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Preamble

This is a translation of lecture notes, originally prepared in French for the course
electrodynamics II at the University of Geneva aimed at students of the second
year of their Bachelor’s degree in physics. The subjects covered are taken mostly
from the following sources:

• J. D. Jackson: “Classical Electrodynamics” The classic reference with all
the details but without any pity on the reader. The best choice to buy for
those who plan to continue with subjects involving the classical theory of
electrodynamics or its applications.

• A. Zangwill: “ Modern Electrodynamics”: a very modern book on this old
subject. This reference is more or less a more pedagogical version of Jackson
in the sense that it o↵ers a complete range of subjects as well as a number
of advanced topics. A very good choice for the level of this course.

• Landau & Liftshitz: “Classical theory of fields”: another classic text. This
reference takes a rather theoretical point of view and treats certain aspects
of the subject with a great deal of elegance. Also contains a treatment of
the general theory of relativity. The series of L & L also contains a second
volume, treating electrodynamics of continuous media.

• David Tong: “Electromagnetism” (Lecture Notes, University of Cambridge).
Course for second and third year students of the Bachelor’s degree at Cam-
bridge. Contains some advanced topics towards the end, including some
interesting further details concerning applications of electrodynamics to con-
densed matter physics.

I would like to thank Nathaniel Avish as well as Gabrielle Guttormsen for their
help in producing this translated version from the original French.

Prof. Julian Sonner, Genève (February 2018)
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Chapter 1

Maxwell’s Equations

[...]the only laws of matter are those which

our minds must fabricate, and the only laws

of mind are fabricated for it by matter.

James Clerk Maxwell

1.1 Introduction

All physical phenomena in our Universe can be reduced to the action of four forces,

called fundamental forces. Gravity, the dominant force at large scales, explains the

dynamics of the solar system, galaxies and even the entire universe. The strong

nuclear force, dominant on microscopic scales, is responsible for the link between

quarks and gluons and between protons and neutrons (and other ”baryons”), the

weak nuclear force is equally important. Microscopic scales, is responsible for

the disintegration of nuclei and force between neutrinos (and other ”leptons”).

The fourth force, the force of Coulomb-Lorentz describes the force undergone by

a charge q moving with a speed v in a electric field E(t,x) as well as magnetic

B(t,x) ,

F = q
⇣
E+

v

c
⇥ B

⌘
. (1.1)

Here we use Gaussian units which are better suited for theoretical considerations

and consequently often found in the more advanced literature like quantum elec-
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Chapter 1 7

trodynamics. We discuss the units more generally below, and in particular the

relationship of Gaussian units with the international system (SI) of units. In

Gaussian units a single constant appears in Maxwell equations, the velocity of

light (in a vacuum)

c = 299792458 ms�1 .

In this first chapter we discuss the basic quantities: charge, current, fields and

their units.

1.2 Charge and Current

The orgine of the term ”electric” is the greek word for amber, ⌘�✏⌧⇢o⌫; electro-

static properties of which were already appreciated by the scientists of the Hellenic

period. Modern physics explains these phenomena by the transfer of an intrinsic

property of matter, which we call electrical charge. For the formulation of the

electrodynamics in terms of the fields consider charge as a continuous substance,

whereas, in reality, the charge can only be present in multiple 1, q = Ze, with the

fundamental,

e = 1.60217733(49) ⇥ 10�19C .

The charge of an electron is q = �1 ⇥ e.

1.2.1 Charge density

For most applications it is more convenient to use a description of the charge in

terms of the charge density

⇢(t,x)

Which varies continuously according to space and time. The charge contained in

a space region V is therefore given by the integral

Q =

Z

V

d3x⇢(t,x) . (1.2)

1The quarks and the gluons, which make up the nuclei, carry a fractional charge, but they
are never detected in isolation. Any free charge satisfies the condition q = Ze.
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j

dS

S

Figure 1.1: The current I through S is given by the integral through the surface S
of the projection of the current density j on the surface element dS. The current
is represented by flux lines, using the analogy with a fluid.

A point charge at x

0

can be written with the help of the Delta Dirac function

⇢(t,x) = q�(x � x

0

). A group of point charges q
k

at positions x

k

with a charge

density:

⇢(t,x) =
NX

k=1

q
k

�(x � x

k

(t)) . (1.3)

Note the position of each charge can depend on time.

