

Electricity Merit Badge Class 2 - Magnetism

13 June 2017

emeritbadges.org

1

Electricity Merit Badge Class 2 – 2017 National Scout Jamboree

Classes

- Class 1 Basic Electricity
- Class 2 Magnetism
 - Magnets & Compasses
 - Electromagnets & Coils
 - Solenoids & Electric motors
- Class 3 Electric Power, Alternating Current
- Class 4 Safety at Home

Magnets – Attraction & Repulsion

- What happens when you push 2 N (north) poles close together?
- When you put an N and S pole close?

Four Forces

Magnetic

 The force attracts and repels and holds atoms and molecules together

Gravity

 The force is always attractive and acts along the line joining the centers of mass of the two masses

Weak Force

 The weak interaction acts between both quarks and leptons

Strong Force

 A force which can hold a nucleus together against the enormous forces of repulsion of the protons

4

Magnets and Metal

- Some metals are attracted to magnets
- Some metals are not
- Why is that?

13 June 2017

- iron and steel (nails, screws and nuts)
- stainless steel (forks and spoons)
- brass (screws)
- copper (coins)
- aluminum (foil)

Magnetic Lines of Flux

- Iron is attracted to magnets
- Using tiny bits of iron to see how the lines of magnetism
- Strong at the poles, weak away from poles

Electricity Merit Badge Class 2 – 2017 National Scout Jamboree

Magnetic Lines of Flux

- The earth is a big magnet
- The needle of a compass is magnet
- The S pole of the compass points to the N pole of the earth

13 June 2017

Using a Multimeter 1

- Remove meter from packaging
- •Watch out for the staples!
- Included are two test probes

Using a Multimeter 2

- Remove the protecting covers from black and red connectors (plugs)
 Plug the black connector into the COM jack
 Plug the red connector
- into the V Ω mA jack

Using a Meter to Measure

- •DCV = Battery
- •ACV = Wall socket
- Ω = Checking Fuses& Bulbs
- •Others = Read the manual

Full manual available at:

http://www.harborfreight.com/cpi/ctaf/manuals.taf?f=form&ItemID=98025

Be Careful When Measuring

- Check Maximum rating such as "750VAC"
- Pick the right range
 - •ACV?
 - •DCV?
 - •<u>Ω</u>?
- Start at the highest and work down in value as needed

13 June 2017

Watch Your Fingers

 Don't let your fingers slip past the protective barrier

 Touching the metal probe while it is connected to a circuit can shock you

Also it may make the meter reading invalid

Magnets and Wires - Electricity

- Move a magnet near a coil of wire and you get electricity
- Move a coil of wire near a magnet and you get electricity
- The magnetic force moves electrons in the wire creating a wave of energy

Wires and Electricity - Magnet

- Put wires around some magnetic material
- It becomes a magnet
- "Electromagnet" is the official name

Put On The Safety Glasses

You will be working with sharp, pointy objects
We don't want you poking something into your eye.

How We Built the Coil for the Electromagnet

- A 10-foot length of #28 "magnet wire" was wrapped about 40 times around the straw
- Used hot glue to hold the wire in place
- Used sandpaper to clean the coating off the two wire ends

Caution – Coil Gets Hot

- Disconnect the coil as soon as it feels hot
 It could burn you if left connected
- •It drains the battery

Building an Electromagnet

- Put the spike inside the straw
- Connect one clip of each alligator clip lead to the <u>ends</u> of the wires on the coils
- Connect the alligator clips to the battery
- Use the end of the spike to pick up metal
- Disconnect battery

13 June 2017

Electricity Merit Badge Class 2 – 2017 National Scout Jamboree

19

Disconnect the battery quickly because...

- 1. It gets the coil really hot
- 2. It wears out the battery by putting a heavy load on it

Measure Voltage Load with Multimeter

- •Connect the meter to the battery and read the voltage
- •Connect the electromagnet and see how the voltage drops
- That is energy being drawn from the battery to power the electromagnet
- Disconnect battery, meter and coil

Measure Amperage (Current) Load with Multimeter

- Plug the Red probe wire into 10ADC
- Turn knob to 10A
- Red probe to + on battery
- Black probe to one side of coil
- •Wire from other side of coil to on battery

Building a Solenoid

- Disconnect the meter
- Remove the spike
- Put the tip of the smaller nail inside the coil
- Connect the battery again
- The nail is pulled into the coil by magnetic attraction
- Disconnect the battery

Motors

- Coil just like electromagnet
- Magnet that will be attracted and repelled by coil
- Connected to a battery, each coil becomes an electromagnet

13 June 2017

Connecting a Motor

- Check the motor ratings:
 - How many volts maximum?
 - How many amps (current) does it consume?
- Check power source such as battery:
 - How many volts is battery?
 - Use a meter to check if unsure
- Connect just like the electromagnet

Starter Motor and Solenoid from a Car

Washing Machine Motor

Electricity Merit Badge Class 2 – 2017 National Scout Jamboree

Disconnect & Pack Up

- •Disconnect all the wires
- •Put the cap on the middle terminal of the battery
- •Put the battery and safety glasses aside
- •Put all the other things magnets, coil, etc. in the plastic container
- •Check the list on the lid and make sure you have everything in it

The Meter is Yours!

- •The meter is yours to keep; take it home
- •Get the full manual from the Web site
- •Find the Web site address on the paper that came with the meter
- •Learn how to use it
- •It is given to you by the emeritbadge project of IEEE

What We Learned

- $\sqrt{\rm Magnetism}$ is all around us
- $\sqrt{}$ Magnets have poles that attract or repel other magnets
- $\sqrt{\text{Coils}}$ of wire connected to a power source are electromagnets
- $\sqrt{}$ Coils can pull and push metal rods to make solenoids
- $\sqrt{}$ Electromagnets and magnets set in a circle become a motor
- $\sqrt{}$ Multimeters are used to measure things electrical

