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1 Problem

Discuss methods of analysis of the electrodynamics of rotating systems in the practical limit
that the velocity v of any point in the system with respect to the (inertial) laboratory frame
is small compared to the speed of light c.

In particular, discuss whether the magnetic field B′ observed in the frame of the rotating
system is that same as the field B observed in the lab frame,

B′ = B, (1)

or whether a better approximation is,

B′ = B − v

c
× E, (2)

in Gaussian units, where E is the electric field in the lab frame, and v = ω × x = ω × x′ is
the velocity in the lab frame of an observer at rest at position x′ in the rotating frame (and
at time-dependent position x in the lab frame),1 whose angular velocity with respect to the
lab frame is ω (about the ω-axis through the origin).

2 Solution

2.1 Use of Special Relativity

In many examples of electrodynamics of rotating systems we are less interested in the fields
observed in the rotating frame than those in the lab frame. Yet, it may be that knowledge
of some aspects of the fields in the moving frame is helpful in reaching an understanding
of the fields in the lab frame. In this case, it is often convenient to characterize the fields
near some point in the moving frame via the use of Lorentz transformations between the
lab frame and the comoving, inertial (nonrotating) frame in which that point in the rotating
system is instantaneously at rest. For reviews of this approach, see [1, 2].

If the rotating system includes linear, isotropic media with (relative) permittivity ε and/or
(relative) permeability μ that differ from unity, the electrodynamic description should include
the “auxiliary” fields D = E + 4πP and H = B − 4πM, where P and M are the electric
and magnetic polarization densities. Solutions to Maxwell’s equations for B, D, E and H in
terms of the free charge density ρ and the conduction current J can only be obtained using

1As the velocity in the rotating frame of an observer at rest in that frame is zero, we do not write the
nonzero vector v = ω×x′ as v′ when considering it in the rotating frame. Rather, v′ will denote the velocity
of a moving observer/point in the rotating frame.
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knowledge of the constitutive equations that relate D and H to E and B. These relations are
simple in an inertial rest frame of the medium,

D = εE, B = μH (inertial rest frame), (3)

and in general take more complicated forms in frames in which the medium is in motion,
and in non inertial frames even if the medium is at rest there. For example, the constitutive
equations in an inertial frame in which the medium has velocity v with v � c can be written
as,

D = εE+ (εμ− 1)
v

c
×H, B = μH+ (εμ− 1)

v

c
×E,

⎛
⎝ medium with velocity v

w.r.t. an inertial frame

⎞
⎠ (4)

as first noted by Minkowski [3] (who gave the relations for any v < c).
The lab-frame constitutive equations (3) can also be expressed in terms of the polariza-

tions P and M as,

P =
ε − 1

4π
E +

(
ε − 1

μ

)
v

c
× B, M =

(
1 − 1

μ

)
B

4π
+ (εμ − 1)

v

c
×E. (5)

In a rotating system with nontrivial electrical media, such as the Wilson-Wilson exper-
iment [4, 5], the use of a comoving inertial frame leads us to understand that the rela-
tions (4)-(5) are valid in the lab frame in the small region where the medium has velocity
v.2

2.2 Electrodynamics in a Rotating Frame

If a description is desired of the electrodynamics of a rotating system according to an observer
at rest in that system, the methods of general relativity should be used.

One of the first analyses of electrodynamics in a rotating frame using general relativity
was made by Schiff [6]. See also [7]-[34]. Just as mechanical analyses in rotating frames
include “fictitious” forces, electrodynamic analysis in rotating frames include “fictitious”
charges and currents.3

Sections 2.2.1-2 present a “naive” derivation, due to Modesitt [18], of Schiff’s results
[6] for media with ε = 1 = μ. Section 2.2.3 presents a possible alternative description for
rotating electrodynamics that appears more compatible with special relativity, but which is
found in sec. 2.2.4 to be in contradiction with a thought experiment at order v/c. Section
2.2.5 summarizes a description of the electrodynamics of the nontrivial, rotating electrical
media. A long Appendix presents a “covariant” discussion of electrodynamics in a rotating
frame when ε and μ differ from unity.

2We shall find in Appendix A.5 that the constitutive equations have a slightly different form than eq. (3)
in the rotating frame.

3The adjective “fictitious” is misleading in that to an observer in the rotating frame the “fictitious”
forces and charge and current densities appear to be very “real”.

2



2.2.1 Fields Observed in a Rotating Frame

We desire the fields E′ and B′ seen by an observer at rest at x′ in a frame that rotates with
angular velocity ω with respect to the lab frame, where ω = ω ẑ is parallel to the angular
velocity ω of the rotating system in the lab frame. We restrict our attention to points x′

in the rotating frame such that their velocity v = ω × x with respect to the lab frame is
small compared to the speed of light. Then, we can largely ignore issues of whether rods and
clocks in the rotating frame measure the same lengths and time intervals as would similar
rods and clocks in the lab frame, and whether the speed of light is the same in both frames.
That is, we ignore Ehrenfest’s paradox [35].

We also restrict ourselves to the case that all media have unit (relative) permittivity ε
and unit (relative) permeability μ.

The (cylindrical) coordinates in the rotating frame are related to those in the lab frame
by,

r′ = r, φ′ = φ − ωt, z′ = z, t′ = t. (6)

This transformation preserves volume, so conservation of electric charge implies that the
transformation of charge and current density is,

ρ′ = ρ, J′ = J − ρv, (7)

where v is the velocity of the observer in the rotating frame with respect to the lab frame.
Force F is also invariant under the transformation (6). Thus, a charge q at rest in the
rotating frame experiences the Lorentz force,

F′ = qE′ = F = q
(
E +

v

c
×B

)
, (8)

and hence the transformation of the electric field is,

E′ = E +
v

c
× B. (9)

The force density on current J in a neutral conductor in the lab frame is J/c × B. For this
to equal the force density J′/c × B′ in the rotating frame, we find, using (7), that,

B′ = B, (10)

which clearly holds on the axis of rotation.4

4We shall see in sec. 2.2.2 that the transformations (7) and (9)-(10) lead to Schiff’s forms for Maxwell’s
equations in the rotating frame [6]. As remarked in sec. 4 of [36], these transformations do not leave the
form of Maxwell’s equations for B and E invariant under a Galilean transformation with v = constant. If
the transformations (9)-(10) are supplemented by D′ = D and H′ = H − v/c × D and the transformations
(7) are taken to apply to the free charge density and the conduction current, then Maxwell’s equations for B
and D, E and H are invariant under a Galilean transformation with velocity v. Using this generalization for
the velocity v of a rotating observer does not, however, lead to the generalization of Schiff’s analysis reported
in [29] as it implies that ∇′ ·D′ = 4πρ′; nor would it lead to an adequate explanation of the Wilson-Wilson
experiment [4] (where we must find that D = εE + (εμ − 1)v/c×H in the lab frame [5]) by supposing that
the constitutive equations for a linear, isotropic medium are D′ = εE′ and B′ = μH′ in the rotating frame.
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2.2.2 Maxwell’s Equation in a Rotating Frame

According to the transformation (6), intervals of distance, area and volume are measured to
be the same in both frames, so that,

∇ = ∇′. (11)

Hence, the lab-frame Maxwell equation ∇ · B transforms to,

∇′ · B′ = 0, (12)

recalling eq. (10). Similarly, the lab-frame Maxwell equation ∇ · E = 4πρ transforms to,

∇′ ·E′ = 4πρ′+∇′ ·
(v

c
× B′

)
= 4πρ′+B′ ·∇′×v

c
− v

c
·∇′×B′ = 4πρ′+

2ω · B′

c
−v

c
·∇′×B′,

(13)
using eqs. (7)-(10) and recalling that v = ω × x′, so ∇′ × v = ω(∇′ · x′)− (ω ·∇′)x′ = 2ω.

More care is required in dealing with transformations of time derivatives to the rotating
frame. We recall that the total lab-frame time derivative of a lab-frame vector field A
according to an observer with velocity v in the lab is given by the convective derivative,

dA

dt
=

∂A

∂t
+ (v · ∇)A. (14)

Similarly, if the observer has velocity v′ in the rotating frame, the total time derivative in
that frame is,

dA

dt′
=

∂A

∂t′
+ (v′ · ∇′)A. (15)

These two total time derivative are related by,

dA

dt
=

dA

dt′
+ ω × A. (16)

For an observer at rest in the rotating frame, v′ = 0, while v = ω × x in the lab frame, so
that,

dA

dt′
=

∂A

∂t′
, (17)

and eqs. (14) and (16)-(17) can be combined to give,5

∂A

∂t
=

∂A

∂t′
+ ω × A − (v · ∇)A. (18)

A useful vector facts is that,

∇ · v = ∇ · (ω × x) = −ω · ∇× x = 0. (19)

In rectangular coordinates, but not in cylindrical or spherical coordinates, we can also write,

ω × A = ω × (A · ∇)x = (A ·∇)(ω × x) = (A · ∇)v, (20)

5A subtle issue here is that the vector A which appears in the term ∂A/∂t′ is not the transform A′ of
lab-frame vector A to the rotating frame; rather it is still the lab-frame vector A.
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and hence (in rectangular coordinates only),

∇ × (v × A) = v(∇ · A) − A(∇ · v) + (A · ∇)v − (v · ∇)A

= v(∇ · A) + ω × A− (v · ∇)A. (21)

Using eq. (21) in (18), we have (in rectangular coordinates only),

∂A

∂t
+ v(∇ · A) =

∂A

∂t′
+ ∇ × (v × A). (22)

A special case is that A = v = ω × x (for which ∂v/∂t′ = 0 = ∂v/∂t).
Thus, the partial time derivatives of the magnetic field B are related by,

∂B

∂t
=

∂B

∂t′
+ ∇ × (v × B) =

∂B′

∂t′
+ ∇′ × (v × B′). (23)

Faraday’s law can now be transformed as,

∇ × E = ∇′ ×
(
E′ − v

c
× B′

)
= −1

c

∂B

∂t
= −1

c

∂B′

∂t′
−∇′ ×

(v

c
× B′

)
, (24)

which simplifies to,

∇′ × E′ = −1

c

∂B′

∂t′
. (25)

The partial time derivative of the electric field E = E′ − v/c × B′, where ∇ · E = 4πρ,
is, according to eq. (22),

∂E

∂t
+ 4πρ v =

∂E

∂t′
+ ∇ × (v × E) =

∂E′

∂t′
− v

c
× ∂B′

∂t′
+ ∇′ ×

[
v ×

(
E′ − v

c
×B′

)]
. (26)

Using this, and recalling from eq. (7) that J = J′ + ρ v, the fourth Maxwell equation
transforms as,

∇×B = ∇′×B′ =
4π

c
J+

1

c

∂E

∂t
=

4π

c
J′ +

1

c

∂E′

∂t′
− v

c2
× ∂B′

∂t′
+∇′ ×

[v
c
×
(
E′ − v

c
× B′

)]
.

