Supporting Information

Electrochemical Initiation of Electron-Catalyzed Formation of Phenanthridines by Trifluoromethylation of Isonitriles

Maximilian Lübbesmeyer, Dirk Leifert, Hans Schäfer, Armido Studer*

Fachbereich Chemie, Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany studer@uni-muenster.de

1. General 1
2. Cyclic voltammetry 4
3. Procedures 7
3.1. General procedure for the synthesis of 2-aminobiphenyls (GP1) 7
3.2. General procedure for the synthesis of 2-isocyanobiphenyls 1 (GP2) 7
3.3. General procedure for the synthesis of phenanthridines $\mathbf{3}$ (GP3) 8
3.4. Procedure for the synthesis of phenanthridine 3a (GP4) 8
4. Analytic data of starting materials 9
5. Analytic data of products 19
6. ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}$ - and ${ }^{19} \mathrm{~F}$-NMR spectra 26
7. Literature 69

1. General

All reactions containing air- or moisture-sensitive compounds were performed under argon atmosphere in oven-dried glassware using Schlenk techniques.

Tetrabutylammonium hexafluorophosphate ($\geq 99.0 \%$), 1,2-dimethoxyethane ($\geq 99 \%$) and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(\geq 98 \%)$ were purchased from Sigma Aldrich and used as received. 1,4-Dioxan (99.5\%, AcroSeal) was purchased from Acros Organics and used as received. Other chemicals were purchased from ABCR, Acros Organics, Alfa Aesar, Fluka and Sigma Aldrich and used as received. Solvents for extraction and flash chromatography (FC) were distilled.
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ (300 MHz and 400 MHz), ${ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(75 \mathrm{MHz}, 76 \mathrm{MHz}\right.$ and 101 MHz), ${ }^{\mathbf{1 9}} \mathbf{F}$-NMR (282 MHz) measurements were carried out on a Bruker DPX 300, Bruker AV 300 or Bruker AV 400 spectrometer. The chemical shifts were referred to the solvent $\left(\mathrm{CDCl}_{3}\right)$ residual peak $\left({ }^{1} \mathrm{H}\right.$: $\left.\delta=7.26 \mathrm{ppm},{ }^{13} \mathrm{C}: \delta=77.16 \mathrm{ppm}\right)$ and to an external standard $\left(\mathrm{CFCl}_{3}: \delta=0 \mathrm{ppm}\right)$ for ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ spectra. The multiplicity was described by s (singlet), d (doublet), t (triplet), q (quartet), sext (sextet) and m (multiplet). All melting points (MP) were determined by a Stuart SMP10 and are uncorrected. Infrared spectra (IR) were recorded by a Digilab 3100 FT-IR Excalibur Series spectrometer. The IR signals are listed as s (strong), m (medium) and w (weak) in cm^{-1}. HRMS ESI (m / z) spectra were measured on a Bruker MicroTof.

For thin layer chromatography (TLC) Merck silica gel $60 \mathrm{~F}_{254}$ plates were used and UV light was used for detection. For FC Acros Organics silica gel ($60 \AA, 35-70 \mu \mathrm{~m}$) was used with an argon excess pressure up to 0.5 bar.

Cyclic voltammetry experiments were conducted in a Schlenk tube that contained the substance dissolved in a 0.1 M solution of tetrabutylammonium hexafluorophosphate in acetonitrile. A platinum wire working electrode and a platinum mesh counter electrode were used. The voltage was measured via a Luggin capillary against an $\mathrm{Ag} / \mathrm{Ag}^{+}$reference and was referenced externally against the ferrocene/ferrocenium ion pair. The relevant parameters were controlled by a Metrohm Autolab PGSTAT204 potentiostat.

Electrochemical experiments were conducted under argon atmosphere in oven-dried Schlenk tubes. The platinum wire counter electrode (length: 1.5 cm) was protected by a synthetic flexible tube that was twined around by the platinum mesh working electrode (length: 1.4 cm ; width:
1.8 cm ; distance to platinum wire approx. 3 mm). The electrodes were attached to platinum and copper wires (the wire leading to the counter electrode was additionally protected by melting it into a glass capillary) which were pushed through a septum to maintain an oxygen-free environment in the course of the reactions. For heating during the reactions the Schlenk tube was put into a heating block. The setup is depicted below. The relevant parameters were controlled by a Metrohm Autolab PGSTAT204 potentiostat.

The large scale reaction (4 mmol) was performed under Argon atmosphere in an oven-dried glass tube. Two carbon electrodes which were pushed through a septum were utilized (working electrode: $1.9 \mathrm{~cm} \times 0.4 \mathrm{~cm} \times 3.0 \mathrm{~cm}$; counter electrode: $1.9 \mathrm{~cm} \times 0.5 \mathrm{~cm} \times 3.0 \mathrm{~cm}$; distance: 0.5 $\mathrm{cm})$. The headspace was flushed with Argon via a canula during the reaction. For heating the tube was placed into an oil bath. The setup is depicted below. The relevant parameters were controlled by a Metrohm Autolab PGSTAT204 potentiostat.

2. Cyclic voltammetry

Tetrabutylammonium ortho-iodobenzoate in
MeCN ($0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$)

3. Procedures

According to a literature procedure by Chatani et al. ${ }^{[1]}$ 2-isocyanobiphenyls $\mathbf{1}$ were synthesized via a three step route (see scheme below).

1

3.1. General procedure for the synthesis of 2-aminobiphenyls (GP1)

Phenylboronic acid (1.2 equiv.) and an aq. solution of $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($2 \mathrm{~m}, 4.5$ equiv.) were added to a mixture of 2-bromoaniline (1.0 equiv.) in 1,2-dimethoxyethane (0.5 m) and the reaction mixture was stirred for 30 min . After adding bis(triphenylphosphine)palladium(II)chloride ($2 \mathrm{~mol} \%$), the mixture was heated to $80^{\circ} \mathrm{C}$ and stirred overnight at this temperature. The reaction mixture was cooled to room temperature, filtered through a short pad of silica and eluted with EtOAc. The filtrate was washed with water and the organic phase was dried over MgSO_{4}. Filtration, concentration in vacuo and FC (P/EtOAc) afforded the desired 2-aminobiphenyl.

3.2. General procedure for the synthesis of 2-isocyanobiphenyls 1 (GP2)

An equimolar mixture of acetic anhydride and formic acid was stirred at $55^{\circ} \mathrm{C}$ to form in situ acetic formic anhydride (2.0 equiv.). After cooling to room temperature it was added dropwise to a stirred solution of 2-aminobiphenyl in THF $(0.3-0.6 \mathrm{M})$ at $0^{\circ} \mathrm{C}$. After stirring 2 h at room temperature, the reaction was stopped by the addition of a saturated aq. solution of NaHCO_{3}. The aqueous phase was extracted three times with EtOAc and the combined organic phases were dried over MgSO_{4}, filtered and concentrated in vacuo.

Without further purification the residue was dissolved in THF (0.6 m) and triethylamine (6.0 equiv.) was added. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and phosphoryl chloride (1.5 equiv.) was added dropwise. After stirring two hours at this temperature a saturated solution of aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added to the mixture and stirred for 1 h at room temperature. The aqueous phase was extracted three times with DCM. The combined organic phases were dried over MgSO_{4} and filtered. Purification via FC (P/EtOAc) afforded the desired 2-isocyanobiphenyl 1.

3.3. General procedure for the synthesis of phenanthridines $\mathbf{3}$ (GP3)

2-Isocyanobiphenyl 1 (0.20 mmol , 1.0 equiv.), Togni-Reagent ($0.4 \mathrm{mmol}, 2.0$ equiv.) and tetrabutylammonium hexafluorophosphate (0.25 mmol) were suspended in 1,4-dioxane (2.5 mL). The electrodes were placed in the suspension which was subsequently heated to $80^{\circ} \mathrm{C}$. The solution was electrolyzed under constant current conditions (0.12 mA) until a charge of 1.45 C (0.075 equiv.) was reached.

Afterwards the reaction mixture was cooled to room temperature. The crude product was quantified by ${ }^{19}$ F-NMR analysis using trifluorotoluene as internal standard. After concentration in vacuo the desired phenanthridine was afforded by $\mathrm{FC}\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}\right)$.

3.4. Procedure for the synthesis of phenanthridine $\mathbf{3 a}$ (GP4)

2-Isocyanobiphenyl 1a ($717 \mathrm{mg}, 4.00 \mathrm{mmol}, 1.0$ equiv.), Togni-Reagent ($2.528 \mathrm{~g}, 8.000 \mathrm{mmol}$, 2.0 equiv.) and tetrabutylammonium hexafluorophosphate ($1.937 \mathrm{~g}, 5.000 \mathrm{mmol}$) were suspended in 1,4-dioxane (50 mL). The electrodes were placed in the suspension which was subsequently heated to $80^{\circ} \mathrm{C}$. The solution was electrolyzed under constant current conditions (0.600 mA) until a charge of 13.6 C (0.035 equiv.) was reached.

Afterwards the reaction mixture was cooled to room temperature. The crude product was quantified by ${ }^{19} \mathrm{~F}$-NMR analysis using trifluorotoluene as internal standard. After concentration in vacuo the desired phenanthridine was afforded by $\mathrm{FC}\left(\mathrm{P}^{2} \mathrm{Et}_{2} \mathrm{O}\right)$.

4. Analytic data of starting materials

2-Isocyano-1,1'-biphenyl (1a)

According to $\boldsymbol{G P} \boldsymbol{P}$ with [1,1'-biphenyl]-2-amine ($508 \mathrm{mg}, 3.00 \mathrm{mmol}, 1.0$ equiv.), the in situ formed acetic formic anhydride (0.80 mL), triethylamine $(2.5 \mathrm{~mL}$, $18 \mathrm{mmol}, 6.0$ equiv.) and phosphoryl chloride ($0.41 \mathrm{~mL}, 4.5 \mathrm{mmol}, 1.5$ equiv.). FC $(\mathrm{P} / \mathrm{EtOAc}=40 / 1)$ afforded the desired 2-isocyanobiphenyl 1p $(456 \mathrm{mg}$, $2.54 \mathrm{mmol}, 85 \%)$ as a green liquid.
${ }^{1} \mathbf{H}-$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta(\mathrm{ppm})=7.57-7.34\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{C}_{\text {arom }}{ }^{\mathrm{H}}\right.$). ${ }^{13} \mathbf{C}$-NMR (75 MHz , $\left.\mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=166.6(\mathrm{C}), 138.9(\mathrm{C}), 137.1(\mathrm{C}), 130.7(\mathrm{CH}), 129.6(\mathrm{CH}), 129.1(2 \times$ $\mathrm{CH}), 128.7(2 \times \mathrm{CH}), 128.5(\mathrm{CH}), 128.2(\mathrm{CH}), 127.9(\mathrm{CH}), 124.7(\mathrm{C})$. HRMS (ESI) $\mathrm{m} / \mathrm{z}=$ 202.06272 calcd. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$, found: 202.06247. Spectroscopic data are in accordance with those described in the literature. ${ }^{[2]}$

2-Isocyano-4'-methyl-1,1'-biphenyl (1b)

According to GP1 with 2-bromoaniline ($516 \mathrm{mg}, 3.00 \mathrm{mmol}, 1.0$ equiv.), 4-methylphenylboronic acid ($491 \mathrm{mg}, 3.60 \mathrm{mmol}, 1.2$ equiv.), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ($42 \mathrm{mg}, 60 \mu \mathrm{~mol}, 2.0 \mathrm{~mol} \%$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.867 \mathrm{~g}, 13.51 \mathrm{mmol}, 4.5$ equiv.). FC $(\mathrm{P} / E t O A c=10 / 1)$ afforded the desired 4'-methyl-[1,1'-biphenyl]-2-amine ($425 \mathrm{mg}, 2.32 \mathrm{mmol}, 77 \%$) as a yellow liquid.

