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EHD History: G. I. Taylor (1966)

“The elongation of a drop of one dielectric fluid in another owing to the 
imposition of an electric field has previously been studied assuming that
the interface is uncharged and the fluids at rest.”
“For a steady field this is unrealistic, because however small the 
conductivity of either fluid the charge associated with steady currents 
must accumulate at the interface till the steady state is established.”
“It is shown that equilibrium can only be established in a drop when 
circulations are set up both in the drop and its surroundings.”

G. I. Taylor 1966, Proc. Roy. Soc. Lon. A, 291, 159.
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Developments in Electrohydrodynamics

Melcher and Taylor 1969, “Electrohydrodynamics: a review of the role of 
interfacial shear stresses,” Annu. Rev. Fluid Mech., 1, 111.
Melcher 1981, Continuum Electromechanics, MIT Press.
Saville 1997, “Electrohydrodynamics: the Taylor-Melcher leaky dielectric model,”
Annu. Rev. Fluid Mech. 29, 27.

» Recent experimental studies are in better agreement with the theory.
» Leaky-dielectric model applies to sharp as well as diffuse interfaces.
» Electrohydrodynamics and electrokinetics began to merge since Taylor’s 1966 paper.

Saville 1997, Annu. Rev. Fluid Mech. 29, 27.
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Outline

Leaky-dielectric model
» Ohmic model derivations
» Maxwell stresses
» Jump conditions
» Applications in microsystems: the high-conductivity, small-scale limit

Electrokinetic flow instabilities
» Bulk-coupled model
» Temporal, convective and absolute instabilities
» EHD instabilities with electroosmotic convection
» Applications in electrokinetic assays and micromixing

Electrohydrodynamic cone-jets
» Surface-coupled model
» Choking: supercritical flow and pulsating jet
» Varicose and whipping instabilities
» Applications in droplet microfluidics and electrospinning
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Primary References
Electrohydrodynamics 

Leaky-Dielectric Model
» Melcher and Taylor 1969, Annu. Rev. Fluid Mech. 1, 111.
» Melcher 1974, IEEE T. Educ. E-17, 100 (and the corresponding film).
» Melcher 1981, Continuum Electromechanics, MIT Press.
» Saville 1997, Annu. Rev. Fluid. Mech, 29, 27.
» Castellanos 1998, Electrohydrodynamics, Springer.
Flow Instabilities
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» Hoburg and Melcher 1976, J. Fluid Mech. 73, 333.
» Baygents and Baldessari 1998, Phys. Fluids. 10, 301.
» Lin, Storey, Oddy, Chen and Santiago 2004, Phys. Fluids, 16, 1922.
» Chen, Lin, Lele and Santiago 2005, J. Fluid Mech. 524, 263.
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Electrohydrodynamic Cone-Jets 
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» Cloupeau and Prunet-Foch 1994, J. Aerosol Sci. 25, 1021.
» Fernandez de la Mora 1996, J. Colloid Interf. Sci. 178, 209.
» Ganan-Calvo 1997, J. Fluid Mech. 97, 165.
» Hohman, Shin, Rutledge and Brenner 2001, Phys. Fluids. 13, 2201; 2221.
» Chen, Saville and Aksay 2006, Appl. Phys. Lett. 89, 124103.
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Electrohydrodynamic (EHD) Instabilities 
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Lectures 1-2: Leaky Dielectric Model

Ohmic model derivation
» Electro-diffusion of individual species
» Conservation laws of bulk properties

Maxwell stresses
» Kelvin and Helmholtz force densities
» Maxwell stress for incompressible flow

Jump conditions
» Surface-coupled model
» Bulk-coupled model

Ohmic model for microsystems
» Instantaneous charge relaxation (high conductivity limit)
» Diffusive processes (small length scales)
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Electro-Diffusion of Ions*

Electro-diffusion equations assuming
• Binary, monovalent electrolyte

• Dilute solution

• No reactions (see Saville 1997 for derivation involving reactions)

2 ( )c c D c m F c
t
+

+ + + + +

∂
+ ⋅∇ = ∇ − ∇⋅

∂
v E

2 ( )c c D c m F c
t
−

− − − − −

∂
+ ⋅∇ = ∇ + ∇⋅

∂
v E

*Levich VG, 1962, Physicochemical Hydrodynamics, Prentice-Hall.