(27)
Maxwell’s equations (12)-(13), (25) and (27) in the rotating frame are,

∇′ · E′ = 4πρ′ +
2ω · B′

c
− v

c
· ∇′ × B′, (28)

∇′ × E′ = −1

c

∂B′

∂t′
, (29)

∇′ · B′ = 0, (30)

∇′ × B′ =
4π

c
J′ +

1

c

∂E′

∂t′
− v

c2
× ∂B′

∂t′
+ ∇′ ×

[v
c
×
(
E′ − v

c
× B′

)]
, (31)

which are the forms given by Schiff [6].
In practical rotating systems, terms in v2/c2 are negligible, so eq. (31) simplifies slightly

to,

∇′ ×
(
B′ − v

c
×E′

)
≈ 4π

c
J′ +

1

c

∂E′

∂t′
− v

c2
× ∂B′

∂t′
. (32)

Using this in eq. (28) we have, to order v/c,

∇′ · E′ ≈ 4π

(
ρ′ − v · J′

c2

)
+

2ω · B′

c
− v

c2
· ∂E′

∂t′
. (33)
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2.2.3 Another Description of Electrodynamics in the Rotating Frame

The forms (32)-(33) suggest that it might be better to regard the transformations of the
charge and current densities and of the fields from the lab frame to the rotating frame as,

ρ� = ρ − v · J
c2

, J� = J − ρv, (34)

and,

E� = E +
v

c
× B, B� = B − v

c
× E, (35)

which we recognize as the low-velocity forms of the Lorentz transformations from the lab
frame to an inertial frame with velocity v with respect to the lab frame.6,7 Then, to order
v/c,

ρ� = ρ′ − v · J′

c2
, J� = J′, E� = E′ B� = B′ − v

c
× E′. (36)

If we also write the time and space derivatives in the rotating frame as ∇� and ∂/∂t�, then
Maxwell’s equations (29)-(30) and (32)-(33) in the rotating frame can be written to order
v/c as,

∇� · E� = 4πρ� +
2ω · B�

c
− v

c2
· ∂E�

∂t�
, (37)

∇� × E� = −1

c

∂

∂t�

(
B� +

v

c
× E�

)
, (38)

∇� · B� = ∇� · v

c
× E� =

2ω · E�

c
− v

c
· ∇� × E� =

2ω · E�

c
+

v

c2
· ∂B�

∂t�
, (39)

∇� ×B� =
4π

c
J� +

1

c

∂E�

∂t�
− v

c2
× ∂B�

∂t�
. (40)

These forms have been advocated by Irvine [13].

2.2.4 Does a Rotating Observer Find B′ = B or B − v/c× E?

We use a thought experiment to show that the relation B′ = B for the magnetic field
according to an observer in a rotating frame is more consistent than B′ = B − v/c × E.

A parallel-plate capacitor with circular plates is at rest in the lab, and charged up to
create electric field E ≈ 4πσ ẑ inside the capacitor, where ∓σ is the surface-charge density
on the plates, and ẑ is along the symmetry axis of the capacitor. There is no magnetic field
in the lab.

A (dielectric) rotating platform is placed between the plates of the capacitor and rotates
with angular velocity ω = ω ẑ about the symmetry axis of the capacitor. An observer
at rest on the rotating platform should find magnetic field B′ = 0 according to Schiff’s

6The transformations (34)-(35) do not correspond to any Galilean limit of electrodynamics, as discussed
in [36]. However, (as also noted in [36]) electromagnetic waves do not exist in any Galilean approximation,
so the forms (34)-(35), which preserve the invariance of E2 − B2 to order v/c, might be preferred on this
basis.

7The Lorentz force is invariant under a low-velocity Lorentz transformation: q(E� + v�
q/c × B�) =

q(E + vq/c ×B) using eq. (35) and v�
q = vq − v.
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transformation (10),8 but the magnetic field inside the capacitor should be B� = −v/c×E =
ωEr r̂/c (in cylindrical coordinates) according to eq. (36). In both prescriptions the electric
field in the rotating frame is the same as that in the lab, E = E′ = E�.

Consider an electron of charge e that is released from rest in the lab on the upper plate
of the capacitor. The electron accelerates straight downwards in the lab.

In the rotating frame, the electron has uniform circular motion in the plane of the plates,
as well as downwards acceleration.

This motion is consistent with Schiff’s view that there is no magnetic field in the rotating
frame.

In view of sec. 2.2.3, the downward velocity, v�
z of the electron combines with the radial

magnetic field B� to give an azimuthal component of the Lorentz force, Fφ = ev�
zB

�/c =
ev�

zωrE/c2. While ωr � c, we do not require that v�
z � c, since the voltage between the

plates could be, say, 1 million volts, so that v�
z ≈ c as the electron nears the lower plate.

Then, Fφ can be of order eE(ωr/c), which is not negligible. As a result, the electron’s
azimuthal velocity would not maintain the expected constant value of −ωr.

Thus, there is an inconsistency at order v/c in the description according to sec. 2.2.3,
which argues that Schiff’s formulation is the more “realistic”, despite the appearance of
“fictitious” currents.

We shall see in the Appendix that Schiff’s forms correspond to use of the covariant
electromagnetic field tensors, while the forms B� = B−v/c×E (together with E� = E) are
components of the contravariant field tensor in the rotating frame, for which the form of the
Lorentz force is altered slightly from its familiar form. Consistent dynamics can be achieved
with these forms in the rotating frame by introduction of a “fictitious” term in the Lorentz
force law, as discussed in sec. A.4.

2.2.5 Summary of Electrodynamics in a Rotating Frame

For reference, we reproduce the principles of electrodynamics in the frame of a slowly rotating
medium where ε and μ differ from unity.9 These relations are derived in the Appendix, noting
that the electromagnetic fields in the rotating frame summarized below are the covariant
fields, the Lorentz force vector is the covariant force vector, but the velocity vector v′ is the
contravariant velocity and the charge and current densities ρ′ and J′ are the contravariant
components of the 4-current. Extreme care is required when making a “covariant” analysis
in the rotating frame, because, for example, a particle at rest in the rotating frame is to be
described as having a nonzero covariant 3-velocity (sec. A.3.1), and use of the contravariant
derivative operator does not lead to meaningful physics relations (sec. A.3.4).

The (cylindrical) coordinate transformation is,

r′ = r, φ′ = φ − ωt, z′ = z, t′ = t, (41)

8The capacitor plates rotate with angular velocity −ω with respect to the rotating frame, where the
rotating charge density ρ′ = ρ leads to a surface current J′ = −ρ′ v according to Schiff. However, there are
also “fictitious” currents in Schiff’s prescription, given by ∇′ × (v × E′)/4π = (∇′ · E′)v/4π = ρ′ v = −J′,
so the total current is zero and B′ = 0.

9This case is discussed most thoroughly by Ridgely [29, 31], but primarily for the interesting limit of
steady charge and current distributions.
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where quantities in observed in the rotating frame are labeled with a ′. The transformations
of charge and current density are,

ρ′ = ρ, J′ = J − ρv, (42)

where v (v � c) is the velocity with respect to the lab frame of the observer in the rotating
frame. The transformations of the electromagnetic fields are,

B′ = B, D′ = D +
v

c
× H, E′ = E +

v

c
× B, H′ = H. (43)

The transformations of the electric and magnetic polarizations are,

P′ = P− v

c
× M, M′ = M, (44)

if we regard these polarizations as defined by D′ = E′ + 4πP′ and B′ = H′ + 4πM′.
The lab-frame bound charge and current densities ρbound = −∇ ·P and Jbound = ∂P/∂t+

c∇ × M transform to,10

ρ′
bound = −∇′ · P′ − 2ω · M′

c
+

v

c
· ∇′ × M′, (45)

J′
bound =

∂P′

∂t′
+ c∇′ × M′ + v(∇′ · P′) +

v

c
× ∂M′

∂t′
+ (P′ · ∇)v − (v · ∇)P′, (46)

Force F is invariant under the transformation (41). In particular, a charge q with velocity
vq in the lab frame experiences a Lorentz force in the rotating frame given by,

F′ = q

(
E′ +

v′
q

c
× B′

)
= q

(
E +

vq

c
× B

)
= F, (47)

where v′
q = vq −v. Similarly, the Lorentz force density f ′ on charge and current densities in

the rotating frame is,

f ′ = ρ′E′ +
J′

c
× B′ = (ρ′

free + ρ′
bound) E′ +

J′
free + J′

bound

c
× B′. (48)

Maxwell’s equations in the rotating frame can be written as,

∇′ · B′ = 0, (49)

∇′ · D′ = 4πρ′
free,total = 4π (ρ′

free + ρ′
other) , (50)

∇′ × E′ +
∂B′

∂ct′
= 0, (51)

∇′ × H′ − ∂D′

∂ct′
=

4π

c
J′

free,total =
4π

c
(J′

free + J′
other) , (52)

10The term −2ω · M′/c is in effect a charge density −∇′ · P′
mag associated with an electric polarization

density P′
mag that appears along with magnetization in a rotating frame [37].
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where ρ′
free = ρfree and J′

free = Jfree − ρfreev are the free charge and current densities, and the
“other” charge and current densities that appear to an observer in the rotating frame are,

ρ′
other = −v · J′

free

c2
+

ω · H′

2πc
− v

4πc
· ∂D′

∂ct′
, (53)

J′
other = ρ′

freev +

(
D′

4π
· ∇
)

v − (v · ∇)
D′

4π
− v

4πc
× ∂H′

∂t′
. (54)

The “other” charge and current distributions are sometimes called “fictitious” [6], but we
find this term misleading.11 For an example with an “other” charge density ω · H′/2πc in
the rotating frame, see [39].

