Electrochemical reactors

Reactor, where elect. energy <=> chem. energy conversion took place

- Material and shape of reactor
- · Electrode shape and material
- · Separators
- · Mass transfer
- · Potential distribution
- · Electrolyzers connection

1

Reactor shape and material

Arrangement of reactor must reflect needs of desired application industrial electrolysis – high currents, space utilization growing / dissolving electrodes – continuous or frequent electrode treatment, accessibility low concentrations – mass transfer, specific surface area,...

electroanalysis – low electrolyte volume

Basic parts of electrochem. reactor:

current connection

anode

 $electrolyte \ (+ \ separator)$

cathode

current connection

Current connection - supply

high values of direct current - high requests:

minimal resistance

short distance

good electric connection - contact resistance

also low resistance causes high losses

Problem: calculate power loss in Cu current connection of dimensions 2 x 20 cm, in the case of 10 kA distance 1 m. $\rho(Cu) = 1,69 \ 10^{-6}$ Ohm cm

 $R = I \cdot \rho / A$ U = RI P = U

 $R = 100 \cdot 1,69 \cdot 10^{-6} / (2\cdot 20) = 4,225 \cdot 10^{-6} \cdot 0 \text{hm} \qquad U = 4,225 \cdot 10^{-6} \cdot 10^{4} = 0,04225 \cdot V = 4,225 \cdot 10^{-6} \cdot 10^{4} = 0,04225 \cdot V = 10^{-6} \cdot 10^$

P=0,04225 10⁴ = **422,5** W

Electrodes

material: durability, overvoltage, electrolyte composition
shape: stirring, active surface

Shape and durability categories:

- 1. Dimension changing electrodes during process dissolution or formation
- 2. Dimension stable electrodes (inert electrodes) constant shape during process

4

Dimension changing electrodes

Growing electrodes

material deposition – galvanic metal deposition

production of MnO_2

Anode:
$$Mn^{2+} + 2 H_2O \rightarrow MnO_2 + 4 H^+ + 2 e^-$$

Cathode: $2 H^+ + 2 e^- \rightarrow H_2$

Overall: $Mn^{2+} + 2 H_2O \rightarrow MnO_2 + 2 H^+ + H_2$

Dissolving electrodes

anodic dissolution – metal rafination, electrochemical polishing/machining, electrocoagulation

lead accumulator

$$\begin{array}{l} Pb_{(s)} + HSO_4^{-1} <===> PbSO_4 + H^{+1} + 2e^{-1} \\ PbO_{2(s)} + HSO_4^{-1} + 3H^{+1} + 2e^{-1} <====> PbSO_{4(s)} + 2 \; H_2O \end{array}$$

Inert electrodes

Application

gas evolution Cl_2 , H_2 , O_2 , oxidation/reduction org. comp. production of ClO_3 -, ClO_4 -fuel cells

Ideal inert electrodes

doesn't exist (mechanical damage, corrosion, material fatigue, surface blocking,....) - usually described as dimension stable anodes (DSA)

Electrode material

Requests

high electronic conductivity, mechanical stability, easy formation to desired shape, valuable price, electrocalytic activity (overvoltage), inert in electrolyte

Durability

 $electrode\ replacement-process\ shut\ down-economic\ losses$

desired longest operation period

-

Inert electrode materials

Cathode: reduction conditions – wide range of materials most metals (Pt, Ir Pd, Ni, Fe, SS, Hg). Non metallic materials – graphite, carbides, borides, diamond electrodes, ceramics

 $\label{eq:Anode: Anode: Anode: Pt} \begin{tabular}{ll} Anode: oxidative environment - limiting for most metals - Pt metals. Non metallic materials - graphite, diamond electrodes. \\ Most common - ATA electrodes (Ti + oxides Ir or Ru) \\ \end{tabular}$

ATA electrode

diamond electrodes

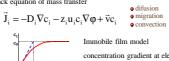
Electrode shape

Requests

easy replacement, connection to current, gas removal, minimal interelectrode distance, mass transfer,

Frequently

plate, cylinder, tube, wires, mesh, expanded metal


Mass transfer limitation

/ heterogeneous process

Electrode reaction take place on electrode – solution interface.

Important factor - Mass transport of reactant to the electrode surface - problem in diluted solutions

Nernst - Planck equation of mass transfer

concentration gradient at electrode surface

Mass transfer

calculation of process intensity – film model

$$J = D \frac{c_0 - c_s}{\delta_N} = k (c_0 - c_s)$$
 $j = nFJ$

possible enhancemnet:

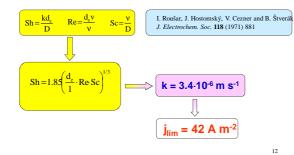
r increase of c_0

• more concentrated solutions

 $\begin{tabular}{ll} \hline \mathscr{C} intensive hydrodynamics \\ e.g. mixing (δ_N) \\ \hline \end{tabular}$

• local overall
• energetic and material issues

5 (4)


