
Chapter 4

ELECTROMAGNETISM A

4-1 Introduction

E′ = γE− (γ − 1) (E ◦ n) n + γ (v ×B) (4-1.1)

B′ = γB− (γ − 1) (B ◦ n) n− γ

c2
(v × E) (4-1.2)

4-2 Fields of a moving charge (Feynman’s Equation)

In this Section we’ll prove an important equation that Feynman gives in his Lectures
without proof. In his own words:

When we studied light, we began by writing down equations for the electric and
magnetic fields produced by a charge which moves in any arbitrary way. Those equations
were 1

E =
q

4πε0

[
er′

r′2
+
r′

c

d

dt

(
er′

r′2

)
+

1

c2

d2

dt2
er′

]
(21.1)

cB = er′ × E

If a charge moves in an arbitrary way, the electric field we would find now at some
point depends only on the position and motion of the charge not now, but at an earlier
time-at an instant which is earlier by the time it would take light, going at the speed c,
to travel the distance r′ from the charge to the field point. In other words, if we want the
electric field at point (1) at the time t, we must calculate the location (2′) of the charge
and its motion at the time (t− r′/c) , where r′ is the distance to the point (1) from the

1see [15],The Feynman Lectures on Physics, Volume II-Mainly Electromagnetism and Matter , Chapter 21, equation
(21.1)
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21

Solutions of Maxwell’s Equations with
Currents and Charges

21-1 Light and electromagnetic waves

We 21-1 Light and electromagnetic waves
21-2 Spherical waves from a point

source
21-3 The general solution of Maxwell’s

equations
21-4 The fields of an oscillating dipole
21-5 The potentials of a moving

charge; the general solution of
Liénard and Wiechert

21-6 The potentials for a charge
moving with constant velocity;
the Lorentz formula

saw in the last chapter that among their solutions, Maxwell’s equations
have waves of electricity and magnetism. These waves correspond to the phe-
nomena of radio, light, x-rays, and so on, depending on the wavelength. We
have already studied light in great detail in Vol. I. In this chapter we want to
tie together the two subjects—we want to show that Maxwell’s equations can
indeed form the base for our earlier treatment of the phenomena of light.

When we studied light, we began by writing down equations for the electric
and magnetic fields produced by a charge which moves in any arbitrary way.
Those equations were

E = q

4πε0

[
er′

r′2
+ r′

c

d

dt

(
er′

r′2

)
+ 1
c2

d2

dt2
er′

]
(21.1)

and
cB = er′ ×E.

[See Eqs. (28.3) and (28.4), Vol. I. As explained below, the signs here are the
negatives of the old ones.]

Review: Chapter 28, Vol. I, Electromag-
netic Radiation
Chapter 31, Vol. I, The Origin
of the Refractive Index
Chapter 34, Vol. I, Relativistic
Effects in Radiation

If a charge moves in an arbitrary way, the electric field we would find now at
some point depends only on the position and motion of the charge not now, but
at an earlier time—at an instant which is earlier by the time it would take light,
going at the speed c, to travel the distance r′ from the charge to the field point.
In other words, if we want the electric field at point (1) at the time t, we must
calculate the location (2′) of the charge and its motion at the time (t − r′/c),
where r′ is the distance to the point (1) from the position of the charge (2′) at
the time (t− r′/c). The prime is to remind you that r′ is the so-called “retarded
distance” from the point (2′) to the point (1), and not the actual distance between
point (2), the position of the charge at the time t, and the field point (1) (see
Fig. 21-1). Note that we are using a different convention now for the direction of
the unit vector er. In Chapters 28 and 34 of Vol. I it was convenient to take r
(and hence er) pointing toward the source. Now we are following the definition
we took for Coulomb’s law, in which r is directed from the charge, at (2), toward
the field point at (1). The only difference, of course, is that our new r (and er)
are the negatives of the old ones.

(1)

(2′)

(2)

q

q

r ′

r

er ′

v

Position at
t − r ′/c

Position at t

Fig. 21-1. The fields at (1) at the time t
depend on the position (2′) occupied by the
charge q at the time (t − r ′/c).

We have also seen that if the velocity v of a charge is always much less than c,
and if we consider only points at large distances from the charge, so that only
the last term of Eq. (21.1) is important, the fields can also be written as

E = q

4πε0c2r′

[
acceleration of the charge at (t− r′/c)
projected at right angles to r′

]
(21.1′)

and
cB = er′ ×E.

Let’s look at what the complete equation, Eq. (21.1), says in a little more
detail. The vector er′ is the unit vector to point (1) from the retarded position (2′).
The first term, then, is what we would expect for the Coulomb field of the charge
at its retarded position—we may call this “the retarded Coulomb field.” The
electric field depends inversely on the square of the distance and is directed away
from the retarded position of the charge (that is, in the direction of er′).

21-1

position of the charge (2′) at the time (t − r′/c) . The prime is to remind you that r′

is the so-called retarded distance from the point (2′) to the point (1), and not the actual
distance between point (2), the position of the charge at the time t, and the field point
(1)(see Fig. 21-1)

This Section is split in Subsections. The main job is done in the first Subsection,
while in the Subsections that follow proofs or explanations are given in detail for the
calculation jumps in the first one, in order to have an uninterrupted continuity in the
main job.

4-2.1 The scalar φ (x, t) and vector A (x, t) potentials

Since

E = −∇φ− ∂A

∂t
(4-2.1)

and

B =∇×A (4-2.2)

we start with the retarded potentials, scalar and vector :

φ (x, t) =
1

4πεo

∫∫∫ ρ

(
x′, t− ‖x

′ − x‖
c

)
‖x′ − x‖

d3x′ , scalar potential (4-2.3)

A (x, t) =
µo
4π

∫∫∫ j

(
x′, t− ‖x

′ − x‖
c

)
‖x′ − x‖

d3x′ , vector potential (4-2.4)
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By these two equations we’ll find the potentials at field point x = (x1, x2, x3) and
time t , taking into account the contributions of charges and their currents from all points
x′ = (x′1, x

′
2, x
′
3) at the retarded time

t′ = t− ‖x
′ − x‖
c

(4-2.5)

since a time period ∆t = ‖x′ − x‖/c is needed for this contribution to travel with the
speed of light c from x′ to x .

