	Slide 1 / 51
Electromagnetic Waves Practice Problems	

1 Which of the following theories can explain bending of waves behind obstacles into "sh region"?	
---	--

- A Particle theory of light
- B Wave theory of light
- C Kinetic theory
- D Special theory of relativity
- E Classical mechanics

Slide 3 / 51

2 The wave theory of light is associated with:	Slide 4 / 51
 A Isaac Newton B Albert Einstein C Max Plank D Christian Huygens E Robert Milliken 	

 A beam of light has a wavelength of 600 nm in air. What is the frequency of light? (c = 3x10⁸ m/s) 	Slide 5 / 51
A $5.0 \times 10^{14} \text{ Hz}$ B $2.0 \times 10^{14} \text{ Hz}$ C $3.0 \times 10^{14} \text{ Hz}$ D $6.0 \times 10^{14} \text{ Hz}$ E $2.0 \times 10^{14} \text{ Hz}$	

4 A light beam changes its direction when it strikes a boundary between air and water. Which of the following is responsible for this phenomenon?	Slide 6 / 51
 A Diffraction B Interference C Reflection D Refraction E Polarization 	

5	A light beam traveling in air with a wavelength of 600 nm falls on a glass block. What is the wavelength of the light beam in glass? (n = 1.5)	Slide 7 / 51
 (A 500 nm B 400 nm C 600 nm D 300 nm E 900 nm	

6 A light beam traveling in air with a wavelength of 600 nm falls on a glass block. What is the speed of the light beam in glass? (c = 3x10 ⁸ m/s, n = 1.5)	Slide 8 / 51
A 3.0x10 ⁸ m/s B 2.0x10 ₈ m/s C 1.5x10 ⁸ m/s D 1.0x10 ⁸ m/s E 0.5x10 ⁸ m/s	

 A light beam traveling in air with a wavelength of 600 nm falls on a glass block. What is the frequency of the light beam in glass? (c = 3x10⁸ m/s, n = 1.5) 	Slide 9 / 51
A 5.0×10^{14} Hz B 2.5×10^{14} Hz C 3.0×10^{14} Hz D 6.0×10^{14} Hz E 2.0×10^{14} Hz	

e	Which of the following is the correct order of electro-magnetic radiation with an increasing requency?	Slide 10 / 51
Α	Radio Waves, Visible Light, IR Radiation, UV Radiation, X-Rays, γ –Rays	
В	γ –Rays, Visible Light, IR Radiation, UV Radiation, X-Rays, Radio Waves	
С	Radio Waves, UV Radiation, Visible Light, IR Radiation, X-Rays, γ –Rays	
D	Radio Waves, Visible Light, X-Rays, IR Radiation, UV Radiation, γ –Rays	
E	Radio Waves, IR Radiation, Visible Light, UV Radiation, X-Rays, γ –Rays	

9	A light beam spreads when it travels through a
	narrow slit. Which of the following can explain this
	phenomenon?

- A Polarization
- B Reflection
- C Dispersion
- D Diffraction
- E Refraction

Slide 11 / 51

10	In Young's double-slit experiment a series of bright and dark lines was observed. Which of the following principles is responsible for this
	phenomenon?

- A Polarization
- **B** Reflection
- C Dispersion
- D Interference
- E Refraction

Slide 12 / 51

11 Which of the following electro-magnetic waves can be diffracted by a building? A Radio waves B Infrared waves C Ultraviolet waves D Visible light E γ-Waves

12 A bl	ue beam of light falls on two narrow slits	Slide 14 / 51
proc	lucing an interference pattern on a screen. If	
the s	ead blue light a red beam of light was used in same experiment, which new changes to the ference pattern we can observe?	
	terference fringes move close to the central aximum	
	terference fringes move away from the central aximum	
C No	o change in interference	
D Bi	ight fringes are replaced with dark fringes	
E Tł	ne number of fringes increases	

13	In a Young's double-slit experiment interference pattern is observed on a screen. The apparatus is then submerged into water. What is the new change in the interference pattern?
	-