• specific performance • accessible materials

increase of electrode surface • sp

11

Calculation of mass transfer coefficient

 $\underline{\text{simple rectangular channel (desk elyzer)}} \qquad n=8 \quad c^0=1g \; dm^{-3}$

Mass transfer as limiting factor

♣ commercial arrangement in reactors

electrode	flow velocity [m s ⁻¹]	k [m s ⁻¹]	c _{min} [mol m ⁻³]
desc electrode	1	1x10-5	5
rotating cylindrical electrode	10	1x10 ⁻⁴	5x10 ⁻¹
porous electrode (RVC)	0,10	1x10 ⁻²	5x10 ⁻³
3D electrode (particles)			
packed bed	0,10	2x10 ⁻⁴	5x10 ⁻⁴
fluidised bed	0,01	6x10 ⁻³	1x10-2

Separators

Separators divide cathodic and anodic chamber, protection towards electrolytes and reaction products (gases) mixing

Diaphragm – inert non-conductive porous barrier (azbestos, PVC, PE, PTFE,...) only limited separation

Membrane – ion selective barrier permeable only for charged ions of one polarity

 $Nafion^R$

14

Ion exchange membranes

ion exchange (ion selective) membrane - foil or sheet prepared from ion exchanger

main task isn't ion exchange but selective transport across

charge of active groups in membrane is compensated by ions with opposite charge - counterions

occurrence of membrane defects causes penetration of ions charged as active groups fixed in membrane

similarly to ion exchangers:

Cation selective - enables transport of positive charged ions

Anion selective - enables transport of positive charged ions

bipolar - (special kind) membrane consisting from cation and anion selective layers

Electrolyte

 $\label{eq:conductive} \mbox{lon conductive media} - 2^{\mbox{\scriptsize nd}} \mbox{ order electric conductor} - \mbox{higher temperature leads to higher conductivity}$

Solution - dissociated ions in solvent (water)

Molten salt – ions mixture

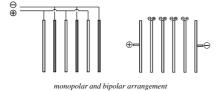
Highest conductivity – minimal ohmic losses.

Supporting electrolyte – ions increasing electrolyte conductivity but don't participate in electrode reaction (KOH in alkaline water elz.)

potential profile in electrolyser

Electrode connection

Industrial electrolysers are equipped with many electrodes following size and performance of electrolyser.


Arrangement

monopolar

- each electrode connected individually

bipolar

- only side electrodes are connected

Power source

Problem: Calculate power source parameters for electrolyser consisting 20 electrodes for $\rm H_2$ production of 50 dm³ /hod (101 kPa, 20°C) in the case of monopolar and bipolar arrangement. Voltage of each anode/cathode pair is 1,8V. Neglect current loss in conductors, transformation etc. .

 $\begin{array}{lll} & n_{H2} \!\!=\! V / V m & V m \!\!=\! 24 dm^3 \! / \! mol & n_{H2} \!\!=\! 2.083 \; mol \! / \! hod \\ & Q = n_{H2} \!\! \cdot \!\! F & I \!\!=\! Q / t & I \!\!=\! 2.083 \; 2 \; 96500 \! / \! 3600 \!\!=\! 111.7 \; A \end{array}$

a) monopolar

power source U =1,8V I=111,7 A P= 201,4 W

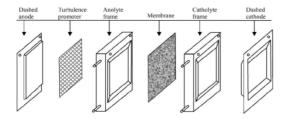
b) bipolar

power sourc. U=19·U_{cell}=34,2 V l= 111,7/19= 5,88 A P= 201,4 W

18

Reactor operation mode

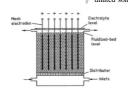
Batch - closed cycle till desired product concentration


One pass – all conversion occurs during one flow through reactor

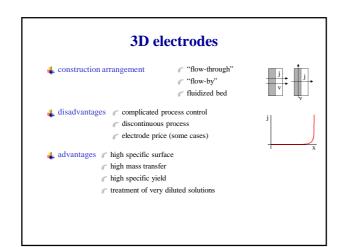
Feed and bleed - combination of previous. Fresh solution supplied to the reservoir and depleted solution is removed from reservoir in one moment.

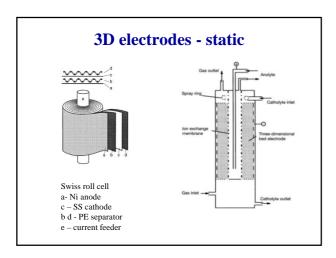
19

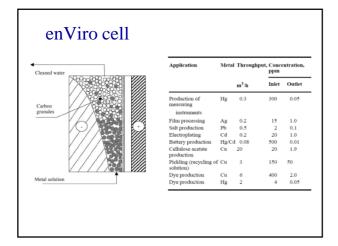
Filter-press electrolyzer


Most frequent cell construction

Suitable for processes with "high" electroactive compound concentration Anodic and cathodic chambers separated by membrane or diaphragm


Cell with fluidized bed of inert particles


advantages mass transfer enhancement mechanical electrode surface treatment advantages of 2D electrodes


increase of $\,k$ (mass transfer coeff.) by one order - 10 times lower outflow concentrations