Note that the retarded time t′ is a function of x,x′, t

t′ = t′ (x,x′, t) = t− ‖x
′ − x‖
c

= t−

√
(x′1 − x1)2 + (x′2 − x2)2 + (x′3 − x3)2

c
(4-2.6)

= t− [(x′σ − xσ) (x′σ − xσ)]
1
2

c
, Einstein’s convention on σ

Let a point charge q moving with position vector ξ (t) , as in Fig.4.1. 2 We suppose
that ∥∥∥∥dξ (t)

dt

∥∥∥∥ < c (4-2.7)

The volume charge density would be expressed via Dirac δ−function 3

ρ (x, t) = q · δ3
(
x− ξ (t)

)
(4-2.8)

as well as the charge current density

j (x, t) = q · δ3
(
x− ξ (t)

)
· dξ (t)

dt
= q · δ3

(
x− ξ (t)

)
· v (t) (4-2.9)

where

v (t) =
(
υ1 (t) , υ2 (t) , υ3 (t)

)
=

(
dξ1 (t)

dt
,
dξ2 (t)

dt
,
dξ3 (t)

dt

)
=
dξ (t)

dt
(4-2.10)

the velocity of the charge. The potentials have the following expressions

φ (x, t) =
q

4πεo

∫∫∫ δ3

(
x′ − ξ

(
t− ‖x

′ − x‖
c

))
‖x′ − x‖

d3x′ (4-2.11)

A (x, t) =
µoq

4π

∫∫∫ δ3

(
x′ − ξ

(
t− ‖x

′ − x‖
c

))
· v
(
t− ‖x

′ − x‖
c

)
‖x′ − x‖

d3x′ (4-2.12)

2see 3D version of Figure 4.1 in Chapter I , Figure I.7
3if r = (x, y, z) the 3-dimensional δ−function δ3 (x) is the product of the three 1-dimensional δ−functions

δ3 (x) = δ (x) δ (y) δ (z)
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Figure 4.1: Charge q moving in any arbitrary way ξ (t) .

As explained in Subsection 4-2.3, we proceed to the following variable change from x′ to
u

u = x′ − ξ
(
t− ‖x

′ − x‖
c

)
= F (x′) (4-2.13)

as in equation (4-2.63) in Subsection 4-2.3.

In Subsection 4-2.4 we prove that the function F (x′) is invertible and so

d3x′ =
∂ (x′1, x

′
2, x
′
3)

∂ (u1, u2, u3)
d3u =

[
∂ (u1, u2, u3)

∂ (x′1, x
′
2, x
′
3)

]−1

d3u (4-2.14)

as proved in Subsection 4-2.3, see equation (4-2.91). We’ll use the relation containing the

Jacobian
∂ (u1, u2, u3)

∂ (x′1, x
′
2, x
′
3)

for convenience as we’ll shall see in the following calculations.



4-2. FIELDS OF A MOVING CHARGE (FEYNMAN’S EQUATION) 57

Now, in equations (4-2.11) and (4-2.12) we make the following substitutions

F (x′) = x′−ξ
(
t− ‖x

′ − x‖
c

)
−→ u, x′ −→ F−1 (u) , d3x′ −→

[
∂ (u1, u2, u3)

∂ (x′1, x
′
2, x
′
3)

]−1

d3u

(4-2.15)
as in equation (4-2.79) in Subsection 4-2.3.

φ (x, t) =
q

4πεo

∫∫∫
δ3 (u)

‖F−1 (u)− x‖ · ∂ (u1, u2, u3)

∂ (x′1, x
′
2, x
′
3)

d3u (4-2.16)

A (x, t) =
µoq

4π

∫∫∫ δ3 (u) · v
(
t− ‖F

−1 (u)− x‖
c

)
‖F−1 (u)− x‖ · ∂ (u1, u2, u3)

∂ (x′1, x
′
2, x
′
3)

d3u (4-2.17)

Figure 4.2: Charge q at point P∗ emits a light beam at time t∗ towards field point A.
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Figure 4.3: Charge q is at point P at time t when its emitted (from P∗ at time t∗) light beam arrives at
field point A.

So

φ (x, t) =
q

4πεo

1

‖F−1 (0)− x‖ ·
[
∂ (u1, u2, u3)

∂ (x′1, x
′
2, x
′
3)

]
u=0

(4-2.18)

A (x, t) =
µoq

4π

v

(
t− ‖F

−1 (0)− x‖
c

)
‖F−1 (0)− x‖ ·

[
∂ (u1, u2, u3)

∂ (x′1, x
′
2, x
′
3)

]
u=0

(4-2.19)

Now, in order to examine in detail what is behind these two equations we must

find what are the quantities F−1 (0) ,

[
∂ (u1, u2, u3)

∂ (x′1, x
′
2, x
′
3)

]
u=0

and if there exists a physical
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interpretation.
For F−1 (0) we have to say that putting u = 0 in equation (4-2.13) this quantity

is a solution with respect to x′ of the equation

0 = x′ − ξ
(
t− ‖x

′ − x‖
c

)
(4-2.20)

So let x∗ a solution of above equation, that is :

x∗
def
: x∗ − ξ

(
t− ‖x

∗ − x‖
c

)
= 0 (4-2.21)

Figure 4.4: The field point A as seen by charge q from the retarded point P∗ and time t∗ of the later.