According to GP2 with 4'-methyl-[1,1'-biphenyl]-2-amine ($425 \mathrm{mg}, 2.32 \mathrm{mmol}, 1.0$ equiv.), the in situ formed acetic formic anhydride (0.61 mL), triethylamine ($1.9 \mathrm{~mL}, 14 \mathrm{mmol}, 6.0$ equiv.) and phosphoryl chloride ($0.32 \mathrm{~mL}, 3.5 \mathrm{mmol}, 1.5$ equiv.). $\mathrm{FC}(\mathrm{P} / \mathrm{EtOAc}=30 / 1)$ afforded the desired 2 isocyanobiphenyl $\mathbf{1 m}$ ($419 \mathrm{mg}, 2.17 \mathrm{mmol}, 94 \%$) as a green liquid.

IR (neat): $3064 w, 3028 w, 2921 w, 2865 w, 2120 s, 1616 w, 1518 w, 1479 s, 1444 w, 1410 w, 1186 w$, $1107 w, 1046 w, 1007 w, 946 w, 820 m, 759 s, 680 w, 562 m .{ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right):$ $\delta(\mathrm{ppm})=7.52-7.40\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 7.38-7.28\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=166.6(\mathrm{C}), 138.9(\mathrm{C}), 138.3(\mathrm{C}), 134.2$ (C), 130.6 $(\mathrm{CH}), 129.6(\mathrm{CH}), 129.4(2 \times \mathrm{CH}), 128.9(2 \times \mathrm{CH}), 127.9(\mathrm{CH}), 127.9(\mathrm{CH}), 124.7(\mathrm{C}), 21.3(\mathrm{CH} 3)$. HRMS (ESI) $m / z=216.0784$ calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$, found: 216.0790.

4'-Fluoro-2-isocyano-1,1'-biphenyl (1c)

According to GP1 with 2-bromoaniline ($516 \mathrm{mg}, 3.00 \mathrm{mmol}, 1.0$ equiv.), 4-fluorophenylboronic acid ($506 \mathrm{mg}, 3.62 \mathrm{mmol}, 1.2$ equiv.), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ($42 \mathrm{mg}, 60 \mu \mathrm{~mol}, 2.0 \mathrm{~mol} \%$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($1.867 \mathrm{~g}, 13.51 \mathrm{mmol}, 4.5$ equiv.).

FC $(\mathrm{P} / E t O A c=10 / 1)$ afforded the desired 4'-fluoro-[1,1'-biphenyl]-2-amine ($345 \mathrm{mg}, 1.84 \mathrm{mmol}, 61 \%$) as an orange liquid.

According to $\boldsymbol{G P 2}$ with 4'-fluoro-[1,1'-biphenyl]-2-amine ($339 \mathrm{mg}, 1.81 \mathrm{mmol}, 1.0$ equiv.), the in situ formed acetic formic anhydride (0.48 mL), triethylamine ($1.5 \mathrm{~mL}, 11 \mathrm{mmol}, 6.1$ equiv.) and phosphoryl chloride ($0.25 \mathrm{~mL}, 2.7 \mathrm{mmol}, 1.5$ equiv.). $\mathrm{FC}(\mathrm{P} / \mathrm{EtOAc}=30 / 1)$ afforded the desired 2isocyanobiphenyl $\mathbf{1 p}$ ($322 \mathrm{mg}, 1.63 \mathrm{mmol}, 90 \%$) as a green liquid.

IR (neat): $3069 w, 2120 s, 1609 m, 1598 w, 1514 s, 1479 s, 1447 m, 1405 w, 1226 s, 1186 w, 1160 m$, $1110 w, 1096 m, 1047 w, 1010 m, 953 w, 874 w, 836 s, 822 m, 784 m, 757 s, 715 w, 682 w, 579 m, 561 s$, 508w. ${ }^{\mathbf{1}} \mathbf{H}-$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=7.54-7.43\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 7.43-7.34$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 7.22-7.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right) .{ }^{\mathbf{1 3}} \mathbf{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta(\mathrm{ppm})=$ 166.7 (C), 162.9 (d, $J=248.1 \mathrm{~Hz}, \mathrm{C}), 137.9$ (C), 133.1 (d, $J=3.4 \mathrm{~Hz}, \mathrm{C}), 130.9$ (d, $J=8.3 \mathrm{~Hz}$, $2 \times \mathrm{CH}), 130.6(\mathrm{CH}), 129.7(\mathrm{CH}), 128.4(\mathrm{CH}), 128.0(\mathrm{CH}), 124.7(\mathrm{C}), 115.7(\mathrm{~d}, J=21.7 \mathrm{~Hz}$, $2 \times \mathrm{CH}$). ${ }^{19} \mathbf{F}$-NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta(\mathrm{ppm})=-113.4(\mathrm{~s}, \mathrm{CF}) . \mathbf{H R M S}$ (ESI) $\mathrm{m} / \mathrm{z}=$ 220.0533 calcd. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{FNNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$, found: 220.0539.

4'-Chloro-2-isocyano-1,1'-biphenyl (1d)

According to GP1 with 2-bromoaniline ($516 \mathrm{mg}, 3.00 \mathrm{mmol}, 1.0$ equiv.), 4-chlorophenylboronic acid ($563 \mathrm{mg}, 3.60 \mathrm{mmol}, 1.2$ equiv.), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ($42 \mathrm{mg}, 60 \mu \mathrm{~mol}, 2.0 \mathrm{~mol} \%$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($1.862 \mathrm{~g}, 13.47 \mathrm{mmol}, 4.5$ equiv.). FC $(\mathrm{P} / \mathrm{EtOAc}=40 / 1)$ afforded the desired 4'-chloro-[1,1'-biphenyl]-2-amine $(512 \mathrm{mg}, 2.51 \mathrm{mmol}, 84 \%)$ as a yellow liquid.

According to $\boldsymbol{G P 2}$ with 4'-chloro-[1,1'-biphenyl]-2-amine ($511 \mathrm{mg}, 2.51 \mathrm{mmol}, 1.0$ equiv.), the in situ formed acetic formic anhydride (0.66 mL), triethylamine ($2.1 \mathrm{~mL}, 15 \mathrm{mmol}, 6.0$ equiv.) and phosphoryl chloride ($0.34 \mathrm{~mL}, 3.7 \mathrm{mmol}, 1.5$ equiv.). $\mathrm{FC}(\mathrm{P} / \mathrm{EtOAc}=30 / 1)$ afforded the desired 2 isocyanobiphenyl $\mathbf{1 q}(491 \mathrm{mg}, 2.30 \mathrm{mmol}, 92 \%)$ as a light green solid.

MP: $97^{\circ} \mathrm{C}$. IR (neat): $3059 m, 2292 w, 2127 s, 1980 w, 1947 w, 1906 w, 1835 w, 1729 w, 1654 w$, $1594 w, 1499 m, 1475 s, 1443 m, 1397 m, 1352 w, 1298 w, 1284 m, 1267 w, 1181 m, 1100 m, 1090 s$, $1049 m, 1019 m, 1006 m, 909 m, 878 m, 829 s, 819 s, 796 m, 762 s, 739 s, 653 s, 632 m, 562 s, 535 m$, $506 \mathrm{~m} .{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=7.52-7.37\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{\text {arom }}\right) .{ }^{\mathbf{1 3}} \mathbf{C}$-NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=167.0(\mathrm{C}), 137.7(\mathrm{C}), 135.5(\mathrm{C}), 134.7(\mathrm{C}), 130.5(\mathrm{CH}), 130.4$ $(2 \times \mathrm{CH}), 129.8(\mathrm{CH}), 128.9(2 \times \mathrm{CH}), 128.6(\mathrm{CH}), 128.0(\mathrm{CH}), 124.6(\mathrm{C})$. HRMS (ESI) $\mathrm{m} / \mathrm{z}=$ 236.0237 calcd. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClNNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$, found: 236.0247.

4'-Iodo-2-isocyano-1,1'-biphenyl (1e)

According to GP1 with 2-aminophenylboronic acid hydrochloride (520 mg , 3.00 mmol , 1.0 equiv.), 1,4-diiodobenzene ($3.959 \mathrm{~g}, 12.00 \mathrm{mmol}, 4.0$ equiv.), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(42 \mathrm{mg}, 60 \mu \mathrm{~mol}, 2.0 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.874 \mathrm{~g}, 13.47 \mathrm{mmol}$, 4.5 equiv.). $\mathrm{FC}(\mathrm{P} \rightarrow \mathrm{P} / \mathrm{EtOAc}=10 / 1)$ afforded the desired 4 '-iodo-[1,1'-biphenyl]-2-amine ($237 \mathrm{mg}, 0.803 \mathrm{mmol}, 27 \%$) as a yellow oil.

IR (neat): $3456 w, 3371 m, 3208 w, 3056 w, 3022 w, 1904 w, 1791 w, 1614 s, 1581 m, 1500 m, 1478 s$, $1450 m, 1386 m, 1308 m, 1293 m, 1158 w, 1100 w, 1063 m, 1000 s, 936 w, 821 s, 749 s, 730 m, 625 w$, $562 m, 517 w .^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=7.59-7.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 7.04-$ 6.94 (m, $3 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}$), 6.89 (dd, $J=7.6 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}$), 6.63 (td, $J=7.5 \mathrm{~Hz}$, $\left.J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 6.55\left(\mathrm{dd}, J=8.0 \mathrm{~Hz}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 3.47\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$. ${ }^{13} \mathbf{C}-$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta(\mathrm{ppm})=143.3(\mathrm{C}), 139.1(\mathrm{C}), 138.0(2 \times \mathrm{CH}), 131.1$ $(2 \times \mathrm{CH}), 130.3(\mathrm{CH}), 128.9(\mathrm{CH}), 126.4(\mathrm{C}), 118.9(\mathrm{CH}), 115.9(\mathrm{CH}), 92.9(\mathrm{C})$. HRMS (ESI) $m / z=295.9931$ calcd. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{IN}^{+}[\mathrm{M}+\mathrm{H}]^{+}$, found: 295.9937.