1.2.2 Current Density

We have already indicated that the charge density (1.2.1), (1.3) depends on time,

for example, because of the movement of a point charge following a trajectory

x

k

(t). In general, moving charges generate a current I(t), with a current density

j(t,x). For the formal definition consider a surface, S, which charges or a density

of charges pass through. If n̂ is the unit vector perpendicular to the area element

dS and so dS = n̂dS. The current through a surface S is given by the integral

I =
dQ

dt
=

Z

S

j · dS . (1.4)

By analogy with a continuous fluid of the current can be characterized as a flow

of charges. If one expresses this in terms of the local speed of the charge v(t,x),

the current could be expressed as

j = ⇢v . (1.5)
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1.2.3 Charge conservation

We shall now derive an equation which expresses a fundamental law of nature:

every process known in physics conserves charge. For example, a photon, the

neutral particle of light, can decay into two charged particles, an electron and a

positron. However, the total charge before and after the disintegration remains the

same. This is the case for any other process known in physics as a consequence of

a symmetry principle, called gauge symmetry2 that we will see later in this course.

The current can be written as an integral over the volume V ,

I =

Z

V

r · j d3x , (1.6)

The following is the application of the divergence theorem to (1.4). since the

vector n̂ is directed towards the outside of the volume V , We have that the charge

contained in the volume V decreases according to

� dQ

dt
= � d

dt

Z

V

⇢d3x = �
Z

V

@⇢

@t
. (1.7)

Using the second expression of the current (1.6) one deduces the continuity equa-

tion
@⇢

@t
+ r · j = 0 . (1.8)

This equation expresses the fact that charge can not be created or destroyed. Each

change in the total charge Q contained in a volume V can be traced back to a flux

of current through the surface S bounding V , in other words, the charges which

come from the interior of the volume V to the outside and vice versa.

Consider now a collection of charges, one can express the charge density as in the

equation (1.3). One can use the continuity equation to deduce the current density

in the case of a distribution of point charges. One has that

@⇢

@t
= �

NX

k=1

q
k

v

k

· r�(x � x

k

(t)) = �r
X

k

q
k

v

k

�(x � x

k

(t)) . (1.9)

2This is the theoretical point of view. Experimentally no disintegration of a charged particle of
neutral particles has ever been observed. More precisely, the time limitation of the disintegration
of an electron in neutral particles is greater than 1024 years (Belli et al. 1999).
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The last step is not applicable for a constant speed. Comparison with the conti-

nuity equation (1.8), allows one to deduce

j =
NX

k=1

q
k

v
k

�(x � x

k

(t)) . (1.10)

This expression for the current density is, however, more generally true, since

the charged medium can be considered as being incompressible (isochoric), i.e. it

satisfies the relationship r · v
k

= 0.

1.2.4 Force density

One can write an equation for the force that acts on a charge distribution ⇢(t,x)

and current j(t,x) in a volume V with the integral

F =

Z

V

fd3x (1.11)

with the force density equal to

f = ⇢E+
j

c
⇥ B . (1.12)

1.3 Maxwell’s Equations

The laws describing all the phenomena discussed in this course form a system of

four di erential linear equations, called the Maxwell Equations (in the vacuum),

r · E = 4⇡⇢ , (1.13)

r ⇥ E = �1

c

@B

@t
(1.14)

r · B = 0 (1.15)

r ⇥ B =
1

c

@E

@t
+

4⇡

c
j , (1.16)

in connection with the Coulomb-Lorentz force (1.1)
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1.3.1 Electrostatic Consequences

r

a) b)

d

V

S

I1I2

q2 q1

�̂

Figure 1.2: A) Electrical field of a point charge at rest at the origin and force felt
by a second charge (Coulomb’s law). B) The magnetic field of a stationary current
and the force felt by the second charge (Biot-Savart’s law).

In static fields 3

E and B become independent. To find the e↵ects of the electric

field, it is therefore su�cient to solve the first two equations (1.13) and (1.14) with
@

@t

B = 0. Considering a single point charge q
1

at rest at the origin, the density of

charge is written

⇢ = q
1

�(x) .

One integrates the two parts of the equation (1.13) over a spherical volume centered

at the origin of radius R. By symmetry the electric field at each point is directed

along the radial direction, and depends only on the radius E = E(r)r̂. One easily

finds

E =
q
1

r2
r̂ , (1.17)

Which is called loi de Coulomb. The force felt by a second charge is written

F = q
2

E =
q
2

q
1

r2
r̂ . (1.18)

3Strictly speaking one calls B magnetic induction, the term magnetic field is reserved for the
H field (look at chapter 4).
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Note that the second equation(1.14)

r ⇥ E = 0

Implies that the field E could be written as

E(x) = r'(x) (1.19)

as a function of the scalar potential '. From the above two equations one deduces

that

' = �q
1

r

Plus a constant that we neglect. Note that this is consistent with the equation

(1.13) and the charge density (1.3.1), if

r2

✓
� 1

4⇡r

◆
= �(x)

or, by translation

r2

✓
� 1

4⇡ |x � x

0

|
◆

= �(x � x

0

) . (1.20)

This relationship will prove suitable for the following part.

