## Electricity and Magnetism - Physics 121

Lecture 10 - Sources of Magnetic Fields (Currents) Y\&F Chapter 28, Sec. 1-7

- Magnetic fields are due to currents
- The Biot-Savart Law
- Calculating field at the centers of current loops
- Field due to a long straight wire
- Force between two parallel wires carrying currents
- Ampere's Law
- Solenoids and toroids
- Field on the axis of a current loop (dipole)
- Magnetic dipole moment
- Summary


## Previously: moving charges and currents feel a force in a magnetic field

- Magnets come only as dipole pairs of $\mathbf{N}$ and $\mathbf{S}$ poles (no monopoles).
- Magnetic field exerts a force on moving charges (i.e. on currents).
- The force is perpendicular to both the field and the velocity (i.e. it uses the cross product). The magnetic force can not change a particle's speed or KE
- A charged particle moving in a uniform magnetic field moves in a circle or a spiral.

$$
R=\frac{\mathrm{mv}}{\mathrm{qB}} \quad \omega_{\mathrm{C}}=\frac{2 \pi}{\tau_{\mathrm{c}}}=\frac{\mathrm{qB}}{\mathrm{~m}}
$$

- Because currents are moving charges, a wire carrying current in a magnetic field feels a force also using cross product. This force is responsible for the motor effect.
- For a current loop, the Magnetic dipole moment, torque, and potential energy are given by:

$$
\overrightarrow{F_{B}}=q \vec{v} \times \vec{B}
$$



$$
\vec{F}_{B}=i \vec{L} \times \vec{B}
$$

## Magnetic fields are due to currents

Oersted - 1820: A magnetic compass is deflected by current $\rightarrow$ Magnetic fields are due to currents (free charges \& in wires)


In fact, currents are the only way to create magnetic fields.

The magnitude of the field created is proportional to
i $\Delta s$ (current - length)
Copyifgit R. Janow - Fail2013

## The Biot-Savart Law (1820)

- Same basic role as Coulomb's Law: magnetic field due to a source
- Source strength measured by "current-length" i ds
- Falls off as inverse-square of distance

- New constant $\mu_{0}$ measures "permeability"
- Direction of B field depends on a cross-product (Right Hand Rule)

Differential addition to field at $P$ /due to distant source ids

$10^{-7}$ exactly "vacuum permeability"

$$
\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} . \mathrm{m} / \mathrm{A} .
$$

Find total field B by integrating over the whole current region (need lots of symmetry)


For a straight wire the magnetic field lines are circles wrapped around it. Another Right Hand Rule shows the direction:


$$
\mathrm{dB}=\frac{\mu_{0}}{4 \pi} \frac{\text { ids } \sin (\theta)}{\mathrm{r}^{2}}
$$

## Direction of Magnetic Field

10-1: Which sketch below shows the correct direction of the magnetic field, $B$, near the point $P$ ?


Use RH rule for current segments: thumb along ids - curled fingers show $B$

Example: Magnetic field at the center of a current arc

- Circular arc carrying current, constant radius $\mathbf{R}$
- Find $\underline{B}$ at center, point $C$
- $\phi$ is included arc angle, not the cross product angle

$$
\mathrm{d} \overrightarrow{\mathrm{~B}}=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{id} \overrightarrow{\mathbf{s}} \times \hat{\mathrm{r}}}{\mathrm{r}^{2}}
$$

- Angle $\theta$ for the cross product is always $90^{\circ}$
- dB at center C is up out of the paper
- ds = Rd $\phi^{\prime}$

$$
\mathrm{dB}=\frac{\mu_{\mathbf{0}}}{4 \pi} \mathrm{i} \frac{\mathrm{ds}}{\mathrm{R}^{2}}=\frac{\mu_{\mathbf{0}}}{4 \pi} \mathrm{i} \frac{\mathrm{~d} \varphi^{\prime}}{\mathrm{R}}
$$