According to $\boldsymbol{G P 2}$ with 4 '-iodo-[1,1'-biphenyl]-2-amine ($237 \mathrm{mg}, 0.803 \mathrm{mmol}, 1.0$ equiv.), the in situ formed acetic formic anhydride (0.24 mL), triethylamine ($0.67 \mathrm{~mL}, 4.8 \mathrm{mmol}, 6.0$ equiv.) and phosphoryl chloride ($0.11 \mathrm{~mL}, 1.2 \mathrm{mmol}, 1.5$ equiv.). $\mathrm{FC}(\mathrm{P} / \mathrm{EtOAc}=20 / 1)$ afforded the desired 2 isocyanobiphenyl $\mathbf{1 e}(224.4 \mathrm{mg}, 0.736 \mathrm{mmol}, 92 \%)$ as a colorless solid.

MP: $125^{\circ} \mathrm{C}$. IR (neat): $3057 w, 2128 s, 1585 w, 1498 w, 1473 s, 1443 w, 1387 w, 1297 w, 1280 w$, $1182 w, 1098 w, 1063 w, 1001 m, 879 w, 821 m, 793 w, 764 s, 743 w, 723 w, 561 m .{ }^{1} \mathbf{H}-\mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=7.84-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.27-$ 7.22 (m, 2H). ${ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=167.1(\mathrm{C}), 137.9(\mathrm{CH}), 137.8(\mathrm{C})$, 136.6 (C), 130.9 (CH), 130.4 (CH), 129.8 (CH), 128.7 (CH), 128.1 (CH), 124.5 (C), 94.7 (C). HRMS (ESI) $m / z=327.9594$ calcd. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{INNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$, found: 327.9593.

5-Fluoro-2-isocyano-1,1'-biphenyl (1f)

According to GP1 with 2-bromo-4-fluoroaniline $(760 \mathrm{mg}, 4.00 \mathrm{mmol}$, 1.0 equiv.), phenylboronic acid ($585 \mathrm{mg}, 4.80 \mathrm{mmol}, 1.2$ equiv.), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ($56 \mathrm{mg}, 80 \mu \mathrm{~mol}, 2.0 \mathrm{~mol} \%$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.492 \mathrm{~g}, 18.03 \mathrm{mmol}$, 4.5 equiv.). FC $(\mathrm{P} / \mathrm{EtOAc}=10 / 1)$ afforded the desired 5-fluoro-[1,1'-biphenyl]-2-amine ($727 \mathrm{mg}, 3.88 \mathrm{mmol}, 97 \%$) as an orange liquid.

According to GP2 with 5-fluoro-[1,1'-biphenyl]-2-amine ($721 \mathrm{mg}, 3.85 \mathrm{mmol}, 1.0$ equiv.), the in situ formed acetic formic anhydride (0.97 mL), triethylamine ($3.1 \mathrm{~mL}, 22 \mathrm{mmol}, 5.7$ equiv.) and phosphoryl chloride ($0.50 \mathrm{~mL}, 5.5 \mathrm{mmol}, 1.5$ equiv.). $\mathrm{FC}(\mathrm{P} / \mathrm{EtOAc}=30 / 1)$ afforded the desired 2isocyanobiphenyl $\mathbf{1 f}(617 \mathrm{mg}, 3.13 \mathrm{mmol}, 81 \%)$ as a green liquid.
${ }^{1} \mathbf{H}-$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=7.59-7.41\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 7.14(\mathrm{dd}, J=9.0 \mathrm{~Hz}$, $\left.J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 7.07\left(\mathrm{ddd}, J=8.7 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{arom}} \mathrm{H}^{\mathrm{H}}\right.$) ${ }^{\mathbf{1 3}} \mathbf{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta(\mathrm{ppm})=166.8(\mathrm{C}), 162.2(\mathrm{~d}, J=252.1 \mathrm{~Hz}, \mathrm{C}), 141.3(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, C), 136.0 (d, $J=1.6 \mathrm{~Hz}, \mathrm{C}), 129.8(\mathrm{~d}, ~ J=9.2 \mathrm{~Hz}, \mathrm{CH}), 129.0(\mathrm{CH}), 128.9(2 \times \mathrm{CH}), 128.8$ $(2 \times \mathrm{CH}), 120.9(\mathrm{C}), 117.5(\mathrm{~d}, J=23.5 \mathrm{~Hz}, \mathrm{CH}), 115.3(\mathrm{~d}, J=23.3 \mathrm{~Hz}, \mathrm{CH}) .{ }^{19} \mathbf{F}-\mathrm{NMR}(282 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=-108.7(\mathrm{~s}, \mathrm{CF})$. HRMS (ESI) $\mathrm{m} / \mathrm{z}=220.0533$ calcd. for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{FNNa}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}$, found: 220.0544. Spectroscopic data are in accordance with those described in the literature. ${ }^{[1]}$

2'-Isocyano-5'-methyl-[1,1'-biphenyl]-4-carbonitrile (1g)

According to GP1 with 2-bromo-4-methylaniline $(0.37 \mathrm{~mL}, 3.0 \mathrm{mmol}$, 1.0 equiv.), 4-cyanophenylboronic acid ($523 \mathrm{mg}, 3.60 \mathrm{mmol}, 1.2$ equiv.), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2} \quad(42 \mathrm{mg}, \quad 60 \mu \mathrm{~mol}, \quad 2.0 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3} \quad(1.866 \mathrm{~g}$, 13.50 mmol , 4.5 equiv. $)$. $\mathrm{FC}(\mathrm{P} / \mathrm{EtOAc}=25 / 1 \rightarrow 5 / 1)$ afforded the desired 2'-amino-5'-methyl-[1,1'-biphenyl]-4-carbonitrile ($460 \mathrm{mg}, 2.21 \mathrm{mmol}, 74 \%$) as a colorless solid. According to GP2 with 2'-amino-5'-methyl-[1,1'-biphenyl]-4-carbonitrile ($417 \mathrm{mg}, 2.00 \mathrm{mmol}$, 1.0 equiv.), the in situ formed acetic formic anhydride (0.53 mL), triethylamine ($1.7 \mathrm{~mL}, 12 \mathrm{mmol}$, 6.1 equiv.) and phosphoryl chloride ($0.28 \mathrm{~mL}, 3.0 \mathrm{mmol}, 1.5$ equiv.). $\mathrm{FC}\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=5 / 1\right)$ afforded the desired 2-isocyanobiphenyl $\mathbf{1 g}(400 \mathrm{mg}, 1.83 \mathrm{mmol}, 92 \%)$ as a pale yellow solid.
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=7.77\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 7.62(\mathrm{~d}$, $\left.J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 7.41\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 7.28-7.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{arom}} \mathrm{H}\right), 2.43$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=167.2(\mathrm{NC}), 141.9(\mathrm{C}), 140.5(\mathrm{C})$, 136.7 (C), $132.4(2 \times \mathrm{C}), 130.9$ (C), 130.1 (C), $129.9(2 \times \mathrm{C}), 128.0$ (C), 122.1 (C), 118.6 (CN), $112.4(\mathrm{C}), 21.5\left(\mathrm{CH}_{3}\right)$. HRMS (ESI) $m / z=241.0736$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$, found: 241.0742. Spectroscopic data are in accordance with those described in the literature. ${ }^{[4]}$

2-Isocyano-4'-methoxy-5-methyl-1,1'-biphenyl (1h)

According to GP1 with 2-bromo-4-methylaniline ($0.37 \mathrm{~mL}, 3.0 \mathrm{mmol}$, 1.0 equiv.), 4-methoxyphenylboronic acid $(547 \mathrm{mg}, \quad 3.60 \mathrm{mmol}$, 1.2 equiv. $), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(42 \mathrm{mg}, 60 \mu \mathrm{~mol}, 2.0 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(1.866 \mathrm{~g}, 13.50 \mathrm{mmol}, 4.5$ equiv.). $\mathrm{FC}(\mathrm{P} / \mathrm{EtOAc}=15 / 1 \rightarrow 8 / 1)$ afforded the desired 4'-methoxy-5-methyl-[1,1'-biphenyl]-2-amine ($520 \mathrm{mg}, 2.44 \mathrm{mmol}, 81 \%$) as a yellow liquid.

According to GP2 with 4'-methoxy-5-methyl-[1,1'-biphenyl]-2-amine ($427 \mathrm{mg}, 2.00 \mathrm{mmol}$, 1.0 equiv.), the in situ formed acetic formic anhydride (0.53 mL), triethylamine ($1.7 \mathrm{~mL}, 12 \mathrm{mmol}$, 6.1 equiv.) and phosphoryl chloride ($0.28 \mathrm{~mL}, 3.0 \mathrm{mmol}, 1.5$ equiv.). $\mathrm{FC}\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=8 / 1\right)$ afforded the desired 2-isocyanobiphenyl $\mathbf{1 h}(375 \mathrm{mg}, 1.68 \mathrm{mmol}, 84 \%)$ as a colorless solid.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=7.49-7.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{arom}} \mathrm{H}\right), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 7.21\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 7.13\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 7.04-6.97(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{C}_{\text {arom }} \mathrm{H}$), $3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=$ 165.8 (NC), 159.8 (C), 139.9 (C), 138.4 (C), $131.1(\mathrm{CH}), 130.3(\mathrm{CH}), 129.6(\mathrm{C}), 128.4(\mathrm{CH}), 127.8$ $(\mathrm{CH}), 122.2(\mathrm{C}), 114.09(\mathrm{CH}), 55.43\left(\mathrm{OCH}_{3}\right), 21.43\left(\mathrm{CH}_{3}\right)$. HRMS (ESI) $m / z=246.0889$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NNaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$, found: 246.0891 . Spectroscopic data are in accordance with those described in the literature. ${ }^{[1]}$

Methyl 2'-isocyano-5'-methyl-[1,1'-biphenyl]-4-carboxylate (1i)

According to $\boldsymbol{G P} 1$ with 2-bromo-4-methylaniline $(0.25 \mathrm{~mL}, 2.0 \mathrm{mmol}$, 1.0 equiv.), 4-methoxycarbonylphenylboronic acid acid pinacol ester ($629 \mathrm{mg}, \quad 2.40 \mathrm{mmol}, 1.2$ equiv.), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(28 \mathrm{mg}, 40 \mu \mathrm{~mol}$, $2.0 \mathrm{~mol} \%$) and $\mathrm{K}_{2} \mathrm{CO}_{3} \quad(1.24 \mathrm{~g}, \quad 8.97 \mathrm{mmol}, 4.5$ equiv.). FC
$(\mathrm{P} / E t O A c=6 / 1 \rightarrow 5 / 1)$ afforded the desired methyl 2'-amino-5'-methyl-[1,1'-biphenyl]-4carboxylate ($475 \mathrm{mg}, 1.97 \mathrm{mmol}, 98 \%$) as a yellow liquid.

