Chapter 4

ELECTROMAGNETISM A

4-2 Fields of a moving charge (Feynman’s Equation)

In this Section we’ll prove an important equation that Feynman gives in his Lectures
without proof. In his own words:

B When we studied light, we began by writing down equations for the electric and
magnetic fields produced by a charge which moves in any arbitrary way. Those equations

were ! » P
q €y r €,/
E— i — " e, 921.1
Areg |:7’/2 * c dt<r’2) * 2dr’ } (21.1)

cB=e- XE

If a charge moves in an arbitrary way, the electric field we would find now at some
point depends only on the position and motion of the charge not now, but at an earlier
time-at an instant which is earlier by the time it would take light, going at the speed c,
to travel the distance r’ from the charge to the field point. In other words, if we want the
electric field at point (1) at the time ¢, we must calculate the location (2’) of the charge
and its motion at the time (¢ —1'/c), where 7’ is the distance to the point (1) from the

Isee [15], The Feynman Lectures on Physics, Volume II-Mainly Electromagnetism and Matter, Chapter 21, equation
(21.1)
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position of the charge (2') at the time (¢t —1'/c).
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(1)

Position at
t—r'/c

Position at t

Fig. 21-1. The fields at (1) at the time ¢t
depend on the position (2') occupied by the
charge g at the time (t — r'/c).

The prime is to remind you that 7’

is the so-called retarded distance from the point (2') to the point (1), and not the actual
distance between point (2), the position of the charge at the time ¢, and the field point
(1)(see Fig. 21-1)m

This Section is split in Subsections.

The main job is done in the first Subsection,

while in the Subsections that follow proofs or explanations are given in detail for the
calculation jumps in the first one, in order to have an uninterrupted continuity in the

main job.

4-2.1 The scalar ¢ (x,t) and vector A (x,t) potentials

Since

and

0A
= VO
B=VXxA

we start with the retarded potentials, scalar and vector :

47T60

(- 2=
/ / / ” HC d®x’,  scalar potential
x — X
(0 - =0)
— 4 /// % ”C d*x’,  vector potential
T x — X

(4-2.1)

(4-2.2)

(4-2.3)

(4-2.4)
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By these two equations we’ll find the potentials at field point x = (21,2, x3) and
time t, taking into account the contributions of charges and their currents from all points

x' = (x], 2y, 2%) at the retarded time

X =]

t'=t 4-2.5
. (425
since a time period At = ||x’ — x||/c is needed for this contribution to travel with the
speed of light ¢ from x' to x.
Note that the retarded time ¢’ is a function of x,x',t
t/:t/(X X Zf) —— ”X,_XH
Y Y c
\/(ac’ — 21 4 (2 — x3) + (2 — x3)°
B 2 ’ (4-2.6)
c
1
/! /I 3
=t— (76 = 7o) (6 — 20)] ., Einstein’s convention on o

Cc

Let a point charge ¢ moving with position vector £ (¢), as in Fig.4.1. 2 We suppose
that

%}@H <c (4-2.7)

The volume charge density would be expressed via Dirac d—function *

p(x,t)=q-8(x —&(1)) (4-2.8)

as well as the charge current density

jet =g (e e0) - B0 =g - g@) v (429

where

V(E) = (u1 (1) vs (£) 05 (1)) = (dillt(”, ) df;t(’f)) - &0 (42.10)

the velocity of the charge. The potentials have the following expressions

o)
¢(x,t):47§€o /// e x d>x’ (4-2.11)

(e =) (-2

53
Hoq 3/
A = — 4-2.12
(1) 4m /// [x" —x|| Px )

2see 3D version of Figure 4.1 in Chapter I , Figure 1.7
3if r = (x,y,2) the 3-dimensional §—function §° (x) is the product of the three 1-dimensional §—functions

8% (x) =8 (2) 8 (y) 6 (2)
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Figure 4.1: Charge ¢ moving in any arbitrary way & (¢) .

As explained in Subsection 4-2.3, we proceed to the following variable change from x’ to
u

/ —_—
u=x—¢ (t - u) —F(x) (4-2.13)
c
as in equation (4-2.63) in Subsection 4-2.3.
In Subsection 4-2.4 we prove that the function F (x’) is invertible and so

oy = Q) o [0 uw)) (12.12)
0 (u1,ug, us3) O (v, x4, 73) .

as proved in Subsection 4-2.3, see equation (4-2.91). We'll use the relation containing the
8 (ula Uz, U3)

———— for convenience as we’ll shall see in the following calculations.
d (7, 25, 73)

Jacobian
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Now, in equations (4-2.11) and (4-2.12) we make the following substitutions