1.3.2 Magnetostatique consequences

To find the magnetic fields it su�ces to solve the last two of Maxwell’s equations

(1.15) and (1.16). For a single charge in linear motion the current density is written

as

j = q
1

v�(x � x(t)) := j

1

�(x � x(t))

Now one integrates the two parts of the equation (1.16) over the surface S (like in

figure 1.2b). The right hand side gives, by definition (1.4) the current I
1

and for

the left-hand side we use the Stokes theorem. We then find

B =
2I

1

cd
✓̂ (1.21)
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where d is the distance perpendicular to the trajectory of the charge and ✓̂ is the

unit vector parallel to the contour C bounding the surface S (Figure 1.2b).

The force density felt by a second current distribution at a distance d is given

(1.12) by the integral over

df =
dj

2

c
⇥ B .

If we take for the second distributions a stationary current along a straight wire

parallel to the first one, we obtain the force felt by a length L
2

of wire

F =

Z
�(x � x

2

)
j

2

c
⇥ ✓̂ dV = �2I

1

I
2

L
2

cd
d̂ . (1.22)

This is sometimes called Biot-Savart’s law. The sign in front of the last part of

the right hand side is negative, and therefore the force is attractive if currents I
1

and I
2

have the same sign and repulsive if the signs are opposite.

One now turns to a discussion of units in the theory of electromagnetism. Ex-

pressions for electrostatic as well as magnetostatic force will prove very useful

because they represent a point of reference from which one can easily understand

the di↵erent choices of units.

1.4 Units

The equations of physics can be expressed in arbitrary units, provided that each

choice of units is consistent. It is thus possible to employ units according to the

requirements of the situation on has in mind, such as, for example, engineering

applications or the quantum physics of particles. On the other hand, dimensions

are not arbitrary. The di↵erence between dimensions and units is the abstract

version of the di↵erence between “length” and “meter”. The first expresses that a

physical quantity has the dimensions of length, for example a distance between two

points. The second expresses this distance in certain units, in this case, the meter.

One could have chosen the centimeter, which does not change the fact that it is a

quantity of length dimension, but changes the numerical value of this distance.

Here we discuss the di↵erent systems of units, but mainly the international system
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of units (SI), used in the course of electrodynamics in the first year, and the system

of Gaussian units (cgs) used in this course. We also discuss what characterizes a

consistent choice of units by considering the example of Maxwell’s theory. A

system of units begins with a choice of basic units, such as length, mass, time,

and so on. The other units, called derived units, can be expressed by dimensional

analysis in terms of the basic units. For example, if base units are chosen as units

of length, mass and time, under Newton’s second law,

F = ma , [force] =


m`

t2

�
. (1.23)

It follows from the discussion of dimensions versus units, that we must also dis-

tinguish between the choice of basic units, i.e. which dimensional quantities we

(arbitrarily) decide to be “basic”, and their concrete definition. That is to say that

one is free to choose units for the same basic quantity, which di↵er only by their

quantitative value, such as the centimeter and the inch for a quantity of dimension

length. There is therefore a great deal of choice for the various systems of units

and, especially in the case of electromagnetism, there are many heated debates on

these choices. Without getting into these debates, we will now define the Gaussian

units and their relationship with the international system of units.

1.4.1 Gaußian Units

The Gaussian system is an example of a ”cgs” system, indicating that the basic

units are length ` (in cm), mass m (in grams) and time t (in seconds). The

international system adds these three the unit of current, the ampere, as a fourth

base unit. It is perfectly consistent to declare that the unit of current is a basic

unit. For example, the ampere can be defined by measuring the mass of silver

deposited per unit of time on the cathode of a silver nitrate voltameter, which, in

fact, was the case historically. In this way the ampere is, in this way, defined by a

reproducible experiment, independent of the other units.

The international system also uses di↵erent quantitative choices for basic units,

where they coincide with the Gaussian sysem (like the meter for length and kilo-

gram for the mass). For this reasonthe old name of this unit system was MKSA

(Meter, Kilogram, Seconds, Ampere). The di↵erent basic units for these two sys-
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tems are given in the table 1.1.

Let us now discuss electromagnetic units more concretely. For this it is convenient

to consider the forces themselves. The Coulomb’s law (1.17) gives an expression

for the electric force acting on two charges q
1

and q
2

F
e

= k
e

q
1

q
2

r2
= q

1

E (1.24)

With a constant k
e

4 to be determined. The last member of this formula defines

the (modulus of) the electric field, E, at a radial distance r of a charge q
2

, as being

E = k
e

q
2

r2
. (1.25)

The force per unit length acting on a wire with current I
2

, due to a second wire of

length L
1

with a current I
1

, situated at a distance d, is given by (1.22)

dF
m

dL
= k

m

2I
1

I
2

d
= I

1

B . (1.26)

This relation involves the constant k
m

to be determined later5. As before, the last

member of the equation above defines the (modulus of) the magnetic field as

B = k
m

�
2I

1

d
(1.27)