According to GP2 with methyl 2'-amino-5'-methyl-[1,1'-biphenyl]-4-carboxylate (434 mg , 1.90 mmol , 1.0 equiv.), the in situ formed acetic formic anhydride $(0.50 \mathrm{~mL})$, triethylamine ($1.6 \mathrm{~mL}, 12 \mathrm{mmol}, 6.1$ equiv.) and phosphoryl chloride ($0.27 \mathrm{~mL}, 2.9 \mathrm{mmol}, 1.5$ equiv.). FC $\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=5 / 1\right)$ afforded the desired 2-isocyanobiphenyl $\mathbf{1 i}(370 \mathrm{mg}, 1.47 \mathrm{mmol}, 78 \%)$ as a colorless solid.

MP: $146^{\circ} \mathrm{C}$. IR (neat): $2958 w, 2927 w, 2362 w, 2125 m, 1718 s, 1612 w, 1432 m, 1286 s, 1187 m$, $1111 m, 1018 w, 964 w, 857 m, 815 m, 775 m, 716 m, 697 w, 582 w, 558 w .{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $300 \mathrm{~K}): \delta(\mathrm{ppm})=8.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}_{\text {arom }} \mathrm{H}$), $7.24-7.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 3.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=166.8(\mathrm{C}), 166.7(\mathrm{C}), 141.8(\mathrm{C}), 140.2(\mathrm{C}), 137.6(\mathrm{C}), 131.0(\mathrm{CH}), 130.0$ $(\mathrm{C}), 129.9(\mathrm{CH}), 129.6(\mathrm{CH}), 129.1(\mathrm{CH}), 127.9(\mathrm{CH}), 122.1(\mathrm{C}), 52.3\left(\mathrm{OCH}_{3}\right), 21.41\left(\mathrm{CH}_{3}\right)$. HRMS (ESI) $m / z=274.0838$ calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NNaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$, found: 274.0836.

(2'-Isocyano-5'-methyl-[1,1'-biphenyl]-4-yl)trimethylsilane (1j)

According to GP1 with 2-bromo-4-methylaniline $(0.15 \mathrm{~mL}, 1.2 \mathrm{mmol}$, 1.0 equiv.), 4-(trimethylsilyl)phenylboronic acid ($280 \mathrm{mg}, 1.44 \mathrm{mmol}$, 1.2 equiv.), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(17 \mathrm{mg}, 24 \mu \mathrm{~mol}, 2.0 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.75 \mathrm{~g}$, $5.4 \mathrm{mmol}, 4.5$ equiv. $)$. $\mathrm{FC}(\mathrm{P} / E t O A c=10 / 1)$ afforded the desired 5-methyl-4'-(trimethylsilyl)-[1,1'-biphenyl]-2-amine ($258 \mathrm{mg}, 1.01 \mathrm{mmol}, 84 \%$) as a pale yellow oil. According to GP2 with 5-methyl-4'-(trimethylsilyl)-[1,1'-biphenyl]-2-amine ($255 \mathrm{mg}, 1.00 \mathrm{mmol}$, 1.0 equiv.), the in situ formed acetic formic anhydride (0.27 mL), triethylamine (0.83 mL , $5.8 \mathrm{mmol}, 5.8$ equiv.) and phosphoryl chloride ($0.14 \mathrm{~mL}, 1.5 \mathrm{mmol}, 1.5$ equiv.). $\mathrm{FC}\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=8 / 1\right)$ afforded the desired 2-isocyanobiphenyl $\mathbf{1 j}$ ($240 \mathrm{mg}, 0.905 \mathrm{mmol}, 91 \%$) as a pale yellow liquid.
IR (neat): $3021 w, 2955 w, 2894 w, 2361 w, 2119 m, 1599 w, 1543 w, 1488 w, 1385 w, 1312 w, 1248 m$, $1199 w, 1129 w, 1107 m, 1040 w, 837 s, 817 s, 761 m, 734 m, 726 m, 692 w, 666 m, 636 w, 623 m, 585 m$, $566 m .{ }^{1}$ H-NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta(\mathrm{ppm})=7.63\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{\mathrm{arom}} \mathrm{H}\right), 7.49(\mathrm{~d}$, $\left.J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 7.37\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 7.25-7.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 2.41$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.32\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right) .{ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=166.0(\mathrm{NC})$, 140.8 (C), 140.0 (C), 138.7 (C), 137.6 (C), 133.6 (CH), 131.3 (CH), 128.9 (CH), 128.3 (CH), 127.8
$(\mathrm{CH}), 122.3(\mathrm{C}), 21.5\left(\mathrm{CH}_{3}\right),-1.0\left(3 \times \mathrm{CH}_{3}\right)$. HRMS (ESI) $\mathrm{m} / \mathrm{z}=288.1179$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NNaSi}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$, found: 288.1180.

2-Isocyano-5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl (1k)

According to GP1 with 2-bromo-4-methylaniline $(0.15 \mathrm{~mL}, 1.2 \mathrm{mmol}$, 1.0 equiv.), 4-(trifluoromethyl)phenylboronic acid pinacol ester (392 mg , $1.44 \mathrm{mmol}, 1.2$ equiv. $), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(17 \mathrm{mg}, 24 \mu \mathrm{~mol}, 2.0 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.75 \mathrm{~g}, 5.4 \mathrm{mmol}, 4.5$ equiv.). $\mathrm{FC}(\mathrm{P} / \mathrm{EtOAc}=10 / 1)$ afforded the desired 5-methyl-4'-(trifluoromethyl)-[1,1'-biphenyl]-2-amine ($260 \mathrm{mg}, 1.03 \mathrm{mmol}, 86 \%$) as a pale yellow solid.
According to GP2 with 5-methyl-4'-(trifluoromethyl)-[1,1'-biphenyl]-2-amine (251 mg , 1.00 mmol , 1.0 equiv.), the in situ formed acetic formic anhydride (0.27 mL), triethylamine ($0.83 \mathrm{~mL}, 5.8 \mathrm{mmol}$, 5.8 equiv.) and phosphoryl chloride ($0.14 \mathrm{~mL}, 1.5 \mathrm{mmol}, 1.5$ equiv.). FC $\left(\mathrm{P}^{2} \mathrm{Et}_{2} \mathrm{O}=8 / 1\right)$ afforded the desired 2-isocyanobiphenyl $\mathbf{1 j}(175 \mathrm{mg}, 0.670 \mathrm{mmol}, 67 \%)$ as a pale yellow/greenish solid.

MP: $78{ }^{\circ} \mathrm{C}$. IR (neat): $2119 m, 1620 w, 1572 w, 1491 w, 1397 w, 1322 s, 1165 m, 1122 s, 1109 s, 1068 s$, $1040 w, 1019 m, 958 w, 844 m, 820 m, 715 w, 654 w, 636 w, 609 m .{ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $300 \mathrm{~K}): \delta(\mathrm{ppm})=7.75\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 7.62\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 7.41(\mathrm{~d}, J$ $\left.=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{arom}} \mathrm{H}\right), 7.25-7.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right){ }^{13} \mathbf{C}$-NMR (75 MHz, $\left.\mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=166.8(\mathrm{NC}), 140.9(\mathrm{C}), 140.3(\mathrm{C}), 137.2(\mathrm{C}), 131.1(\mathrm{CH}), 130.5(\mathrm{q}, J=$ $32 \mathrm{~Hz}, \mathrm{C}), 129.7(\mathrm{CH}), 129.5(\mathrm{CH}), 127.9(\mathrm{CH}), 125.6$ (q, $J=3.8 \mathrm{~Hz}, \mathrm{CH}), 124.2$ (q, $J=272 \mathrm{~Hz}$, $\left.\mathrm{CF}_{3}\right), 122.2(\mathrm{C}), 21.4\left(\mathrm{CH}_{3}\right) .{ }^{19} \mathbf{F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right) \delta(\mathrm{ppm})=-62.6\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS (ESI) $m / z=284.0658$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{NNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$, found: 284.0656.

2-Isocyano-5-methyl-1,1'-biphenyl (11)

According to GP1 with 2-bromo-4-methylaniline ($0.25 \mathrm{~mL}, 2.0 \mathrm{mmol}$, 1.0 equiv.), phenylboronic acid ($293 \mathrm{mg}, 2.40 \mathrm{mmol}$, 1.2 equiv.), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ($28 \mathrm{mg}, 40 \mu \mathrm{~mol}, 2.0 \mathrm{~mol} \%$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.2 \mathrm{~g}, 9.0 \mathrm{mmol}, 4.5$ equiv.). FC $(\mathrm{P} / \mathrm{EtOAc}=8 / 1)$ afforded the desired 5-methyl-[1,1'-biphenyl]-2-amine $(330 \mathrm{mg}, 1.80 \mathrm{mmol}$, 90%) as a pale brown liquid.

According to GP2 with 5-methyl-[1,1'-biphenyl]-2-amine ($324 \mathrm{mg}, 1.77 \mathrm{mmol}, 1.0$ equiv.), the in situ formed acetic formic anhydride (0.47 mL), triethylamine ($1.5 \mathrm{~mL}, 11 \mathrm{mmol}, 6.1$ equiv.) and phosphoryl chloride ($0.26 \mathrm{~mL}, 2.8 \mathrm{mmol}, 1.6$ equiv.). $\mathrm{FC}\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=5 / 1\right)$ afforded the desired 2isocyanobiphenyl $11(307 \mathrm{mg}, 1.59 \mathrm{mmol}, 90 \%)$ as a pale green solid.
${ }^{1} \mathbf{H}-$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=7.54-7.34\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 7.24-7.21(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{C}_{\text {arom }} \mathrm{H}$), $7.20-7.13\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta(\mathrm{ppm})=166.0(\mathrm{NC}), 140.0(\mathrm{C}), 138.8(\mathrm{C}), 137.4(\mathrm{C}), 131.3(\mathrm{CH}), 129.1(\mathrm{CH}), 128.9(\mathrm{CH}), 128.6$ $(\mathrm{CH}), 128.4(\mathrm{CH}), 127.8(\mathrm{CH}), 120.1(\mathrm{C}), 21.5\left(\mathrm{CH}_{3}\right)$. HRMS (ESI) $\mathrm{m} / \mathrm{z}=216.0784$ calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$, found: 216.0800 . Spectroscopic data are in accordance with those described in the literature. ${ }^{[1]}$

5-(2-Isocyano-5-methylphenyl)benzo[d][1,3]dioxole (1m)

According to GP1 with 2-bromo-4-methylaniline ($0.25 \mathrm{~mL}, 2.0 \mathrm{mmol}$, 1.0 equiv.), 3,4-(methylenedioxy)benzeneboronic acid ($398 \mathrm{mg}, 2.40 \mathrm{mmol}$, 1.2 equiv.), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(28 \mathrm{mg}, 40 \mu \mathrm{~mol}, 2.0 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.24 \mathrm{~g}$, 8.97 mmol , 4.5 equiv.). $\mathrm{FC}(\mathrm{P} / \mathrm{EtOAc}=5 / 1)$ afforded the desired 2-(benzo[d][1,3]dioxol-5-yl)-4-methylaniline ($424 \mathrm{mg}, 1.87 \mathrm{mmol}, 93 \%$) as a pale yellow liquid.