Maxwell’s equations can also be expressed only in terms of the fields E′ and B′ and
charge and current densities associated with free charges as well as with electric and magnetic
polarization,

∇′ · E′ = 4πρ′
total, (55)

and,

∇′ × B′ − ∂E′

∂ct′
=

4π

c
J′

total, (56)

where,

ρ′
total = ρ′

free −
v

c2
· J′

free − ∇′ · P′ +
ω · H′

2πc
− v

4πc
· ∂D′

∂ct′
= ρ′

free,total − ∇′ · P′

= ρ′
free + ρ′

bound + ρ′
more , (57)

ρ′
more = − v

c2
·
(
J′

free +
∂P′

∂t′
+ c∇′ × M′

)
+

ω · B′

2πc
− v

4πc
· ∂E′

∂ct′
, (58)

J′
total = J′

free +
∂P′

∂t′
+ c∇′ × M′ + ρ′

freev +

(
D′

4π
· ∇
)

v − (v · ∇)
D′

4π
− v

4πc
× ∂H′

∂t′

= J′
free,total +

∂P′

∂t′
+ c∇′ ×M′

= J′
free + J′

bound + J′
more , (59)

J′
more = v

(
ρ′

free − ∇′ · P′ − 2ω · M′

c
+

v

c
· ∇′ ×M′

)

+

(
E′

4π
· ∇
)

v − (v · ∇)
e′

4π
− v

4πc
× ∂B′

∂t′
. (60)

The contribution of the polarization densities to the source terms in Maxwell’s equations in
much more complex in the rotating frame than in the lab frame.12 Because of the “other”
source terms that depend on the fields in the rotating frame, Maxwell’s equations cannot be
solved directly in this frame. Rather, an iterative approach is required in general.

11According to Einstein [38]: “Fields which can be transformed into each other by such transformations
[as eq. (41)] describe the same real situation.” In particular, the “fictitious” sources (53)-(54) are an aspect
of a description by an observer in the rotating frame of the same physical situation as observed in the lab
frame.

12Neglect of this complexity can lead to apparent paradoxes involving rotating magnetic media [12, 27].
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The constitutive equations for a linear, isotropic medium at rest in the rotating frame
are,13

D′ = εE′, B′ = μH′ − (εμ − 1)
v

c
× E′, (61)

in the rotating frame, and,

D = εE + (εμ − 1)
v

c
× H, B = μH − (εμ − 1)

v

c
× E, (62)

in the lab frame, where ε and μ are the permittivity and permeability of the medium when
at rest in an inertial frame. The lab-frame constitutive equations (62) are the same as for a
nonrotating medium that moves with constant velocity v with respect to the lab frame.

We can also write the constitutive equations (61) for a linear, isotropic medium in terms
of the fields B′, E′, P′ and M′ by noting that D′ = E′ + 4πP′ and H′ = B′ − 4πM′, so that,

P′ =
ε − 1

4π
E′,

M′ =

(
1 − 1

μ

)
B′

4π
−
(

ε − 1

μ

)
v

c
× E′

4π
=

(
1 − 1

μ

)
B′

4π
− εμ − 1

μ(ε− 1)

v

c
× P′. (63)

Similarly, the constitutive equations (62) in the lab frame can be written to order v/c as,

P =
ε − 1

4π
E +

(
ε − 1

μ

)
v

c
× B

4π
=

ε − 1

4π
E +

εμ − 1

μ − 1

v

c
× M,

M =

(
1 − 1

μ

)
B

4π
−
(

ε − 1

μ

)
v

c
× E

4π
=

(
1 − 1

μ

)
B

4π
− εμ − 1

μ(ε− 1)

v

c
× P. (64)

Ohm’s law for the conduction current JC has the same form for a medium with velocity
u′ relative to the rotating frame as it does for a medium with velocity u relative to the lab
frame,

J′
C = σ

(
E′ +

u′

c
× B′

)
= σ

(
E +

u

c
× B

)
= JC, (65)

where σ is the electric conductivity of a medium at rest in an inertial frame.

A Appendix: Electrodynamics Using Covariant and

Contravariant Vectors and Tensors

In the preceding we have used only vector notation when discussing electrodynamics, even
though it is more proper to consider the vector fields B and E as part of a field tensor
F. Furthermore, one should distinguish between covariant and contravariant vectors and
tensors.

In an inertial frame, the distinction between covariant and contravariant vectors is rather
trivial, so that one can neglect this distinction and then speak of the field vectors B and
E without confusion. However, the metric tensor is not diagonal in a rotating frame, so

13Different constitutive equations hold for a rotating permanent magnet [40] or for a rotating electret.
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that greater care should be made in distinguishing covariant and contravariant vectors and
tensors [26, 31].

The summary of electrodynamics in a rotating frame given in sec. 2.2.5 does not mention
covariant and contravariant components, and simply uses a ′ to indicate quantities observed
in the rotating frame. As shown in this Appendix, it is consistent to make such a summary
if one obeys the following conventions,

1. All components of electromagnetic field vectors B′, D′, E′, H′, P′ and M′ that appear
in sec.2.2.5 are components of their respective covariant tensors.

2. The gradient operator ∇′ is part of the covariant 4-derivative operator.

3. The velocity u′, and the charge and current densities ρ′, ρ′
free, J′ and J′

free are con-
travariant components of their respective contravariant 4-vectors.14

4. The bound charge and current densities ρ′
bound and J′

bound are representations of their
contravariant 4-vectors in terms of covariant components of the relevant electromag-
netic fields.

These conventions are relatively straightforward except for item 4, which is needed so that
charge conservation, ∇′·J′+∂ρ′/∂t′ = 0, holds for bound as well was for free charge, while ob-
serving the convention that electromagnetic fields are represented by covariant components.
For examples exhibiting charge conservation in rotating media, see [5, 40].

A.1 Notation

We will indicate a contravariant 4-vector or 4-tensor by indices that are Greek superscripts,
and covariant 4-vector or 4-tensor by indices that are Greek subscripts.15 The components
of contravariant 4-vectors and tensors (other than the position 4-vector xα) will have a ˜
above the symbol. Quantities measured in the rotating frame will be designated with a
′. As before, we only consider velocities small compared to the speed of light. The vector
v = ω × x is the velocity in the (inertial) lab frame of a point at position x that is at rest
in the rotating frame, whose angular velocity is ω = ω ẑ with respect to the lab frame.

The metric tensor for rectangular coordinates in an inertial frame is written as,

gαβ = gαβ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (66)

where the Greek indices run from 0 to 3 (and we ignore the effect of gravity on electrody-
namics).

14In this Appendix, components of contravariant vectors and tensors will include a ˜ above the symbol.
15The notion of covariant and contravariant vectors and tensors arises from the character of their trans-

formations from one frame to another. We defer discussion of details of these transformations until sec. A.3.
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The contravariant position vector xα has components in the lab frame (x0, x1, x2, x3) =
(ct, x̃, ỹ, z̃) = (ct, x̃) [= (ct, x, y, z)], so the corresponding covariant position vector in the has
lab-frame components xa = gαβx

β = (ct,−x).
A particle with velocity u (u � c) in the lab frame has 4-velocity,

uα = (c, ũ) = (c,u) and uα = gαβuβ = (c,−u). (67)

Lab-frame charge density ρ and current density J are described by the 4-vectors,

Jα = (cρ̃, J̃) = (cρ,J) and Jα = (cρ,−J). (68)

The lab-frame electromagnetic fields B and E are described by the 4-tensors,

F αβ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −Ẽx −Ẽy −Ẽz

Ẽx 0 −B̃z B̃y

Ẽy B̃z 0 −B̃x

Ẽz −B̃y B̃x 0

⎞
⎟⎟⎟⎟⎟⎟⎠

and Fαβ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(69)
where B̃ = B and Ẽ = E, using F αβ = gαγgβδFγδ. The lab-frame electromagnetic fields
D̃ = D and H̃ = H are described by the 4-tensors,

Hαβ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −D̃x −D̃y −D̃z

D̃x 0 −H̃z H̃y

D̃y H̃z 0 −H̃x

D̃z −H̃y H̃x 0

⎞
⎟⎟⎟⎟⎟⎟⎠

and Hαβ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 Dx Dy Dz

−Dx 0 −Hz Hy

−Dy Hz 0 −Hx

−Dz −Hy Hx 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(70)
The lab-frame electric and magnetic polarization densities P̃ = P and M̃ = M are described
by the 4-tensors,

Mαβ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 P̃x P̃y P̃z

−P̃x 0 −M̃z M̃y

−P̃y M̃z 0 −M̃x

−P̃z −M̃y M̃x 0

⎞
⎟⎟⎟⎟⎟⎟⎠

and Mαβ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −Px −Py −Pz

Px 0 −Mz My

Py Mz 0 −Mx

Pz −My Mx 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(71)
such that,

Hαβ = F αβ − 4πMαβ and Hαβ = Fαβ − 4πMαβ. (72)

A.2 Electrodynamics in an Inertial Frame

Electric charge is conserved, which can be expressed in terms of charge density and current
density as,

∂αJα = ∇̃ · J +
∂ρ

∂t
= 0 = ∂αJα = ∇ · J̃ +

∂ρ̃

∂t
, (73)
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where ∇̃ = ∇ and,

∂α =
∂

∂xα

=

(
∂

∂ct
,−∇̃

)
and ∂α =

∂

∂xα

=

(
∂

∂ct
, ∇
)

. (74)

The Lorentz force f on a charge q that moves with velocity u in the lab frame is described
by the 4-vectors,

fα = (f̃ · u/c, f̃ ) = qF αβuβ = q(Ẽ · u/c, Ẽ + u/c × B̃), (75)

fα = (f · ũ/c,−f) = qFαβu
β = q(E · ũ/c,−E − ũ/c × B). (76)

In inertial frames we can ignore the fact that the Lorentz force vector is composed of a mix
of covariant and contravariant vectors.

The two Maxwell’s equations for B and E that involve the total charge density ρ and the
total current density J,

∇ · Ẽ = 4πρ̃ = 4πρ = ∇̃ · E, ∇ × B̃ − ∂Ẽ

∂ct
=

4π

c
J̃ =

4π

c
J = ∇̃ × B − ∂E

∂ct
, (77)

can be written as,16

∂αF αβ =
4π

c
Jβ or ∂αFαβ =

4π

c
Jβ , (79)

while the other two Maxwell’s equations,

∇ · B̃ = ∇̃ · B = 0, ∇× Ẽ +
∂B̃

∂ct
= ∇̃ × E +

∂B

∂ct
= 0, (80)

can be written as
∂αFαβ = 0 or ∂αFαβ = 0, (81)

where the dual of an antisymmetric, covariant tensor Fαβ is the contravariant tensor F αβ

defined by,

Fαβ =
1

2
εαβγδFγδ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −Bx −By −Bz

Bx 0 Ez −Ey

By −Ez 0 Ex

Bz Ey −Ex 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(82)

when the components of tensor Fαβ are defined as in eq. (69), and where,

εαβγδ = −εαβγδ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+1 if αβγδ is an even permutation of 0123,

−1 if αβγδ is an odd permutation of 0123,

0 if any two indices are equal.

(83)

16The field tensors can be derived from 4-potentials according to

F αβ = ∂αAβ − ∂βAα, Aα = (Ṽ , Ã) = (V, A), Fαβ = ∂αAβ − ∂βAα, Aα = (V,−A). (78)
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Similarly, we define,

Fαβ =
1

2
εαβγδF

γδ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 B̃x B̃y B̃z

−B̃x 0 Ẽz −Ẽy

−B̃y −Ẽz 0 Ẽx

−B̃z Ẽy −Ẽx 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (84)

The components of the dual tensor Fαβ can be obtained from those of F αβ by the duality
transformation,

Ẽ → B, B̃ → −E (F αβ → Fαβ), (85)

while those of the dual tensor Fαβ can be obtained from those of Fαβ by the transformation,

E → B̃, B → −Ẽ (Fαβ → Fαβ). (86)

If ρfree and Jfree represent only the free charge density and the conduction current, then
the Maxwell equations,

∇ · D̃ = 4πρ̃free = 4πρfree = ∇̃ ·D, ∇× H̃− ∂D̃

∂ct
=

4π

c
J̃ =

4π

c
J = ∇̃×H− ∂D

∂ct
, (87)

can be written as,

∂αHαβ =
4π

c
Jβ

free or ∂αHαβ =
4π

c
Jfreeβ . (88)

It is not obvious from the preceding how the alternative forms of Maxwell’s equations
(81) and (88) should be paired. However, once we consider transformations to noninertial
frames it becomes clear that the pairing must be,

∂αFαβ = 0 and ∂αHαβ =
4π

c
Jfreeβ, (89)

or,

∂αFαβ = 0 and ∂αHαβ =
4π

c
Jβ

free. (90)

This has the implication that when Maxwell’s equations are expressed in terms of covariant
and contravariant 3-vectors B, D, E and H and B̃, D̃, Ẽ and H̃ they have the mixed forms,

∇̃ · D = 4πρfree, ∇̃× Ẽ +
∂B̃

∂ct
= 0, ∇̃ · B̃ = 0, ∇̃× H − ∂D

∂ct
=

4π

c
Jfree, (91)

or,

∇ · D̃ = 4πρ̃free, ∇× E +
∂B

∂ct
= 0, ∇ · B = 0, ∇× H̃ − ∂D̃

∂ct
=

4π

c
J̃free. (92)

Since there is no difference between covariant and contravariant components in inertial
frames, the mixing seen in eqs. (91)-(92) goes unnoticed there.
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The relation between the total and free charge and current densities can be written as,

ρ̃ = ρ̃free − ∇ · P̃, J̃ = J̃free +
∂P̃

∂t
+ c∇ × M̃,

or ρ = ρfree − ∇̃ · P, J = Jfree +
∂P

∂t
+ c ∇̃ ×M. (93)

or in 4-vector form as,

Jβ = Jβ
free + c ∂αMαβ or Jβ = Jfreeβ + c ∂αMαβ , (94)

The constitutive equations,

D = D̃ = εẼ = εE and B = B̃ = μH̃ = μH, (95)

hold only in an inertial rest frame of a linear, isotropic medium. If the medium has velocity
u (u � c) with respect to the (inertial) lab frame, the constitutive equations in the lab frame
are,

D̃ +
v

c
× H̃ = ε

(
Ẽ +

v

c
× B̃

)
and B̃ − v

c
× Ẽ = μ

(
H̃− v

c
× D̃

)
, (96)

or D +
v

c
× H = ε

(
E +

v

c
× B

)
and B − v

c
× E = μ

(
H− v

c
×D

)
, (97)

which can be expressed in tensor form as,

Hαβuβ = εFαβu
β and Fαβu

β = μHαβu
β, (98)

or Hαβuβ = εF αβuβ and Fαβuβ = μHαβuβ, (99)

using the dual tensors introduced in eqs. (84)-(86), as first noted by Minkowski [3]. The
pairings in eqs. (98)-(99) follow those made for Maxwell’s equations (89)-(90).

In the present case of a medium that is at rest in a rotating frame, the constitutive
equations (96)-(97) hold in the lab frame, since these relations summarize physical effects
in a very small region about the point of observation, for which a Lorentz transformation
between the lab frame and the comoving local inertial frame of a point at rest in the rotating
frame provides an adequate description. A remaining issue is the form of the constitutive
equations in the noninertial rotating frame. This technical issue is not relevant to an analysis
of quantities in the lab frame, as observed, for example, in the Wilson-Wilson experiment
[4, 5].

A third constitutive equation is Ohm’s law for the conduction current JC , which has the
form,

JC = σE (100)

in the rest frame of a medium with DC conductivity σ. We consider only the case of
conduction currents in a neutral medium, so that their is no net charge density associated
with the conduction current.17 Then, it is consistent to write Ohm’s law in a form similar
to that of the Lorentz force law (76),

Jα
C = (J̃C · u/c, J̃C) = σF αβuβ = σ(Ẽ · u/c, Ẽ + u/c × B̃), (101)

JCα = (JC · ũ/c,−JC) = σFαβu
β = σ(E · ũ/c,−E − ũ/c ×B), (102)

17See prob. 11.16 of [41] for the case when convection currents are present.
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where u is the velocity of the conductor relative to the lab frame. Thus, the conduction
current is,

J̃C = σ
(
Ẽ +

u

c
× B̃

)
= σ

(
E +

ũ

c
× B

)
= JC (103)

in a moving conductor. There is little physical significance to the time components σẼ ·u/c
and σE · ũ/c in the case of a moving conductor. For a more general discussion, see [42].

A.3 Transformations from Lab to Rotating Frame

The (cylindrical) coordinates in the rotating frame (denoted with a ′) are related to those in
the lab frame by,

t′ = t, r′ = r, φ′ = φ − ωt, z′ = z, (104)

so the contravariant, rectangular coordinate transformation is,

x′0 = x0, x′1 = x1 cos
ω

c
x0 + x2 sin

ω

c
x0, x′2 = −x1 sin

ω

c
x0 + x2 cos

ω

c
x0, x′3 = x3,

(105)
whose inverse is,

x0 = x′0, x1 = x′1 cos
ω

c
x′0 − x′2 sin

ω

c
x′0, x2 = x′1 sin

ω

c
x′0 + x′2 cos

ω

c
x′0, x3 = x′3.

(106)
A contravariant 4-vector Aα transforms according to,

A′α =
∂x′α

∂xβ
Aβ, (107)

while a covariant 4-vector Aα transforms according to,

A′
α =

∂xβ

∂x′α Aβ. (108)

When writing ∂x′α/∂xβ and ∂xβ/∂x′α as matrices (and Aα and Aα as column vectors),
indices α and β label the rows and columns, respectively.

A.3.1 Covariant Vectors and Tensors in the Rotating Frame

To transform covariant vectors and tensors from the lab frame to the rotating frame we use,

∂xβ

∂x′α =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 vx

c
vy

c
0

0 cos ω
c
x0 − sin ω

c
x0 0

0 sin ω
c
x0 cos ω

c
x0 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 vx

c
vy

c
0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 cos ω
c
x0 − sin ω

c
x0 0

0 sin ω
c
x0 cos ω

c
x0 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(109)
where v = (vx, vy, 0) = (−ωy, ωx, 0) is the velocity in the lab frame of the point x′ in the
rotating frame. The transformation (109) is composed of a rotation about the z axis and
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another transformation that mixes space and time components. When describing 3-vectors,
a rotation of the coordinate axes can be said to change the components of that vector, but
not the direction and magnitude of that vector with respect to the “fixed stars”. If we accept
this view, then it suffices to describe the transformation from the lab frame to the rotating
frame by only the first of the two transformations in the last form of eq. (109),

∂xβ

∂x′α

∣∣∣∣
NR

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 vx

c

vy

c
0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (110)

where the subscript NR, means that a nonrotating basis for 3-vectors is used in the rotating
frame.18

Using the form (110) in eq. (108), we find that the covariant 4-velocity uα = (c,−u)
transforms to,

u′
α = (c′,−u′) = (c(1 − u · v/c2),−u) = (c,−u), (111)

after ignoring the second-order term u · v/c2. The covariant speed of light in the rotating
frame remains c, but the covariant velocity u′ = u is unaffected by the transformation to
the rotating frame. This alerts us to the need for care in interpreting vector and tensor
quantities in the rotating frame. In particular, a particle at rest in the rotating frame has
lab-frame velocity v = ω×x, so the covariant velocity u′ “observed” in the rotating
frame of a particle at rest in that frame is nonzero!19

Similarly, the covariant 4-current density Jα = (cρ,−J) transforms to,

J ′
α = (cρ′,−J′) = (c(ρ − J · v/c2),−J). (112)

Thus, the covariant current density J′ = J is unaffected by the transformation to the rotating
frame, while the covariant charge density ρ′ = ρ−J·v/c2 follows that of a low-velocity Lorentz
transformation.20

The transformation of a covariant tensor Fαβ from the lab frame to the rotating frame
(with nonrotating basis) has the form,

F ′
αβ =

∂xγ

∂x′α

∣∣∣∣
NR

∂xδ

∂x′β

∣∣∣∣
NR

Fγδ. (113)

Applying this to the covariant electromagnetic tensors (69), (70) and (71) we find the co-
variant field vectors in the rotating frame to be,

E′ = E +
v

c
× B, B′ = B, (114)

18The transformation (110) is also NonRelativistic in that terms of order v2/c2 have been omitted.
19This author has no idea how a measurement could be made in the rotating frame of a particle at rest

in that frame so as to assign a nonzero velocity to that particle. Rather, it seems that the covariant velocity
u′ = u = (u− v)+ v in the rotating frame has a “fictitious” component equal to the velocity v of the point
of observation relative to the lab frame.

20This behavior is called the magnetic Galilean transformation in [36].
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D′ = D +
v

c
× H, H′ = H, (115)

and,

P′ = P− v

c
× M, M′ = M. (116)

A.3.2 Contravariant Vectors and Tensors in the Rotating Frame

We now have two methods to obtain the forms of contravariant vectors and tensors in the
rotating frame. We can use eq. (107) to go directly from the lab frame to the rotating frame,
once we have found the version of ∂x′α/∂xβ that applies to a nonrotating basis in the rotating
frame. Or, we can use the metric tensor g′ in the rotating frame (once we have identified
this) to go from covariant to contravariant vectors and tensors in that frame according to,

A′α = g′αβ
A′

β , F ′αβ
= g′αγ

g′βδ
F ′

γδ. (117)

For these two approaches to be consistent, we need that,

A′α = g′αβ
A′

β = g′αγ ∂xβ

∂x′γ

∣∣∣∣
NR

Aβ = g′αγ ∂xδ

∂x′γ

∣∣∣∣
NR

gδβA
β =

∂x′α

∂xβ

∣∣∣∣
NR

Aβ, (118)

i.e., that,
∂x′α

∂xβ

∣∣∣∣
NR

= g′αγ ∂xδ

∂x′γ

∣∣∣∣
NR

gδβ. (119)

Recalling eq. (105), we have that,

∂x′α

∂xβ
=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

v′x
c

cos ω
c
x0 sin ω

c
x0 0

v′y
c

− sin ω
c
x0 cos ω

c
x0 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

v′x
c

1 0 0
v′y
c

0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 cos ω
c
x0 sin ω

c
x0 0

0 − sin ω
c
x0 cos ω

c
x0 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(120)
where v′ = (v′

x, v
′
y, 0) = (ωy′,−ωx′, 0) is the velocity in the rotating frame of the point in

the lab frame whose present coordinates are x′ in the rotating frame. As before, we omit
the rotation so that vectors in the rotating frame are defined with respect to a nonrotating
basis. Then velocity v′ = −v, where as before v is the velocity of point x′ with respect to
the lab frame. Hence,

∂x′α

∂xβ

∣∣∣∣
NR

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

− vx

c
1 0 0

− vy

c
0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (121)

To identify the metric tensor g′ we recall eqs. (104)-(105) to write the invariant interval
as,

ds2 = d(x0)2 − d(x1)2 − d(x2)2 − d(x3)2 (122)

≈ d(x′0)2 − d(x′1)2 − d(x′2)2 − d(x′3)2 − 2
ωx′2

c
d(x′0)d(x′1) − 2

ωx′1

c
d(x′0)d(x′2),
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where we ignore a term of order ω2r2/c2.21 Thus, the (symmetric) metric tensor in the
rotating frame is,

g′
αβ = g′αβ ≈

⎛
⎜⎜⎜⎜⎜⎜⎝

1 − vx

c
− vy

c
0

− vx

c
−1 0 0

− vy

c
0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (123)

where we again write (ωx′2,−ωx′1) as (−vx,−vy).
22

As a check, we verify that,

g′αγ ∂xδ

∂x′γ

∣∣∣∣
NR

gδβ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 − vx

c
− vy

c
0

− vx

c
−1 0 0

− vy

c
0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

1 vx

c

vy

c
0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

− vx

c
1 0 0

− vy

c
0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

=
∂x′α

∂xβ

∣∣∣∣
NR

, (124)

on neglect of terms of order v2/c2.
Using the form (121) in eq. (107), we find that the contravariant 4-velocity uα = (c, ũ) =

(c,u) transforms to,

u′α = (c̃′, ũ′) = (c, ũ− v) = (c,u− v) = g′αβ
u′

β. (125)

The contravariant speed of light remains c, and the contravariant velocity ũ′ = u−v behaves
as expected for a low-velocity Lorentz transformation to the rotating frame. Thus, we might
feel that the contravariant velocity is of greater physical significance than the covariant
velocity u′ = u in the rotating frame.

Similarly, the contravariant 4-current density Jα = (cρ̃, J̃) = (cρ,J) transforms to,

J ′α = (cρ̃′, J̃′) = (cρ̃, J̃ − ρ̃v) = (cρ,J − ρv) = g′αβ
J ′

β. (126)

The the contravariant charge density ρ̃′ = ρ is unaffected by the transformation to the
rotating frame, while the contravariant current density J̃′ = J − ρv follows that of a low-
velocity Lorentz transformation.23

21By considering only radii where the velocity ωr is small compared to c we avoid difficulties such as
Ehrenfest’s paradox. For the latter, see [35].

22The determinant of g′ is unity, which excuses some glibness in the definition of the co- and contravariant
derivative operators in eq. (74).

23This behavior is called the electric Galilean transformation in [36].
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The transformation of a contravariant tensor F αβ from the lab frame to the rotating
frame (with nonrotating basis) has the form,

F ′αβ
=

∂x′α

∂xγ

∣∣∣∣
NR

∂x′β

∂xδ

∣∣∣∣∣
NR

F γδ. (127)

Applying this to the contravariant electromagnetic tensors (69), (70) and (71) we find the
contravariant field vectors in the rotating frame to be,

Ẽ′ = Ẽ = E, B̃′ = B̃ − v

c
× Ẽ = B − v

c
× E, (128)

D̃′ = D̃ = D, H̃′ = H̃− v

c
× D̃ = H − v

c
× D, (129)

and,

P̃′ = P̃ = P, M̃′ = M̃ +
v

c
× P̃ = M +

v

c
× P. (130)

A.3.3 Consistency of the Transformations of the Field Tensors F and F
When we apply the covariant transformation (113) to the covariant dual field tensor Fαβ

defined in eq. (84), whose components involve the contravariant 3-vectors B̃ and Ẽ, we
obtain,

B̃′ = B̃ − v

c
× Ẽ = B − v

c
× E, Ẽ′ = Ẽ = E, (131)

which is consistent with the results (128) of the contravariant transformation (127) of the
contravariant tensor F αβ of (69). Likewise, the contravariant transformation (127) of the
contravariant dual field tensor Fαβ defined in eq. (82) yields the same results (114),

B′ = B, E′ = E +
v

c
×B, (132)

as does the covariant transformation (113) of the covariant tensor Fαβ of (69).
Hence, it is consistent that the covariant dual tensor Fαβ is described in terms of the

contravariant fields B̃ and Ẽ of the contravariant field tensor F αβ , rather than in terms of
the covariant fields B and E of the covariant field tensor Fαβ.

The relations between the covariant and contravariant fields in the rotating frame follow
from eqs. (112), (114)-(116) and (126), (128)-(130) as,

B′ = B̃′ +
v

c
× Ẽ′, D′ = D̃′ +

v

c
× H̃′, E′ = Ẽ′ +

v

c
× B̃′, H′ = H̃′ +

v

c
× D̃′,

P′ = P̃′ − v

c
× M̃′, M′ = M̃′ − v

c
× P̃′, ρ′ = ρ̃′ − J̃′ · v

c2
, J′ = J̃′ + ρ̃′v, (133)

and,

B̃′ = B′ − v

c
× E′, D̃′ = D′ − v

c
× H′, Ẽ′ = E′ − v

c
× B′, H̃′ = H′ − v

c
× D′,

P̃′ = P′ +
v

c
× M′, M̃′ = M′ +

v

c
×P′, ρ̃′ = ρ′ +

J′ · v
c2

, J̃′ = J′ − ρ′v, (134)

to order v/c. These relations also follow from raising or lowering indices using the metric
tensor, F ′αβ = g′αγg′βδF ′

γδ, F ′
αβ = g′

αγg
′
βδF

′γδ, etc.
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A.3.4 The Derivative Operators ∂ ′
α and ∂ ′α in the Rotating Frame

If we regard the lab-frame derivative operators ∂ ′
α and ∂ ′α, defined in eq. (74), as 4-vectors

then we expect that their forms in the rotating frame could be written as,

∂ ′
α =

(
∂

∂ct′
, ∇′

)
=

(
∂

∂ct
+

v

c
· ∇, ∇

)
and ∂ ′α =

(
∂

∂ct′
,−∇̃′

)
=

(
∂

∂ct
,−∇− v

c

∂

∂ct

)
,

(135)
recalling the transformations (110) and (121). Thus, we are led to two different meanings of
the operator ∂/∂t′. To determine whether either of the operations ∂ ′

α and ∂ ′α is meaningful,
we consider whether they imply that charge is conserved in the rotating frame,

∂ ′
αJ ′α = ∇′ · J̃′ +

∂ρ̃′

∂t′
= ∇ · J̃ − ∇ · ρ̃v +

∂ρ̃

∂t
+ (v · ∇)ρ̃ = ∇ · J̃ +

∂ρ̃

∂t
= 0, (136)

noting that ∇ · ρ̃v = (v ·∇)ρ̃ since ∇ · v = 0 according to eq. (19). However,

∂ ′αJ ′
α = ∇̃′ · J′ +

∂ρ′

∂t′
= ∇ · J +

v

c

∂J

∂ct
+

∂ρ

∂t
− ∂J · v/c

ct
= ∇ · J +

∂ρ

∂t
− J · ∂v/c

ct

= −J · ∂v/c

ct
�= 0, (137)

since v is the lab-frame velocity of a point that is at rest in the rotating frame.
Hence, it appears that we can use the covariant derivative operator ∂ ′

α, but not the
contravariant derivative operator ∂ ′α, to obtain meaningful physical results in the rotating
frame. This issue has been discussed in greater detail by Crater [26]. A consequence of this
is that Maxwell’s equations should be expressed in the rotating frame only in terms of the
covariant derivative operator (sec. A.6).

A.3.5 The Relation between Free, Bound and Total Charge and Current
Densities in the Rotating Frame

While we might expect the relations (94) between the lab-frame free and total24 charge and
current densities would transform to

J ′β = J ′β
free + c ∂ ′

αM ′αβ
or J ′

β = J ′
freeβ + c ∂ ′αM ′

αβ, (138)

in the rotating frame, we understand from sec. A.3.4 that only the contravariant current
density J ′α will be physical when nonzero electric or magnetic polarization are present. The
covariant current density will be nonphysical (when nonzero electric or magnetic polarization
are present) due to the bad behavior of the contravariant derivative operator ∂ ′α. Hence, it
is better to avoid use of the covariant components of polarization in the rotating frame when
relating polarization to sources of the electromagnetic fields.

The relation between the contravariant total and free charge and current densities can
be written as,

ρ̃′ = ρ̃′
free + ρ̃′

bound, J̃′ = J̃′
free + J̃′

bound (139)

24In sec. A.6 we will be led to a more general concept of the total charge and current densities in the
rotating frame than that implied by eq. (138).
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where,

ρ̃′
bound = −∇′ · P̃′, J̃′

bound =
∂P̃′

∂t′
+ c∇′ × M̃′. (140)

We can verify that eq. (139) is consistent with the transformations (126), (130) and (135),

ρ̃ = ρ̃′ = ρ̃′
free − ∇′ · P̃′ = ρ̃free − ∇ · P̃, (141)

J̃′ = J̃ − ρ̃v = J̃free +
∂P̃

∂t
+ c∇ × M̃ − ρ̃freev + v(∇ · P̃)

= J̃′
free +

∂P̃′

∂t′
+ c∇′ × M̃′

= J̃free − ρ̃freev +
∂P̃

∂t
+ v(∇ · P̃) − ∇ × (v × P̃) + c∇ × M̃ + ∇ × (v × P̃)

= J̃free +
∂P̃

∂t
+ c∇ × M̃ − ρ̃freev + v(∇ · P̃), (142)

where we have used the (subtle) relation (22) between the time derivatives ∂P̃′/∂t′ = ∂P̃/∂t′

and ∂P̃/∂t.
Despite the difficulty in using eq. (138) to define covariant components of bound charge

and current densities, we will find ourselves desiring expressions for them. Therefore, we use
the relations (133)-(134) to convert the contravariant bound charge and current densities
(140) to covariant components (to order v/c),

ρ′
bound = ρ̃′

bound −
v

c2
· J̃′

bound = −∇′ · P̃′ − v

c2
·
(

∂P̃′

∂t′
+ c∇′ × M̃′

)

= −∇′ · P′ − ∇′ ·
(v

c
× M′

)
− v

c2
·
(

∂P′

∂t′
+ c∇′ × M′

)
(143)

= −∇′ · P′ − 2ω · M′

c
− v

c2
· ∂P′

∂t′
,

J′
bound = J̃′

bound + ρ̃′
boundv =

∂P̃′

∂t′
+ c∇′ × M̃′ − v(∇′ · P̃′)

=
∂P′

∂t′
+ c∇′ × M′ +

v

c
× ∂M′

∂t′
+ ∇′ × (v × P′) − v(∇′ · P′)

=
∂P′

∂t′
+ c∇′ × M′ +

v

c
× ∂M′

∂t′
+ (P′ · ∇)v − (v · ∇)P′, (144)

recalling eq. (13). These forms are counterintuitive, but they are consistent with transforming
the lab-frame bound charge and current densities ρbound = −∇ · P and Jbound = ∂P/∂t +
c∇ × M to the rotating frame using eq. (116).

For later use we record the relation between the contravariant and covariant charge and
current densities in the rotating frame, following eq. (134),

ρ̃′
bound = ρ′

bound +
v

c2
· J′

bound = −∇′ ·P′ − 2ω · M′

c
+

v

c
· ∇′ × M′, (145)

J̃′
bound = J′

bound − ρ′
boundv

=
∂P′

∂t′
+ c∇′ × M′ + v(∇′ · P′) +

v

c
× ∂M′

∂t′
+ (P′ · ∇)v − (v · ∇)P′. (146)
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The forms (139) and (143)-(146) reinforce that the contravariant forms of charge and current
densities in the rotating frame, as expressed in terms of contravariant field components
(139) correspond most closely to our experience in inertial frames. Both the covariant forms
(143)-(144) and the contravariant forms (145)-(146) expressed in terms of covariant field
components include terms whose significance is not immediately evident. From Newtonian
mechanics in rotating frames, we are used to the notion of “fictitious” forces that appear
“real” to observers at rest in the rotating frame. The electrodynamics of rotating systems
is even more complex in that it leads us to multiple expressions for physical quantities, and
these are especially intricate in the case of bound charge and current densities.

The form (145) for the contravariant charge density in terms of covariant components
indicates that magnetization in the rotating frame is associated with a bound charge distri-
bution. This gives another perspective on the well-known result (see, for example, sec. 88 of
[43], sec. 18-6 of [44] and also [40]25 ) that a nonzero bound charge density in the lab frame
is associated with moving/rotating magnetization.

A.4 Lorentz Force and Ohm’s Law in the Rotating Frame

Now that we have expressions for both covariant and contravariant vectors and tensors in
the rotating frame, we can evaluate the Lorentz force on a charge q there.

The contravariant Lorentz force in the rotating frame is,

f ′α = qF ′αβ
u′

β = q(Ẽ′ · u′/c, Ẽ′ + u′/c × B̃′) = q(E · u/c,E + u/c × B), (147)

plus terms of order uv/c2. The contravariant 3-vector Lorentz force in the rotating frame is,

f̃ ′ = q

(
Ẽ′ +

u′

c
× B̃′

)
= q

(
E +

u

c
×B

)
= f , (148)

which equals the 3-vector Lorentz force in the lab frame as expected. However, if one works
only with quantities in the rotating frame, one must remember to use the counterintuitive
covariant 3-velocity u′ = u together with the contravariant electric and magnetic fields to
obtain a valid result. This prescription has the peculiar feature that a particle at rest in the
lab frame (u = 0) feels no magnetic force according to an observer in the rotating frame,
although the naive description is that such a particle has velocity −v in the rotating frame.

We can rewrite eq. (148) as,

f̃ ′ = q

(
Ẽ′ +

ũ′

c
× B̃′

)
+ q

v

c
× B̃′, (149)

where ũ′ = u−v is “clearly” the velocity of the charge in the rotating frame. Then, the first
term in eq. (149) has the form we expect for the Lorentz force law, while the second term
can be called a “fictitious”, frame-dependent magnetic force.