- A Interference fringes move close to the central maximum
- **B** Interference fringes move away from the central maximum
- C No change in interference
- D Bright fringes are replaced with dark fringes
- E The number of fringes increases

Slide 15 / 51

14	Two coherent light waves approaching a certain point on a screen produce a constructive interference. The optical extra distance traveled	Slide 16 / 51
	by one of the waves is:	
A	λ/2	
E	λ/3	
C	3/2	
0	λ	
E	5λ/2	

I	In a Young's double-slit experiment the distance between the slits increases. What happens to the separation between the fringes?	Slide 17 / 51
A B C D E	Increases Decreases Stays the same Increases for the bright fringes and decreases for the dark fringes Increases for the dark fringes and decreases for the bright fringes	

16 In a double-slit experiment a distance between the slits is doubled. What happens to the separation between the two adjacent maxima?	Slide 18 / 51
 A Doubles B Quadruples C Is cut to a half D Is cut to a quarter E Stays the same 	

i	In a single-slit experiment as a result of interference of a laser beam a student observes a	Slide 19 / 51
set of red and dark concentric circles. When he increases the slit separation what happens to the interference pattern?		
Α	The separation between the circles increases	
в	The separation between the circles decreases	
С	No change in interference pattern	
D	The separation between the circles increases and then decreases	

E The separation between the circles decreases and then increases

Clida 10/51

1	A light beam falls on a thin film and partially reflects from the film and partially transmits	Slide 20 / 51
	hrough the film. What is the phase difference between the reflected and transmitted waves?	
Α	λ	
в	2λ	
С	λ/3	
D	λ/4	
Е	λ/2	

t	A light beam traveling in water enters air. What is the phase difference between the incident and transmitted waves?	Slide 21 / 51
А	0	
в	2λ	
С	λ/3	
D	λ/4	
Е	λ/2	

20	A light beam of coherent waves with a wavelength of 600 nm falls perpendicularly on a diffraction grating. The separation between two adjacent slits	Slide 22 / 51
	is 1.8 μ m. What is the maximum number of spectral orders can be observed on a screen?	
A	A 1	
E	3 2	
C	3	
0) 4	
E	5	

21 Sun rays fall on a glass prism. Which of the following rays will be refracted the least?	Slide 23 / 51
 A Blue B Violet C Green D Yellow E Red 	

Unpolarized light passes through two Polaroids; the axis of one is vertical and that of the other is 60° to the vertical. If the intensity of the incident light is I_0 , what is the intensity of the transmitted light?
ngnt?

- $A I_0$
- B I₀ /4
- C I₀/3
- D I₀/2
- E I₀/8

	Slide 24 / 51	
_	 	
_		

Slide 25 / 51

Free Response

1. Coherent monochromatic light falls normally on two slits separated by a distance d = 2.2 mm. The interference pattern is observed on a screen L = 4 m from the slits.

d. If one of the slits is covered with a glass block and two waves emerge from the slits 180° out of phase. Describe the interference pattern on the screen.

Slide 30 / 51

a. Determine the path difference between two blue waves arriving to the first order maximum.

Detector _____

2. In a double-slit experiment sun rays are incident on two narrow slits 2.4 mm apart. Colored fringes are observed on a detector screen 2 m away from the slits. ($\lambda_{violet} = 400$ nm, $\lambda_{red} = 700$ nm) b. Determine the path difference between two red waves arriving to the	Double Slit Experiment Sunlight	Slide 33 / 51
first order maximum.	Detector	

3. Light with two wavelengths Abue = 450 nm and A_{red} = 700 nm is incident on a 6000 interference pattern is observed on a screen 2.5 m away. c. What is the distance between two red and blue spectrum lines in the second order?

5. A soap bubble is illuminated with 480 nm light. 1 2 The index of refraction of the bubble is 1.3.	Slide 48 / 51
a. Calculate the frequency of the incident light?	

 5. A soap bubble is illuminated with 480 nm light. The index of refraction of the bubble is 1.3. d. Calculate the minimum nonzero thickness of air 	Slide 51 / 51
the film required to maximize the intensity of the reflected light.	