Diffusion Electro-migrationAdvection

(1.1)

(1.2)
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Bulk Properties

( )f F c cρ + −= −

2 ( )F c m c mσ + + − −= +

Charge density:

Conductivity:

(1.3)

(1.4)

Einstein’s Relation: D RTm± ±= (1.5)

Electro-neutrality if 1f
m
m

c cFm
c c

ρ
σ −

+

+ −
+

+ −

−
Θ = =

+
� (1.6)

c c c+ −≈ =

Not exactly equal, so there will be a charge density!
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Algebraic Manipulation

Eq. (1.1) – Eq. (1.2); applying Einstein’s Relation

Substituting (1.7) into (1-1):

2( ) ( ) ( )D D F c RT D D c+ − + −+ ∇ ⋅ = − ∇E

2( ) e f f
c c D c
t
∂

+ ⋅∇ = ∇
∂

v

(1.7)

(1.8)

(1.9)

For binary, asymmetric electrolyte
assuming electro-neutrality

c cc
z z
+ −

− +

= =

Effective diffusivity 2
e f f

D DD
D D

+ −

+ −

=
+

(1.10)
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“Conservation” of Conductivity

2 ( )F m m cσ + −= +
With electro-neutrality:

2( ) e f fD
t
σ σ σ∂
+ ⋅∇ = ∇

∂
v

(1.11)

Eq. (1.8) becomes 

(1.12)

Interpretation of Eq. (1.12): under the electro-neutrality assumption,
• Each cation is almost always paired with an anion; 

• Conductivity (an weighted sum of cationic and anionic concentrations) 

can be treated as a material property that is “conserved” in the same 

manner as uncharged species.
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Conservation of Charge

Eq. (1.1) – Eq. (1.2); In an exact manner

On RHS, c+ ≈

 

c- = c applied for simplicity; See Saville 97 for exact derivation.

2 2( ) ( ) ( )f
f D D F c m m F c

t
ρ

ρ + − + −

∂
+ ⋅∇ = − ∇ − + ∇ ⋅

∂
v E

Rearranging (1.13); Applying incompressibility condition 

(1.13)

{ }( ) 0f
f D D F c

t
ρ

ρ σ+ −

∂
+∇ ⋅ − − ∇ + =

∂
v E (1.14)

Charge
Convection

Diffusive
Current

Charge
Storage

Ohmic
Current
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Charge Conservation in the Ohmic Limit

( ) 0fD
Dt
ρ

σ+∇⋅ =E
(1.16)

If diffusive current is negligible compared to conduction current

1dD

O a a

ED D RT F cO
D D E c Eδ

+ −

+ −

⎛ ⎞− / Δ
=⎜ ⎟+⎝ ⎠

i
i
∼ � (1.15)

Interpretation of Eq. (1.16):
• Charge storage in a volume of fixed identity is brought by Ohmic current.

• Negligible diffusive current is a valid assumption when the thermal 

voltage is small compared to a characteristic external voltage. 