These two relations (1.24) and (1.26) above allow us to draw the conclusion that

the ratio of k
e

and k
m

is a speed


k
e

k
m

�
=


`2

t2

�
. (1.28)

We shall see later that this speed is equal to the speed of light in a vacuum

k
e

k
m

= c2 . (1.29)

Indeed this must be determined by comparing the predictions of Maxwell’s equa-

tions written with the constants k
e

and k
m

, with experiment, as we are going to

4In Gaussian units ke = 1, But we are looking for the most general form here.
5In Gaussian units km = c�1, but one looks for the most general form here.
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do a little later. Note also in equation (1.27) the presence of a second dimensional

constant, �. It determines the ratio


E

B

�
=


`

t�

�
(1.30)

and thus allows us to choose the relative units of the electric and magnetic field.

Let us now revisit Maxwell’s equations, without prejudice about units. It is clear

that all equations must be written with dimensional constants so that the units of

each term of a given equation are the same. So,

r · E = 4⇡k
e

⇢ , (1.31)

r ⇥ E = �k
@B

@t
(1.32)

r · B = 0 (1.33)

r ⇥ B =
k
m

�

k
e

@E

@t
+ 4⇡k

m

�j , (1.34)

The constants k
e

, k
m

and � are chosen in such a way that the static equations

(1.24) and (1.26) above are reproduced, and that � has dimentions of speed. In a

vaccum, the equations (1.32) and (1.34) lead to

r2

E � k�
k
m

k
e

@2

E

@t2
(1.35)

and similiarly for B field. These equations describe the propagation of electro-

magnetic waves in vacuo. Experiment tells us that these propagate at the speed

of light, in other words
k
e

k
m

k�
= c2 , (1.36)

From which we conclude that k = ��1 (using the equation (1.29)).

Di↵erent systems of units make di↵erent choices for the constants k
e

, k
m

, � and

k. However, not all of these constants can be chosen arbitrarily. By virtue of the

equations (1.29) and (1.36) only two of them are independent and thus free.

The Gaussian system, employed in this course, makes the choice of having the

same units for the fields E and B, as well as k
m

= c�2 and � = c. Constants in
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System k
e

k
m

� k

Gauss 1 c�2 (t2`�2) c (`t�1) c�1 (t1`�1)
SI 1

4⇡✏

0

= 10�7c2 µ

0

4⇡

:= 10�7 (t2`�2) 1 1

Table 1.1: The dimensions are given in parentheses after the numerical values.

di↵erent unit systems appear in the tables 1.1.

1.5 A brief reminder of vector calculus

In the theory of electromagnetism we almost always rely on vector calculus. Here

we recall some definitions as well as theorems frequently encountered in the rest

of the course.

Einstein summation convention

Let A 2 R3 be a vector. We denote its components in a base ê

i (i = 1, 2, 3) by

A ! A
i

(i = 1, 2, 3) . (1.37)

Let B 2 R3 be a second vector. The scalar product of A and B and its components

takes the form

A · B =
3X

i=1

A
i

B
i

:= A
i

B
i

. (1.38)

The last member of this equation introduces the Einstein summation convention.

It is understood that the sum is taken on any two repeated indices, as the two i

above. Let us now consider the vector product of A and B:

C = A ⇥ B ! C
i

=
3X

j,k=1

✏
ijk

A
j

B
k

:= ✏
ijk

A
j

B
k

(1.39)
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with the Levi-Civita symbol, defined as

✏
ijk

:=

8
><

>:

1 ijk = even permutation of 123

�1 ijk = odd permutation of 123

0 i = j , or j = k , or i = k

(1.40)

Note also that we again used the Einstein summation convention in the last member

of equation (1.39), involving the summation on the two paris of repeated indices,

that is to say j and k.

Gradient, divergence and curl

Let �(x) be a scalar function. The gradient of �(x) is defined as

grad�(x) := r�(x) ! [grad�(x)]
i

=
@�

@x
i

(1.41)

Let A(x) be a vector field. The divergence of A(x) is

divA(x) := r · A(x) ! [divA(x)]
i

=
@A

j

@x
j

, (1.42)

while the curl of A(x) is given by

rotA(x) := r ⇥ A(x) ! [rotA(x)]
i

= ✏
ijk

@A
k

@x
j

(1.43)

Gauss’ Theorem

Let V be a volume bounded by a surface S = @V . Let n̂ be a unit vector perpen-

dicular to the surface S and outward pointing. It follows that

Z

V

r · AdS =

I

S

A · n̂dS =

I

S

A · dS , (1.44)

where the last member of this equation defines the vector element of area dS :=

n̂dS.
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Stokes’ Theorem

Let S be a surface bounded by the countour C = @S. Let t̂ be a unit vector

perpendicular to the surface S and l̂ the unit vector parallel to the curve C. It

follows that Z

S

(r ⇥ A) · t̂dS =

I

C

A · dl (1.45)

