower than the design load. This may be due to the high number of receptacles that were placed throughout the building in order to accommodate the various offices. Another factor is that the loads in the design documents do not appear to apply a demand factor. This alone would cause nearly a $50 \%$ reduction in receptacle load.

### 3.2 Utility Rate Schedule

The utility rate schedule used is the same as the one that was proposed. This rate is the best option out of the available rates.

### 3.3 Voltage

The building is supplied by a single 34.5 KV utility feed. If the utility company would agree to it a dual feed system could be used with a main-tie-main substation in order to improve reliability.

The actual design uses a dual voltage interior distribution system as was recommended.

An investigation into adding DC distribution to the building would be an interesting study. This would involve changing all of the lighting to DC LED fixtures and changing all of the telecom equipment to equipment that accepts a DC input. This setup should improve efficiency by eliminating inverters and rectifiers from the system. Specifically, for the telecom equipment which is powered through the UPS it could eliminate an inverter and a rectifier.

### 3.4 Electrical Equipment

The design seems to be pretty typical for large size high quality electrical systems and utilizes pretty standard equipment and materials.

The design of the electrical system minimizes conductor run length and size by utilizing distributed electrical rooms and step down transformers. The hung transformers save space and maximize the use of allocated electrical rooms.

The estimated space requirement for electrical equipment was 3150 SF where the actual space allocation is 4736 SF. The estimate was close for the electrical rooms on each floor, but the major difference was in the size of the main electrical room. The design allocates 1075 SF of space for the building transformer, switchgear, and UPS and 950 SF of roof space for the generator where the estimate was only 400 SF and 300 SF respectively.

### 3.5 Emergency Power System

The design seems to meet all of the required codes. However, the fire control panel is shown on a panel that is on the critical distribution system. It should be located on the life safety system.

A natural gas powered generator could be investigated because of the reduced maintenance compared to a diesel generator. However, the AHJ would need to approve the natural gas source as uninterruptable. Even with this approval, it is still possible that the natural gas service could be interrupted in an emergency.

Because the generator is available the UPS is only needed to supply power for a short amount of time in the event of an outage. A flywheel system could be investigated to fill the gap between loss of power and the generator fire up. Flywheels require far less maintenance than UPS systems.

### 3.6 Optional Back-up Power

The estimated load from optional back up equipment was 168 KVA where according to the panel schedule the actual design has a load of 77 KVA on the UPS. This was most likely due to the uncertainty of what equipment would be located in the telecom rooms. The majority of the loads on the UPS are from the security system. The estimated mechanical load on the optional backup system was 84 KVA. The actual design has a mechanical load of 170 KVA on the critical power system.

The only receptacles that are on backup power are in the security office and the fire command center. It may be desirable to add other office receptacles to the optional backup system.

### 3.7 Controls System Integration

By using the same occupancy sensors for the BAS system and lighting system the number of required occupancy sensors is reduce which saves cost and helps to reduce clutter.

By integrating the shade control and projector screen control with the lighting system the ease of use for the system is improved.

### 3.8 Alternative Energy Sources

An investigation into the payback period for a photovoltaic array could be performed. If the PV array were to provide power to LED lighting designed for DC input no inverters or rectifiers would be required which would improve efficiency.