According to GP2 with 2-(benzo[d][1,3]dioxol-5-yl)-4-methylaniline ($409 \mathrm{mg}, 1.80 \mathrm{mmol}$, 1.0 equiv.), the in situ formed acetic formic anhydride (0.48 mL), triethylamine ($1.5 \mathrm{~mL}, 11 \mathrm{mmol}$, 6.0 equiv.) and phosphoryl chloride ($0.25 \mathrm{~mL}, 2.7 \mathrm{mmol}, 1.5$ equiv.). $\mathrm{FC}\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=8 / 1\right)$ afforded the desired 2-isocyanobiphenyl $\mathbf{1 m}(320 \mathrm{mg}, 1.35 \mathrm{mmol}, 75 \%)$ as a pale yellow solid.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=7.34\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{arom}} \mathrm{H}\right), 7.19-7.16(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 7.16-7.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 6.99-6.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 6.92-6.87(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{C}_{\text {arom }} \mathrm{H}$), $6.02(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH} 2), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=$ 166.0 (NC), 147.9 (C), 147.8 (C), 139.9 (C), 138.4 (C), 131.2 (CH), 131.1 (C), 128.7 (CH), 127.8 $(\mathrm{CH}), 122.9(\mathrm{CH}), 122.2(\mathrm{C}), 109.6(\mathrm{CH}), 108.5(\mathrm{CH}), 101.4\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{3}\right)$. HRMS (ESI) m / z $=260.0682$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NNaO}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$, found: 260.0682. Spectroscopic data are in accordance with those described in the literature. ${ }^{[4]}$

2-Isocyano-4-methyl-1,1'-biphenyl (3n)

According to GP1 with 2-bromo-5-methylaniline ($0.25 \mathrm{~mL}, 2.0 \mathrm{mmol}$, 1.0 equiv.), phenylboronic acid ($293 \mathrm{mg}, 2.40 \mathrm{mmol}, 1.2$ equiv.), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ($28 \mathrm{mg}, 40 \mu \mathrm{~mol}, 2.0 \mathrm{~mol} \%$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.2 \mathrm{~g}, 9.0 \mathrm{mmol}, 4.5$ equiv.). FC $(\mathrm{P} / \mathrm{EtOAc}=8 / 1)$ afforded the desired 4-methyl-[1,1'-biphenyl]-2-amine ($315 \mathrm{mg}, 1.72 \mathrm{mmol}$, 86%) as a pale yellow liquid.
According to GP2 with 4-methyl-[1,1'-biphenyl]-2-amine ($310 \mathrm{mg}, 1.69 \mathrm{mmol}, 1.0$ equiv.), the in situ formed acetic formic anhydride (0.45 mL), triethylamine ($1.4 \mathrm{~mL}, 10 \mathrm{mmol}, 6.0$ equiv.) and phosphoryl chloride ($0.24 \mathrm{~mL}, 2.6 \mathrm{mmol}, 1.5$ equiv.). $\mathrm{FC}\left(\mathrm{P}^{2} \mathrm{Et}_{2} \mathrm{O}=5 / 1\right)$ afforded the desired 2isocyanobiphenyl $3 \mathbf{n}$ ($311 \mathrm{mg}, 1.61 \mathrm{mmol}, 95 \%$) as a yellow solid.
${ }^{1} \mathbf{H}$-NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta(\mathrm{ppm})=7.54-7.37\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 7.34-7.24(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{C}_{\text {arom }} \mathrm{H}$), $2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=166.3(\mathrm{NC}), 138.5$ (C), $137.2(\mathrm{C}), 136.1(\mathrm{C}), 130.5(\mathrm{CH}), 130.5(\mathrm{CH}), 129.1(\mathrm{CH}), 128.6(\mathrm{CH}), 128.3(\mathrm{CH}), 128.2$ $(\mathrm{CH}), 124.5(\mathrm{C}), 20.9\left(\mathrm{CH}_{3}\right)$. HRMS (ESI) $\mathrm{m} / \mathrm{z}=216.0784$ calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$, found: 216.0806. Spectroscopic data are in accordance with those described in the literature. ${ }^{[4]}$

2-Isocyano-3-methyl-1,1'-biphenyl (3o)

According to GP1 with 2-bromo-6-methylaniline ($238 \mathrm{mg}, 1.28 \mathrm{mmol}, 1.0$ equiv.), phenylboronic acid ($188 \mathrm{mg}, 1.54 \mathrm{mmol}, 1.2$ equiv. $), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(18 \mathrm{mg}$, $26 \mu \mathrm{~mol}, \quad 2.0 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3} \quad(0.80 \mathrm{~g}, \quad 5.8 \mathrm{mmol}, 4.5$ equiv.). FC $(\mathrm{P} / \mathrm{EtOAc}=8 / 1)$ afforded the desired 3-methyl-[1,1'-biphenyl]-2-amine $(208 \mathrm{mg}$, $1.14 \mathrm{mmol}, 89 \%$) as a white solid.

According to GP2 with 3-methyl-[1,1'-biphenyl]-2-amine ($200 \mathrm{mg}, 1.09 \mathrm{mmol}, 1.0$ equiv.), the in situ formed acetic formic anhydride (0.29 mL), triethylamine ($0.90 \mathrm{~mL}, 6.5 \mathrm{mmol}, 6.0$ equiv.) and phosphoryl chloride ($0.15 \mathrm{~mL}, 1.6 \mathrm{mmol}, 1.5$ equiv.). $\mathrm{FC}\left(\mathrm{P}^{2} \mathrm{Et}_{2} \mathrm{O}=8 / 1\right)$ afforded the desired 2isocyanobiphenyl 30 ($183 \mathrm{mg}, 0.95 \mathrm{mmol}, 87 \%$) as a white solid.
${ }^{1} \mathbf{H}$-NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta(\mathrm{ppm})=7.54-7.38\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{\mathrm{arom}} \mathrm{H}\right), 7.38-7.22(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{C}_{\text {arom }} \mathrm{H}$), $2.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=168.8(\mathrm{NC}), 139.2$ (C), $137.7(\mathrm{C}), 136.0(\mathrm{C}), 129.4(\mathrm{CH}), 129.1(\mathrm{CH}), 129.0(\mathrm{CH}), 128.6(\mathrm{CH}), 128.3(\mathrm{CH}), 128.1$ $(\mathrm{CH}), 124.9(\mathrm{C}), 19.5\left(\mathrm{CH}_{3}\right)$. HRMS (ESI) $m / z=216.0784$ calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$, found: 216.0787. Spectroscopic data are in accordance with those described in the literature. ${ }^{[4]}$

Togni reagent (2)

Togni reagent was synthesized according to a literature procedure. ${ }^{[3]}$
2-Iodobenzoic acid ($3.47 \mathrm{~g}, 14.0 \mathrm{mmol}, 1.0$ equiv.) was placed into a dry three necked flask under argon and acetonitrile (30 mL) was added. The solution was heated to $75^{\circ} \mathrm{C}$ and a solution of trichloroisocyanuric acid ($1.11 \mathrm{~g}, 4.76 \mathrm{mmol}, 1.0$ equiv.) in acetonitrile (8 mL) was added within 5 min . Afterwards the mixture is cooled to room temperature.Dry KOAc ($2.75 \mathrm{~g}, 28.0 \mathrm{mmol}, 2.0$ equiv.; the powder was dried at $105{ }^{\circ} \mathrm{C}$ over night) was added at once and the suspension was heated again at $75^{\circ} \mathrm{C}$ for 1.5 h and then cooled to room temperature. Then trifluormethyltrimethylsilane ($2.90 \mathrm{~mL}, 19.6 \mathrm{mmol}, 1.4$ equiv.) was added at once and the resulting mixture was stirred vigorously for 4.5 h at room temperature. After addition of acetonitrile (12.5 mL) the suspension was brought to reflux. The hot suspension was quickly filtered over a celite pad which was washed with hot acetonitrile afterwards. The brown filtrate was concentrated to a third of its initial volume and cooled to $-15^{\circ} \mathrm{C}$ while stirring. The formed crystals were filtered off and washed with little amount of cold acetonitrile. The filtrate is concentrated again to receive a second fraction of crystals.
According to the described procedure with the denoted amounts of substrate the crystallization afforded Togni reagent $2(3.41 \mathrm{~g}, 10.8 \mathrm{mmol}, 77 \%)$ as a colorless solid. ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=8.47-8.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 7.85-7.70\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right) .{ }^{13} \mathbf{C}$-NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=166.0(\mathrm{C}), 135.8(\mathrm{C}), 133.9(\mathrm{C}), 132.2(\mathrm{C}), 132.1(\mathrm{C}), 127.4$ ($\mathrm{q}, J=3.1 \mathrm{~Hz}, \mathrm{C}), 115.0(\mathrm{C}), 107.2\left(\mathrm{q}, J=380.4 \mathrm{~Hz}, \mathrm{CF}_{3}\right) .{ }^{19} \mathbf{F} \mathbf{N M R}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$ $\delta(\mathrm{ppm})=-33.81\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right)$.

5. Analytic data of products

6-(Trifluoromethyl)phenanthridine (3a)

According to GP3 with $\mathbf{1 a}$ ($36 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.) and Togni reagent ($126 \mathrm{mg}, 0.400 \mathrm{mmol}, 2.0$ equiv.). $\mathrm{FC}\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=100 / 1\right)$ afforded phenanthridine 3a ($38.0 \mathrm{mg}, 0.154 \mathrm{mmol}, 77 \%$) as a yellow solid.