1.6 The structure of Maxwell’s equations

1.6.1 Potentials & gauge invariance

[Jackson 6.2, 6.3]

It is often convenient to introduce potentials, in terms of which Maxwell’s equations

are reduced to a system of two di↵erential equations of second order, mutually

coupled. Our starting point is the fact that any vector field of zero divergence can

be expressed as a curl of another vector field. The equation r ·B = 0 thus allows

us to introduce the vector potential A satisfying

B = r ⇥ A . (1.46)

The advantage of this definition is that the homogeneous equation (1.15) is satisfied

identically by working with the potential A. Faraday’s law (1.14) is now written

r ⇥
✓
E+

1

c

@A

@t

◆
= 0. (1.47)

Any field of vanishing curl can be expressed as the gradient of a scalar function,

which allows us to introduce the scalar potential � through the relationship

E+
1

c

@A

@t
= �r� (1.48)

so that

E = �r� � 1

c

@A

@t
. (1.49)
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According to the definition (1.49), the equation (1.14) is identically satisfied. We

have thus succeeded in reformulating Maxwell’s equations using the potentials A

and � with the advantage that the homogeneous equations are satisfied identically.

It remains to rewrite the inhomogeneous equations in terms of the potentials, which

leads to the system

r2�+
1

c

@

@t
(r · A) = �4⇡⇢

r2

A � 1

c2
@2

A

@t2
� r

✓
r · A+

1

c

@�

@t

◆
= �4⇡

c
j . (1.50)

Since the curl of a gradient is zero, one is always free to add the gradient of a

scalar function to the potential A without any change in the magnetic field. It is

therefore possible to carry out a transformation

A �! A

0 = A+ r� (1.51)

for any scalar function �. For the field E to also remaine unchanged, one is obliged

to transform the scalar potential with the help of the same function �

� �! �0 = � � 1

c

@�

@t
. (1.52)

The freedom to redefine potential (1.51), (1.52) is referred to as gauge symmetry

and is used as a starting point for the definition of the theory of electromagnetism

in more sophisticated treatments. Here we use it in order to simplify the remaining

equations, namely the inhomogeneous equations (1.50).

Lorenz Gauge, Coulomb Gauge

We limit ourselves to a set of two gauge choices, commonly used in the literature.

1. Lorenz Gauge6: If the potentials are chosen so as to satisfy the relation

r · A+
1

c

@�

@t
= 0 , (1.53)

6This is not an error: Ludvig Lorenz (1829 - 1891) of the gauge is not Hendrik Lorentz (1853
- 1928) of the eponymous transformation.
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the equations (1.50) take a symmetrical form

r2� � 1

c2
@2�

@t2
= �4⇡⇢

r2

A � 1

c2
@2

A

@t2
= �4⇡

c
j . (1.54)

The left-hand sides of these equations take the form of wave equations. This

gauge has the advantage that the two equations are completely decoupled.

2. Coulomb Gauge: If one choses the potential A so as to satify the relationship

r · A = 0 , (1.55)

the equations (1.50) take the form

r2� = �4⇡⇢

r2

A � 1

c2
@2

A

@t2
= �4⇡

c
j+

1

c

@

@t
r� . (1.56)

If we look at the first equation we see that it has the same form as in electro-

statics, which gives rise to the Coulomb potential. It can therefore be solved

immediately, using what we know already about the Coulomb potential. This

is the origin of the name of this choice of gauge.

It is possible to demonstrate (see exercice sheet) that these two gauge choices are

consistent in the sense that one can always find a function � which transforms a

given potential into the desired gauge and that once selected, the form of gauge is

kept at all times under evolution of the fields.

1.6.2 Boundary Conditions

Boundary conditions for the E and B fields can be determined from the basic

equations (1.13 -1.16 ). We start with Gauss’ Law (1.13). If one integrates the left

hand side (1.13) over a volume V , as indicated in Figure 1.3, one finds, using the



22 Section 1.6

n̂1

n̂2

V

��

) )

��

t
dl1

dl2

S

C
=

�S

a)
b)

Figure 1.3: Interface I with a surface charge density � and surface current density
K. The unit vector at the interface is given by n̂

1

. a) little volume V over the
interface I with the small thickness �`. b) Small loop over the interface. The curve
C bounds the surface S of the loop and has as the normal vector unit t̂.

Gauss’ theorem

Z

V

r · E dV =

Z

S

1

E

1

· n̂
1

dS +

Z

S

2

E

2

· n̂
2

dS + O (�`) ,

where the contribution of the white part in Figure 1.3a) has the order of magnitude

O (�`) and can be neglected in the limit �` ! 0 that we take now. In this limit,

the integral is reduced to Z

S

(E
1

� E

2

) · n̂
1

dS .

