Electromagnetic Compatibility

Test Report for the

Vibration Sensor Test Set Model

AT-2040

(Inclusive of AT-2050, AT-2035, and AT-2030)

Test Report Number RV78081A-001

Prepared For:
Agate Technology
31805 Temecula Pkwy, Ste 157
Temecula, CA 92592

Prepared by:

DNB Engineering, Inc. 5969 Robinson Avenue Riverside, CA 92503

TABLE OF CONTENTS

DOC	UMENT HISTORY	3
CER	TIFICATION OF TEST DATA	4
CON	FORMITY IS DECLARED:	7
1.0	INTRODUCTION	8
2.0	DEVIATIONS	8
3.0	TEST SITE AND EQUIPMENT	9
4.0	TEST DESCRIPTION	14
5.0	CONCLUSIONS	20
APPI	ENDIX A	21
APPI	ENDIX B	25
APPI	ENDIX C	39

18 May 2017 RV78081A-001

DOCUMENT HISTORY

Revision	Number of Pages	Revised Pages	Description	Date
-001	All	All	Report Release	18 May 2017

18 May 2017 RV78081A-001

CERTIFICATION OF TEST DATA

This report, containing electromagnetic immunity and emissions test data and evaluations, has been prepared by an independent electromagnetic compatibility laboratory, DNB ENGINEERING, in accordance with the applicable specifications and instructions required per the Introduction. DNB Engineering has received accreditation to perform these tests by the following authorizations:

NIST / NVLAP: Lab Code No: 200851-0

The data evaluation and equipment configuration presented herein are a true and accurate representation of the measurements of the test sample's electromagnetic immunity and emissions characteristics as of the dates and at the times of the test under the conditions herein specified.

This report shall not be reproduced, except in full, without the written approval of DNB ENGINEERING, INC. Results contained in this report relate only to the item tested.

Disclaimer: This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Report Prepared by: Maridee Winans Maide Wine 18 May 2017

Administrative Assistant Date

Report Reviewed by: Thomas Elders Thomas Elders 18 May 2017

Facility Manager Date

18 May 2017 RV78081A-001

Electromagnetic Compatibility Test Completion Record for:

Agate Technology: **Vibration Sensor Test Set**Model # AT-2040

Test Start Date: 15 May 2017

The EUT was tested in accordance with the requirements of the specifications and standards listed below and found to be fully compliant:

European Union EN61326-1: 2013 EN55011 Class A Group 1

Conducted Emissions:	Pass 🔀	Fail	N/A
Radiated Emissions:	Pass $\overline{\boxtimes}$	Fail	N/A
Harmonics:	Pass	$\mathbf{Fail} \square$	N/A
Flicker:	Pass	\mathbf{Fail}	N/A
Electrostatic Discharge:	Pass 🖂	\mathbf{Fail}	N/A
Radiated RF Susceptibility:	Pass 🔀	\mathbf{Fail}	N/A
Electrical Fast Transient:	Pass 🔀	\mathbf{Fail}	N/A
Conducted Susceptibility:	Pass 🖂	$\mathbf{Fail} \square$	N/A
Surge Immunity:	Pass 🔀	\mathbf{Fail}	N/A
Magnetic Field Immunity:	Pass 🔀	\mathbf{Fail}	N/A
Voltage Dips & Variations:	Pass 🖂	Fail	N/A
Harmonics: Flicker: Electrostatic Discharge: Radiated RF Susceptibility: Electrical Fast Transient: Conducted Susceptibility: Surge Immunity: Magnetic Field Immunity:	Pass Pass Pass Pass Pass Pass Pass Pass	Fail Fail Fail Fail Fail Fail Fail Fail	N/A N/A N/A N/A N/A N/A N/A

18 May 2017 RV78081A-001

CE Mark Information

DNB Job Number:	RV78081A-001	Date: 18 May 2017	Council Directive
Customer:	Agate Technology		
Model Number:	el Number: AT-2040 Serial Number: N/A		2014/30/EU
Description:	Vibration Sensor Test Set		

The following Mark must appear on the body of each product shipped in a visible location. The only requirement is that it must have the same shape as depicted below and cannot be less than 5mm in height. The Mark to the left is how it should appear on your product. The Mark to right has been provided for your assistance in developing artwork. If the CE Mark is reduced or enlarged the proportions given in the graduated drawing must be respected.

In addition to the Mark above the following *Declaration of Conformity* is to be supplied with each product shipped. This information can be applied to each unit in the form of a label, or placed in supporting documentation shipped with each product, (e.g., Owner's Manual, Instruction Manual, etc.)

- Description of the apparatus to which it refers.
- Reference to the specifications, standards, directives, that it conforms with.
- Identification of the signatory empowered to bind the manufacturer or his authorized representative.
- Where one or more Directives apply (during a transitional period) only those Directives to which conformity has been demonstrated may be applied. Failure to list actual Directives implies compliance with all applicable Directives.
- Where appropriate, reference to the EC Type-examination certificate issued by a notified body. Not required on most manufacturers self declaration products.

18 May 2017 RV78081A-001

The below sample Declaration of Conformity has been provided to assist you. The final draft should be signed by a representative of your company.

Declaration of Conformity

Application of Council Directive: 2014/30/EU

Standards 10 which	EN01320-1: 2013
Conformity Is Declared:	EN55011 Class A Group 1

EN61000-4-2 EN61000-4-3 EN61000-4-4 EN61000-4-5 EN61000-4-6 EN61000-4-8 EN61000-4-11

Manufacturer's Name: **Agate Technology**

31805 Temecula Pkwy, Ste 157 Manufacturer's Address:

Temecula, CA 92592

760-215-9670

Equipment Description: Vibration Sensor Test Set

Electrical Equipment Measurement, Equipment Class: Control & Laboratory Use - Industrial

Model Numbers: AT-2040

I the undersigned, hereby declare that the equipment specified above, conforms to the above Directive(s) and Standard(s).

> Place: Signature: Full Name: Position:

18 May 2017 RV78081A-001

1.0 **INTRODUCTION**

Electromagnetic Compatibility (EMC) tests were performed on a representative sample(s) of Agate Technology, **Vibration Sensor Test Set,** Model # AT-2040. The purpose of this test was to demonstrate compliance of the EUT with the applicable limits. The test results have been summarized herein, and all data sheets have been incorporated in Appendix C.

Where applicable, cables were routed consistent with the typical application by varying the configuration of the test sample. The effect of varying the position of cables was investigated to find the configuration that produced maximum emissions and susceptibility.

The EUT was evaluated to determine the "worst case" positioning of both cables and axis. Once the "worst case" configuration was determined care was used to maintain this configuration throughout the test.

2.0 **DEVIATIONS**

Deviations/Modifications to the EUT

NONE

Deviations/Modifications from the Test Standards

Ferrite #ZCAT1325-0530A-BK used on A/C input to battery charger.

18 May 2017 RV78081A-001

3.0 **TEST SITE AND EQUIPMENT**

The test equipment utilized in the performance of this test, along with current calibration information, is listed in the Test Equipment Log of Appendix A.

UNCERTAINTY TOLERANCE

Uncertainty Budget CISPR 11, 22 Conducted Emissions per CISPR 16-4-2

Contribution	Prob Dist	dB	Probability distribution function	Factor	Probability Distribution Type
1) Receiver reading		0.055	1	0.06	k=1
2) Attenuation: AMN-receiver		0.095	2	0.05	k=2
3) AMN voltage division factor		0.44	2	0.22	k=2
4) Rec: Sine wave voltage		0.014	2	0.01	Rectangular
5) Rec: Pulse amplitude response		0.25	1.732051	0.14	Rectangular
6) Rec: Pulse repetition rate					
response		0.25	1.732051	0.14	Rectangular
7) Rec: Noise floor proximity		0		0.00	
8) AMN VDF frequency					
interpolation		0.05	1.732051	0.03	Rectangular
9) Mismatch: AMN-receiver		0.07	1.414214	0.05	U-shaped
10) AMN impedance		-2.7	2.44949	-1.10	Triangular
11) Effect of mains disturbance		0		0.00	
12) Effect of the environment		-	-	-	
Combined standard uncertainty					
u(y)	normal		1.15		
Expanded uncertainty <i>U</i>	normal	2	2.29		

18 May 2017 RV78081A-001

Uncertainty Budget CISPR 11, 22 radiated emissions biconical antenna horizontal polarity per CISPR 16-4-2

Contribution	Prob Dist	dB	Probability distribution function	Factor	Probability Distribution Type
1) Receiver reading		0.055	1	0.06	k=1
2) Attenuation: Ant-rec		0.056	2	0.03	k=2
3) Bic Ant Fact		0.93	2	0.47	k=2
4) Rec: Sine Wave Volt		0.014	2	0.01	k=2
5) Rec: Pulse Amp Resp		0.25	1.732051	0.14	Rectangular
6) Rec: Pulse Rep Rate Resp		0.25	1.732051	0.14	Rectangular
7) Noise Flr Prox		0	1.732051	0.00	Rectangular
8) Mismatch: Ant-pre-amp		-0.71	1.414214	-0.50	U-shaped
9) Mismatch: Pre-amp-receiver		-0.23	1.414214	-0.16	U-shaped
10) Bic: AF freq Int		0.3	1.732051	0.17	Rectangular
11) Bic: AF var w/ height		1	1.732051	0.58	Rectangular
12) Bic: Dir diff, 3m		0	-	-	
13) Bic: Dir diff, 10m		0	-	-	
14) Phase center loc: 3m		0	-	-	
15) Phase center loc: 10m		0	-	-	
16) Cross pol		0	-	-	
17) Balance		0.4	1.732051	0.23	Rectangular
18) Site: imperfections		3.4	2.44949	1.39	Triangular
19) Sep distance at 3m		0.3	1.732051	0.17	Rectangular
20) Sep distance at 10m		0.1	1.732051	0.06	Rectangular
21) Table materials		0	-	-	
22) Table height; 3m		0.1	2	0.05	k=2
23) Table height: 10m		0.1	2	0.05	k=2
Combined stand uncert u(y); 3m	normal		1.71		
Expanded uncertainty <i>U; 3m</i>	normal	2	3.42		
Combined stand uncert u(y); 10m	normal		1.70		
Expanded uncertainty <i>U; 10m</i>	normal	2	3.40		

18 May 2017 RV78081A-001

Uncertainty Budget CISPR 11, 22 radiated emissions biconical antenna vertical polarity per CISPR 16-4-2

Contribution	Prob Dist	dB	Probability distribution function	Factor	Probability Distribution Type
Receiver reading		0.055	1	0.06	k=1
Attenuation: Ant-rec		0.056	2	0.03	k=2
Bic Ant Fact		0.93	2	0.47	k=2
Rec: Sine Wave Volt		0.014	2	0.01	k=2
Rec: Pulse Amp Resp		0.25	1.732051	0.14	Rectangular
Rec: Pulse Rep Rate Resp		0.25	1.732051	0.14	Rectangular
Noise Flr Prox		0	1.732051	0.00	Rectangular
Mismatch: Ant-pre-amp		-0.71	1.414214	-0.50	U-shaped
Mismatch: Pre-amp-receiver		-0.23	1.414214	-0.16	U-shaped
Bic: AF freq Int		0.276	1.732051	0.16	Rectangular
Bic: AF var w/ height		0.3	1.732051	0.17	Rectangular
Bic: Dir diff, 3m		1	Ī	-	
Bic: Dir diff, 10m		0.25	-	-	
Phase center loc: 3m		0	Ī	-	
Phase center loc: 10m		0	-	-	
Cross pol		0	ı	-	
Balance		0.9	1.732051	0.52	Rectangular
Site: imperfections		3.4	2.44949	1.39	Triangular
Sep distance at 3m		0.3	1.732051	0.17	Rectangular
Sep distance at 10m		0.1	1.732051	0.06	Rectangular
Table materials		0	-	-	
Table height; 3m		0.1	2	0.05	k=2
Table height: 10m		0.1	2	0.05	k=2
Combined stand uncert u(y); 3m	normal		1.68		
Expanded uncertainty <i>U</i> ; 3m	normal	2	3.36		
Combined stand uncert u(y); 10m	normal		1.67		
Expanded uncertainty <i>U</i> ; 10m	normal	2	3.35		

18 May 2017 RV78081A-001

Uncertainty Budget CISPR 11, 22 radiated emissions Log Periodic antenna horizontal polarity per CISPR 16-4-2

Contribution	Prob Dist	dB	Probability distribution function	Factor	Probability Distribution Type
Receiver reading		0.055	1	0.06	k=1
Attenuation: Ant-rec		0.056	2	0.03	k=2
LPDA Ant Fact		0.6	2	0.30	k=2
Rec: Sine Wave Volt		0.014	2	0.01	k=2
Rec: Pulse Amp Resp		0.25	1.732051	0.14	Rectangular
Rec: Pulse Rep Rate Resp		0.25	1.732051	0.14	Rectangular
Noise Flr Prox		0	1.732051	0.00	Rectangular
Mismatch: Ant-pre-amp		-0.65	1.414214	-0.46	U-shaped
Mismatch: Pre-amp-receiver		-0.44	1.414214	-0.31	U-shaped
LPDA: AF freq Int		0.3	1.732051	0.17	Rectangular
LPDA: AF var w/ height		0.3	1.732051	0.17	Rectangular
LPDA: Dir diff, 3m		1	1.732051	0.58	Rectangular
LPDA: Dir diff, 10m		0.2	1.732051	0.12	Rectangular
Phase center loc: 3m		1	1.732051	0.58	Rectangular
Phase center loc: 10m		0.3	1.732051	0.17	Rectangular
Cross pol		0.9	1.732051	0.52	Rectangular
Balance		0			
Site: imperfections		3.4	2.44949	1.39	Triangular
Sep distance at 3m		0.3	1.732051	0.17	Rectangular
Sep distance at 10m		0.1	1.732051	0.06	Rectangular
Table materials		0.096	1.732051	0.06	Rectangular
Table height; 3m		0.1	2	0.05	k=2
Table height: 10m		0.1	2	0.05	k=2

18 May 2017 RV78081A-001

Uncertainty Budget CISPR 11, 22 radiated emissions Log Periodic antenna vertical polarity per CISPR 16-4-2

Contribution	Prob Dist	dB	Probability distribution function	Factor	Probability Distribution Type
Receiver reading		0.055	1	0.06	k=1
Attenuation: Ant-rec		0.454	2	0.23	k=2
LPDA Ant Fact		0.6	2	0.30	k=2
Rec: Sine Wave Volt		0.014	2	0.01	k=2
Rec: Pulse Amp Resp		0.25	1.732051	0.14	Rectangular
Rec: Pulse Rep Rate Resp		0.25	1.732051	0.14	Rectangular
Noise Flr Prox		0	1.732051	0.00	Rectangular
Mismatch: Ant-pre-amp		-0.65	1.414214	-0.46	U-shaped
Mismatch: Pre-amp-receiver		-0.44	1.414214	-0.31	U-shaped
LPDA: AF freq Int		0.3	1.732051	0.17	Rectangular
LPDA: AF var w/ height		0.1	1.732051	0.06	Rectangular
LPDA: Dir diff, 3m		3.2	1.732051	1.85	Rectangular
LPDA: Dir diff, 10m		0.5	1.732051	0.29	Rectangular
Phase center loc: 3m		1	1.732051	0.58	Rectangular
Phase center loc: 10m		0.3	1.732051	0.17	Rectangular
Cross pol		0.9	1.732051	0.52	Rectangular
Balance		0.9	1.732051	0.52	Rectangular
Site: imperfections		3.4	2.44949	1.39	Triangular
Sep distance at 3m		0.3	1.732051	0.17	Rectangular
Sep distance at 10m		0.1	1.732051	0.06	Rectangular
Table materials		0.096	1.732051	0.06	Rectangular
Table height; 3m		0.1	2	0.05	k=2
Table height: 10m		0.1	2	0.05	k=2
Combined stand uncert u(y); 3m	normal		2.60		
Expanded uncertainty <i>U; 3m</i>	normal	2	5.21		
Combined stand uncert u(y); 10m	normal		1.77		
Expanded uncertainty U; 10m	normal	2	3.53		

18 May 2017 RV78081A-001

4.0 **TEST DESCRIPTION**

4.1 **Conducted RF Emissions** (EN55011)

To measure conducted emissions, the EUT was set upon a wooden table in the shielded enclosure. AC power was fed into the EUT from the Artificial Mains Network (LISN). With the Artificial Mains Network connected to an HP 8568B Spectrum Analyzer, and using A Computer/Controller and the HP 85864B EMI Measurement Software, the spectrum was searched from 0.15 - 30 MHz for emissions emanating from the EUT. A list of the equipment used in this test is included in Appendix A. A photograph of this test set up is included in Appendix B.

18 May 2017 RV78081A-001

4.0 TEST DESCRIPTION

4.2 **Radiated RF Emissions** (EN55011)

To measure radiated emissions, the EUT was set up on the 3 or 10-meter open air test site. The EUT is placed on a wooden table, which rests on a wooden turntable. The top of the table is one meter above the ground, and the turntable can be rotated 360 degrees. For each frequency measured, the antenna is raised and lowered for both horizontal and vertical polarities to obtain the maximum reading on the analyzer. The turntable is also rotated throughout the 360 degrees in azimuth to determine the position of the maximum emissions. The applicable frequency range is searched using the antennas listed below. The respective antenna and preamplifier were connected to an HP 8568B Spectrum Analyzer. Preamplifiers were used for all ranges to achieve the needed dynamic range. A list of the equipment used in this test is included in Appendix A. Photographs of this test set up are included in Appendix B.

Antenna(s):

Electro-Metrics 6505-A (.009 - 30 MHz) []
SAS 200/540 BICONICAL (20 - 200 MHz) [X]
EMCO 3146 LOG PERIODIC (200 - 1000 MHz) [X]
Schwarzbeck Mess-Elektronik Model MDS-21 []
OTHER (See Equipment Log in Appendix B) [X]

18 May 2017 RV78081A-001

4.0 **TEST DESCRIPTION** (Continued)

4.3 **Harmonics**

The EUT was subjected to Power Supply Harmonics testing. Harmonics measurements were taken using the Voltech PM3000A Power Measurement System and tabulated on the data sheet in Appendix C. A list of the equipment used in this test is included in Appendix B.

4.4 Flicker

The EUT was subjected to a Flicker in Low - Voltage testing. Flicker measurements were taken and converted to percentages using the Voltech PM3000A Power Measurement System. They were then recorded on the data sheet in Appendix C. The Evaluation Results include: Maximum relative voltage change (dmax), Maximum relative steady state voltage (dc), Duration of d(t)> 3% (t), Short term flicker severity (Pst), and Long term flicker severity (Plt). A list of the equipment used in this test is included in Appendix A.

4.5 Electrostatic Discharge Test

The EUT was placed upon a thin insulator, which in turn was placed upon a metal plane. The plane was connected to Primary Earth through two $470~\text{k}\Omega$ resistors. The Haefely ESD Generator discharges from a 150 pfd Capacitor was applied through a 5K Resistor at the test point with the Haefely Discharge Electrode. The EUT was pulsed on the test points listed on the data sheets in Appendix B 10 times at each level in both polarities. A list of the equipment used in this test is included in Appendix A. A photograph of the test setup is included in Appendix B.

18 May 2017 RV78081A-001

4.0 **TEST DESCRIPTION** (Continued)

4.6 Radiated RF Susceptibility

The EUT was subjected to a radiated E-field while being monitored for signs of susceptibility. To generate the required level of field strength in the appropriate frequency range a Power Amplifier and the appropriate antenna for the frequency range were used. The required field strength was monitored with Isotropic Field Probes along with an Isotropic Field Monitor. A list of the equipment used in this test is included in Appendix A.

4.7 Electrical Fast Transient/Burst

The Haefely 093 204.1 Transient Generator supplied the Electrical Fast Transient/Burst waveforms injected into the EUT. The pulses were capacitively injected onto the I/O, Signal, and Control lines using a Coupling Clamp injection probe. The pulses were directly injected into the power lines. A list of the equipment used in this test is included in Appendix A. Photographs of this test set up are included in Appendix B.

18 May 2017 RV78081A-001

4.0 **TEST DESCRIPTION** (Continued)

4.8 Surge Susceptibility

The Surge Susceptibility Test was performed on the EUT. The Combination Wave Generator (Differential Mode) delivers a 1.2/50 μ s voltage surge into an open circuit and a 8/20 μ s current surge into a short circuit (i.e. the generator has an effective output impedance of 2 Ω) are injected into selected pins of the EUT. Each Pin tested was subjected to 5 pulses each in both the positive and negative polarities. In addition, the EUT was subjected to Voltage phase shifts of 0°, 90°, and 270° in both the positive and negative polarities. The Combination Wave Generator (Common Mode) delivers a 1.2/50 μ s voltage surge into an open circuit and a 8/20 μ s current surge into a short circuit (i.e. the generator has an effective output impedance of 12 Ω) are injected into selected pins of the EUT. Each Pin tested was subjected to 5 pulses each in both the positive and negative polarities. In addition, the EUT was subjected to Voltage phase shifts of 0°, 90°, and 270° in both the positive and negative polarities. A list of the equipment used in this test is included in Appendix A. Photographs of this test set up appear in Appendix B.

4.9 **Conducted RF Susceptibility**

Conducted susceptibility signals were coupled into the input power leads and interconnecting cables using a current probe. Calibrated levels from 150 kHz to 80 MHz were injected while using a second probe to monitor the injected current. The radio frequency signal was supplied by a Marconi 2024 Signal Generator and a Kalmus 100 W Power Amplifier M/N 757LCB-CE. A Fischer Custom Communications Bulk Injection Probe M/N F-120-9B was used to inject the test level and a Solar 6741-1 was used to monitor the injected A list of the equipment used in this test is included in Appendix A. Photographs of this test set up appear in Appendix B.

18 May 2017 RV78081A-001

4.0 **TEST DESCRIPTION** (Continued)

4.10 Magnetic Field Immunity Test

The EUT was placed upon a 0.1m insulator, which in turn was placed upon a metal plane. The plane was connected to Primary Earth. A 1m-loop antenna connected to a current transformer supplied from a 50Hz source was then placed around the EUT in the three axis. The applicable A/m was determined by monitoring the loops magnetic field with a Bell 640 Gaussmeter. A list of the equipment used in this test is included in Appendix A. A photograph of the test setup is included in Appendix B.

4.11 Voltage Dips, Short Interruptions, & Variations

The EUT was placed as close to the power source as possible with the manufacturer's supplied power cord. If no power cord was supplied the EUT was placed as close to the power source as possible. The power source was controlled via GPIB bus to cause the required voltage dips and variations. The EUT was monitored after each test level. If required the EUT was reset to the applicable configuration. A list of the equipment used in this test is included in Appendix A. A photograph of the test setup is included in Appendix B.

18 May 2017 RV78081A-001

5.0 **CONCLUSIONS**

The Agate Technology, **Vibration Sensor Test Set**, Model #AT-2040, was tested in accordance with the requirements listed herein. Pass/Fail status for each test is listed on page 5. At the completion of testing the EUT and support equipment were returned to representatives of Agate Technology

18 May 2017 RV78081A-001

APPENDIX A

Test Equipment Log

18 May 2017 RV78081A-001

Asset No	Item	Manufacturer	Model No	Serial No	Calibration Date	Calibration Interval	Calibration Due
110	Rom	VSWR	Model No	Conditio	Date	miorvai	240
11	Antenna (Small DRG)	Emco	3115	2281	27-May-15	730	27-May-17
31	Antenna (Log Periodic)	Emco	3146	1284	22-Oct-15	730	22-Oct-17
51	Pre-Amp	Mini-Circuits	zhl-2-8	41185-2			Asset/No Cal
52	Pre-Amp	Mini-Circuits	ZHL-42	122884			Asset/No Cal
57	Clamp	Schwarzbeck	MDS21	NSN			Asset/No Cal
387	Pre-Amp	H/P	10855A	1250-0212	29-Sep-16	730	29-Sep-18
604	Attenuator	Tenuline	8341-200	902	09-Aug-16	365	09-Aug-17
705	Spectrum Analyzer	H/P	8565A	2232A02476			Asset/No Cal
756	Antenna (pwr bicon)	DNB	DNB756	756			Asset/No Cal
844	QP Adapter	H/P	85650A	2811A01240	09-Jul-15	730	09-Jul-17
858	Gun	Haefely	PSD25B	083 427-05			Asset/No Cal
871	Pre-Amp	MCL	ZHL-32A	8442 05			Asset/No Cal
959	Micrometer	General MG	1050C	959	23-Feb-16	730	23-Feb-18
969	Scale	Imada	MF	70403	24-May-16	730	24-May-18
979	LISN (Backup)	Solar	8028-50-TS-24-BNC	956301	10-Nov-15	730	10-Nov-17
984	LISN (Backup)	Solar	8028-50-TS-24-BNC	962133	11-Jan-16	730	11-Jan-18
1034	Generator	Marconi	2024	112231-034	02-Mar-16	730	02-Mar-18
1057	Weather Station	Davis	7400	pc70804a01	14-Apr-16	730	14-Apr-18
1063	Collapsable Antenna	Antenna Research	CB1071	1063	22-Oct-15	730	22-Oct-17
1102	Spectrum Analyzer	H/P	3585A	2718A05908	10-Jun-15	730	10-Jun-17
1103	Signal Generator	H/P	8656B	2629U00598			Asset/No Cal
1109	Spect Analyzer Display	H/P	85662A	2318A05282	09-Jul-15	730	09-Jul-17
1117	Control Center	Keytek	ECAT Series 100	9603276			Asset/No Cal
1152	Current Probe	Solar	6741-1	862003	10-Jun-15	730	10-Jun-17
1196	Attenuator	Pasternack	PE7010-20	1196	09-Aug-16	365	09-Aug-17
1197	Attenuator	Pasternack	PE7010-20	1197	09-Aug-16	365	09-Aug-17
1198	Attenuator	Pasternack	PE7010-20	NSN	09-Aug-16	365	09-Aug-17
1215	Tester	Assoc Research	510L	A130511	10-Jun-15	730	10-Jun-17
1221	Calibration Fixture	Fischer Custom C.	FCC-BCICF-1A	25			Asset/No Cal
1233	Spectrum Analyzer Spec Analyzer	HP	8568B	2732A03600	02-Nov-16	730	02-Nov-18
1234	Display	HP	85662A	2648A15552	02-Nov-16	730	02-Nov-18
1242	Spectrum Analyzer	H/P	85680A	2503A01257	09-Jul-15	730	09-Jul-17
1606	Pre-Amp	Miteq	AFD3-020080-50	102979			Asset/No Cal
1671	Probe	Haefely	093579-1	083071-11			Asset/No Cal
1695	Spectrum Analyzer	H/P	85662A	2112A02234			Asset/No Cal
1722	Amplifier	Kalmus	757LCB/1-60-485-003	7902-1			Asset/No Cal
1723	Control Box	Kalmus	757LCB/1-60-485-003	7902-1			Asset/No Cal
1725	Pre-Amp	Miteq	afs4-08001800-30-uln	834258			Asset/No Cal
1726	Generator (EFT)	Haefely	p90.1	083 315-19	06-Jan-16	730	06-Jan-18
1729	Mag Loop Antenna	FCC	f-55103-2-0.13m	9951	19-Aug-16	730	19-Aug-18
1730	Chassis Bay	Keytek	ECAT Series 100	9603277	05-Jan-16	730	05-Jan-18
1731	Surge Network	Keytek	E501A	9603278	05-Jan-16	730	05-Jan-18
1732	Mains Coupler Decoupler	Keytek	E551	9603279	05-Jan-16	730	05-Jan-18
1734	Antenna	Chase	CBL6140	1048	28-Jun-15	730	28-Jun-17

18 May 2017 RV78081A-001

Asset No	Item	Manufacturer	Model No	Serial No	Calibration Date	Calibration Interval	Calibration Due
1758	Antenna (Bicon)	AH Systems	SAS-200/540	524	22-Oct-15	730	22-Oct-17
	Pre-Amp (called	, and experience					
1760	ZFL)	Mini-Circuits	ZFL-2000	8350	04-Mar-16	730	04-Mar-18
1761	Pre-Amp	Miteq	JS2-0200400	664011			Asset/No Cal
1764	Antenna	AH Systems	sas-200/540	138			Asset/No Cal
1769	Probe	FCC	F-120-9B	33			Asset/No Cal
1774	Kit	FCC	FCC-TLISN-T4	20068			Asset/No Cal
1775	Power Source	California Inst	4500iL	51859	08-Dec-15	730	08-Dec-17
1791	CDN	FCC	fcc-801-m3-16	110	20-Oct-15	730	20-Oct-17
1841	Simulator / ESD Gun	Haefely	PESD3000	H002033	05-Jan-16	730	05-Jan-18
1879	Voltage Probe	Emco	3701	9703-1156	17-Dec-16	365	17-Dec-17
1890	Coupler	Narda	3020A	30283	09-Aug-16	365	09-Aug-17
1896	OATS	DNB	OATS	11896	24-Jun-16	365	24-Jun-17
1898	Clamp	DNB	NMN	11898	30-Oct-16	365	30-Oct-17
1899	Antenna	DNB	NMN	11899			Asset/No Cal
1900	Attenuator	Midwest Microwave	388-20	70015			Asset/No Cal
1917	Antenna (MagLoop)	DNB	MLR100	11917	03-Nov-16	720	03-Nov-18
1918	Power Sply (Mag Loop)	DNB	LPS111	11918	03-Nov-16	720	03-Nov-18
1919	Antenna	DNB	TC100	11919	03-1107-10	720	Asset/No Cal
1920	Weather Station	Davis	7400	MC20725A20	14-Apr-16	730	14-Apr-18
1921	Antenna Mast	DNB	AM200	11921	29-Jun-16	365	29-Jun-17
1921	Turn Table	DNB	TP1100	11922	29-Jun-16	365	29-Jun-17 29-Jun-17
1924	Antenna Mast	Emco	3051	11924	29-3011-10	305	Asset/No Cal
					10 1.1 16	720	
1943	Meter	Boonton	4231A	91501 32754	18-Jul-16	730	18-Jul-18 18-Jul-18
1944	Sensor	Boonton	51011-EMC 4106	11954	18-Jul-16	730	
1954	Antenna (Lg DRG)	Tensor		+			Asset/No Cal
1955	Probe	Credence Tech	Scan EM-C	11955			Asset/No Cal
1963	Emissions Ramp	DNB	HMR100	11963	00 Nov. 40	005	Asset/No Cal
1965	Quasi-Peak Adapter	HP	85650A	2043A00277	02-Nov-16	365	02-Nov-17
2155	Power Analyzer	Voltech	PM3000A	AL111/9190	12-Aug-15	730	12-Aug-17
2156	Network	Voltech	IEC61000-3	IG112/9226	25-Sep-16	365	25-Sep-17
2180	LISN (main use)	Fischer	FCC-LISN-50-50-4-02	04077	25-Jun-15	730	25-Jun-17
2264	Spectrum Analyzer	Agilent	E4407B	MY45103462	11-Aug-15	730	11-Aug-17
2287	OATS	Industry Canada	Industry Canada	12287	04-Feb-17	1095	04-Feb-20
2363	Meter	AlphaLab Inc.	Tri-Field Meter	12363	04-Nov-16	365	04-Nov-17
2452	OATS	FCC filing National	Tst Firm Registration#	#99985	13-Jan-16	1095	09-Nov-19
2749	GPIB Controller	Instruments	188417D-01	0134648B			Asset/No Cal
2750	GPIB Controller	National Instruments	188417D-01	0134673C			Asset/No Cal
2818	Monopole Antenna	DNB	VladMono	12818	17-Dec-15	730	17-Dec-17
2839	Software	Tile 4	ETS-Lingren	CE & 61000-4-3			Asset/No Cal
3244	Loop Antenna	AH Systems	SAS-562B	267	13-Mar-17	730	13-Mar-19
3260	Giant Loop Antenna	DNB	LLA-GAD	13260			Asset/No Cal
3412	Current Probe	Solar	6741-1	1110229	7-Jan-16	730	7-Jan-18
3414	Pre-Amp	RF Bay DNB Riv Rad	MGA-2500	11120901	29-Sep-16	730	29-Sep-18
3470	Software	Emiss	DNB	HMRES1896			Asset/No Cal
3474	Software	ECAT	Keytech	E500SurgeWare			Asset/No Cal

18 May 2017 RV78081A-001

Asset					Calibration	Calibration	Calibration
No	Item	Manufacturer	Model No	Serial No	Date	Interval	Due
3475	Software	Voltech	Voltech	13475			Asset/No Cal
		California					
3480	Software	Instruments	AC Source	13480			Asset/No Cal
3581	Antenna	ETS	3183	142067	16-Apr-15	730	16-Apr-17
	Sig Gen 9KHz-						
3733	3200MHz	HP	864C	3847A04506	2-Nov-15	730	2-Nov-17

18 May 2017 RV78081A-001

APPENDIX B

Photographs

18 May 2017 RV78081A-001

Photos

Conducted Emissions

Photos

Radiated Emissions-Bicon

Notes: 30MHz - 200 MHz

18 May 2017 RV78081A-001

Photos

Radiated Emissions – Log Periodic

Notes: 200MHz - 1000MHz

18 May 2017 RV78081A-001

Photos

Electro-Static Discharge

18 May 2017 RV78081A-001

Photos

Electro-Static Discharge

Photos

Radiated Susceptibility

Notes: 80MHz - 1000MHz

18 May 2017 RV78081A-001

Photos

Radiated Susceptibiliy - DRG Horn

Notes: 160MHz - 1GHz

18 May 2017 RV78081A-001

Photos

Radiated Susceptibility – DRG Horn

Notes: 1GHz – 2.7GHz

18 May 2017 RV78081A-001

Photos

Electrical Fast Transient

18 May 2017 RV78081A-001

Photos Surge

18 May 2017 RV78081A-001

Photos

Conducted Susceptibility

18 May 2017 RV78081A-001

Photos

Magnetic Field Immunity

Notes:

18 May 2017 RV78081A-001

Photos

Voltage Dips & Variations

Notes:

18 May 2017 RV78081A-001

APPENDIX C

Test Data

18 May 2017 RV78081A-001

Conducted Emissions Datasheet

DNB Job Number:	RV78081A-001	Date: 16 May 2017								
Customer:	Agate Technology		Specification							
Model Number:	AT-2040		EN55011							
Description:	Vibration Sensor Test Set	S/N: N/A	CLASS A [X] B []							
Test Equipment: Asset #'s: 844, 1109, 1242, 2180 GROUP 1 (See pg. 21)										
EUT performed within the requirements of the applicable Standard(s) YES NO SIGNED Mike Green										

18 May 2017 RV78081A-001

Conducted Emissions Datasheet

DNB Job Number:	RV78081A-001	Date: 16 May 2017									
Customer:	Agate Technology		Specification								
Model Number: AT-2040 EN55011											
Description:	Vibration Sensor Test Set	S/N: N/A	CLASS A [X] B []								
Test Equipment: Asset #'s: 844, 1109, 1242, 2180 GROUP 1 (See pg. 21)											
EUT performed within the requirements of the applicable Standard(s) YES ☒ NO ☐ SIGNED Mike Green											

18 May 2017 RV78081A-001

Radiated Emissions Datasheet

DNB Job Number:	RV78081A-001	Date: 16 May 2017							
Customer:	Agate Technology		Specification						
Model Number:	AT-2040	Serial Number: N/A	EN55011						
Description:	Vibration Sensor Test Set		CLASS A [X] B []						
Test Equipment: (See pg. 21) Asset #'s: 31, 387, 1233, 1234, 1430, 1758, 1760, 1965 GROUP 1									
EUT performed wi	thin the requirements of the applicat	ble Standard(s) YES 🗵 NO	SIGNED Mike Green						

Freq. (MHz)	Meter (dBμV)	Ant. (dB)	Cable (dB)	Distance (dB)	Amp. (dB)	Corrected (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Degrees	Polarity
31.628	41.1	13	1.3	-10	-21.9	23.5	40	-16.5	PK	360	V
44.394	41.3	11	1.4	-10	-21.8	21.9	40	-18.1	PK	360	V
44.443	36.6	11	1.4	-10	-21.8	17.2	40	-22.8	PK	360	V
55.609	39.6	9.8	1.6	-10	-21.8	19.2	40	-20.8	PK	157	V
62.059	49.5	9.5	1.6	-10	-21.8	28.8	40	-11.2	PK	101	V
71.003	41.7	9.4	1.7	-10	-21.8	21	40	-19	PK	162	V
72.128	44	9.4	1.7	-10	-21.8	23.3	40	-16.7	PK	162	V
72.392	45.6	9.4	1.7	-10	-21.8	24.9	40	-15.1	PK	162	V
76.303	43	9.2	1.8	-10	-21.9	22.1	40	-17.9	PK	162	V
81.348	37.4	9.1	1.8	-10	-21.9	16.4	40	-23.6	PK	123	V
111.144	43.9	10.3	2.1	-10	-21.9	24.4	40	-15.6	PK	360	V
112.161	45.8	10.4	2.1	-10	-21.9	26.4	40	-13.6	PK	360	٧
114.197	46.7	10.5	2.1	-10	-21.9	27.4	40	-12.6	PK	360	V
124.39	41.8	11.2	2.2	-10	-21.9	23.3	40	-16.7	PK	360	V
127.465	47.2	11.3	2.3	-10	-21.9	28.9	40	-11.1	PK	360	٧
134.993	44.4	11.7	2.3	-10	-21.9	26.5	40	-13.5	PK	360	V
195.776	39.4	14.3	3	-10	-21.8	24.9	40	-15.1	PK	261	٧
45.004	44.9	10.9	1.4	-10	-21.8	25.4	40	-14.6	PK	287	Н
63.004	37.3	9.4	1.6	-10	-21.8	16.5	40	-23.5	PK	287	Н
76.288	47.1	9.2	1.8	-10	-21.9	26.2	40	-13.8	PK	360	Н
81.045	51.3	9.1	1.8	-10	-21.9	30.3	40	-9.7	PK	85	Н
83.626	40	9.2	1.8	-10	-21.9	19.1	40	-20.9	PK	97	Н
84.652	43.8	9.2	1.8	-10	-21.9	22.9	40	-17.1	PK	97	Н
86.694	43.6	9.2	1.9	-10	-21.9	22.8	40	-17.2	PK	97	Н
91.092	41.8	9.3	1.9	-10	-21.9	21.1	40	-18.9	PK	97	Н
94.303	44.4	9.5	1.9	-10	-21.9	23.9	40	-16.1	PK	97	Н
111.179	44.2	10.3	2.1	-10	-21.9	24.7	40	-15.3	PK	97	Н

18 May 2017 RV78081A-001

Freq.	Meter	Ant.	Cable	Distance	Amp.	Corrected	Limit	Margin		_	
(MHz)	(dBµV)	(dB)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector	Degrees	Polarity
117.269	44.3	10.7	2.2	-10	-21.9	25.3	40	-14.7	PK	100	Н
123.368	42.6	11.1	2.2	-10	-21.9	24	40	-16	PK	100	Н
131.571	38.4	11.6	2.3	-10	-21.9	20.4	40	-19.6	PK	100	Н
135.616	43.1	11.7	2.4	-10	-21.9	25.3	40	-14.7	PK	100	Н
141.752	41.4	12	2.4	-10	-21.9	23.9	40	-16.1	PK	100	Н
139.719	38.7	11.9	2.4	-10	-21.9	21.1	40	-18.9	PK	261	Н
141.724	39.6	12	2.4	-10	-21.9	22.1	40	-17.9	PK	261	Н
149.987	40.9	12.4	2.5	-10	-21.9	23.9	40	-16.1	PK	261	Н
153.157	36.2	12.5	2.5	-10	-21.8	19.4	40	-20.6	PK	261	Н
160.143	46.3	12.8	2.6	-10	-21.8	29.9	40	-10.1	PK	348	Н
171.408	38	13.3	2.7	-10	-21.8	22.2	40	-17.8	PK	141	Н
196.813	40	14.4	3	-10	-21.8	25.6	40	-14.4	PK	124	Н
206.853	52.7	10.8	3.1	-10	-21.8	34.8	40	-5.2	PK	330	V
204.737	54.9	10.9	3	-10	-21.8	37	40	-3	PK	360	V
206.774	52.7	10.8	3	-10	-21.8	34.7	40	-5.3	PK	170	V
197.616	46.7	14.4	3	-10	-21.8	32.3	40	-7.7	PK	170	V
185.384	40.2	14.1	2.9	-10	-21.8	25.4	40	-14.6	PK	170	V
220.752	46.6	10.6	3.2	-10	-21.8	28.6	40	-11.4	PK	154	V
264.879	37.1	12.2	3.5	-10	-21.7	21.1	47	-25.9	PK	154	V
264.813	36.4	12.2	3.5	-10	-21.7	20.4	47	-26.6	PK	129	V
421.222	39.2	16.2	4.6	-10	-21.4	28.6	47	-18.4	PK	127	V
399.995	32.9	15	4.5	-10	-21.4	21	47	-26	PK	219	V
450.02	31.2	15.9	4.8	-10	-21.3	20.6	47	-26.4	PK	254	V
650.02	30.8	19	5.8	-10	-21.2	24.4	47	-22.6	PK	254	V
449.992	36.7	15.9	4.8	-10	-21.3	26.1	47	-20.9	PK	319	V
207.856	56.4	10.8	3.1	-10	-21.8	38.5	40	-1.5	PK	232	Н
207.879	55.7	10.8	3.1	-10	-21.8	37.8	40	-2.2	QP	232	Н
202.802	57	10.9	3	-10	-21.8	39.1	40	-0.9	PK	232	Н
202.76	55.9	10.9	3	-10	-21.8	38	40	-2	QP	232	Н
217.027	46.5	10.6	3.1	-10	-21.8	28.4	40	-11.6	PK	232	Н
263.858	37.2	12.2	3.5	-10	-21.7	21.2	47	-25.8	PK	232	Н
325.026	37.1	14.1	3.9	-10	-21.5	23.6	47	-23.4	PK	221	Н
450.026	33.8	15.9	4.8	-10	-21.3	23.2	47	-23.8	PK	221	Н
550.01	35.2	17.6	5.4	-10	-21.2	27	47	-20	PK	221	Н
650.01	33.7	19	5.8	-10	-21.2	27.3	47	-19.7	PK	221	Н

Χ

В

Χ

8

9

10

11

Χ

В

Χ

В

Χ

Χ

В

В

В

В

В

В

В

Χ

Χ

5969 Robinson Ave Riverside, CA 92503 (951) 637-2630 FAX (951) 637-2704 www.dnbenginc.com

18 May 2017 RV78081A-001

								E	SD I	Datas	sheet	t (1)								
DNB	Job N	umbe	r: RV	′7808	1A-00	1			1	Date:	17 Ma	y 201	17		Con	forn	nanc	e St	anda	ırd
Cust	omer:		Ag	ate Te	chno	logy			•			•			001	_		326-1		
Mode	el Nun	nber:	AT	-2040						Serial	Num	ber: I	N/A					anda		
Desc	riptior	า:	Vib	ration	Sens	or Te	st Set											00-4-		
Test I (See			As	set #'s	s: 858	, 1841										Li	1010	00 T .	2	
Ambi	ent Te	emp		25	° C		Rela	tive H	umidit	ty	35 %	%		Atmo	spher	ic Pre	essure	98	3.6 kP	а
B Ter C Ter	npora npora gradat	ormal f ry deg ry deg tion or ata.	radat ıradat	ion or tion or	loss o	of fund of fund	ction o	or perf or perf	orma forma	nce, w	/hich ı	equir	es ope	erator	interv					
									I	njecte	d Lev	el								
#		Lev	el 1			Lev	el 2			Lev	el 3			Lev	el 4			Spe	ecial	
#	2k Con	(V itact	2ŀ A	(V .ir		<v ntact</v 		<v .ir</v 		<v ntact</v 	_	(V .ir		(V itact		KV .ir				
	+	_	+	_	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-
1	Х	Х			Х	Χ														
2	Χ	Х			Х	Х														
3	Χ	Х			Χ	Χ														
4	Χ	Х			Χ	Χ														
5	Χ	Х			Х	Х														
6	В	В			В	В														

Χ

Χ

18 May 2017 RV78081A-001

ESD Datasheet (2)

DNB Job Number:	RV78081A-001	Date: 17 May 2017	Conformance Standard
Customer:	Agate Technology		EN61326-1
Model Number:	AT-2040	Serial Number: N/A	Basic Standard
Description:	Vibration Sensor Test Set		EN61000-4-2
			21(01000 12

EUT performed within the requirements of the applicable Standard(s) YES 🗵 NO 🗌 SIGNED Mike Green

A minimum of ten discharges Per injection point is required.

Location of injection points:

18 May 2017 RV78081A-001

Radiated Susceptibility Datasheet

DNB Job Number: RV78081A-001 Date: 16 May 2017 Conformance Standa Customer: Agate Technology EN61326-1											
Customer:	Agate Techno	logy									
Model Number:	AT-2040		l Number: N/A	Basic Standard							
Description:	Vibration Sens	sor Test Set			EN61000-4-3						
Test Equipment:	·	756, 1198, 1890, 19	943, 19	44, 1951, 1954, 3473,	21(01000 13						
(See pg. 21)	3733				Transducer Type:						
Ambient Temp 2	1 ° C Relative	Humidity 40 % At	mosphe	eric Pressure kPa 98.8	☐ TEM Cell ☐ Antennas						
D Degradation or lo or loss of data.	ole. intervention or system reset. ipment (components) or software,										
EN61000-6-2 Enclo											
Antenna F ↓	aces	80-1000MHz, 10\ 80% AM (1kHz		1.4-2GHz, 3V/m, 80%AM (1kHz)	2.0-2.7GHz, 1V/m 80%AM (1kHz)						
Front		X		X	X						
Right Side		X		X	X						
Back Left Side		X		X	X						
Leit Side		^									
Notes:											
rotes.											
FUT performed w	ithin the require	ments of the applica	able St	andard(s) YES 🕅 NO	SIGNED Mike Green						

18 May 2017 RV78081A-001

EFT Datasheet

									J	ער.	1 Datasneet										
DNB Job Numb	er:	RV7	7808	31A-	001						Date: 16 May 2017										
Customer:		Aga	te T	echi	nolo	gy								\mathbf{C}_{0}	nfo	rm	anc	e S	tan	dar	:d
Model Number	:	AT-	2040)						9,	Serial Number: N/A					EN	1613	326-	1		
Description:		Vibr	atio	n Se	enso	r Te	st S	et							R				laro	ŀ	
Test Equipment	::	Ass	et#	s: 1	726,	, 189	98								10		610			•	
(See pg. 21)																	010				
Ambient Temp			° C					lativ			3		Atmo	sph	eric	Pres	sure	99).1Pa	<u> </u>	
X or A Norma																					
											ance, which is self –re ance, which requires				rvon	tion	or ev	ıctar	n rec	cot	
											ble due to damage of										are.
or loss of data.	JJ				,								990		(γ		,			,
	I	npu	t and	JOu	ıtput	t AC	Pov	wer l	Port	S			Inp	ut ar	nd O	utpu	t AC	Pov	ver F	orts	
	Lev	/el1	Lev	el 2	Lev	el 3	Lev	el 4	Spe	ecial		Lev	/el1	Lev	el 2	Lev	el 3	Lev	el 4	Spe	ecial
Cable	0.5	KV	11	(V	21	(V	4	(V			Cable	0.2	5KV	0.5	ΚV	11	(V	21	(V		
Description	+	-	+	-	+	-	+	-	+	-	Description	+	-	+	-	+	-	+	-	+	-
L					В	В															
N					В	В															
PE					В	В															
L-N					В	В															
L-PE					В	В															
N-PE					В	В															
L-N-PE					В	В															
		Proc	ess	, me	asu	rem	ent	& co	ntro	ol), sig						
	Lev	/el1	Lev	el 2				el 4	Spe	ecial		Lev	/el1					Lev	el 4	Spe	ecial
Cable	0.2	5KV	0.5	ΚV	11	(V	21	(V		,	Cable	0.2	5KV	0.5	KV	11	(V	2ŀ	(V		
Description	+	-	+	-	+	-	+	-	+	_	Description	+	-	+	-	+	-	+	-	+	-
Notes:																					
EUT performed	tiw b	hin t	he r	equi	irem	ents	of t	the a	appli	icab	le Standard(s) YES	\boxtimes	NO		SIG	NED	Mik	e Gr	een		

18 May 2017 RV78081A-001

											Su	ırg	e D)at	asl	iee	et													
DNB Job Num	ber	: F	V78	308	1A-	001							I	Date	e: 1	7 M	lay :	201	7		C	on	for	ma	ano	e s	Sta	nd	arc	d
Customer:		Α	gat	е Т	ech	nolo	ogy																	EN						-
Model Numbe	r:	Α	T-2	040)									Ser	ial	Nun	nbe	r: N	I/A			-	Ba	sic	St	an	da	rd		
Description:		٧	'ibra	atior	ı Se	ensc	or T	est	Set															-			4-5			
Test Equipmer (See pg. 21):	nt:	A	sse	t #'	s: 1	117	, 17	'30,	173	31,	173	2																		
Ambient Temp				22		С							nidit	ty		46	3 %)			Atr	nos	phe	eric	Pre	ssu	ire	98.	8 kF	Pa
X or A Norma B Temporary of C Temporary of D Degradation or loss of data	legr degi or	ada ada	atior atio	n or n or	los los	s of	fun f fur	ctic octic	n o on o	r pe	erfor erfor	ma ma	nce	, wł	nich	rec	quire	es o	pera	ator	int									e,
							(Cor	nmo	on N	Лod	e (1	.2/5	50, 8	3/20) Cc	mb	inat	ion	Wa	ve	12C)hm)						
			Lev	el 1					Lev	el 2					Lev	el 3	3				Lev	el 4					Spe	ecia	l	
Cable Description			0.5	ΚV					1.0	ΚV					2.0	ΚV					4.0	ΚV								
Description	L1+l	PE-	L2+F	PE-	L1+l PE-	<u>_2</u> +	L1+F	PE-	L2+	PE-	L1+l PE-	L2+	L1+F	PE-	L2+l	PE-	L1+ PE-	L2+	L1+F	PE-	L2+l	PE-	L1+ PE-	L2+	L1+l	PE-	L2+	PE-	L1+l PE-	_2+
	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-
AC Mains Phase 0°	Χ	X	Χ	Χ	Χ	Х	Х	Χ	Х	Х	Х	Х	Х	Χ	Х	Χ	Х	Х												
AC Mains Phase 90°	Χ	X	Χ	X	Χ	Χ	Х	Χ	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х												
AC Mains Phase270°	X	X	Χ	X	Χ	Х	Χ	Χ	Х	Х	Х	Х	Χ	Χ	Х	Χ	Х	Х												
								Diffe	eren	tial	Мо	de (1.2/	/50,	8/2	20 C	om	bina	atior	ı W	ave	2 (Dhm	1)						
Cabla			Lev	el 1					Lev	el 2	2				Lev	el 3	3				Lev	el 4					Spe	ecia	I _	
Cable Description			0.5									2.0KV 4.0KV																		

L1+L2- [PE] L1+L2- [PE] L1+L2- [PE] L1+L2- [PE] L1+L2- [PE] + + AC Mains Χ Χ Χ Χ Phase 0° AC Mains Χ Χ Χ Χ Phase 90° AC Mains Χ Χ Χ Χ Phase270° Notes:

Notes.	
EUT performed within the requirements of the applicable Standard(s)	YES ☑ NO ☐ SIGNED Mike Green

18 May 2017 RV78081A-001

Conducted Susceptibility Datasheet

			Coma	acted 5	asceptionity But	ириссь			
DNB Job Numb	er: RV78	081A-001			Date: 16 May 2017	(Conform	ance Sta	ndard
Customer:	Agate	e Technolo	ogy					N61326-1	
Model Number:	AT-20	040			Serial Number: N/A	L		Standa	rd
Description:	Vibra	tion Senso	or Test Se	t				61000-4-6	
Test Equipment (See pg. 21):	: Asset	t#'s: 1034	, 1109, 12	221, 1242,	, 1723, 1769, 3408		21 (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Ambient Temp	23	° C	Rela	ative Hum	idity 34 %	Atmos	pheric Pres	sure 99.	.0 kPa
X or A Normal B Temporary de C Temporary de	egradatior egradatior or loss of	n or loss on n or loss on function, v	n specifica f function f function vhich is no	ation limits or perforn or perforn ot recover		ecoverable operator in the equip	e. ntervention ment (comp	or system r oonents) or	software,
	•	ind Output	1	er Ports		•	and Output	t DC Powe	r Ports
Cable	Level 1	Level 2	Level 3	Special	Cable	Level 1	Level 2	Level 3	Special
Description	1V	3V	10V		Description	1V	3V	10V	
230VAC		Х							
	Proces	ss, measu	rement &	control			I/O, signal,	& data bus	SS
Cable	Level 1	Level 2	Level 3	Special	Cable	Level 1	Level 2	Level 3	Special
Description	1V	3V	10V		Description	1V	3V	10V	'
2000		-	-		2000				
N. (
Notes:									
EUT performed	l within th	e requiren	nents of th	ne applica	ble Standard(s) YES	⊠ NO [SIGNED	Mike Gree	∍n

18 May 2017 RV78081A-001

Magnetic Field Immunity Datasheet

DNB Job Numbe	er: RV78081A-00	01	Date: 16 May	/ 2017	Conformanc	e Standard							
Customer:	Agate Techno	ology			EN613								
Model Number:	AT-2040		Serial Numb	er: N/A	Basic Standard EN61000-4-8								
Description:	Vibration Sen	sor Test Set											
Test Equipment:		Asset #'s: 1917, 1918											
(See pg. 21):													
Ambient Temp	23 ° C	Relative H		% Atı	mospheric Pressure	98.7 kPa							
		nin specification lir											
		of function or perfe											
					or intervention or sy								
บ Degradaแon o or loss of data.	rioss of function,	which is not recov	verable due to da	image of the eq	luipment (componei	nts) or software,							
or loss of data.		Induced i	magnetic field str	enath for contir	nuous fields								
	Level 1	Level 2	Level 3	Level 4	Level 5	Special							
	1 A/m	3 A/m	10 A/m	30 A/m	100 A/m	'							
X Axis				Х									
Y Axis				Х									
Z Axis				Х									
	Induced magnetic field strength for short duration (1s to 3s)												
	Level 1	Level 2	Level 3	Level 4	Level 5	Special							
				300 A/m	1000 A/m								
X Axis													
Y Axis													
Z Axis													
Notes:													
EUT performed	within the require	ements of the appli	icable Standard(s	s) YES 🖂 NO	O 🔲 SIGNED Mik	e Green							

18 May 2017 RV78081A-001

Voltage Dips/Interruptions Datasheet

DNB Job Number:	: RV78081A-001						Date: 17 May 2017				Conformance Standard						
Customer:	Agate Technology EN61326-1																
Model Number:	AT-2040						Serial Number: N/A				Basic Standard						
Description:	Vibrat	Vibration Sensor Test Set EN61000-4-11															
Test Equipment: (See pg. 21):	Asset #'s: 1775, 2155, 2156																
		С		Relativ			37	7 %)	At	mosph	eric P	ressur	e 98	.5 kP	а	
X or A Normal Port of the Normal	adation adation	or loss or loss	of funds	ction or	perfo perfo ecove	rmano rmano erable	ce, we due	hich re to dan	equires nage of	opera	tor inte quipm						
Port Description	Voltage Dips and Short Interruptions																
	Test Voltage				Duration 0.5					n in Cycles							
		U Test	U Dev	U Volts	0.01	0.05	0.1	0°	.5 180°	1	5	10	25	50	250	Spcl	
	230	70	30	161	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ		
	230	40	60	92	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ		
AC MAINS	230	<5	>95	0	Χ	Χ	Χ	Χ	Χ	Χ	Х	Х	Х	Χ	Х		
					ı				ions (O				1				
Port Description	Test Voltage									me at Time for increasing voltage				age			
	U Nom	U Test	U Dev	U Volts	2 cycles + 20%				1cycle + 20%			2 cycles + 20%					
														<u> </u>			
N1-4																	
Notes:																	
						-						-	•		-		
EUT performed wi	thin the	require	ements	of the a	applica	able S	Stand	lard(s)	YES	⊠ N	0 🗌	SIGNE	ED Mik	e Gre	en		

End of Report