, _
F(x')=x'-¢(t— lIx" = x| —u, ¥ —F'), &Fx— 0 (w1, up, s) d*u
¢ 8 (xh x,27 'Til})
(4-2.15)
as in equation (4-2.79) in Subsection 4-2.3.
6% (u) 3
t) d 4-2.16
¢ * 47T€0 /// ||F || . 8(“17'“2’“’3) " ( )

0 (a4, 5, %)

( |F-! (U)—XH)
A (x,t) = ’““’q / / / ¢ d*u (4-2.17)

B
1 () — 5] 20220 )
a (33'1, $2, .1'3)

— £

Figure 4.2: Charge ¢ at point P* emits a light beam at time t* towards field point A.
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- v '3;.*1 ’ !” - -
©° - present time t .. S

- - ’ ’ o~ v -

Figure 4.3: Charge ¢ is at point P at time ¢ when its emitted (from P* at time ¢*) light beam arrives at
field point A.

So

6 (x,t) = (4-2.18)

MALSIUE)
A (x,t) = 1ot c (4-2.19)

47_‘_ a<U1,u27u3):|
F-1(0) — x| - [ﬁ
“ ( ) “ 8(x1,$27x3) u=0

Now, in order to examine in detail what is behind these two equations we must

0
find what are the quantities F~!(0), [M

and if there exists a physical
0 (xll? LC,2, xé):| u=0
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interpretation.

99

For F~!(0) we have to say that putting u = 0 in equation (4-2.13) this quantity

is a solution with respect to x’ of the equation

0-x—g (1= X

So let x* a solution of above equation, that is :

x* d?f X*—£<t—||x _XH):O

C

(4-2.20)

(4-2.21)

Figure 4.4: The field point A as seen by charge ¢ from the retarded point P* and time t* of the later.

In Subsection 4-2.4 we prove not only that there exists a solution x* but moreover
that this solution is unique. The proof is based on the assumption that the speed of the
charged particle is always less than that of light ¢, see equation (4-2.7). The physical

interpretation for x* runs as follows :

1. The vector x* is the position vector of the charge on its trajectory at a retarded

point P* at a retarded time

N c

(4-2.22)
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and

x*=¢(t*)=F1(0) (4-2.23)

2. If the charge emits a light beam from the retarded point P* (position vector x* )
and the retarded time t* towards the field point A (position vector x ), see Figure
4.2, * then after a time period At =t —t* = ||x* — x]|/c the light beam will arrive
at point A and the charge ¢ at its present point P at the present time ¢ , see
Figure 4.3. °

dg€ (1)

For given equation of motion & (¢t) with HT < ¢ for any t, the retarded position

x* and retarded time t* are functions of x and ¢.
Now, for the Jacobian the following expression is proved in Subsection 4-2.6, see
equation (4-2.119) and definitions (4-2.120) to (4-2.122) repeated here

{3(101,“2#3)} _ [8(’“1&2,%3)} _1_Y (t*) o mg
u=0 x/=x*

0 (&, x5, 75) 0 (a4, w5, %) ¢

< ||x—x*||> (x—x*)
L c x—x]

= x (repeatd-2.119)

where

R=x—-x"=x—-&(t") (repeat4-2.120)
R=[R| =[x —x"| (repeatd-2.121)
R x —x*
ng = = " (repeat4-2.122)
ORI k= x|

all shown in Figure 4.4. °

0
Using expressions (4-2.23) and (4-2.119) for F~!(0) and 0 (1, uz, us) respec-
0 (xh, 25, 2%) | .o

tively, equations (4-2.18) and (4-2.19) for the potentials yield

q 1

dre, lIx — x*|| X — x*
Ix—x*||-|1-v|[t———— )0 ——
c c|lx —x*||

4see 3D version of Figure 4.2 in Appendix I, Figure 1.8
5see 3D version of Figure 4.3 in Appendix I, Figure 1.9
6see 3D version of Figure 4.4 in Appendix I, Figure 1.10

¢ (x,t) = (4-2.24)
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[x —x7|
A (x,t) = £ ’ (t _ %> (4-2.25)

4 |x — x*|| x — x*
Ix—x*||- |[1-Vv | t——— ) o | /——
c cllx —x*||

If we have in mind that the retarded position is an implicit function of x,¢, that is
x* = x* (x,t), then we can find the field components E, B from equations (4-2.1),(4-2.2)
by differentiations with respect to the components of x and to time ¢ .

1 1
¢ (x.1) = 4736 v (%) - 47?6 xR (4-2.26)
- o, | e
A (X, t) _ Hod v (t*) _ /i:rq ‘;(t;) _ VS*)¢ (X, t) (4_227)

4 {1_v(t*)

omg |- Jx -]

Note that in equation (4-2.26) the scalar potential ¢ (x, t) seems to be the electrostatic
one, not caused by the charge ¢ but by a charge ¢/ that is greater than, less than or
equal to ¢ depending upon the relation of s to 1 : 2 <1, x> 1, =1 respectively.
That is if the charge is coming closer, is running away or nothing of these two respectively.