We denote the fields on either side of the interface by E

1,2

. The minus sign results

from the relation n̂

2

= �n̂

1

. In the same limit one gets the right-hand side of

(1.13)

lim
�`!0

Z
4⇡⇢ dV =

Z

S

4⇡� dS

with a surface charge density �, if such a charge exists in the problem at hand. It

can be deduced that

(E
1

� E

2

) · n̂
1

= 4⇡� . (1.57)
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Using the small contour C in the Figure 1.3b We will now look at equation (1.16),

namely Ampere’s Law. The unit vector l̂ parallel to the upper part of the contour

is written l̂ = t̂⇥ n̂. According to Stokes’ theorem, the left-hand side of Ampère’s

law is written

Z

S

r ⇥ B · dS =

Z

C

1

B

1

· (t̂ ⇥ n̂) �
Z

C

2

B

2

· (t̂ ⇥ n̂) + O (�`) ,

while the right-hand side, in the limit �` ! 0, reduces to

lim
�`!0

✓
1

c

@E

@t
+

4⇡

c
j

◆
=

4⇡

c
K

with a surface current density K. In that limit, the contribution of the electric

field is zero, and one concludes that

t̂ · [n̂
1

⇥ (B
1

� B

2

)] =
4⇡

c
K .

Since this must be true for any orientation of the small loop, i.e. for any vector t̂

in the interface, it is true that

n̂

1

⇥ (B
1

� B

2

) =
4⇡

c
K . (1.58)

Using the same kind of manipulations for Maxwell’s other equations, one easily

finds the boundary conditions

n̂

1

· (E
1

� E

2

) = 4⇡� ,

n̂

1

· (B
1

� B

2

) = 0

n̂

1

⇥ (E
1

� E

2

) = 0

n̂

1

⇥ (B
1

� B

2

) =
4⇡

c
K

These conditions and their generalizations for so-called macroscopic fields (in later

Section 3.1.4) will play a crucial role in our investigation of the propagation of

electromagnetic waves as well as in many other applications.
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1.6.3 Conservation Laws

We are already familiar with the notion that a quantity can be preserved by the

dynamics of a physical system, such as the momentum of a particle in classical me-

chanics. The quantities which are conserved during the evolution of a system give

useful constraints on the form of the phenomena realized in this system. Here we

develop conservation laws for the field-particle system in classical electrodynamic

theory. Any conserved quantity arises as a consequence of symmetry, according to

the Noether’s theorem, and the case of electromagnetism is noexception. However,

we do not develop this point of view in this course, however, it can be found, for

example, in the excellent book by Landau and Lifshitz.

Energy

The instantaneous work accomplished by a charge moving with velocity v under

the influence of a force F is equal to F ·v. In electrodynamics the force is given by

the Coulomb-Lorentz Law (1.12). We can therefore write for a charge distribution

contained in a volume V

dW

dt
=

Z

V

✓
⇢E+

1

c
j ⇥ B

◆
· v dV =

Z

V

j · E dV . (1.59)

In order to transform this into an expression of conservation of energy we use

Maxwell’s equations as well as some standard relations of vector calculus.

First one eliminates j using Ampere’s law (1.16). This leads to

dW

dt
=

1

4⇡

Z

V

dV


cr ⇥ B � @E

@t

�
· E (1.60)

For the term including the rotational of B one uses

r · (E ⇥ B) = B · (r ⇥ E) � E · (r ⇥ B) = �B · 1
c

@B

@t
� E · (r ⇥ B) (1.61)

Where the last equality follows from Faraday’s law (1.14). In combination with
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(1.59) we then find

d

dt

Z

V

1

8⇡

�
E2 +B2

�
dV +

Z

V

r ·
⇣ c

4⇡
E ⇥ B

⌘
= �

Z

V

j · E dV . (1.62)

We see that the integral of the first term on the left-hand side is reduced to the

energy of the E and B fields in the static case. It is natural to interpret the

expression here as the generalization of this notion to non-static situations. The

following development will establish that this interpretation makes sense. Equation

(1.62) is sometimes called Poynting’s theorem. Since this equation is satisfied for

any volume V we deduce the following interpretations:

1. If we consider a region without charge or current, the Poynting theorem takes

the familiar form
@u

@t
+ r · S = 0 (1.63)

with the definitions

u =
E2 +B2

8⇡
energy density

S =
c

4⇡
E ⇥ B Poynting0s vector

In analogy with the equation of continuity of charge (1.8) the expression here

expresses the fact that the energy due to the E and B fields contained in

the region V can escape only by the vector flux S through the surface S

bounding the region. The dimensions of S are

[S] =
h energy
volume

⇥ speed
i

or, in other words, a current of energy density, which is consistent with the

given interpretation.