In Subsection 4-2.4 we prove not only that there exists a solution x∗ but moreover
that this solution is unique. The proof is based on the assumption that the speed of the
charged particle is always less than that of light c , see equation (4-2.7). The physical
interpretation for x∗ runs as follows :

1. The vector x∗ is the position vector of the charge on its trajectory at a retarded
point P∗ at a retarded time

t∗
def≡ t− ‖x

∗ − x‖
c

(4-2.22)
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and

x∗ = ξ (t∗) = F−1 (0) (4-2.23)

2. If the charge emits a light beam from the retarded point P∗ (position vector x∗ )
and the retarded time t∗ towards the field point A (position vector x ), see Figure
4.2, 4 then after a time period ∆t = t− t∗ = ‖x∗ − x‖/c the light beam will arrive
at point A and the charge q at its present point P at the present time t , see
Figure 4.3. 5

For given equation of motion ξ (t) with

∥∥∥∥dξ (t)

dt

∥∥∥∥ < c for any t , the retarded position

x∗ and retarded time t∗ are functions of x and t .
Now, for the Jacobian the following expression is proved in Subsection 4-2.6, see

equation (4-2.119) and definitions (4-2.120) to (4-2.122) repeated here

[
∂ (u1, u2, u3)

∂ (x′1, x
′
2, x
′
3)

]
u=0

=

[
∂ (u1, u2, u3)

∂ (x′1, x
′
2, x
′
3)

]
x′=x∗

= 1− v (t∗) ◦ n
R

c

= 1−
v

(
t− ‖x− x∗‖

c

)
◦
(

x− x∗

‖x− x∗‖

)
c

= 1−
v

(
t− R

c

)
◦
(

R

R

)
c

def≡ κ (repeat4-2.119)

where

R = x− x∗ = x− ξ (t∗) (repeat4-2.120)

R = ‖R‖ = ‖x− x∗‖ (repeat4-2.121)

n
R

=
R

‖R‖
=

x− x∗

‖x− x∗‖
(repeat4-2.122)

all shown in Figure 4.4. 6

Using expressions (4-2.23) and (4-2.119) for F−1 (0) and

[
∂ (u1, u2, u3)

∂ (x′1, x
′
2, x
′
3)

]
u=0

respec-

tively, equations (4-2.18) and (4-2.19) for the potentials yield

φ (x, t) =
q

4πεo

1

‖x− x∗‖ ·
[
1− v

(
t− ‖x− x∗‖

c

)
◦
(

x− x∗

c ‖x− x∗‖

)] (4-2.24)

4see 3D version of Figure 4.2 in Appendix I, Figure I.8
5see 3D version of Figure 4.3 in Appendix I, Figure I.9
6see 3D version of Figure 4.4 in Appendix I, Figure I.10
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A (x, t) =
µoq

4π

v

(
t− ‖x− x∗‖

c

)
‖x− x∗‖ ·

[
1− v

(
t− ‖x− x∗‖

c

)
◦
(

x− x∗

c ‖x− x∗‖

)] (4-2.25)

If we have in mind that the retarded position is an implicit function of x, t , that is
x∗ = x∗ (x, t) , then we can find the field components E,B from equations (4-2.1),(4-2.2)
by differentiations with respect to the components of x and to time t .

φ (x, t) =
q

4πεo

1[
1− v (t∗)

c
◦ n

R

]
· ‖x− x∗‖

=
q

4πεo

1

κ ·R
(4-2.26)

A (x, t) =
µoq

4π

v (t∗)[
1− v (t∗)

c
◦ n

R

]
· ‖x− x∗‖

=
µoq

4π

v (t∗)

κ ·R
=

v (t∗)

c2
φ (x, t) (4-2.27)

Note that in equation (4-2.26) the scalar potential φ (x, t) seems to be the electrostatic
one, not caused by the charge q but by a charge q/κ that is greater than, less than or
equal to q depending upon the relation of κ to 1 : κ < 1 , κ > 1 , κ = 1 respectively.
That is if the charge is coming closer, is running away or nothing of these two respectively.

In above two equations x∗ , t∗ , R ,R , n
R

and κ are all implicit functions of x, t :

x∗ (x, t) , t∗ (x, t) , R (x, t) , R (x, t) , n
R

(x, t) , κ (x, t) (4-2.28)

We must have in mind this dependence when we differentiate with respect to t and
the components of x.

4-2.2 The electric E (x, t) and magnetic B (x, t) fields vectors

We’ll use the expressions (4-2.26),(4-2.27) for the potentials to find the electric and mag-
netic field vectors by equations (4-2.1),(4-2.2)

E = −∇φ− ∂A

∂t
(repeat4-2.1)

and
B =∇×A (repeat4-2.2)

Note that the Feynman’s Lectures equation (21.1), see at the beginning of this Section
4-2, is expressed by a unit vector er′ and a scalar r′ = ‖r′‖ , as in Figure (21.1) of the
Lectures, shown also at the beginning of the aforementioned Section. Comparing this
Figure with Figure 4.4 we see that there exists the following correspondence

(r′) −→ (R) , (r′ = ‖r′‖) −→ (R = ‖R‖) ,
(

er′ =
r′

r′

)
−→

(
n

R
=

R

R

)
(4-2.29)
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and Feynman’s equation with hither symbols is

E =
q

4πε0

[
n

R

R2
+
R

c

d

dt

(
n

R

R2

)
+

1

c2

d2

dt2
n

R

]
(4-2.30)

To reach above equation from (4-2.1) by differentiations of the potentials equations (4-
2.26),(4-2.27) it would be useful, convenient and overall necessary to express any quantity
appeared in these last ones as function of R,n

R
and their partial derivatives with respect

to t and the components of x. . There are two quantities we must handle : κ and v (t∗) .
But from equation (4-2.119)

κ = 1− v (t∗)

c
◦ n

R
(4-2.31)

So we start with the remaining v (t∗) . Since ξ (t∗) = x∗ = x−R , see (4-2.120),

∂ξ (t∗)

∂t
= −∂R

∂t
⇒ dξ (t∗)

dt∗︸ ︷︷ ︸
v(t∗)

∂t∗

∂t
= −∂ (Rn

R
)

∂t
= −

(
∂R

∂t
n

R
+R

∂n
R

∂t

)

that is

v (t∗)
∂t∗

∂t
= −∂R

∂t
= −

(
∂R

∂t
n

R
+R

∂n
R

∂t

)
(4-2.32)

From equation (4-2.22)

t∗
def≡ t− ‖x

∗ − x‖
c

= t− R

c
(repeat4-2.22)

so
∂t∗

∂t
= 1− ∂R

c∂t
(4-2.33)

and (4-2.32) yields

v (t∗) = −

∂R

∂t(
1− ∂R

c∂t

) = −




∂R

∂t(
1− ∂R

c∂t

)
n

R
+


R(

1− ∂R

c∂t

)