In above two equations x*, t*, R, R, n, and s are all implicit functions of x,¢:

x* (x,t), t"(x,t), R(x,t), R(x,t), ng(x,t), »x(x1) (4-2.28)
We must have in mind this dependence when we differentiate with respect to ¢ and
the components of x.
4-2.2 The electric E (x,t) and magnetic B (x,t) fields vectors

We'll use the expressions (4-2.26),(4-2.27) for the potentials to find the electric and mag-
netic field vectors by equations (4-2.1),(4-2.2)

E=-V¢—- oA (repeat4-2.1)
ot
and
B=VxA (repeatd-2.2)

Note that the Feynman’s Lectures equation (21.1), see at the beginning of this Section
4-2, is expressed by a unit vector e, and a scalar 7" = |||, as in Figure (21.1) of the
Lectures, shown also at the beginning of the aforementioned Section. Comparing this
Figure with Figure 4.4 we see that there exists the following correspondence

@)= @), =D = =R, (er=%) = (m =) @220)
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and Feynman’s equation with hither symbols is

q [n, Rd[ng 1 d?
E— O 00 (M) - @ 4-2.
Areg {RQ @ <R2> T EaE™ (4-2.30)

To reach above equation from (4-2.1) by differentiations of the potentials equations (4-
2.26),(4-2.27) it would be useful, convenient and overall necessary to express any quantity
appeared in these last ones as function of R, n, and their partial derivatives with respect
to t and the components of x.. There are two quantities we must handle : » and v (¢*).
But from equation (4-2.119)

1Y) n, (4-2.31)
c
So we start with the remaining v (¢*). Since &€ (t*) = x* =x — R, see (4-2.120),
S——
v(t*)
that I o R (0RO
* o (9B e 1 ]
v (t%) 5 = o (675 n, +R T ) (4-2.32)
From equation (4-2.22)
ey ™ = i =1— R (repeat4-2.22)
c c
" o OR
-1 42,
ot cot (42.33)
and (4-2.32) yields
JR OR
W ot ot R ong ]
v (t*) = 1_6_R = 1_@ n, + 1_0_R o (4-2.34)
cot cot cot
From above expression and equation (4-2.31)
! (4-2.35)
= - oR -2.
cot
since : 5 10/ ) 10,
n, L Ny 0Ng _ - Ny _ _
RO T2 ot > o Y (42:36)

Replacing expressions (4-2.34),(4-2.35) in equations (4-2.26),(4-2.27) yields the fol-
lowing ones for the potentials as functions of R, R,n, and their partial derivatives with
respect to ¢
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OR
¢ \' "o
o (x,t) = e, B (4-2.37)
qg 10R q 10R on
A(x,t) = — Sl —t, + s 42,
(x:?) Are,c2 R Ot 4me,c (R ot m + ot ) (4-2.38)

We'll try now to find V¢ by differentiation of (4-2.37)
)
4re, cot OR 1 1 OR
_ % — v |~ 1= = Bkl vl (N [l
pveoo = gt =) v () 2 (- )

SO

()
d7e, B cot 1 0(VR)
It’s necessary now to handle VR
OR OR OR
OR 1 OR? 1 9(RoR) R OR oR
— = ———=————t=—0— = — 4-2.41
8a:j 2R 8:cj 2R 8:cj R ° (%cj M © 8:cj ( )
Since R =x — £ (t*), see (4-2.120),
OR  O[x— €Y  Ox O (1Y) de (t*) ot ot
_ — _ — e — —e; — 4-2.42
03:]- 8I‘j 83:]- 8xj © dt* 8xj € v (t ) (9xj ( )
1 0 0
(S 0 €y — 1 €3 — 0 (4—243)
0 0 1

the basic vectors of the orthonormal system of coordinates Oxixoxs.
From equation (4-2.22)

e *— R
e Ix* = ] =t—— (repeat4-2.22)
c c
that is
ot*  OR
Oz, c0x;
w0 VR
Vt*' = —— (4-2.44)

and (4-2.42) yields
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OR v (t*) OR
" — e - 4-2.
Oz, © c Ox; (4-245)
But from (4-2.41)
a—R—n og—R—n oe-—l—v(t*)a—R =(n,oej) + V<t*)on 3_R
or; % 9x; ® ! c Oxr;] R c ®| O,
SO
OR _ (ng oej) _ (ng); _ <1 _ (9_3) (n,).
z; [ v (t*) } » cot J
l———=on,
c
. R OR
nR.
_R _n, [, OR 4-2.4
Vi xR  x (1 c@t) r ( 6)

Inserting this in equation (4-2.39)