2. In the presence of charges and currents (of charges) the relation tells us that

dU

dt
+

Z

@V

S · n̂dS = �
Z

V

j · E dV . (1.64)

The right hand side represents the mechanical work performed on

7 the

7The instantaneous work performed by the charge distribution is given by the integral of +j·E



26 Section 1.6

charges contained in the region V by the fields. The interpretation of the

Poynting theorem is thus the following: the energy of the E and B fields in

a region V may decrease either because of the flow of energy current due to

Poynting’s vector S coming out of the region, or by the transfer field energy

into mechanical energy of the charges. The local (di↵erential) form of energy

conservation is

@u

@t
+ r · S = �j · E . (1.65)

Momentum

Now look again at the expression for the force acting on a charge distribution

F =

Z

V

✓
⇢E+

1

c
j ⇥ B

◆
dV =

Z

V

f dV . (1.66)

We know that the force is related to the momentum through

dP
meca

dt
= F . (1.67)

As before, we wish to rewrite this equation by using the fields themselves without

reference to charges or currents. This can be accomplished as follows. We start by

eliminating ⇢ and j using Maxwell’s equations, namely equation (1.13) for ⇢ and

the equation (1.15) for j. The force density then becomes the expression

⇢E+
1

c
j ⇥ B =

1

4⇡


E(r · E) + 1

c
B ⇥ @E

@t
� B ⇥ (r ⇥ B)

�
. (1.68)

The strategy is now similar to the one we have followed for energy conservation.

The second term in square brackets can be manipulated as follows

B ⇥ @E

@t
= � @

@t
(E ⇥ B) + E ⇥ @B

@t
(1.69)

with the positive sign.
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in order to bring out Poynting’s vector. Then, we eliminate the derivative @
t

B

using the equation (1.14), which leads to

dp
meca

dt
+

@

@t

✓
E ⇥ B

4⇡c

◆
=

1

4⇡
[E(r · E) +B(r · B) � E ⇥ (r ⇥ E) � B ⇥ (r ⇥ B)] .

(1.70)

One have written p

meca

for the momentum density, which after integration gives

the momentum, P
meca

. For reasons of symmetry we have added zero in the form

0 = r · B in this relationship. To interpret what we have derived it will be

convenient to write the above equation in the form of an integral in a similar way

to Poynting’s theorem (1.62). Obviously, the terms appearing with the spatial

derivative (r) should be rewritten as a total divergence. Let us first look at the

terms involving the electric field

E(r · E) � E ⇥ (r ⇥ E) = �rE2

2
+ (r · E)E+ E(r · E)

= r ·
✓

�1

E2

2
+ EE

◆
.

In the last line we introduced the so-called dyadic notation, with the components

of the unit dyad

1 ! 1

ij

=

(
1 i = j

0 i 6= j
(1.71)

The components of the dyadic product between two electric fields are given by

EE ! E
i

E
j

. (1.72)

An analogous expression is also satisfied by the field B replacing E ! B and so

(1.70) turns into

dp
meca

dt
+

@

@t

✓
E ⇥ B

4⇡c

◆
= �r ·

✓
1

E2 +B2

8⇡
� EE+BB

4⇡

◆
. (1.73)

Let us now turn to the interpretation of this equation.

1. First, it follows that the electromagnetic field has its own momentum density

g =
E ⇥ B

4⇡c
= p

EM

(1.74)
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So the left hand side of (1.73) the interpretation of the total change in mo-

mentum, i.e. the momentum of the particles (the mechanical part) as well

as that of the fields (the EM part). We notice the close connection with

Poynting’s vector8

S = c2g . (1.75)

2. In integral form we have

d

dt
(P

meca

+P

EM

) = �
Z

V

r ·
✓
1

E2 +B2

8⇡
� EE+BB

4⇡

◆
dV

= �
Z

S

n̂ · TdS ,

where T is the Maxwell stress tensor with components

T ! T
ij

= �
ij

u � E
i

E
j

+B
i

B
j

4⇡
, (1.76)

and n̂ is, as usual, the unit vector perpendicular to the surface S bounding the

volume V , directed towards the outside. We then deduce that the quantity

n̂ · T ! n
i

T
ij

(1.77)

Represents a flux of momentum through the surface S. Note that this is a

vectorial quantity, which is consistent with the link with momentum, which

itself is a vector. In other words, the quantity n
i

T
ij

represents the flux of the

jth component of the momentum across the surface S. This is also why we

used a tensorial quantity (dyadic) for the momentum flux: a scalar quantity

(like the charge or energy) has a vector flux, whereas a vector quantity like

the momentum has a tensor tensor (=dyadic) flux. Loosely speaking, in each

8We have found a relation between the flux S of the energy u contained in the electromagnetic
field and its momentum g. This link is given by (1.75). Dimensional analysis of this equation
gives the structure

energy density ⇥ speed = c2(mass density ⇥ speed)

which is equivalent to the relation
E = mc2 .

