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Ultra-Relativistic Effects 
in Laser – Plasma Interaction

Quiver electron energy becomes larger than mec2 when the 
dimensionless amplitude of the laser pulse is greater than  
unity: a0=eE0/mewc>1 . The electron energy scales as 
E = mec2 a0

2/2.
This corresponds for 1μm laser wavelength to the intensity 
above 1.35ä1018W/cm2. Recently Bahk, et al., Opt. Lett. 29, 
2837 (2004), reported the experimental demonstration of 
I=1022W/cm2.
The ELI will achieve even high intensity. 
For such intense laser the nonlinear plasma electrodynamics 
becomes of the key importance with charged particle 
(electron and ion) acceleration, laser pulse shortening and its 
frequency upshifting.



Laser Accelerators of Charged Particles

A. Electron acceleration in the wake wave left in a tenuous 
plasma behind the ultra-short laser pulse, by the Laser 
Wake Field Acceleration (LWFA) mechanism or/and direct 
electron acceleration by the laser field.

B. Ion acceleration in the regimes of strong electric charge 
separation (when the electrons accelerated by the laser 
radiation leave the irradiated by the laser pulse region) and 
by the Radiation Pressure Dominated Acceleration (RPDA)
mechanism when the ions are trapped inside the plasma 
cloud, which is accelerated by the light pressure.



Laser Pulse Shortening and Inensification
during Nonlinear Laser-Plasma Interaction

A. Laser pulse shortening with its intensification and the 
frequency upshifting during interaction with nonlinear 
Langmuir waves in the Flying Mirror Light Intensification 
(FMLI) process. 



Extreme Intensity and Power Laser Radiation for Nonlinear 
Vacuum Probing

A. Electron-positron pair creation in vacuum.

B. Nonlinear refraction index due to vacuum polarization.



QED processes

Electron-positron pair generation; Bremsstrahlung; Inverse 
Compton Scattering; Trident process; Bethe-Heitler process
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We reach a limit when the nonlinear QED with the electron-
positron pair creation in the vacuum comes into play, at the critical 
QED electric field, which corresponds to so strong electric field 
that produces a work on the Compton length equal to mec2, i.e. 
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ELECTRON-POSITRON PAIR PRODUCTION BY 
FOCUSED ELECTROMAGNETIC PULSES

Pair production by single focused pulse: N. B. Narozhny,   
et al., Phys. Lett. A 330, 1 (2004).  Electron-positron pairs 
produced by focused laser pulse intensity two orders of 
magnitude less than critical ~1027 W/cm2

Pair production by oppositely directed focused laser 
pulses:  N. B. Narozhny, et al., JETP Lett., 80, 434 (2004). 
Pair production at intensities one-two orders of magnitude 
less than single focused pulse ~1026 W/cm2



Nonlinear QED Vacuum

In a strong EM field vacuum behaves similarly to a birefracting, 
i.e. anisotropic medium. This fact is known since papers 
published by Halpern (1933), and by Heisenberg & Euler 
(1936). After discovering the pulsars and with the emerging of 
the lasers able to generate relativistically strong EM fields, it 
becomes clear that the effects of vacuum polarization can be 
observed in cosmos and under laboratory conditions .

One of the most beautiful effects predicted by QED is photon-
photon scattering due to vacuum polarization. This process is 
described by the diagram: 
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Heisenberg-Euler Lagrangian

The intense laser light utilization for studies of nonlinear QED
vacuum were discussed by Aleksandrov, et al., (1985), 
Rozanov (1993,1998), Marklund and Shukla (2005) who 
considered theoretically a number of nonlinear processes: 
4-wave interactions,  induced focusing, etc.

Theoretical description of nonlinear QED vacuum in the limit
and               

is based on the Heisenberg-Euler Lagrangian

with                                     and  
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Interaction of two counter-propagating pulses is described by 
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for                              it is equal to

In order to approach the “nonlinear vacuum frontier” we must increase 
either the EM wave power or  decrease its wavelength.

There is no self-focusing of the plane EM wave because both the

invariants,                               and                  , vanish
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Wake Waves

Kelvin Ship Waves
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Wake-Wave-Breaking can be destructive or it can develop in a gradual 
(gentle), i.e. in a controllable way, which, in the case of the wake wave, 
provides a mechanism for the electron injection into the acceleration 
phase. 
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3D relativistically strong wake wave has 
a paraboloidal form
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Paraboloidal Form of the Wake Wave
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Critical QED Electric Field

Intensity: 3 2
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Take an example of the wakefield excitation in 1018cm− 3plasma by the EM 
wave with a0= 15. This means the Lorentz factor associated with the 
phase velocity of the wakefield is related to ω pe / ω , as a0

1/2(ω pe/ω ), ≈125. 
Thus the laser pulse intensification of the order of 465 may be realized. 
The counter-propagating 1μm, 2× 1019 W /cm2 laser pulse is partially 
reflected and focused by the wakefield cusp. If the reflected beam 
diameter is 40µm, the final intensity is 5× 1028 W /cm2. 

We used the wavebreaking condition: γe ≈ a0
2. The driver pulse intensity 

should be sufficiently high and its beam diameter should be enough to 
give such a wide mirror, i.e. to be 4× 1020 W /cm2 with the diameter 40µm. 
Thus, the driver and source must carry 6 kJ and 30 J, respectively. 

