

Washkewicz College of Engineering

ELECTRODE ROD BENDER

CHANNEL PRODUCTS

Rami Al-Shinnawi, Ratko Sinanovic, Marcus Short and Brian Orlando

COMPANY LIASON: DR. MUHAMMED HASSANALI

FACULTY ADVISORS: DR. MAJID RASHIDI & DR. ANA STANKOVIC


PROJECT STATEMENT

-Create a mechanism to perform precision electrode bending.

-Design and assemble a table with 4 degrees of freedom along with a bending motor that can achieve 2 degrees of freedom

-Utilize stepper motors and slides to achieve linear and rotational motion.

-Control the system using an Arduino controller and EasyDrivers.

PROJECT SCOPE

-Current rod bender was built in the 1980's and uses outdated technology.

-Process relies heavily on human operation.

-Sponsor requires updated technology to stay competitive.

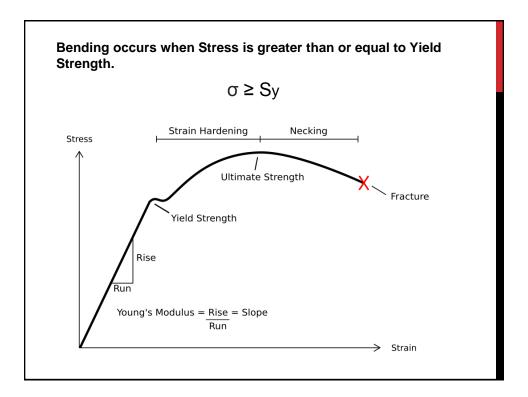
PROJECT BENEFITS

-A new unit will increase reliability and help introduce future innovations.

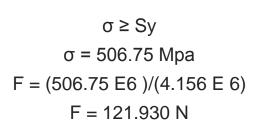
-System will be durable and perform precision bends to accommodate specific electrode configurations.

- Compact and robust design that can easily be modified and replicated.

ENGINEERING ANALYSIS


DETERMINING TORQUE FOR BENDING MOTOR:

 Materials:
 Kanthal D & Kanthal A-1


 Rod Diameters:
 0.052", 0.064", 0.081", 0.091", 0.114"

Mechanical properties

Wire size Yield strength Tensile strength Elongation Hardness ø А Rp0.2 Rm MPa MPa % Ηv mm 545 760 240 1.0 20 4.0 475 680 18 230

	_	
Length between bending pins:	L	19.812 mm
Yield Strength:	Sy	506.75 MPa
Radius:	r	1.448 mm
Bending Moment:	Mb	
Stress:	σ	
Moment of area about neutral axis:	lzz	
Force:	F	
$\sigma = (Mb^*r) / Izz$	Mb	$P = F^*L$
$\sigma = (F^*L^*r) / Izz$		
, , , , , , , , , , , , , , , , , , ,		
$1_{-2} - (\pi^* r \Lambda(A))/2 - 6$: 002	E 10
$I_{ZZ} = (\pi r^{(4)})/2 = 6$	0.902	
σ = F * (4.156	6 E 6))

Torque = F*L Torque = **2.416 N-m**

STEPPER MOTOR QUALITIES

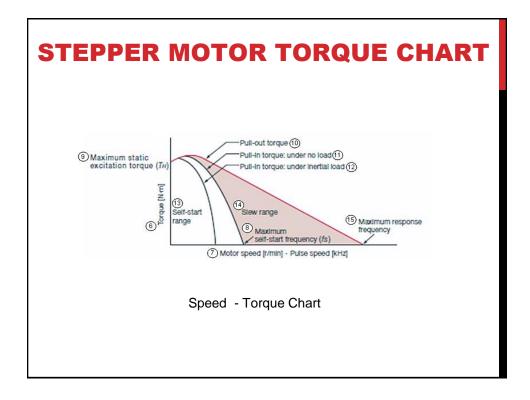
<u>Pros</u>

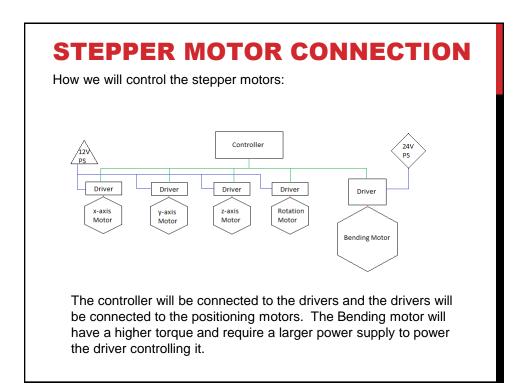
-Stepper Motors have very accurate movements that allow very precise controls