∂n

R

∂t

 (4-2.34)

From above expression and equation (4-2.31)

κ =
1(

1− ∂R

c∂t

) (4-2.35)

since :

n
R
◦ ∂n

R

∂t
=

1

2

∂ (n
R
◦ n

R
)

∂t
=

1

2

∂‖n
R
‖2

∂t
= 0 (4-2.36)

Replacing expressions (4-2.34),(4-2.35) in equations (4-2.26),(4-2.27) yields the fol-
lowing ones for the potentials as functions of R, R,n

R
and their partial derivatives with

respect to t
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φ (x, t) =
q

4πεo

(
1− ∂R

c∂t

)
R

(4-2.37)

A (x, t) = − q

4πεoc2

1

R

∂R

∂t
= − q

4πεoc2

(
1

R

∂R

∂t
n

R
+
∂n

R

∂t

)
(4-2.38)

We’ll try now to find ∇φ by differentiation of (4-2.37)

− 4πεo
q
∇φ (x, t) = −∇


(

1− ∂R

c∂t

)
R

 = −
[(

1− ∂R

c∂t

)
∇
(

1

R

)
+

1

R
∇
(

1− ∂R

c∂t

)]

so

− 4πεo
q
∇φ (x, t) =

(
1− ∂R

c∂t

)
R2

∇R +
1

cR

∂ (∇R)

∂t
(4-2.39)

It’s necessary now to handle ∇R

∇R =

(
∂R

∂x1

,
∂R

∂x2

,
∂R

∂x3

)
(4-2.40)

∂R

∂xj
=

1

2R

∂R2

∂xj
=

1

2R

∂ (R ◦R)

∂xj
=

R

R
◦ ∂R

∂xj
= n

R
◦ ∂R

∂xj
(4-2.41)

Since R = x− ξ (t∗) , see (4-2.120),

∂R

∂xj
=
∂ [x− ξ (t∗)]

∂xj
=

∂x

∂xj
− ∂ξ (t∗)

∂xj
= ej −

dξ (t∗)

dt∗
∂t∗

∂xj
= ej − v (t∗)

∂t∗

∂xj
(4-2.42)

where

e1 =

1
0
0

 e2 =

0
1
0

 e3 =

0
0
1

 (4-2.43)

the basic vectors of the orthonormal system of coordinates Ox1x2x3.
From equation (4-2.22)

t∗
def≡ t− ‖x

∗ − x‖
c

= t− R

c
(repeat4-2.22)

that is
∂t∗

∂xj
= − ∂R

c∂xj
so

∇t∗ = −∇R
c

(4-2.44)

and (4-2.42) yields
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∂R

∂xj
= ej +

v (t∗)

c

∂R

∂xj
(4-2.45)

But from (4-2.41)

∂R

∂xj
= n

R
◦ ∂R

∂xj
= n

R
◦
[
ej +

v (t∗)

c

∂R

∂xj

]
= (n

R
◦ ej) +

[
v (t∗)

c
◦ n

R

]
∂R

∂xj

so
∂R

∂xj
=

(n
R
◦ ej)[

1− v (t∗)

c
◦ n

R

] =
(n

R
)j

κ
=

(
1− ∂R

c∂t

)
(n

R
)j

or

∇R =
R

κR
=

n
R

κ
=

(
1− ∂R

c∂t

)
n

R
(4-2.46)

Inserting this in equation (4-2.39)

− 4πεo
q
∇φ (x, t) =

(
1− ∂R

c∂t

)2

R2
n

R
+

1

cR

∂

∂t

[(
1− ∂R

c∂t

)
n

R

]
that is

−∇φ (x, t) =
q

4πεo

[{
1

R2
− 2

cR2

∂R

∂t
+

1

c2R2

(
∂R

∂t

)2

− 1

c2R

∂2R

∂t2

}
n

R
+

(
1

cR
− 1

c2R

∂R

∂t

)
∂n

R

∂t

]
(4-2.47)

From equation (4-2.38)

−4πεoc
2

q

∂A (x, t)

∂t
=

∂

∂t

(
1

R

∂R

∂t
n

R
+
∂n

R

∂t

)
=

{
∂

∂t

(
1

R

∂R

∂t

)}
n

R
+

(
1

R

∂R

∂t

)
∂n

R

∂t
+
∂2n

R

∂t2

so

− ∂A (x, t)

∂t
=

q

4πεo

[{
1

c2R

∂2R

∂t2
− 1

c2R2

(
∂R

∂t

)2
}

n
R

+

(
1

c2R

∂R

∂t

)
∂n

R

∂t
+
∂2n

R

c2∂t2

]
(4-2.48)

Adding equations (4-2.47),(4-2.48) yields

E (x, t) = −∇φ (x, t)− ∂A (x, t)

∂t

=
q

4πεo

[{
1

R2
− 2

cR2

∂R

∂t
+

1

c2R2

(
∂R

∂t

)2

− 1

c2R

∂2R

∂t2

}
n

R
+

(
1

cR
− 1

c2R

∂R

∂t

)
∂n

R

∂t

]

+
q

4πεo

[{
1

c2R

∂2R

∂t2
− 1

c2R2

(
∂R

∂t

)2
}

n
R

+

(
1

c2R

∂R

∂t

)
∂n

R

∂t
+
∂2n

R

c2∂t2

]

=
q

4πεo

[{
1

R2
− 2

cR2

∂R

∂t

}
n

R
+

(
1

cR
− 1

c2R

∂R

∂t

)
∂n

R

∂t

]
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so

E (x, t) =
q

4πεo


n

R

R2
+
R

c

(
− 2

R3

∂R

∂t
n

R
+

1

R2

∂n
R

∂t

)
︸ ︷︷ ︸

∂
∂t

(
n
R

R2

)
+
∂2n

R

c2∂t2


and finally

E (x, t) =
q

4πεo

[
n

R

R2
+
R

c

∂

∂t

(
n

R

R2

)
+
∂2n

R

c2∂t2

]
(4-2.49)