According to GP4 phenanthridine 3a ($613 \mathrm{mg}, 2.48 \mathrm{mmol}, 62 \%$) was obtained after $\mathrm{FC}\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=\right.$ $50 / 1 \rightarrow 40 / 1$) as a yellow solid.
${ }^{1} \mathbf{H}-$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=8.73-8.66\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 8.62-8.56(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}_{\text {arom }} \mathrm{H}\right), 8.43-8.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 8.33-8.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 7.96-7.88(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{C}_{\text {arom }} \mathrm{H}$), $7.86-7.71\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right) .{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=146.7(\mathrm{~m}$, C), 141.9 (C), 134.1 (C), 131.5 (C), 131.3 (C), 129.5 (C), 129.3 (C), 128.2 (C), 126.1 ($\mathrm{q}, J=3.4$ Hz, C), 125.3 (C), 122.7 (C), 122.2 (C), 122.1 ($\mathrm{q}, J=277.6 \mathrm{~Hz}, \mathrm{CF}_{3}$), 121.9 (C). ${ }^{\mathbf{1 9} \text { F-NMR (282 }}$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right) \delta(\mathrm{ppm})=-63.5\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS (ESI) $\mathrm{m} / \mathrm{z}=248.0682$ calcd. for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}$, found: 248.0690. Spectroscopic data are in accordance with those described in the literature. ${ }^{[4]}$

8-Methyl-6-(trifluoromethyl)phenanthridine (3b)

According to GP3 with $\mathbf{1 b}$ ($36 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.) and Togni reagent ($126 \mathrm{mg}, 0.400 \mathrm{mmol}, 2.0$ equiv.). $\mathrm{FC}\left(\mathrm{P}^{2} \mathrm{Et}_{2} \mathrm{O}=50 / 1\right)$ afforded phenanthridine 3b ($36.4 \mathrm{mg}, 0.139 \mathrm{mmol}, 70 \%$) as a colorless solid.
${ }^{1} \mathbf{H}-$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=8.61-8.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 8.31-8.23(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}_{\text {arom }} \mathrm{H}\right), 8.14\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 7.81-7.69\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 2.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=146.3(\mathrm{~m}, \mathrm{C}), 141.6(\mathrm{C}), 138.4(\mathrm{C}), 133.3(\mathrm{C}), 132.1(\mathrm{C}), 131.2$ (C), 129.2 (C), 129.0 (C), 125.4 (q, $J=3.3 \mathrm{~Hz}, \mathrm{C}$), 122.5 (C), 122.1 (C), 122.1 (q, $J=277.7 \mathrm{~Hz}$, $\left.\mathrm{CF}_{3}\right), 122.0(\mathrm{C}), 22.1\left(\mathrm{CH}_{3}\right) .{ }^{19} \mathbf{F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right) \delta(\mathrm{ppm})=-63.5\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS (ESI) $m / z=262.0838$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}$, found: 262.0861. Spectroscopic data are in accordance with those described in the literature. ${ }^{[5]}$

8-Fluoro-6-(trifluoromethyl)phenanthridine (3c)

According to GP3 with $\mathbf{1 c}(39 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.) and Togni reagent ($126 \mathrm{mg}, 0.400 \mathrm{mmol}, 2.0$ equiv.). $\mathrm{FC}\left(\mathrm{P}^{2} \mathrm{Et}_{2} \mathrm{O}=50 / 1\right)$ afforded phenanthridine $3 \mathbf{c}(37.3 \mathrm{mg}, 0.141 \mathrm{mmol}, 70 \%)$ as a colorless solid.
${ }^{1} \mathbf{H}-$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=8.66(\mathrm{dd}, J=9.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{\text {arom }} \mathrm{H}\right), 8.54-8.47\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 8.30-8.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 8.03-7.95(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{C}_{\text {arom }} \mathrm{H}$), $7.83-7.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 7.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $300 \mathrm{~K}): \delta(\mathrm{ppm})=161.6(\mathrm{~d}, J=250.1 \mathrm{~Hz}, \mathrm{CF}), 145.9(\mathrm{~m}, \mathrm{C}), 141.6(\mathrm{C}), 131.4(\mathrm{C}), 130.8(\mathrm{~d}, J=$ $1.8 \mathrm{~Hz}, \mathrm{C}), 129.8$ (C), 129.4 (C), 125.3 (d, $J=8.7 \mathrm{~Hz}, \mathrm{C}$), 124.8 (C), 123.0 (d, $J=8.7 \mathrm{~Hz}, \mathrm{C}$), 121.9 (C), $121.9\left(\mathrm{q}, J=276.9 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 121.0(\mathrm{~d}, J=24.1 \mathrm{~Hz}, \mathrm{C}), 110.9(\mathrm{dq}, J=23.3,3.5 \mathrm{~Hz}, \mathrm{C}) .{ }^{19} \mathbf{F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$) $\delta(\mathrm{ppm})=-64.0\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right),-109.9(\mathrm{~s}, 1 \mathrm{~F}, \mathrm{Ar}-\mathrm{F})$. HRMS (ESI) $m / z=266.0587$ calcd. for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{4} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}$, found: 266.0574. Spectroscopic data are in accordance with those described in the literature. ${ }^{[6]}$

8-Chloro-6-(trifluoromethyl)phenanthridine (3d)

According to GP3 with $\mathbf{1 d}(42.7 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.0$ equiv.) and Togni reagent ($126 \mathrm{mg}, 0.400 \mathrm{mmol}, 2.0$ equiv. $)$. $\mathrm{FC}\left(\mathrm{P}^{2} / \mathrm{Et}_{2} \mathrm{O}=50 / 1\right)$ afforded phenanthridine $\mathbf{3 d}(42.1 \mathrm{mg}, 0.149 \mathrm{mmol}, 75 \%)$ as a colorless solid.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=8.56(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{\text {arom }} \mathrm{H}\right), 8.52-8.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 8.33-8.28\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 8.28-8.22(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{C}_{\text {arom }} \mathrm{H}$), $7.86-7.74\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right) .{ }^{13} \mathbf{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=145.5(\mathrm{~m}$, C), 141.8 (C), 134.4 (C), 132.4 (C), 132.1 (C), 131.4 (C), 129.8 (C), 129.8 (C), 125.3 (q, $J=3.6$ Hz, C), 124.6 (C), 124.3 (C), 122.7 (C), 122.0 (C), 121.8 (q, $J=276.8 \mathrm{~Hz}, \mathrm{CF}_{3}$). ${ }^{\mathbf{1 9} \text { F NMR (282 }}$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right) \delta(\mathrm{ppm})=-63.6\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS $(\mathbf{E S I}) \mathrm{m} / \mathrm{z}=282.0292 \mathrm{calcd}$. for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{ClF}_{3} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}$, found: 282.0305. Spectroscopic data are in accordance with those described in the literature. ${ }^{[5]}$

8-Iodo-6-(trifluoromethyl)phenanthridine (3e)

According to $\boldsymbol{G P} 3$ with $\mathbf{1 e}(61.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.0$ equiv.) and Togni reagent ($126 \mathrm{mg}, 0.400 \mathrm{mmol}, 2.0$ equiv.). $\mathrm{FC}\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=50 / 1\right)$ afforded phenanthridine $3 \mathrm{e}(56.2 \mathrm{mg}, 0.151 \mathrm{mmol}, 75 \%)$ as a colorless solid.

MP: $150{ }^{\circ} \mathrm{C}$. IR (neat): $1571 w, 1521 w, 1465 w, 1406 w, 1374 w, 1334 w, 1250 m, 1183 s, 1168 s$, $1156 m, 1122 s, 978 m, 858 w, 829 w, 802 w, 762 s, 734 m, 588 w .{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right):$ $\delta(\mathrm{ppm})=8.71-8.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 8.56-8.48\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 8.37(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.C_{\text {arom }} \mathrm{H}\right), 8.29-8.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 8.15\left(\mathrm{dd}, J=8.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 7.86-7.74(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right) .{ }^{13} \mathbf{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta(\mathrm{ppm})=145.3(\mathrm{~m}, \mathrm{C}), 141.8(\mathrm{C}), 140.2(\mathrm{C})$, 134.8 (q, $J=3.7 \mathrm{~Hz}, \mathrm{C}$), 133.1 (C), 131.5 (C), 130.0 (C), 129.8 (C), 124.7 (C), 124.2 (C), 123.3 (C), 121.9 (C), 121.8 ($\mathrm{q}, J=277.3 \mathrm{~Hz}, \mathrm{CF}_{3}$), $94.0(\mathrm{CI}) .{ }^{19} \mathbf{F} \mathbf{N M R}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$ $\delta(\mathrm{ppm})=-63.4\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS (ESI) $\mathrm{m} / \mathrm{z}=373.9648$ calcd. for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{IN}^{+}[\mathrm{M}+\mathrm{H}]^{+}$, found: 373.9648 .

2-Fluoro-6-(trifluoromethyl)phenanthridine (3f)

According to $\boldsymbol{G P} \boldsymbol{P}$ with $\mathbf{1 f}(39 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.) and Togni reagent ($126 \mathrm{mg}, \quad 0.400 \mathrm{mmol}, \quad 2.0$ equiv.). $\mathrm{FC} \quad\left(\mathrm{P}^{2} / \mathrm{Et}_{2} \mathrm{O}=50 / 1\right)$ afforded phenanthridine $3 f(42.1 \mathrm{mg}, 0.159 \mathrm{mmol}, 79 \%)$ as a colorless solid.
${ }^{1} \mathbf{H}$-NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta(\mathrm{ppm})=8.57\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 8.43-8.36(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 8.29\left(\mathrm{dd}, J=9.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 8.20\left(\mathrm{dd}, J=9.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right)$, $7.98-7.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 7.85-7.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 7.59-7.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right)$. ${ }^{13} \mathbf{C}-$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=162.8(\mathrm{~d}, J=250.7 \mathrm{~Hz}, \mathrm{CF}), 146.1(\mathrm{~m}, \mathrm{C}), 138.8$ (C), 133.8 (d, $J=9.5 \mathrm{~Hz}, \mathrm{C}), 133.6$ (d, $J=4.4 \mathrm{~Hz}, \mathrm{C}$), 131.6 (C), 128.9 (C), 126.9 (d, $J=9.6 \mathrm{~Hz}$, C), 126.2 (q, $J=3.2 \mathrm{~Hz}, \mathrm{C}), 122.9(\mathrm{C}), 122.5\left(\mathrm{q}, \mathrm{J}=277.4 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 122.0(\mathrm{C}), 118.6(\mathrm{~d}, J=24.5$ $\mathrm{Hz}, \mathrm{C}), 107.3(\mathrm{~d}, J=23.7 \mathrm{~Hz}, \mathrm{C}) .{ }^{19} \mathbf{F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$) $\delta(\mathrm{ppm})=-63.5(\mathrm{~s}, 3 \mathrm{~F}$, CF_{3}), -108.8 ($\mathrm{s}, 1 \mathrm{~F}, \mathrm{Ar}-\mathrm{F}$). HRMS (ESI) $m / z=266.0587$ calcd. for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{4} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}$, found: 266.0596. Spectroscopic data are in accordance with those described in the literature. ${ }^{[4]}$

2-Methyl-6-(trifluoromethyl)phenanthridine-8-carbonitrile (3g)

According to GP3 with $\mathbf{1 g}$ ($44 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.) and Togni reagent ($126 \mathrm{mg}, 0.400 \mathrm{mmol}, 2.0$ equiv.). $\mathrm{FC}\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=5 / 1\right)$ afforded phenanthridine $\mathbf{3 g}$ ($41 \mathrm{mg}, 0.14 \mathrm{mmol}, 72 \%$) as a colorless solid.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=8.74(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{\text {arom }} \mathrm{H}\right), 8.68-8.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 8.35\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 8.19\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right)$,
$8.04\left(\mathrm{dd}, J=8.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 7.73\left(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 2.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. ${ }^{13} \mathbf{C}-$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=145.9(\mathrm{q}, J=33.9 \mathrm{~Hz}, \mathrm{C}), 141.1(\mathrm{C}), 141.0(\mathrm{C})$, $136.0(\mathrm{C}), 133.1(\mathrm{CH}), 132.3(\mathrm{CH}), 131.3(\mathrm{CH}), 131.2(\mathrm{q}, J=3.7 \mathrm{~Hz}, \mathrm{CH}), 124.0(\mathrm{CH}), 123.8(\mathrm{C})$, 122.3 (CH), 121.7 (q, $J=277 \mathrm{~Hz}, \mathrm{CF}_{3}$), 121.3 (C), 118.1 (C), 111.9 (C), 22.3 (C). ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR (282 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right) \delta(\mathrm{ppm})=-63.1\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS (ESI) $\mathrm{m} / \mathrm{z}=309.0610$ calcd. for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$, found: 309.0609. Spectroscopic data are in accordance with those described in the literature. ${ }^{[4]}$