(%)
47;60V¢ (x,1) = cot 1 0 {(1 3R> HR}

= =T ral\' @

that is

1
4me,

—Vo(x,t) =

L 20R 1 (ORN' 1 @R (1 1 OR\On,
R? c¢R?2 0t c2R? \ Ot 2R Ot2 R cR 2R Ot ot

(4-2.47)
From equation (4-2.38)

dmetOA(xt) 0 (1OR - dny\ _ [0 (10R\) ~ (10R\0n, 0°n,
q ot ot \Rot™ ot ) T\t \R ot R\ROt) ot 02

SO

A (x,t) ¢ 1 R 1 [OR\’ 1 OR\ On, &°n
ot dme, | | 2R Ot?  c2R2 \ Ot R 2R Ot ) ot c20t?
(4-2.48)
Adding equations (4-2.47),(4-2.48) yields
E(Xat):_vqb(X?t)_M
ot
C o [f1 2o n gom\' 1R\ (1 1 oR)m,
o drme, || B2 cR?2 Ot 2R?2 \ Ot 2R Ot? R cR ROt ) Ot
o [ @R 1 (oRY (1 or) om0,
dme, | | 2R Ot2  2R?2 \ Ot R 2R Ot ) ot c2ot?

_a [f1 20R\ (1 1 0R)on,
dwe, || R2 cR2Ot | R cR ROt ) Ot
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SO _ -
qg |n, R 2 OR 1 On, 9*n,
E(x,t) = —+— == ——
R el ( Bo T m o ) e
5 /n,
_ w () _
and finally
q [n, RO [(ng 0*n,
E(x,t) = —= 4+ —— = 4-2.49
(1) 47e, [RQ LT (RZ) MR ( )
For given field point, that is position vector x
0 d
—=— 4-2.50
ot dt ( )
and then equation (4-2.49) yields the Feynman Lectures one
q [n, Rd[ng 1 d?
E= — 4+ —— = —— 4-2.51
Areg [RQ * cdt<R2> T EaE™ ( )

For the magnetic flux density vector B = V X A, equation (4-2.38) with the
expression (4-2.46) for VR yields ” For the magnetic flux density vector B =V X A |
equation (4-2.38) with the expression (4-2.46) for VR yields ®

4me,c

2 1 0R 1 OR 1 R

(1 OR 10(V xR)
—(—ﬁVR) o TR o

RigE OR OR o, 1] 10(V xR)
- H_W (1_08t) HR} % { o e TR H TR o
qg 1
V X A(x,t) =

1 1_@ X@nR _9(VXR)
dre,c2 R cot r ot ot

So, it remains to express V X R as function of R,n, and their derivatives. Starting
from the definition

SO

(4-2.52)

[OR; OR;]
(e e ez ] Ory  Oxs
0 0 0 OR OR:
V xR = = | == - == (4-2.53)
ox 1 8272 81'3 8$3 ox 1
Ry Ry, Ry] |0R, OR
| 01 Owo
7we make use of the identity
V X (Ya)=Vy Xa + YV X a (repeatA-2.9)
see equation (A-2.9) in Appendix A
8we make use of the identity
V X (Ya)=Vy Xa+ YV Xa (repeatA-2.9)

see equation (A-2.9) in Appendix A
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But we have already the expressions of OR;/0x; in equation (4-2.45) written component-
wise as

8RZ - U; (t*> OR
i 8 +

Above equation could be written as a so-called Jacobian matrix, which in our case is also
the so-called directional derivative of R with respect to x

(4-2.54)

c Ox;

_8R1 /(99(:1 8R1 /8372 8R1 /8373

%’ dEef 6RZ = 8R2/8x1 8R2/8x2 8R2/8[L’3
Dx Oz,

_6R3/8I1 8R3/8m2 8R3/6x3

-1 n U1 (t*) (9R U1 (t*) 8R U1 (t*) G_R T
c 0x c  0x9 ¢ Oxs
_| wn@)OorR  nE) R na(t)OR (4-2.55)
c 0 ¢ 0xo ¢ Ors
U3 (t*) OR U3 (t*) OR 14 U3 (t*) 8_R
L c Oz c O ¢ Oxs]
With the help of above equation (4-2.53) reads
o, _on
Oxy  Oxg [ e € ez |
0R, ORj 1| OR OR OR
VXR=|—-—| =~
x 81'3 (91'1 Cc 8111 81‘2 8:1:3
OR, OR, Jor (£%) w2 (£7) w3 (£7) ]
L 021 dx |
SO .
VXR= - [VR X v (t*)] (4-2.56)

Inserting the expressions (4-2.46),(4-2.34) of VR, v (t*) respectively, repeated here for
convenience