Eq. (1.14) reduces to

δ: characteristic interfacial (diffusion) length;  Ea : applied E-field 
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Electro-Diffusion Eqns Recasted as the Ohmic Model

2 ( )c c D c m F c
t
+

+ + + + +

∂
+ ⋅∇ = ∇ − ∇⋅

∂
v E

2 ( )c c D c m F c
t
−

− − − − −

∂
+ ⋅∇ = ∇ + ∇⋅

∂
v E

(1.1)

(1.2)

If electro-neutral, i.e. 1fFm
ρ
σ+Θ = �

2( ) e f fD
t
σ σ σ∂
+ ⋅∇ = ∇

∂
v

If negligible diffusive current, i.e. 1dD

O a

E
E

i
i
∼ �

( ) 0fD
Dt
ρ

σ+∇⋅ =E (1.16)

(1.12)

(only needed for bulk-coupled model)

(for surface- & bulk- coupled models)

Chen, Lin, Lele and Santiago 2005, J. Fluid Mech. 524, 263.
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Alternative Derivation of the Ohmic Model

Conduction current in the laboratory frame, 
*( , )f f fρ ρ σ ρ= + = +i i E v E v

where                 * σ=i E is postulated as the constitutive law for current               

“It is evident from recently reported research that this simplest of all 

conduction laws can be used to understand a surprisingly wide range of 

electrohydrodynamic phenomena.” (Melcher & Taylor 1969)

Conservation of charge: 

0f

t
ρ∂

+∇⋅ =
∂

i ( ) 0fD
Dt
ρ

σ+∇⋅ =E

Melcher and Taylor 1969, Annu. Rev. Fluid Mech. 1, 111.
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Electric Jump Conditions

ε1 , σ1

ε2 , σ2

a b 1 2Α = Α −Α

sn

n
0

( )

( ) 0

f

fD
Dt

ε ρ

ρ
σ

∇× =
∇⋅ =

+∇ ⋅ =

E
E

E

Differential Laws:

Jump Conditions:

a b
a b

a b

0

( ) ( ) ( ) 0s s

q
q q
t

ε

σ

× =

⋅ =

∂
+ ⋅ ∇ ⋅ +∇ ⋅ + ⋅ =

∂

n E

n E

n v n K n E

• Jump of A across the interface:

s∇ =∇− ⋅∇nn• Surface gradient:

q

Melcher and Taylor 1969, Annu. Rev. Fluid Mech. 1, 111.
Castellanos & Gonzalez 1998, IEEE T. Dielectrics Elec. Insul., 5, 334.

• Surface charge density:  q
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Charge Conservation on the Interface

a b  ( ) ( )  ( )    0s s
q q
t

σ∂
+ ⋅ ∇ ⋅ + ∇ ⋅ + ⋅ =

∂
n v n K n E

Storage of 
Surface Charge

Deformation of
Interface

Surface 
Current

Bulk
Conduction

Interfacial deformation and its consequence on surface charge 
conservation is discussed in details by Castellanos 1998; 
Castellanos & Gonzalez 1998.

The simplest form of surface current is pure charge advection: 
Other effects such as surface conduction are typically neglected.
Bulk conduction is the free current density in the frame of reference 
moving with the boundary. Bulk charge advection never reaches the 
boundary (Melcher 1981).

Castellanos 1998, Electrohydrodynamics, Springer, pp. 13-15;
Castellanos & Gonzalez 1998, IEEE T. Dielectrics Elec. Insul., 5, 334.
Melcher 1981, Continuum Electromechanics, MIT Press, p 2.18.

 ( ) ( ) ( )( ) ( )( )q q q⋅ ∇ ⋅ = ⋅ ⋅∇ + ⋅ ∇ ⋅n v n n v n n v n
s sq=K v
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Consequence of the Ohmic Law

Charge relaxation time  τe = ε/σ
In regions of uniform conductivity and permittivity, for an 
observer following a particle of fixed identity, the net free 
charge decays with the relaxation time:

“Unless an element of material having uniform properties 
can be traced along a particle line to a source of net charge, 
it supports no net charge.”

f f

e

D
Dt
ρ ρ σ εσ

τ σ ε
∇ ∇⎛ ⎞= − ⋅ −⎜ ⎟

⎝ ⎠
E

,0 exp( / )f f etρ ρ τ= −

Melcher 1974, IEEE T. Educ. E-17, 100.
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Charge Density Scale from Ohmic Law