- integrate on arc angle $\phi^{\prime}$ from 0 to $\phi$

$\square B=\frac{\mu_{0} i}{4 \pi R} \int_{0}^{\phi} d \phi^{\prime}=\frac{\mu_{0} i}{4 \pi R} \phi \quad \phi$ inradians
- For a circular loop of current - $\phi=2 \pi$ radians:


$$
B=\frac{\mu_{0} i}{2 R} \text { (loop) }
$$

Another Right Hand Rule (for loops):

Right hand rule for wire segments


Thumb points along the current. Curled fingers show direction of $B$

Curl fingers along current, thumb shows direction of $B$ at center
?? What would formula be for $\phi=45^{\circ}, 180^{\circ}, 4 \pi$ radians ??

## Examples:

FIND B FOR A POINT LINED UP WITH A SHORT STRAIGHT WIRE

$$
\xrightarrow[\hat{r}]{i d \vec{s}}
$$

Find B AT CENTER OF A HALF LOOP, RADIUS = $r$


Find B AT CENTER OF TWO HALF LOOPS

OPPOSITE CURRENTS

PARALLEL CURRENTS

$B=2 \times \frac{\mu_{0} i}{4 \pi r} \pi=\frac{\mu_{0} i}{2 r}$
same as closed loop
$B=\frac{\mu_{0} \mathbf{i}}{4 \mathbf{~}}-\frac{\mu_{0} \mathbf{i}}{4 \mathbf{r}}=\mathbf{0}$

## Magnetic Field from Loops

10 - 2: The three loops below have the same current. The smaller radius is half of the large one. Rank the loops by the magnitude of magnetic field at the center, greatest first.
A. I, II, III.
B. III, I, II.
C. II, I, III.
D. III, II, I.
E. II, III, I.

$B=\frac{\mu_{0} i}{4 \pi R} \phi \quad \phi$ inradians
Hint: consider radius, direction, arc angle

## Magnetic field due to current in a thin, straight wire



- Current $i$ flows to the right along $x$ - axis
- Wire subtends angles $\theta_{1}$ and $\theta_{2}$
- Find $\underline{B}$ at point $P$, a distance a from wire.

$$
d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{i d \vec{s} \times \vec{r}}{r^{3}}
$$

- dB is out of page at $P$ for ds anywhere along wire

Evaluate dB along ds using Biot Savart Law

- Magnitude of i.ds X $\underline{r}=$ i.r.dx.cos( $\theta$ ).

$$
\mathrm{d} \overrightarrow{\mathrm{~B}}=\frac{\mu_{0}}{4 \pi} \frac{\mathbf{i} \cdot \mathrm{dx} \cdot \cos (\theta)}{\mathbf{r}^{2}} \hat{\mathbf{k}}
$$

- $x$ negative as shown, $\theta$ positive, $\theta_{1}$ positive, $\theta_{2}$ negative

$$
\begin{aligned}
& r=a / \cos (\theta) \quad x=-a \tan (\theta) \quad \frac{d}{d \theta}[\tan (\theta)]=\sec ^{2}(\theta)=1 / \cos ^{2}(\theta) \\
& \quad \therefore d x=-a \cdot d \theta / \cos ^{2}(\theta) \\
& \quad|d \vec{B}|=-\frac{\mu_{0} i}{4 \pi a} \cos (\theta) d \theta \\
& \text { Integrate on } \theta \text { from } \theta_{1} \text { to } \theta_{2} \text { : }
\end{aligned}
$$

$$
B=\int_{\theta_{1}}^{\theta_{2}} d B=-\frac{\mu_{0} i}{4 \pi a} \int_{\theta_{1}}^{\theta_{2}} \cos (\theta) d \theta=\frac{\mu_{0} i}{4 \pi a}\left[\sin \left(\theta_{1}\right)-\sin \left(\theta_{2}\right)\right]
$$