R n, OR
VR = B e T <1 — c??t) n, (repeat4-2.46)
9R OR
vy o | ) n (o,

OR OR
@‘@) (“@0

R Ong,
V XR= —z (l’lR X W) (4—257)

|_omy (o
cot
(repeat4-2.34)
we have
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9(VxR) 1([0R on,, 9°n,,
__1[(OR ong 4-2.
at c{(at)(nf‘x at)+R(nRx o2 (4-2.58)

Inserting this expression in (4-2.53) yields

o oq 1 _OR on, 1([/0R ong, 0
VXA(X’t)_ZlﬂeoczR {(1 c@t) (nRX t +c at )\ o e

_ Lom, 10,
 dre,c [HR % (cR ot * c? ot

B q 1 On, 10°n,
B(x,t) =V X A(x,t) = e [nR X (CR T + 2 o (4-2.59)

Above equation with the help of (4-2.49) is expressed as

1 q 1 On 10*n
B(x.t) = - el S
(1) e X [47%0 (CR ot 2 or )]

.

SO

SO

v~

q 1 2
E(xt)— 41e, (ﬁiﬁ) DR

and finally the 2nd equation of Feynman Lectures

¢B(x,t) =n, X E(x,t) (4-2.60)

4-2.3 Integrals with Dirac /—function
The integrals in (4-2.11 ) and (4-2.12) are of the form

47?60 / / / & (F (X')>H(X’) d’x’ (4-2.61)
Alt) = /Zf / / / 5 (F (XI>>G(X') d’x’ (4-2.62)

where F (x'), G (x') vector functions and H (x’) scalar function of the vector variable x’

¢ (x,1) =

C

F(x)=x —¢ (t - u) (4-2.63)

[x" — x|
G (x) = . (t _ T> (4-2.64)

% — x|

1

% = x|

H(x') = (4-2.65)
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We can handle easily integrals where the vector variable of integration, let u, is the
argument of the d—function, for example

/ / / 5 () L () d*u = L. (0) (4-2.66)
/ / / 6% (u) M (u) d*u = M (0) (4-2.67)

But to handle integrals of the form (4-2.61) and (4-2.62)

/ / / 53( ) (x') d*x’ (4-2.68)
/ / / 5 (F <x'))G(X') ! (4-2.69)

where F (x') # x/, that is the argument of the —function is not the variable of integration,
we must proceed to a change of the vector variable from x’ to u

u=F(x) (4-2.70)
and check with care if we can convert without complications these integrals to expressions
like (4-2.66)and (4-2.67).

Indeed, if the vector function F in (4-2.70) is invertible then
x' = F~!(u) (4-2.71)

It remains one step : to find the relation between the infinitesimal volumes d*x’ =
dzdxhdzly and d*u = duydusdus . We have the following linear transformation between
infinitesimals

8x1 o)
! 4-2.72
oz 837’ oxl,
r 2 2 -
d$2 = aUI du1 + au2d 2 au3 (4 273)
,  Ox ozl oxl,
= 4-2.74
dZE3 au1 du1 + au2 dUQ + 8u3dU3 ( 7 )
or
d, [0x) Ox) 0} du,
b %
dx' = |day| = |22 282 2] gy, | = J(FY) du (4-2.75)
g Oxy Ozy Ol J
3 (9u1 3u2 8u3 s
where
[0x| Ox| Ox)]
B 3
JE) L |2 2 I 4-2.76
Oxy Oxy 05
Oou; Ouy Ous |
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the so-called Jacobian matrix of the vector function F~!, a matrix function of u. We
know that for an invertible linear transformation the ratio of the transformed to the initial
volume is equal to the determinant of the respective matrix. So

0 (¢, 7y, 7%5)

d*x' = d* 4-2.
x a (ulu Usg, Ug) " ( 77)
where

ory 0x) 0z}
o (2. ) 20 Quy Jup Juy
Ty, Ty, T3) def -1 Ly Oy 0Ty

——==- =det |J(F = 4-2.78

0 (u1, uz, us3) ‘ [ ( )} 3“} au; 3”; ( )
Oxy  Oxy  Oxy
aul 3u2 8U3

the so-called Jacobian of the vector function F~!, the determinant of the Jacobi matrix
J (F~1). The Jacobian is a scalar function of u.

Now, if in equations (4-2.68)and (4-2.69) we make the following substitutions

0 (x}, w5, 2%5)

F(x)—u, ¥ —F'u, & — d*u (4-2.79)

a (Ul, U2, U’3)

according to equations (4-2.70),(4-2.71) and (4-2.77) respectively, then these integrals are
converted to the form of (4-2.66) and (4-2.67), that is

///53(F (x’))H(x’) d’ ’=///53 (w) H (F~" () %d%
—H (F—l

(0)) {M] - (4-2.80)

8 (u17 U2, u3)

/// 5 (F (x’))G(x’) d’ ’=///53 (0) G (F' (u)) %cﬁu

G () [2lrizbd)]

a (ub Uz, Ug)

(4-2.81)

Note that starting from equation (4-2.71) we found equations (4-2.72) to (4-2.78)
concerning the vector function F~!'. With similar steps we can start from (4-2.70) and
find the respective equations for the vector function F. Indeed

aul

8u2 0u2 8u2
duy = dx’ + —dz), + —dx" 4-2.83
U2 = G LT G e T G (4-2.83)
ou ou ou
dus — 8_ac;jdxll + a—de:c; + a—dexg (4-2.84)
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or

du ’8u1 3u1 6’u1‘ dr
IRERERE N
Uz U2 Uz
et d —= d — F ! 4-2
du Uo orl ox, o T J(F)dx (4-2.85)
d 8U3 8U3 8u3 d
Bl |02 0 oz, LT
here
whet '8u1 (?ul 3u1'
ou ou ou
def U2 Ug U2
J (F) = 6m’1 3x’2 Oxg (4—2.86)
8u3 8u3 8u3
L0z Ozl Oxf

the Jacobian matrix of the vector function F, a matrix function of x’. So

8 (ula U2, US)

dPu = %’ 4-2.87
5 (x}. w7} (+257)
where
(9u1 8u1 Bul
b 5 &
0 (Ully U/2; U?) dEGf det [J (F)] _ u/2 ulz u/g (4_288)
0 (2, x5, 73) Oxy 0wy Oxly
8U3 8u3 8u3
ox| Oxf, Oz}

the Jacobian of the vector function F, the determinant of the Jacobi matrix J (F). The
Jacobian is a scalar function of x’'. From equations (4-2.76) and (4-2.86) we have

Oz} Oz} Ox)] [Our Oup Oup]
Oou; Ouy Ou ox, Oxl, O
| 0wy Quy Qug| | 0wy Oy Oy
orh, O, Ox Ouz Ous Ous
[Ou;  Ous Ougl LOxy Oz, Oxf]
gx} 0 0
o 100
=10 20 |=]010]=I
O 00 1
0 0 o
i ozt |
)
JE)=IFE)]" (4-2.89)

This means that for the Jacobian determinants we have

0 (x, x4, 73) - {8 (u1, ug, U3)] !

0 (uy,ug, us) - 0 (2, xh, xf)

(4-2.90)
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and equation (4-2.77) is completed to

a (xlla CCIQ’ ‘rg)d?:u —

@i’ = e
a(u17u27u3> 8(‘T,17'r/27xg>

d*u (4-2.91)

4-2.4 Properties of function : F (x') =x"— & [t —
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Figure 4.5: When the charge ¢ is at its present position, point P time ¢, a spherical light wave is emitted
from field point A to the past and the video of the motion of the charge is played from ¢ backwards in

time.

We see that to handle the integrals in equations (4-2.11),(4-2.12) in Subsection 4-2.1,
we proceeded to the following variable change from x’ to u, equation (4-2.13), repeated

below

/ j—
u=x"—¢&(t— lIx = =F (x) (repeat4-2.13)

Cc
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Figure 4.6: The spherical light wave front emitted to the past, see Figure 4.5, is moving with radial speed
¢ greater than the radial speed of the charge, so coming closer and closer to arrest on its trajectory the
backwards in time moving charge ¢ .

as also in equation (4-2.63) in Subsection 4-2.3.

This procedure would have sense if the vector function F (x’) of the vector variable
x’ is invertible, which means that for every vector u not only there exists a vector
x' satisfying above equation but also that this vector is unique. This inverse existence
ensures a non-zero Jacobian, see Subsection 4-2.6.

Now, it is proved below that the existence and uniqueness of the solution of equation
(4-2.13) with respect to x’ for any u is equivalent to the existence and uniqueness of the
solution of equation (4-2.13) with respect to x’ for u = 0 that is of equation (4-2.20)
repeated here

, pR—
0=x"—-¢ (t — M) (repeatd-2.20)
c

So, let suppose that above equation has a solution x* (x,¢) (for any x and ¢ ) and
this solution is unique, see also equation (4-2.21) repeated here




4-2. FIELDS OF A MOVING CHARGE (FEYNMAN’S EQUATION) 73

P e “ Yo s Ty
7, -~ ~ 8o ~ .
R N o -
bl = > ~ S S
Il v I o

= - |\ ~ e - S
SRR A o~ ST - ) ‘_.3_ P = present position, time t
S 4 !

50N T e

N ISR | ~. . SN BT PR
. T ‘ |\ & h To s S -~
R SRL R e So P
R et 2~ E P
22 - - T I .l AR
Sog Xy - S X L A e

-~ R s e W TS
S < S - - ~
e -~ Sg g R S
Vg 1 |._‘ 7 ~\\; \y\;’ o =% -
=g o, ~. >
oy SIS ls 4 . I T — - A
| <7 P -~ "~._; P" =retarded position, time t .