8-Methoxy-2-methyl-6-(trifluoromethyl)phenanthridine (3h)

According to GP3 with $\mathbf{1 h}$ ($45 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.) and Togni reagent ($126 \mathrm{mg}, 0.400 \mathrm{mmol}, 2.0$ equiv.). $\mathrm{FC}\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=8 / 1\right)$ afforded phenanthridine $\mathbf{3 h}(40 \mathrm{mg}, 0.14 \mathrm{mmol}, 69 \%)$ as a pale yellow solid.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=8.50(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{\text {arom }} \mathrm{H}\right), 8.21\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 8.11\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 7.64-7.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right)$, 7.53 (dd, $J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}$), 7.47 (dd, $J=9.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}$), 3.98 (s, 3H, OCH_{3}), $2.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{\mathbf{1 3}} \mathbf{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta(\mathrm{ppm})=159.0(\mathrm{C}), 144.7(\mathrm{q}$, $J=32.5 \mathrm{~Hz}, \mathrm{C}), 139.6(\mathrm{C}), 139.5(\mathrm{C}), 130.9(\mathrm{CH}), 130.2(\mathrm{CH}), 128.2(\mathrm{C}), 125.3(\mathrm{C}), 124.2(\mathrm{CH})$, $123.3(\mathrm{C}), 122.3\left(\mathrm{q}, J=277 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 122.3(\mathrm{CH}), 121.2(\mathrm{CH}), 105.6(\mathrm{q}, J=3.5 \mathrm{~Hz}, \mathrm{CH}), 55.6$ $\left(\mathrm{OCH}_{3}\right), 22.3\left(\mathrm{CH}_{3}\right) .{ }^{\mathbf{1 9}} \mathbf{F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right) \delta(\mathrm{ppm})=-64.0\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS (ESI) $m / z=314.0763$ calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{NOF}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$, found: 314.0759. Spectroscopic data are in accordance with those described in the literature. ${ }^{[4]}$

Methyl 2-methyl-6-(trifluoromethyl)phenanthridine-8-carboxylate (3i)

According to GP3 with $\mathbf{1 i}(50 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.) and Togni reagent ($126 \mathrm{mg}, 0.400 \mathrm{mmol}, 2.0$ equiv. $). \mathrm{FC}\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=5 / 1\right)$ afforded phenanthridine $3 \mathbf{i}(49 \mathrm{mg}, 0.15 \mathrm{mmol}, 77 \%)$ as a colorless solid.

MP: $190{ }^{\circ} \mathrm{C}$. IR (neat): $2953 w, 1720 s, 1620 w, 1574 w, 1528 w, 1494 w$, $1440 w, 1382 w, 1331 w, 1302 m, 1251 s, 1197 w, 1176 s, 1117 s, 1010 w, 969 w, 913 w, 852 m, 824 m$, $763 m, 733 w, 716 w, 685 w, 583 w .{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=9.04-8.97(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 8.66\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{arom}} \mathrm{H}\right), 8.44\left(\mathrm{dd}, J=8.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 8.34(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 8.15\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 7.66\left(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 4.04(\mathrm{~s}$,
$\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}-\mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=166.2(\mathrm{C}), 146.0(\mathrm{q}$, $\mathrm{J}=33.3 \mathrm{~Hz}, \mathrm{C}), 140.9(\mathrm{C}), 140.2(\mathrm{C}), 136.5(\mathrm{C}), 132.3(\mathrm{CH}), 131.1(\mathrm{CH}), 131.0(\mathrm{CH}), 129.5(\mathrm{C})$, $128.1(\mathrm{q}, \mathrm{J}=3.5 \mathrm{~Hz}, \mathrm{CH})$), $124.4(\mathrm{C}), 122.9(\mathrm{CH}), 122.3(\mathrm{CH}), 121.9\left(\mathrm{q}, \mathrm{J}=277 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 121.4$ (C), $52.8\left(\mathrm{OCH}_{3}\right), 22.3\left(\mathrm{CH}_{3}\right) .{ }^{19} \mathbf{F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right) \delta(\mathrm{ppm})=-63.1\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS (ESI) $m / z=342.0712$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{NO}_{2} \mathrm{~F}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$, found: 342.0711.

2-Methyl-6-(trifluoromethyl)-8-(trimethylsilyl)phenanthridine (3j)

According to GP3 with $\mathbf{1 j}$ ($53 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.) and Togni reagent ($126 \mathrm{mg}, 0.400 \mathrm{mmol}, 2.0$ equiv. $)$. $\mathrm{FC}\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=300 / 1\right)$ afforded phenanthridine $\mathbf{3 j}$ ($50 \mathrm{mg}, 0.15 \mathrm{mmol}, 75 \%$) as a pale yellow liquid.
IR (neat): $3069 w, 2957 w, 2361 w, 2338 w, 1576 w, 1522 w, 1457 w, 1397 w$, $1347 w, 1305 w, 1251 s, 1169 s, 1117 s, 1037 w, 984 m, 856 s, 840 s, 824 s, 791 w, 754 m, 735 w, 725 w$, $712 m, 700 w, 655 m, 628 w, 590 m .{ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=8.63(\mathrm{~d}$, $\left.J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 8.54-8.48\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 8.37\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 8.16(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 8.02\left(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 7.62\left(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right)$, $2.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.41\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}-\mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=145.9(\mathrm{q}$, $J=32.8 \mathrm{~Hz}, \mathrm{C}), 141.2(\mathrm{C}), 140.4(\mathrm{C}), 139.6(\mathrm{C}), 135.5(\mathrm{CH}), 134.0(\mathrm{C}), 131.3(\mathrm{CH}), 131.2(\mathrm{q}$, $J=3.4 \mathrm{~Hz}, \mathrm{CH}), 130.9(\mathrm{CH}), 125.1(\mathrm{C}), 122.3(\mathrm{q}, J=277 \mathrm{~Hz}, \mathrm{C}), 121.8(\mathrm{CH}), 121.6(\mathrm{CH}), 121.5$ (C), $22.3\left(\mathrm{CH}_{3}\right),-1.1\left(3 \times \mathrm{CH}_{3}\right) .{ }^{19} \mathbf{F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right) \delta(\mathrm{ppm})=-63.1\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS (ESI) $m / z=356.1053$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NF}_{3} \mathrm{SiNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$, found: 356.1047.

2-Methyl-6,8-bis(trifluoromethyl)phenanthridine (3k)

According to GP3 with $\mathbf{1 k}$ ($52 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.) and Togni reagent ($126 \mathrm{mg}, 0.400 \mathrm{mmol}, 2.0$ equiv. $). \mathrm{FC}\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=50 / 1\right)$ afforded phenanthridine $\mathbf{3 k}$ ($53 \mathrm{mg}, 0.16 \mathrm{mmol}, 80 \%$) as a colorless solid.
MP: $132{ }^{\circ} \mathrm{C}$. IR (neat): $2930 w, 1631 w, 1531 w, 1436 w, 1382 w, 1322 s$, $1287 m, 1258 m, 1180 s, 1172 s, 1144 m, 1112 s, 1085 s, 987 m, 905 w, 843 w, 832 s, 804 w, 741 w, 717 m$, $621 w .{ }^{1} \mathbf{H}-$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=8.76\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{arom}} \mathrm{H}\right), 8.60(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 8.36\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 8.18\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 8.06(\mathrm{dd}, J=8.8,1.8 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 7.69\left(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 2.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=145.5(\mathrm{q}, J=33.6 \mathrm{~Hz}, \mathrm{C}), 140.9(\mathrm{C}), 140.6(\mathrm{C}), 135.8(\mathrm{C}), 132.5(\mathrm{CH})$,
$131.2(\mathrm{CH}), 130.0(\mathrm{q}, \mathrm{J}=33.2 \mathrm{~Hz}, \mathrm{C}), 127.1(\mathrm{q}, \mathrm{J}=3.2 \mathrm{~Hz}, \mathrm{CH}), 124.2(\mathrm{C}), 123.8(\mathrm{CH}), 123.8(\mathrm{q}$, $J=273 \mathrm{~Hz}, \mathrm{CF}_{3}$), $123.6-123.3(\mathrm{~m}, \mathrm{CH}), 122.1(\mathrm{CH}), 121.9\left(\mathrm{q}, J=277 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 121.3$ (C), 22.3 $\left(\mathrm{CH}_{3}\right) .{ }^{\mathbf{1 9}} \mathbf{F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right) \delta(\mathrm{ppm})=-62.6\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right),-63.2\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS (ESI) $m / z=352.0531$ calcd. for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{NF}_{6} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$, found: 352.0525.