If ρf results from conductivity gradient

If ρf results from permittivity gradient

f f

e

D
Dt
ρ ρ σ εσ

τ σ ε
∇ ∇⎛ ⎞= − ⋅ −⎜ ⎟

⎝ ⎠
E

~~f
aEε

δ
σρ ε
σ
∇

⎟⋅ ⎛ ⎞
⎜
⎝ ⎠

E

~fρ ε⋅∇E
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Maxwell Stress in Vacuum

( )

( ) ( )

0

0 0 0 0

2
0 0

1                      
2

1            
2

f

eE

ρ ε

ε ε ε ε

ε ε

= = ∇⋅

= ∇ ⋅ − ⋅∇ = ∇⋅ − ∇ ⋅

⎛ ⎞= ∇ ⋅ − = ∇ ⋅⎜ ⎟
⎝ ⎠

f E E E

EE E E EE E E

EE δ T

( 0)∇× =E

Electric force density (due to free charge) in terms of Maxwell stress:

( )

( )

( )

2 2 2

2 2 2
0

2 2 2

1
2

1
2

1
2

x y z x y x z

e
x y y z x y z

x z y z z x y

E E E E E E E

E E E E E E E

E E E E E E E

ε

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥= − −⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥⎣ ⎦

T

Panofsky and Phillips 1962, Classical Electricity and Magnetism, Addison-Wesley, Ch. 6.5.
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Maxwell Stress in Dielectrics

Kelvin force density (assuming the force on each dipole is 
transmitted to macroscopic medium)

Helmholtz force density (accounting for dipole interactions)

2 2
0

2 2

1 1( )
2 2

1 1                          
2 2

H K
T

T

E E

E E

εε ε ρ
ρ

εε ε ρ
ρ

⎛ ⎞⎛ ⎞∂
= −∇ − −⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞∂
= ∇ ⋅ − +⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

f f

EE δ δ

( ) ( )0

2
0

1                           
2

K f

E

ρ ε ε ε

ε ε

= + ⋅∇ = ∇⋅ + − ⋅∇

⎛ ⎞= ∇ ⋅ −⎜ ⎟
⎝ ⎠

f E P E E E E E

EE δ

Electrostriction
(typically absorbed in pressure)

Melcher 1981, Continuum Electromechanics, MIT Press, Sec. 3.7.
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Equivalence of Kelvin and Helmholtz Concepts

In incompressible flow, any two force densities differing by 
the gradient of a scalar pressure will give rise to the same 
incompressible deformation.
» In incompressible flow, pressure becomes a “left-over” variable. It is 

whatever it must be to satisfy the incompressibility condition: ∇⋅v = 0

Both force densities, if used consistently, will yield the same 
answer as far as incompressible mechanical deformation is 
concerned; 
» Note the electric force density distributions are very different. See a 

classic example in Melcher 1981, Section 8.3.
» Kelvin force density is useful for appreciating the underlying 

microscopic electromechanics;
» Helmholtz force density is useful for predicting the consequences of 

electromechanical coupling.
Melcher 1981, Continuum Electromechanics, MIT Press, Sec. 8.3.
Melcher 1974, IEEE T. Educ. E-17, 100.
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Maxwell Stress in Incompressible Dielectrics

2 21 1
2 2

e
f E Eρ ε ε ε⎛ ⎞= − ∇ = ∇⋅ − = ∇ ⋅⎜ ⎟

⎝ ⎠
f E EE δ T

( )

( )

( )

2 2 2

2 2 2

2 2 2

1
2

1
2

1
2

x y z x y x z

e
x y y z x y z

x z y z z x y

E E E E E E E

E E E E E E E

E E E E E E E

ε

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥= − −⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥⎣ ⎦

T

The force density reduces to that in vacuum if ε

 

= ε0 .

Helmholtz force density:
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Direction of Maxwell Stress

n

E

2

2

2

1 0 0
2

10 0
2

10 0
2

e

E

E

E

ε

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

T

Choose a coordinate system in which the x-axis 
is parallel to the direction of the field (Ey =Ez =0).

The electric field bisects the angel between 
the normal to the surface and the direction 
of the resultant force acting on the surface.

2

2
Ef dSε

=

Panofsky and Phillips 1962, Classical Electricity and Magnetism, Addison-Wesley, Ch. 6.5.



25

Examples of Maxwell Stresses

n

EE

f

E

f f

Panofsky and Phillips 1962, Classical Electricity and Magnetism, Addison-Wesley, Ch. 6.5.
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Hydrodynamic Equations

* 2 eD p
Dt

ρ μ= −∇ + ∇ +∇⋅
v v T

* 2 21
2f

D p E
Dt

ρ μ ρ ε= −∇ + ∇ + − ∇
v v E

0∇⋅ =v

Electric force
due to

free charge

Conservation of mass (incompressible):

Conservation of momentum:

Polarization force
due to 

pairs of charges

• p* may have absorbed 
forces of electric origin;

• * dropped in future eqns

Melcher and Taylor 1969, Annu. Rev. Fluid Mech. 1, 111.
Saville 1997, Annu. Rev. Fluid Mech. 29, 27.
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Hydrodynamic Jump Conditions

a b
a b
a b

0

0
m ep

× =

⋅ =

= ⋅ +

n v

n v

n n T Tc fd ge h

21
2

e Eε ε= −T EE δ

( )m Tμ= ∇ +∇T v v

where,

Melcher and Taylor 1969, Annu. Rev. Fluid Mech. 1, 111.
Saville 1997, Annu. Rev. Fluid Mech. 29, 27.

2 2 2
1 2

1 ( ) ( ) ( )
2

e

e
i iq

ε ε ε⋅ ⋅ = ⋅ − ⋅ − ⋅

⋅ ⋅ = ⋅

T n n E n E t E t

T n t E t

c f c fd g d ge h e h
c fd ge h a b a b( )using  0,  qε× = ⋅ =n E n E
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Consequence of Helmholtz Force Density

The electric field bisects the angel between the normal to 
the surface and the direction of the resultant force acting on 
the surface.
Leaky dielectric model is required to generate tangential 
shear stress at interfaces
» Interface between perfect conductors (σ → ∞): supports no 

tangential electric stress (not even free charge)
As far as electrostatics is concerned, the two regions can be joined 
together as a single “perfect” conductor with σ → ∞.

» Interface between perfect dielectrics (σ

 

= 0): force density is 
perpendicular to the surface (in the direction of -∇ε) 

2 21 1
2 2

e
f E Eρ ε ε ε⎛ ⎞= − ∇ = ∇⋅ − = ∇ ⋅⎜ ⎟

⎝ ⎠
f E EE δ T

Melcher and Taylor 1969, Annu. Rev. Fluid Mech. 1, 111.
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Electromechanical Coupling

Surface-coupled model
» Electromechanical coupling is through interfacial electric stresses (i.e. 

jump conditions) 
» Volumetric force density is zero for piecewise homogeneous media

Bulk-coupled model
» Electromechanical coupling is through volumetric electric forces
» Property variations are continuous (i.e. no jump conditions)

a b m ep = ⋅ +n n T Tc fd ge h

21
2f Eρ ε= − ∇f E
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Electrohydrodynamics in Microsystems

Instantaneous charge relaxation
» Typically aqueous electrolyte (high-conductivity limit)

Diffusive processes become important
» Small length scales
» Bulk-coupled model for miscible interfaces

( ) 0             ( ) 0fD
Dt
ρ

σ σ+ → ⋅∇ = ∇⋅ =EE

2( ) 0          ( ) e f fD
tt
σ σσ σσ ∂
+ ⋅∇

∂
+ ⋅∇ =

∂
= →

∂
∇v v
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