Figure 4.7: The spherical light wave front emitted to the past, see Figures 4.5 and 4.6 , is arresting at
the retarded time t* on the retarded point P* on its trajectory the backwards in time moving charge q.

def

x* : X*_g t_”X*_XH

=0 (repeat4-2.21)
c

Then equation (4-2.13) is written as

/—"H/—’YA
[x'—u)—(x—u]

c

——
(x'—u)—€ | t— =0 (4-2.92)

or ,
- . Iy =yl
C

y —0 (4-2.93)
with

/

y=x"—u, y=Xx—u (4-2.94)
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Figure 4.8: Proving the existence of a retarded position and time

with existing and unique solution
y =x*(y,t) =x* (x —u,t) (4-2.95)

S0
X =u+y =u+x*(x—ut)=F"'(u (4-2.96)

Let proceed now to prove the existence and uniqueness of the solution x* (x,t) (for
any x and t) of equation (4-2.21).

We'll travel backwards in time as shown in Figure 4.5: © when the charge is at present
point P on present time ¢, a spherical light wave is emitted from field point A (position
vector X ) to the past. The charge ¢ starts moving backwards in time from its present
position P . In Figure 4.6 ' events are shown at a moment, say ¢, (t* <t, <t), as
the system is moving backwards in time. In Figure 4.7 ! the light wave, ”running” with
speed c, is arresting on the retarded time t* at the retarded point P* on its trajectory
the backwards in time moving charge ¢ . That this would happen at least once is shown
in Figure 4.8: the charge, being at point P, on time ¢, has radial speed || (v,), || less
than ¢ since

9see 3D version of Figure 4.5 in Appendix I, Figure 1.11
10see 3D version of Figure 4.6 in Appendix I, Figure 1.12
Hsee 3D version of Figure 4.7 in Appendix I, Figure 1.13
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Figure 4.9: Proving the uniqueness of the retarded position and time

L v Il < 1 (vo) || = Hd€ (&)

‘ <c (4-2.97)

according to the assumption that the instantaneous speed of the charge ¢ never exceeds
that of light speed ¢, equation (4-2.7). All will be more clear if we watch the events on
the radius AP, joining the charge ¢ to the field point A. The spherical wave front on this
radius, point F, is moving with speed ¢ always greater than the radial speed || (v,), ||
of the charge. So, we have proved the existence of at least one retarded point. Of course,
we assume that the charge exists deep in the past (it’s not created near the present time,
for example).

Now, we’ll proceed on the same foot to the proof of uniqueness : suppose that to the
present position P of the charge at time ¢ ( position vector € (¢)) and to the field point
A ( position vector x ) there correspond two different retarded time moments 7,5 with
different in general '* retarded positions P}, P3 respectively, as in Figure 4.9. Then the
distance As travelled by the charge on its trajectory in the time interval [¢],¢5] is

/ t;
t

This is the length of the generally curved trajectory of the charge between points
Py, P3| greater or equal to the length of the straight segment PP} . so

s

A p—
s dt

(4-2.98)

12in general, since there exists the special case of the charge describing a closed loop, that is Py =Py.
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e

o 2 |lry =] 2 [[frafl = [Iral[| = [ro = m| = et = 7] (4-2.99)

3
/t*

1

As 1

i3 — ] Jt5 — 7]

s

> 4-2.1
o >c ( 00)

which means that "the mean value of the charge speed in the referred time interval is
greater or equal to that of light ¢”, in contradiction to the hypothesis of equation (4-2.7)

dg (t
H%H <c (repeatd-2.7)

This completes the proof about the uniqueness of the retarded time and position.

0 F—
4-2.5 The Jacobian M of u=F(x)=x"—-€¢(t— lIx = X

a (xl’ Lo, .T3) ¢
In this Subsection we’ll find a general expression for the Jacobian of the vector function
F (x') of the vector variable x’ that is defined in equation (4-2.13) and is repeated here
for convenience

_ X =X
Cc

u=x'—¢ (t > —x —¢(t)=F(¥) (4-2.101)

where

R e R ek
C C

(4-2.102)

as defined in equation (4-2.5) repeated also here.

Note that this function represents a transformation or better a variable change from
x' to u.

The Jacobian of a vector function is a determinant as defined in equation (4-2.88)
written also as

aul 6’u1 (9u1

os; 0, Or,
0 (u1, up, us) U2 G T2 o (Vg X Vo) (4-2.103)
O (. ahah) — |0af Oxfy Ox

8U3 au:), aU3

ox} Oz, Oz}

where

v dzef( 0 0 i) (4-2.104)
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u .
Although we’ll find a general expression for —2 it would be better to write down
L
equation (4-2.101) in components, in order to understand what is going on with a large

number of differentiations :

V=0 + (@ = 22) + (2 — 25)°

Uy = .fCll - fl (t/) = iL'll — 61 t— g (4—2105)
\/(:z: —21)” + (xh) — 29)? + (2 — x3)°
uy =15 — & (1) =25 = & (t - - : (4-2.106)
c
\/(Jc’ —x1)” + (2 — 29)? + (2 — x5)°
Uz = JTg - 63 (t/) = .’L’g — §3 (t — - 2 ’ (4—2107)
c
or in one stroke
V@ — 20?4 (@ — w2 + (o — )
c
From this last equation
Ou; Ox; 0& (1) dg; (t') ot
_ 0Ty Y S 4-2.1
or,  or, or, ' dt oz (4-2.109)
From equation (4-2.102)
ot r_ o
= (i, — i) _ o mk/) =2 (42110
R e o
where n = (nj,n2,n3) the unit vector
_ /
nE 2% (4-2.111)
[Ix = x|
so equation (4-2.109) yields
Ju; v; (t)
=0, — +— 4-2.112
oz}, i c * ( )

where v; () the j-component of the charge ¢ velocity vector v (t), see equation (4-2.10).
Now, let the basic vectors of the orthonormal system of coordinates O'z}z4z; be

1 0 0
e = 0 €y = 1 €3 = 0 (4—2113)
0 0 1

Equation (4-2.112), under the Einstein’s convention for the summation with respect to
repeated indices, yields
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ou; t'
V/ j = a_u/]ek = 0jk€L — 4 )nkek (4—2114)
L,
that is y
Vi, — e, — 0y (4-2.115)
c

After this detailed analysis on differentiations and since now we have a feeling what’s
going on, we note that equation (4-2.115) could be extracted in one stroke applying the
operator V' to equation (4-2.108)

dg. (¢ (t
Viuj = V'a;, =V'g; (') = e — 3 (/ b - e — s, (4-2.116)
~ dt c

since from equation (4-2.108)

n x —x

Returning now to our Jacobian, equation (4-2.103) we have

aul 811,1 8U1

5 o
S = |5 e | = Vme (Vi x Vi)
9 (x4, y, %) Oy Ozy Oy

Ouz Ous Ous

oz Oz Oz}

(o) [0 )

t t v
— (el—vli )n) o (egxeg)—v2£ )(nxeg)—v i )(egxn)
vy (¢ ) vy (¢ vs (¢
= (ejoep) — 1 )(elon)—ﬁ[elo(nxeg)]— 3 ( [e1 o (e3 X n)]
—_—
(e20n) (egon)
SO
0 (ul,ug,u3) _1_ (%1 (t/) e + vy (t/) €y + U3 (t/) e3 on
3 (a4, 4) ¢
and finally
v(t ||X—X’||> O< x—x >
/ - !
8(u1,u2,u3):1_v(t)on:1_ c |x — x| (4-2.118)
8 (%, 7} 7}) c c

In the expressions (4-2.18) and (4-2.19) of the scalar and vector potentials respec-
tively, the value of this Jacobian is needed at u = 0 or equivalently at x' = x* (= £ (t*))
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{a(uhuz,uza)} _ {8(%,“2,“3)} _1_Y (t*) ong
6(m’1,x’2,xg) u=0 x/=x*

0 (', w5, x5)

C
(1= Xy (o)
L ‘ =

s (4-2.119)
c
where
R=x—-x"=x—£&(t") (4-2.120)
R = R[] = [lx — x| (4-2.121)
R x —x*
n

== . (4-2.122)
tOR[ [l = x|

Note that R is the position vector of the field point as seen from the retarded position
of the charge, see Figure 4.4 in Subsection 4-2.1
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Figure 1.7: Charge ¢ moving in any arbitrary way & () .
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Figure 1.8: Charge g at point P* emits a light beam at time ¢* towards field point A.
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Figure 1.9: Charge ¢ is at point P at time ¢ when its emitted (from P* at time t*) light beam arrives at
field point A.



Figure 1.10: The field point A as seen by charge ¢ from the retarded point P* and time ¢* of the later.



charge q

Pi=:presentiposition;time t

TPt =retarded peosition, time t*

Figure I.11: When the charge ¢ is at its present position, point P time ¢, a spherical light wave is emitted
from field point A to the past and the video of the motion of the charge is played from ¢ backwards in

time.



Figure 1.12: The spherical light wave front emitted to the past, see Figure 1.11, is moving with radial
speed ¢ greater than the radial speed of the charge, so coming closer and closer to arrest on its trajectory

the backwards in time moving charge ¢ .



Figure 1.13: The spherical light wave front emitted to the past, see Figures I.11 and 1.12 , is arresting at
the retarded time t* on the retarded point P* on its trajectory the backwards in time moving charge ¢.