For given field point, that is position vector x

∂

∂t
≡ d

dt
(4-2.50)

and then equation (4-2.49) yields the Feynman Lectures one

E =
q

4πε0

[
n

R

R2
+
R

c

d

dt

(
n

R

R2

)
+

1

c2

d2

dt2
n

R

]
(4-2.51)

..........................................................................................................................................
For the magnetic flux density vector B = ∇ × A , equation (4-2.38) with the

expression (4-2.46) for ∇R yields 7 For the magnetic flux density vector B = ∇×A ,
equation (4-2.38) with the expression (4-2.46) for ∇R yields 8

−4πεoc
2

q
[∇×A (x, t)] =∇×

(
1

R

∂R

∂t

)
=∇

(
1

R

)
× ∂R

∂t
+

1

R

(
∇× ∂R

∂t

)
=

(
− 1

R2
∇R

)
× ∂R

∂t
+

1

R

∂ (∇×R)

∂t

=

[{
− 1

R2

(
1− ∂R

c∂t

)
n

R

}
×
{
∂R

∂t
n

R
+R

∂n
R

∂t

}]
+

1

R

∂ (∇×R)

∂t
so

∇×A (x, t) =
q

4πεoc2

1

R

[(
1− ∂R

c∂t

)(
n

R
× ∂n

R

∂t

)
− ∂ (∇×R)

∂t

]
(4-2.52)

So, it remains to express ∇×R as function of R,n
R

and their derivatives. Starting
from the definition

∇×R =


e1 e2 e3

∂

∂x1

∂

∂x2

∂

∂x3

R1 R2 R3

 =



∂R3

∂x2

− ∂R2

∂x3

∂R1

∂x3

− ∂R3

∂x1

∂R2

∂x1

− ∂R1

∂x2


(4-2.53)

7we make use of the identity
∇× (ψa) =∇ψ× a + ψ∇× a (repeatA-2.9)

see equation (A-2.9) in Appendix A
8we make use of the identity

∇× (ψa) =∇ψ× a + ψ∇× a (repeatA-2.9)

see equation (A-2.9) in Appendix A
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But we have already the expressions of ∂Ri/∂xj in equation (4-2.45) written component-
wise as

∂Ri

∂xj
= δij +

υi (t
∗)

c

∂R

∂xj
(4-2.54)

Above equation could be written as a so-called Jacobian matrix, which in our case is also
the so-called directional derivative of R with respect to x

DR

Dx

def≡
{
∂Ri

∂xj

}
=


∂R1/∂x1 ∂R1/∂x2 ∂R1/∂x3

∂R2/∂x1 ∂R2/∂x2 ∂R2/∂x3

∂R3/∂x1 ∂R3/∂x2 ∂R3/∂x3



=



1 +
υ1 (t∗)

c

∂R

∂x1

υ1 (t∗)

c

∂R

∂x2

υ1 (t∗)

c

∂R

∂x3

υ2 (t∗)

c

∂R

∂x1

1 +
υ2 (t∗)

c

∂R

∂x2

υ2 (t∗)

c

∂R

∂x3

υ3 (t∗)

c

∂R

∂x1

υ3 (t∗)

c

∂R

∂x2

1 +
υ3 (t∗)

c

∂R

∂x3


(4-2.55)

With the help of above equation (4-2.53) reads

∇×R =



∂R3

∂x2

− ∂R2

∂x3

∂R1

∂x3

− ∂R3

∂x1

∂R2

∂x1

− ∂R1

∂x2


=

1

c


e1 e2 e3

∂R

∂x1

∂R

∂x2

∂R

∂x3

υ1 (t∗) υ2 (t∗) υ3 (t∗)


so

∇×R =
1

c
[∇R× v (t∗)] (4-2.56)

Inserting the expressions (4-2.46),(4-2.34) of ∇R,v (t∗) respectively, repeated here for
convenience

∇R =
R

κR
=

n
R

κ
=

(
1− ∂R

c∂t

)
n

R
(repeat4-2.46)

v (t∗) = −

∂R

∂t(
1− ∂R

c∂t

) = −




∂R

∂t(
1− ∂R

c∂t

)
n

R
+


R(

1− ∂R

c∂t

)

∂n

R

∂t


(repeat4-2.34)

we have

∇×R = −R
c

(
n

R
× ∂n

R

∂t

)
(4-2.57)
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so
∂ (∇×R)

∂t
= −1

c

{(
∂R

∂t

)(
n

R
× ∂n

R

∂t

)
+R

(
n

R
× ∂2n

R

∂t2

)}
(4-2.58)

Inserting this expression in (4-2.53) yields

∇×A (x, t) =
q

4πεoc2

1

R

[(
1− ∂R

c∂t

)(
n

R
× ∂n

R

∂t

)
+

1

c

{(
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n

R
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R
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)
+R

(
n

R
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R

∂t2

)}]
=

q

4πεoc

[
n

R
×
(

1

cR

∂n
R
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+

1

c2

∂2n
R

∂t2

)]
so

B (x, t) =∇×A (x, t) =
q

4πεoc

[
n

R
×
(

1

cR

∂n
R

∂t
+

1

c2

∂2n
R

∂t2

)]
(4-2.59)

Above equation with the help of (4-2.49) is expressed as

B (x, t) =
1

c
n

R
×
[

q

4πεo

(
1

cR

∂n
R

∂t
+

1

c2

∂2n
R

∂t2

)]
︸ ︷︷ ︸

E(x,t)− q
4πεo

(
1
R2−

2
cR2

)
n
R

and finally the 2nd equation of Feynman Lectures

c B (x, t) = n
R
× E (x, t) (4-2.60)

4-2.3 Integrals with Dirac δ−function

The integrals in (4-2.11 ) and (4-2.12) are of the form

φ (x, t) =
q

4πεo

∫∫∫
δ3

(
F (x′)

)
H (x′) d3x′ (4-2.61)

A (x, t) =
µoq

4π

∫∫∫
δ3

(
F (x′)

)
G (x′) d3x′ (4-2.62)

where F (x′) ,G (x′) vector functions and H (x′) scalar function of the vector variable x′