## General result - applications follow

## Magnetic field due to current in thin, straight wires

$$
B=\frac{\mu_{0} i}{4 \pi a}\left[\sin \left(\theta_{1}\right)-\sin \left(\theta_{2}\right)\right]
$$

Example: Infinitely long, thin wire:


Example: Field at $P$ due to Semi-Infinite wires:


Set $\theta_{1}=\pi / 2, \theta_{2}=0$

$$
|B|=\frac{\mu_{0} i}{4 \pi a}
$$

Into slide at point $P$ Half the magnitude for a fully infinite wire

## Magnetic Field lines near a straight wire carrying current



When two parallel wires are carrying current, the magnetic field from one causes a force on the other.

$$
\vec{F}_{a, b}=i_{b} \vec{L}_{b} \times \vec{B}_{a}
$$


. The force is attractive when the currents are parallel.

- The force is repulsive when the currents are anti-parallel.

Copyright R. Janow - Fall 2013

Magnitude of the force between two long parallel wires


End View


- Third Law says: $F_{12}=-F_{21}$
- Use result for $B$ due to infinitely long wire

$$
\mathbf{B}_{\mathbf{1}}=\frac{\boldsymbol{\mu}_{\mathbf{0}} \mathbf{i}_{\mathbf{1}}}{\mathbf{2 \pi d}} \quad \begin{aligned}
& \text { Due to } 1 \text { at wire } 2 \\
& \text { Into page via RH rule }
\end{aligned}
$$

- Evaluate $F_{12}=$ force on 2 due to field of 1

$$
\begin{array}{ll}
\overrightarrow{\mathbf{F}}_{12}=\dot{i}_{2} \overrightarrow{\mathbf{L}}_{\mathbf{2}} \times \overrightarrow{\mathrm{B}}_{1} & \mathrm{i}_{2} L \text { is normal to } B \\
\left|\overrightarrow{\mathbf{F}}_{1,2}\right|=\mathbf{i}_{\mathbf{2}} \mathbf{L} \mathbf{B}_{1} & \text { Force is toward wire1 }
\end{array}
$$

$$
\therefore F_{1,2}=\frac{\mu_{0}}{2 \pi} \frac{\mathbf{i}_{1} \boldsymbol{i}_{2}}{d} L
$$

$$
F_{21}=-F_{12}
$$

- Attractive force for parallel currents
- Repulsive force for opposed currents

Example: Two parallel wires are 1 cm apart $\quad\left|\mathrm{i}_{1}\right|=\left|1_{2}\right|=100 \mathrm{~A}$.
F/L = force per unit length $=\frac{2 \times 10^{-7} \times 100 \times 100}{.01}=0.2 \mathrm{~N} / \mathrm{m}$
$\mathrm{F}=\mathbf{0 . 2} \mathbf{N}$ for $\mathrm{L}=\mathbf{1} \mathbf{~ m}$

## Forces on parallel wires carrying currents

10 - 3: Which of the four situations below results in the greatest force to the right on the central conductor? The currents in all the wires have the same magnitude.


Hints: Which pairings with center wire are attractive and repulsive?
or
What is the field midway between wires with parallel currents?
What is the net field directions and relaative magnitudes afaruriedt Ruipanow - Fall 2013

## Ampere's Law

- Derivable from Biot-Savart Law
- Sometimes a way to find B, given the current that creates it
- But B is inside an integral $\rightarrow$ usable only for high symmetry (like Gauss' Law)
- An "Amperian loop" is a closed path of any shape
- Add up (integrate) components of $B$ along the loop path.


To find B, you have to be able to do the integral, then solve for B

Picture for applications:


- Only the tangential component of B along ds contributes to the dot product
- Current outside the loop ( $\mathrm{i}_{3}$ ) creates field but doesn't contribute to the path integral
- Another version of RH rule:
- curl fingers along Amperian loop
- thumb shows + direction for net current

Example: Find magnetic field outside a long, straight, possibly fat, cylindrical wire carrying current

We used the Biot-Savart Law to show that for a thin wire

$$
B=\frac{\mu_{0} i}{2 \pi r}
$$

Now use Ampere's Law to show it again more simply and for a fat wire.

$$
\oint \overrightarrow{\mathrm{B}} \cdot \mathrm{~d} \overrightarrow{\mathbf{s}}=\mu_{0} \mathrm{i}_{\mathrm{enc}}
$$

Amperian loop outside $R$ can have any shape Choose a circular loop (of radius $r>R$ ) because field lines are circular about a wire.
$\underline{B}$ and ds are then parallel, and $B$ is constant everywhere on the Amperian path

$$
\oint \overrightarrow{\mathbf{B}} \circ \mathbf{d} \overrightarrow{\mathbf{s}}=\mathrm{B}_{\mathrm{x}} 2 \pi \mathbf{r}=\mu_{0} \mathbf{i}_{\mathrm{enc}}
$$

The integration was simple. $i_{\text {enc }}$ is the total current.
Solve for $B$ to get our earlier expression:

$$
B=\frac{\mu_{0} \mathrm{I}}{2 \pi r} \quad \text { outside wire }
$$

$R$ has no effect on the result.

Magnetic field inside a long straight wire carrying current, via Ampere's Law

## $\oint \overrightarrow{\mathbf{B}} \cdot \mathbf{d} \mathbf{S}=\mu_{0} \mathbf{i}_{\text {enc }}$

Assume current density $\mathrm{J}=\mathrm{i} / \mathrm{A}$ is uniform across the wire cross-section and is cylindrically symmetric.
Field lines are again concentric circles $B$ is axially symmetric again
Again draw a circular Amperian loop around the axis, of radius $r<R$.
The enclosed current is less than the total current $i$, because some is outside the Amperian loop. The amount enclosed is

$$
i_{e n c}=i \frac{\pi r^{2}}{\pi R^{2}}
$$

Apply Ampere's Law:
$\oint \vec{B} \cdot d \vec{s}=B 2 \pi r=\mu_{0} i_{e n c}=\mu_{0} i \frac{r^{2}}{R^{2}}$
$B=\left(\frac{\mu_{0} i}{2 \pi R}\right)\left(\frac{r}{R}\right) \quad r<R \quad$ inside wire



Outside ( $r>R$ ), the wire looks like an infinitely thin wire (previous expression) Inside: B grows linearly up to R

## Counting the current enclosed by an Amperian Loop

10 - 4: Rank the Amperian paths shown by the value of $\oint \vec{B} \cdot \mathbf{d} \overrightarrow{\mathbf{s}}$ along each path, taking direction into account and putting the most positive ahead of less positive values.
All of the wires are carrying the same current. .
A. I, II, III, IV, V.
B. II, III, IV, I, V.
C. III, V, IV, II, I.
D. IV, V, III, I, II.
E. I, II, III, V, IV.
$\oint \vec{B} \cdot d \vec{s}=\mu_{0} \mathbf{I}_{\mathrm{enc}}$


Copyright R. Janow - Fall 2013

## Another Ampere's Law example

Why use COAXIAL CABLE for CATV and other applications?
Find $B$ inside and outside the cable
Cross section:


Inside - use Amperian loop 1:

$$
\oint \vec{B} \cdot d \overrightarrow{\mathbf{s}}=\mu_{0} \mathrm{i}=\mathrm{B} \times 2 \pi r \quad \mathrm{~B}=\frac{\mu_{0} \mathrm{i}}{2 \pi r} \quad \begin{aligned}
& \text { Outer shield does not } \\
& \text { affect field inside } \\
& \text { Reminiscent of Gauss's Law }
\end{aligned}
$$

Outside - use Amperian loop 2:

$$
\oint \overrightarrow{\mathrm{B}} \cdot \mathrm{~d} \overrightarrow{\mathbf{s}}=\mu_{0} \mathrm{i}_{\mathrm{enc}}=0
$$

Zero field outside due to opposed currents + radial symmetry
Losses and interference suppressed

## Solenoids strengthen fields by using many loops



Approximation: field is constant inside and zero outside (just like capacitor)

"Long solenoid" $\rightarrow \mathrm{d}$ << L

FIND FIELD INSIDE IDEAL SOLENOID USING AMPERIAN LOOP abcda

only section that has nonzero contribution

- Outside B = 0, no contribution from path c-d
- $B$ is perpendicular to ds on paths $a-d$ and $b-c$
- Inside B is uniform and parallel to ds on path a-b

$$
\oint \overrightarrow{\mathbf{B}} \cdot \mathbf{d} \mathbf{S}=\mu_{0} \mathrm{i}_{\mathrm{enc}}
$$

$$
\oint \overrightarrow{\mathbf{B}} \cdot \mathbf{d} \overrightarrow{\mathbf{s}}=\mathbf{B}_{\text {inside }} \mathbf{h}=\mu_{0} \mathbf{i}_{\text {enc }}=\mu_{0} \mathbf{i n h}
$$

$$
\mathrm{B}=\mu_{0} \mathrm{in}
$$

inside ideal solenoid

## Toroid: A long solenoid bent into a circle

## Find the magnitude of B field inside

i outside
flows up

LINES OF CONSTANT

B ARE


AMPERIAN LOOP IS A CIRCLE ALONG $\underline{B}$

Draw an Amperian loop parallel to the field, with radius $r$ (inside the toroid)
The toroid has a total of $N$ turns
The Amperian loop encloses current Ni.
$B$ is constant on the Amperian path.
$\oint \overrightarrow{\mathbf{B}} \cdot \mathbf{d} \overrightarrow{\mathbf{s}}=\mathbf{B}_{\times} 2 \pi \mathbf{r}=\mu_{0} \mathrm{i}_{\text {enc }}=\mu_{0} \mathbf{i N}$

$$
B=\frac{\mu_{0} \mathrm{iN}}{2 \pi r} \text { insidetoroid }
$$

- N times the result for a long thin wire
- Depends on $r$
- Also same result as for long solenoid

$$
\mathrm{n} \equiv \frac{\mathrm{~N}}{2 \pi r} \text { (turns/unt length) } \Rightarrow \mathrm{B}=\mu_{0} \text { in }
$$

## Find $B$ field outside

Answer
$B=0$ outside

## Find B at point P on z-axis of a dipole (current loop)

- We use the Biot-Savart Law directly
$\mathrm{d} \overrightarrow{\mathrm{B}}=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{id} \overrightarrow{\mathbf{s}} \times \hat{\mathrm{r}}}{\mathbf{r}^{2}} \quad \mathbf{r}=\sqrt{\mathbf{R}^{2}+\mathrm{z}^{2}} \quad \cos \alpha=\frac{\mathbf{R}}{\mathbf{r}}$
$\mathrm{dB}_{\perp}$ cancels by symmetry (normalto z -axis)
$\mathrm{dB}_{\mathrm{z}}=\mathrm{dB}_{| |}=\mathrm{dB} \cos (\alpha)=\frac{\mu_{0}}{4 \pi} \frac{i d s \cos (\alpha)}{R^{2}+\mathrm{z}^{2}}$
$d B_{z}=\frac{\mu_{0}}{4 \pi} \frac{i R}{\left(R^{2}+z^{2}\right)^{3 / 2}} d s \quad d s=R d \phi$
Integrate around the current loop on $\phi$ - the angle at the center of the loop.
The field is perpendicular to $\underline{r}$ but by symmetry the part of $B$ normal to $z$-axis cancels around the loop only the part parallel to the $z$-axis survives.


$$
B_{z}=\int d B_{z}=\frac{\mu_{0}}{4 \pi} \frac{i R}{\left(R^{2}+z^{2}\right)^{3 / 2}} \int d s=\frac{\mu_{0}}{4 \pi} \frac{i R^{2}}{\left(R^{2}+z^{2}\right)^{3 / 2}} \int_{0}^{2 \pi} d \phi
$$

$$
B(z)=\frac{\mu_{0} i \pi R^{2}}{2 \pi\left(R^{2}+z^{2}\right)^{3 / 2}}
$$

$$
\begin{gathered}
\text { as before } \\
B(\mathbf{z}=\mathbf{0})=\frac{\mu_{0} \mathrm{i}}{2 \mathrm{R}}
\end{gathered}
$$

recall definition of Dipole moment $\mu \equiv \mathrm{NiA}=\mathbf{i} \pi \mathrm{R}^{2}$

## B field on the axis of a dipole (current loop), continued

Far, far away: suppose $z \gg R$

$$
B(z)=\frac{\mu_{0} i \pi R^{2}}{2 \pi\left(R^{2}+z^{2}\right)^{3 / 2}} \rightarrow \frac{\mu_{0} i \pi R^{2}}{2 \pi z^{3}}
$$

Same $1 / z^{3}$ dependence as for electrostatic dipole

Dipole moment vector $\overline{\boldsymbol{\mu}}$ is normal to loop (RH Rule).

$$
\overrightarrow{\boldsymbol{\mu}} \equiv \mathbf{N i} \mathbf{A} \hat{\mu}
$$

$N \equiv$ number of turns $=1 \square \pi R^{2} i=|\mu|$ above


For any current loop, along $z$ axis with $|z| \gg R$
$\therefore \vec{B}(z) \approx \frac{\mu_{0} \vec{\mu}}{2 \pi z^{3}}$

For charge dipole

$$
\overrightarrow{\mathrm{E}}(\mathrm{z}) \approx \frac{1}{2 \pi \varepsilon_{0}} \frac{\overrightarrow{\mathrm{p}}}{z^{3}}
$$

Current loops are the elementary sources of magnetic field:

- Creates dipole fields with source strength $\vec{\mu}$
- Dipole feels torque to another $\overrightarrow{\boldsymbol{\mu}}$ in external $B$ field $\vec{\tau}=\vec{\mu} \times \vec{B}$

Dipole-dipole interaction:



## Try this at home

10-5: The three loops below have the same current. Rank them in terms of the magnitude of magnetic field at the point shown, greatest first.
A. I, II, III.
B. III, I, II.
C. II, I, III.
D. III, II, I.
E. II, III, I.


Hint: consider radius, direction, arc angle

$$
B=\frac{\mu_{0} i}{4 \pi R} \phi \quad \phi \text { inradians }
$$

Summary: Lecture 10 Chapter 29 - Magnetic Fields from Currents
$\qquad$
LAN
BIOT SAUATT

$$
\begin{aligned}
& \mu_{0}=\text { Permoasilit }=4 \pi \times 10^{-7} \frac{\mathrm{~V}_{0}^{2}}{T_{0}+l_{a}-m} \\
& \hat{\hat{H}}=\text { onit vocitar alang } \vec{r}
\end{aligned}
$$



- Relet tiander Rure Thumb along id de cule al fingers shoud $\vec{A}$

at point $P$.
Infinte sinnignt wite

$$
B=\frac{\mu_{0}}{2 \pi r} \stackrel{\rightharpoonup}{t+t}
$$

point an nels of Silangint wikc


$$
d B=0
$$

Bon fxis of Govent Loop



$$
\mathbf{B}=\frac{\mu_{0} \mathrm{I}}{4 \pi \mathrm{a}}\left[\sin \left(\theta_{1}\right)-\sin \left(\theta_{2}\right)\right]
$$

Torois:

$$
\begin{aligned}
& \text { Toroin: } \\
& B=\mu_{0} \text { in }=\frac{\mu_{0} i N}{2 \pi T} \text { Endos }
\end{aligned}
$$