25Consider a cylinder that has unit permittivity ε and uniform magnetization M0 parallel to its axis when
are rest in the (inertial) lab frame. Then, when the cylinder rotates with angular velocity ω about its axis
in the lab frame, it has radial covariant electric polarization P = v/c ×M0 = (ωM0r/c) r̂ in the lab frame,
while in the rotating frame P′ = 0 and the axial covariant magnetization is M′ = M0 [40]. The bound
charge density in the bulk of the cylinder is ρbound = −(1/r)d(rPr)/dr = −2ωM0/c in the lab frame and
ρ̃′bound = −2ω · M′/c = −2ωM0/c = ρbound in the rotating frame.
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The covariant Lorentz force in the rotating frame is,

f ′
α = qF ′

αβu′β = q(E′ · ũ′/c,−E′ − ũ′/c ×B′) = q(E · (u− v)/c,−E− u/c × B), (150)

plus terms of order uv/c2. The covariant 3-vector Lorentz force f ′ in the rotating frame is,

f ′ = q

(
E′ +

ũ′

c
×B′

)
= q

(
E +

u

c
×B

)
= f . (151)

Again, the 3-vector Lorentz force in the rotating frame equals that in the lab frame, but the
form of the Lorentz force in the rotating frame matches that expected from experience in
inertial frames.

Thus, the covariant form (151) of the Lorentz force law in the rotating frame is more
appealing than its contravariant form (148).

The covariant Lorentz force (150) on the contravariant charge and current densities in
the rotating frame is,

f ′
α = F ′

αβJ
′β/c = (J̃′ ·E′/c,−ρ̃′E′ − J̃′/c × B′). (152)

The covariant 3-vector Lorentz force f ′ in the rotating frame is,

f ′ = ρ̃′E′ +
J̃′

c
× B′ = (ρ̃′

free + ρ̃′
bound) E′ +

J̃′
free + J̃′

bound

c
× B′, (153)

where the contravariant bound charge and current densities ρ̃′
bound and J̃′

bound can be ex-
pressed via covariant field components as in eqs. (145)-(146).

In a similar manner, Ohm’s law (101)-(102) transforms to the rotating frame as,

J ′α
C = (J̃′

C · u′/c, J̃′
C) = σF ′αβ

u′
β = σ(Ẽ′ · u′/c, Ẽ′ + u′/c × B̃′), (154)

J ′
Cα = (J′

C · ũ′/c,−J′
C) = σF ′

αβu′β = σ(E′ · ũ′/c,−E′ − ũ′/c ×B′), (155)

Both the covariant and the contravariant conduction-current 3-vectors JC and J̃C in the
rotating frame are equal to the conduction current JC in the lab frame,

J̃′
C = σ

(
Ẽ′ +

u′

c
× B̃′

)
= σ

(
E +

u

c
× B

)
= JC = J′

C = σ

(
E′ +

ũ′

c
× B′

)
, (156)

However, the awkward form of the covariant 3-velocity u′ may again lead one to prefer use
of the covariant version J′

C of the conduction current in the rotating frame.

A.5 Constitutive Equations in the Rotating Frame

We can now evaluate the constitutive equations (98) for a linear, isotropic medium at rest
in the rotating frame, where they have the form,

H ′αβ
u′

β = εF ′αβ
u′

β and F ′αβ
u′

β = μH′αβ
u′

β, (157)

or H ′
αβu

′β = εF ′
αβu

′β and F ′
αβu

′β = μH′
αβu′β . (158)
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Recalling eqs. (147), (150) and the duality transformation (86), the constitutive relations
associated with the use of covariant fields tensors (158) are,

D′ +
ũ′

c
× H′ = ε

(
E′ +

ũ′

c
× B′

)
, B̃′ − ũ′

c
× Ẽ′ = μ

(
H̃′ − ũ′

c
× D̃′

)
, (159)

and those associated with use of contravariant field tensors (157) are,

D̃′ +
u′

c
× H̃′ = ε

(
Ẽ′ +

u′

c
× B̃′

)
, B′ − u′

c
× E′ = μ

(
H′ − u′

c
× D′

)
, (160)

where u′ = v and ũ′ = 0 are the co- and contravariant 3-velocities of a point that is at
rest in the rotating frame. The counterintuitive result that u′ = v again leads to possibly
surprising forms of the constitutive equations in the rotating frame,

D′ = εE′, B̃′ = μH̃′, (161)

from the use of covariant tensors, and,

D̃′ +
v

c
× H̃′ = ε

(
Ẽ′ +

v

c
× B̃′

)
, B′ − v

c
× E′ = μ

(
H′ − v

c
× D′

)
, (162)

from the use of contravariant tensors.26,27

If we use the relations (114)-(115) and (128)-(128) between the co- and contravariant
electromagnetic field in the lab and rotating frames, we quickly recover the constitutive
equations (96) in the lab frame, to order v/c.

We can also write the constitutive equations (161)-(162) in terms of the covariant fields
B′, E′, P′ and M′ by noting that D′ = E′ +4πP′ and H′ = B′− 4πM′, so that to order v/c,

P′ =
ε − 1

4π
E′,

M′ =

(
1 − 1

μ

)
B′

4π
+

(
1

μ
− ε

)
v

c
× E′

4π
=

(
1 − 1

μ

)
B′

4π
− εμ − 1

μ(ε − 1)

v

c
× P′. (163)

Similarly, writing the constitutive equation in terms of the contravariant components B̃′, Ẽ′,
P̃′ and M̃′ we find,

P̃′ =
ε − 1

4π
Ẽ′ +

(
ε − 1

μ

)
v

c
× B̃′

4π
=

ε − 1

4π
Ẽ′ +

εμ − 1

μ − 1

v

c
× M̃′,

M̃′ =

(
1 − 1

μ

)
B̃′

4π
. (164)

Compare eqs. (163)-(164) with the lab-frame relations (5).

26Equation (161) does not include the form B′ = μH′ as naively expected, because the components of the
covariant dual field tensors involve contravariant, not covariant, fields B̃ and Ẽ, as confirmed in sec. A.3.3.

27Equations (161)-(162) are not independent in view of eqs. (133)-(134).
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A.6 Maxwell’s Equations in the Rotating Frame

A covariant transcription of the lab-frame Maxwell’s equations (81) and (88) into the rotating
frame is,

∂ ′αF ′
αβ = 0 and ∂ ′αH ′

αβ =
4π

c
J ′

freeβ, (165)

or,

∂ ′
αF ′αβ

= 0 and ∂ ′
αH ′αβ

=
4π

c
J ′β

free. (166)

However, as discussed in sec. A.3.4 and by Crater [26], the use of the contravariant derivative
operator ∂ ′α does not lead to meaningful physical results in the rotating frame. So, we restrict
our discussion of Maxwell’s equations in the rotating frame to the form (166), which can be
written in terms of the electric and magnetic field vectors in the rotating frame as,

∇′·D̃′ = 4πρ̃′
free, ∇′×E′+

∂B′

∂ct′
= 0, ∇′·B′ = 0, ∇′×H̃′−∂D̃′

∂ct′
=

4π

c
J̃′

free, (167)

where ρ̃′ = ρ and J̃′ = J− ρv. We can use the relations (134) to obtain the first and fourth
Maxwell equations of eq. (167) in terms of the covariant field vectors in the rotating frame
as,

∇′ · D′ = 4π

(
ρ̃′

free + ∇′ · v

c
× H′

4π

)
= 4π

(
ρ̃′

free +
ω · H′

2πc
− v

c
· ∇′ × H′

4π

)
, (168)

recalling eq. (13), and,

∇′ × H′ − ∂D′

∂ct′
=

4π

c

[
J̃′

free + ∇′ ×
(
v × D′

4π

)
− ∂

∂t′

(
v

c
× H′

4π

)]
. (169)

We insert eqs. (168)-(169) into each other and keep terms only to order v/c to find,

∇′ · D′ = 4π

(
ρ̃′

free −
v · J̃′

free

c2
+

ω · H′

2πc
− v

4πc
· ∂D′

∂ct′

)
, (170)

and,

∇′ × H′ − ∂D′

∂ct′
=

4π

c

(
J̃′

free + ρ̃′
freev +

(
D′

4π
· ∇
)

v − (v · ∇)
D′

4π
− v

4πc
× ∂H′

∂t′

)
,(171)

using ∂v/∂t′ = 0. We note the appearance in eqs. (170)-(171) of the covariant charge and
current densities,

ρ′
free = ρ̃′

free −
v · J̃′

free

c2
= ρfree −

v · Jfree

c2
, (172)

J′
free = J̃′

free + ρ̃′
freev = Jfree . (173)

This is formally satisfactory, but counterintuitive, as it requires us to use a free current
density in the rotating frame that is equal to the free current density in the lab frame. We
therefore propose to use a different characterization of the source terms,

∇′ · D′ = 4πρ̃′
free,total , ∇′ ×H′ − ∂D′

∂ct′
=

4π

c
J̃′

free,total , (174)
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where,

ρ̃′
free,total = ρ̃′

free + ρ′
other , (175)

ρ̃′
free = ρfree , (176)

ρ′
other = −v · J̃′

free

c2
+

ω · H′

2πc
− v

4πc
· ∂D′

∂ct′
, (177)

J̃′
free,total = J̃′

free + J′
other , (178)

J̃′
free = Jfree − ρfreev , (179)

J′
other = ρ̃′

freev +

(
D′

4π
· ∇
)

v − (v · ∇)
D′

4π
− v

4πc
× ∂H′

∂t′
. (180)

However, ρ′
other and J′

other are not components of a covariant nor of a contravariant 4-vector.
These terms are the “fictitious” charge and current densities first identified by Schiff [6],
which can be nonzero in vacuum as well as inside conductors and inside polarizable media.