F (x′) = x′ − ξ
(
t− ‖x

′ − x‖
c

)
(4-2.63)

G (x′) =

v

(
t− ‖x

′ − x‖
c

)
‖x′ − x‖

(4-2.64)

H (x′) =
1

‖x′ − x‖
(4-2.65)
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We can handle easily integrals where the vector variable of integration, let u , is the
argument of the δ−function, for example∫∫∫

δ3 (u) L (u) d3u = L (0) (4-2.66)∫∫∫
δ3 (u) M (u) d3u = M (0) (4-2.67)

But to handle integrals of the form (4-2.61) and (4-2.62)∫∫∫
δ3

(
F (x′)

)
H (x′) d3x′ (4-2.68)∫∫∫

δ3

(
F (x′)

)
G (x′) d3x′ (4-2.69)

where F (x′) 6= x′, that is the argument of the δ−function is not the variable of integration,
we must proceed to a change of the vector variable from x′ to u

u = F (x′) (4-2.70)

and check with care if we can convert without complications these integrals to expressions
like (4-2.66)and (4-2.67).

Indeed, if the vector function F in (4-2.70) is invertible then

x′ = F−1 (u) (4-2.71)

It remains one step : to find the relation between the infinitesimal volumes d3x′ =
dx′1dx

′
2dx

′
3 and d3u = du1du2du3 . We have the following linear transformation between

infinitesimals

dx′1 =
∂x′1
∂u1

du1 +
∂x′1
∂u2

du2 +
∂x′1
∂u3

du3 (4-2.72)

dx′2 =
∂x′2
∂u1

du1 +
∂x′2
∂u2

du2 +
∂x′2
∂u3

du3 (4-2.73)

dx′3 =
∂x′3
∂u1

du1 +
∂x′3
∂u2

du2 +
∂x′3
∂u3

du3 (4-2.74)

or

dx′ =


dx1

dx2

dx3

 =


∂x′1
∂u1

∂x′1
∂u2

∂x′1
∂u3

∂x′2
∂u1

∂x′2
∂u2

∂x′2
∂u3

∂x′3
∂u1

∂x′3
∂u2

∂x′3
∂u3



du1

du2

du3

 = J
(
F−1

)
du (4-2.75)

where

J
(
F−1

) def≡


∂x′1
∂u1

∂x′1
∂u2

∂x′1
∂u3

∂x′2
∂u1

∂x′2
∂u2

∂x′2
∂u3

∂x′3
∂u1

∂x′3
∂u2

∂x′3
∂u3

 (4-2.76)
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the so-called Jacobian matrix of the vector function F−1, a matrix function of u . We
know that for an invertible linear transformation the ratio of the transformed to the initial
volume is equal to the determinant of the respective matrix. So

d3x′ =
∂ (x′1, x

′
2, x
′
3)

∂ (u1, u2, u3)
d3u (4-2.77)

where

∂ (x′1, x
′
2, x
′
3)

∂ (u1, u2, u3)

def≡ det
[
J
(
F−1

)]
=

∣∣∣∣∣∣∣∣∣∣∣

∂x′1
∂u1

∂x′1
∂u2

∂x′1
∂u3

∂x′2
∂u1

∂x′2
∂u2

∂x′2
∂u3

∂x′3
∂u1

∂x′3
∂u2

∂x′3
∂u3

∣∣∣∣∣∣∣∣∣∣∣
(4-2.78)

the so-called Jacobian of the vector function F−1, the determinant of the Jacobi matrix
J (F−1) . The Jacobian is a scalar function of u .

Now, if in equations (4-2.68)and (4-2.69) we make the following substitutions

F (x′) −→ u , x′ −→ F−1 (u) , d3x′ −→ ∂ (x′1, x
′
2, x
′
3)

∂ (u1, u2, u3)
d3u (4-2.79)

according to equations (4-2.70),(4-2.71) and (4-2.77) respectively, then these integrals are
converted to the form of (4-2.66) and (4-2.67), that is

∫∫∫
δ3

(
F (x′)

)
H (x′) d3x′ =

∫∫∫
δ3 (u) H

(
F−1 (u)

) ∂ (x′1, x
′
2, x
′
3)

∂ (u1, u2, u3)
d3u

= H
(
F−1 (0)

) [∂ (x′1, x
′
2, x
′
3)

∂ (u1, u2, u3)

]
u=0

(4-2.80)

∫∫∫
δ3

(
F (x′)

)
G (x′) d3x′ =

∫∫∫
δ3 (u) G

(
F−1 (u)

) ∂ (x′1, x
′
2, x
′
3)

∂ (u1, u2, u3)
d3u

= G
(
F−1 (0)

) [∂ (x′1, x
′
2, x
′
3)

∂ (u1, u2, u3)

]
u=0

(4-2.81)

Note that starting from equation (4-2.71) we found equations (4-2.72) to (4-2.78)
concerning the vector function F−1. With similar steps we can start from (4-2.70) and
find the respective equations for the vector function F. Indeed

du1 =
∂u1

∂x′1
dx′1 +

∂u1

∂x′2
dx′2 +

∂u1

∂x′3
dx′3 (4-2.82)

du2 =
∂u2

∂x′1
dx′1 +

∂u2

∂x′2
dx′2 +

∂u2

∂x′3
dx′3 (4-2.83)

du3 =
∂u3

∂x′1
dx′1 +

∂u3

∂x′2
dx′2 +

∂u3

∂x′3
dx′3 (4-2.84)
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or

du =


du1

du2

du3

 =


∂u1

∂x′1

∂u1

∂x′2

∂u1

∂x′3
∂u2

∂x′1

∂u2

∂x′2

∂u2

∂x′3
∂u3

∂x′1

∂u3

∂x′2

∂u3

∂x′3



dx1

dx2

dx3

 = J (F) dx′ (4-2.85)

where

J (F)
def≡


∂u1

∂x′1

∂u1

∂x′2

∂u1

∂x′3
∂u2

∂x′1

∂u2

∂x′2

∂u2

∂x′3
∂u3

∂x′1

∂u3

∂x′2

∂u3

∂x′3

 (4-2.86)

the Jacobian matrix of the vector function F, a matrix function of x′ . So

d3u =
∂ (u1, u2, u3)

∂ (x′1, x
′
2, x
′
3)
d3x′ (4-2.87)

where

∂ (u1, u2, u3)

∂ (x′1, x
′
2, x
′
3)

def≡ det [J (F)] =

∣∣∣∣∣∣∣∣∣∣∣

∂u1

∂x′1

∂u1

∂x′2

∂u1

∂x′3
∂u2

∂x′1

∂u2

∂x′2

∂u2

∂x′3
∂u3

∂x′1

∂u3

∂x′2

∂u3

∂x′3

∣∣∣∣∣∣∣∣∣∣∣
(4-2.88)

the Jacobian of the vector function F, the determinant of the Jacobi matrix J (F) . The
Jacobian is a scalar function of x′ . From equations (4-2.76) and (4-2.86) we have

J
(
F−1

)
· J (F) =


∂x′1
∂u1

∂x′1
∂u2

∂x′1
∂u3

∂x′2
∂u1

∂x′2
∂u2

∂x′2
∂u3

∂x′3
∂u1

∂x′3
∂u2

∂x′3
∂u3




∂u1

∂x′1

∂u1

∂x′2

∂u1

∂x′3
∂u2

∂x′1

∂u2

∂x′2

∂u2

∂x′3
∂u3

∂x′1

∂u3

∂x′2

∂u3

∂x′3



=


∂x′1
∂x′1

0 0

0
∂x′2
∂x′2

0

0 0
∂x′2
∂x′2

 =

1 0 0
0 1 0
0 0 1

 = I

so
J
(
F−1

)
= [J (F)]−1 (4-2.89)

This means that for the Jacobian determinants we have

∂ (x′1, x
′
2, x
′
3)

∂ (u1, u2, u3)
=

[
∂ (u1, u2, u3)

∂ (x′1, x
′
2, x
′
3)

]−1

(4-2.90)
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and equation (4-2.77) is completed to

d3x′ =
∂ (x′1, x

′
2, x
′
3)

∂ (u1, u2, u3)
d3u =

[
∂ (u1, u2, u3)

∂ (x′1, x
′
2, x
′
3)

]−1

d3u (4-2.91)

4-2.4 Properties of function : F (x′) = x′ − ξ
(
t− ‖x

′ − x‖
c

)

Figure 4.5: When the charge q is at its present position, point P time t , a spherical light wave is emitted
from field point A to the past and the video of the motion of the charge is played from t backwards in
time.

We see that to handle the integrals in equations (4-2.11),(4-2.12) in Subsection 4-2.1,
we proceeded to the following variable change from x′ to u , equation (4-2.13), repeated
below

u = x′ − ξ
(
t− ‖x

′ − x‖
c

)
= F (x′) (repeat4-2.13)
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Figure 4.6: The spherical light wave front emitted to the past, see Figure 4.5, is moving with radial speed
c greater than the radial speed of the charge, so coming closer and closer to arrest on its trajectory the
backwards in time moving charge q .

as also in equation (4-2.63) in Subsection 4-2.3.

This procedure would have sense if the vector function F (x′) of the vector variable
x′ is invertible, which means that for every vector u not only there exists a vector
x′ satisfying above equation but also that this vector is unique. This inverse existence
ensures a non-zero Jacobian, see Subsection 4-2.6.

Now, it is proved below that the existence and uniqueness of the solution of equation
(4-2.13) with respect to x′ for any u is equivalent to the existence and uniqueness of the
solution of equation (4-2.13) with respect to x′ for u = 0 that is of equation (4-2.20)
repeated here

0 = x′ − ξ
(
t− ‖x

′ − x‖
c

)
(repeat4-2.20)

So, let suppose that above equation has a solution x∗ (x, t) (for any x and t ) and
this solution is unique, see also equation (4-2.21) repeated here
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Figure 4.7: The spherical light wave front emitted to the past, see Figures 4.5 and 4.6 , is arresting at
the retarded time t∗ on the retarded point P∗ on its trajectory the backwards in time moving charge q .

x∗
def
: x∗ − ξ

(
t− ‖x

∗ − x‖
c

)
= 0 (repeat4-2.21)

Then equation (4-2.13) is written as

y′︷ ︸︸ ︷
(x′ − u)−ξ

t− ‖
y′︷ ︸︸ ︷

(x′ − u)−
y︷ ︸︸ ︷

(x− u) ‖
c

 = 0 (4-2.92)

or

y′ − ξ
(
t− ‖y

′ − y‖
c

)
= 0 (4-2.93)

with
y′ = x′ − u , y = x− u (4-2.94)
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Figure 4.8: Proving the existence of a retarded position and time

with existing and unique solution

y′ = x∗ (y, t) = x∗ (x− u, t) (4-2.95)

so

x′ = u + y′ = u + x∗ (x− u, t) = F−1 (u) (4-2.96)

Let proceed now to prove the existence and uniqueness of the solution x∗ (x, t) (for
any x and t) of equation (4-2.21).

We’ll travel backwards in time as shown in Figure 4.5: 9 when the charge is at present
point P on present time t , a spherical light wave is emitted from field point A (position
vector x ) to the past. The charge q starts moving backwards in time from its present

position P . In Figure 4.6 10 events are shown at a moment, say to (t∗ < to < t) , as
the system is moving backwards in time. In Figure 4.7 11 the light wave, ”running” with
speed c , is arresting on the retarded time t∗ at the retarded point P∗ on its trajectory
the backwards in time moving charge q . That this would happen at least once is shown
in Figure 4.8: the charge, being at point Po on time to has radial speed ‖ (vo)r ‖ less
than c since

9see 3D version of Figure 4.5 in Appendix I, Figure I.11
10see 3D version of Figure 4.6 in Appendix I, Figure I.12
11see 3D version of Figure 4.7 in Appendix I, Figure I.13



4-2. FIELDS OF A MOVING CHARGE (FEYNMAN’S EQUATION) 75

Figure 4.9: Proving the uniqueness of the retarded position and time

‖ (vo)r ‖ ≤ ‖ (vo) ‖ =

∥∥∥∥dξ (to)

dt

∥∥∥∥ < c (4-2.97)

according to the assumption that the instantaneous speed of the charge q never exceeds
that of light speed c , equation (4-2.7). All will be more clear if we watch the events on
the radius APo joining the charge q to the field point A. The spherical wave front on this
radius, point F, is moving with speed c always greater than the radial speed ‖ (vo)r ‖
of the charge. So, we have proved the existence of at least one retarded point. Of course,
we assume that the charge exists deep in the past (it’s not created near the present time,
for example).