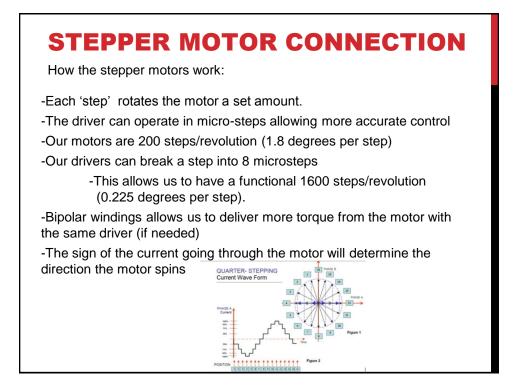
-They can operate at lower voltages than other motors with similar torque

-They have high torque when operating at low RPMs

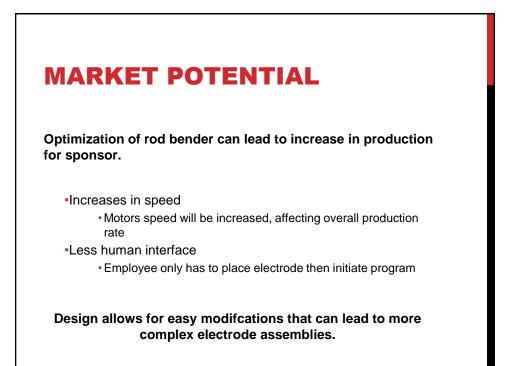
-They are relatively cheap and easy to control

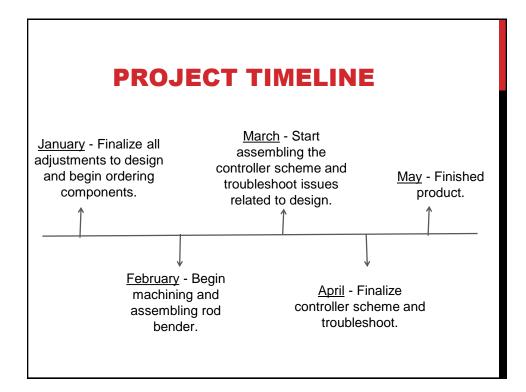

<u>Cons</u>


-There is no integrated feedback (Open-loop feedback)


-They require drivers that can be costly.

-Bipolar or Unipolar drive (allows power to be delivered to one or two sets of windings)


-Resonance between the motors can cause instability in the system



ĐI	LL OF MATERIA					
Quantity	- Item -	Supplier 💌	Catalog 💌	Unit Price 🔻		Total
	2 NEMA 17 Motor-Mount Slide XY 0.125"	McMaster-Carr	6734K1	\$ 889.60	\$	1,779.
	1 NEMA 17 Motor-Mount Slide Z 0.125"	McMaster-Carr	6734K2	\$ 996.71	\$	996.
	1 Ultra-Precision Slide Bender	McMaster-Carr	5242A34	\$ 895.00	\$	895.
	1 Sherline 4" Rotary Table	Amazon/Sherline		\$ 336.00	\$	336.
	4 NEMA 17 Stepper Motor	McMaster-Carr	6627T66	\$ 56.10	\$	224.
	1 NEMA 23 Stepper Motor (3Nm)	StepperOnline	127	\$ 30.54	\$	30.
	1 Multipurpose 6061 Aluminum Bar 3" X 3" X 36"	McMaster-Carr	9872T236	\$ 146.75	\$	146.
	1 Multipurpose 6061 Aluminum Sheet (Brushed) 12" X 12" X 3/8"	McMaster-Carr	1651T917	\$ 148.82	\$	148.
	1 Arduino UNO Rev 3	Amazon/Arduino		\$ 19.95	\$	19.
	4 NEMA 17 EasyDriver Stepper Motor Driver	Amazon/SparkFun		\$ 9.80	\$	39.
	1 NEMA 17 Power Supply 50W 12V 4.2A	StepperOnline	311	\$ 8.42	\$	8.
	1 NEMA 23 Stepper Motor Driver Max 80VAC or 110VDC with 2.4-7	StepperOnline	MA860H	\$ 54.88	\$	54.
	1 NEMA 23 Power Supply 350W 24V 14.6A	StepperOnline	177	\$ 26.80	\$	26.
	1 In-house Machining	Cleveland State		\$ -	\$	-
	1 Various Hardware Budget	Misc.		\$ 1,000.00	\$	1,000.
				TOTAL	\$ 5,706.6	