We have adopted the attitude that the charge and current densities ρ̃′
free and J̃′

free are
“real” to an observer in the rotating frame. However, we see that ρ′

other of eq. (177) involves
the term −v · J̃′

free/c
2, and the discussion of secs. 2.2.3-4 indicates that we could regard this

term as “fictitious”. This alerts us to ambiguities as to the meaning of the terms “real” and
“fictitious”, and we will not use these terms further.

To express Maxwell’s equations in the rotating frame in terms of the fields E′ and B and
the total charge and current densities ρ̃′ and J̃′, we use D̃′ = Ẽ′ +4πP̃′ and H̃′ = B̃′− 4πM̃′

in eq. (167) to find,

∇′ · Ẽ′ = 4π(ρ̃′
free − ∇′ · P̃′) = 4πρ̃′, (181)

∇′ × B̃′ − ∂Ẽ′

∂ct′
=

4π

c

(
J̃′

free +
∂P̃′

∂t′
+ c∇′ × M̃′

)
=

4π

c
J̃′, (182)

recalling eqs. (139)-(140). We use the relations (134) to convert eqs.(181)-(182) to covariant
field vectors in the rotating frame as,

∇′ · E′ = 4π

(
ρ̃′ + ∇′ · v

c
× B′

4π

)
= 4π

(
ρ̃′ +

ω · B′

2πc
− v

c
·∇′ × B′

4π

)
, (183)

recalling eq. (13), and,

∇′ × B′ − ∂E′

∂ct′
=

4π

c

[
J̃′ + ∇′ ×

(
v × E′

4π

)
− ∂

∂t′

(
v

c
× B′

4π

)]
. (184)

We insert eqs. (183)-(184) into each other and keep terms only to order v/c to find,

∇′ · E′ = 4π

(
ρ̃′ − v · J̃′

c2
+

ω · B′

2πc
− v

4πc
· ∂E′

∂ct′

)

= 4π (ρ̃′ + ρ′
more) ≡ 4πρ′

total , (185)
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and,

∇′ × B′ − ∂E′

∂ct′
=

4π

c

(
J̃′ + ρ̃′v +

(
E′

4π
· ∇
)

v − (v · ∇)
E′

4π
− v

4πc
× ∂B′

∂t′

)

=
4π

c

(
J̃′ + J′

more

)
≡ 4π

c
J′

total , (186)

where,

ρ′
more = −v · J̃′

c2
+

ω · B′

2πc
− v

4πc
· ∂E′

∂ct′
, (187)

J′
more = ρ̃′v +

(
E′

4π
· ∇
)

v − (v · ∇)
E′

4π
− v

4πc
× ∂B′

∂t′
. (188)

An awkwardness in eqs. (185)-(186) is that the contravariant total charge and current
densities ρ̃′ and J̃′ contain contributions from the contravariant polarization densities P̃′ and
M̃′, whereas we have otherwise preferred to use covariant fields in the rotating frame. Hence,
it is more consistent to use contravariant component only for the free charge and current
densities ρ̃′

free and J̃′
free, and to rewrite the total charge and current densities as,

ρ̃′ = ρ̃′
free + ρ̃′

bound = ρ̃′
free − ∇′ · P′ − 2ω · M′

c
+

v

c
· ∇′ × M′, (189)

J̃′ = J̃′
free + J̃′

bound

= J̃′
free +

∂P′

∂t′
+ c∇′ ×M′ + v(∇′ · P′) +

v

c
× ∂M′

∂t′
+ (P′ · ∇)v − (v · ∇)P′,(190)

recalling eqs. (145)-(146).
Using eqs. (189)-(190) we can write the total charge and current densities ρ′

total and J′
total

that were defined in eqs. (185)-(186) as,

ρ′
total = ρ̃′

free + ρ̃′
bound + ρ′

more

= ρ̃′
free −∇′ · P′ − 2ω · M′

c
+

v

c
· ∇′ × M′

− v

c2
·
(
J̃′

free +
∂P′

∂t′
+ c∇′ × M′

)
+

ω · B′

2πc
− v

4πc
· ∂E′

∂ct′

= ρ̃′
free −

v

c2
· J̃′

free − ∇′ · P′ +
ω · H′

2πc
− v

4πc
· ∂D′

∂ct′
= ρ̃′

free,total − ∇′ · P′ , (191)

J′
total = J̃′

free + J̃′
bound + J′

more ,

= J̃′
free +

∂P′

∂t′
+ c∇′ × M′ + v(∇′ · P′) +

v

c
× ∂M′

∂t′
+ (P′ · ∇)v − (v · ∇)P′

+v

(
ρ̃′

free − ∇′ · P′ − 2ω · M′

c
+

v

c
· ∇′ × M′

)
+

(
E′

4π
· ∇
)

v − (v ·∇)
E′

4π
− v

4πc
× ∂B′

∂t′

= J̃′
free +

∂P′

∂t′
+ c∇′ × M′ + ρ̃′

freev +

(
D′

4π
· ∇
)

v − (v · ∇)
D′

4π
− v

4πc
× ∂H′

∂t′

= J̃′
free,total +

∂P′

∂t′
+ c∇′ ×M′ , (192)
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where the charge and current densities ρ′
free,total and J′

free,total were defined in eqs. (175)-(178).
Thus, we have multiple ways of accounting for the source terms in Maxwell’s equations for
the fields E′ and B′ in the rotating frame. Because the “other” source terms depend on
the fields in the rotating frame, Maxwell’s equations cannot in general be solved directly for
the fields in this frame. Rather, an iterative approach is required, for which the somewhat
inelegant forms (191)-(192) and may be of use.

B Appendix: Charge in Uniform Circular Motion

This Appendix written Jan. 13, 2021.
As an example of the (limited) use of electrodynamics in a rotating frame, consider an

electric charge e in uniform circular motion in the inertial lab frame,

xe = r0 cos ωt, ye = r0 sinωt, ve,x = −ωr0 sinωt, ve,y = ωr0 cosωt, (193)

where ve = ωr0 � c.
We also consider the ′ frame that rotates about the z-axis with angular velocity ω = ω ẑ

with respect to the lab frame.
The electrodynamics in the rotating frame, as derived in this note, is only accurate to

order v/c, so we approximate the lab-frame fields to that order,28

E(x, t) ≈ eR

R3
, B(x, t) ≈ eve × R

cR3
, (195)

where R = (x−r0 cos ωt, y−r0 sinωt, z) is the vector from the moving charge to the observer
(at rest at x in the lab frame). These are the fields of a charge moving slowly with uniform
velocity ve.

In the rotating frame, the charge is at rest at x′
e = (r0, 0, 0), and the fields (to order v/c)

are, from eq. (43),

E′(x′, t) = E +
v

c
× B ≈ E =

eR′

R′3 , B′(x′, t) = B =
eve × R′

cR′3 =
eωr0 ŷ′ × R′

cR′3 , (196)

noting that in the rotating frame, R′ = (x′ − r0, y
′, z′) for an observer at rest at x′, and

ve = ωr0 ŷ′ is the constant velocity of the charge in the lab frame as viewed from the
rotating frame.

While the electric field E′ in the rotating frame (in our approximation) is simply the
Coulomb field of a charge at rest, the magnetic field B′ is nonzero (and constant in time).

28The fields (194) follow from the Darwin approximation, good to order v2/c2,

E =
e

R2
R̂ − e

2c2R

[
a + (a · R̂)R̂ +

3(v · R̂)2 − v2

R
R̂

]
, B =

ev × R̂
cR2

, (194)

noting that the acceleration a has magnitude v2/r0. See, for example, eqs. (30)-(31) of [45].
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Maxwell’s equations in the rotating frame can be written as eqs. (49)-(52),

∇′ · E′ = 4π

(
ρ′

free −
v · J′

free

c2
+

ω · B′

2πc
− v

4πc
· ∂E′

∂ct′

)
≈ 4πρ′

free, (197)

∇′ × E′ = −∂B′

∂ct′
≈ 0, (198)

∇′ · B′ = 0, (199)

∇′ × B′ =
∂E′

∂ct′
+

4π

c

(
J′

free + ρ′
freev +

(
E′

4π
· ∇
)

v − (v · ∇)
E′

4π
− v

4πc
× ∂B′

∂t′

)

≈ 4π

c

(
ρ′

freev +

(
E′

4π
· ∇
)

v − (v · ∇)
E′

4π

)
, (200)

noting eqs. (53)-(54), and v is not ve but rather the velocity in the lab frame of the observer
at x′ (who is at rest in the rotating frame).

The Maxwell equations for E′ are simply those for a point charge at rest, while the
Maxwell equations for B′ involve three “fictitious” but nonzero current sources, which lead
to the nonzero magnetic field in the rotating frame.

The magnetic field (196) obeys ∇′ × B′ = 4πρ′
freeve/c, so it must be that

(E′ · ∇)v − (v · ∇)E′ = 4πρ′
free(ve − v).
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[32] D.V. Redz̆ić, Electromagnetism of rotating conductors revisited, Eur. J. Phys. 23, 127
(2002), http://kirkmcd.princeton.edu/examples/EM/redzic_ejp_23_127_02.pdf

[33] Z.N. Osmanov, G.Z. Machabeli and A.D. Rogava, Electromagnetic waves in a rigidly
rotating frame, Phys. Rev. A 66, 042103 (2002),
http://kirkmcd.princeton.edu/examples/EM/osmanov_pra_66_042103_02.pdf

[34] J.C. Hauck and B. Mashhoon, Electromagnetic waves in a rotating frame of reference,
Ann. Phys. 12, 275 (2003), http://kirkmcd.princeton.edu/examples/EM/hauck_ap_12_275_03.pdf

[35] Ø. Grøn, Relativistic description of a rotating disk, Am. J. Phys. 43, 869 (1973),
http://kirkmcd.princeton.edu/examples/mechanics/gron_ajp_43_869_75.pdf
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