Reflected intensity can approach the Schwinger limit. In this range of the 
electromagnetic field intensity it becomes possible to investigate such the 
fundamental problems of nowadays physics using already available laser, 
as e.g. the electron-positron pair creation in vacuum and the photon-
photon scattering WITH the ELI PARAMETERS.

Needed Laser Pulse Energies
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3D Particle-In-Cell simulation
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Laboratory Astrophysics                Laboratory Astrophysics with the 
High Power Lasers

Paticle Physics                Astro-Particle Physics

Astrophysics                    Laboratory Laser Physics

What can we learn from the Astrophysics of Cosmic Rays?

V. S. Berezinskii, S. V. Bulanov, V. L. Ginzburg, V. A. Dogiel, V. S. Ptuskin,  
Astrophysics of cosmic rays. 

(North Holland Publ.Co. Elsevier Sci. Publ. Amsterdam, 1990)

Laser-Plasma Interaction 
in the Radiation Dominated Regime 

(a0>316)



The Crab Pulsar, lies at the center of the Crab Nebula. The picture 
combines optical data (red) from the Hubble Space Telescope and 
x-ray images (blue) from the Chandra Observatory. The pulsar 
powers the x-ray and optical emission, accelerating charged 
particles and producing the x-rays. 

However these high energy electrons can not reach the Earth! 

PeV γ from Crab Nebula



Gamma-ray image, HESS telescopes, of the SNR RX J1713.7 2 
3946, and the gamma-ray spectrum (F. A. Aharonian, et al., Nature, 
432, 75 (2004)). 

Supernova Shock Wave Acceleration of Charged Particles

In solar flares the synchrotron losses 
become dominant for relativistic 
electrons with the energy above 1 GeV

Solar Cosmic Ray Acceleration during Magnetic 
Field Line Reconnection



In the circularly polarized EM the charged particle moves along a 
circle trajectory. We may borrow the expressions for the 
properties of the radiation emitted by the particle from the theory 
of synchrotron radiation. Equations of the electron motion are:

Where the radiation force  is given by
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Radiation Losses of Ultrarelativistic Electrons 
in the EM Wave – Plasma Interaction



In the relativistic limit the radiation losses are described by 
the formula,

which gives

For synchrotron losses  we have                           and
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In the case of the charged particle interaction with the electromagnetic 
wave  (circular polarization) the orbit radius and the particle momentum 
are                       
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and

It yields the emitted intensity
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PIC Simulation Method
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PIC Simulation Method
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become important at the electron energy, when the recoil due to the 
photon emission becomes of the order of the electron momentum, i.e. at
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Scaling of electron energy



Reflection of EM Wave at the Relativistic Mirror
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In RPDA the Laser pulse is confined inside the relativistic cocoon. Long 
laser pulse almost completely transforms its energy into the fast ion energy.
T. Esirkepov,  M. Borghesi, S.V. Bulanov, G. Mourou, and T. Tajima, 
Phys. Rev. Lett. 92, 175003 (2004).

Ion momentum depends on time as

Muti-GeV Ion Generation via Radiation Pressure Dominated 
Acceleration (RPDA) Mechanism
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Final ion energy
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Radiation pressure on the front part of the “cocoon” is equal to
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FLUENCE

Final ion energy depends on the laser pulse energy as           
Efficiency of the laser energy conversion into  the fast ion energy 
can be formally  up to 100%: 30 KJ laser pulse can accelerate 
1012 protons up to the energy equal to 200 GeV
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Laser heavy-ion collider 
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Compare with RHIC/BNL collider (Au+Au,100 GeV/nucleon) per day
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3D Particle3D Particle--InIn--Cell simulation (I)Cell simulation (I)Driver pulse: a=1.7
size=3λx6λx6λ, Gaussian
Ipeak=4⋅1018 W/cm2×(1μm/λ)2

Plasma:
ωpe/ ωd = 0.3
ne=1020cm-3×(1μm/λ)2

λ= 100dx, Npart = 1010, grid: 2200x1950x1920

HP Alpha Server SC ES40/227 (720 CPU)



3D Particle3D Particle--InIn--Cell simulation (II)Cell simulation (II)
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Driver pulse: a=1.7
size=3λx6λx6λ, Gaussian
Ipeak=4⋅1018 W/cm2×(1μm/λ)2

Reflecting pulse: 
a=0.05
size=6λx6λx6λ,
Gaussian, λs = 2λ
Ipeak=3.4⋅1015 

W/cm2×(1μm/λ)2

XZ,color: Ey XY,contour: Ez XY,color: Ex at z=0
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of EM wave (for λ = 1μm)

LaserLaser--Matter Interaction RegimesMatter Interaction Regimes

relativistic p+

Pr
es

en
t-

da
y

La
se

rs

need Liénard-
Wiechert poten-
tials description

need QED
description

We cons i d er i n t e r ac t ions here

e

e Ea
m cω

=

Classical ↔ Quantum

a=1



n e
/n

cr

Driver,
ωd

''sω
signal, ωs

Here are ½ of all electrons
(in the wake wave period)

Electron density cusp ∝ (x-xpeak )−2/3

In the moving frame we seek solution of this Eq.
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In the strongly nonlinear wake:

We find the reflection 
coefficient

Wave equation for the vector-potential      of  EM pulse
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Reflection at the “Flying Mirror”Reflection at the “Flying Mirror”
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