It is obviously the famous equation of restricted relativity discovered by Einstein by considering
Maxwell’s equations (Zur Elektrodynamik bewegter Körper). More detail in chapter 2
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case we just add one more index to the density in order to get flux.

Angular momentum

For a mechanical system the derivative of the angular momentum, L
mech

can be

written as
dL

méca

dt
=

Z

V

x ⇥ f dV . (1.78)

The integrand appearing in this expression has components

x ⇥ f ! [x ⇥ f ]
i

= ✏
ijk

x
j

f
k

(1.79)

Let us recall now that equation (1.73) expresses the force density of a system of

fields and particles. We would like to use the conservation law associated with the

momentum (1.73) for a derivation of the conservation of angular momentum, as

defined above. It is clear that the contributions of the fields must again be taken

into account, which will give us a definition of the angular momentum of the fields.

We begin by writing the conservation of momentum in components

@g
k

@t
+

@T
lk

@x
l

+ f
k

= 0 . (1.80)

Then we multiply it x
j

, which leads to

@(x
j

g
k

)

@t
+

@(x
l

T
lk

)

@x
j

� T
jk

+ x
j

f
k

= 0 . (1.81)

Here we used the fact that
@x

l

@x
j

= �
lj

. (1.82)

Finally we multiply(1.81) by ✏
ijk

And take the sum on the repeated indices. We

find
@(✏

ijk

x
j

g
k

)

@t
+

@(✏
ijk

x
l

T
lk

)

@x
j

+ ✏
ijk

x
j

f
k

= 0 . (1.83)

The last step is true thanks to the symmetry of the tensor T
ij

= T
ji

, in other

words,

✏
ijk

T
jk

= 0 . (1.84)

Let us now turn to the interpretation of the relation we have just derived.
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1. We deduce the interpretations

L
EM

= x ⇥ g density of angular momentum

K
ij

= ✏
jkl

x
k

T
il

tensor of angular momentum flux

The density L
EM

gives, after integration over the volume V , the total angular

momentum of the fields

L

EM

=

Z

V

L
EM

dV . (1.85)

2. With the above identifications we can write the law of conservation of total

angular momentum. The latter follows from an integral of (1.83) over the

volume V and takes the form

d(L
méca

+ L

EM

)

dt
= �

Z

S

n̂ · KdS , (1.86)

where the right-hand side follows from an application of the Gauss’ theorem.

All conservation laws found in this chapter can be written in a single equation,

using a single object, the energy-momentum tensor. In order to define and use this

object we must first introduce the concepts and the notation of special relativity.

We will discuss this in chapter 2.

1.6.4 Momentum of localized field configurations

Consider a localized field configuration, that is, a collection of fields contained in

a finite region of space V that propagate as a function of time (see Figure 1.4).

We assume that there is only radiation, and in particular no particles or other

mechanical systems. In other words, we want to describe a localized momentum

of radiation with, by hypothesis, finite energy and momentum. For this purpose,

it will be useful to define the ‘center of energy’

hxi := 1

E

Z

V

xudV (1.87)

where E =
R
V

udV , i.e. the total energy, is conserved since we assume that
R
@V

S ·
n̂dS = 0. Of course this quantity corresponds to the center of energy of our pulse
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PEM,v

V
Z

�V
S · n̂dS = 0

Figure 1.4: Localized configuration of electric and magnetic fields. The volume V
at each instant contains all the fields, and consequently the integral of Poynting’s
vector on the @V is zero.

of radiation and thus serves as a good description of its motion. According to

Poynting’s theorem(1.76) one has

E
dhxi
dt

= E

⌧
@x

@t

�
+

Z

V

x

@u

@t
dV

= E

⌧
@x

@t

�
�

Z

V

x(r · S)dV

= E

⌧
@x

@t

�
�

Z

V

SdV . (1.88)

The last equality results from the integration by parts of
R
V

x(r ·S)dV which leads

us to evaluate the term

[(rx) · S]
i

! @x
j

@x
i

S
i

= �
ij

S
j

= S
i

(1.89)

Technical aside: here we see an example in which it is obviously much simpler

to use component notation. Indeed, the term rx is the dyadic with components
@xi
@xj

.
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By using (1.75), the last part of the equation (1.88) can be expressed as

E

c2

⌧
@x

@t

�
=

Z

V

p

EM

dV = P

EM

. (1.90)

Yet the left hand side can be interpreted as the propagation velocity of the radiation

momentum (times E/c2). Yet the left part can be interpreted as the propagation

velocity of the pulse of radiation

P

EM

=
E

c2
hvi (1.91)

that is to say, the momentum of a pulse of electromagnetic radiation is equal to

the product of E/c2 times the momentum speed.