2-Methyl-6-(trifluoromethyl)phenanthridine (3I)

According to $\boldsymbol{G P} 3$ with $\mathbf{1 1}(39 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.) and Togni reagent $(126 \mathrm{mg}, \quad 0.400 \mathrm{mmol}, \quad 2.0$ equiv. $) . \quad \mathrm{FC} \quad\left(\mathrm{P}^{2} / \mathrm{Et}_{2} \mathrm{O}=15 / 1\right)$ afforded phenanthridine $31(40 \mathrm{mg}, 0.15 \mathrm{mmol}, 77 \%)$ as a pale yellow solid.
${ }^{1} \mathbf{H}$-NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta(\mathrm{ppm})=8.63\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 8.38-8.31(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 8.15\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 7.91-7.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 7.76-7.68(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 7.61\left(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 2.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=145.7\left(\mathrm{q}, J=32.9 \mathrm{~Hz}, \mathrm{CCF}_{3}\right), 140.2(\mathrm{C}), 139.6(\mathrm{C}), 133.8(\mathrm{C}), 131.2$ (CH), $131.2(\mathrm{CH}), 130.9(\mathrm{CH}), 128.0(\mathrm{CH}), 125.9(\mathrm{q}, J=3.4 \mathrm{~Hz}, \mathrm{CH}), 125.1(\mathrm{C}), 122.6(\mathrm{CH})$, $122.2\left(\mathrm{q}, J=277.0 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 122.0(\mathrm{C}), 121.8(\mathrm{CH}), 22.3\left(\mathrm{CH}_{3}\right) .{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300\right.$ K) $\delta(\mathrm{ppm})=-63.3\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS (ESI) $m / z=262.0838$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}$, found: 262.0852. Spectroscopic data are in accordance with those described in the literature. ${ }^{[4]}$

2-Methyl-6-(trifluoromethyl)-[1,3]dioxolo[4,5-j]phenanthridine (3m) and 8-methyl-4-(trifluoromethyl)-[1,3]dioxolo[4,5-i]phenanthridine (3m')

According to GP3 with $\mathbf{1 m}(47 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1.0 equiv.) and Togni reagent ($126 \mathrm{mg}, 0.400 \mathrm{mmol}$, 2.0 equiv.). $\mathrm{FC}\left(\mathrm{P}^{2} \mathrm{Et}_{2} \mathrm{O}=8 / 1\right)$ afforded a mixture of phenanthridine $\mathbf{3 m}$ and $\mathbf{3 m}{ }^{\prime}(46 \mathrm{mg}, 0.15 \mathrm{mmol}, 75 \%$,
$\mathbf{3 m} / \mathbf{3 m} \mathbf{m}^{\prime}=3: 1$) as a yellow solid.
${ }^{1} \mathbf{H}-$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): 31 \delta(\mathrm{ppm})=8.18-8.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 7.96(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{C}_{\text {arom }} \mathrm{H}\right), 7.67-7.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 7.60-7.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 6.20\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.64(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right) . \mathbf{3 I}^{\prime} \delta(\mathrm{ppm})=8.26-8.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 8.09\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 7.55-$ $7.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 7.48\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 6.26\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. ${ }^{13} \mathbf{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): 31 and 31'; CF_{3}-signal could not be assigned $\delta(\mathrm{ppm})=151.7$, $148.9,140.1,140.0,139.2,132.2,131.2,130.8,130.4,125.3,121.7,121.5,118.7,116.6,113.9$,
$103.23(\mathrm{q}, J=3.7 \mathrm{~Hz}), 102.4,102.3,100.4,22.4\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{3}\right) .{ }^{19} \mathbf{F} \mathbf{N M R}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $300 \mathrm{~K}) 3 \mathrm{l} \delta(\mathrm{ppm})=-63.6\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right) .3 \mathrm{I}^{\prime} \delta(\mathrm{ppm})=-65.9\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right) . \mathbf{H R M S}(\mathbf{E S I}) \mathrm{m} / \mathrm{z}=$ 328.0550 calcd. for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{NO}_{2} \mathrm{~F}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$, found: 328.0550. Spectroscopic data are in accordance with those described in the literature. ${ }^{[4]}$

3-Methyl-6-(trifluoromethyl)phenanthridine (3n)

According to $\boldsymbol{G P} 3$ with $\mathbf{1 n}(39 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.) and Togni reagent $(126 \mathrm{mg}, \quad 0.400 \mathrm{mmol}, \quad 2.0$ equiv. $) . \quad \mathrm{FC} \quad\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=20 / 1\right)$ afforded phenanthridine 3 n ($35 \mathrm{mg}, 0.13 \mathrm{mmol}, 67 \%$) as a colorless solid.
${ }^{1} \mathbf{H}$-NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=8.63\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\mathrm{arom}} \mathrm{H}\right), 8.46(\mathrm{~d}$, $\left.J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 8.39-8.32\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 8.08\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 7.93-7.84(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 7.75-7.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 7.60\left(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\operatorname{arom}} \mathrm{H}\right), 2.60(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}). ${ }^{13} \mathbf{C}-$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=146.6\left(\mathrm{q}, J=33.0 \mathrm{~Hz}, \mathrm{CCF}_{3}\right), 142.1(\mathrm{C})$, 139.8 (C), 134.2 (C), $131.4(\mathrm{CH}), 131.1(\mathrm{CH}), 130.7(\mathrm{CH}), 127.7(\mathrm{CH}), 126.0(\mathrm{q}, J=3.3 \mathrm{~Hz}, \mathrm{CH})$, $122.9(\mathrm{C}), 122.5(\mathrm{CH}), 122.1\left(\mathrm{q}, J=277 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 121.9(\mathrm{CH}), 121.6(\mathrm{C}), 21.6\left(\mathrm{CH}_{3}\right) .{ }^{19}$ F NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right) \delta(\mathrm{ppm})=-63.4\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right)$. HRMS $(\mathbf{E S I}) \mathrm{m} / \mathrm{z}=262.0838$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}$, found: 262.0848. Spectroscopic data are in accordance with those described in the literature. ${ }^{[4]}$

4-Methyl-6-(trifluoromethyl)phenanthridine (30)

According to GP3 with $\mathbf{1 0}$ ($39 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.) and Togni reagent ($126 \mathrm{mg}, 0.400 \mathrm{mmol}, 2.0$ equiv.). $\mathrm{FC}\left(\mathrm{P} / \mathrm{Et}_{2} \mathrm{O}=50 / 1\right)$ afforded phenanthridine 3 o ($33 \mathrm{mg}, 0.13 \mathrm{mmol}, 63 \%$) as a pale yellow solid.
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta(\mathrm{ppm})=8.66(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{\text {arom }} \mathrm{H}\right), 8.45-8.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 7.92-7.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 7.79-7.70(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{C}_{\text {arom }} \mathrm{H}$), $7.68-7.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{\text {arom }} \mathrm{H}\right), 2.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$: $\delta(\mathrm{ppm})=145.0\left(\mathrm{q}, \mathrm{J}=33.0 \mathrm{~Hz}, \mathrm{CCF}_{3}\right), 140.7(\mathrm{C}), 139.6(\mathrm{C}), 134.4(\mathrm{C}), 131.1(\mathrm{CH}), 130.1(\mathrm{CH})$, $128.9(\mathrm{CH}), 127.9(\mathrm{CH}), 125.9(\mathrm{q}, \mathrm{J}=3.3 \mathrm{~Hz}, \mathrm{CH}), 125.2(\mathrm{C}), 122.9(\mathrm{CH}), 122.3(\mathrm{q}, \mathrm{J}=277 \mathrm{~Hz}$, CF_{3}), $121.7(\mathrm{C}), 119.9(\mathrm{CH}), 18.1\left(\mathrm{CH}_{3}\right) .{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right) \delta(\mathrm{ppm})=-63.4(\mathrm{~s}$, 3F, CF_{3}). HRMS (ESI) $m / z=262.0838$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}$, found: 216.0840. Spectroscopic data are in accordance with those described in the literature. ${ }^{[4]}$

6. ${ }^{1} \mathrm{H}$-, ${ }^{13} \mathrm{C}$ - and ${ }^{19} \mathrm{~F}$-NMR spectra

2-Isocyano-1,1'-biphenyl (1a)

$\begin{array}{llllllllllllllllllllllllllllllllll}240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & \end{array}$

2-Isocyano-4'-methyl-1,1'-biphenyl (1b)

-21.3

4'-Fluoro-2-isocyano-1,1'-biphenyl (1c)

4'-Chloro-2-isocyano-1,1'-biphenyl (1d)

4'-iodo-[1,1'-biphenyl]-2-amine

4'-Iodo-2-isocyano-1,1'-biphenyl (1e)

$$
\begin{aligned}
& \text { ।। }
\end{aligned}
$$

[^0]
2＇－Isocyano－5＇－methyl－［1，1＇－biphenyl］－4－carbonitrile（1g）

$$
\begin{aligned}
& \text { へへへへべNへへへへへべ }
\end{aligned}
$$

2-isocyano-4'-methoxy-5-methyl-1,1'-biphenyl (1h)

Methyl 2'-isocyano-5'-methyl-[1,1'-biphenyl]-4-carboxylate (1i)

(2'-Isocyano-5'-methyl-[1,1'-biphenyl]-4-yl)trimethylsilane (1j)

| | 230 | 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |
| :--- |

2－Isocyano－5－methyl－4＇－（trifluoromethyl）－1，1＇－biphenyl（1k）

へ人NへNへN人NへNへN人N

\qquad

2-Isocyano-5-methyl-1,1'-biphenyl (11)

5-(2-Isocyano-5-methylphenyl)benzo[d][1,3]dioxole (1m)

2-Isocyano-4-methyl-1,1'-biphenyl (1n)

$\begin{array}{lllllllllllllllllllllllllllllllllllll}240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20\end{array}$

2-Isocyano-3-methyl-1,1'-biphenyl (10)

Togni reagent (2)

			1	1	1	T	1		1	1	1		1	T	1	1	1	1	T	1		T
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

6-(Trifluoromethyl)phenanthridine (3a)

8-Methyl-6-(trifluoromethyl)phenanthridine (3b)

8-Chloro-6-(trifluoromethyl)phenanthridine (3d)

8-Iodo-6-(trifluoromethyl)phenanthridine (3e)

2-Fluoro-6-(trifluoromethyl)phenanthridine (3f)

2-Methyl-6-(trifluoromethyl)phenanthridine-8-carbonitrile (3g)

8-Methoxy-2-methyl-6-(trifluoromethyl)phenanthridine (3h)

Methyl 2-methyl-6-(trifluoromethyl)phenanthridine-8-carboxylate (3i)

2-Methyl-6-(trifluoromethyl)-8-(trimethylsilyl)phenanthridine (3j)

$\begin{array}{ll}\stackrel{\circ}{i} & \text { 广 } \\ 1 & \text { i }\end{array}$

 $\stackrel{\circ}{\Gamma}$

2-Methyl-6,8-bis(trifluoromethyl)phenanthridine (3k)

2-Methyl-6-(trifluoromethyl)phenanthridine (31)

\qquad

2-Methyl-6-(trifluoromethyl)-[1,3]dioxolo[4,5-j]phenanthridine (3m) and 8-methyl-4-(trifluoromethyl)-[1,3]dioxolo[4,5-i]phenanthridine (3m')

3-Methyl-6-(trifluoromethyl)phenanthridine (3n)

4-Methyl-6-(trifluoromethyl)phenanthridine (30)

$$
\begin{aligned}
& \underbrace{\text { mis onden }}
\end{aligned}
$$

7. Literature

[1] Tobisu, M.; Koh, K.; Furukawa, T.; Chatani, N. Angew. Chem. Int. Ed. 2012, 51, 11363-11366.
[2] Wang, Q.; Dong, X.; Xiao, T.; Zhou, L. Org. Lett. 2013, 15, 4846-4849.
[3] Matoušek, V., Pietrasiak, E., Schwenk, R., Togni, A. J. Org. Chem. 2013, 78 (13), 6763-6768.
[4] Zhang, B., Mück-Lichtenfeld, C., Daniliuc, C., Studer, A. Angew. Chem. Int. Ed. 2013, 52, 10792-10795.
[5] Wang, Q., Dong, X., Xiao, T., Zhou, L. Org. Lett., 2013, 15 (18), 4846-4849.
[6] Fu, W., Zhu, M., Xu, F., Fu, Y., Xu C., Zou, D. RSC Adv., 2014, 4, 17226-17229.

[^0]:

