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PREFACE

This book is the result of a more than thirty-five year longel@fair. In the
autumn ofig72, | took my first advanced course in electrodynamics at the De-
partment of Theoretical Physics, Uppsala University. Aryager, | joined the
research group there and took on the task of helping the tafegsoPER OLOF
FROMAN, who one year later become my Ph.D. thesis advisor, with tbpgs
ration of a new version of his lecture notes on the Theory etficity. These
two things opened up my eyes for the beauty and intricacy edfteddynamics,
already at the classical level, and | fell in love with it. Egénce that time, | have
on and df had reason to return to electrodynamics, both in my studésgarch
and the teaching of a course in advanced electrodynamicppdla University
some twenty odd years after | experienced the first encowritieithis subject.

The current version of the book is an outgrowth of the lechates that | pre-
pared for the four-credit course Electrodynamics that wa®educed in the Up-
psala University curriculum ingg2, to become the five-credit course Classical
Electrodynamics ingg7. To some extent, parts of these notes were based on lec-
ture notes prepared, in Swedish, by my friend and colle®HsT LUNDBORG,
who created, developed and taught the earlier, two-creditse Electromagnetic
Radiation at our faculty.

Intended primarily as a textbook for physics students aatdheanced under-
graduate or beginning graduate level, it is hoped that tleegmt book may be
useful for research workers too. It provides a thoroughttneat of the theory
of electrodynamics, mainly from a classical field theoktijsoint of view, and
includes such things as formal electrostatics and magiaitcss and their uni-
fication into electrodynamics, the electromagnetic paddsitgauge transforma-
tions, covariant formulation of classical electrodynasniforce, momentum and
energy of the electromagnetic field, radiation and scatgephenomena, electro-
magnetic waves and their propagation in vacuum and in meuatid,covariant
LagrangiayHamiltonian field theoretical methods for electromagngélds, par-
ticles and interactions. The aim has been to write a bookddatserve both as
an advanced text in Classical Electrodynamics and as anatépafor studies in
Quantum Electrodynamics and related subjects.

In an attempt to encourage participation by other scientisid students in
the authoring of this book, and to ensure its quality and edopmake it useful

XV



Preface

in higher university education anywhere in the world, it veeduced within a
World-Wide Web (WWW) project. This turned out to be a rathersessful move.
By making an electronic version of the book freely down-laialé on the net,
comments have been received from fellow Internet physi@sbund the world
and from WWW *hit’ statistics it seems that the book servea &gquently used
Internet resourcé. This way it is hoped that it will be particularly useful for
students and researchers working under financial or otrenostances that make
it difficult to procure a printed copy of the book.

Thanks are due not only to Bengt Lundborg for providing thepiration to
write this book, but also to profess6HRISTERWAHLBERG and professoBORAN
FALDT, Uppsala University, and profess@rkov IsTomiN, Lebedev Institute,
Moscow, for interesting discussions on electrodynamicsrafadivity in general
and on this book in particular. Comments from former graglgsgtdent$/ ATTIAS
WALDENVIK , TOBIA CAROZZI andROGERK ARLSSONaAs well asANDERS ERIKS-
son, all at the Swedish Institute of Space Physics in Uppsalavamal all have
participated in the teaching on the material covered in these and in this book
are gratefully acknowledged. Thanks are also due to my teng-space physics
colleagueHELMUT KopPkA of the Max-Planck-Institut flir Aeronomie, Lindau,
Germany, who not only taught me about the practical aspétiigl-power radio
wave transmitters and transmission lines, but also abeutitre delicate aspects
of typesetting a book ingX and BTEX. | am particularly indebted to Academician
professolVITALIY LAZAREVICH GINZBURG, 2003 Nobel Laureate in Physics, for
his many fascinating and very elucidating lectures, contmand historical notes
on electromagnetic radiation and cosmic electrodynamiageveruising on the
\olga river at our joint Russian-Swedish summer schoolsnguthe 1990s, and
for numerous private discussions over the years.

Finally, I would like to thank all students and Internet wsetho have down-
loaded and commented on the book during its life on the Wafide Web.

| dedicate this book to my soMATTIAS, my daughterKAROLINA, my
high-school physics teache3yaAFFaN ROsBY, and to my fellow members of the
CAPELLA PEDAGOGICA UPSALIENSIS

Uppsala, Sweden Bo THIDE
June,2008 www.physics.irfu.se/~bt

1At the time of publication of this edition, more than 600 0@®whloads have been recorded.
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1

CLASSICAL ELECTRODYNAMICS

Classical electrodynamics deals with electric and magffielids and interactions
caused bynacroscopidistributions of electric charges and currents. This means
that the concepts of localised electric charges and cwassume the validity of
certain mathematical limiting processes in which it is ¢édesed possible for the
charge and current distributions to be localised in infgiiteally small volumes of
space. Clearly, this is in contradiction to electromagmetdn a trulymicroscopic
scale, where charges and currents have to be treated aalgpatiended objects
and quantum corrections must be included. However, theifighprocesses used
will yield results which are correct on small as well as langgcroscopicscales.

It took the genius oflaMES CLERK MAXWELL to consistently unify electricity
and magnetism into a super-theogectromagnetismor classical electrodynam-
ics (CED), and to realise that optics is a subfield of this supeoty. Early in
the 2oth century,HENDRIK ANTOON LORENTZ took the electrodynamics theory
further to the microscopic scale and also laid the foundatio the special the-
ory of relativity, formulated byALBERT EINSTEIN in 1905. In the 1930s PauL
A.M.DIRAC expanded electrodynamics to a more symmetric form, inolydi
magnetic as well as electric charges. With his relativigii@antum mechanics,
he also paved the way for the developmentgoéntum electrodynamiq®ED)
for which RICHARD P. FEYNMAN, JULIAN SCHWINGER, andSIN-ITIRO TOMON-
AGA in 1965 received their Nobel prizes in physics. Around the same,tphgsi-
cists such aSHELDON GLASHOW, ABDUS SALAM , andSTEVEN WEINBERG were
able to unify electrodynamics the weak interaction theoryédt another super-
theory,electroweak theoryan achievement which rendered them the Nobel prize
in physics 1979. The modern theory of strong interactigpsntum chromody-
namics(QCD), is influenced by QED.

In this chapter we start with the force interactions in dlzlselectrostatics



1. Classical Electrodynamics

and classical magnetostatics and introduce the statitriel@nd magnetic fields
to find two uncoupled systems of equations for them. Then wehse the con-
servation of electric charge and its relation to electricent leads to the dynamic
connection between electricity and magnetism and how tleecan be unified
into one ‘super-theory’, classical electrodynamics, dbesd by one system of
eight coupled dynamic field equations—the Maxwell equations

At the end of this chapter we study Dirac’s symmetrised fofriviaxwell’s
equations by introducing (hypothetical) magnetic charyss magnetic currents
into the theory. While not identified unambiguously in eXxpemts yet, mag-
netic charges and currents make the theory much more apgefar instance by
allowing for duality transformations in a most natural way.

1.1 Electrostatics

The theory which describes physical phenomena relatedetontieraction be-
tween stationary electric charges or charge distributiores finite space which
has stationary boundaries is calleléctrostatics For a long time, electrostatics,
under the namelectricity, was considered an independent physical theory of its
own, alongside other physical theories such as magnetisthamics, optics and
thermodynamics.

1.1.1 Coulomb’s law

It has been found experimentally that in classical eletdt@s the interaction
between stationary, electrically charged bodies can beritbes! in terms of a
mechanical force. Let us consider the simple case deschpdijure 1.1 on

page3. LetF denote the force acting on an electrically charged partidta

chargeg located atx, due to the presence of a chagjdocated atx’. According

to Coulomb’s lawthis force is, in vacuum, given by the expression

Fog = 39 X_X"Sz-qu( 1 )—qu'< 1 ) (1.1)

" dneg X — X’ 4reg X=x|/)  4ney X — X/|

1The physicist and philosoph@ERRE DUHEM (1861—1916) once wrote:

‘The whole theory of electrostatics constitutes a groupbstiact ideas and general propo-
sitions, formulated in the clear and concise language ofngd#y and algebra, and con-
nected with one another by the rules of strict logic. This lgHolly satisfies the reason of

a French physicist and his taste for clarity, simplicity ander. ...’

2 Version released 8th June 2008 at 23:04. Downloaded from http://www.plasma.uu.se/CED/Book



Electrostatics

X—-X
X
D
X/
O
FiIcure1.1: Coulomb’s law describes how a static electric chaygecated at

a pointx relative to the origirD, experiences an electrostatic force from a static
electric chargey located aix’.

where in the last step formul&.¢1) on pagei79 was used. In Sl units, which we
shall use throughout, the for€es measured in Newton (N), the electric charges
andq’ in Coulomb (C) E Ampere-seconds (As)], and the lengith- x’| in metres
(m). The constantg = 107/(4nc?) ~ 8.8542x 10712 Farad per metre (R) is
thevacuum permittivitandc ~ 2.9979x 1% mys is the speed of light in vacuum.
In CGS unitsgg = 1/(4x) and the force is measured in dyne, electric charge in
statcoulomb, and length in centimetres (cm).

1.1.2 The electrostatic field

Instead of describing the electrostatic interaction imtenf a ‘force action at a
distance’, it turns out that it is for most purposes more wis&f introduce the
concept of a field and to describe the electrostatic intemaah terms of a static
vectorialelectric fieldES® defined by the limiting process

peat & im £ (1.2)
-0 (

whereF is the electrostatic force, as defined in equation)(on pagez, from a
net electric chargg’ on the test particle with a small electric net electric clearg
g. Since the purpose of the limiting process is to assure lieateist chargg does
not distort the field set up by, the expression fdes® does not depend explicitly
on g but only on the chargg’ and the relative radius vectar— x’. This means
that we can say that any net electric charge produces amieligeld in the space

Downloaded from http://www.plasma.uu.se/CED/Book Version released 8th June 2008 at 23:04. 3



1. Classical Electrodynamics

that surrounds it, regardless of the existence of a secoagyelanywhere in this
spacée

Using (1.1) and equation 1(.2) on page3, and formula E.70) on pagei79,
we find that the electrostatic fiel8S*® at thefield pointx (also known as the
observation poir}t due to a field-producing electric chargeat thesource point
X', is given by

/ X _ X/ ql 1 q/ l
ESeix) = -y - 1y
) 4reg X — X Areg <|x - x’|> 4rreg (lx - x’|>
(1.3)

In the presence of several field producing discrete elechdrgesy, located
at the points</, i = 1,2,3,..., respectively, in an otherwise empty space, the as-
sumption of linearity of vacuufallows us to superimpose their individual elec-
trostatic fields into a total electrostatic field

1 ’ A
B = g 2T (14

If the discrete electric charges are small and numerousgimave introduce
the electric charge density, measured in @n°® in Sl units, located ax’ within
a volumeV’ of limited extent and replace summation with integratiorrothis
volume. This allows us to describe the total field as

1 X—-X 1 1
stal _ / ’ - _ / ’
B9 = Arreg /Vld%( P )|x—x'|3 4reg /v/d%( P )V<|x—x’|>
_ 1 V/ d%(/ p(X)

 neg X = X’|

(1.5)

where we used formuld(;o) on pagei 79 and the fact thgt(x") does not depend
on the unprimed (field point) coordinates on whiloperates.

2|n the preface to the first edition of the first volume of his k@oTreatise on Electricity and Mag-

netism first published im 873, James Clerk Maxwell describes this in the following almmsttic manner
(6

‘For instance, Faraday, in his mind’s eye, saw lines of faraeersing all space where the

mathematicians saw centres of force attracting at a distdferaday saw a medium where

they saw nothing but distance: Faraday sought the seat gfthigomena in real actions

going on in the medium, they were satisfied that they had fatinda power of action at

a distance impressed on the electric fluids.’

3In fact, vacuum exhibits guantum mechanical nonlineariue tovacuum polarisation fectsman-

ifesting themselves in the momentary creation and antiibiieof electron-positron pairs, but classically
this nonlinearity is negligible.

4 Version released 8th June 2008 at 23:04. Downloaded from http://www.plasma.uu.se/CED/Book



Electrostatics

O

Ficure1.2: Coulomb’s law for a distribution of individual charggslocalised
within a volumeV’ of limited extent.

We emphasise that under the assumption of linear supdmusiequa-
tion (1.5) on page4 is valid for an arbitrary distribution of electric charges;
cluding discrete charges, in which cagsés expressed in terms of Dirac delta
distributions:

pX) = S ¢ 6(x ~X) (1.6)

as illustrated in figure.2. Inserting this expression into expressiorsf on page;
we recover expression.f) on pagey.

Taking the divergence of the geneE¥? expression for an arbitrary electric
charge distribution, equation.§) on page4, and using the representation of the
Dirac delta distribution, formulaH73) on pagei79, we find that

1 X —X

. ESta — L / ’
V. ES@{x) = v //dexp(x)r_)(,'s

dreg

, 1

_ 4ﬂ£0/d3x P(X)V - v( x'|>
1

o (x)V2<|X X,|>

—/d3x'p(x)5(x X') = (X)

(1.7)

47T£0 V2

which is the dfferential form ofGauss’s law of electrostatics
Since, according to formuld62) on pagei79, V x [Va(x)] = 0 for any 3D

Downloaded from http://www.plasma.uu.se/CED/Book Version released 8th June 2008 at 23:04. 5



1. Classical Electrodynamics

R3 scalar fieldx(x), we immediately find that in electrostatics

V x ES{(x) = —L;&)v x (v V/d3><' pX) ) -0 (1.8)

X = x|

i.e., thatEs®tis anirrotational field.
To summarise, electrostatics can be described in termsméstor partial
differential equations

Vv . Estaix) = (:) (1.9a)

V x ES®{(x) = (1.9b)

representing four scalar partiali@drential equations.

1.2 Magnetostatics

While electrostatics deals with static electric chargeagnetostaticsleals with
stationary electric currentse., electric charges moving with constant speeds, and
the interaction between these currents. Here we shall skstis theory in some
detail.

1.2.1 Ampere’s law

Experiments on the interaction between two small loops @ftet current have
shown that they interact via a mechanical force, much theesaay that electric
charges interact. In figure.3 on pagey, let F denote such a force acting on a
small loopC, with tangential line elementldiocated at and carrying a current

| in the direction of ¢l due to the presence of a small loGp, with tangential
line element d, located atx’ and carrying a currentt’ in the direction of ¢.
According toAmpere’s lawthis force is, in vacuum, given by the expression

F(x)_“o' jfdl drx 2= |3

c |x X’

(1.10)
=-‘ﬂj{d|x dI’xV( ! )
dr Jc c X — X/|

In Sl units,up = 47 x 1077 ~ 1.2566x 107 H/m is thevacuum permeability
From the definition okg andug (in Sl units) we observe that

107 7 1 2/m2
foio = 74— (F/m) x 47 x 1077 (H/m) = 5 ($/m?) (1.11)

6 Version released 8th June 2008 at 23:04. Downloaded from http://www.plasma.uu.se/CED/Book
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O

FIGURE 1.3:  Ampeére’s law describes how a small lo@y carrying a static

electric current through its tangential line element ldcated atx, experiences

a magnetostatic force from a small lo@, carrying a static electric curremht

through the tangential line elemerit thcated a’. The loops can have arbitrary
shapes as long as they are simple and closed.

which is a most useful relation.

At first glance, equationi(10) on pagesb may appear unsymmetric in terms of
the loops and therefore to be a force law which is in conttaiiovith Newton’s
third law. However, by applying the vector triple producatscab’ formulal.51)
on pagei 78, we can rewrite (.10) as

F(x)_—/ﬂ?{/dl’fdl <|X x'|>
“0”'7575/ A

Since the integrand in the first integral is an exadiedéential, this integral van-
ishes and we can rewrite the force expression, equation)(on pageo, in the
following symmetric way

ol ,
F(x) = — jfjf - X|3 dl (1.13)

which clearly exhibits the expected symmetry in terms opk® andC’.

(1.12)

1.2.2 The magnetostatic field

In analogy with the electrostatic case, we may attributertagnetostatic interac-
tion to a static vectoriainagnetic fieldBS® It turns out that the element8Ftat

Downloaded from http://www.plasma.uu.se/CED/Book Version released 8th June 2008 at 23:04. 7
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Classical Electrodynamics

can be defined as

X=X
1.1
X XP (1.14)

I !
dBstaix) &' B’ x
JT

which expresses the small elemeB@{(x) of the static magnetic field set up at
the field pointx by a small line elementltiof stationary current’ at the source
pointx’. The Sl unit for the magnetic field, sometimes called riegnetic flux
densityor magnetic inductionis Tesla (T).

If we generalise expression.(4) to an integrated steady statlectric current
densityj (x), measured in An? in Sl units, we obtairBiot-Savart’s law

BStat(X) - MO / daX,J( )>< ,|3 %/\;/d%(’j(x’)xV(lx_lx,l)

3/ J(X)
V / IX — X/| ( )
1.15

where we used formuld(;o) on pagei 79, formula (.57) on pagei79, and the
fact thatj (x") does not depend on the unprimed coordinates on w¥ioperates.
Comparing equationi(s) on pageq with equation (.15), we see that there exists
a close analogy between the expressionsEt# and B but that they dier
in their vectorial characteristics. With this definition Bf, equation (.10) on
paget may we written

F(x) = | ﬁ dl x BS(x) (1.16)

In order to assess the propertiesB5®!, we determine its divergence and curl.
Taking the divergence of both sides of equation £) and utilising formula.63)
on pagei 79, we obtain

V. BSe(x) = (Vx/d%( 1) ) 0 (1.17)

X = X’

since, according to formuld&3) on pagei 79, V - (V x a) vanishes for any vector
field a(x).

Applying the operator ‘bac-cab’ rule, formul&.¢4) on pagei79, the curl of
equation (.15) can be written

V x BS@(x) = —v x (v x [ d¢ &) ) -

v X=X

/d%(’](x)Vz( 1 ) ,Uo/d"‘x’[J(x) V]V(lx_lx,|>

(1.18)

Version released 8th June 2008 at 23:04. Downloaded from http://www.plasma.uu.se/CED/Book



Electrodynamics

In the first of the two integrals on the right-hand side, we thgerepresentation
of the Dirac delta function given in formul&(3) on paget 79, and integrate the
second one by parts, by utilising formula46) on pager 79 as follows:

/d3><’ [j(x’)-V’]V’( _1X,|>
= 709 g (325
/d3x )] V'<|X_1X,|>
:)‘(k/s/dzx’ 05 (|X X/) /d3x 500 V’<|X_1X,|>

(1.19)

Then we note that the first integral in the result, obtainecapylying Gauss’s
theorem, vanishes when integrated over a large sphere &grfamm the localised
sourcej (X’), and that the second integral vanishes bec&uge= 0 for stationary
currents (no charge accumulation in space). The net ressitniply

VX B0 = o [ d% J0)5(x = X) = k() (1.20)

1.3 Electrodynamics

As we saw in the previous sections, the laws of electrostatici magnetostatics
can be summarised in two pairs of time-independent, unedupkctor partial
differential equations, namely tleguations of classical electrostatics

V. ESt(x) = pi:) (1.218)

VxE®(x)=0 (1.21b)

and theequations of classical magnetostatics

V- B%(x) =0 (1.223a)
V x B¥(x) = uoj (x) (1.22b)

Since there is nothing priori which connect£s? directly with BS®, we must
consider classical electrostatics and classical magmaittss as two independent
theories.
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However, when we include time-dependence, these thearesrdfied into
one theoryclassical electrodynamicd his unification of the theories of electric-
ity and magnetism is motivated by two empirically estal@ifacts:

1. Electric charge is a conserved quantity and electricetiiis a transport of
electric charge. This fact manifests itself in the equatiboontinuity and,
as a consequence, in Maxwell’s displacement current.

2. A change in the magnetic flux through a loop will induce an E&#€tric
field in the loop. This is the celebrated Faraday’s law of oidun.

Equation of continuity for electric charge

Letj(t, x) denote the time-dependent electric current density. drsiinplest case
it can be defined ap = vp wherev is the velocity of the electric charge den-
sity p. In generalj has to be defined in statistical mechanical termgiag) =

S o O JdD VI, (L, X, V) wheref,(t, X, v) is the (normalised) distribution function for

particle species with electric charge,.
The electric charge conservation lawan be formulated in thequation of

continuity
9p(t, x)
ot

which states that the time rate of change of electric chafy®) is balanced by a
divergence in the electric current dengit x).

+V-jt,x)=0 (1.23)

Maxwell’s displacement current

We recall from the derivation of equation.£o) on pagey that there we used the
fact that in magnetostatice - j(x) = 0. In the case of non-stationary sources
and fields, we must, in accordance with the continuity equafi.23), setV -
j(t,X) = —=dp(t, x)/ot. Doing so, and formally repeating the steps in the derivatio
of equation {.20) on pagey, we would obtain the formal result

— /3 ’ v @2/ ¢ ¢ ! 1
VxB(t,x)_yo/V,d‘&J(t,x)é(X X)+ ot V/dSX p(t,X)V <|x—X’|>

. 0
= ol (t. X) + pto - £0E(t. X)
(1.24)
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where, in the last step, we have assumed that a generalisditaguation (.5) on
page4 to time-varying fields allows us to make the identificafion

/ ’ 1
Aneg 8’(/ X pt )V (IX—X’|>

at[ 4n80/ o (tx)v< 1XI|>} (1.25)

oL e [0 ieg

~ ot | 4ne X — x|

The result is Maxwell’s source equation for tBdield

. 0 . 10
V x B(t, X) = uo (j (t,x) + ﬁgoE(t’ x)) = uoj (t, X) + @ﬁE(t’ X)  (1.26)

where the last termegoE(t, x)/dt is the famouglisplacement currentThis term
was introduced, in a stroke of genius, by Maxwéll jn order to make the right
hand side of this equation divergence free whegrx) is assumed to represent the
density of the total electric current, which can be split npardinary’ conduc-
tion currents, polarisation currents and magnetisatioreots. The displacement
current is an extra term which behaves like a current defisitying in vacuum.
As we shall see later, its existence has far-reaching palysansequences as it
predicts the existence of electromagnetic radiation thataarry energy and mo-
mentum over very long distances, even in vacuum.

1.3.3 Electromotive force

If an electric fieldE(t, x) is applied to a conducting medium, a current density
j(t,x) will be produced in this medium. There exist also hydrodyital and
chemical processes which can create currents. Underrcettgsical conditions,
and for certain materials, one can sometimes assume, thatfiest approxima-
tion, a linear relationship exists between the electricentrdensity andE. This
approximation is calle@hm’s law

j(t,x) = ocE(t,X) (1.27)

whereo is theelectric conductivitfS/m). In the most general cases, for instance
in an anisotropic conductas; is a tensor.

We can view Ohm’s law, equation.¢7) above, as the first term in a Taylor
expansion of the lay{E(t, x)]. This general law incorporatesn-linear gfects

4Later, we will need to consider this generalisation and firigentification further.
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such as frequency mixing. Examples of media which are higlly-linear are
semiconductors and plasma. We draw the attention to thelfateven in cases
when the linear relation betwedhandj is a good approximation, we still have
to use Ohm’s law with care. The conductivityis, in general, time-dependent
(temporal dispersive medidut then it is often the case that equatiorz{) on
pagei 1 is valid for each individual Fourier component of the field.

If the current is caused by an applied electric figld, x), this electric field
will exert work on the charges in the medium and, unless thdiune is super-
conducting, there will be some energy loss. The rate at wihichenergy is ex-
pended ig - E per unit volume. IfE is irrotational (conservative], will decay
away with time. Stationary currents therefore require #ratlectric field which
corresponds to aelectromotive force (EMH} present. In the presence of such a
field EEMF, Ohm’s law, equationi(27) on page 1, takes the form

j = o(ES® 4 EEMF) (1.28)
The electromotive force is defined as

&= fc dl - (ES®@t4 EEMF) (1.29)

where d is a tangential line element of the closed |d@p

Faraday’s law of induction

In subsection.1.2 we derived the dferential equations for the electrostatic field.
In particular, on pagé we derived equation (8) which states th& x ES%¥{(x) = 0
and thus thaEs*® is a conservative fieldit can be expressed as a gradient of a
scalar field). This implies that the closed line integraES®!in equation (.29)
above vanishes and that this equation becomes

&= j‘[i; dl - EEWF (1.30)

It has been established experimentally that a nonconsexvaMF field is
produced in a closed circui at rest if the magnetic flux through this circuit varies
with time. This is formulated ifraraday’s lawwhich, in Maxwell’'s generalised
form, reads

&(t) = fé dl - E(t,x) = —%d)m(t)

d

) 0
:—&/Sdzxn-B(t,x) - —/Sd2xn- 5:B(tX)

(1.31)
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B(X) B(x)

d* A

d

FIGURE1.4: AloopC which moves with velocity in a spatially varying mag-
netic fieldB(x) will sense a varying magnetic flux during the motion.

where @, is the magnetic fluxand S is the surface encircled b§ which can
be interpreted as a generic stationary ‘loop’ and not necigss a conducting
circuit. Application of Stokes’ theorem on this integraluagjon, transforms it
into the diferential equation

V x E(t,X) = —%B(t, X) (1.32)

which is valid for arbitrary variations in the fields and ctnges the Maxwell
equation which explicitly connects electricity with magjeem.

Any change of the magnetic flu®,, will induce an EMF. Let us therefore
consider the case, illustrated if figurey, that the ‘loop’ is moved in such a way
that it links a magnetic field which varies during the movemérhe convective
derivativeis evaluated according to the well-known operator formula

d o

a:a‘i‘V'V (133)

which follows immediately from the rules offfierentiation of an arbitrary tfer-

entiable functionf (t, x(t)). Applying this rule to Faraday’s law, equation.{1)
on pagei 2, we obtain

d /o, 0B )
S(t)z—&/sd&n-Bz—/Sdzxn'ﬁ—/sdzxn-(wV)B (1.34)
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During spatial diterentiationv is to be considered as constant, and equa-
tion (1.17) on pages holds also for time-varying fields:

V-B(t,x)=0 (1.35)
(itis one of Maxwell’'s equations) so that, according to fola{r.59) on pagei 79,
Vx(Bxv)=(v-V)B (1.36)

allowing us to rewrite equation (34) on pagei 3 in the following way:

8(t):]£dI-EEMF:—9/d%<ﬁ-B
c dt./s

oB (1.37)
=—/d2xﬁ~——/d2xﬁ-Vx(va)
S ot Js
With Stokes’ theorem applied to the last integral, we fingky
a(t):fdl-EEMF:—/dzxﬁ-a—B—%dl-(va) (1.38)
c s ot Jc
or, rearranging the terms,
fdl-(EEMF—va)z—/d%(ﬁ.@ (1.39)
c s ot

whereEEMF is the field which is induced in the ‘loopi.e., in themovingsystem.
The use of Stokes’ theorem ‘backwards’ on equatiogg) above yields

B
V)((EEMF—va):—(;—t (1.40)

In thefixedsystem, an observer measures the electric field
E=E*M_vxB (1.41)

Hence, a moving observer measures the followiogentz forceon a charge
qEEMF = gE + q(v x B) (1.42)

corresponding to an feective’ electric field in the ‘loop’ (moving observer)

EEMF-E+vxB (1.43)

Hence, we can conclude that fostationaryobserver, the Maxwell equation

4B
VxE=-— .
X o (1.44)

is indeed valid even if the ‘loop’ is moving.
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1.3.5 Maxwell’'s microscopic equations

We are now able to collect the results from the above corsiideis and formulate
the equations of classical electrodynamics valid for eabjtvariations in time and
space of the coupled electric and magnetic fi@ftsx) andB(t, x). The equations

are
v.eE=" (1.459)
2}
0B

VXE=-— .

X 5 (1.45b)
vV-B=0 (1.45¢€)

JE .

V x B = souo - + ol (t,x) (1.45d)

In these equations(t, x) represents the total, possibly both time and space depen-
dent, electric charge.., free as well as induced (polarisation) charges,jénal)
represents the total, possibly both time and space deperadiectric currenti.e.,
conduction currents (motion of free charges) as well agathastic (polarisation,
magnetisation) currents. As they stand, the equationgfibrer incorporate the
classical interaction between all electric charges andeats in the system and
are calledMaxwell’s microscopic equationsAnother name often used for them
is the Maxwell-Lorentz equationsTogether with the appropriatonstitutive re-
lations, which relatepo andj to the fields, and the initial and boundary conditions
pertinent to the physical situation at hand, they form agysif well-posed partial
differential equations which completely determibhandB.

1.3.6 Maxwell’'s macroscopic equations

The microscopic field equations.5) provide a correct classical picture for arbi-
trary field and source distributions, including both mi@@gic and macroscopic
scales. However, for macroscopic substances it is sometom/enient to intro-
duce new derived fields which represent the electric and etamfirelds in which,
in an average sense, the material properties of the sulestane already included.
These fields are thelectric displacemend and themagnetising fieldH. In the
most general case, these derived fields are complicatedeanhonlinear func-
tionals of the primary field& andB:

D = D[t,x; E, B] (1.46a)
H = H[t, x; E, B] (1.46b)

Under certain conditions, for instance for very low fieldesigths, we may assume
that the response of a substance to the fields may be apptexims a linear one
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so that
D=c¢E (1.47)
H=u'B (1.48)

i.e., that the derived fields are linearly proportional to thenany fields and that
the electric displacement (magnetising field) is only deieen on the electric
(magnetic) field.

The field equations expressed in terms of the derived fieldtiies D andH

are
VD =p(t,x) (1.492)
0B
VXE=-— .
X ot (1.49b)
V-B=0 (1.49C)
VxH=%+j(t,x) (1.49d)

and are calledMaxwell’'s macroscopic equationsiVe will study them in more
detail in chaptep.

1.4 Electromagnetic duality

If we look more closely at the microscopic Maxwell equationg4), we see that
they exhibit a certain, albeit not complete, symmetry. Letfallow Dirac and
make thead hocassumption that there existagnetic monopolepresented by
a magnetic charge densijtyvhich we denote by™ = p™(t,x), and amagnetic
current densitywhich we denote by™ = jM(t, x). With these new quantities in-
cluded in the theory, and with the electric charge densitotkde® and the elec-
tric current density denoteld, the Maxwell equations will be symmetrised into
the following two scalar and two vector, coupled, partidfatiential equations:

V-E=— (1.50a)
€0
B .
Vsz—(Z—t—ﬂOJm (1.50b)
VB = oo™ (1.50¢)
oE .
V x B = souo g + o) © (1.50d)

1 6 Version released 8th June 2008 at 23:04. Downloaded from http://www.plasma.uu.se/CED/Book



Electromagnetic duality

We shall call these equatiolsrac’s symmetrised Maxwell equationstheelec-
tromagnetodynamic equations
Taking the divergence ofi (50b), we find that

0 .
V-(VxE):—a(V-B)—yOV-ijO (1.51)

where we used the fact that, according to formi&ay) on pagei 79, the diver-
gence of a curl always vanishes. Usings0c) to rewrite this relation, we obtain
themagnetic monopole equation of continuity
m
W+V-jm=0 (1.52)

which has the same form as that for the electric monopolest(a charges) and
currents, equationi(23) on pageio.

We notice that the new equationsqo) on pagei 6 exhibit the following sym-
metry (recall thakgquo = 1/¢?):

E—cB (1.53a)
cB - -E (1.53b)
co® — p" (1.53¢)
pm — —cp° (1.53d)
Gge—jm (1.53€)
" - -g° (1.53f)

which is a particular case (= n/2) of the generatluality transformation also
known as theHeaviside-Larmor-Rainich transformatigimdicted by theHodge
star operator*)

*E = Ecosé + cB sing (1.54a)
c*B = —Esind + cB cosé (1.54b)
c*p® = cp®cosh + p" sind (1.54€)
*o™ = —cp®sing + p™ cosh (1.54d)
c*j® = cj®cosh + ™ sind (1.54€)

™= —cj®sing + )" coss (1.54f)

which leaves the symmetrised Maxwell equations, and hereglilysics they
describe (often referred to atectromagnetodynamigsnvariant. Sinceée andj®
are (true or polar) vector8 a pseudovector (axial vectog) a (true) scalar, then
o™ andd, which behaves asmixing anglein a two-dimensional ‘charge space’,
must be pseudoscalars gffda pseudovector.
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1.5

The invariance of Dirac’s symmetrised Maxwell equationsarrbte similarity
transformation means that the amount of magnetic monogisityp™ is irrele-
vant for the physics as long as the railtyp® = tand is kept constant. So whether
we assume that the particles are only electrically chargdwee also a magnetic
charge with a given, fixed ratio between the two types of absig a matter of
convention, as long as we assume that this fractiagh@ssame for all particles
Such particles are referred to@dgong[14]. By varying the mixing anglé we can
change the fraction of magnetic monopoles at will withowdrading the laws of
electrodynamics. Fat = 0 we recover the usual Maxwell electrodynamics as we
know it>
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1.6 Examples

EXAMPLE 1.1 >FARADAY 'S LAW AS A CONSEQUENCE OF CONSERVATION OF MAGNETIC CHARGE———

Postulate1.1 (Indestructibility of magnetic charge)Magnetic charge exists and is indestruc-
tible in the same way that electric charge exists and is itrdesble. In other words wgostu-
latethat there exists an equation of continuity for magneticrgha:

m
P v im0 =0
Use this postulate and Dirac’s symmetrised form of Maxwediuations to derive Fara-
day'’s law.
The assumption of the existence of magnetic charges susgg€xiulomb-like law for mag-
netic fields:
sta /JO m X m
BSt(x) = /d3x ) ==X - /d3x (x)V( )
Ix —x'° X = X’|

(1.55)

m
- —@v / o 27
An / X = x|
[cf. equation (.5) on pagey for E3*# and, if magnetic currents exist, a Biot-Savart-like law fo
electric fields f. equation (.15) on pages for B

sta _ m X=X _ m

Esta) = — /d%«; )% i /d"x’j (x)xV(lX X,|)
9 00

V2 X — x|

(1.56)

= ——V X
47

Taking the curl of the latter and using the operator ‘bac-oale, formula (.59) on pagei 79,
we find that

statryy _ MO N CORY
V x ES®{(x) = 4Vx(Vx V/d3x x—xi)

o 1 (1.57)
m 2 My ’ ’
/d3>(1 (x)v (IX x'>_47/vrd3>(“ x)-v1v (7IX—X'|>

Comparing with equationi(18) on pages for E®*'and the evaluation of the integrals there, we
obtain

VX B0 = o /v A% 7K (x ~ X') = 410 "(¥) (1.58)

We assume that formula .56) above is valid also for time-varying magnetic currents.
Then, with the use of the representation of the Dirac deltatfan, equationK.73) on pagei 79,
the equation of continuity for magnetic charge, equatiogz) on pagei7, and the assumption
of the generalisation of equation.§5) to time-dependent magnetic charge distributions, we
obtain, formally,
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— _ s m ’ v _@ﬁ/ s m ’ ’ 1
V x E(t,X) = uo/v/d%(j (x5 =x) - B2 2 [ ¥ " x)v <|X_X,|)

= " X) - TB(L)
(1.59)

[cf. equation (.24) on pageio] which we recognise as equation{ob) on pagei6. A trans-
formation of this electromagnetodynamic result by rogiimto the ‘electric realm’ of charge
space, thereby letting” tend to zero, yields the electrodynamic equatiosdb) on pagei6,
i.e, the Faraday law in the ordinary Maxwell equations. Thiscpss also provides an alter-
native interpretation of the ter@B/dt as amagnetic displacement currertual to theelectric
displacement currerftf. equation {.26) on pagei 1].

By postulating the indestructibility of a hypothetical nmagic charge, we have thereby been
able to replace Faraday’s experimental results on electigerforces and induction in loops as
a foundation for the Maxwell equations by a more appealirgy on

<1 END OF EXAMPLE 1.1

>DUALITY OF THE ELECTROMAGNETODYNAMIC EQUATIONS EXAMPLE 1.2

Show that the symmetric, electromagnetodynamic form of Wlks equations (Dirac’s
symmetrised Maxwell equations), equatioms;¢) on pagei 6, are invariant under the duality
transformation (.54).

Explicit application of the transformation yields

e
V-*E =V-(Ecosd + cBsinf) = P coso + Cuge™ sing
€0

1/, 1 " (1.60)
= — |p°cosfd+ —p"SIing | = —
&o Cc &0
*B . 0 1_ .
V x*E + =V x (Ecosd + cBsind) + — [ ——E sing + B cosd
ot ot c
oB 10E
= —pp] " cOSH — — €OSH + Cuoj°SiNd + = — sind
ol at ol cat (1.61)
10E 0B
— =—sinf+ — cosd = —uoj™ cosH j¢sing
c ot + ot Ho) + Clio)
= —po(—¢j®sind + ™ cosd) = —uo*j"
1_ . ¢
V-*B=V-(-=Esinf + Bcosf) = - siné + pp™ cosh
c Ceo (1.62)

= o (—Cp°sind + p cosh) = ue*p™
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Vx*B—C—lZ%—tE:Vx(—%Esin6+Bcos(9)—C—lzg(Ecose+chin6)
1 .. 10B o 19E
= GHol sm0+EEco&9+uOJ cosd + 2 cosé ]
JLOE o 108, ey
c? ot c at

1 .
= o (Ejmsineﬂecose) = up*j®
QEDE

<] END OF EXAMPLE 1.2

EXAMPLE 1.3 [>DIRAC'S SYMMETRISEDMAXWELL EQUATIONS FOR A FIXED MIXING ANGLE
Show that for a fixed mixing angkesuch that

o™ = cptand (1.64a)
i™=cjtang (1.64b)
the symmetrised Maxwell equations reduce to the usual Mbvegaations.
Explicit application of the fixed mixing angle conditions ¢ime duality transformation
(1.54) on pager7 yields

1., . 1 :
*p® = p®cosh + Epm sind = p®cosh + ECpe tandsing

1 1 (1.65a)
= —(0°cof+ p°sinf§) = ——p°
coss TOSIO) = s
*o™ = —cp®sind + co®tand cosh = —cp®sind + cp®sind = 0 (1.65b)
1 1
*xie _ e ie i — ie ie -n20 — ie 6
j¢=]j%cosf + j°tanfsing cose(J cog 6 + j°sirf 6) cos@l (1.65¢C)
*i™ = —cj®sing + ¢j®tand cosh = —cj®sind + ¢j®singd = 0 (1.65d)

Hence, a fixed mixing angle, or, equivalently, a fixed ratibamen the electric and magnetic
chargegurrents, ‘hides’ the magnetic monopole influeng® &ndj™) on the dynamic equa-
tions.

We notice that the inverse of the transformation given bya¢iqn (1.54) on pagei 7 yields
E = *Ecost — ¢*Bsing (1.66)
This means that
V-E=V-*Ecosf -cV-*Bsing (1.67)
Furthermore, from the expressions for the transformedgelsaand currents above, we find that
*pe 1 p°

V*E=1 =-_—- = .68
&0 COosh &g (I )
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and
V- *B=pu*p" =0 (1.69)
so that
1 e (]
=~ P osp-0=1 (1.70)
cosf &g &o
and so on for the other equations. QEDE
<] END OF EXAMPLE 1.3
> COMPLEX FIELD SIX-VECTOR FORMALISM EXAMPLE 1.4

It is sometimes convenient to introduce tb@mplex field six-vectopralso known as the
Riemann-Silberstein vector

G(t,x) = E(t,X) + icB(t,x) (1.71)

whereE, B € R® and henceG € C3. One fundamental property @ is that inner (scalar)
products in this space are invariant just as they arB3n However, as discussed in exam-
ple M.3 on pagerg7, the inner (scalar) product ii® can be defined in two ffierent ways.
Considering the special case of the scalar produ@ wufith itself, we have the following two
possibilities of defining (the square of) the ‘length’Gf

1. The inner (scalar) product defined@scalar multiplied with itself
G-G=(E+icB)-(E+icB) = E2 - ¢?B? + 2icE - B (1.72)
Since this is an invariant scalar quantity, we find that
E2 - ¢?B? = Const (1.738)
E - B = Const (1.73b)

2. Theinner (scalar) product defined@scalar multiplied with the complex conjugate of
itself

G-G* = (E+icB) - (E-icB) = E? + ¢?B? (1.74)

which is also an invariant scalar quantity. As we shall sear |#his quantity is propor-
tional to the electromagnetic field energy, which indeeddsm@served quantity.
3. As with any vector, the cross product®fwith itself vanishes:
GxG=(E+icB)x (E+icB)
=EXE-cBxB+ic(ExB)+ic(BxE) (1.75)
=0+0+ic(ExB)-ic(ExB)=0

4. The cross product @ with the complex conjugate of itself
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EXAMPLE 1.5
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GxG"=(E+icB)x (E—-icB)
=ExXE+¢®BxB-ic(ExB)+ic(BxE) (1.76)
=0+0-ic(E x B) —ic(E x B) = —2ic(E x B)

is proportional to the electromagnetic power flux, to beddtrced later.

<1 END OF EXAMPLE 1.4

>DUALITY EXPRESSED IN THE COMPLEX FIELD SIXVECTOR

Expressed in the Riemann-Silberstein complex field vecintroduced in exam-
ple 1.4 on page23, the duality transformation equationsq4) on pagei7 become

*G =*E +ic*B = Ecosd + cB sind — iE sind + icB cosd

— E(cosf— isin6) + icB(cosd — ising) = € *(E + icB) = e G (1:77)
from which it is easy to see that
*G-*G = |*G° = "G - €'G" = |G (1.78)
while
*G-*G=e%G-G (1.79)

Furthermore, assuming th@t= 4(t, x), we see that the spatial and tempordfetientiation
of *G leads to

* 9*G H —i0 —i6
oG = F —-i(0:0)e"G + €9,G (1.80a)
9-*G=V-*G=-ieV9-G+eV-G (1.80b)
IX*G=VxXx*G=-ie"VoxG+e"VxG (1.80C)

which means thad*G transforms agG itself only if 6 is time-independent, and th¥t- *G
andV x *G transform agG itself only if 6 is space-independent.

<] END OF EXAMPLE 1.5
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ELECTROMAGNETIC WAVES

In this chapter we investigate the dynamical propertieh@&lectromagnetic field
by deriving a set of equations which are alternatives to thevivdl equations. It
turns out that these alternative equations are wave eqgafidicating that elec-
tromagnetic waves are natural and common manifestatioakecfrodynamics.
Maxwell’'s microscopic equation&f. equations (.45) on pagei 5] are

_ ptx)

V-E = (Gauss’s law) £.1a)
VXE= —% (Faraday’s law) £.1b)
V-B=0 (No free magnetic charges) 2.(C)
V x B = ugj(t, x) + so,uo% (Maxwell's law) (2.1d)

ot

and can be viewed as an axiomatic basis for classical ethetemics. They de-
scribe, in scalar and vectorftirential equation form, the electric and magnetic
fieldsE andB produced by given, prescribed charge distributipfisx) and cur-
rent distributiong (t, ) with arbitrary time and space dependences.

However, as is well known from the theory ofidirential equations, these four
first order, coupled partial fierential vector equations can be rewritten as two un-
coupled, second order partial equations, onésfand one foB. We shall derive
these second order equations which, as we shall seeaue equationsand then
discuss the implications of them. We show that for certaidimeheB wave field
can be easily obtained from the solution of thevave equation.
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2. Electromagnetic Waves

2.1 The wave equations

We restrict ourselves to derive the wave equations for tbetiét field vectorE
and the magnetic field vectd in an electrically neutral region,e., a volume
where there is no net charge= 0, and no electromotive fordg®“F = 0.

2.1.1 The wave equation fdE

In order to derive the wave equation &me take the curl of{.1b) and usef.1d),
to obtain

0 0 (. 0
Vx(VXE)= —a(v x B) = ~Ho; <j + san> (2.2)

According to the operator triple product ‘bac-cab’ rule atipn (F.64) on pagei 79
Vx(VxE)=V(V-E)-VE (2.3)
Furthermore, sincg = 0, equation{.1a) on page:5 yields
V-E=0 (2.4)

and sinceEEMF = 0, Ohm’s law, equationi(28) on page 2, allows us to use the
approximation

j=cE (2.5)

we find that equationz(2) above can be rewritten

0 0
2 _ o n— — =
V°E ,uoat (O’E +8()at E> 0 (26)
or, also using equation (1 1) on pages and rearranging,
0E 10°E
VZE - ——-=—2=0 .
HO% 51 ~ @ o2 2.7)

which is thehomogeneous wave equation E in a uncharged, conducting medium
without EMF. For waves propagating in vacuum (no charges, urcents), the
wave equation foE is
1 9%E
2 _ _MPE -
VE_@W__DE_O (28)
where[1? is the d’Alembert operatoy defined according to formuld(97) on
pageigg.
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The wave equations

2.1.2 The wave equation fdB

The wave equation foB is derived in much the same way as the wave equation
for E. Take the curl of£.1d) and use Ohm’s lay = ¢'E to obtain

. 0 0
Vx(VxB)=uVxj+ soan(V X E) = upoVx E + SO#OE(V x E)
(2.9)

which, with the use of equatiofr64) on pagei 79 and equation.1c) on page25
can be rewritten

oB i

V(V-B) - V?B = —uoo— — £ollo~5

( ) Hoo ot €oMo o2

Using the fact that, according te.{c), V-B = 0 for any medium and rearranging,
we can rewrite this equation as

0B 14°B
2 —
VB—IJO(TE—gw—O (2.11)
This is the wave equation for the magnetic field. For wavepagating in vacuum
(no charges, no currents), the wave equatiorBfe

B (2.10)

16°B
VZB—?W:—DZB:O (2.12)

We notice that for the simple propagation media consider¥é,lthe wave
equations for the magnetic fieBlhas exactly the same mathematical form as the
wave equation for the electric fiekel equation .7) on page26. Therefore, it suf-
fices to consider only thE field, since the results for th field follow trivially.

For EM waves propagating in more complicated media, comgjreg, inhomo-
geneities, the wave equation farand forB do not have the same mathematical
form.

2.1.3 The time-independent wave equation Eor

If we assume that the temporal dependenck (dndB) is well-behaved enough
that it can be represented by a sum of a finite number of terhgeeatral (Fourier)
componentsi.e., in the form of a temporaFourier series then it is stficient to
represent the electric field by one of these Fourier compsnen

E(t, x) = Eo(X) cost) = Eo(x)Re{e '} (2.13)

since the general solution is obtained by a linear supetfpngsummation) of the
result for one such spectral (Fourier) component, oftefedad time-harmonic
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wave When we insert this, in complex notation, into equatiory) on page26
we find that

2

—iw 0 —iw! 190 —iw!
V2Eo(x)e ! —yoo-an(x)e ot _ ?ﬁEo(x)e lot

1 (2.14)
= V2Eg(x)e ! — oo (—iw)Eo(x)e ! — = (=iw)?Eo(x)e !
0 Moo (—lw)Eo 2 w) ko
or, dividing out the common facta ' and rewriting,
wz . O
V2Eo+—2(l+|—> Eo=0 (2.15)
C Eow

Multiplying by et and introducing theelaxation timer = £y/0- of the medium
in question, we see that thefidirential equation for the time-harmonic wave can
be written

(2.16)

TW

2 w? [
VE(t,x)+? 1+ E(t,x)=0

In the limit of very many frequency components the Fouriensyoes over
into aFourier integral To illustrate this general case, let us introduceRberier
transformof E(t, x)

def

F[E(t,X)] = Eu(x) = 2% [ : dt E(t, x) €t (2.17)

and the correspondinigverse Fourier transform

FUE, 0] T E(t,x) = / " dw E,(x) et (2.18)

Then we find that the Fourier transformag(t, x)/dt becomes

F [E)E(t,x)] def 1 mdt <(’)E(t,x)> o

ot T2 ) ot
1

o (2.19)

jwt]>® i ® jwt
[Et %) 6% |w2ﬂ[wth(t,x)é
=0
- —iwE,X)

and that, consequently,

F {62E(t,x)] def 1 ® it <62E(t,x)

jwt _ 2
a2 | o) a2 )é = R

(2.20)
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The wave equations

Fourier transforming equatiorz.f) on page=6 and using £.19) and £.20), we
obtain

2 w? [
VE,+ 5 |1+—)E,=0 (2.21)
C TW

A subsequent inverse Fourier transformation of the saiufg of this equation
leads to the same result as is obtained from the solution wédtemn ¢.16) on
pagez28. l.e., by considering just one Fourier component we obtain thaltes
which are identical to those that we would have obtained bgleying the heavy
machinery of Fourier transforms and Fourier integrals. déemnder the assump-
tion of linearity (superposition principle) there is no defer the heavy, time-
consuming forward and inverse Fourier transform machinery

In the limit of long T, (2.16) tends to

VEL “E=0
+ 2E= (2.22)

which is atime-independent wave equatifor E, representing undamped propa-
gating waves. In the shortlimit we have instead

V2E + iwpuooE =0 (2.23)

which is atime-independent gliusion equatiorior E.

For most metals ~ 101*s, which means that theftlision picture is good for
all frequencies lower than optical frequencies. Hence, @taftic conductors, the
propagation ternd’E/c?ot? is negligible even for VHF, UHF, and SHF signals.
Alternatively, we may say that the displacement curegfE/ot is negligible rel-
ative to the conduction currep& oE.

If we introduce thevacuum wave number

k= < (2.24)

we can write, using the fact that= 1/ +/equo according to equationi(11) on
pageo,

1 o ol o |u o
Tw  sw eck k\ e kF\’O (2:25)

where in the last step we introduced tfaracteristic impedanc®r vacuum

Ro= /™0 ~ 37670 (2.26)
€0

Downloaded from http://www.plasma.uu.se/CED/Book Version released 8th June 2008 at 23:04. 29



2. Electromagnetic Waves

2.2 Plane waves

Consider now the case where all fields depend only on thendistato a given
plane with unit normah. Then thedel operator becomes

V= ﬁaag = fAiV (2.27)
and Maxwell’'s equations attain the form
E
f- Z—{ =0 (2.28a)
. OE oB
nx a—g = —E (228b)
B
f- (Z—g =0 (2.28¢)
B . E E
A x ?9—4 = Hoj (t,X) + So,uo%—t = oo E + 80#0%—,[ (2.28d)
Scalar multiplying £.28d) by A, we find that
B
0=n- (ﬁ X ?97) =f- (;100'+soyo%> E (2.29)

which simplifies to the first-order ordinaryftérential equation for the normal
component, of the electric field

dE, o
+—En=0 .
dt e " (2:30)
with the solution
En = Enoe_a-t/ao = Enoe_t/T (2.3 l)

This, together with{.28a), shows that théongitudinal componensf E, i.e., the
component which is perpendicular to the plane surface eyiaddent of and has
a time dependence which exhibits an exponential decay, avitecrement given
by the relaxation time in the medium.

Scalar multiplying £.28b) by A, we similarly find that

. (. OE . 0B
O_n-<n><a§>_—n-at (2.32)
or
. 0B
Ao = (2.33)

From this, and4£.28c), we conclude that the only longitudinal componentBof
must be constant in both time and space. In other words, thermm-static
solution must consist dfansverse components
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Plane waves

2.2.1 Telegrapher’s equation
In analogy with equationz(7) on page26, we can easily derive the equation

d°E 0E 10°E
oz M T @ e
This equation, which describes the propagation of planeewav a conducting

medium, is called theelegrapher’s equationlf the medium is an insulator so that

o =0, then the equation takes the form of thee-dimensional wave equation

=0 (2-34)

#E  10°E

- _ 2 =_0 .
As is well known, each component of this equation has a swiutthich can be
written

Ei=f(¢-ct)+g(l+ct), 1=123 (2.36)

wheref andg are arbitrary (non-pathological) functions of their respe argu-
ments. This general solution represents perturbationshwbiiopagate along,
where thef perturbation propagates in the positivdirection and the perturba-
tion propagates in the negatigalirection.

If we assume that our electromagnetic fielsand B are time-harmonic,
i.e, that they can each be represented by a Fourier compongmbrgomal to
exp{—iwt}, the solution of equatiore(35) above becomes

E = Ege (W#K) = gg(Fk-ul) (2.37)
By introducing thewvave vector
w w ~
k=ki=—-f=—"k 38
=< (238)

this solution can be written as
E = Eqekx- (2.39)

Let us consider the lower sign in front & in the exponent inA.37). This
corresponds to a wave which propagates in the directioncogasing.. Inserting
this solution into equatiore(28b) on pageso, gives

E . .
A x f)g“ = iwB =ikAix E (2.40)

or, solving forB,
k. 1 1. N
B:—an:—kxE:Eksz\/so,uoan (2.41)
w w

Hence, to each transverse componenEpthere exists an associated magnetic
field given by equation(41) above. IfE andor B has a direction in space which
is constant in time, we havemane wave
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2. Electromagnetic Waves

2.2.2 Waves in conductive media

Assuming that our medium has a finite conductivity and making the time-
harmonic wave Ansatz in equation.{4) on page3i, we find that thetime-
independent telegrapher’s equatioan be written

2E 2E
(Z? + &oow’E + ioowE = (;? +K%E=0 (2.42)

where

2
K? = eouow? <1+io-> = w—z <1+io-> =k? <1+i0-> (2.43)
Eow C Eow Eow

where, in the last step, equatiani4) on page2g was used to introduce the wave
numberk. Taking the square root of this expression, we obtain

K=k, /l+i— =a+ig (2.44)
Eow

Squaring, one finds that

K2 (1 + il> = (% - B?) + 2iaB (2.45)
Eow
or
ﬁ2 =a? - K (2.46)
k2
aB= 5 (2.47)
ow

Squaring the latter and combining with the former, one olstéine second order
algebraic equation (in?)

ko2
a?(a? - K?) = 4627 (2.48)
which can be easily solved and one finds that
2
1+ (SO%J) +1
a=k > (2.49a)
2
1+ (ﬁ) -1
B=K 5 (2.49b)
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Observables and averages

As a consequence, the solution of the time-independergréglber’'s equation,
equation £.42) on pages2, can be written

E = Ege o) (2.50)

With the aid of equationx(41) on page31 we can calculate the associated mag-
netic field, and find that it is given by

1

w

B KRxE:%(RxE)(aHﬁ):%(RxEHAleW (2.51)

where we have, in the last step, rewritter+ i3 in the amplitude-phase form
|Al expliv}. From the above, we immediately see tRatnd consequently alds,
is damped, and th& andB in the wave are out of phase.

In the limit epw < o, we can approximatk as follows:

1 1

2 2
K:k<1+ii> =k[ii(l—i%)} ~k(L+) =T
Eow Eow 20w

o
. o . Moo w
= 1 —=(1
Veopow( +I)V250cu (1+10) 2

In this limit we find that when the wave impinges perpendidylapon the medium,
the fields are giverinsidethe medium, by

E' =Eg exp{— " //%g} exp{i ( ”O—g-w{— wt)} (2.538)

B = (1+1) %T (Ax E) (2.53b)

(2.52)

Hence, both fields fall b by a factor Je at a distance

2

Hoow

5=

(2.54)

This distance is called theskin depth

2.3 Observables and averages

In the above we have usedmplex notatiomuite extensively. This is for mathe-
matical convenience only. For instance, in this notatidgfedentiations are almost
trivial to perform. However, everphysical measurablguantity is always real
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2. Electromagnetic Waves

valued. l.e., ‘Egpservable= R€{Emathematica-> It is particularly important to re-
member this when one works with products of observable payguantities. For
instance, if we have two physical vectégtr@andG which both are time-harmonic,
i.e.,, can be represented by Fourier components proportionapf{e-eot}, then we
must make the following interpretation

F(t,X) - G(t,X) = Re{F} - Re{G} = Re{Fo(x) "'} - Re{Go(x) &'}
(2:55)

Furthermore, letting denote complex conjugate, we can express the real part of
the complex vectoF as

Re(F} = Re{Fo(x) &'} = %[Fo(x) et 4 F(x) € (2.56)

and similarly forG. Hence, the physically acceptable interpretation of tladesc
product of two complex vectors, representing physical plad#es, is

F(t.X) - G(t,X) = Re{Fo(x) €'} - Re{Go(x) e}
= SR €™ + Fi( €4 - Z[Go(x) €™ + Gi(x) €]
= %(Fo -G+ Fp-Go+Fo- Goe ? + F - Gy &)

= %Re{Fo -Gy + Fo- Goe 2!}

= %RE{FO et Gyt + Fy - Goer2t)

= }Re{F(t, X) - G*(t.X) + Fo - Goe 2}

2
(2.57)

Often in physics, we measure temporal averag@sdf our physical observ-
ables. If so, we see that the average of the product of the hysigal quantities
represented blf andG can be expressed as

(F-G) =(Re{F} - Re{G}) = %Re{F -G") (2.58)

since the temporal average of the oscillating function{e&fut} vanishes.

INote that this is dferent from quantum physics Whe¥gpservable= [Pmathematicdl
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. Electromagnetic Waves

2.5 Example

EXAMPLE 2.1 >WAVE EQUATIONS IN ELECTROMAGNETODYNAMICS

Derive the wave equation for thefield described by the electromagnetodynamic equations
(Dirac’'s symmetrised Maxwell equationgf[equations (.50) on pagei 6]

P

V.-E= o (2-599)
VxE= —% — o)™ (2.59b)
VB = o™ (2-59C)
VxB= gouOE + o) (2.59d)

ot
under the assumption of vanishing net electric and magoké#irge densities and in the absence
of electromotive and magnetomotive forces. Interpretélisation physically.

Taking the curl of ¢.59b) and using £.59d), and assuming, for symmetry reasons, that
there exists a linear relation between thagneticcurrent density™ and the magnetic fielB
(the magnetic dual of Ohm’s law f@lectriccurrentsj® = o°E)

i™"=0c"B (2.60)

one finds, noting thatyu, = 1/¢2, that

ot c? at
1 0E 0E 1 6°E
m e e
= —Hoo (ﬂoo' E+5 *) -
c? ot

Using the vector operator identiy x (V x E) = V(V - E) — V2E, and the fact tha¥V - E = 0
for a vanishing net electric charge, we can rewrite the wanmgon as

™\ 9E 1 6’E
0-—) — - S —ur"c*E=0 (2.62)

. 0 0 . 1 0E
VX(VXE)z—uOVXJm—a(VXB):—,uQO'mVXB——(uoje+ )
(2.61)

Ho7 gt ~ 2 ot

V2E — g (a’e +
This is the homogeneous electromagnetodynamic wave equatiE we were after.

Compared to the ordinary electrodynamic wave equatioffaquation £.7) on page=6,
we see that we pick up extra terms. In order to understand tlikae extra terms mean phys-
ically, we analyse the time-independent wave equation feingle Fourier component. Then
our wave equation becomes

2 H e o’ w? 2. _m_e
V°E + iwug 0'+? E+§E—u00' o°E

2 e m
Yl S S Y Tt Al SR
c? w? & Sow

(2.63)

Realising that, according to formula.¢6) on page29, uo/eo is the square of the vacuum
radiation resistanciy, and rearranging a bit, we obtain the time-independent wguation in
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Example

Dirac’s symmetrised electrodynamics

2 e m
VZE + 2 (1— E;Um(re) 1+ i% E=0 (2.64)
C w Eow (1 - Po-’“ae)

From this equation we conclude that the existence of magnktrges (magnetic monopoles),
and non-vanishing electric and magnetic conductivitiesildidead to a shift in the féective
wave number of the wave. Furthermore, even if the electritdootivity o€ vanishes, the
imaginary term does not necessarily vanish and the wavetrtiighefore experience damping
(or growth) according as™ is positive (or negative). This would happen in a hypottadtic
medium which is a perfect insulator for electric currentswhich can carry magnetic currents.

Finally, we note that in the particular case that Ry Vo™c¢, the wave equation becomes
a (time-independent) ffusion equation

2 H e o
VE + iwuo 0'+§ E=0 (2.65)

and, hence, no waves exist at all!

<1 END OF EXAMPLE 2.1
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3.1

3

ELECTROMAGNETIC POTENTIALS

As an alternative to expressing the laws of electrodynami¢erms of electric

and magnetic fields, it turns out that it is often more congenio express the
theory in terms of potentials. This is particularly true fsoblems related to ra-
diation and relativity. In this chapter we will introducedastudy the properties of

such potentials and shall find that they exhibit some rentdek@aroperties which
elucidate the fundamental aspects of electromagnetisnieaddnaturally to the
special theory of relativity.

The electrostatic scalar potential

As we saw in equationi (8) on pages, the electrostatic fiel&5?{(x) is irrotational.
Hence, it may be expressed in terms of the gradient of a sialdr If we denote
this scalar field by-¢%2{(x), we get

ES*(x) = ~V4**(x) (3.1)
Taking the divergence of this and using equation)on page;, we obtainPois-

son’s equation

V2¢stat(x) - _V. Estat(x) —

) 52)
E

A comparison with the definition d&s'®, namely equationi(s) on pagey, shows
that this equation has the solution

P = o [ D, (3)

dreg X — X’|
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3. Electromagnetic Potentials

where the integration is taken over all source poxat which the charge density
p(xX’) is non-zero andr is an arbitrary quantity which has a vanishing gradient.
An example of such a quantity is a scalar constant. The sftalation ¢5'#(x) in
equation §.3) on pagesg is called theelectrostatic scalar potential

3.2 The magnetostatic vector potential

Consider the equations of magnetostatics®) on pagey. From equationK.63)
on pagei79 we know that any 3D vecta has the property tha - (Vx a) =0
and in the derivation of equation.(7) on page8 in magnetostatics we found that
V - BS®¥{(x) = 0. We therefore realise that we can always write

BSta{(x) = V x AS¥{(x) (3-4)

whereAs?(x) is called themagnetostatic vector potential

We saw above that the electrostatic potential (as any spalantial) is not
unique: we may, without changing the physics, add to it a tityawhose spatial
gradient vanishes. A similar arbitrariness is true alsdtiermagnetostatic vector
potential.

In the magnetostatic case, we may start from Biot-Savansas expressed by
equation (.15) on page8. ldentifying this expression with equation.{) allows
us to define the static vector potential as

Ay = B0 [ e ) a G3)
A Jvr X — X'|
wherea(x) is an arbitrary vector field whose curl vanishes. From dqodE.62)
on pagei79 we know that such a vector can always be written as the griadfen
a scalar field.

3.3 The electrodynamic potentials

Let us now generalise the static analysis above to the ethetamic casei.e.,
the case with temporal and spatial dependent souyrtes) andj(t, x), and cor-
responding field€(t, X) andB(t, x), as described by Maxwell's equationss)
on pagei 5. In other words, let us study theectrodynamic potentialks(t, x) and
A(t, x).
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From equation (.45C) on pagei5 we note that also in electrodynamics the
homogeneous equatidh- B(t, x) = 0 remains valid. Because of this divergence-
free nature of the time- and space-dependent magneticieldan express it as
the curl of arelectromagnetic vector potential

B(t,X) = V x A(t, x) (3.6)

Inserting this expression into the other homogeneous Maxegektion (.32) on
page13, we obtain

V x E(t,x) = —% [VxA(tX)]=-Vx %A(t, X) (3.7)

or, rearranging the terms,

V x <E(t, X) + %A(t, x)> =0 (3.8)

As before we utilise the vanishing curl of a vector exprasdim write this
vector expression as the gradient of a scalar functionn Hpialogy with the elec-
trostatic case, we introduce tekectromagnetic scalar potentiinction—¢(t, x),
equation §.8) becomes equivalent to

E(t,x) + %A(t, X) = =Vo(t, X) (3.9)

This means that in electrodynamids(t, x) is calculated from the potentials ac-
cording to the formula

E(t,X) = —~Va(t, X) - %A(t, X) (3.10)

andB(t, x) from formula §.6) above. Hence, it is a matter of taste whether we
want to express the laws of electrodynamics in terms of therpials¢(t, x) and
A(t, x), or in terms of the field&(t, X) andB(t, x). However, there exists an im-
portant diference between the two approaches: in classical electaotiga the
only directly observable quantities are the fields themeselfand quantities de-
rived from them) and not the potentials. On the other harelrdatment becomes
significantly simpler if we use the potentials in our caltigias and then, at the
final stage, use equation.¢) and equationy.10) above to calculate the fields or
physical quantities expressed in the fields.

3.4 Gauge transformations

We saw in section.1 on pagesg and in sectiory.2 on pagejo that in electrostat-
ics and magnetostatics we have a certaathematicablegree of freedom, up to
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3. Electromagnetic Potentials

terms of vanishing gradients and curls, to pick suitablefor the potentials and
still get the samehysicalresult. In fact, the way the electromagnetic scalar poten-
tial ¢(t, X) and the vector potenti&(t, x) are related to the physically observables
gives leeway for similar ‘manipulation’ of them also in ei@lynamics.

If we transforme(t, x) and A(t, x) simultaneouslynto new onesy’(t, x) and
A’(t, x) according to the mapping scheme

HEX) o ¢0) = 9t3) + X (3.112)
At X) — A’(t,X) = A(t,X) — VI(t, X) (3.11b)

whereTI'(t, X) is an arbitrary, dierentiable scalar function called thauge func-
tion, and insert the transformed potentials into equatipmo] on pages1 for the
electric field and into equatiorn ) on pages1 for the magnetic field, we obtain
the transformed fields

Lo, OA A(VI)  0A  8(VI) _ oA
=V =V " a6
B =VXA"=VXA-Vx(V[)=VxA (3.12b)

where, once again equatioR.42) on pagei79 was used. We see that the fields
are un#&ected by the gauge transformatigni(i). A transformation of the poten-
tials ¢ and A which leaves the fields, and hence Maxwell’'s equations, iamar
is called agauge transformationA physical law which does not change under a
gauge transformation is said to gauge invariantIt is only those quantities (ex-
pressions) that are gauge invariant that have experimgigtaficance. Of course,
the EM fields themselves are gauge invariant.

3.5 Gauge conditions

Inserting §.10) and (.6) on pages1 into Maxwell’s equationsi(.45) on pagei 5
we obtain, after some simple algebra and the use of equation) On pages

t, X 0
V2 = _p(g ) _ (V- A) (3-133)
1 9PA : 1.0
VA~ SR V(YA = it x) + 5V (3.13b)
cs ot c: ot
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Gauge conditions

which can be rewritten in the following, more symmetric,nfoof general inho-
mogeneous wave equations

18 o _ptx) @ 1 9¢
g V0T Ta\Y A En (3:142)
1 0°A . 1 9¢
EW_VZA:IJOJ(LX)_V<V‘A+§E> (314b)

These two second order, coupled, partiietential equations, representing in all
four scalar equations (one f@grand one each for the three componefits =
1,2,3 of A) are completely equivalent to the formulation of electnoaiyics in
terms of Maxwell’s equations, which represent eight scafat-érder, coupled,
partial diferential equations.

As they stand, equations.(3) on pageq2 and equationss(14) look compli-
cated and may seem to be of limited use. However, if we writ@ggn (.6) on
page41 in the formV x A(t, x) = B(t,X) we can consider this as a specification
of V x A. But we know fromHelmholtz’ theorenthat in order to determine the
(spatial) behaviour ofA completely, we must also speciW- A. Since this diver-
gence does not enter the derivation above are free to choose - A in whatever
way we like and still obtain the same physical redults

3.5.1 Lorenz-Lorentz gauge
If we chooseV - A to fulfil the so called_orenz-Lorentz gauge conditibn

1 9¢
V-A+ S5— = .
t@g =0 (3.15)
the coupled inhomogeneous wave equatigng) on page43 simplify into the
following set ofuncoupled inhomogeneous wave equations

def [ 1 &2 1 0% p(t, X)
[Pp=(=—=-V?|p==—L —Vop=1 16
¢ (c2 ot2 ) ¢ c2 o2 ¢ £0 (3:162)
def (1 &2 1 0°A :
DZA = ((’;26]:2_V2>A = ?W _VZA :MOJ(t,X) (316b)

where [1? is the d’Alembert operatordiscussed in exampl®l.5 on pageigg.
Each of these four scalar equations isiamomogeneous wave equatiohthe

1in fact, the Dutch physicist Hendrik Antoon Lorentz, who i80B demonstrated the covariance of
Maxwell's equations, was not the original discoverer of ttondition. It had been discovered by the Danish
physicist Ludvig V. Lorenz already in 186%][ In the literature, this fact has sometimes been overldoke
and the condition was earlier referred to as the Lorentz g@ogdition.
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following generic form:
2% (t, x) = f(t, x) (3-17)

whereV is a shorthand for eithef or one of the componen#y of the vector po-
tential A, andf is the pertinent generic source compong(it,Xx)/eg Or uoji(t, X),
respectively.

We assume that our sources are well-behaved enough inttsoethat the
Fourier transformpair for the generic source functidn

FULLK] S f(tx) = /'mdw f,(x) &t (3.18a)

de

FLEELX)] E £, (x) = % / T f(t, x) 8t (3.18b)

exists, and that the same is true for the generic potentrapooenty:
W(t, x) = / dw ¥, (x) et (3.108)

1 /> :
V() = = / dtw(t, x) (3.19b)
2n J-w
Inserting the Fourier representationsiga) and (.19a) into equation §.17) above,
and using the vacuum dispersion relation for electromagmetves
w = ck (3.20)
the generic 3D inhomogeneous wave equation, equagion)( turns into
V2P, (%) + K, (X) = —f, (%) (3:21)

which is a 3Dinhomogeneous time-independent wave equatifien called the
3D inhomogeneous Helmholtz equation

As postulated byHuygen’s principleeach point on a wave front acts as a point
source for spherical wavelets of varying amplitude (weightnew wave front is
formed by a linear superposition of the individual wavefetsn each of the point
sources on the old wave front. The solution 9&() can therefore be expressed
as a weighted superposition of solutions of an equation evtier source term has
been replaced by a single point source

V2G(x, X') + K2G(x, X)) = =6(x — X') (3.22)

and the solution of equation.t1) above which corresponds to the frequenacy
is given by the superposition

09 = [ B 1,06)8(xx) (3:23)
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wheref, (x) is the wavelet amplitude at the source poinitThe functionG(x, x’)
is called theGreen functioror thepropagatot

Due to translational invariance in spa@x, x’) = G(x — x’). Furthermore, in
equation §.22) on pagey4, the Dirac generalised functidgifx — x’), which repre-
sents the point source, depends onlyenx’ and there is no angular dependence
in the equation. Hence, the solution can only be dependentgmi — x’| and not
on the direction ok —x’. If we interpretr as the radial coordinate in a spherically
polar coordinate system, and recall the expression for #pédce operator in such
a coordinate system, equationa2) on pagey4 becomes

d2
@(rG) +K2(rG) = —ré(r) (3.24)
Away fromr = |x — x’| = 0,i.e.,, away from the source point, this equation takes
the form
@(FG) +k(rG)=0 (3-25)
with the well-known general solution
eikr —ikr eik|x—x’| —ikx—x’|
c=ct* sc& _=c +c (3.26)
r r [X —X’| X — X/|

whereC* are constants.
In order to evaluate the constari$, we insert the general solution, equa-
tion (3.26), into equation §.22) on page44 and integrate over a small volume
aroundr = |x — x’| = 0. Since
1 1
)~C* +C x =X’

G(|x - x’ ,
[X = x| [X = x|

-0 (3.27)

The volume integrated equation.£2) on pageq4 can under this assumption be
approximated by

(Ct+C) V/d3x/ v2< ) +K2(CT+C) | dX 1

X = x| v X=X

= —/V,dg‘x’ §(|x - x’

In virtue of the fact that the volume elemenidin spherical polar coordinates
is proportional tgx — x'|?, the second integral vanishes when- x’| — 0. Fur-
thermore, from equatiori~(73) on pagei 79, we find that the integrand in the first
integral can be written as4zé(]x — x’|) and, hence, that

1

C'+C = o (3.29)
n

(3-28)
)
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3. Electromagnetic Potentials

Insertion of the general solution equatioe(b) on pageys into equation$.23)
on pageyq gives

W (x) = c+/ da £, (x) S /d3x' £,0¢)

The inverse Fourier transform of thls back to tldomain is obtained by inserting
the above expression fdf,,(x) into equation §.19a) on pagey4:

¥(t.x) =C* /V dX :dw fw(x’)eXp [_'T;Q;'@ﬂ
o exp [—iw (t + %)} (3-31)
rc /V X / do () e

If we introduce theetarded time t, and theadvanced timej},, in the following
way [using the fact that in vacuukyw = 1/c, according to equatiorz(20) on

k>< X e ikix—x'|

XX (3-30)

page44]:
o= Gt -y = 1= KX X (3.320)
ndy = L - '|)=t+ k|X; X =t+ lX_CX,l (3.32b)
and use equatiory(18a) on pagey4, we obtain
W(t,x) = C* / ey f(tret, ;l) c [ & l(;adwxfl) (333)

This is a solution to the generic inhomogeneous wave equétiothe potential
components equation.i7) on pagej4. We note that the solution at tinteat the
field pointx is dependent on the behaviour at other tirtfesf the source ak’
and that both retarded and advant¢edre mathematically acceptable solutions.
However, if we assume that causality requires that the fgiateat (t, x) is set up
by the source at an earlier timieg,, at (., X’), we must in equatiom3(33) above
setC~ = 0 and therefore, according to equatiomr() on pageys, C* = 1/(4n).2

From the above discussion on the solution of the inhomogeneave equa-
tions in the Lorenz-Lorentz gauge we conclude that, underagsumption of
causality, the electrodynamic potentials in vacuum can tigen

. , ey X)

e e e (3:342)
_ Ho  J (ter X)

A0 =4 [ d e (3.34b)

2In fact, inspired by a discussion by Paul A. M. Dirac, John Ahakler and Richard P. Feynman
derived in 1945 a fully self-consistent electrodynamidsgoth the retarded and the advanced potentials
[8]; see alsof].

46 Version released 8th June 2008 at 23:04. Downloaded from http://www.plasma.uu.se/CED/Book



Gauge conditions

Since theseetarded potentialsvere obtained as solutions to the Lorenz-Lorentz
equations{.16) on pagey3 they are valid in the Lorenz-Lorentz gauge but may be
gauge transformed according to the scheme described incidrs;.4 on pages1.

As they stand, we shall use them frequently in the following.

The potentialgs(t, x) andA(t, x) calculated from{.138) on page42, with an
arbitrary choice oW - A, can be further gauge transformed accordingtoi) on
page42. If, in particular, we choos¥ - A according to the Lorenz-Lorentz condi-
tion, equation{.15) on pagey3, and apply the gauge transformatigmi() on the
resulting Lorenz-Lorentz potential equationsif) on page43, these equations
will be transformed into

10% _, 0 (16T _,\ ptx

—— L -V — | =—— =-VT | =—"2Z .

c? ot? o+ ot <c2 ot? €0 (3:358)
1 6°A 16°T ,

= 2p <?W - V2F> = poj(t,X) (3.35b)

We notice that if we require that the gauge functit x) itself be restricted to
fulfil the wave equation

16°T

c? ot?
these transformed Lorenz-Lorentz equations will keeprtbgginal form. The
set of potentials which have been gauge transformed acagptaiequationq.11)
on page42 with a gauge functio’(t, X) restricted to fulfil equation3(36), or,
in other words, those gauge transformed potentials for lithie Lorenz-Lorentz
equations {.16) are invariant, comprise thHeorenz-Lorentz gauge

-Vr=0 (3.36)

3.5.2 Coulomb gauge

In Coulomb gaugeoften employed imquantum electrodynamic®ne chooses
V- A =0 so that equations3(13) on page42 or equations {.14) on page43

become
p(t,x)
V2¢ = S (3.373)
1 6°A , 1,09
VA= G = 0+ GV (3:370)

The first of these two is thitme-dependent Poisson’s equatiwhich, in analogy
with equation §.3) on pageso, has the solution

o(tX) = —— / dx pLx) (3.38)

Aneg Jv X — X/|
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3. Electromagnetic Potentials

wherea has vanishing gradient. We note that in the scalar poteskjaession the
charge density source is evaluated at tim&he retardation (and advancement)
effects therefore occur only in the vector potenfialwhich is the solution of the
inhomogeneous wave equation equatign{b) on pagey7.

In order to solve this equation, one splits jup a longitudinal |)) and trans-
verse (L) part,j = j, +j. whereV-j, = 0andV x j; = 0, and note that the
equation of continuity, equation .£3) on pageio becomes

9 . P ) 0 .
8—€+V.J” = [a (—e0V%9) +V'J||] =V K—Sova—qo +J|] =0

(3-39)
Furthermore, sinc¥ x V = 0andV x j; = 0, one finds that
0 .
V x |:<—80Va—(f> +]||:| =0 (340)

Integrating these two equations, lettihige an arbitrary, well-behaved vector field
andg an arbitrary, well-behaved scalar field, one obtains

1_08
@Vﬁ = poj + V xf (3-419)
1_0¢ .
gvﬁ = poly + Vg (3-41b)

From the fact thaV x f = Vg, itis clear that
Vx(Vxf)=VxVg=0 (3.42a)
V- (Vxf)=V-Vg=0 (3.42b)

which, according to Helmholtz’ theorem, means thHat f = Vg = 0.
The inhomogeneous wave equation equatipgry) on pagey7 thus becomes

1 0°A . 1_0¢ . . .
VZA - 2z = Mo+ g Vg = ~Hol + ol = ol (3.43)

which shows that in Coulomb gauge the source of the vectangiat A is the
transverse part of the current. The longitudinal part of the curreff does not
contribute to the vector potential. The retarded solutiofefi equation §.34a) on

page46):
_ Mo s J1(tep X')
ALX) =7 /V,d3x X=X (3-44)

The Coulomb gauge condition is therefore also calledrdmesverse gauge
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3.5.3 Velocity gauge

If V- A fulfils the velocity gauge conditigrsometimes referred to as tbemplete
a-Lorenz gauge
1 9¢

V . A + a’? E = 0, a =
we obtain the Lorenz-Lorentz gauge condition in the limit 1, and the Coulomb
gauge condition in the limiz = O, respectively. Hence, the velocity gauge is a
generalisation of both these gauges. Inserting equatigs)(into the coupled
inhomogeneous wave equationiy) on pagey3 they become

vy L0% _ pt)

(3-45)

ol R

_—Z¥Y_ 46
292 - (3.46a)
1 9%A . l-a_0d¢
2p _ 2O~ 1@ 09
VA 2 o2 Mo (ta X) + 2 v ot (346b)
or, in a more symmetric form,
1 0%¢ pt,X) l-—ad dd
Vip- S — = ——= :
@ o e < ot (3.478)
1 %A . l-a_o0¢
VIA- S — =- —VvV= .
2 o2 Hol (t’ X) + 2 ot (3 47b)
Other useful gauges are
e ThePoincaré gaugédor radial gaugg where [1]
1
#(t,X) = —X - / dLE(t, AX) (3.488)
0
1
At X) = / dAB(t, AX) X X (3.48b)
0

e Thetemporal gaugealso known as thelamilton gaugedefined byp = 0.
e Theaxial gauge defined byA; = 0.

The process of choosing a particular gauge condition is krnasgauge fixing
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3.7 Examples

EXAMPLE 3.1

>>ELECTROMAGNETODYNAMIC POTENTIALS
In Dirac’'s symmetrised form of electrodynamics (electrgmetodynamics), Maxwell’s

equations are replaced by [see also equatiogs) on pagei6]:

ve.? (3.493)

€0
VXE=—uj™- % (3.49b)
VB = pop" (3.49€)
(3.49d)

OE
V x B = uoj® -
Ho) ™ + €opo ot

In this theory, one derives the inhomogeneous wave equsftiotihe usual ‘electric’ scalar
and vector potentialss, A€) and their ‘magnetic’ counterpartg{, A™) by assuming that the
potentials are related to the fields in the following symiisett form:

l7j
E = -V¢°(t,x) — aAe(t, X)—VxA™ (3.50a)
B——EV (t x)—iéAm(t X) + V x A® (3.50b)
B AMC A F il 35
In the absence of magnetic charges, or, equivalentlypfoe 0 andA™ = 0, these formulae
reduce to the usual Maxwell theory formulaio) on pages1 and formula §.6) on pages1,

respectively, as they should.
Inserting the symmetrised expressiong¢) above into equationg (19), one obtainsdf.,

equations{.13a) on pageq2]

0 &(t, X
V2¢° + g (V-A®) = _;%o) (3.51a)
m
vigm+ O (v am) = _PmX) (.51b)
ot &0
1 9?A° 1 0¢° .
2o VIA®+V (V-Ae+ @aii) = o (t,X) (3-510)
1 92AM 1 9g™ .
Z e VZA™ + V (V-Am + 3%) = pto "(t, X) (3-51d)

By choosing the conditions on the divergence of the vecttemt@ls according to the Lorenz-
Lorentz condition ¢f. equation §.15) on pagey3]

10

V-A®+ gaqbe:O (3.52)
10

VAT "= (353)

these coupled wave equations simplify to
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1P 5 o P(LX)
= -Vt = (3.549)
c2 at? &0
1 92A¢ .
2 " VATE Y (3.54b)
- P"(t.X)
= -V =t (3-54C)
2 o2 &0
1 82A™ .
@ e " VAT ="t (3.54d)

exhibiting, once again, the striking properties of Dirasysnmetrised Maxwell theory.

<1 END OF EXAMPLE 3.1
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4.1

A

ELECTROMAGNETICFIELDS AND
MATTER

The microscopic Maxwell equations.f5) derived in chapten are valid on all
scales where a classical description is good. However, wigeroscopic mat-
ter is present, it is sometimes convenient to use the carnelipg macroscopic
Maxwell equations (in a statistical sense) in which auxjliaterived fields are
introduced in order to incorporatdfects of macroscopic matter when this is im-
mersed fully or partially in an electromagnetic field.

Electric polarisation and displacement

In certain cases, for instance in engineering applicatibmsay be convenient to

separate the influence of an external electric field on freeges on the one hand
and on neutral matter in bulk on the other. This view, whichwe shall see,

has certain limitations, leads to the introduction of (#ijric polarisation and

magnetisation which, in turn, justifies the introductiortwb help quantities, the

electric displacement vect@ and themagnetising fieldH.

Electric multipole moments

The electrostatic properties of a spatial volume contgirgtectric charges and
located near a poindy can be characterized in terms of tiséal chargeor electric
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monopole moment

q= [ d¥ p(x) (4.1)

where thep is the charge density introduced in equatiany) on pages, the
electric dipole moment vector

() = | ¥ (< = x0)p(x) 42)

with componentsy, i = 1, 2, 3, theelectric quadrupole moment tensor

Qo) = | d¢ (¢ = X)X = x0) () (43)

with component$);;, i, j = 1,2, 3, and higher order electric moments.
In particular, the electrostatic potential equatigry) on pageyg from a charge
distribution located neat, can be Taylor expanded in the following way:

[ Q . 1 (X—Xo)
dreg |IX —Xol X — X0 X — Xol
3(X=X%Xg)i (X=X%g);7 1
. ey (_( 0)i ( o),__dij)J_”]
X — X0| 2 [X—=Xol X=Xl 2

stat( ) —

(4-4)

where Einstein’s summation convention ovemd j is implied. As can be seen
from this expression, only the first few terms are importatte field point (ob-
servation point) is far away fromy.

For a normal medium, the major contributions to the eletatasinteractions
come from the net charge and the lowest order electric nuldtimoments induced
by the polarisation due to an applied electric field. Paldidy important is the
dipole moment. LeP denote the electric dipole moment density (electric dipole
moment per unit volume; unit: /&?2), also known as thelectric polarisation in
some medium. In analogy with the second term in the exparegjoation §.4)
above, the electric potential from this volume distribat(x’) of electric dipole
moments at the source point’ can be written

bp(X) = / ¥ P(X) - S Y F>(x').v<IX _1X,|>

|X X’|3 47rso v/
1

d3X'P(x)V’< 1 )
47T£0 V2

X — X'|
(4-5)
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Electric polarisation and displacement

Using the expression equatioi (101) on page2oo and applying the divergence
theorem, we can rewrite this expression for the potentiéblésns:

1 P(x’ V' - PX
¢D(X) = FSO [//d:%x’ v <|X (_XX)/|) —//d%(’ |X—)(()'(|):|

_ 1 e P(X/) ’ V. P(X,)
" 4ne []{dzx f X=X —//d%( X — X’| ]

where the first term, which describes théeets of the induced, non-cancelling
dipole moment on the surface of the volume, can be negleuatddss there is a
discontinuity infi - P at the surface. Doing so, we find that the contribution from
the electric dipole moments to the potential is given by

1 / e =V PX)

" dneg X — X’|

(4.6)

(4-7)

¢p

Comparing this expression with expression equatios) ©n pagesog for the elec-
trostatic potential from a static charge distributipnwe see that-V - P(x) has
the characteristics of a charge density and that, to thedbareler, the fective
charge density becompgéx) — V - P(x), in which the second term is a polarisation
term.

The version of equationi (7) on pages where free, ‘true’ charges and bound,
polarisation chargesire separated thus becomes

ue(x) — V - P(x)

€0

v.e=" (4.8)

Rewriting this equation, and at the same time introducirggellectric displace-

ment vecto(C/m?)

D=gE+P (4.9)
we obtain

V- (£0E +P) = V- D = p"™¢(x) (4.10)

wherep'™€ is the ‘true’ charge density in the medium. This is one of Malk&/e
equations and is valid also for time varying fields. By intothg the notation
p° = —V . P for the ‘polarised’ charge density in the medium, aftf = pte +
pP° for the ‘total’ charge density, we can write down the followialternative
version of Maxwell’s equatiorny(21a) on pages8

ptotal(x)
€0

V-E= (4.11)
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4. Electromagnetic Fields and Matter

Often, for low enough field strengthis|, the linear and isotropic relationship
betweerP andE

P = goXE (4'12)

is a good approximation. The quantiyis the electric susceptibilitywhich is
material dependent. For electromagnetically anisotropdia such as a magne-
tised plasma or a birefringent crystal, the susceptibiditg tensor. In general, the
relationship is not of a simple linear form as in equatian£) above but non-
linear terms are important. In such a situation the prircgdlsuperposition is no
longer valid and non-linearfkects such as frequency conversion and mixing can
be expected.

Inserting the approximation (12) into equation 4.9) on pagess, we can write
the latter

D=c¢E (4.13)
where, approximately,

e=go(l+y) (4.14)

4.2 Magnetisation and the magnetising field

An analysis of the properties of stationary magnetic mediad the associated
currents shows that three such types of currents exist:

1. In analogy with ‘true’ charges for the electric case, weyrhave ‘true’
currentg '™, i.e., a physical transport of true charges.

2. In analogy with electric polarisatiddthere may be a form of charge trans-
port associated with the changes of the polarisation witteti Such cur-
rents, induced by an external field, are calpedarisation currentsand are
identified withoP/at.

3. There may also be intrinsic currents of a microscopi@roéttomic, nature
that are inaccessible to direct observation, but which nragyce net ef-
fects at discontinuities and boundaries. Thesgnetisation currentare
denoted™.

No magnetic monopoles have been observed yet. So there isrresgon-
dence in the magnetic case to the electric monopole moment (The lowest
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Magnetisation and the magnetising field

order magnetic moment, corresponding to the electric dipdment4.2), is the
magnetic dipole moment

m=3 [ % —xo) xi(x) (4.15)

For a distribution of magnetic dipole moments in a volume, may describe
this volume in terms of thenagnetisationor magnetic dipole moment per unit
volume,M. Via the definition of the vector potential one can show thatrhag-
netisation current and the magnetisation is simply related

M=VxM (4.16)

In a stationary medium we therefore have a total current kviiqapproxi-
mately) the sum of the three currents enumerated above:

jtotalzjtrue+a_P+VxM (4.17)
ot
One might then, erroneously, be led to think that

LHS=VxB

RHS = yo (j"“9+ ‘;—T +Vx M)

while

(INCORRECT)

Moving the termV x M from the right hand side (RHS) to the left hand side
(LHS) and introducing thenagnetising fieldmagnetic field intensityAmpere-
turn density as

B

H=—-M (4-18)

Ho
and using the definition fdp, equation £.9) on pagess, we can write this incor-
rect equation in the following form

LHS=VxH

OP e 0D oE
Tt Tl T e T
As we see, in this simplistic view, we would pick up a term whimakes the
equation inconsistent: the divergence of the left hand iuhéshes while the di-

vergence of the right hand side does not! Maxwell realisesldahid to overcome

RHS = jtrue
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43

4.3.1

this inconsistency he was forced to add his famous displanercurrent term
which precisely compensates for the last term in the rightitsade. In chapter,
we discussed an alternative way, based on the postulateséoation of electric
charge, to introduce the displacement current.

We may, in analogy with the electric case, introdusaagnetic susceptibility
for the medium. Denoting jt,, we can write

H=2 (4.19)
M

where, approximately,

p = po(1 + xm) (4.20)

Maxwell's equations expressed in terms of the derived fielhtjtiesD and
H are

V-D =p(t,x) (4.21a)
V-B=0 (4.21b)
VxE:—% (4.210)
V><H=j(t,x)+(2—ltD (4.21d)

and are calledaxwell’s macroscopic equation¥hese equations are convenient
to use in certain simple cases. Together with the boundargiitons and the con-
stitutive relations, they describe uniquely (but only apqimately!) the properties
of the electric and magnetic fields in matter.

Energy and momentum

We shall use Maxwell's macroscopic equations in the follgwonsiderations
on the energy and momentum of the electromagnetic field anadtéraction with
matter.

The energy theorem in Maxwell’s theory
Scalar multiplying 4.21¢) by H, (4.21d) by E and subtracting, we obtain

H-(VXE)—E-(VxH)=V-(ExH)

oB : D 14 _ (4.22)
=-H-—-E-j-E--——=-Z—(H-B+E-D)-j-E
o EITE T e )=
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Energy and momentum

Integration over the entire volumé and using Gauss’s theorem (the divergence
theorem), we obtain

0 [ a1 o
B 5H-BrED) = [ ] Ex f dXA-ExH) (2)

We assume the validity of Ohm’s law so that in the presence @lectromo-
tive force field, we make the linear approximation equationf) on pagei 2:

j = o(E +E"YF) (4.24)
which means that
i2
/d3x’j -E=/d3x’J——/d3X’j-EEMF (4.25)
\4 \4 (o \4

Inserting this into equationy(23) above, one obtains

i2
[iem = [ B Eu2 [ lepin
v v o othy 2

Applied electric power Joule heat Field energy

N ji/dzx’ i - (E x H) (4.26)

Radiated power

which is theenergy theorem in Maxwell’s theogjso known afoynting’s theo-
rem
It is convenient to introduce the following quantities:

Ue = }/ dE-D (4.27)
2

Un = CN T (4.28)
2 v

S=ExH (4.29)

whereUg is theelectric field energyUy, is themagnetic field energyoth mea-
sured in J, an& is thePoynting vecto(power fluy, measured in Wr?.

4.3.2 The momentum theorem in Maxwell’s theory

Let us now investigate the momentum balance (force actiont)e case that a
field interacts with matter in a non-relativistic way. Foistpurpose we consider
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4. Electromagnetic Fields and Matter

the force density given by thieorentz forceper unit volumepE + j x B. Using
Maxwell's equations4.21) and symmetrising, we obtain

. D
pE+ij:(V~D)E+<VxH—aa—t>xB

D
=E(V~D)+(VxH)xB—%—th
=E(V-D)-Bx (VxH)

0 oB
- —(DxB)+Dx —
gP*x B +Dx 5
=E(V-D)-Bx(VxH)

9
—E(DXB)—DX(VXE)+H(Y:~6I§)
= [E(V-D)-Dx (VXE)] +[H(V-B) - Bx (VxH)]

d
- a(D x B)
(4.30)

One verifies easily that thigh vector components of the two terms in square
brackets in the right hand member af{o) can be expressed as

[E(V-D)—DX(VXE)]i=%(E-8—D—D 6E>+i<EiDj—}E-D6ij>

ax . ax) ax 2
(4.31)
and
1 0B oH d 1
H(V-B)-Bx (VxH)]i==(H-—-B-— | + — ( HiBj — =B - H 6ij
MY B)-Bx (T x il = 3 (R 50 -8 )0 o (Wi - 58 Hay )
(4.32)
respectively.

Using these two expressions in tlie component of equation;3o) and re-
shufling terms, we get

. 1 oD oE oB oH 0
E B)i — = E-—-D-— H-—-B.-— —(D x B);
(E +] x B), 2[( _ _)+< 8 6N)]+65 X B),
0 1 1
=a—Xj(EiDj—EE-Déij+HiBj—§H-Béij>

(4-33)

60 Version released 8th June 2008 at 23:04. Downloaded from http://www.plasma.uu.se/CED/Book



Energy and momentum

Introducing theelectric volume forcé&, via itsith component

ea-ueisa e -0 8] (n -0 )

0% 0%

(434)
and theMaxwell stress tensofelectromagnetic linear momentum fJuk with
components

1 1
Tij:EiDj_EE'Déij"'HiBj_EH'B(Sij (435)
we finally obtain the force equation
0 JTjj
F —(DxB)| =—==(V-T) .36
Fevt @x8) = Z0=(7-7) (436

If we introduce therelative electric permittivityke and therelative magnetic
permeabilitykmy, as

D = kegoE = ¢E (4.37)

B = kmuoH = uH (4-38)
we can rewrite {.36) as

JTjj Kekm 0S

—U_(F = m-= .

7% ( vt =3 6t>i (4-39)

whereSis the Poynting vector defined in equationz() on pagesg. Integration
over the entire volum¥ yields

d K
/ X Foy +— / o “emg - 7{ & Ts (4.40)
\V dt \V C s
Force on the matter Field momentum  Maxwell stress

which expresses the balance between the force on the nihdeate of change
of the electromagnetic field momentum and the Maxwell strékgs equation is
called themomentum theorem in Maxwell's theory

In vacuum §.40) becomes

/d?’)(’p(E+Vx B)+13/ d%(’S:j{dzx’Tﬁ (4a1)
V2 CZ dt vV’ S
or

d mech, 9 field _ ?{ e

P P = S,dzx Ta (4.42)
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Example

4.5 Example

>TAYLOR EXPANSION OF THE ELECTROSTATIC POTENTIAL EXAMPLE 4.1

The electrostatic potential is

w40 = o [ ax 2 443

drreg X = X/|

For a charge distribution sourpéx’), well localised in a small volume’ aroundx,, we Taylor
expand the inverse distancg|d — x’| with respect tok, to obtain

1 1
X=X (X =X0) = (X = Xo)|
1 | 3 o ,
= o o2 Zm T °' - 04, =0, (06, =30, )
13 1 P
= / n _ n; / n:
N X — Xol i I'Zln1+n2+n3=nn1!n2!n3! 5X216X226X23 (Xl X01) 1(X/2 XOZ) 2(X3 Xos) ¥
n;j>0

(4-44)

Inserting this expansion into the integrand of equatipn3), we get

statry\ _ i .fwd%(’p(X’)
¢ I(X)_ drreg [X — Xol
> 10 P
X—Xo ny ny n3
Y Y i R f 0 04 50 =004~ o) ()

n;>0

(4-45)

Limiting ourselves to the first three terms

1 2 1
£ = q < |><_><0| 23 1 = o (4.46)
47r50 X — Xol ,Zl Z Z 2 6xﬁx, '

and recalling that

6 1
e . (4-47)
o X = Xol 47
and
2 1
0 [x=xo| 3(X| - XOi)(Xj - XOj) —IX- X0|2 6ij
= (4-48)

X OXj X — Xl
we see that equation () on pages4 follows.

<] END OF EXAMPLE 4.1
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5

ELECTROMAGNETICFIELDS
FROM ARBITRARY SOURCE
DISTRIBUTIONS

While, in principle, the electric and magnetic fields can b&uwalated from the
Maxwell equations in chapter, or even from the wave equations in chaptgt is
often physically more lucid to calculate them from the electagnetic potentials
derived in chaptes. In this chapter we will derive the electric and magnetiaiel
from the potentials.

We recall that in order to find the solution.§3) for the generic inhomoge-
neous wave equation.(7) on pages4 we presupposed the existence of a Fourier
transform pair §.18a) on pagey4 for the generic source term

F(t,x) = /_ :dw £, (x) et (5.13)

£,(x) = % /_: dt (t, x) &t (5.1b)

That such transform pairs exist is true for most physicaiddes which are nei-
ther strictly monotonically increasing nor strictly moonically decreasing with
time. For charge and current densities varying in time wetharefore, without
loss of generality, work with individual Fourier compongpt,(x) andj(x), re-
spectively. Strictly speaking, the existence of a singlerles component assumes
amonochromatisource i.e., a source containing only one single frequency com-
ponent), which in turn requires that the electric and magrtids exist for in-
finitely long times. However, by taking the proper limits, way still use this
approach even for sources and fields of finite duration.
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5. Electromagnetic Fields from Arbitrary Source Distributions

This is the method we shall utilise in this chapter in ordedt¢ave the electric
and magnetic fields in vacuum from arbitrary given chargesiiess p(t, x) and
current densitief(t, x), defined by the temporal Fourier transform pairs

Pt = [ dop,(oe™ (5.22)

Pl = o [ ot e (52b)
and

X = [ dojue™ (539)

. Y ot

o0 =5 [ dixe (535)
under the assumption that ongtardedpotentials produce physically acceptable
solutions.

The temporal Fourier transform pair for the retarded sqatéential can then

be written

#(tX) = / dor g () € (549)

oo gkix=x'|
0 = 57 [ ot = [ dpu) T (5.4b)

where in the last step, we made use of the explicit expredsiothe temporal
Fourier transform of the generic potential compon&p{x), equation §.30) on
page46. Similarly, the following Fourier transform pair for the ater potential

must exist:
At X) = / " dw A (x) et (5.59)
k|x X'
A = 5 [ A =2 [ e (5:5b)

Similar transform pairs exist for the fields themselves.
In the limit that the sources can be considered monochraroatitaining only
one single frequencyg, we have the much simpler expressions

p(t,X) = po(x)e " (5-6a)
j(t.x) = jo(x)e ! (5.6b)
(. X) = go(x)e (5.6€)
A(t, X) = Ag(x)e ot (5.6d)
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The magnetic field

where again the real-valuedness of all these quantitienptied. As discussed
above, we can safely assume that all formulae derived fornargé temporal
Fourier representation of the source (general distributibfrequencies in the
source) are valid for these simple limiting cases. We nod ith this context,
we can make the formal identificatign, = pod(w — wo), jo» = jod(w — wp) etc,
and that we therefore, without any loss of stringencypggnean the same as the
Fourier amplitudep,, and so on.

5.1 The magnetic field

Let us now compute the magnetic field from the vector poteméfined by equa-
tion (5.5a) and equationq.5b) on pagest, and formula §.6) on pages1:

B(t,x) = V x A(t,X) (5.7)

The calculations are much simplified if we work in space and, at the final
stage, inverse Fourier transform back to ordinagpace. We are working in
the Lorenz-Lorentz gauge and note thatispace the Lorenz-Lorentz condition,
equation §.15) on pagey3, takes the form

V-Aw—ig%:o (5-8)

which provides a relation between (the Fourier transforfjghe vector and scalar
potentials.

Using the Fourier transformed version of equatigry) and equation4.5b)
on pagess, we obtain

eik|x—x’|

B(0 = VX ALL) = 52V x [ ] () (59)

4 [X = X’|

Downloaded from http://www.plasma.uu.se/CED/Book Version released 8th June 2008 at 23:04. 67



5. Electromagnetic Fields from Arbitrary Source Distributions

Utilising formula (F.57) on pagei79 and recalling that, (x") does not depend on
X, we can rewrite this as
~ _@ . L , eik|x—x’\
Bu(X) = 4ﬂ//d3x Ju(¥) x |V <|X_X,|

A j o (X) x x’3 Shiand
ol [ (3555

N1
/d3>(j () x <|k|x X,lékx-xl> W] (5.10)
Mo , Jo(X)E X x (x - X)
_4_7r{/ d X — x|
e ERILO (6]
\Y [x = x'|

From this expression for the magnetic field in the frequengydomain, we
obtain the total magnetic field in the temporgl domain by taking the inverse
Fourier transform (using the identityik = —iw/c):

B(t,X) = / " dw B, (x) et
[ g L0 ) )
47r x —x'3

gy oo i) ()e™ WD) x (x - x) }
clv X = x|

_Ho [ dee X)X (X=X) g0 [ g il X) X (x = X)

=1 / d s / d

4 Jv X —x'? X — x’[?

Induction field Radiation field

(5.11)

where

def (0]
(tret, )= <a>t=t;el (5.12)

andt is given in equationy.32) on page46. The first term, thenduction field
dominates near the current source but faffsapidly with distance from it, is the
electrodynamic version of the Biot-Savart law in electatiss, formula (.15) on
page8. The second term, thexdiation field or thefar field, dominates at large
distances and represents energy that is transported onfiriyi Note how the
spatial derivativesY) gave rise to a time derivative ()!
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The electric field

5.2 The electric field

In order to calculate the electric field, we use the tempypiadiurier transformed
version of formula §.10) on pagey1, inserting equations;(yb) and (.5b) as the
explicit expressions for the Fourier transformspaindA:

Eu(x) = —V¢w(X) +iwAy(X)

/ x| |/.106() s ’ eikl)(ix"
B 47r5 /d (X)IX X'| A /\//d%( Jw(X)|X_X,|

= i[/ d?’x'p‘”(x YekXI(x — x')

4dreg | Jv x —x3
i [ e (2N o) gl
V2 X — X/| c [x — x|
(5.13)
Using the Fourier transform of the continuity equatiore§) on pageio
Vo) —iwp(x) =0 (5.14)
we see that we can exprgssin terms ofj,, as follows
’ I ’ H ’
PulX) = =V -ju(X) (515)

Doing so in the last term of equatioR.(3) above, and also using the fact that
k = w/c, we can rewrite this equation as

, Pu(X)EXI(x ~ X')
Eu() = 47 [/\/ dx

X - x®
1 (V- Ju(XD)](X = X) X171 (5.16)
E/V/dSX ( X — x| ~ Kol )> X — x'|]

lo

The last vector-valued integral can be further rewrittethafollowing way:

l, = / R Y ([V' JoX(X=X) ikjw(x’)) gikx=x'|
JV’

X —X/| [x — x|
iK' (5.17)

_ 7 ajwm X = X|’ s , ~ e‘ -
= /V/d3x (6)% — iK o1 (X )>x| w—
But, since
9 <j XI_Xl/eiKX—X’I) _ (ajwm> X —X kx|
X "M x = x? 0% ) X — X2

g (X g
X — x'|?

(5-18)
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5. Electromagnetic Fields from Arbitrary Source Distributions

we can rewritd , as

s | 0 X|—X| kix—x’| : e|k\x—x’|
l, = /d?’x [J“’max’ <| |2x|e' +ikjy—

4 i X - XI, & akix=x|
d3X X (J m|x—x'|2X'eJ )

where, according to Gauss's theorem, the last term vanithg&s assumed to be
limited and tends to zero at large distances. Further etratuaf the derivative in
the first term makes it possible to write

lw = —/Id%(' (—jw eiklx—x/‘2 + 2 . [Jw (X - X')] (x - X/)eiklx—x’|>

X —x|° X=X
e f e [l XN 6 o B
v X - x'® IX — X'|

(5.20)

Using the triple product ‘bac-cab’ formuld.§1) on pagei178 backwards, and
inserting the resulting expression 1grinto equation §.16) on pagesg, we arrive
at the following final expression for the Fourier transforfthe totalE field:

ikix— x\ gkix=x’]
1 , Po(X’ )e'k'X XI(X—X)
_47T80[/ d x - x?
dgx, [jo ()T (x = x)](x = X)
X — x'[*
/d3x [ ()T x (x = X)] X (X = X')
, x —x*
ik ey [jo (X)X x (x = X)] % (X = X)
c Jv Ix —x/|3

(5.21)

Taking the inverse Fourier transform of equatigre(), once again using the
vacuum relatiornw = kc, we find, at last, the expression in time domain for the
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total electric field:

Et,X) = / " dw E, (x) et
[ g i X))
= d?)( ret

" dneg Ix — x3

Retarded Coulomb field

1 / ad¢ [ (tep X) - (X = X)](x = X)
JV’

+

Intermediate field (522)

1 g Bl X) X (= x0T x (x=X)

d 4
4AreoC Jvr X — X/|

Intermediate field
L[ g lltieeX) X (<= 3)] x (x = x)
d 3

47T80C2 \V4 IX _ XII

Radiation field

Here, the first term represents tleearded Coulomb fieldnd the last term repre-
sents theadiation fieldwhich carries energy over very large distances. The other
two terms represent dantermediate fieldvhich contributes only in theear zone
and must be taken into account there.

With this we have achieved our goal of finding closed-formlgiaexpres-
sions for the electric and magnetic fields when the sourcésedfields are com-
pletely arbitrary, prescribed distributions of charged anrrents. The only as-
sumption made is that the advanced potentials have beeardist; recall the
discussion following equatiory(33) on pages6 in chapters.

5.3 The radiation fields

In this section we study electromagnetic radiatios, those parts of the electric
and magnetic fields, calculated above, which are capablarofing energy and
momentum over large distances. We shall therefore makesthextion that the
observer is located in thiar zone i.e., very far away from the source region(s).
The fields which are dominating in this zone are by definitlmeradiation fields
From equationq.11) on page68 and equationy.22) above, which give the
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72

total electric and magnetic fields, we obtain

Brad(t, X) — / dw Bradw(X) e—iw’[ — & / d3x/ J(trebx ) X (X - X )

4rc Jv X — X'
(523)
Erad(t’ X) :/ dw Eradw(x) e—iwt
- H , , , 2 b
C 1 [ X)X X=X X (= X) (5235)
- 2 d 3
AneoC Jv IX — X’|
where
) ’ d_ef a]
J(tret’x) = (E>t=t;et (5-24)

Instead of studying the fields in the time domain, we can oftetke a spec-
trum analysis into the frequency domain and study each Epcoimponent sepa-
rately. A superposition of all these components and a toamedftion back to the
time domain will then yield the complete solution.

The Fourier representation of the radiation fields equatiorsa) and equa-
tion (5.23b) above were included in equation (o) on pages8 and equationy.21)
on pageyo, respectively and are explicitly given by

B0 = - | e

_ _.@ , jw(X/) X (X - X,) iKIx—x'|
e /v d T e (5.252)

_ —i@/ ad¢ Jo(X') x k gkix-x|

4y IX — X/|

Ef(x) = % / dt E"™(t, x) €'

— K ’ [iw(X) x (X =X)] X (x = Xx') iKIx—x’|

- I47rsoc ./v/dsx X — x'|3 e (5.25b)
— —1 4 [jw(X') X k] X (X - Xl) ikIX—x’|

B |47rsoc /\/dsx X — X’|2 e

where we used the fact that= kk = k(x — ')/ [x = X|.

If the source is located near a poixyg inside a volumeV’ and has such a
limited spatial extent that max’ — x| < [X — X’|, and the integration surfacg,
centred onxp, has a large enough radilss— Xo| > max|x’ — Xq|, we see from
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The radiation fields

O

FIGURE5.1: Relation between the surface normal andkivector for radiation

generated at source pointsnear the poinkg in the source volum®’. At dis-

tances much larger than the extenMsf the unit vector, normal to the surface

S which has its centre a), and the unit vectok of the radiatiork vector from
X’ are nearly coincident.

figures.1 that we can approximate

k|x-x

=k-(x=X)=k-(X=Xg) -k - (X" —Xo)
, (5.26)
~ KX — Xo| — K - (X" = Xp)
Recalling from FormulaK.45) and formula F.46) on pagei 78 that
dS = |x — Xo[2dQ = |x — Xo[? Sin6 do de

and noting from figures.1 that k and A are nearly parallel, we see that we can
approximate

k-ds dx -
=X k-A~d (5:27)
IX — Xol X = Xol

Both these approximations will be used in the following.
Within approximation §.26) the expressions;(25a) and .25b) for the radi-
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5. Electromagnetic Fields from Arbitrary Source Distributions

ation fields can be approximated as

»(X) x k
B‘ruad(x) :uO e|k|x x0|/ 3)(' I)(( )X’I gk (X'~x0)

Lo &KXl N ) (5.28a)
== ’ T ’ _ik-(X' =Xq
4n IX Xo| / X flu(x) x k] e
ST SV LT ECE J
4ne X — x’[?
1 e'klx Xl (x = Xo) , o
~ %(, ’ k —ik-(X"=X0)
I47T80C X = Xo| X = Xol x /V,d [Jw(x ) X ] e
(5.28b)

l.e, if max|x’ — Xo| < |x — X/|, then the fields can be approximatedsgherical
wavesmultiplied by dimensional and angular factors, with indgrover points in
the source volume only.

5.4 Radiated energy

Let us consider the energy that is carried in the radiatidd<®29, equation §.25a),
andE™4, equation §.25b) on pagey2. We have to treat signals with limited life-
time and hence finite frequency bandwidtlteliently from monochromatic sig-
nals.

5.4.1 Monochromatic signals

If the source is strictly monochromatic, we can obtain timeperal average of the
radiated poweP directly, simply by averaging over one period so that

(9) = ExH) = 5 _RelEx B') - 2Nipee{Ewe—iwt . Boe )

1
—Re{E, x B, € lotglet R E, x B!
- Re(E.x } = 5oRe{E.xB;)

(529)

Using the far-field approximations;.8a) and .28b) and the fact that &c =
vEoro andRy = uo/eo according to the definitior2(26) on pagezg, we obtain

1

2 X =X
= / dX (., x k)e ik x—x)| XZX0 (530)

S
(S = Ro X — Xol
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Radiated energy

or, making use of4.27) on pagey3,

dpP 1

2
= 3 ’ /V A% (o, x k)e ) (5:31)

which is the radiated power per unit solid angle.

5.4.2 Finite bandwidth signals

A signal with finite pulse width in timet{ domain has a certain spread in fre-
guency {) domain. To calculate the total radiated energy we needtéegiate
over the whole bandwidth. The total energy transmittedughoa unit area is the
time integral of the Poynting vector:

/dtS(t)z/ dt (E x H)
_ / dw / do’ / dt (E,, x H,,) el

If we carry out the temporal integration first and use the tlaat

(5:32)

[ e = 250+ ) (533)
equation §.32) can be written¢f. Parseval’s identity
/_:dt S(t) = Zﬂ/_mdw (E, xH_.)
= 2r (/Om dw (E, x H_,,) + /_i dw (E,, Hw)>

. (/m dw (E, x H_,) — /_m dw (E,, X H—w))
° °. (5.34)
— 21 </0 do (E,, x H_,,) +/0 do (E, Hw))

27.[ (o8}
= — dw(E, xB_, + E_, X B,)
Mo Jo
:@ dw (E, %X B;, + E}, X B,)
Mo Jo
where the last step follows from physical requirement of-vaduedness of,,
andB,,. We insert the Fourier transforms of the field componentsiwbdominate
at large distances.e., the radiation fieldsq.25a) and .25b). The result, after
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5. Electromagnetic Fields from Arbitrary Source Distributions

integration over the area of a large sphere which encloses the source volifme

IS
U:i1/@}{d2xﬁ-/ dw
dr \ &9 Js 0

Inserting the approximationg.¢6) and (.27) into equation £.35) above and
also introducing

. 2
g 1o XK G|

Pk (5.35)

U= / dwU,, (5-36)
JO
and recalling the definition2(26) on pagez9 for the vacuum resistandg, we
obtain
a, 1 ' Cikeoxo)|
o 47TR0‘/V/d3X (i x K)e dow (5.37)

which, at large distances, is a good approximation to theggrat is radiated
per unit solid angle @ in a frequency bandal It is important to notice that
Formula §.37) includes only source coordinates. This means that the atadu
energy that is being radiated is independent on the distarbe source (as long
as itis large).
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6

ELECTROMAGNETIC RADIATION
AND RADIATING SYSTEMS

In chapter; we were able to derive general expressions for the scalavectdr
potentials from which we then, in chaptgrcalculated the total electric and mag-
netic fields from arbitrary distributions of charge and euatrsources. The only
limitation in the calculation of the fields was that the adseoh potentials were
discarded.

Thus, one can, at least in principle, calculate the radifitdds, Poynting
flux, energy and other electromagnetic quantities for aitrarlg current density
Fourier component and then add these Fourier componerdgthtrgo construct
the complete electromagnetic field at any time at any poisparce. However, in
practice, it is often dficult to evaluate the source integrals unless the current has
a simple distribution in space. In the general case, onech@&sbrt to approxima-
tions. We shall consider both these situations.

Radiation from an extended source volume at rest

Certain radiating systems have a symmetric geometry orraemy other way

simple enough that a direct (semi-)analytic calculatiohef radiated fields and
energy is possible. This is for instance the case when thatiagl current flows

in a finite, conducting medium of simple geometry at rest sagin a stationary
antenna

77



6. Electromagnetic Radiation and Radiating Systems

78

6.1.1 Radiation from a one-dimensional current distribution

Let us apply equatiors(31) on pageys to calculate the radiated EM power from
a one-dimensional, time-varying current. Such a currentxEaset up by feeding
the EMF of a generatoe(), a transmitter) onto a stationary, linear, straight, thin,
conducting wire across a very short gap at its centre. Dusgt&MF the charges
in this thin wire of finite lengthL are set into motion to produce a time-varying
antenna currentvhich is the source of the EM radiation. Linear antennas isf th
type are calleddipole antennas For simplicity, we assume that the conductor
resistance and the energy loss due to the electromagnéiatioa are negligible.

Choosing our coordinate system such that¢haxis is along the antenna axis,
the antenna current can be representef{tax’) = 6(x7)o(X5)J(t', X3) X3 (Mmea-
sured in Am?) where J(t’, x3) is the current (measured in A) along the antenna
wire. Since we can assume that the antenna wire is infinitély the current must
vanish at the endpointsL/2 andL/2 and is equal to the supplied current at the
midpoint where the antenna is fed across a very short gaiarttenna wire.

For each Fourier frequency componeft the antenna curred(t’, x3) can be
written asl (x5) expi—iwot’} so that the antenna current density can be represented
asj(t’,x’) = jo(X') exp{—iwpt’} [cf. equations £.6) on pages6] where

Jo(X) = 6(x)6(xx)1 (X3) (6.1)

and where the spatially varying Fourier amplitudes;) of the antenna current
fulfils the time-independent wave equation (Helmholtz diqud

d?l

v K2l(x5) =0, 1(-L/2)=1(L/2)=0, 1(0)=1Io (6.2)
3

This equation has the well-known solution

sink(L/2 - | x;))]

106) = o sinkL/2)

(6.3)

wherelg is the amplitude of the antenna current (measured in A),nasduo be
constant and supplied by the generAtansmitter at thantenna feed poir{(tn our
case the midpoint of the antenna wire) arjgih(kL/2) is a nhormalisation factor.
The antenna current formsséanding waves indicated in figuré.1 on pageyo.
When the antenna is short we can approximate the curremibdisbn for-
mula 6.3) by the first term in its Taylor expansiong., by lo(1 — 2|x5|/L). For
a half-wave antennaL(= 1/2 & kL = ) formula 6.3) above simplifies to
lo coskxg). Hence, in the most general case of a straight, infinitely #imtenna
of finite, arbitrary length_ directed along the; axis, the Fourier amplitude of the
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Radiation from an extended source volume at rest

sinfk(L/2 -

4
X3

)]

A\

¥, x)

NI

FIGUREG6.1: A linear antenna used for transmission. The current in thdde

and the antenna wire is set up by the EMF of the generator (#msritter).

At the ends of the wire, the current is reflected back with & J8tase shift to
produce a antenna current in the form of a standing wave.

antenna current density is

sinfk(L/2 — [x5])] %

Jo(x) = 10004)000) —Ga s

(6.4)
For a halfwave dipole antennh & 1/2), the antenna current density is simply

Jo(X') = 106(x1)6(x2) cOskXs) (6.5)
while for a short antennd.(« 1) it can be approximated by

jo(X') = 106(x)60%)(L ~ 2[x3| /L) (6.6)
In the case of a travelling wave antenna, in which one endeftiienna is con-

nected to ground via a resistance so that the current atrthisiees not vanish,
the Fourier amplitude of the antenna current density is

Jo(X') = l06(x1)6(x2) expk>e) (6.7)

In order to evaluate formulg(31) on pagey5 with the explicit monochromatic
current 6.4) inserted, we use a spherical polar coordinate system aguirefi.2
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6. Electromagnetic Radiation and Radiating Systems
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FIGURE6.2: We choose a spherical polar coordinate system [x|, 6, ¢) and
arrange it so that the linear electric dipole antenna axisl taus the antenna
current density,,) is along the polar axis with the feed point at the origin.

to evaluate the source integral

2
‘/ X jo x k ekt
V/

2

_ L/2 , sin[k(L/2— X/3 )] : —ikx; cosd Hkxg cosd
= ‘ —L/2dX3IO sinkL/2) ksinoe e

K2SIPO | oocoss2 o [ o o ?
_ 2™ 2PV | dkxpcosd oy
=8 a2 |ghoocoss)? | /0 dx, sinfk(L/2 — x4)] cosk, cosh)
_ a2 cos[KL/2) cosd] — coskL/2) 2
- singsinkL/2)

(6.8)

Inserting this expression andd= 2 sind dd into formula 5.31) on pageys5 and
integrating ovep, we find that the total radiated power from the antenna is

- B 2
P(L) = ROIS% /0 d9<cosm¢é Izn);;S:(]kL /‘;‘;S“L/ 2)> sing (6.9)
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Radiation from an extended source volume at rest

One can show that

. n (L\? 2
whereA is the vacuum wavelength.
The quantity
P(L) P(L L\? L2
R(L) = |(2) —%—Ro < ) z197<§> Q (6.11)
eff

is called theradiation resistance For the technologically important case of a
half-wave antennd,e., for L = 1/2 orkL = &, formula ¢.9) on pageSo reduces
to
,1 " 40 cos (% cost)
04~ — eing
4 Jo sing
The integral in §.12) can always be evaluated numerically. But, it can in faat als
be evaluated analytically as follows:

/ncosz(%cosg)dgz[cosg_)u]:/lw(%u)du:
0 -1

P(1/2) = (6.12)

sing 1-u?
{cosz (Eu> _ 1+ c;séru)]
1+ cos@u)
/ arod-u™

11+ coséru) 11+ coséru)
4/ C(A+u) 4/ T (1-u

11+ coséru) v
2/ Tty [““_ﬁ?}

- —/ 1200 4y = 21y +In 27 - Ci(2n)]
2 Jo v 2

~ 122
(6.13)

where in the last step tHeuler-Mascheroni constant= 0.5772. .. and thecosine
integral Ci(x) were introduced. Inserting this into the expression @qugb.12)
we obtain the valu®?24(1/2) ~ 73 Q.

6.1.2 Radiation from a two-dimensional current distribution

As an example of a two-dimensional current distribution wasider a circular
loop antennaand calculate the radiated fields from such an antenna. Waseho
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X3=z=271 )
X
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I
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ij/

FIcurReE6.3:  For the loop antenna the spherical coordinate systefing) de-
scribes the field point (the radiation field) and the cylindrical coordinate system
(o', ¢’,Z) describes the source poixit(the antenna current).

the Cartesian coordinate systemx,x3 with its origin at the centre of the loop as
in figure 6.3

According to equationy28a) on pagey4 the Fourier component of the radia-
tion part of the magnetic field generated by an extended, olonmatic current
source is

—jynekX o
Brad = ':O—é dx e j, x k (6.14)
X Jv

In our case the generator produces a single frequerayd we feed the antenna
across a small gap where the loop crosses the positiggis. The circumference
of the loop is chosen to be exactly one wavelength 2rxc/w. This means that

the antenna current oscillates in the form of a sinusoidaidibg current wave
around the circular loop with a Fourier amplitude

jo = locosy's(p” — a)o(Z)¢’ (6.15)

For the spherical coordinate system of the field point, weltdoom subsec-
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Radiation from an extended source volume at rest

tion F.4.1 on pagei78 that the following relations between the base vectors hold:
f = sind cospX; + sindsingX, + COSHK3
6=c
@ = —SinpXy + COSPX2

0S6 COSpX; + COSH SiNgXy — SiNHX3

and
%1 = sinf cospf + cosl cosgh — sinpd
%o = sinfsingf + cos sing + cosp@
X3 = cosOf — sindd

With the use of the above transformations and trigonometentities, we obtain
for the cylindrical coordinate system which describes thece:

~/

= c0Sy’ X1 + Sing’ KXo
P Y

A 6.16
= singcosf’ — ¢)f + cosfcosf’ — ¢)8 + sinlp’ — ¢)@ (6.16)
@’ = —sing’ky + cosy’ X,
o . . A . (6.17)
= —singsin(y’ — p)f — cosdsin(p’ — ¢)8 + cos’ — )@
7 = %3 = cosdf — sinvd (6.18)

This choice of coordinate systems means khatkf andx’ = ap’ so that
k -x' = kasinfcos’ — ) (6.19)
and
@’ x k = K[cos’ — ¢)8 + cosdsin(’ — ¢)@] (6.20)

With these expressions inserted, recalling that in cyloadicoordinates &' =
o'do’d¢’dZ, the source integral becomes

- 2r . , i
s dEX' e—|k~x jw x k = a/o dgo' e—lkasmecos(p —¢)|0 COSgo' (,0, x k
o , .
= lpak /0 g ikasindcost’~¢) cog(y’ — ) cosy’ dy’ 0 (6.21)
o ,
+ lpak cosd / g ikasindcost’~¢) sin(’ — ) cosy’ de’ @
0

Utilising the periodicity of the integrands over the intation interval [Q 2],
introducing the auxiliary integration variab}¢’ = ¢’ — ¢, and utilising standard
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trigonometric identities, the first integral in the RHS 612(1) can be rewritten

2 "
/ g-ikasing cosy cosy” cosfp” + ¢) dp”
0

2” H H ’r . . .
= COSyp / g kasindcose” oa2 " dy” + a vanishing integral
0

_ o —ikasing cosy” } } " "
= COSyp e 5+ 5 cos2” | dy (6.22)
0

1 27{ k i 6 7
- 5 COS(,D/ efl asing cosy d(,DN
0
1 2” H H !’
+ E COSQO/ e—lkaSIHGCOStp COS(ZOH) d(PN
0
Analogously, the second integral in the RHS @&() can be rewritten
/ e—lkasm9c05<p Sin<p” COS(O” + <P) d(p"
JO
1 . 2 kasing cose”
— ESIn‘)O/ efl asing cosy ng” (623)
0
1 e "
_ = S|n(p/ e—lkaSIHOCOS(p cos ZD// d(PN
0

2
As is well-known from the theory dBessel functions

In(=€) = (=1)"In(&)
i-n o i~n r2r

In(=€) = — / e€c0% cosnpdp = — / e7¢%%% cosny dy
7 Jo 21 Jo

which means that

(6.24)

o Y .
/ g kasindcosy” 7 — 27 Jo(kasing)
027r o (023)
/ gikasingcosy” oo 2" dp” = —2nJ,(kasing)
Jo

Putting everything together, we find that

dx e ¥j, xk=50+1¢
V/

= loakr cosyp [Jo(kasing) — Jo(kasing)] 6 (6.26)

+ loakr cost sing [ Jo(kasing) + Jo(kasing)] ¢

so that, in spherical coordinates whede=r,

i eikr R ~
B0 = 42— (56+ 9) (627)
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Radiation from a localised source volume at rest

To obtain the desired physical magnetic field in the radiafi@ar) zone we
must Fourier transform back tspace and take the real part and evaluate it at the
retarded time:

_ignelikr-et) A
B"(t,x) = Re{ﬂ()‘lir (@9+Io¢)}
Tt

= 2 sinkr - wt') (50 + 3,$)

47r

_ |o<’:ll|r<#0 sinkr — wt’) < cosy [Jo(kasing) — J,(kasing)] 0

+ cosfsing [Jo(kasing) + Jp(kasing)] (a)
(6.28)

From this expression for the radiat&dfield, we can obtain the radiatdg field
with the help of Maxwell’s equations.

6.2 Radiation from a localised source volume at rest

In the general case, and when we are interested in evalub#rrigdiation far from
a source at rest and which is localised in a small volume, weir@aoduce an
approximation which leads toraultipole expansiomvhere individual terms can
be evaluated analytically. We shall ube Hertz methotb obtain this expansion.

6.2.1 The Hertz potential

In sectiony.1.1 we introduced the electric polarisati®(t, x) such that the polari-
sation charge densipP° = -V -P. If we adopt the same idea for the ‘true’ charge
density and introduce a vector fietdt, X) such that

pMe=_V.x (6.29a)
which means that the associated ‘polarisation currenpiress

8_71' _ jtrue
ot
As a consequence, the equation of continuity for ‘true’ gearand currentst.
expression{.23) on pageio] is satisfied:
Op"UE(t, X) 0 on

. itrue - __v. b .
5 + V-, x) atV n+V i 0 (6.30)

(6.29b)
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6. Electromagnetic Radiation and Radiating Systems

Furthermore, if we compare with the electric polarisatioh pquation .9) on
pagess], we see that the quantity is indeed related to the ‘true’ charges in the
same way aP is related to polarised charge, namely as a dipole momersitgien
The quantityr is referred to as theolarisation vectorsince, formally, it treats
also the ‘true’ (free) charges as polarisation chargesa&o th

ptrue+ppol B -V-r-V-P

V-E= (6.31)
L) &0
We introduce a further potenti®il® with the following property
V.IIe = —¢ (6.32a)
1 o1®
——=A 6.32b
2 a (6.32b)

where¢ andA are the electromagnetic scalar and vector potentialsecéisply.
As we see]l® acts as asuper-potentidlin the sense that it is a potential from
which we can obtain other potentials. It is called Hhertz vectoror polarisation
potential Requiring that the scalar and vector potentigland A, respectively,
fulfil theirinhomogeneous wave equations, equatignsy on paget3, one finds,
using 6.29) and 6.32), that the Hertz vector must satisfy the inhomogeneous
wave equation
1 92 T
02mme = ?ﬁne —- Ve = o (6.33)

This equation is of the same type as equatipin/) on pagei4, and has there-

fore the retarded solution

1 a(t, X)
et x) = —— / i et 6.
€ = 2 L8 ] (6.34)

with Fourier components

Nl kX=x|

W= ﬂlgo [ o ”‘“(lz )_éx,l (6.35)

If we introduce thehelp vectorC such that

C=VxI® (6.36)
we see that we can calculate the magnetic and electric figlsisectively, as fol-
lows

- 3% (6372)
E=VxC (6.37b)
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Radiation from a localised source volume at rest

O

FIGURE6.4: Geometry of a typical multipole radiation problem wherefibl

pointx is located some distance away from the finite source volMfmeentred

aroundxo. If k|x’ — Xo| < 1 < K|x — X0, then the radiation at is well approxi-
mated by a few terms in the multipole expansion.

Clearly, the last equation is valid only outside the soudame, whereév - E = 0.
Since we are mainly interested in the fields in the far zoneng Histance from
the source region, this is no essential limitation.

Assume that the source region is a limited volume around smn@al point
Xo far away from the field (observation) poirtillustrated in figuret.4. Under
these assumptions, we can expand the Hertz vector, expngssjs) on pageso,
due to the presence of non-vanishing., X’) in the vicinity of xq, in a formal
series. For this purpose we recall frgootential theonthat

dkix=x'| dKl(x=x0)=(x'=xo)I

X—xT ~ I(x = X0) — (X' = Xo)] (6.38)

=ik i(zn + 1)Pp(cos®) jn(k X" — Xo|)hEM(K X — Xol)

where (see figuré.4)
eik|x—x’|

XX is aGreen functioror propagator

O is the angle betweexi — xg andx — Xg
Pn(cos®) is theLegendre polynomiadf ordern
jn(K |X" = Xo|) is thespherical Bessel function of the first kinflordern

hM(k|x — xol) is thespherical Hankel function of the first kiraf ordern

According to the addition theorem for Legendre polynomials

Pn(cos®) = i (-1)"P™(cosh)P,™(cosy’)eme¢) (6.39)

m=-n
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where P is anassociated Legendre polynomial of the first kinelated to the
spherical harmonic ¥ as

2n+1 (n—m)!

m imp
47 (n+ m)! Pri(cost) e

Yn'(0.¢) =

and, in spherical polar coordinates,

,0,¢") (6.40Q)
X = Xo = (X = Xl , 6, ¢) (6.40b)

X' = Xo = (X' = Xo

Inserting equation(38) on page’7, together with formulad.39) on pagey,
into equation§.35) on pages6, we can in a formally exact way expand the Fourier
component of the Hertz vector as

) i (2n + 1)(-1)"hP(k[x — Xol) PT(cosd) €™
n=0m=-n (6.41)
x /V % () ink X' Xo]) Py(cost) ™™

e - ik
@ dreg

We notice that there is no dependencexonx, inside the integral; the integrand
is only dependent on the relative source veg{or Xo.

We are interested in the case where the field point is manylemyths away
from the well-localised sourcese., when the following inequalities

K|X' = Xo| < 1 < KX - Xl (6.42)

hold. Then we may to a good approximation replagewith the first term in its
asymptotic expansion:

h(l) k s\ n+1 eik\X—Xg\ 6
h (KIX = Xol) ~ (=) KIX = Xo| (6.43)
and replacg, with the first term in its power series expansion:
. , 2! , n
Jn(k’X —XOD ~ @n+ 1)l (k‘x —XOD (6.44)

Inserting these expansions into equatién (), we obtain thenultipole expansion
of the Fourier component of the Hertz vector

(e8]

g ~ Z)HZ(”’ (6.453)
n=
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FIGUREG6.5: If a spherical polar coordinate systemd, ¢) is chosen such that
the electric dipole momemt (and thus its Fourier transform,) is located at the
origin and directed along the polar axis, the calculatioessamplified.

where

1 dkxxl onp
4dneg |X — Xo| (2n)!

e = (i) /v d* 7., (X') (K [X" = Xo|)" Pn(cos®)

(6.45b)

This expression is approximately correct only if certaireda exercised; if many
™ terms are needed for an accurate result, the expansions gptierical Han-
kel and Bessel functions used above may not be consistenhastbe replaced
by more accurate expressions. Furthermore, asymptotiansigns as the one
used in equationo(43) on pageds are not unique.

Taking the inverse Fourier transform Bf, will yield the Hertz vector in time
domain, which inserted into equatiof{6) on page’6 will yield C. The resulting
expression can then in turn be inserted into equationg) on pageso6 in order
to obtain the radiation fields.

For a linear source distribution along the polar ax®, = 6 in expres-
sion (.45b) above, and?,(cosd) gives the angular distribution of the radiation.
In the general case, however, the angular distribution teistomputed with the
help of formula ¢.39) on page87. Let us now study the lowest order contributions
to the expansion of the Hertz vector.
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6.2.2 Electric dipole radiation
Choosingn = 0 in expression{.45b) on page8g, we obtain

dkix—xol 1 dkix—xol

dX 7,(X') = T ———— P, (6.46)

me@ =
4reg [X = Xol Jv 4reg X — Xol

w

Sincern represents a dipole moment density for the ‘true’ chargesh@ same
vein asP does so for the polarised charggs),= |, d x,(x’) is, by definition,
the Fourier component of thedectric dipole moment

ptxo) = | da(t.x) = | (¢ —xapt.x) (647)

[cf. equation §.2) on pages4 which describes the static dipole moment]. If
a spherical coordinate system is chosen with its polar dwrisgep,, as in fig-
ure 6.5 on pageso, the components di*© are

def 1 kx>l
MEM@.¢= = > p cosh 6.48a
r w 471'80 |X_X0|p ( 4 )
def R 1 gkixxl
m=mn®.=-—— ., SING 6.48b
def R
mEn®. =0 (6.48¢)

Evaluating formula €.36) on page86 for the help vectolC, with the spheri-
cally polar componentss(48) of % inserted, we obtain

0 ~ 1 1 ) Kx=Xol o
Co=Copp= x—xo <) g PeSInO® (6.49)

Applying this to equationss(37) on page86, we obtain directly the Fourier com-
ponents of the fields

. Wlo 1 2\ gkl A
By, = —-i— —ik ) —— p,sing 6.50a
4n <|X—Xo| )IX—Xolp 4 (6:502)
1 1 ik -
E, = {2( p— >cosex a
4neg X — Xol X = Xol X — Xol
) . (6.50b)
1 ik ] gkl
+ ( 5 - —k2> smao}—pm
IX = Xol* X —Xol X — Xol

Keeping only those parts of the fields which dominate at lalig&ances (the
radiation fields) and recalling that the wave vedtoe k(x — Xg)/ [X — Xo| where
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k = w/c, we can now write down the Fourier components of the radigterts of
the magnetic and electric fields from the dipole:

gkix=xol wi gklx=xol
grad _ _ WHo ksing __—0 Xk |
4 ix—xg PeSinee i xg P XK (6.512)
1 gkixxol . 1 gkxxl
ESY= - WKESiNgd = - —— %K) XKl (651D
47T80|X—Xo|p sinoé = Ameg X — x|[(p x k) x k] (6.51b)

These fields constitute thedectric dipole radiationalso known a&1 radiation

6.2.3 Magnetic dipole radiation

The next term in the expressiofi{5b) on pagesg for the expansion of the Fourier
transform of the Hertz vector is for= 1:

eik|x—x0|
mew =i — / d% kX" = Xo| 7., (X') cOS®
471'80 |X X0|
.1 gkl (652)
=ik | dX[(x-x0)- (¢~ xo)] mu(X)
Arteg |X — Xol?
Here, the term [ — Xo) - (X' — Xo)] 7,,(X") can be rewritten
[(X = X0) - (X" = X0)] o, (X) = (X = X0,)(X — Xo) 70 (X') (6.53)
and introducing
ni =X — X, (6-54)
=X — Xoj (6.54b)
the jth component of the integrand Imi(l) can be broken up into
1
(I =x0) - (X = X0)] 7, (X')}j = S (7o il + 7T}
(6.55)

1
+ Eni (”w,jni, - ”w,in/j)

i.e., as the sum of two parts, the first being symmetric and thenskeantisymmet-
ric in the indiced, j. We note that the antisymmetric part can be written as

%Ui (i — 7win}) = %[”w, iint) = (i)
= %[”w(q ) =-n'(n-7,)l; (6.56)

:%{(X—Xo)x[ﬂ'wx(x,_XO)]}j
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The utilisation of equation®(29) on pages5, and the fact that we are consid-
ering a single Fourier component,

n(t,x) = m,e 't (6.57)

allow us to express,, in j, as

7, = i 2 (6.58)
w
Hence, we can write the antisymmetric part of the integrdbimula 6.52) on

pageg1 as
%(x — Xo) X /V/dax’ 7u(X') X (X" = Xo)
= ii(x — Xg) X /V,d%(,j‘”(x/) X (X = Xo) (659)
1
=—i—(X—=Xg) XM,
w

where we introduced the Fourier transform of thagnetic dipole moment
1 / ’ H ’
m, = E/ d (X - Xo) XJM(X) (660)
V/

The final result is that the antisymmetric, magnetic dippéet of 1 can be
written

iKIX—Xo|
k_e 5 (X = Xo) x M, (6.61)

Heantisyn(l) - _
Areow |X — X

w

In analogy with the electric dipole case, we insert this egpion into equa-
tion (6.36) on page86 to evaluateC, with which equationsd.37) on page86
then gives theB andE fields. Discarding, as before, all terms belonging to the
near fields and transition fields and keeping only the terrmsdbminate at large
distances, we obtain

eik\x—x0|
Brad — _,Llio w k k 6.62a
590 =~ (Mo x K x (6.62a)
k eik\x—XO\
E'ad(x) = m,, x k 6.62b
o () ArrenC |X — Xol X (6.62b)

which are the fields of thenagnetic dipole radiatiofiM1 radiation).
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Radiation from a localised charge in arbitrary motion

6.2.4 Electric quadrupole radiation

The symmetric parfI&¥™® of then = 1 contribution in the equatiors(sb) on
page8g for the expansion of the Hertz vector can be expressed insteifnthe
electric quadrupole tensowhich is defined in accordance with equatiargf on

pages4:
Qtx0) = [ % (¢ = x0)(X' = xo)ptee X) (6:63)

Again we use this expression in equatiom ) on pages6 to calculate the fields
via equations{.37) on pages6. Tedious, but fairly straightforward algebra (which
we will not present here), yields the resulting fields. Tr#iaaon components of
the fields in the far field zone (wave zone) are given by

rad '/10“) gl
B, (X)) = —— X XI( -Qu) x Kk (6.64a)
rad i A K] x k b
B = gt [ Q) XK x (6.640)

This type of radiation is calledlectric quadrupole radiatiolr E2 radiation

6.3 Radiation from a localised charge in arbitrary mo-
tion

The derivation of the radiation fields for the case of the seunoving relative
to the observer is considerably more complicated than titeosary cases stud-
ied above. In order to handle this non-stationary situatiea use the retarded
potentials §.34) on page46 in chapters

/ p(tFet’ X (7 et))

(tFev X(t7 et))
|X(t) =X (tret)|

and consider a source region with such a limited spatialngtteat the charges
and currents are well localised. Specifically, we considehvageq’, for instance
an electron, which, classically, can be thought of as a ieed) unstructured and
rigid ‘charge distribution’ with a small, finite radius. Tlpart of this ‘charge dis-
tribution’ dg’ which we are considering is located ivd= d* in the sphere in

A(t, X) = Z—i V/d3x' (6.65b)
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FIGUREG6.6:  Signals that are observed at the field poirat timet were gen-

erated at source poing(t’) on a sphere, centred onand expanding, as time

increases, with the velocity outward from the centre. The source charge ele-

ment moves with an arbitrary velocity and gives rise to a source ‘leakage’ out
of the source volume\t = d%'.

figure 6.6. Since we assume that the electron (or any other other sieléatric
charge) moves with a velocity whose direction is arbitrary and whose magni-
tude can even be comparable to the speed of light, we carmthhathe charge
and current to be used i6.65) is [, p(t/e, X') @and f,,, 3 vp(t/e, X'), respec-
tively, because in the finite time interval during which theserved signal is gen-

erated, part of the charge distribution will ‘leak’ out oktlkolume element®'.

6.3.1 The Liénard-Wiechert potentials

The charge distribution in figur@6 on pagey4 which contributes to the field at
X(t) is located ak’(t") on a sphere with radius= |x — x’| = c(t — t"). The radius
interval of this sphere from which radiation is receivedreg tield pointx during
the time interval {,t’ + dt’) is (r’,r’ + dr’) and the net amount of charge in this
radial interval is

(x=x) - V'(t)

dq = pllrer X) AS"0r" = pllee X') = =0

ds’ dv (6.66)
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Radiation from a localised charge in arbitrary motion

where the last term represents the amount of ‘source leallagéo the fact that
the charge distribution moves with velocity(t’) = dx’/dt’. Since @’ = dr’/cand
dS’ dr’ = d® we can rewrite the expression for the net charge as

, X—X)-Vv
A = plte X)X = i X)X i
(X—X) -V (6.67)
_p(tret’x)( C|xx’> ¢
or
, do
Ptrep X') dX = 10w (6.68)
~ Tox=x]
which leads to the expression
(trev ) do’
X — X| dX = X — x| — &=V (6:69)

C

This is the expression to be used in the formutaéy) on pageys for the retarded
potentials. The result is (recall that pv)

1 dg
e i = (6:702)
C
V/d 4
At x) = Z—i / ﬁ = (6.70b)

C

For a stdficiently small and well localised charge distribution we cassuming
that the integrands do not change sign in the integrationme| use the mean
value theorem to evaluate these expressions to become

_ 1 P
U = e o /V oy = o (6.712)
_ 1 v by AV
A(t,X) = 471'8002 |X—X’| _ W /V/d3X dq = 471'80C2 S = 2 ¢(t,X)
(6.71b)
where
s=S(t.X) = [x—X()] - [x = x (tc)] V() (6.723)
_ (Y _ X_X/(t/) .V/(t/)
=[x =Xt (1 x X)) ¢ ) (6.72b)
v vy [ X=X(E) V()
=[x = x(t)] (IX—X’(t’)l o ) (6.72¢)
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X' (1)

x()

FIGURE 6.7:  Signals which are observed at the field poinat timet were

generated at the source poxift’). After timet’ the particle, which moves with

nonuniform velocity, has followed a yet unknown trajectoBktrapolating tan-

gentially the trajectory fron’(t'), based on the velocity ('), defines thevirtual
simultaneous coordinatey(t).

is theretarded relative distanceThe potentials.71) are theLiénard-Wiechert
potentials In section7.3.2 on pagei46 we shall derive them in a more elegant
and general way by using a relativistically covariant folisra.

It should be noted that in the complicated derivation presgabove, the ob-
server is in a coordinate system which has an ‘absolute’ imgamd the velocity
V' is that of the localised chargg, whereas, as we shall see later in the covari-
ant derivation, two reference frames of equal standing anényg relative to each
other withv’.

The Liénard-Wiechert potentials are applicable to all pgots where a spa-
tially localised charge in arbitrary motion emits electamnetic radiation, and
we shall now study such emission problems. The electric aaghetic fields are
calculated from the potentials in the usual way:

B(t,X) = V x A(t, X) (6.732)

OA(L, X)
\ (6:73b)

E(t,x) = —=V¢(t, x) — 5
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6.3.2 Radiation from an accelerated point charge

Consider a localised chargéand assume that its trajectory is known experimen-
tally as a function ofetarded time

X' =x(t) (6.74)

(in the interest of simplifying our notation, we drop the safipt ‘ret’ ont’ from
now on). This means that we know the trajectory of the chgfgee., x’, for all
times up to the tim¢ at which a signal was emitted in order to precisely arrive at
the field pointx at timet. Because of the finite speed of propagation of the fields,
the trajectory at times later thahcannot be known at time

The retarded velocity and acceleration at tithare given by

s OX

V(t') = 0 (6.752)
’ ’ ",/ ’ dvl d2X,

at)=v()= a - a2 (6.75b)

As for the charge coordinat€ itself, we have in general no knowledge of the
velocity and acceleration at times later thianand definitely not at the time of
observatiort! If we choose the field point as fixed, the application ob(75) to
the relative vector — x’ yields

d ey ! (4!
gy XX O] = -v(t) (6.76a)
o? .
@[x =X'(t)] = -V'(t") (6.76b)
The retarded time’ can, at least in principle, be calculated from the implicit
relation
' =t(tXx)=t- W (6.77)

and we shall see later how this relation can be taken intoustdo the calcula-
tions.

According to formulaed.73) on pagey6, the electric and magnetic fields are
determined via dferentiation of the retarded potentials at the observatiog t
and at the observation poirt In these formulae the unpriméd i.e., the spatial
derivative diferentiation operato¥V = X;d/d% means that we flierentiate with
respect to the coordinates= (X, X2, X3) while keepingt fixed, and the unprimed
time derivative operata/ot means that we dierentiate with respect towhile
keepingx fixed. But the Liénard-Wiechert potentialsand A, equations.71)
on pageys, are expressed in the charge veloait{t’) given by equation.75a)
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on pagegy and the retarded relative distang, x) given by equation(.72) on
pagegs. This means that the expressions for the potengi@edA contain terms
which are expressed explicitly i, which in turn is expressed implicitly itvia
equation ¢.77) on pagey7. Despite this complication it is possible, as we shall
see below, to determine the electric and magnetic fields ssmcated quantities
at the time of observatian To this end, we need to investigate carefully the action
of differentiation on the potentials.

The diterential operator method

We introduce the convention that dfdrential operator embraced by parentheses
with an indexx or t means that the operator in question is applied at constant
andt, respectively. With this convention, we find that

0 | X=X d e __(X_X/)'V,(t’)
<%>X|X_X(t)|_|x—X’|.<%>X(X_X(t))_ X — X’|
(6.78)

Furthermore, by applying the operata@y/§t) to equation §.77) on pagey7 we
find that

(a_t> e ( 4 ) X =X (¢ ¢ ))
ot ), o), c
B 0 X =X'|| [ ot
=1 {(e), " (%), (©79)
3 xX=x)-Vv'(t') [at
=1+ clx —X| <6t>x

This is an algebraic equation iat(/at)x which we can solve to obtain
oy [x — x| _x=X
(at ) T XoXI—(—x) v(O)e s (6.80)
wheres = g(t’,x) is the retarded relative distance given by equati@n2) on

pagegs;. Making use of equation6(8o) above, we obtain the following useful
operator identity

(@)= (&), (o). =" (&), 62

Likewise, by applying Y): to equation §.77) on pagey7 we obtain

’r_ |X—X'(t'(t,X))| _ X=X . oy

(V)et' = —(V) . = XX (V)i(x —x) 652
X=X (x=Xx)-V(t) , '
T Tex—x| T cx=x] (V)
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This is an algebraic equation iN); t’ with the solution

X—-X
6.8
s (6.83)

which gives the following operator relation wheW)( is acting on an arbitrary
function oft” andx:

@= 0] (55) + =225 () + O (6:5)

(Vht' = -

ot (of ot

With the help of the rulest(84) and 6.81) we are now able to repladeby t’ in
the operations which we need to perform. We find, for instati

vo=on=7 (4 T)
7e0 S (6.852)
3 o X=X V({) x-=-x [0ds
T g Lx -x| ¢ cs (E)J
oA <0A> a (uo q’v’(t’))
ot -\t ), at\ar s ) 655b)

— q/ / v ’ /! / / as
= dronlS [|x—x|sv(t)—|x—x|v(t)<at,>x]

Utilising these relations in the calculation of tBdield from the Liénard-Wiechert
potentials, equation®(71) on pageys, we obtain

E(t,x) = =Vo(t, x) — %A(t, X)
_ q {[X - X'(t)] - Ix = x'(t')[V'(t')/c
g, X) IX — X’ (t)]

X=X ] - X=X )IV(t)/c (65(’[’, x)) _ x=X@)IV()
cqt’, X) ), c?

(6.86)

Starting from expressionv(72a) on pagegs for the retarded relative distance
s(t’, x), we see that we can evaluates(dt’), in the following way

() (3) (o220

0 o 1/0[x=x®)N ,,, Lo OV (1)
_E‘X_X(t)_E<T'V(t)+[x_x(t)]' v )
__(x=x()) - V() N vA(t)  (x=X()) - V()

X = x' ()] C C
(6.87)
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where equation(78) on pagey8 and equationss(75) on pagey7, respectively,
were used. Hence, the electric field generated by an ailbitraoving charged
particle atx’(t") is given by the expression

_ q sy X = X))V () v (t')

Coulomb field when — 0

(1x-xen - O )] |

c

X

q/ { X — X/(t/)

" AreS3(t7, X) c?

Radiation (acceleration) field
(6.88)

The first part of the field, theelocity field tends to the ordinary Coulomb field
whenv” — 0 and does not contribute to the radiation. The second pé#nedifeld,
theacceleration fieldis radiated into the far zone and is therefore also called th
radiation field

From figure6.7 on pagey6 we see that the position the charged particle would
have had if at” all external forces would have been switchéiiso that the trajec-
tory from then on would have been a straight line in the dioacof the tangent
atx’(t') is Xo(t), thevirtual simultaneous coordinat®uring the arbitrary motion,
we interpretx — Xq(t) as the coordinate of the field poirtrelative to the virtual
simultaneous coordinate(t). Since the time it takes for a signal to propagate (in
the assumed vacuum) frox(t’) to x is [x — X’| /¢, this relative vector is given by

X = X' ()| v' (')

X = Xo(t) = x = X'(t") - c (6.89)
This allows us to rewrite equation.g8) in the following way
EtX) = 9| (x=xo(0) (1- vHr)
’ Argys3 0 c?
L (x = Xo(t)) x V'(t') (6.90)
+(x=X(t)) x =
In a similar manner we can compute the magnetic field:
X—-X 0
B(t,X) = VXAt X) = (V)i xA=(V)y XA - X|=—] A
cs o J, (6.91)

B q X—-X V' X—-X oA
T AreglPR X — X clX — x| ot
X
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where we made use of equatidgi(i) on pageys and formula ¢.81) on pages.
But, according to4.85a),

X=X _ q—’X——X’ /
Clx — X’l X (V)t¢ = 47T£0C232 |X _ X,l XV (692)
so that
/ 0A
B(t,X) = ~(Vo = 5t
(t’ X) ClX _ X/l X ( ¢)t < at )x:| (6 93)
_ X=X E(t, X) |
- ClX—X/(t,)| t

The radiation part of the electric field is obtained from thealeration field in
formula (6.88) on pageioo as

E™dt,x) = lim E(t X)
[X=X’|—>00

ql

’ Y |X—X,|V/ V4
= W(X_X)x ((X—X)—f> XV] (6.94)
_ m‘jﬁ [X = X' (t')] X {[X — Xo(t)] X V'(t')}

where in the last step we again used formu&d) on pageioo. Using this
formula and formula€.93) above, the radiation part of the magnetic field can be
written

X —X'(t)

Brad(t’ X) = m

x E2d(t, x) (6.95)

The direct method

An alternative to the diierential operator transformation technique just desdribe

is to try to express all quantities in the potentials dingatlt andx. An example

of such a quantity is the retarded relative distasfté x). According to equa-

tion (6.72) on pageys, the square of this retarded relative distance can be writte
S, x) =[x - X() 2.2 [x = X'(t) =X (tc)] V()

. ([X _ X/(t/)] . V’(t'))z (696)

c

Downloaded from http://www.plasma.uu.se/CED/Book Version released 8th June 2008 at 23:04. 101



6. Electromagnetic Radiation and Radiating Systems

102

If we use the following handy identity

<(x—x’)-v’>2+ ((x—x’)xv’)2
c c

|X zl v? cold + X — z:(| v? Sik e (6,97)
m(cog ¢ + SiP¢) = w
c
we find that
x-x)-V\?  x=-xPu? [((x-x)xV\?
( c B c2 c (6.98)

Furthermore, from equatio®.@9) on pagei oo, we obtain the identity
[X =X ()] X V' =[x = Xo(t)] X V' (6.99)

which, when inserted into equatio6.¢8), yields the relation

w2 2.2 _ N\ 2
((x )((:) V) _ X ;(2| v _<(X Xg)xv) (6.100)

Inserting the above into expressiofigb) on pageior for &, this expression
becomes

— _/2_ —_—
=[x =x|"-2|x-x S Z .

- (0 WY (v

= (X — X0)2 — (w)z

g (x=x)-v' X-X]Pv? <(x—xo)><v’)2

c

= |X — Xo(t)|2 _ ([X — Xo(t)] X V/(t/)>2

C

(6.101)

where in the penultimate step we used equatiogyj on pageioo.

What we have just demonstrated is that if the particle veladitimet can be
calculated or projected from its value at the retarded timthe retarded distance
sin the Liénard-Wiechert potential6.¢1) can be expressed in terms of the virtual
simultaneous coordinaig(t), viz., the point at which the particle will have arrived
at timet, i.e.,, when we obtain the first knowledge of its existence at thecsou
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Radiation from a localised charge in arbitrary motion

point x” at the retarded tim&, and in the field coordinate = x(t), where we
make our observations. We have, in other words, shown thquahtities in the
definition of s, and hences itself, can, when the motion of the charge is somehow
known, be expressed in terms of the titredone.l.e,, in this special case we are
able to express the retarded relative distance ass(t,x) and we do not have
to involve the retarded tim& or any transformed tlierential operators in our
calculations.

Taking the square root of both sides of equati@md1) on pagei o2, we obtain
the following alternative final expressions for the retardelative distances in
terms of the charge’s virtual simultaneous coording(€) and velocityv’(t'):

’ 4 2
wno=¢u—mmF—GX”“?xvaw (6.1028)
— X = Xo(0) \/ 1- ”lzc(zt') Sir? f(t) (6.102b)

/ ’ 7 (1’ 2
- oty (1 0 (BOLYON g

If we know what velocity the particle will have at timigexpression.102) for s
will not be dependent oti.
Using equationd.102c) above and standard vector analytic formulae, we ob-

tain
v —Xo) - V' 2
lX_%F(l_E%>+(Q_%?_K>]
=2 [(x - Xo) (1— 1;’_22) + % (X — Xo)} (6.103)
=2[(X—Xo)+v—clx (Vzlx(x—xo)ﬂ

which we shall use in exampte2 on pagei 25 for a uniform, unaccelerated mo-
tion of the charge.

Vs =V

Radiation for small velocities

If the charge moves at such low speeds that < 1, formula 6.72) on pageys
simplifies to

s:|x—x’|—wz|x—x’ , UV <cC (6.104)
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6. Electromagnetic Radiation and Radiating Systems

104

and formula ¢.89) on pageioo

X=XV
X—X0=(X—X')—%zx—x', V< C (6.105)

so that the radiation field equatiof.g4) on pageio1 can be approximated by

a S EX)XIX=X) XV, Y=o (6100

Erad tx)= —
(t.%) AregC? X — X!

from which we obtain, with the use of formulé.§3) on pageio1, the magnetic
field

B, x) = g AV X (X)), o < (6.107)

AregC3 X — X!

Itis interesting to note the close correspondence whicktekietween the non-
relativistic fields 6.106) and 6.107) and the electric dipole field equatiors{1)
on page1 if we introduce

p=qgx(t) (6.108)
and at the same time make the transitions
qV =p - —wp, (6.1003)
X=X =X-Xg (6.109b)
The power flux in the far zone is described by the Poyntingorexd a function

of EandB"d, We use the close correspondence with the dipole case tdnd t
it becomes

_ moqt()? 5 X=X
1672¢|x — x’|? X — X/|

whereg is the angle betweew andx — xo. The total radiated power (integrated
over a closed spherical surface) becomes

(6.110)

_ lqu/Z(\'//)Z B qIZl')/Z

6rc  6mepcd

which is theLarmor formula for radiated powefrom an accelerated charge. Note
that here we are treating a charge with« c but otherwisdotally unspecified mo-
tion while we compare with formulae derived foistationary oscillating dipole
The electric and magnetic fields, equati@gm (6) and equation.107) above,
respectively, and the expressions for the Poynting flux aowdep derived from
them, are her@gnstantaneouwsalues, dependent on the instantaneous position of
the charge at’(t’). The angular distribution is that which is ‘frozen’ to theipt
from which the energy is radiated.

P

(6.111)
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Radiation from a localised charge in arbitrary motion

..-"wv'=0.50

FIGURE 6.8: Polar diagram of the energy loss angular distribution facto
sir? 6/(1-v cost/c)® during bremsstrahlung for particle speetls 0, = 0.25c,
andv’ = 0.5c.

6.3.3 Bremsstrahlung

An important special case of radiation is when the velocitgnd the acceleration
v’ are collinear (parallel or anti-parallel) so thdtx v = 0. This condition (for
an arbitrary magnitude of') inserted into expressior.04) on pageio1 for the
radiation field, yields

rad _ q/ v ! A ’ -/

E “’X)‘rgoc@ X=X)x[(x=X)xV], V]|V (6.112)
from which we obtain, with the use of formulé.¢3) on pageio1, the magnetic
field

B, x) = %[V x (X=x)], V|V 6.113)

The diference between this case and the previous case<gf c is that the ap-
proximate expressiorb(1o4) on pagei1o3 for sis no longer valid; instead we
must use the correct expression;g) on pageys. The angular distribution of the
power flux (Poynting vector) therefore becomes

woq %' Sirt 9 X — X

 16r2%c|x — x'|? (1_ %COSQ)G IX — X’|

(6.114)

It is interesting to note that the magnitudes of the eleeanid magnetic fields are
the same whether andv’ are parallel or anti-parallel.

We must be careful when we compute the ene&jpiegrated over time). The
Poynting vector is related to the timevhen it is measured and tdfi@ed surface
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6. Electromagnetic Radiation and Radiating Systems

in space. The radiated power into a solid angle elem@ntndeasured relative to
the particle’s retarded position, is given by the formula

rad 12:72 n2
WO o= s (x—x)[x—x| da =T STO__ 4
dt 167°C (1~ ¢ cosp)
(6.115)
On the other hand, the radiation loss due to radiation fraactiarge at retarded
timet’:
dUrad dUrad ot
_ >z 6.116
@ dQ @ (at,>x dQ (6.116)
Using formula ¢.80) on pagey8, we obtain
rad rad
W07 S 40_s x—x)sdo 6.117)

dt’ Codt x-x|

Inserting equationd.114) on pageios for Sinto (6.117), we obtain the ex-
plicit expression for the energy loss due to radiation esiad at the retarded time

durd(g) wq%? st
= aQ 6.118
dt’ dQ 167T2C (1 — % 0039)5 ( H )

The angular factors of this expression, for threfetlent particle speeds, are plot-
ted in figure6.8 on pageros.

Comparing expressior (1 15) above with expressior (1 18), we see that they
differ by a factor 1 v’ cosf/c which comes from the extra factef |x — x’| intro-
duced in ¢.117). Let us explain this in geometrical terms.

During the interval {, t’ + dt’) and within the solid angle elemen®dhe par-
ticle radiates an energy [#29(9) /dt’] dt’dQ. As shown in figures.g on pageioy
this energy is at timeé located between two spheres, one outer with its origin at
xj(t") and radiug(t—t’), and one inner with its origin at,(t' +dt’) = x{(t')+Vv’ dt’
and radiug[t — (' + dt’)] = c(t -t/ — dt’).

From Figure6.9 we see that the volume element subtending the solid angle

element

do = ﬁ (6.119)
is

dx = dSdr = |x - x,|* ddr (6.120)
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Radiation from a localised charge in arbitrary motion

FIGURE 6.9: Location of radiation between two spheres as the charge snove
with velocity v’ from x; to x, during the time intervalt(, t’ +dt"). The observation
point (field point) is at the fixed location

Here, d denotes the dierential distance between the two spheres and can be
evaluated in the following way

X = X5
X = X5

~—— —
v’ cosh (6.121)
= (c— X_X:Z -v’) d = —= dr
X = X5 X = X5

where formula §.72) on pagegs was used in the last step. Hence, the volume
element under consideration is

dr =[x = x5| +cdt’ — [x = x5| - -V odt’

S

d*=dSdr = ds at’ (6.122)

X = X5

We see that the energy which is radiated per unit solid angtengl the time
interval ¢’,t" + dt’) is located in a volume element whose siz& idependent.
This explains the dierence between expressiani(i5) on pageio6 and expres-
sion (6.118) on pagei 06.

Let the radiated energy, integrated ogkrbe denoted)™d, After tedious, but
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6. Electromagnetic Radiation and Radiating Systems

relatively straightforward integration of formulé.{ 18) on pagei o6, one obtains

dird  pq?? 1 2 g% ( v’2>_3

dt’ 6rc (1 0,2)3 T 34nec3\T 2 (6.123)
-z

If we know Vv'(t'), we can integrate this expression oveand obtain the total
energy radiated during the acceleration or deceleratidgheoparticle. This way
we obtain a classical picture dbfemsstrahlundgbraking radiation free-free ra-
diation). Often, an atomistic treatment is required for obtainimgaaceptable
result.

6.3.4 Cyclotron and synchrotron radiation (magnetic bremssiray)

Formula 6.93) and formula ¢.94) on pageio: for the magnetic field and the
radiation part of the electric field are general, valid foy &md of motion of the
localised charge. A very important special case is circolation, i.e., the case
vV LV,

With the charged particle orbiting in thex, plane as in figuré.10 on pageiog,
an orbit radiusa, and an angular frequenay, we obtain

o) = wot’ (6.124a)
X'(t') = a[X1 cosp(t’) + Xo Sine(t)] (6.124b)
V(1) = X'(t') = awo[— Xy Sing(t") + X2 cosp(t’)] (6.124c)
v = |V’| = awp (6.124d)
V(1) = X (t') = —awd[R1 cose(t’) + % sing(t)] (6.124€)
v = |V| = aw} (6.124f)

Because of the rotational symmetry we can, without loss o&gdity, rotate our
coordinate system around tlgaxis so the relative vector— x’ from the source
point to an arbitrary field point always lies in thexs plane,i.e.,

X=X = |x=X| (% sina + X3 cos) (6.125)

whereq is the angle betweex — x’ and the normal to the plane of the particle
orbit (see Figuré.10). From the above expressions we obtain

(x=x)-V = |x=x|v sinacosy (6.126a)

(x=x)-V = —|x=x| ¥ sinasing = |x — x| i’ cosd (6.126b)

where in the last step we simply used the definition of a sqaladuct and the
fact that the angle betweefiandx — x’ is 6.
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Radiation from a localised charge in arbitrary motion

X2
X(Ow y_x
X
~ V(1)
. q
S~ X' ()
S a o
<~ Y
o\ At _
0 X1
X3

FIGURE 6.10:  Coordinate system for the radiation from a charged parttle

X'(t’") in circular motion with velocity/’(t") along the tangent and constant accel-

erationv’(t') toward the origin. The; x, axes are chosen so that the relative field

point vectorx —x’ makes an angle with the xs axis which is normal to the plane
of the orbital motion. The radius of the orbitas

The power flux is given by the Poynting vector, which, with tredp of for-
mula (6.93) on pageio1, can be written

1 1 -x
S= ~(ExB)= — [ER 2= (6.127)
Ho Cuo X — X/|
Inserting this into equatiorb(i17) on pager o6, we obtain
du(q, X—X|s
(@) _ X=XIS g2 (6.128)

dt’ Cio
where the retarded distansés given by expressiors(72) on pageys. With the

radiation part of the electric field, expressiangg) on pageio1, inserted, and
using 6.126a) and 6.126b) on pageio8, one finds, after some algebra, that

U’ . 2 U/ . .
AU, g) o %2 (1- £ sinacosyp)” - (1— ?22) sirf asir’ ¢

at’ 16r%c (1- ¥ sinacosyp)’

(6.129)

The angle® andg vary in time during the rotation, so thatrefers to amoving
coordinate system. But we can parametrise the solid amg@léendhe angley
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6. Electromagnetic Radiation and Radiating Systems

and the (fixed) angle so that @2 = sinada dyp. Integration of equationt(i29)
on pageiog over this d) gives, after some cumbersome algebra, the angular
integrated expression

drad ~ ﬂoq/Zi)/Z 1
dv ~  6nc 2\ 2
= )

In equation ¢.129) on pageiog, two limits are particularly interesting:

(6.130)

1. v"/c < 1 which corresponds toyclotron radiation

2. v'/c < 1 which corresponds teynchrotron radiation

Cyclotron radiation
For a non-relativistic spead <« c, equation ¢.129) on pageiog reduces to

rad, 12:12
du dt('a’(p) = M;g;r;c (1 - sir? a sir’ o) (6.131)

But, according to equatiort (126b) on pagei o8

Sir? a sirf ¢ = cos 0 (6.132)
whereg is defined in figure.10 on pageiog. This means that we can write

durad e 12512 12:72
dt’ 16r2c 16r2c
Consequently, a fixed observer near the orbit plane-(x/2) will observe
cyclotron radiation twice per revolution in the form of twqually broad pulses
of radiation with alternating polarisation.

sir? 9 (6.133)

Synchrotron radiation
When the particle is relativisticy < c, the denominator in equatior.{29)

on pageiog becomes very small if simcosy ~ 1, which defines the forward
direction of the particle motiona( ~ n/2, ¢ ~ 0). The equationd.129) on

pageiog becomes

dU™r/2.0) _ pog®? 1
dt’ ~ l6r%c (1_%)3

(6.134)

which means that an observer near the orbit plane sees atveng pulse fol-
lowed, half an orbit period later, by a much weaker pulse.
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Radiation from a localised charge in arbitrary motion

v'(t)
¢
4/'/ 2] X (t,)
'/
./ 4
A\p(t) _
0 X1

X3

FIGUREG6.11:  When the observation point is in the plane of the particlétprb
i.e, a = /2 the lobe width is given byaé.

The two cases represented by equattony3z) on pager 10 and equationd.134)
on pagei 1o are very important results since they can be used to deterthi
characteristics of the particle motion both in particleeleators and in astro-
physical objects where a direct measurement of particleciteds are impossible.

In the orbit planed = n/2), equation .129) on pageiog gives

v 2 V2 .
dUrad(ﬂ'/Z, ©) B ﬂoQ'Zi)’Z (1 - < COS‘,D) - (1 - ?) sngo

= 6.135)
; > ” 5 (6.135
dt 1671' C (1 -5 COS{,D)
which vanishes for angleg such that
COSyp = % (6.136a)
) v/2
Singg = 4/1- 2 (6.136b)

Hence, the angleg is a measure of theynchrotron radiation lobe widthg; see
figure6.11. For ultra-relativistic particles, defined by

1 v/2

yE——> 1, 1—§<< 1, (6.137)
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6. Electromagnetic Radiation and Radiating Systems

one can approximate

. [, v 1
wo ~ SNy = 1—5:— (6.138)
Y

Hence, synchrotron radiation from ultra-relativistic ijes is characterized
by a radiation lobe width which is approximately

1
AO =~ = (6.139)
Y

This angular interval is swept by the charge during the timerial

Af
At = — (6.140)
wo
during which the particle moves a length interval
AB
Al = VAt =0 — (6.141)
wo

in the direction toward the observer who therefore measai@smpressed pulse
width of length

At=ar - A 2 ap o YA :(1—”—>At':(1—”—>¥z(1—”—)i
Cc C Cc C/ wo C /] ywo

SRS AR JE T

7 2 | 2ven 293 wn
122 Ywo c? ) 2ywo  2y3 wy
¢ 2
-~ by

(6.142)

Typically, the spectral width of a pulse of lengtt is Aw < 1/At. In the ultra-
relativistic synchrotron case one can therefore expequircy components up
to

Wmax ~ Ait = 27’30)0 (6.143)
A spectral analysis of the radiation pulse will thereforaibk a (broadened) line
spectrum of Fourier componemsg fromn = 1 up ton ~ 2y,
When many charged particled,say, contribute to the radiation, we can have
three diferent situations depending on the relative phases of thatia fields
from the individual particles:
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Radiation from a localised charge in arbitrary motion

1. All N radiating particles are spatially much closer to each dtiean a typ-
ical wavelength. Then the relative phasé&etiences of the individual elec-
tric and magnetic fields radiated are negligible and thd tatiiated fields
from all individual particles will add up to beconi¢ times that from one
particle. This means that the power radiated fromNt@articles will beN?
higher than for a single charged patrticle. This is cattederent radiation

2. The charged particles are perfectly evenly distributethé orbit. In this
case the phases of the radiation fields cause a completdlatinoeof the
fields themselves. No radiation escapes.

3. The charged patrticles are somewhat unevenly distribiotdde orbit. This
happens for an open ring current, carried initially by eyedilstributed
charged particles, which is subject to thermal fluctuatiofom statisti-
cal mechanics we know that this happens for all open systechshat the
particle densities exhibit fluctuations of ordgN. This means that out of
the N particles, VN will exhibit deviation from perfect randomness—and
thereby perfect radiation field cancellation—and give ts@et radiation
fields which are proportional ta/N. As a result, the radiated power will be
proportional toN, and we speak aboutcoherent radiation Examples of
this can be found both in earthly laboratories and under aosamditions.

Radiation in the general case

We recall that the general expression for the radiatiofield from a moving
charge concentration is given by expression4) on pageioi. This expression
in equation ¢.128) on pageiog yields the general formula

dude, o) uoq?x — X| ) ox=xvY NP
T L Al | (et A Ao
(6.144)
Integration over the solid angte gives the totally radiated power as
TJrad 1202 1 — ﬁsmz
du _ Mo v 2 ¥ (6.145)

dr 6rC (l— %)3

wherey is the angle betweevi andv’.
If v’ is collinear withv’, then siny = 0, we getbremsstrahlungForv’ L v/,
sinyg = 1, which corresponds twyclotron radiationor synchrotron radiation
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B

EJ_ )’23

FIGURE 6.12: The perpendicular electric field of a chargemoving with ve-
locity v/ = v'RISE, Z

Virtual photons

Let us consider a chargg moving with constant, high velocity (t") along thex;
axis. According to formulad.200) on pagei 26 and figures.12, the perpendicular
component along the; axis of the electric field from this moving charge is

CEe T (1m0 x—xo)- %
EL_E3_47T8093 <l CZ)(X Xo) - X3 (6.146)

Utilising expressiond.102) on pagei o3 and simple geometrical relations, we can
rewrite this as
q b

E. = (6.147)
T dngg Y2 [(t)? + 02/y?] 3/2

This represents a contracted Coulomb field, approachinfigtieof a plane wave.
The passage of this field ‘pulse’ corresponds to a frequeistsitaition of the field
energy. Fourier transforming, we obtain

Y o o d[(be bw
Ew’J_ - 27{ /_o0 dt El(t)el — 47r280bv/ |:<v"y) Kl <v"y (6148)

Here,K; is theKelvin function(Bessel function of the second kind with imaginary
argument) which behaves in such a way for small and largenaegts that
ql

E 1~ 7 5
@t Ar2goby’

b
bw <vye —w<1l (6.149a)
U

Evo.~0, box»ivye /ﬂw > 1 (6.149b)
vy
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Radiation from a localised charge in arbitrary motion

showing that the ‘pulse’ length is of the ord&i(v'y).
Due to the equipartitioning of the field energy into the eiecind magnetic
fields, the total field energy can be written

~ DBrmax o
U =go/vd3xE§ 280/, db27rb/_ dt'E2 (6.150)

where the volume integration is over the plane perpendidala’. With the use
of Parseval’s identityfor Fourier transforms, formulas(34) on pageys, we can
rewrite this as

Brmax
U= /dwU _47T801)/ db27Tb/ dwE

i db (6.151)
27r2300’ / /mm
from which we conclude that
. q/2 U,')/
U, =~ | 6.
2n2eqv’ : <bminw> (6.152)

where an explicit value dfn,, can be calculated in quantum theory only.
As in the case of bremsstrahlung, it is intriguing to quantise energy into
photons €f. equation ¢.230) on pagei31]. Then we find that

Nwdwzz—aln< 24 )d—“’ (6.153)
T

bmin(l) w

wherea = €/(4nsohc) ~ 1/137 is thefine structure constant

Let us consider the interaction of two (classical) electrdnand 2. The result
of this interaction is that they change their linear momémasn p; to p; andp; to
p5, respectively. Heisenberg’s uncertainty principle giegg ~ 7/ |p1 -
that the number of photons exchanged in the process is oftles o

d
Nodoo = 2210 (2 Jp, - py ) & (6.154)

Since this change in momentum corresponds to a change igyefrer= E; — E}
andE; = mgyc?, we see that

2a E; |Cp1 - Cp’l| dw
Nydw~ —In| —1——=| = 6.
“E T (moc2 Ei-E; w (6.155)

a formula which gives a reasonable semi-classical accduatphoton-induced
electron-electron interaction process. In quantum theoguding only the low-

est order contributions, this process is knowrMVaaler scattering A diagram-

matic representation of (a semi-classical approximati®rihis process is given
in figure6.13 on pager 16.
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P2 P2

P1 P
FIGURE 6.13:  Diagrammatic representation of the semi-classical aeetr
electron interaction (Mgller scattering).

6.3.5 Radiation from charges moving in matter

When electromagnetic radiation is propagating throughtenatew phenomena
may appear which are (at least classically) not presentéowa. As mentioned

earlier, one can under certain simplifying assumptionkuthe, to some extent, the
influence from matter on the electromagnetic fields by inioddg new, derived

field quantitiesD andH according to

D = &(t,X)E = kegoE (6.156)
B = u(t, X)H = kmuoH (6.157)

Expressed in terms of these derived field quantities, the M#>aguations, often
calledmacroscopic Maxwell equationke the form

VD =p(t,x) (6.158a)
oB

VxE_—E (6.158b)

V-B=0 (6.158¢c)

VxH =%+j(t,x) (6.158d)

Assuming for simplicity that thelectric permittivitye and themagnetic per-
meabilityy, and hence theelative permittivityke and therelative permeability,
all have fixed values, independent on time and space, fortgpetof material we
consider, we can derive the gendelegrapher’s equatiofcf. equation £.34) on

pagesi]
&°E oE 6°E
a—gz—o'ﬂﬁ—gﬂﬁ =0 (6.159)
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Radiation from a localised charge in arbitrary motion

describing (1D) wave propagation in a material medium.

In chapter> we concluded that the existence of a finite conductivity, iflest
ing itself in acollisional interactionbetween the charge carriers, causes the waves
to decay exponentially with time and space. Let us theredisezime that in our
mediumo = 0 so that the wave equation simplifies to

&°E H°E
a—zz—gﬂﬁ =0 (6160)
If we introduce thephase velocityn the medium as
1 1 c

(6.161)

v, = = =
¥ Ve \KefokmHo  \Kekm

where, according to equation.(1) on page6, ¢ = 1/ +/equo is the speed of
light, i.e., the phase speed of electromagnetic waves in vacuum, tbegetteral
solution to each component of equati@m o)

Ei=f({—vpt) +g(d +u,t), 1=123 (6.162)
The ratio of the phase speed in vacuum and in the medium

E = /Kekm = Cr/EU dEdn (6163)

Uy

is called therefractive indexof the medium. In general is a function of both
time and space as are the quantities, ke, and«y, themselves. If, in addition,
the medium isanisotropicor birefringent all these quantities are rank-two tensor
fields. Under our simplifying assumptions, in each mediumowmasidern =
Constfor each frequency component of the fields.

Associated with the phase speed of a medium for a wave of a figguency
w We have avave vectordefined as

def =~ V,
k S Kk = ki, = = ¢

Uy Uy

As in the vacuum case discussed in chaptexrssuming thak is time-harmonic,
i.e, can be represented by a Fourier component proportionatgp-iot}, the

solution of equationd.160) can be written

E = Egek*-) (6.165)

(6.164)

where nowk is the wave vectoin the mediungiven by equationd.164) above.
With these definitions, the vacuum formula for the assodiategnetic field,

equation ¢.41) on pages1,

- 1. 1
B=+eukxE=—kxE=—kxE (6.166)
Uy w
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6. Electromagnetic Radiation and Radiating Systems

is valid also in a material medium (assuming, as mentioreat,nt has a fixed
constant scalar value). A consequence @f & 1 is that the electric field will, in
general, have a longitudinal component.

It is important to notice that depending on the electric argjnetic properties
of a medium, and, hence, on the value of the refractive intjeke phase speed
in the medium can be smaller or larger than the speed of light:

Vg=—=— (6.167)

where, in the last step, we used equatiénd,) on pager 17.

If the medium has a refractive index which, as is usually thee¢ dependent
on frequencyw, we say that the medium dispersive Because in this case also
k(w) andw(k), so that thegroup velocity

ow
Ug= @

has a unique value for each frequency component, anéfiéselt fromw,. Except
in regions ofanomalous dispersigng is always smaller than. In a gas of free
charges, such asgasma the refractive index is given by the expression

(6.168)

2
20\ _ Wp
where
N,02
wg = Z ﬁ (6.170)

is the square of thplasma frequency,. Herem, andN,. denote the mass and
number density, respectively, of charged particle specida an inhomogeneous
plasma,N, = N,(x) so that the refractive index and also the phase and group
velocities are space dependent. As can be easily seen,domgésen frequency,

the phase and group velocities in a plasma afieint from each other. If the
frequencyw is such that it coincides witly, at some point in the medium, then at
that pointy, — oo while vy — 0 and the wave Fourier component.ais reflected
there.

Vavilov-Cerenkov radiation

As we saw in subsectiofi.2, a charge in uniform, rectilinear motian vacuum
does not give rise to any radiation; see in particular equdfi.198a) on pagei 26.

Let us now consider a charge in uniform, rectilinear motioa mediunwith elec-
tric properties which are fferent from those of a (classical) vacuum. Specifically,

11 8 Version released 8th June 2008 at 23:04. Downloaded from http://www.plasma.uu.se/CED/Book



Radiation from a localised charge in arbitrary motion

consider a medium where

e = Const> g (6.1718)
K= Ho (6.171b)

This implies that in this medium the phase speed is

c 1
UV, =— = <cC 6.172
@ n \/‘% ( 7)

Hence, in this particular medium, the speed of propagatigine phase planes of)
electromagnetic waves is less than the speed of light inuracwhich we know
is an absolute limit for the motion of anything, includingriigles. A medium
of this kind has the interesting property that particlegegng into the medium
at high speed§/|, which, of course, are below the phase spmedacuum can
experience that the particle speedslagherthan the phase speedthe medium
This is the basis for th¥avilov-Cerenkov radiationmore commonly known as
Cerenkov radiationthat we shall now study.

If we recall the general derivation, in the vacuum case, efétarded (and ad-
vanced) potentials in chapteand the Liénard-Wiechert potentials, equatiahs i)
on pageys, we realise that we obtain the latter in the medium by a sinfgrte
mal replacement — c¢/n in the expression6(72) on pagegs for s. Hence, the
Liénard-Wiechert potentials in a medium characterized bgfeactive indexn,

are
q 1 q
LX) = A - 6.173a
¢( ) Aneg “X_X/|_n(x—)é).v ’ dreo S ( 173 )
qlv/ 1 q,V/
A(t,x) = = uv 6.174b
( ) 47T80C2 ||X_X'|_nW| 47T80C2 s ( 173 )
where now
X—=X)-V
s= |x—x’|—n¥ (6.172)

c

The need for the absolute value of the expressionsf@ obvious in the case
whenv’/c > 1/n because then the second term can be larger than the first term;
if v’/c <« 1/n we recover the well-known vacuum case but with modified phase
speed. We also note that the retarded and advanced times metium aredf.
equation §.32) on page46]

KIx = x| _t X —=X|n

w Cc

KIx —X/| X —Xx|n
=t+
c

X—x’|) =t (6.175a)

(6.175b)

t;et = t;et(t’

nav = taau(t [ X = X]) = t+
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120

X (t)

FIGUREG.14: Instantaneous picture of the expanding field spheres frooma p
charge moving with constant speédc > 1/nin a medium where > 1. This
generates a VaviloGerenkov shock wave in the form of a cone.

so that the usual time interval- t’ between the time measured at the point of
observation and the retarded tiiimea mediunbecomes

X —X’|n

t—t (6.176)

Forv'/c > 1/n, the retarded distancg and therefore the denominators in
equations{.173) on pagei 19, vanish when

4

v nv’
n(x—x’)-€=|x—x’|%cos@c=|x—x’| (6.177)
or, equivalently, when
c
cosh. = — (6.178)
nv’
In the direction defined by this angg, the potentials become singular. During

the time interval — t’ given by expressiors(176) above, the field exists within a
sphere of radius — x’| around the particle while the particle moves a distance

I = (t—t) (6.179)

along the direction of’.

In the directiorg. where the potentials are singular, all field spheres arestang
to a straight cone with its apex at the instantaneous pasifithe particle and with
the apex half angle. defined according to

. c
Sina. = cosH. = — (6.180)

Ul
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Radiation from a localised charge in arbitrary motion

This cone of potential singularities and field sphere cirf@arences propagates
with speedc/n in the form of ashock front called Vavilov-Cerenkov radiatiort
The Vavilov-Cerenkov conés similar in nature to thélach condn acoustics.

In order to make some quantitative estimates of this ramhatve note that we
can describe the motion of each charged partitks a current density:

j=qVv e —vt)=qvo(X —v't)s(y')s(Z)X1 (6.181)
which has the trivial Fourier transform
o = 5 €1 80D (6.182)

This Fourier component can be used in the formulae derived fimear current
in subsectiord.1.1 if only we make the replacements

€0 — € = Mgy (6.183a)
Nw

k— < (6.183b)

In this manner, using, from equation §.182), the resulting Fourier transforms
of the Vavilov-Cerenkov magnetic and electric radiation fields can be tztted
from the expressiong;(10) on pages8) and .21) on pagejo, respectively.

The total energy content is then obtained from equatigyf on page7s
(integrated over a closed sphere at large distances). FaurgeF component one
obtains Ef. equation §.37) on pagey6]

2
Uraddo ~ | [ dX G k)e k¥ | do
V/
q’z(l)’l ) . ) (6.184)
3] A AT
B m /_OO eXp |:|X (; - kCOS@):| dX Sln29dQ

1The first systematic exploration of this radiation was magl@.bA. Cerenkov in 1934, who was then
a post-graduate student in S. I. Vavilov's research grotipeatebedev Institute in Moscow. Vavilov wrote
a manuscript with the experimental findings, ﬁﬂrenkov as the author, and submitted iNature In
the manuscript, Vavilov explained the results in terms digactive particles creating Compton electrons
which gave rise to the radiation (which was the correct premation), but the paper was rejected. The
paper was then sent ®hysical Revievand was, after some controversy with the American editors wh
claimed the results to be wrong, eventually published ir71®3the same year, I. E. Tamm and |. M. Frank
published the theory for theffect (‘the singing electron’). In fact, predictions of a dianieffect had been
made as early as 1888 by Heaviside, and by Sommerfeld in B g8per ‘Radiating body moving with
velocity of light. On May 8, 1937, Sommerfeld sent a letterflamm via Austria, saying that he was
surprised that his old 1904 ideas were now becoming inietesffamm, Frank an€erenkov received
the Nobel Prize in 1958 “for the discovery and the interpiietaof the Cerenkov &ect’ [V. L. Ginzburg,
private communicatidn
The first observation of this type of radiation was reportgdvtarie Curie in 1910, but she never pursued
the exploration of it §].
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6. Electromagnetic Radiation and Radiating Systems

whered is the angle between the direction of motié), and the direction to the
observerk. The integral in §.184) is singular of a ‘Dirac delta type’. If we limit
the spatial extent of the motion of the particle to the claséerval [-X, X] on the
X' axis we can evaluate the integral to obtain

q2nw? sir? 6 sin? [(1 - £ cosy) %] .
3 " 012
e [(1- % cost) ¢]
which has a maximum in the directialy as expected. The magnitude of this
maximum grows and its width narrows ¥s— co. The integration of .185)

over Q therefore picks up the main contributions frém 6.. Consequently, we
can set sifif ~ sir? 6 and the result of the integration is

uddQ = (6.185)

0= 2x [ U0 singod = foost = ) = 2 | U e
w 0 w -1 w

i nw 6.186
gl sin? e, 1 sir? [(1+ Cf) U,} " (6.186)
e R R D

C

The integrand inq.186) is strongly peaked near = —c/(nv’), or, equivalently,
near co¥. = ¢/(nv’). This means that the integrand function is practicallyozer
outside the integration intervgl € [-1,1]. Consequently, one may extend the
£ integration interval to-{oo, o) without introducing too much an error. Via yet
another variable substitution we can therefore approx@mat

1S|n2 1+nvf> v’i| c2 sm2x
9/ ) /]2 dé:z(l_W)wn/w X2 d

_ X 1 c?
T wn 7 n2p2
(6.187)

leading to the final approximate result for the total energslin the frequency
interval w, w + dw)

72
d q°X c?
Ura dw 27r8002 (1 - W) wdw (6.188)

As mentioned earlier, the refractive index is usually freoey dependent. Re-
alising this, we find that the radiation energy per frequantyandper unit length
is

gy qlw c?
2X  Areoc? (1_ nz(w)v’2> dov (6.189)
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This result was derived under the assumption that > 1/n(w), i.e., under the
condition that the expression inside the parentheses inighthand side is pos-
itive. For all media it is true that(w) — 1 whenw — oo, so there exist always
a highest frequency for which we can obtain VavilGerenkov radiation from a
fast charge in a medium. Our derivation above for a fixed vafueis valid for
each individual Fourier component.
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6. Electromagnetic Radiation and Radiating Systems

6.5 Examples

EXAMPLE 6.1

124

>LINEAR AND ANGULAR MOMENTA RADIATED FROM AN ELECTRIC DIPOLE IN VACUUM

The Fourier amplitudes of the fields generated by an eledipicle, p,,, oscillating at the
angular frequencw, are given by formulaes(50) on pagego. Inverse Fourier transforming
to the time domain, and using a spherical coordinate systgihny), the physically observable
fields are found to be

. 1 k .
B(t,x) = “Ho P, sind | = sinkr — wt’) — = coskr — wt’) | @ (6.190a)
A r2 r
1 . 1 Lk LK R
E(t,X) = ——p, Sind | = coskr — wt’) + — sinkr — wt’) — — coskr — wt’) | 6
Angg r3 r2 r

1 1 k
2” P, COSH ( coskr — wt’) t > sinfkr - wt’)) f (6.190b)
wheret’ =t — r/cis the retarded time.

From equation4.41) on pages1 we see that, in vacuum, the power flux (Poynting vector)
is S = E x B/u and, hence, thinear momentum density

1 B
g(t,x) = SEx — =gExB (6.191)
c Ho

Inserting the fields from a pure electric dipole, equati@mgo) above, into this expression, one
obtains

gt,x) = - 1%712 P2 sme{ (1 - cos[2kr — wt)])

+ 54 (sine(l — cos[2kr — wt')]) — cosd(1 + cos[2kr — wt')]))

k2 cos@

(1 - cos[2kr - wt )])}

+ 3577 pmsmze{ (1~ cos[2kr — wt')])

k , k2 ,
-3 cos[2kr — wt')] — 2r_3 (1 - cos[2kr — wt)])
+ Ir(—z(l + cos[2kr — wt')])} P (6.192)

showing that the linear momentum density, and hence thetPaywector, is strictly radial only
at infinity.
Defining theangular momentum densitty analogy with classical mechanics,
h(t,x) =xxg (6.193)

and using equatior6(192), we find that for a pure electric dipole
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cosf
ré4

w

h(t,X) = - @

p? sind

(1- cos[2kr — wt)])

+ r£3 (sinB{1 - cos[2kr — wt')]} — cosd(1 + cos[2kr — wt')])

k? cost

+ 2 (1 — cos[2kr — wt’)]) 73 (6.194)

Thetotal electromagnetic linear momentusn(cf. formula (4.41) on pages1)
pfeld = V/d3x’ g(t’, x) (6.195)
and thetotal electromagnetic angular momentisn

Jfeld _ / &% h(t', x') (6.196)
.

We note that, to leading order, both the linear and angulanemtum densities fallfd as
~ 1/r2. This means that when they are integrated over a spheridatsw r? located at a large
distance from the sourcef( the last term in formulas(26) on pages9), there is a net flux so
that the integrated momenta do not fall with distance and can therefore be transported all the
way to infinity.

<1 END OF EXAMPLE 6.1

>THE FIELDS FROM A UNIFORMLY MOVING CHARGE EXAMPLE 6.2

In the special case of uniform motion, the localised chargees in a field-free, isolated
space and we know that it will not b&acted by any external forces. It will therefore move uni-
formly in a straight line with the constant velocity. This gives us the possibility to extrapolate
its position at the observation time(t), from its position at the retarded time(t’). Since the
particle is not accelerated, = 0, the virtual simultaneous coordinatg will be identical to
the actuakimultaneous coordinatef the particle at time, i.e., Xo(t) = X'(t). As depicted in
figure6.7 on pagey6, the angle betweex— xo andv’ is 6, while then angle between- x’ and
V' is@'.

We note that in the case of uniform velocity time and space derivatives are closely related
in the following way when they operate on functions«t) [cf. equation (.33) on page: 3]:

% - -V .V (6.197)

Hence, thee andB fields can be obtained from formulag{3) on page)6, with the potentials
given by equationsy(71) on pageys as follows:
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. Electromagnetic Radiation and Radiating Systems

oA 16ve V' d¢
E=-Vop- —=-Vop—- = =-V¢p- 5 —
¢ ot cz ot c? ot
v [V VA%
:_v¢+E<E-V¢) =—(l— 2 ) V¢ (6.198a)

\VAV4
(55-2)

v v’ v’
BZVXA:VX(?‘ﬁ):V(Px?:—?XV(ﬁ
V/ V, V/ VI V/V/
=3 —-Vo | —--V¢| =~ -1)-v 6.198b
pe (C ¢)C ‘4 sz(cz ) ¢ (6.198b)
VI
:?XE

Herel = XX; is the unit dyad and we used the fact thiix v/ = 0. What remains is just to
expressV¢ in quantities evaluated aandx.

From equationd.718) on pageys and equation.103) on pageio3 we find that
ql 1 q/
Vo = V(Z)=- ve
¢ 4neg (S) 8reos®
o T ke + Y (Vo —
= IS [(x Xo) + c X (c % (X xo))}
When this expression f&¢ is inserted into equatiort(198a) above, the following result
VIV/ ql VIVI
E = 1) -Vvp=-—"_ (> —-1)-V
(tx) ( c? ) ¢ 8res® ( c? ) s
__ v )+ Y (Vo x—
_47T8083{(X Xo) + C><(Cx(x xo))
VvV [V VvV Vv
T (E‘(X‘Xo)) - e (E"‘X‘XO))} }

’ ’ ’ U/Z
|+ (5 0x0) e

(6.199)

(6.200)

U/Z
T 4ngS3 (X =Xo) (1 - g)

follows. Of course, the same result also follows from equrath.9o) on pageioo with v/ = 0
inserted.

From equation €.200) above we conclude thd is directed along the vector from the
simultaneous coordinate(t) to the field (observation) coordinatét). In a similar way, the
magnetic field can be calculated and one finds that

_mod [ VP, VR
B(t,x) = e (1 ?) V' X (X = Xg) = sz x E (6.201)
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From these explicit formulae for tHeandB fields and formulad.102b) on pagei o3 for s, we
can discern the following cases:

v" — 0 = E goes over into the Coulomb fiecouomp

v — 0 = B goes over into the Biot-Savart field

v" — ¢ = E becomes dependent 6

v — ¢, sinfp ~ 0 = E — (1 — v'?/c?)ECeulomb

v > ¢Csinfp~r1=E—- (1- 0/2/02)—1/2EC0qumb

A

<1 END OF EXAMPLE 6.2

>THE CONVECTION POTENTIAL AND THE CONVECTION FORCE EXAMPLE 6.3

Let us consider in more detail the treatment of the radidtiom a uniformly moving rigid
charge distribution.

If we return to the original definition of the potentials am inhomogeneous wave equa-
tion, formula §.17) on pagei4, for a generic potential componef(t, x) and a generic source
componentf (t, x),

O2¥(t,x) = 10 V2 ) ¥(t,x) = f(t,X) (6.202)
T\ 2 at? T '
we find that under the assumption tat v'X;, this equation can be written
v\ Y Y 0*Y
1-— ) — — - =—f .
( c? ) %2 " 0% " %8 ) (6.203)

i.e, in a time-independent form. Transforming

&= I oa (6.204a)
&=X% (6.204b)
&3=X3 (6.204€)

and introducing the vectorial nabla operatog¢ispace¥; =% (3/8¢1, 8/0&,,8/0&3), the time-
independent equatior?®) reduces to an ordinafoisson equation

V2P(E) = —F(/1- 02/ €1, 62.65) = —F(§) (6.205)

in this space. This equation has the well-known Coulombrg@ksolution

_ 17 1) s
V() = yel) Vv d¥ (6.206)

After inverse transformation back to the original coordésathis becomes

Y(x) = 4_];r /v L;(/) d (6.207)
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where, in the denominator,
2

s= {(xl - X))+ <1 - l::—z) [(%2 = X5)? + (%a — X3)?] ’ (6.208)

Applying this to the explicit scalar and vector potentiahgmonents, realising that for a rigid
charge distributiop moving with velocityv’ the current is given by = pv’, we obtain

1 o(X) o,

¢(t,X) = F{;‘O /V T d%( (6.2()9a)
1 Vp(X') Vv

AN = 5 /V 226 = o) (6.209b)

For a localised charge whef d*’ = ¢/, these expressions reduce to

q/

o(t,x) = . (6.2108)
_ q/v/
A(t,x) = dneecls (6.210b)

which we recognise as tHaénard-Wiechert potentiajscf. equations§.71) on pagegs. We
notice, however, that the derivation here, based on a mattieahtechnique which in fact is a
Lorentz transformationis of more general validity than the one leading to equatiery1) on
pageos.

Let us now consider the action of the fields produced from ainggwigid charge distri-
bution represented by moving with velocityv’, on a charged particlg, also moving with
velocity v’. This force is given by theorentz force

F=q(E+V xB) (6.211)

With the help of equation6(201) on pagei26 and equationst(209) above, and the fact
thatd, = —v’ - V [cf. formula 6.197) on pagei25], we can rewrite expressiof.¢11) above as

LV v % v [V

Applying the ‘bac-cab’ rule, formulaH(51) on pagei78, on the last term yields

F=q

Va4 V4 Va4 V4 U/Z
o X (Equﬁ) = (E-ng) AL (6.213)
which means that we can write
F=-qVy (6.214)
where
U/2
= (1_?)(’) (6.215)

The scalar functiog is called theconvection potentiadr theHeaviside potentialWhen the
rigid charge distribution is well localised so that we caa the potentialsy210) the convection
potential becomes

1 28 Version released 8th June 2008 at 23:04. Downloaded from http://www.plasma.uu.se/CED/Book



Examples

Y= (1— i2) a (6.216)

c? ) 4neps

The convection potential from a point charge is constant aitefhed ellipsoids of revolution,
defined through equatio.¢o8) on pagei 28 as

2
X1 — X
(1—) + (X = X0 + (K = %)

VI- o2

=YX — %) + (%2 — %) + (Xs — X4)* = Const

(6.217)

These Heaviside ellipsoids are equipotential surfacassente the force is proportional to the
gradient ofy, which means that it is perpendicular to the ellipsoid stefdahe force between
two charges is in generabtdirected along the line which connects the charges. A caresenp

of this is that a system consisting of two co-moving chargamected with a rigid bar, will
experience atorque. This is the idea behind the Troutoné\mtperiment, aimed at measuring
the absolute speedf the earth or the galaxy. The negative outcome of this ényment is
explained by the special theory of relativity which postetathat mechanical laws follow the
same rules as electromagnetic laws, so that a compensatigetappears due to mechanical
stresses within the charge-bar system.

<1 END OF EXAMPLE 6.3

>BREMSSTRAHLUNG FOR LOW SPEEDS AND SHORT ACCELERATION TIMES—————— EXAMPLE 6.4

Calculate the bremsstrahlung when a charged particle,ngati a non-relativistic speed,
is accelerated or decelerated during an infinitely shore fimerval.

We approximate the velocity change at tithe- ty by a delta function:
V(') = AV §(t' —to) (6.218)
which means that
AV/(t) = / o v (6.219)
Also, we assume/c < 1 so that, according to formula.¢2) on pageys,
S~ X - X/| (6.220)
and, according to formul&(89) on pagei oo,
X—Xg~X—-X (6.221)
From the general expressiof¢3) on pageio1 we conclude thaE L B and that it sfices

to considelE = ]E’ad|. According to the ‘bremsstrahlung expression’ 5, equation ¢.112)
on pageios,
q sing’ e
E=——-F—"—AV§{t -t 6.
4renC? X — X/| Vot ~to) (6222)

In this simple cas® = |B™| is given by
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B= =
c

(6.223)

Fourier transforming expressio6.£22) on pagei 29 for E is trivial, yielding

' sing’ !
E, = zqziAu’ gelo
8m2gpC? X — X/|

(6.224)

We note that the magnitude of this Fourier component is iaddpnt ofw. This is a conse-
guence of the infinitely short ‘impulsive stef(t’ — to) in the time domain which produces an

infinite spectrum in the frequency domain.

The total radiation energy is given by the expression

.~ “rad o0
grad — / at’ dur® _ / dt’ ¢ d A - (Ex E)
—c0 dt’ —c0 s/ Mo
_1 d%(/ dt'EB:ifdzx'/ dt’ E?
Ho Js' —o0 HoC Js —o0

:gocfd%(/ dt’ E2
JS J -0

(6.225)

According toParseval’s identity[cf. equation §.34) on page7s] the following equality

holds:

/ dt' E? = 471/ dw |E,|?
—00 0

(6.226)

which means that the radiated energy in the frequency iatévw + dw) is

ljfddw = 4reqC (% dx |Ew|2) dw
Js

For our infinite spectrum, equatiof.£24), we obtain
qiAav)? o Sir? ¢/
16m3ec® Jo T x — x?
_ q/Z(Av/)Z 2r
T 163803 Jo

~ q/2 AV zd_w
T 3rec \ C 2n

U2 =

dw

dy’ / 4o sin¢ sir? ¢ de
0

(6.227)

(6.228)

We see that the energy spectrm}ﬁd is independent of frequenay. This means that if we
would integrate it over all frequenciese [0, «), a divergent integral would result.

In reality, all spectra have finite widths, with an uppertgf limit set by the quantum

condition

1 1
hwmax = ém(v' + AV')? - Emv'2

(6.229)

which expresses that the highest possible frequengy in the spectrum is that for which all
kinetic energy dference has gone into one sindjield quantum(photon with energyiwmax-
If we adopt the picture that the total energy is quantiseéims ofN,, photons radiated during

the process, we find that
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ljradd
© 2% _ 4N, (6.230)
hw
or, for an electron wherg = — ||, wheree s the elementary charge,
e 2 /Av\? dw 1 2 /A\? dw
N, = 2 (20) 2 L (v & _
4rgohc 3 ( c ) w 13737 ( c ) w (6231)

where we used the value of tlie structure constant = €?/(4reofic) ~ 1/137.

Even if the number of photons becomes infinite whers 0, these photons have negligible
energies so that the total radiated energy is still finite.

<1 END OF EXAMPLE 6.4
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7.1

RELATIVISTIC
ELECTRODYNAMICS

We saw in chapteg how the derivation of the electrodynamic potentials led, in
a most natural way, to the introduction of a characteristiite speed of propa-
gation in vacuum that equals the speed of light 1/ +/gouo and which can be
considered as a constant of nature. To take this finite speptbpagation of
information into account, and to ensure that our laws of fsyke independent
of any specific coordinate frame, requires a treatment atreldynamics in a rel-
ativistically covariant (coordinate independent) formhidTis the object of this
chapter.

The special theory of relativity

An inertial systemor inertial reference frameis a system of reference, or rigid
coordinate system, in which thaw of inertia(Galileo’s law, Newton'’s first law
holds. In other words, an inertial system is a system in whieb bodies move
uniformly and do not experience any acceleration. $pecial theory of relativ-
ity! describes how physical processes are interrelated whemwvasin diferent

1The Special Theory of Relativjtpy the American physicist and philosopher David Bohm, spen
with the following paragraph/]:

‘The theory of relativity is not merely a scientific developmt of great importance in its
own right. It is even more significant as the first stage of aceddchange in our basic
concepts, which began in physics, and which is spreadirgdttter fields of science,
and indeed, even into a great deal of thinking outside ofneee For as is well known,
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7.1.1

134

inertial systems in uniform, rectilinear motion relativedgach other and is based
on two postulates:

Postulatey.1 (Relativity principle Poincaré, 1905)All laws of physics (except
the laws of gravitation) are independent of the uniform slational motion of the
system on which they operate.

Postulatey.2 (Einstein, 1905) The velocity of light in empty space is independent
of the motion of the source that emits the light.

A consequence of the first postulate is that all geometrib@ats (vectors,
tensors) in an equation describing a physical process mamsiform in acovariant
mannerj.e,, in the same way.

The Lorentz transformation

Let us consider two three-dimensional inertial syst@nasidX’ in vacuum which
are in rectilinear motion relative to each other in such a >’ moves with
constant velocity along thex axis of theX system. The times and the spatial
coordinates as measured in the two systemsamd , y, z), andt’ and ', y’, Z),
respectively. At timd = t’ = 0 the originsO andO’ and thex andx’ axes of the
two inertial systems coincide and at a later titrtbey have the relative location
as depicted in figure.1 on pagei 35, referred to as thetandard configuration

For convenience, let us introduce the two quantities

B= (7.1)

— 2
VE (7-2)
wherev = |v|. In the following, we shall make frequent use of these staorth
notations.
As shown by Einstein, the two postulates of special relgtirequire that the
spatial coordinates and times as measured by an obse®anitl>’, respectively,

the modern trend is away from the notion of sure ‘absolutehtr(.e., one which holds
independently of all conditions, contexts, degrees, apdgyf approximatioetc.) and
toward the idea that a given concept has significance onlglation to suitable broader
forms of reference, within which that concept can be giveriull meaning.’
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The special theory of relativity

FIGURE7.1: Two inertial system& and¥’ in relative motion with velocity

along thex = X’ axis. Attimet = t’ = 0 the originO’ of ¥’ coincided with the

origin O of X. At time t, the inertial systen®’ has been translated a distante

along thex axis inZ. An event represented B(t, X, y, 2) in £ is represented by
P, X,y ,Z)in%.

are connected by the following transformation:

ct’ = y(ct - xB) (7.32)

X = y(x - ot) (7.3b)

y=y (7:3¢)

Z=z (7-3d)
Taking the diference between the square 9f38) and the square of;(3b) we
find that

CPt? — X% = y* (C*t? — 2xQBt + X7 — X2 + 2xut — v*t?)

L Jep(1-2 2 (10
7ot (g) (- g)] 0

1—02
= 2 - X

From equations73) we see that thg andz coordinates are ufi@cted by the
translational motion of the inertial systeihalong thex axis of systenk. Using
this fact, we find that we can generalise the result in equdfiq) above to

CZtZ_XZ_yZ_ZZ=C2t/2_xr2_y12_zr2 (75)

which means that if a light wave is transmitted from the cmimg) originsO and
O at timet = t' = 0 it will arrive at an observer aix(y, ) at timet in £ and an
observer atX',y’,Z) at timet’ in ¥’ in such a way that both observers conclude
that the speed (spatial distance divided by time) of lighvdiouum isc. Hence, the
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7.1.2

speed of light int andY’ is the same. A linear coordinate transformation which
has this property is called a (homogenedusientz transformation

Lorentz space

Let us introduce an ordered quadruple of real numbers, eratetewith the help
of upper indicest = 0,1, 2, 3, where the zeroth componentads(c is the speed
of light andt is time), and the remaining components are the componeriteof
ordinaryR? radius vectox defined in equation\(.1) on page 82:

X = 0, x%, %2, %) = (ct, X, y, 2) = (ct, X) (7.6)

We want to interpret this quadrupi¢ as (the component form of)radius four-
vectorin a real, linearfour-dimensional vector spaceWe require that this four-
dimensional space beRiemannian spaceée., a metric space where a ‘distance’
and a scalar product are defined. In this space we thereféine denetric tensoy
also known as thtundamental tensomwhich we denote by, .

Radius four-vector in contravariant and covariant form

The radius four-vector* = (x9, xt, x?, x°) = (ct, x), as defined in equatiory.f)
above, is, by definition, the prototype ofcantravariant vectoror, more accu-
rately, a vector incontravariant component form To every such vector there
exists adual vector The vector dual to¢ is thecovariant vector ¥, obtained as
X, = guvxv (7-7)

where the upper indey in ¥ is summed over and is thereforedammy index
and may be replaced by another dummy ingt€ékhis summation process is an
example ofindex contractiorand is often referred to asdex lowering

Scalar product and norm
The scalar product of* with itself in a Riemannian space is defined as

Guy XX = X, X (7.8)

2The British mathematician and philosopher Alfred North Whead writes in his bookhe Concept
of Nature[13]:

‘| regret that it has been necessary for me in this lecturedtoinister a large dose of
four-dimensional geometry. | do not apologise, because ety not responsible for the
fact that nature in its most fundamental aspect is four-dsiwnal. Things are what they
are....
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The special theory of relativity

This scalar product acts as an invariant ‘distanceham, in this space.

To describe the physical property of Lorentz transfornmafiovariance, de-
scribed by equationy(5) on pagei 33, in mathematical language it is convenient
to perceive it as the manifestation of the conservation@fittrm in a 4D Rieman-
nian space. Then the explicit expression for the scalarymtoof x* with itself in
this space must be

XX =2 - X -y -7 (7.9)

We notice that our space will have ardefinite normwhich means that we deal
with anon-Euclidean spacéNe call the four-dimensional space @pace-timg
with this propertyLorentz spacand denote ii.*. A corresponding real, linear 4D
space with gositive definite normvhich is conserved during ordinary rotations
is aEuclidean vector spacéVe denote such a spaBé.

Metric tensor

By choosing the metric tensor I as

1 ifu=v=0
g}lV: —1 |f#:y:|: J :1’2’3 (7.10)
0 ifu#v

or, in matrix notation,

1 0 0 O
0 -1 0 O
(gﬂv) - 0 0 _1 0 (71 l)
0 0 0 -1
i.e, a matrix with a main diagonal that has the sign sequencesigmature
{+,—,—, -}, the index lowering operation in our chosen flat 4D space fneso
nearly trivial:
Xy = g X = (Ct, —X) (7.12)
Using matrix algebra, this can be written
X0 1 0 0 O X0 X0
x| |0 -1 0 of (x| _ [|-x (7.13)
x| 10 0 -1 0 x| T =x2 7-13
X3 0O 0 0 -1/ \x -x3

Hence, if the metric tensor is defined according to expredsioo) above the co-
variant radius four-vectax, is obtained from the contravariant radius four-vector
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7. Relativistic Electrodynamics

x* simply by changing the sign of the last three componentss&ltemponents
are referred to as thepace componentthe zeroth component is referred to as the
time component

As we see, for this particular choice of metric, the scaladpct of x* with
itself becomes

X, X' = (ct,x) - (ct, =x) = 2 — X% — y2 -7 (7.14)

which indeed is the desired Lorentz transformation inverésas required by equa-
tion (7.9) on page 37. Without changing the physics, one can alternatively choos
a signaturg—, +, +, +}. The latter has the advantage that the transition from 3D
to 4D becomes smooth, while it will introduce some annoyingus signs in the
theory. In current physics literature, the signatiure-, —, —} seems to be the most
commonly used one.

ThelL* metric tensor equatiory(10) on pager 37 has a number of interesting
properties: firstly, we see that this tensor has a tra¢g,Jy = —2 whereas irR?,
as in any vector space with definite norm, the trace equalsyphee dimension-
ality. Secondly, we find, after trivial algebra, that theldaling relations between
the contravariant, covariant and mixed forms of the megnsor hold:

v = G (7.158)
9" =g (7.15b)
gwd" =g, =0, (7.15¢)
9" G = Gy = 0, (7.15d)

Here we have introduced the 4D version of the Kronecker @&|ta mixed four-
tensor of rank 2 which fulfils

1 ifu=v
=0 = .16
vk {O if u#v (7.16)

Invariant line element and proper time

Thedifferential distancels between the two pointg* andx* + dx* in .* can be
calculated from th&iemannian metricgiven by thequadratic djferential form

ds? = g, dX’dx = dx,dx" = (dx%)? — (dx})2 — (dx?)2 — (dxP)? (7.17)

where the metric tensor is as in equatigm () on pagei37. As we see, this
form is indefiniteas expected for a non-Euclidean space. The square rootsof thi
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The special theory of relativity

expression is thavariant line element
1 [/dxt\*  /dx®\* [dx®\?
ds=cat,|1- 5 KE ) + (a ) (a)
1 2 (7.18)
=cdt \/1— = [0)? + ()2 + (v)?] = cdty/1- é

=cdt/1- ,82—c—

where we introduced

dr =dt/y (7.19)

Since d measures the time when no spatial changes are presentaltad the
proper time

Expressing the property of the Lorentz transformation dieed by equa-
tions (7.5) on page135 in terms of the dierential interval ¢ and comparing
with equation {4.17) on pagei 38, we find that

ds? = c?dt? — dx® — dy? - dZ (7.20)

is invariant,i.e.,, remains unchanged, during a Lorentz transformation. Exsely,
we may say that every coordinate transformation which presehis dfferential
interval is a Lorentz transformation.

If in some inertial system

dx® + dy? + dZ < c?dt? (7.21)
dsis atime-like interva) but if

dx? + dy? + dZ2 > c2dit? (7.22)
dsis aspace-like intervalwhereas

dx® + dy? + dZ? = c2dt? (7.23)
is alight-like interval we may also say that in this case we are onlitjig cone
A vector which has a light-like interval is calledraull vector The time-like,
space-like or light-like aspects of an interva dre invariant under a Lorentz

transformation.l.e, it is not possible to change a time-like interval into a gpac
like one orvice versavia a Lorentz transformation.
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Four-vector fields

Any quantity which relative to any coordinate system has adquple of real
numbers and transforms in the same way as the radius fotorvetdoes, is
called afour-vector In analogy with the notation for the radius four-vector we
introduce the notatiog” = (a°, a) for a generatontravariant four-vector fieldh

IL* and find that the ‘lowering of index’ rule, formula.¢) on pagei 36, for such
an arbitrary four-vector yields the duedvariant four-vector field

a,(x) = g (x) = (8%(x), —a(x)) (7:24)
The scalar product between this four-vector field and amatheb”(x*) is
g (X)W (x) = (@, -a) - (1% b) =a’’ —a-b (7.25)

which is ascalar field i.e., an invariant scalar quantity(x) which depends on
time and space, as described»§y= (ct, X, y, 2).

The Lorentz transformation matrix

Introducing the transformation matrix

y By 0O
By vy 00
uy —
(Av)_ 0 0 1 0 (7.26)
0 0 O

the linear Lorentz transformation.g) on pagei 3s, i.e., the coordinate transfor-
mationx* — x* = x*(x°, x%, X2, x3), from one inertial systers to another inertial
system’ in the standard configuration, can be written

XH = AL X (7:27)

The Lorentz group

Itis easy to show, by means of direct algebra, that two ssaeekorentz transfor-
mations of the type in equation.¢7) above, and defined by the speed parameters
B1 andp,, respectively, correspond to a single transformation gfithed parame-
ter

_Pithe
1+B1B2

This means that the nonempty set of Lorentz transformationstitutes &losed
algebraic structurewith a binary operation which iassociative Furthermore,

B (7.28)
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Ax°
X/O

FIcure7.2: Minkowski space can be considered an ordinary Euclideacespa

where a Lorentz transformation fromt( X° = ict) to (x', X = ict’) corresponds

to an ordinary rotation through an angle This rotation leaves the Euclidean
distance(xl)2 + (XO)2 = % — c2t? invariant.

one can show that this set possesses at leagtiensty elemenand at least one
inverse elementin other words, this set of Lorentz transformations cduts

a mathematical groupHowever tempting, we shall not make any further use of
group theory

7.1.3 Minkowski space

Specifying a point = (X%, x, X2, ) in 4D space-time is a way of saying that
‘something takes place at a certain tilne x°/c and at a certain place(y, 2) =
(x4, x2, x3)". Such a point is therefore called @went The trajectory for an event
as a function of time and space is called@rld line. For instance, the world line
for a light ray which propagates in vacuum is the trajectdty x*.

Introducing
X0 =ix® =ict (7.29a)
Xt =xt (7.29b)
X2 = %2 (7.29C)
X3=x3 (7.29d)
ds =ids (7.29€)

where i= V-1, we see that equation.{7) on pagei 38 transforms into

dS? = (dX9)2 + (dXY)? + (dX?)2 + (dX3)? (7.30)
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/w
W=cth
. X0 . 1
' s X0 =x
. 7
" 7
. 7/
.' 7/
. 7
.' 7
R4 L7
' 7
7
7
7
e 4 )
7/ X/
//
7 ¢ | ct
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P xt = x

FIGURE 7.3: Minkowski diagram depicting geometrically the transfotioa
(7.33) from the unprimed system to the primed system. Hedenotes the world
line for an event and the lin® = x! & x = ct the world line for a light ray

in vacuum. Note that the eveRtis simultaneous with all points on thé axis

(t = 0), including the originO. The eventP’, which is simultaneous with all
points on thex' axis, includingd’ = O, to an observer at rest in the primed sys-
tem, is not simultaneous witB in the unprimed system but occurs there at time

IP—P|/c.

i.e, into a 4D diferential form which igositive definitgust as is ordinary 3D
Euclidean spac®&3. We shall call the 4D Euclidean space constructed in this way
the Minkowski spac@14.3

As before, it sifices to consider the simplified case where the relative motion
betweert andy’ is along thex axes. Then

ds? = (dX%)? + (dx1)? = (dX%)? + (dx1)? (7.31)

and we consider th¥° andX! = x' axes as orthogonal axes in a Euclidean space.
As in all Euclidean spaces, every interval is invariant uradetation of thex®x*
plane through an angkinto X'°x'%:

X0 = —xtsing + X° cosd (7.32a)
x1 = xt cost + X%sing (7.32b)

See figurey.2 on pagei41.
If we introduce the angle = —i6, often called thaapidity or the Lorentz
boost parameterand transform back to the original space and time varidifes

3The fact that our Riemannian space can be transformed imvthjsnto a Euclidean one means that
it is, strictly speaking, @seudo-Riemannian space
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Covariant classical mechanics

using equation{.29) on pagei41 backwards, we obtain

ct’ = —xsinhg + ctcoshy (7.338)
X' = xcoshy — ctsinhg (7.33b)

which are identical to the transformation equationg)(on pagei 35 if we let

sinhy = yB (7.34)
coshp =y (7.34b)
tanhyp = g (7.34¢€)

It is therefore possible to envisage the Lorentz transftiomaas an ‘ordinary’
rotation in the 4D Euclidean spa®é*. Such a rotation ilMI* corresponds to a
coordinate change ih* as depicted in figurg.3 on pagei42. equation {.28)
on pagei4o for successive Lorentz transformation then correspondisetdanh
addition formula

tanhp; + tanhgp,

1 + tanhy; tanhy, (7.35)

tanh; + o) =

The use ofét andM*, which leads to the interpretation of the Lorentz trans-
formation as an ‘ordinary’ rotation, may, at best, be iltastve, but is not very
physical. Besides, if we leave the flaf space and enter the curved space of
general relativity, the 6t' trick will turn out to be an impasse. Let us therefore
immediately return td.* where all components are real valued.

7.2 Covariant classical mechanics

The invariance of the dierential ‘distance’ d in L4, and the associated fttr-
ential proper time d[see equationy18) on pagei39] allows us to define the
four-velocity

dx* c Y,
a 27(09\/): S’ >
V1-9 J1-%

which, when multiplied with the scalar invariamg yields thefour-momentum

U = = (%) (7.36)

MyC MoV

dx*
P'=mp—- =myy(cV) = , = (p%p) (7.37)
dr 2 2
Vi-g J1-¢
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From this we see that we can write

p=nv (7.38)

m=yMp = ——— (7.39)

1-2

We can interpret this such that the Lorentz covariance ispliat the mass-like
term in the ordinary 3D linear momentum is not invariant. At&eway to look
at this is thap = mv = ymyv is the covariantly correct expression for the kinetic
three-momentum.

Multiplying the zeroth (time) component of the four-momemtp with the
scalar invariant, we obtain

LCZ = mc (7.40)
Ji-g

Since this component has the dimension of energy and is siuét i a covariant
description of the motion of a particle with its kinetic montem described by
the spatial components of the four-momentum, equatjoty) on pagei43, we
interpretcp’ as the total energl. Hence,

cp’ = ymoc? =

cp' = (cp’,cp) = (E.cp) (7.41)

Scalar multiplying this four-vector with itself, we obtain

cp.cp' = g P’ P = AI(P°)% - (PH)? - (p%)* - (p%)7]

= (E,—cp) - (E, cp) = E* - c?p?
(7.42)

Since this is an invariant, this equation holds in any imkftame, particularly in
the frame wher@ = 0 and there we have

2

E =myc (7.43)

This is probably the most famous formula in physics history.
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7.3 Covariant classical electrodynamics

Let us consider a charge density which in its rest inertiatesy is denoted byyp.
The four-vector (in contravariant component form)

. dx+
1= po- = = po = poy(C.V) = (o€, pV) (7-44)
where we introduced

P =7Ypo (7-45)

is called thefour-current

The contravariant form of the four-del operai@#t = 0/0x, is defined in
equation 1.37) on page189 and its covariant counterpadl, = d/0x" in equa-
tion (M.38) on page1 89, respectively. As is shown in exampié 5 on pagei g9,
thed’Alembert operatoiis the scalar product of the four-del with itself:

16
|:|2 = 8“6# = (9#8# = ?ﬁ - Vz (746)

Since it has the characteristics of a four-scalar, the dilert operator is invariant
and, hence, the homogeneous wave equatidf(t, x) = 0 is Lorentz covariant.

7.3.1 The four-potential
If we introduce thdour-potential
A= <%,A> (7-47)

whereg is the scalar potential arfdthe vector potential, defined in sectigny on pageqo,
we can write the uncoupled inhomogeneous wave equationgfiegs §.16) on
page43, in the following compact (and covariant) way:

CPA = poj (7.48)

With the help of the above, we can formulate our electrodyinaquations
covariantly. For instance, the covariant form of #ggpuation of continuityequa-
tion (1.23) on pageio is

=0 (7.49)
and thelLorenz-Lorentz gauge conditipaquation §.15) on page43, can be writ-
ten

0N =0 (7.50)
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7.3.2

The gauge transformations. (1) on pages2 in covariant form are
A AR = N+ T(X) (7.51)

If only one dimension Lorentz contracts (for instance, dueetative motion
along thex direction), a 3D spatial volume element transforms accwyti

av =dx = —dVo_dVO\/l ﬁZ—de/l—— (7.52)

where d/y denotes the volume element as measured in the rest systamfrom
equation {.45) on pagei 45 we see that

pdV = podVo (7-53)

i.e., the charge in a given volume is conserved. We can thereforelude that
the elementary charge is a universal constant.

The Liénard-Wiechert potentials

Let us now solve the the inhomogeneous wave equatigns)(on page43 in
vacuum for the case of a well-localised chaggat a source point defined by the
radius four-vectox’ = (x° = ct’, ', x2, x’3). The field point (observation point)
is denoted by the radius four-vectet = (x° = ct, x%, x?, x3).

In the rest system we know that the solution is simply

(¢, (9 1
(Af)o = (c’A>V_o _ ( T 0) (7:54)

where|x — X'|g is the usual distance from the source point to the field peivdl-
uated in the rest system (signified by the index ‘0).

Let us introduce the relative radius four-vector betweengburce point and
the field point:

R =x' — X" = (c(t - t'),x - X) (7.55)
Scalar multiplying this relative four-vector with itselfie obtain

RR, = (c(t—t),x = X) - (c(t - t'), —=(x = X)) = At —t')* - |x - x’|2
(7.56)

We know that in vacuum the signal (field) from the chaggat x'* propagates
to x* with the speed of light so that

x=X|=c(t-t) (7.57)
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Inserting this into equationy(56) on pagei46, we see that
(758)

R'R, =0

or that equation.55) on pagei 46 can be written
(7-59)

R = ([x-X]|,x=X)
Now we want to find the correspondence to the rest systemico/tqua-
tion (7.54) on pagei46, in an arbitrary inertial system. We note from equa-

tion (7.36) on pagei 43 that in the rest system

c v
(uu)O = >’ > = (C’ O) (760)
-2 V -2 v=0
and
X=X)o = (|x=X|y. (x=x)0) (7.61)

(R = (]x=x
As all scalar productsy‘R, is invariant, which means that we can evaluate it
in any inertial system and it will have the same value in dieotinertial systems.

If we evaluate it in the rest system the result is:

UR, = (WR.), = (U)o(Ru)o
’ ’ ’ (762)
= (.0) - (|x =Xy, =(x =x)o) = c|x = X,
We therefore see that the expression
W
a= (7.63)

" 4dneg cUR,
subject to the conditioR*R, = 0 has the proper transformation properties (proper
tensor form) and reduces, in the rest system, to the soletijprtion {.54) on
pagei46. Itis therefore the correct solution, valid in any inersgbktem.

According to equationy36) on pagei 43 and equation.59)

~(x=X)) =y (c[x=X| =V (x=X)) (7.64)

WR, =y(c,V)- (|x=x

Generalising expression.{) on pagei 34 to vector form:
def V
= (7.65)

p=pr’

and introducing
(7.66)
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7. Relativistic Electrodynamics

we can write
U'R, = yCcs (7.67)
and
w 1 v
==, = .68
cUR, (cs czs> (7.68)

from which we see that the solution.¢3) can be written

_a (T vy_ (¢
A) = 4reg <cs’ c2s> - (c’A> (7.69)

where in the last step the definition of the four-potentiglagion ¢.47) on pagei 45,
was used. Writing the solution in the ordinary 3D way, we dode that for a very
localised charge volume, moving relative an observer withlacity v, the scalar
and vector potentials are given by the expressions

B q/ } B q/ 1

WX = dreo s~ dmeg K= X1 - B~ (x=X) (7.708)
GEEAY/ / \Y;

N (7.70b)

AregC? s AmegC? X —X| =B - (X = X)

These potentials are tHaénard-Wiechert potentialthat we derived in a more
complicated and restricted way in subsectioni on pagey4.

7.3.3 The electromagnetic field tensor
Consider a vectorial (cross) producbetween two ordinary vectoesandb:

c=axb= ei,-kaib,-f(k

. . . (771)
= (agbs — aghp)Xy + (ashy — a1bs) Xz + (arbz — ab1)X3
We notice that théth component of the vectarcan be represented as
ckzabj—ajbi = Gj = —C;j;, i,j £k (7.72)

In other words, th@seudovectoc = ax b can be considered as antisymmetric
tensorof rank two. The same is true for the curl operafot« operating on a polar
vector. For instance, the Maxwell equation

0B

VXE=—-——
ot

(7:73)
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Covariant classical electrodynamics

can in this tensor notation be written

0F, O _ 0B, )
ox x| ot 774
We know from chapteg that the fields can be derived from the electromag-
netic potentials in the following way:

B=VxA (7.758)
0A

E=-V¢- i (7.75b)

In component form, this can be written

oA OA
= o = oy = OA = OiA (7.76a)
A

From this, we notice the clearftitrence between thaxial vector(pseudovector)
B and thepolar vector(‘ordinary vector’)E.

Our goal is to express the electric and magnetic fields in soteiorm where
the components are functions of the covariant form of the-fmiential, equa-

tion (7.47) on pagei4s:

A= (%,A) (7:77)

Inspection of §.77) and equation.76) above makes it natural to define the four-
tensor

_ 0N oA
S 0%, 0%,

F

=0'A - "N (7.78)

This anti-symmetricgkew-symmetr)¢ four-tensor of rank 2 is called thedectro-
magnetic field tensoin matrix representation, trentravariant field tensocan

be written
0 -E/c -E,/c -E;/c
Ey/C 0 -B B
uvy _ X Z Y
E,/c -B, By 0

We note that the field tensor is a sort of four-dimensiondl@fthe four-potential
vector A,
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7. Relativistic Electrodynamics

Thecovariant field tensois obtained from the contravariant field tensor in the
usual manner by index lowering

va = Gux9va Frt = ayAv - aVA;l (780)
which in matrix representation becomes

0 Ex/c E,/c Ejc
_ _Ex/c 0 _BZ By
(Fﬂv) = —Ey/C BZ 0 _BX (781)
_Ez/C _By BX 0

Comparing formula.81) with formula .79) on pagei49 we see that the co-
variant field tensor is obtained from the contravariant opeakiransformation

E - -E.
That the two Maxwell source equations can be written
9uF"" = poj” (7.82)

is immediately observed by explicitly solving this covatisequation. Setting
v = 0, corresponding to the firgftmost column in the matrix representation of
the covariant component form of the electromagnetic fieddaoe F+”, i.e., equa-
tion (7.79) on pagei 49, we see that

F0  gF10  HF0  HF30 1 (0Ex OE, OE,
+ + + =0+—-(—+—+—
00X axt a2 ax c\ox oy 0z
1 (7.83)
=<V'E = 0] = poGp
or, equivalently (recalling thatouo = 1/¢?),
vV.E=% (7-84)

€0
which we recognise at the Maxwell source equation for thetedefield, equa-
tion (1.45a) on pagei 5.
Forv = 1 (the second column in equation{g) on pagei 49), equation {.82)

above yields
oF0! . oF1! . oF2! . OF3t 1 0E, 0,98 9B _
50 "o T Tad T @ at oy oz HolT T Hapox
(7-85)
This result can be rewritten as
0B, 0B OE .
Ty az oMoy =Kol (7.8
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Covariant classical electrodynamics

or, equivalently, as

. OoE
(VX B)x =pojx + So,uoa—,[X (7-87)
and similarly forv = 2,3. In summary, we can write the result in three-vector
form as
. oE
V x B = uoj(t,x) + EoHo (7-88)

which we recognise as the Maxwell source equation for the etagfield, equa-
tion (1.45d) on pageis.
With the help of the fully antisymmetric rank-4 pseudotenso

1 if u, v, k, A is anevenpermutation of 0,1,2,3
™ =0 ifatleasttwo ofy, v, «, A are equal (7.89)
-1 if u,v,«, Ais anoddpermutation of 0,1,2,3

which can be viewed as a generalisation of the Levi-Civitsog, formula . 18)
on pagei 85, we can introduce thdual electromagnetic tensor

F = @I, (7.90)
In matrix form the dual field tensor is

0 -cB¢ -cB, -cB

cBy 0 E, -E,

B, -E, 0 E (7.91)
cB, E, —Ey 0

(7) =

i.e., the dual field tensor is obtained from the ordinary field tery/ theduality
transformationE — ¢°B andB — —E.
The covariant form of the two Maxwell field equations

0B

VXE=—— .
X at (7.92)
V-B=0 (7-93)

can then be written
9, F" =0 (7-94)

Explicit evaluation shows that this corresponds to (no saition!)

aKFpV + 6;4 Fo + akap =0 (795)
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7. Relativistic Electrodynamics

sometimes referred to as tlacobi identity Hence, equationy(82) on pagei 50
and equationy.95) on pagei 51 constitute Maxwell’s equations in four-dimensional

formalism.
It is interesting to note that equation.§2) on pagei 50 and
9, F" = pojn (7.96)

where jn, is the magnetic four-currentrepresent the covariant form of Dirac’s
symmetrised Maxwell equations.§o) on pagei6.
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8.1.1

8

ELECTROMAGNETICFIELDS AND
PARTICLES

In previous chapters, we calculated the electromagnetisfand potentials from
arbitrary, but prescribed distributions of charges andemits. In this chapter we
study the general problem of interaction between electritraagnetic fields and
electrically charged particles. The analysis is based grdreian and Hamil-
tonian methods, is fully covariant, and yields results Wwhégre relativistically

correct.

Charged patrticles in an electromagnetic field

We first establish a relativistically correct theory delsitry) the motion of charged
particles in prescribed electric and magnetic fields. Frioese equations we may
then calculate the charged particle dynamics in the mostrgénase.

Covariant equations of motion

We will show that for our problem we can derive the correctagmuns of mo-
tion by using in four-dimensiondl* a function with similar properties as a La-
grange function in 3D and then apply a variational principiée will also show
that we can find a Hamiltonian-type function in 4D and solwe ¢brresponding
Hamilton-type equations to obtain the correct covariantnidation of classical
electrodynamics.

Version released 8th June 2008 at 23:04.

155



8. Electromagnetic Fields and Particles

Lagrangian formalism
Let us now introduce a generalised action

S = / La(x, 1) dr (8.1)

where d is the proper time defined via equationi@) on pagei 39, andL, acts
as a kind of generalisation to the common 3D Lagrangian datlileavariational
principle

5Su =6 / " L0, W) dr = 0 8.2)

with fixed endpointsrg, 71 is fulfilled. We require thal, is a scalar invariant
which does not contain higher than the second power of thevielocity U in
order that the equations of motion be linear.

According to formula 1.48) on pageig1 the ordinary 3D Lagrangian is the
difference between the kinetic and potential energies. A freticigahas only
kinetic energy. If the particle massris then in 3D the kinetic energy isgv?/2.
This suggests that in 4D the Lagrangian for a free partiateilshbe

1
Liree = >Mou'y, (83)

For an interaction with the electromagnetic field we caroiitice the interaction
with the help of the four-potential given by equation7) on pagei49 in the
following way

1
Ly = émou“uﬂ + qu A (X) (8.4)

We call this thefour-Lagrangianand shall now show how this function, together
with the variation principle, formulag(2) above, yields covariant results which
are physically correct.

The variation principle§.2) with the 4D Lagrangian8(4) inserted, leads to

5Su = 5/ (%uﬂu,, +QU'AL(X) ) dr

= /T: |:% a(g:;ﬂ)(sw +q (Auéu“ + W%&x/)] dr 8.5)

= /T1 [mou,ou + q (A0U + u'd,A,6x)] dr = 0

To
According to equation%36) on pagei 43, the four-velocity is
dx*

= (8.6)
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Charged patrticles in an electromagnetic field

which means that we can write the variatiorubfas a total derivative with respect
tor:

dx* d

Inserting this into the first two terms in the last integraldquation §.5) on
pagei56, we obtain

S = / l (nrbuﬂE (0x) + q'%g (0x) + qlf‘ﬁvA;szXV) dr (8.8)
o dr dr
Partial integration in the two first terms in the right handmnixer of §.8) gives
S = / ' <_m0d&(gxu - qdﬁ(sxﬂ + qu“avAﬂdxv> dr (8.9)
o dr dr

where the integrated parts do not contribute since theti@mgat the endpoints
vanish. A change of irrelevant summation index fraro v in the first two terms
of the right hand member 0§ (9) yields, after moving the ensuing common factor
6X” outside the parenthesis, the following expression:

1 du, dA, .
S = / (—modT g+ qu“c')yA,,> 5X dr (8.10)

Applying well-known rules of dierentiation and the expressiony6) for the
four-velocity, we can express/dr as follows:

dA, _ oA, dxt
dr  9Ox dr
By inserting this expressior8 (1 1) into the second term in right-hand member of

equation §.10), and noting the common factou of the resulting term and the
last term, we obtain the final variational principle express

= d, AU (8.11)

S = / l [—mo(j: +qu (0,A, - 9,A,) | ' dr (8.12)
70

Since, according to the variational principle, this expres shall vanish andx”

is arbitrary between the fixed end pointsandr;, the expression insidEe] in the

integrand in the right hand member of equati®n ¢) above must vanish. In other

words, we have found an equation of motion for a chargedgbaiiti a prescribed

electromagnetic field:

du,
Mo dr

= qu' (8,A, — 9,A)) (8.13)
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8. Electromagnetic Fields and Particles

With the help of formula.80) on pagei 50 for the covariant component form of
the field tensor, we can express this equation in terms oflfoeremagnetic field
tensor in the following way:

du

Mo d?j/ = qWva (814)
This is the sought-for covariant equation of motion for atiphe in an electro-
magnetic field. It is often referred to as tMenkowski equation As the reader
can easily verify, the spatial part of this 4-vector equai®the covariant (rela-
tivistically correct) expression for thidewton-Lorentz force equation

Hamiltonian formalism

The usualHamilton equationdor a 3D space are given by equatidd.f9) on
pageig2 in appendixM. These six first-order partial fierential equations are

oH  dg

(9_pi = at (815&)
oH _ dpi
% = (8.15b)

whereH(pi, gi,t) = pig — L(qi, G, t) is the ordinary 3D Hamiltoniary; is agen-
eralised coordinat@ndp; is its canonically conjugate momentum

We seek a similar set of equations in 4D space. To this end tredince a
canonically conjugate four-momenturi im an analogous way as the ordinary
3D conjugate momentum:

p = OLa (8.16)

du,

and utilise the four-velocity”, as given by equatiory(36) on pagei 43, to define
thefour-Hamiltonian

H4 = p“u,, - L4 (817)

With the help of these, the radius four-vectdr, considered as thgeneralised
four-coordinate and the invariant line elemensddefined in equation(18) on
pagei139, we introduce the following eight partial fiierential equations:

6H4 _ dX#

T dr (8.18a)
OHy4 _ dpﬂ

- dr (8.18b)
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Charged patrticles in an electromagnetic field

which form thefour-dimensional Hamilton equations

Our strategy now is to use equatidhi) on pagei 58 and equations3(18) on
pagei58 to derive an explicit algebraic expression for the candlyicnjugate
momentum four-vector. According to equatigny(i) on pagei 44, ctimes a four-
momentum has a zeroth (time) component which we can idewiify the total
energy. Hence we require that the comporg@raf the conjugate four-momentum
vector defined according to equatidhi) on pagei 58 be identical to the ordi-
nary 3D HamiltoniarH divided byc and hence that thisp® solves the Hamilton
equations, equation8.{ 5) on pagei 58. This later consistency check is left as an
exercise to the reader.

Using the definition ofH,, equation §.17) on page158, and the expression
for L4, equation §.4) on pager 56, we obtain

1
Hs = p'u, — Ls = p'u, - Emou“u,, - quA'(X") (8.19)

Furthermore, from the definitior8 (16) of the canonically conjugate four-momentum
p*, we see that

_oka_ 0 (1 4x) ) =
b= au, Ay, <2mou“uﬂ + A )) = o ax (820

Inserting this into §.19), we obtain
Hs = mot'u, + qA‘u, — %nbu“uy - qu'A,(X) = %mou“uﬂ (8.21)

Since the four-velocity scalar-multiplied by itselfasu, = c2, we clearly see
from equation §.21) above thatH, is indeed a scalar invariant, whose value is

simply
Hy = m;cz (8.22)
2
However, at the same timé&.¢o) provides the algebraic relationship
1
uw=— - qA! 8.2
o (P - qA) (8.23)
and if this is used in§.21) to eliminatew, one gets
L VI
o= (o -0 o (- 08) )
1
= 5 (P~ 9A) (P« — GA.) (8.24)
1
= 5 (P pu — 20A'p, + PA'A,)
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160

That this four-Hamiltonian yields the correct covarianuation of motion can
be seen by inserting it into the four-dimensional Hamilsoequationsg.18) and
using the relationg.23):

OHy4 q oA,
__r___ 1 Vo Av
e = P
— _irrbuvaAV
T mo O g
A 23)
R v
— dpl‘ _ du/‘ aAﬂ v
T Tdr T a Yot

where in the last step equatio®ifo) on pagei59 was used. Rearranging terms,
and using equatiory(8o) on pager 50, we obtain

a,

G = U (A - A = AuFy, (8:26)

which is identical to the covariant equation of motion egua(8.14) on pagei 58.
We can then safely conclude that the Hamiltonian in questi@orrect.

Recalling expressiony(47) on pagei 45 for the four-potential, and represent-
ing the canonically conjugate four-momentum @s = (p° p), we obtain the
following scalar products:

PP = (0% = (p)? (8.27a)
A'Dy = 2000 - (- A) (8.27b)
A, = 567 (A (8270

Inserting these explicit expressions into equatiing) on page: 59, and using the
fact that forH, is equal to the scalar valugyc?/2, as derived in equatior ¢2)
on pagei 59, we obtain the equation

mct _

1 0\2 2_2 0 ) Q_22_2 2
5 = oy |00~ 07~ Casp”+ 2000 A) + 50"~ (AP | (828)

which is the second order algebraic equatiopin

02_@ 0 2 ) 20 A\2 Q_22_ 2 _
() P’ - [(p)* - 20p - A+ G*(A)?] + 5%~ m6c* = 0 (8:29)

c
(p—-gA)?
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Covariant field theory

with two possible solutions

p’ = gcb + /(- gAY + mpe2 (8.30)

Since the zeroth component (time compongpit)of a four-momentum vector
p* multiplied by c represents the energgf[ equation {.41) on pagei44], the
positive solution in equation8(30) above must be identified with the ordinary
Hamilton functionH divided byc. Consequently,

H Ecpo=q¢+c\/(p—qA)2+n‘éc2 (8.31)
is the ordinary 3D Hamilton function for a charged particlevimg in scalar and
vector potentials associated with prescribed electricraagnetic fields.

The ordinary Lagrange and Hamilton functiobsandH are related to each

other by the 3D transformatiorf, the 4D transformation8(17) betweern_, and
Ha]

L=p-v-H (8.32)

Using the explicit expressions (equatidhs()) and (equationg.32) above), we
obtain the explicit expression for the ordinary 3D Lagrahgetion

L=p'V—q¢—c\/(p—qA)2+ﬁ%02 (8.33)
and if we make the identification
MoV
P-gA=——— =nv (8:34)
1-&

where the quantitynv is the usuakinetic momentupwe can rewrite this expres-
sion for the ordinary Lagrangian as follows:

L =gA -v+mu? —qp - Cc/mv? + mic?
2 (8.35)

=m?—q(¢p—A-v)—me& = —q¢ + gA - V — myc? 1-5

What we have obtained is the relativistically correct (c@avat) expression for
the Lagrangian describing the motion of a charged partitlscalar and vector
potentials associated with prescribed electric and magfields.

8.2 Covariant field theory

So far, we have considered two classes of problems. Eithérawe calculated
the fields from given, prescribed distributions of charges @urrents, or we have
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8. Electromagnetic Fields and Particles

FIGURES.1: A one-dimensional chain consisting Nfdiscrete, identical mass
pointsm, connected to their neighbours with identical, ideal spsiwith spring
constantk. The equilibrium distance between the neighbouring maggps
a andni_1(t), (1), ni.1(t) are the instantaneous deviations, alongxtexis, of
positions of thei(— 1)th,ith, and ( + 1)th mass point, respectively.

derived the equations of motion for charged particles irigivprescribed fields.
Let us now put the fields and the particles on an equal footiuppaesent a theo-
retical description which treats the fields, the partictes] their interactions in a
unified way. This involves transition to a field picture with &finite number of

degrees of freedom. We shall first consider a simple mechbpioblem whose
solution is well known. Then, drawing inferences from thiedal problem, we

apply a similar view on the electromagnetic problem.

8.2.1 Lagrange-Hamilton formalism for fields and interactions

Consider the situation, illustrated in figu8e, with N identical mass points, each
with massmand connected to its neighbour along a one-dimensionéjstiane,
which we choose to be theaxis, by identical ideal springs with spring constants
k (Hooke's law. At equilibrium the mass points are at rest, distributedndy
with a distancea to their two nearest neighbours so that the coordinate #®r th
ith particle isx; = iaX . After perturbation, the motion of mass poinwill be a
one-dimensional oscillatory motion aloiig Let us denote the deviation for mass
pointi from its equilibrium position by;;(t)X.

The solution to this mechanical problem can be obtained i€arefind alLa-
grangian(Lagrange functiopL which satisfies the variational equation

5 [Lenin Dk =0 (8.36)

According to equationN].48) on pageig1, the Lagrangian i€ = T — V where
T denotes thé&inetic energyandV the potential energyf a classical mechanical
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Covariant field theory

system withconservative forcedn our case the Lagrangian is

L=%§[Wf—ﬂmu—mf} (8.37)
Let us write the Lagrangian, as given by equati®n{) above, in the follow-
ing way:
N
ngaz (8.38)
Here,
2= | T -] (8.30

is the so called lineatagrange density If we now letN — o and, at the
same time, let the springs become infinitesimally short ating to the following

scheme:
a — dx (8.40a)
m dm
—— — = li i .
3 - ix u inear mass density (8.40b)
ka—Y Young’s modulus (8.40C)
m+—m  On
=~ ox (8.40d)
we obtain
szfm 8.41)
where
on on \ 1| [on\? an\?
Z(*mﬂf&‘z%(&) Y\ ox (8.42)

Notice how we made a transition from a discrete descripiionyvhich the mass
points were identified by a discrete integer variabiel1,2,..., N, to a continu-
ous description, where the infinitesimal mass points westead identified by a
continuous real parametgy namely their position along.

A consequence of this transition is that the number of degoéé&eedom for
the system went from the finite numbirto infinity! Another consequence is
that.# has now become dependent also on the partial derivativeresibect to
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8. Electromagnetic Fields and Particles

x of the “field coordinatey. But, as we shall see, the transition is well worth the
cost because it allows us to treat all fields, be it classizalks or vectorial fields,
or wave functions, spinors and other fields that appear imtgua physics, on an
equal footing.

Under the assumption of time independence and fixed endypdie variation
principle @.36) on pagei 62 yields:

_ dn on
B 6//”% <"’ (’)t’ax> o

0.L oL (0 0L (0 (843
] o BE () s ()]
(917 g, <@) ot 9 (@) X
ot ox
=0
The last integral can be integrated by parts. This resulisdrexpression
// % J [ 02 9 [ 02 spdxdt =0 (8.44)

ot d ©ax 9
o(%)) " \o(B)
where the variation is arbitrary (and the endpoints fixedhisTneans that the
integrand itself must vanish. If we introduce tlumctional derivative

oz oz _o ( oz

- (8.45)
on am x|\ g (%)
we can express this as
0oL 9 oL -0 (8.46)

on ot 2
7 " \a(%)
which is the one-dimension&uler-Lagrange equatian
Inserting the linear mass point chain Lagrangian densijyagon §.42) on
page163, into equation §.46), we obtain the equation of motion for our one-
dimensional linear mechanical structure. Itis:
(9277 (927] u 62 62
— _yZd (22 _ 2 =0 8.
Hor ~ "o@ ~ \varz a2 ) 8.47)
i.e, the one-dimensional wave equation for compression wavgshvwropagate
with phase speeg, = +Y/u along the linear structure.
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Covariant field theory

A generalisation of the above 1D results to a three-dimeasgicontinuum is
straightforward. For this 3D case we get the variationai@ple

5/Ldt:5//,zd3xdt

=6/$ <17, 8677‘) d*

rrloz o (a2 \], e
_// an o 6((;’71) ond
0

where the variatiody is arbitrary and the endpoints are fixed. This means that

the integrand itself must vanish:
0L 0 0L
— - — | —F——=]=0 (8.49)
H 0l

This constitutes the four-dimensiorfaliler-Lagrange equations
Introducing thethree-dimensional functional derivative

A 5.50)
on  Onp O a(g_)z) =
we can express this as
0L 0 0L
" <—6n ) =0 (8.51)
v o (%)

In analogy with particle mechanics (finite number of deg&fdseedom), we
may introduce theanonically conjugate momentum density

0L

a(%) = 7(t,X) = ——— (8.52)
(2]
ot
and define thélamilton density
on on on on
b 2 _; t = Tae b _7 g 8.
‘%ﬂ<7”7 ox ) "ot (77 ot ox (8.53)
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8. Electromagnetic Fields and Particles

If, as usual, we dferentiate this expression and identify terms, we obtain the
following Hamilton density equations

0  On

o ot (8.542)
o on

on T at (8.54b)

The Hamilton density functions are in many ways similar @ahdinary Hamilton
functions and lead to similar results.

The electromagnetic field

Above, when we described the mechanical field, we used arsialid 7(t, ).
If we want to describe the electromagnetic field in terms ofagrange density
- and Euler-Lagrange equations, it comes natural to exp#8&s terms of the
four-potential A“(x).

The entire system of particles and fields consists of a méchlgpart, a field
part and an interaction part. We therefore assume that theliagrange density
£ for this system can be expressed as

_gptot _ gpmech | gpinter | cpfield (8.55)

where the mechanical part has to do with the particle mokare(ic energy). It
is given byL4/V wherel, is given by equation§(3) on pagei156 andV is the
volume. Expressed in thest mass densilyy, themechanical Lagrange density
can be written

1
gmeeh — 500Ul (8.56)

The Z'"" part describes the interaction between the charged pertanhd
the external electromagnetic field. A convenient expresfio this interaction
Lagrange densitys

e = A, (8:57)

For the field partZ"®'® we choose the fierence between magnetic and elec-
tric energy density (in analogy with theffirence between kinetic and potential
energy in a mechanical field). Using the field tensor, we esgthisfield La-
grange densitas

1

field v
& FYF . .
- 1 o M (8 58)
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Covariant field theory

so that the total Lagrangian density can be written
1 _ 1_,,
L= S, + A, + %F" Fo (8-59)

From this we can calculate all physical quantities.

Using.Z" in the 3D Euler-Lagrange equations, equati®ndg) on page: 65
(with n replaced byA,), we can derive the dynamics for the whole system. For
instance, the electromagnetic part of the Lagrangian tlensi

: 1
szEM — zlnter gflekﬂ JvA + 4_F'WF;1V (8.60)
L0

inserted into the Euler-Lagrange equations, expressign)(on pagei 65, yields
two of Maxwell's equations. To see this, we note from equafinfo) and the
results in Exampl&.1 that
azEM
oA,
Furthermore,

dL™M] 1 o .
On [a@Av)] = do" {6@,&) (F F“)]

_ i 9 K AL _ A AK _
= { A [(0°At - 8" A (DAL 81AK)}}
0

= (8.61)

1
=9, — |FAVA, - FAYD 8.62
4o ”{a(a,,Av){ ' A (8.62)

— 'AD A, + NAK(?AAK} }

1
=_—9 { 0 ((’)KAlé)KAA—aKAﬂaAAK)}
2ut0

" 100,A)
But
9 (AN = A O oA +o.A N
30,A) « @A) “Ha0A)
d d
= FA! AAL + O A g“0,9%
3@, A) Pt OB R0 0ag T Ay
d d
= A OAL+ g gV DA
A A) KT *a(a Ay
d
= FA! AAL+ N ————0,
A0,A) At a(a A) Ol
= 20"
(8.63)
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8. Electromagnetic Fields and Particles

Similarly,
0
Al = 20"A :
G, Ay (PN IA) =20 (8.64)
so that
6$EM} 1 1
— | = —0,("A - A = —9,F" 8.6
g |:a(a,uAv) Mo #( ) Mo : ( 5)

This means that the Euler-Lagrange equations, expres&igy) bn pagei 65,
for the Lagrangian densit”®™ and withA, as the field quantity become

0.LEM 0.LEM 1
-0 =iyV-—0,F" =0 8.66
T {a(aﬂm)} o (8.66)
or
3,F" = of” (8.67)

which, according to equatiory.§2) on pagei 50, is the covariant formulation of
Maxwell’s source equations.

Other fields

In general, the dynamic equations for most any fields, andniyt electromag-
netic ones, can be derived from a Lagrangian density togetitle a variational
principle (the Euler-Lagrange equations). Both linear and-linear fields are
studied with this technique. As a simple example, consideag scalar field;
which has the following Lagrange density:

1
L = > (8.mdn - mznz) (8.68)

Insertion into the 1D Euler-Lagrange equation, equatiob] on pagei 64, yields
the dynamic equation

(- =0 (8.69)
with the solution
(KX e—mX|
n = dkx-ed e (8.70)

which describes th¥ukawa meson fielidr a scalar meson with mass With

14

T= 2 a (8.71)
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we obtain the Hamilton density
H = % [Cznz +(Vn)?+ mznz] (8.72)

which is positive definite.
Another Lagrangian density which has attracted quite sameréast is the
Proca Lagrangian

_ ' ) 1
gEM — gmter_’_gﬂeld — ]vAv + _FWF#V + mZA“A# (8.73)
4o

which leads to the dynamic equation
0 F* = nPA” = o (8.74)

This equation describes an electromagnetic field with a poass other words,
massive photonsIf massive photons would exist, large-scale magnetic gjeld
including those of the earth and galactic spiral arms, wbeldignificantly mod-
ified to yield measurable discrepancies from their usuahfd@pace experiments
of this kind on board satellites have led to stringent uppamiols on the photon
mass. If the photon really has a mass, it will have an impaclectrodynamics
as well as on cosmology and astrophysics.
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Example

8.4 Example

>FIELD ENERGY DIFFERENCE EXPRESSED IN THE FIELD TENSGR EXAMPLE 8.1

Show, by explicit calculation, that
1 1
—F"F,=Z(—- E2 8.
PR3 (2 - a?) (8.75)
i.e, the diference between the magnetic and electric field energy édensit
From formula ¢.79) on pagei 49 we recall that

0 -E«/c -E,/c -E;/c

Ex/C 0 -B B
MY _ X 'z Y
E,/c -B, By 0
and from formula{.81) on pagei 50 that
0 E./c EjJ/c Ejc
_|-Ex/c O -B, B,
(Fuw) = E/c B 0 -B (8.77)

-E/c -B, By O
whereu denotes the row number andthe column number. Then, Einstein summation and
direct substitution yields
F*F,, = F®Fq0 + FFo1 + F%%Fqy + F%F g3
+ F1F 0+ FXFy + F2Fy, + F%F g5
+ F2F 0 + F2F,1 + F22F5 + F2%F,3
+ F30F 30 + F3YF3 + F32F3; + F3%F3;

=0-E}/c® - E}/c” - EZ/c?

~E2/?+0+ B2+ B (8.78)
-EZ/+B;+0+B
-E}/c?+ B+ B+ 0
= —2E%/¢? - 2E7/c? - 2E2/? + 2B + 2B + 2B
= —2E?%/c® + 2B? = 2(B? - E?/c?)
or
2 2
=32 -aae) -3 ()
where, in the last step, the identityuo = 1/c was used. QEM

<1 END OF EXAMPLE 8.1
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F

FORMULZ

F.1 The electromagnetic field

F.1.1 Maxwell's equations

V'D:p (F'l)
0

VxE=-—B F.

X 5 (F3)
.0

VxH= —D F.

XxH=j+= (F4)

Constitutive relations

D=c¢E (F5)

H= E (F.6)
u

j=0cE (F7)

P =eoE (F8)
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F. Formulae

174

Fi.2

F2
F2.1

Fo.2

Fields and potentials

Vector and scalar potentials

B=VxA

E:—V¢—%A

The Lorenz-Lorentz gauge condition in vacuum

10
V-A+——¢=
+c26t¢ 0

Force and energy

Poynting’s vector
S=ExH

Maxwell's stress tensor

1
Tij = EiDj + HiBj - 55”‘ (Eka + HkBk)

Electromagnetic radiation

(F9)
(F.10)

(F.a1)

(F.12)

(F.13)

Relationship between the field vectors in a plane wave

_RxE
T ooc

B

(F14)

The far fields from an extended source distribution

—iuo alkixl O
Brad — d3 & ik-x w k
209= 0 g L X x
Ead(x) = Ihe K x / d*x e™*Xj, xk
@ 4reqC |X| v’ ¢
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(F.15)

(F.16)
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Electromagnetic radiation

F.2.3 The far fields from an electric dipole

rayy = _ 0 €
Bw (X) - 47T |X| pw X k (F17)
1 g
Edx) = ————— (p, x k) xk (Fa8)
Areg |X|

F.2.4 The far fields from a magnetic dipole

rad Ho e
B0 = ~ g7 (Mo X k) xK (F.19)
k ¥

E"3%(x) = x k (F20)

—m
dreoc X| ¢

F.2.5 The far fields from an electric quadrupole

) = 0w €
Bs (X) = 8t X k-Qu) x K (F21)
i ek
Ef(x) = [(k - Qu) x K] x k (F22)
8reg X

F.2.6 The fields from a point charge in arbitrary motion

2 (X =Xo) XV
E(t,x):ﬁ {(x—xo) (1—’;—2> +(x—x)x% (F23)
B(t,x) = (x = x) x % (F24)
s=|x—x’|—(x—x’)-vz, (F25)
X—Xg = (x—x’)—|x—x’|VE, (F26)
o\ X=X
(), (27
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F.3 Special relativity

F.3.1 Metric tensor

10 0 O
0 -1 0 O
9=10 0 -1 0 (F28)
0 0 0 -1
F.3.2 Covariant and contravariant four-vectors
Uy = gV (F29)
F.3.3 Lorentz transformation of a four-vector
XH = AH X (F.30)
y -y 00
u_ |- v 00
AF, = 0 0 1 0 (F31)
0 0 0
1
Y= ey (F32)
v
B= (F33)
F.3.4 Invariant line element
ds=c = cdr (F34)
Y
F.3.5 Four-velocity
dx*
w=q =7CY) (F35)
=
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Vector relations

F.3.6 Four-momentum

o = ot = (E p> (F36)

F.3.7 Four-current density
J = pott! (F37)

F.3.8 Four-potential

Ao (f, A) (F38)

c

F.3.9 Field tensor

0 -Ei/c -E,/c -Ej/c
Ex/C 0 _BZ B!/
E/c B 0  -B, (F39)
Ez/C _By BX 0

FY = A — A =

F.4 Vector relations

Let x be the radius vector (coordinate vector) from the origin e point
(X1, X2, X3) = (X, y,2) and let|x| denote the magnitude (‘length’) of Let fur-
thera(x), B(X), ... be arbitrary scalar fields arafx), b(x), c(x), d(x), ... arbitrary
vector fields.

The diferential vector operat¥ is in Cartesian coordinates given by

3 0 def,. O def
V=YX—=%—=0 F.
,;XIaXi %o (F40)

whereX;, i = 1,2,3 is theith unit vector andk; = X, X2 = g, andX3 = 2. In

component (tensor) notatidh can be written

a a9 0 9 0
Vi=0 = (6_)(1’0_)(2’ (9_)(3) = ((9_)(’ (9_14’6_2) (F41)

Downloaded from http://www.plasma.uu.se/CED/Book Version released 8th June 2008 at 23:04. 177



F. Formulae

F4.1 Spherical polar coordinates

Base vectors

f = sinf cospX; + sinfsingX, + COSHK3 (F42a)
6 = cosf CcoSpRy + COSOSINEK, — SiNOR3 (F42b)
@ = —SinpXy + COSPX2 (F420)
%, = sin@ cosef + cosH cospl — sing (F43a)
%o = sinfsingf + cosd singh + cospP (F43b)
X3 = cosOf — singh (F43c)

Directed line element
dxX=d =drf+rdgd+rsinddyp (F44)

Solid angle element
dQ = singdg dy (F45)

Directed area element
dxfA=dS=dSt =r2dQt (F46)

\Volume element
d* = dV = dr dS = r?dr dQ (F47)

F4.2 Vector formulae

General vector algebraic identities

a-b=>b-a=djab; = abcosd (F48)
axb=-bxa= Eijkajbk)?i (F.49)
a-(bxc)=(axb)-c (F.50)
ax(bxc)=b(a-c)—c(a-b)=ba-c-ca-b (Fs51)
ax(bxc)+bx(cxa)+cx(axb)=0 (F.52)
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Vector relations

(axb)-(cxd)=a-[bx(cxd)]=(a-c)b-d)-(a-d)(b-c)
(axb)x(cxd)=(axb-d)c-(axb-c)d

General vector analytic identities

V(ap) = aVB + BVa

V-(ed) =a-Va+aV-a

Vx(ea) =aVxa—-ax Va

V-(axb)=b-(Vxa —-a-(Vxh)
Vx(axb)=a(V-b)-b(V-a)+(b-V)a-(a-V)b
V@-b)y=ax(Vxb)+bx(Vxa)+(b-V)a+(a-V)b
V-Va =V

VxVa=0

V- (Vxa)=0

Vx(Vxa)=V(V-a) —V?a=VV- -a-V2a

Special identities

In the followingx = xX; andx’ = X'X; are radius vectorg an arbitraryconstant

- . _ (9 ~ _ ﬁ ~
vector,a = a(x) an arbitrary vector fieldy = ax Xis andV’ = o i

V-x=3
Vxx=0
V(k-x) =k
X
Vix = =
x|
’ X_X/ ’ ’
V(x-X1) = x| =-V (x-x)

v 1 __ X=X __y 1
X — x| X — x’|3 X = X/|
X 1
V(= =—V2<—>=47r(5x
<|X|3) IX] )
X=X B 2 1 B ,
v (5 50m) = () = 40
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(F53)
(F54)

(F55)
(F56)
(F57)
(F.58)
(F59)
(F.60)

(F61)
(F.62)

(F.63)
(F64)

(F.65)
(F66)

(F67)
(F68)

(F.69)
(F:70)
(F71)
(F72)

(F73)
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180

(- G-

el () o5

V2 (%) = kV? (&') = —4rks(X)

Vx(kxa)=k(V-a)+kx(Vxa)-V(k-a)

Integral relations

(F74)
(F75)

(F76)

(F77)

Let V(S) be the volume bounded by the closed surf&¥). Denote the 3-
dimensional volume element byxg= dV) and the surface element, directed along
the outward pointing surface normal unit vecfoiby dS(= d* ). Then

/V(V.a)d3x=.7id8-a

/V(Va)d?x:fgdsa
/V(an)d3x=7£d8xa

(F78)
(F79)

(F.80)

If S(C) is an open surface bounded by the cont@(8), whose line element

is d, then

j[a/dl =/deVa
C S

?{:a.dlz/sds.(an)

F.5 Bibliography
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M

MATHEMATICAL METHODS

M.1 Scalars, vectors and tensors

Every physical observable can be described by a geometfgctobVe have cho-
sen to describe the observables in classical electrodysaimiterms of scalars,
pseudoscalars, vectors, pseudovectors, tensors or fgeasdrs, all of which obey
certain canonical rules of transformation under a changmofdinate systems.
We will not exploit diferential forms to any significant degree to describe phi/sica
observables.

A scalardescribes a scalar quantity which may or may not be constdime
andor space. Avector describes some kind of physical motion along a curve
in space due to vection andtensordescribes the local motion or deformation
of a surface or a volume due to some form of tension. Howewsregalisations
to more abstract notions of these quantities have proveillumed are therefore
commonplace. The fference between a scalar, vector and tensor apsea-
doscalar pseudovectoand apseudotensois that the latter behave ferently
under such coordinate transformations which cannot beceztito pure rotations.

Throughout we adopt the convention that Latin indicgsk, |, ... run over
the range 12, 3 to denote vector or tensor components in the real Euclitteae-
dimensional (3D) configuration spat, and Greek indices, v, «, 4, ..., which
are used in four-dimensional (4D) space, run over the ranfe2(B.
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M. Mathematical Methods

M.1.1 \Vectors

182

Radius vector

Mathematically, a vector can be represented in a numberfigirent ways. One
suitable representation in a real or compleector space of dimensionality

is in terms of an orderedll-tuple of real or complex numbers, orraw vector
of the components,af, a, ..., an), along theN coordinate axes that span the
vector space under consideration. Note, however, thae thexr many ordered
N-tuples of numbers that do not comprise a veci@, do not exhibit vector
transformation properties! The most basic vector, and tb®fype against which
all other vectors are benchmarked, is thdius vectorwhich is the vector from
the origin to the point of interest. ItN-tuple representation simply enumerates
the coordinates which describe this point. In this sengeratius vector from the
origin to a point is synonymous with the coordinates of thinpitself.

In the 3D Euclidean spadg®, we haveN = 3 and the radius vector can be
represented by the triplex{, xo, X3) of coordinatesq, i = 1, 2, 3. The coordinates
X are scalar quantities which describe the position alongittiebase vectors;
which spanR3. Therefore a representation of the radius vectdris

3 . def
X = inxi = XX (M.1)
1=

where we have introduceHinstein’'s summation conventiqieX) which states
that a repeated index in a term implies summation over thgerar the index
in question. Whenever possible and convenient we shalldgridtiowing always
assume E and suppress explicit summation in our formulae. Typogiably,
we represent a vector in 3D Euclidean sp&eby a boldface letter or symbol
in a Roman font. Moreover, we introduced the syms#i’ which may be read
‘is, by definition, to equal in meaning’, or ‘equals by defioit, or, formally,
definiendum=¢’ definiend4].

Alternatively, we may describe the radius vectorcomponent notatiomas
follows:

def
X = (X1 X2, X3) = (X, 4, 2) (M.2)

This component notation is particularly useful in 4D spatexm we can rep-

it is often very convenient to usssmplex notatiorin physics. This notation can simplify the mathe-
matical treatment considerably. But since all physicakotables are real, we must in the final step of our
mathematical analysis of a physical problem always ensatetie results to be compared with experimen-
tal values are real-valued. In classical physics this isexeld by taking the real (or imaginary) part of the
mathematical result, whereas in quantum physics one takesbisolute value.
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Scalars, vectors and tensors

resent the radius vector either in dsntravariant component form

x L' (0, x, 32, 5) (M.3)

or its covariant component form

def
Xy = (X0, X1, X2, X3) (M.4)

The relation between the covariant and contravariant fasnaetermined by the
metric tensor(also known as th&undamental tensgrwhose actual form is dic-
tated by the properties of the vector space in question. Tiaé répresentation
of vectors in contravariant and covariant forms is most earent when we work
in a non-Euclidean vector space with an indefimitetric An example id_orentz
spacel.* which is a 4DRiemannian spacetilised to formulate the special theory
of relativity.

We note that for a change of coordinatés— x* = x*(x°, x%, X%, x°), due
to a transformation from a systelto another syster®d’, the diferential radius
vector d¢ transforms as
_ox*
—ox
which follows trivially from the rules of dferentiation ofx* considered as func-
tions of four variables¢.

dx* dx’ (M.5)

M.1.2 Fields

A field is a physical entity which depends on one or more continuauarpeters.
Such a parameter can be viewed as a ‘continuous index’ whiagmerates the
‘coordinates’ of the field. In particular, in a field which depls on the usual
radius vectox of R3, each point in this space can be considered as one degree of
freedom so that a field is a representation of a physicalentiich has an infinite
number of degrees of freedom.

Scalar fields
We denote an arbitrargcalar fieldin R® by

a(x) = (X4, X, Xs) = a(x) (M.6)

This field describes how the scalar quantityaries continuously in 3[R® space.
In 4D, afour-scalarfield is denoted

o0, %t %2, ) E' a(x) (M.7)
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which indicates that the four-scalardepends on all four coordinates spanning
this space. Since a four-scalar has the same value at a giweinregardless of
coordinate system, it is also called iamariant.

Analogous to the transformation rule, equatidh.{) on pagei83, for the
differential d¢, the transformation rule for thef@ierential operatof/ox* under a
transformation — x* becomes

0 _(’)ch')

OXH QXM XY (M-8)
which, again, follows trivially from the rules of fierentiation.
Vector fields
We can represent an arbitrary vector fia{g) in R® as follows:

a(x) = a(x)%i (M.9)
In component notation this same vector can be represented as

ai(x) = (a1(x), az(x), as(x)) = ai(x;) (M.10)

In 4D, an arbitraryfour-vectorfield in contravariant component form can be
represented as

a'(x) = ((x),a'(x), a*(x"), a*(x")) (M.11)
or, in covariantcomponent form, as
a,(X") = (a0(x), a(X"), ax(x"), as(X")) (M.12)

wherex” is the radius four-vector. Again, the relation betwegranda, is deter-
mined by the metric of the physical 4D system under consiuera

Whether an arbitraryN-tuple fulfils the requirement of being ai{dimen-
sional) contravariant vector or not, depends on its transdtion properties during
a change of coordinates. For instance, in 4D an assembtage(y°, y*, v, y°)
constitutes @ontravariant four-vectofor the contravariant components of a four-
vector) if and only if, during a transformation from a syst&mwith coordinates
X" to a systenk’ with coordinates<*, it transforms to the new system according
to the rule

OXH
= v M.
yr= oy (M.13)

i.e, in the same way as theftBrential coordinate elemenxitransforms accord-
ing to equation{l.5) on page 83.
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The analogous requirement forcavariant four-vectoris that it transforms,
during the change frori to ¥/, according to the rule

- oxm

’

Yu Yy (M.14)

i.e, in the same way as theftrential operato/dx* transforms according to
equation {1.8) on page1 84.

Tensor fields

We denote an arbitragnsor fieldin R by A(x). This tensor field can be repre-
sented in a number of ways, for instance in the followimgtrix form

o Ap1(X)  Aa(x)  Aga(x)
(Aij(%) = | Aa(¥) Aa(X)  Asa(X) (M.15)
As1(X) Asa(x) Asa(x)

Strictly speaking, the tensor field described here is a tepfs@nk two.
A particularly simple rank-two tensor iR? is the 3DKronecker deltasymbol
dij, with the following properties:

—
5”:{ e (M.16)

Q

1 ifi=]

The 3D Kronecker delta has the following matrix represéomat

(6ij) =

o o
(ol o)

0

0 (M.17)
1

Another common and useful tensor is the fully antisymmedénisor of rank 3,

also known as theevi-Civita tensor

1 ifi, j,kis anevenpermutation of 1,2,3
&jk = ¢ 0  if atleast two of, j, k are equal (M.18)
-1 ifi, j,kis anoddpermutation of 1,2,3

with the following further property
€ijk €ilm = 0jIOkm — O jmOki (M.19)

In fact, tensors may have any rank n this picture a scalar is considered to
be a tensor of rank = 0 and a vector a tensor of rank= 1. Consequently, the
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notation where a vector (tensor) is represented in its compioform is called the
tensor notation A tensor of rankn = 2 may be represented by a two-dimensional
array or matrix whereas higher rank tensors are best ragessen their compo-
nent forms (tensor notation).

In 4D, we have three forms dbur-tensor fieldof rankn. We speak of

e acontravariant four-tensor fielddenotedA/1#z-#n(x”),

¢ acovariant four-tensor fielddenoted?,,,,, ..(X"),

e amixed four-tensor fielddenotedA,, 2 /¥ (x").

The 4Dmetric tensor(fundamental tenspmentioned above is a particularly
important four-tensor of rank 2. In covariant componentrfave shall denote it

guv- This metric tensor determines the relation between atrarpicontravariant
four-vectora* and its covariant counterpaa} according to the following rule:

a,(¢) € gna’ () (M.20)

This rule is often calledowering of index Theraising of indexanalogue of the
index lowering rule is:

2(x) € ¢a,(x) (M.21)

More generally, the following lowering and raising rules dhdbr arbitrary
rankn mixed tensor fields:

Guon LT 7€) = Art () (M.22)

k+1Vk+2---Vn HMkVk+1---Vn

g A (X) = AR IR (X (M.23)

Successive lowering and raising of more than one index ieeet by a repeated
application of this rule. For example, a dual applicatiothaf lowering operation
on a rank 2 tensor in contravariant form yields

A;lv = gykg/lvAM (M.24)

i.e, the same rank 2 tensor in covariant form. This operationsis known as a
tensor contraction
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M.1.3 Vector algebra

Scalar product
Thescalar product(dot product inner producj of two arbitrary 3D vectora and
b in ordinaryR? space is the scalar number

a-b:ap‘q-b,-)‘(j :)“(i-f(ja;bj :6ijabj = agib; (M.25)

where we used the fact that the scalar prodyctX; is a representation of the
Kronecker delta;; defined in equation\(.16) on pagei 85. In Russian literature,
the 3D scalar product is often denoteab). The scalar product af in R with
itself is

def
a-as @ =la?= (@) =2a (M.26)
and similarly forb. This allows us to write
a-b = abcoss (M.27)

whered is the angle betweemandb.
In 4D space we define the scalar product of two arbitrary f@atorsa” and
b* in the following way

a,b' =g,ab =ab, = g"ab, (M.28)

where we made use of the index lowering and raising rileéad) and (M.21).
The result is a four-scalaire., an invariant which is independent of in which 4D
coordinate system it is measured.

Thequadratic dfferential form

ds? = g, dx"dx* = dx,dx* (M.29)

i.e., the scalar product of the féierential radius four-vector with itself, is an in-
variant called themetric It is also the square of tHame elementds which is the
distance between neighbouring points with coordinatesndx* + dx*.

Dyadic product

The dyadic producfield A(x) = a(x)b(x) with two juxtaposed vector fields(x)
andb(x) is the outer productof a andb. Operating on this dyad from the right
and from the left with an inner product of an vectoone obtains

def de

A-c=ab-c fa(b-c) (M.30a)
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def def
c-ASc-abZ (c-ab (M.30b)
i.e., new vectors, proportional t@andb, respectively. In mathematics, a dyadic
product is often calletensor productaind is frequently denoteal® b.
In matrix notation the outer product afandb is written

>

albl albz a1b3 1
(@b) = (%1 %o %) @by &by, abs| [ % (M.31)
a3b1 a3b2 a3b3 3

x>

which means that we can represent the teAgg) in matrix form as

a1b1 albg alb3
(Aij(x)) = | @by @b, azbs (M.32)
azbhy agbg a3b3

which we identify with expression\.15) on pagei85, viz. a tensor in matrix
notation.

Vector product

The vector producior cross producof two arbitrary 3D vectors andb in ordi-
naryR® space is the vector

c=axb= Eijkajbk)?i (M-33)

Hereej is the Levi-Civita tensor defined in equatidvi.(18) on pagei85. Some-
times the 3D vector product @& andb is denoteda A b or, particularly in the
Russian literature g@p]. Alternatively,

ax b =absingé (M.34)

whered is the angle betweea andb andé is a unit vector perpendicular to the
plane spanned by andb.

A spatial reversal of the coordinate systetf &, X3) = (—X1, —X2, —X3) changes
sign of the components of the vecterandb so that in the new coordinate system
a = —aandb’ = —b, which is to say that the direction of an ordinary vector is no
dependent on the choice of directions of the coordinate. a®eghe other hand,
as is seen from equatioi(33), the cross product vectardoes not change sign.
Thereforea (or b) is an example of a ‘true’ vector, qolar vector wherea< is
an example of aaxial vector or pseudovector

A prototype for a pseudovector is the angular momentum vedcte X x p
and hence the attribute ‘axial’. Pseudovectors transfaordinary vectors under
translations and proper rotations, but reverse their fgiive to ordinary vectors
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for any coordinate change involving reflection. Tensorsof rank) which trans-
form analogously to pseudovectors are cafpsdudotensorsScalars are tensors
of rank zero, and zero-rank pseudotensors are therefarealsdpseudoscalars
an example being the pseudoscaiar (X; x Xk). This triple product is a repre-
sentation of thejk component of the Levi-Civita tensef which is a rank three
pseudotensor.

M.1.4 Vector analysis

Thedel operator

In R3 thedel operatoris adifferential vector operatqrdenoted irGibbs’ notation
by V and defined as

def ., O def O def
V=EXk—=—=9 M.

3% = ax (M.35)
whereX; is theith unit vector in a Cartesian coordinate system. Since the op
erator in itself has vectorial properties, we denote it véitboldface nab-la. In

‘component’ notation we can write

0 a9 0
Oi=—,—,— M.36
! (6X1 0% 6X3> ( 3 )
In 4D, the contravariant component representation ofdbe-del operatoris
defined by
g a9 a9 0
M=, — M.
(axo ax 9% 6x3> (M.37)

whereas the covariant four-del operator is
g o9 9 0
== —= === M.38
g (c’)xo’(’)xl ox? 8x3> (M.38)

We can use this four-del operator to express the transf@matroperties
(M.13) and M. 14) on pagei 85 as

y* = (0.x")y (M.39)
and

v, = (.X) vy (M.40)
respectively.

With the help of the del operator we can define the gradiemgrgence and
curl of a tensor (in the generalised sense).
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The gradient
Thegradientof anR3 scalar fieldx(x), denotedV(x), is anR3 vector fielda(x):
Va(x) = da(X) = Xidia(x) = a(x) (M.41)

From this we see that the boldface notation for the nabla ahdgerators is very
handy as it elucidates the 3D vectorial property of the gnaidi

In 4D, thefour-gradientis a covariant vector, formed as a derivative of a four-
scalar fielda(x*), with the following component form:

n_ Oa(X)
oua(X’) = I (M.42)
The divergence
We define the 3Dlivergenceof a vector field inR?® as
Voal) =0 %300 = 00 = 0al) = ol =at)  (Ma3)

which, as indicated by the notatiarx), is ascalarfield in R3. We may think of
the divergence as a scalar product between a vectorialtopenad a vector. As
is the case for any scalar product, the result of a divergepeeation is a scalar.
Again we see that the boldface notation for the 3D del opersitcery convenient.
Thefour-divergencef a four-vectora” is the following four-scalar:

dat (X')
oxt

B! (') = 9a,(x') = (M.44)
The Laplacian

The 3DLaplace operatoor Laplaciancan be described as the divergence of the
gradient operator:

. . 0 52352

V2=A=V.-V=—% Rj—-— =0600;=07= — = (M.45)
ax " Tlaxy — T lzlax,

The symbolV? is sometimes readel squared |f, for a scalar fieldx(x), V?a < 0
at some point in 3D space, itis a signamincentratiorof « at that point.

The curl

In R the curl of a vector fielda(x), denotedV x a(x), is anotheiR? vector field
b(x) which can be defined in the following way:

oay
¥ xa) = anRidia) = axk oo -

. b(x) (M.46)
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Analytical mechanics

where use was made of the Levi-Civita tensor, introducedjiragon (.18) on

page18s.
The covariant 4D generalisation of the curl of a four-vedield &' (x”) is the
antisymmetric four-tensor field

Guv(XK) = 6;4av(xk) - avay(xk) = _Gvy(xk) (M47)

A vector with vanishing curl is said to beotational.

Numerous vector algebra and vector analysis formulae aengn chaptef.
Those which are not found there can often be easily derivagsing the compo-
nent forms of the vectors and tensors, together with the éker and Levi-Civita
tensors and their generalisations to higher ranks. A shuidry useful reference
in this respect is the article by A. Evet]]

Analytical mechanics

Lagrange’s equations

As is well known from elementary analytical mechanics, tlagrange function
or Lagrangian Lis given by

) dgi
L(g,Gi.t) =L (CJi, %Q =T-V (M.48)

whereg; is thegeneralised coordinat€el the kinetic energyandV the potential
energyof a mechanical system, Using the action

t2
s= [ diL(@.6.9 (M.49)
and thevariational principlewith fixed endpointd; andts,
0S=0 (M.50)

one finds that the Lagrangian satisfies hder-Lagrange equations
d /oL oL
—([=)-==0 M.
dt (aqi> oq (M.51)
To the generalised coordinaggone defines aanonically conjugate momen-
tum p according to

oL

pi = 0_q. (M.52)
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M.2.2

102

and note from equatiorM.51) on pageig1 that

oL

=D M.
ag P (M.53)
If we introduce an arbitrary, ffierentiable functiorw = «(q;,t) and a new

LagrangiarL’ related toL in the following way

da da Oa
L"'=L+—=L — + — M.
T T g T e (M.54)
then
oL’ oL da
— = — + — M.ss5a
g ag  oq (M-55)
o oL doa
=t M.55b
oo~ ag " diag (M.55)
Or, in other words,
d /oL’ oL’ d /oL oL
g o0 GOy ot M.56
dt(aqi> aq dt(&qi) i (M.56)
where
oL JdL O« o
==t =P+ M.57a
ag G dq P oq; (M-572)
and
oL JL
/- = =q M.s57b
q b - ap qi (M.57b)
Hamilton’s equations

FromL, the Hamiltonian(Hamilton function H can be defined via thieegendre
transformation

H(pi, g, t) = pig — L(g;, . t) (M.58)

After differentiating the left and right hand sides of this definitiod aetting them
equal we obtain

oH
opi

. . oL oL .
gidpi + pidg; — 6Tqidqi - (,Tqiin -

"

oH oH
dpi + aiqldql + Edt = 6t
(M.59)
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According to the definition of;, equation ¥.52) on pageig1, the second and
fourth terms on the right hand side cancel. Furthermorengdhat according
to equation 1.53) on pagei92 the third term on the right hand side of equa-
tion (M.59) on pageig2 is equal to-p;dg; and identifying terms, we obtain the
Hamilton equations

oH e dqi

oo =0 (M.60a)
oH _ oo dpi

e RS (M.6ob)
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M.3 Examples

EXAMPLE M.1  >TENSORS IN3D SPACE

FIGUREM.1: Tetrahedron-like volume eleme¥itcontaining matter.

Consider a tetrahedron-like volume elem&hbf a solid, fluid, or gaseous body, whose
atomistic structure is irrelevant for the present anajyfggire M. 1 indicates how this volume
may look like. Let & = d*fi be the directed surface element of this volume element and le
the vectorT ; d’ be the force that matter, lying on the side &t tbward which the unit normal
vector fi points, acts on matter which lies on the opposite side?af @his force concept is
meaningful only if the forces are short-range enough thet ttan be assumed to act only in the
surface proper. According to Newton’s third law, this sagdorce fulfils

T_ﬁ: —Tﬁ (M6l)

Using (M.61) and Newton'’s second law, we find that the matter of nmsshich at a given
instant is located iV obeys the equation of motion
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Ta d2X — COS@ngl d2X - COS@zTiZ d2X - COSH::,T;(3 d2X + Fexe = ma (M.62)
whereFy; is the external force anais the acceleration of the volume element. In other words

m F
Tha=mTs, + Mg, + ey, + B (a— ?‘) (M.63)

Since botha andFe,/m remain finite whereasy/d* — 0 asV — 0, one finds that in this limit

3
Ta= ZniT;(I = nin(i (M'64)

From the above derivation it is clear that equatibhdy) is valid not only in equilibrium but
also when the matter M is in motion.

Introducing the notation

Tij = (Tii)j (M.65)
for the jth component of the vectdr;, , we can write equatior.64) above in component form
as follows

3

Tﬁj = (Tﬁ)j = ZniTij = niTi,- (M.66)

1=

Using equation N1.66), we find that the component of the vectbg in the direction of an
arbitrary unit vectorhis

Tﬁm = Tﬁ -m
S (M.67)
J:

= ngmj = Z (gnm]) mj = nT;m = A-T-m

Hence, thejth component of the vectory,, here denoted;;, can be interpreted as thgh
component of a tensdr. Note thafT x4 is independent of the particular coordinate system used
in the derivation.

We shall now show how one can use the momentum law (force ieq)iab derive the
equation of motion for an arbitrary element of mass in theybotb this end we consider a
partV of the body. If the external force density (force per uniturak) is denoted bfyand the
velocity for a mass elementwlis denoted by, we obtain

d /vdm: /fd%<+ /Tﬁdzx (M.68)
dt Jv Jv Js

The jth component of this equation can be written
/Euj dm:/ f d3><+/Tﬁj o = / f d3x+/niTi,~ o (M.69)
Jv dt v s Jv Js

where, in the last step, equatioll.6) above was used. Settingnd= p d and using the
divergence theorem on the last term, we can rewrite thetrasul

d @& [+ gl
/Vp&u] d3><_/vf, d3x+/v T (M.70)
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Since this formula is valid for any arbitrary volume, we mresjuire that

d 8Tij _
pavj—fj—aixi—o (M7l)
or, equivalently
Ovj oTijj
pa—t'+pV~ij—fj—a—X'i'=O (M.72)

Note thatdv;/at is the rate of change with time of the velocity compongrat afixed point
X = (X, X1, X3)-

<1 END OF EXAMPLEM.1

EXAMPLE M.2  >CONTRAVARIANT AND COVARIANT VECTORS IN FLAT LORENTZ SPACE

The 4D Lorentz spack* has a simple metric which can be described either by the enetri

tensor
1 ifu=v=0
gw=3-1 ifu=v=i=j=123 (M.73)
0 ifuzv

which, in matrix notation, is represented as

1 0 0 oO
0 -1 0 O
(gpv) - 0 o —1 O (M74)
0O 0 0 -1
i.e, a matrix with a main diagonal that has the sign sequencggoature {+, —, —, —} or
-1 ifu=v=0
gw=41 ifu=v=i=j=123 (M.75)
0 ifu#v

which, in matrix notation, is represented as

-1 0 O
0 1 0 O
0 0 O

i.e, a matrix with signaturé—, +, +, +}.

Consider an arbitrary contravariant four-vecaiin this space. In component form it can
be written:

a £ @ a8 8 = (& a) (M.77)
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According to the index lowering rule, equatiol.Go) on page186, we obtain the covariant
version of this vector as

def

aﬂ Ee (ao, ai, a, a3) = g,uvav (M78)
In the{+, —, —, =} metric we obtain

u=0: a=1-a+0-a+0-a?+0-a=a" (M.79)

u=1: a=0-a"-1-a'+0-a2+0-a°=-a (M.80)

u=2: a=0-a+0-a'-1.-a2+0.-a°=-a (M.81)

u=3: a=0-a+0-a+0-a°-1-a%=-&a (M.82)
or

a, = (20, &, ap, ag) = (&% -a', -a*, -a°) = (&°, -a) (M.83)

Radius 4-vector itself if* and in this metric is given by

X = (0, % %2, %) = (08, %, 1, 2) = (&, %)

X = (051, ¥a,36) = (€, X, -3, ) = (€, %) (W59
wherex? = ct.
Analogously, using thé-, +, +, +} metric we obtain
a, = (20, a1, &, &) = (-a’,a", &, a% = (-a".a) (M.85)

<1 END OF EXAMPLE M.2

>INNER PRODUCTS IN COMPLEX VECTOR SPAGE EXAMPLE M.3

A 3D complex vectoA is a vector inC2 (or, if we like, inR®), expressed in terms of two
real vectorsag anda, in R? in the following way

AZaq+ia = aple +iad £ AAeCP (M.86)
The inner product oA with itself may be defined as

A2EA A=ad-al+2iag-a EAeC (M.87)
from which we find that

A= /ad-a2+2iag -a €C (M.88)

Using this in equationN].86) above, we see that we can interpret this so that the compiéx u
vector is
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A=A R aee+i A5
A /& -a+2iag - & Vag —a +2iag - g

ag v/ 2—a12—2iaR-a4 Bt a\/a - a’ - 2iag - & , 3 e (M.89)

2, AaRa1 S|n29 5 5 AaRa sng

On the other hand, the definition of the scalar product in $asfithe inner product of complex
vector with its own complex conjugate yields

AR EA-A = = |A? (M.90)

with the help of which we can define the unit vector as

A N . ~
W™ g $+¥a

aRvaR+a1 \/ CRP

A +i

A=
(M.91)

<1 END OF EXAMPLE M.3

EXAMPLE M.4 >SCALAR PRODUCT, NORM AND METRIC IN LORENTZ SPACE

In L* the metric tensor attains a simple form [see exanyle on pagei96] and, hence,
the scalar product in equatioiM(28) on pagei87 can be evaluated almost trivially. For the
{+,—,—, —} signature it becomes

= (a0, -a) - (b°% b) =ah’—a-b (M.92)
The important scalar product of tli¢ radius four-vector with itself becomes

X = (X0, —X) - (X2, X) = (ct, -X) - (ct, X)

=(ct)2 - )2 - (@) - ()2 = & (M.93)

which is the indefinite, realormof L*. ThelL* metric is the quadratic fferential form

ds® = dx,dx* = c2(dt)® - (dx*)? - (dx®)? - (dx®)? (M.94)

<1 END OF EXAMPLEM.4
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>THE FOUR-DEL OPERATOR INLORENTZ SPACE

EXAMPLE M.5

In L* the contravariant form of the four-del operator can be remméed as

10 10
7= (Ea"") = <5a"v>

and the covariant form as
14 10
= [ = - V
O (cat’a) (cat’ )

Taking the scalar product of these two, one obtains

(M.95)

(M.g6)

(M.97)

which is thed’Alembert operatorsometimes denotdd, and sometimes defined with an oppo-

site sigh convention.

<1 END OF EXAMPLEM.5

>GRADIENTS OF SCALAR FUNCTIONS OF RELATIVE DISTANCES IBD

ExXAMPLE M.6

Very often electrodynamic quantities are dependent onelative distance ifR® between
two vectorsx andx’, i.e, on|x — X’|. In analogy with equationM.35) on pagei189, we can

define the primed del operator in the following way:

(M.98)

Using this, the unprimed version, equatid.§5) on pagei 89, and elementary rules offtir-

entiation, we obtain the following two very useful results:

X=X  x=x
o x=x|
= =V (x-x1)

1 -X 1
v S S 7
IX = x| X = x'|3 X = x|

o JX —X|
1 axl,

V(x=X1]) =%

and

(M.99)

(M.100)

<1 END OF EXAMPLE M.6
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ExAmPLE M.7 >DIVERGENCE IN3D

For an arbitraryR® vector fielda(x’), the following relation holds:

v. ( a(x’) ) _ Vv’ -a(x’) +a(x’)~V’( 1 ’) (M.101)

X = x| X — x| X = X/|

which demonstrates how the primed divergence, defined insterf the primed del operator in
equation 1.98) on pagei 99, works.

<1 END OF EXAMPLEM.7

EXAMPLE M.8 >THE LAPLACIAN AND THE DIRAC DELTA

A very useful formula in 30R3 is

1 1 )
vy(ﬂ) =V (IX—X’|) = —4ns(x - X) (M.102)

whered(x — x’) is the 3DDirac delta ‘function’. This formula follows directly from the fact

./vd%(V'v( - ) / V( - x'|3) }{d ( |; ;ls) (M.103)

equals—4r if the integration volumé/(S), enclosed by the surfacV), includesx = x’, and
equals 0 otherwise.

<1 END OF EXAMPLE M.8

EXAMPLE M.g >THE CURL OF A GRADIENT
Using the definition of th&? curl, equation §1.46) on pageigo, and the gradient, equa-
tion (M.41) on pageigo, we see that
V x [Va/(X)] = Eijk)?iajaka(X) (M 104)

which, due to the assumed well-behavednesgxy, vanishes:

5|ij 0j aka(x) = €ijk o ——a(X)X;

P
%, %
=( 82 —i>a(x)f<1

OX20X%3 0X%30%2

& & N (M.105)
* (5X3(9X1 - 6X16X3) Q(X)XZ

9 0 "
* ((9X1(9X2 - 8X28X1) a(X)X3
=0
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We thus find that
Vx[Va(x)] =0 (M. 106)
for any arbitrary, well-behavel® scalar fieldu(x).
In 4D we note that for any well-behaved four-scalar fie{(d)
3,0, - 0,0,)a(x) = 0 (M.107)
so that the four-curl of a four-gradient vanishes just asdoeurl of a gradient ifR®.
Hence, a gradient is always irrotational.

<1 END OF EXAMPLEM.9

>THE DIVERGENCE OF A CURE ExXAMPLE M.10

With the use of the definitions of the divergendé.{3) and the curl, equatiorM.46) on
pageigo, we find that

V[V x a)] = AV x a)]; = didjax) (M.108)

Using the definition for the Levi-Civita symbol, defined byuagjon (M.18) on pagei8s, we
find that, due to the assumed well-behavednes§x)f

0 0
di€ij0ja(x) = f)qfijk*ak

an
0? 9
- ((9X2(9X3 - 6X38X2) al(X)
> lid (M.109)
* ((9X36X1 - 0X18X3) aZ(X)
62 82
* (6X1(9X2 - aXanl) a3(x)
=0
i.e, that
V- [VxaXx)] =0 (M.110)

for any arbitrary, well-behavel® vector fielda(x).

In 4D, the four-divergence of the four-curli®t zero, for

FG,, = d9,a'(x) - D% (x) £ 0 (M.111)

<1 END OF EXAMPLEM.10
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