Now, we’ll proceed on the same foot to the proof of uniqueness : suppose that to the
present position P of the charge at time t ( position vector ξ (t) ) and to the field point
A ( position vector x ) there correspond two different retarded time moments t∗1 , t

∗
2 with

different in general 12 retarded positions P∗1 ,P
∗
2 respectively, as in Figure 4.9. Then the

distance ∆s travelled by the charge on its trajectory in the time interval [t∗1 , t
∗
2 ] is

∆s =

∣∣∣∣∣
∫ t∗2

t∗1

∥∥∥∥dξ (t)

dt

∥∥∥∥ dt
∣∣∣∣∣ (4-2.98)

This is the length of the generally curved trajectory of the charge between points
P∗1 ,P

∗
2 , greater or equal to the length of the straight segment P∗1P∗2 , so

12in general, since there exists the special case of the charge describing a closed loop, that is P∗2 ≡ P∗1 .
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∆s =

∣∣∣∣∣
∫ t∗2

t∗1

∥∥∥∥dξ (t)

dt

∥∥∥∥ dt
∣∣∣∣∣ ≥ ‖r2 − r1‖ ≥ |‖r2‖ − ‖r1‖| = |r2 − r1| = c |t∗2 − t∗1 | (4-2.99)

that is

∆s

|t∗2 − t∗1 |
=

1

|t∗2 − t∗1 |

∣∣∣∣∣
∫ t∗2

t∗1

∥∥∥∥dξ (t)

dt

∥∥∥∥ dt
∣∣∣∣∣ ≥ c (4-2.100)

which means that ”the mean value of the charge speed in the referred time interval is
greater or equal to that of light c”, in contradiction to the hypothesis of equation (4-2.7)∥∥∥∥dξ (t)

dt

∥∥∥∥ < c (repeat4-2.7)

This completes the proof about the uniqueness of the retarded time and position.

4-2.5 The Jacobian
∂ (u1, u2, u3)

∂ (x′1, x
′
2, x
′
3)

of u = F (x′) = x′ − ξ
(
t− ‖x

′ − x‖
c

)
In this Subsection we’ll find a general expression for the Jacobian of the vector function
F (x′) of the vector variable x′ that is defined in equation (4-2.13) and is repeated here
for convenience

u = x′ − ξ
(
t− ‖x

′ − x‖
c

)
= x′ − ξ (t′) = F (x′) (4-2.101)

where

t′ = t− ‖x
′ − x‖
c

= t−

√
(x′1 − x1)2 + (x′2 − x2)2 + (x′3 − x3)2

c
(4-2.102)

as defined in equation (4-2.5) repeated also here.
Note that this function represents a transformation or better a variable change from

x′ to u .
The Jacobian of a vector function is a determinant as defined in equation (4-2.88)

written also as

∂ (u1, u2, u3)

∂ (x′1, x
′
2, x
′
3)

=

∣∣∣∣∣∣∣∣∣∣∣

∂u1

∂x′1

∂u1

∂x′2

∂u1

∂x′3
∂u2

∂x′1

∂u2

∂x′2

∂u2

∂x′3
∂u3

∂x′1

∂u3

∂x′2

∂u3

∂x′3

∣∣∣∣∣∣∣∣∣∣∣
= ∇′u1 ◦ (∇′u2 ×∇′u2) (4-2.103)

where

∇′ def≡
(

∂

∂x′1
,
∂

∂x′2
,
∂

∂x′3

)
(4-2.104)
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Although we’ll find a general expression for
∂uj
∂x′k

it would be better to write down

equation (4-2.101) in components, in order to understand what is going on with a large
number of differentiations :

u1 = x′1 − ξ1 (t′) = x′1 − ξ1

t−
√

(x′1 − x1)2 + (x′2 − x2)2 + (x′3 − x3)2

c

 (4-2.105)

u2 = x′2 − ξ2 (t′) = x′2 − ξ2

t−
√

(x′1 − x1)2 + (x′2 − x2)2 + (x′3 − x3)2

c

 (4-2.106)

u3 = x′3 − ξ3 (t′) = x′3 − ξ3

t−
√

(x′1 − x1)2 + (x′2 − x2)2 + (x′3 − x3)2

c

 (4-2.107)

or in one stroke

uj = x′j − ξj (t′) = x′j − ξj

t−
√

(x′1 − x1)2 + (x′2 − x2)2 + (x′3 − x3)2

c

 (4-2.108)

From this last equation

∂uj
∂x′k

=
∂xj
∂x′k
− ∂ξj (t′)

∂x′k
= δjk −

dξj (t′)

dt′
∂t′

∂x′k
(4-2.109)

From equation (4-2.102)

∂t′

∂x′k
= − (x′k − xk)

c
√

(x′1 − x1)2 + (x′2 − x2)2 + (x′3 − x3)2
=

(xk − x′k)
c ‖x− x′‖

=
nk
c

(4-2.110)

where n = (n1, n2, n3) the unit vector

n
def≡ x− x′

‖x− x′‖
(4-2.111)

so equation (4-2.109) yields
∂uj
∂x′k

= δjk −
υj (t′)

c
nk (4-2.112)

where υj (t) the j-component of the charge q velocity vector v (t) , see equation (4-2.10).
Now, let the basic vectors of the orthonormal system of coordinates O′x′1x

′
2x
′
3 be

e1 =

1
0
0

 e2 =

0
1
0

 e3 =

0
0
1

 (4-2.113)

Equation (4-2.112), under the Einstein’s convention for the summation with respect to
repeated indices, yields
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∇′uj =
∂uj
∂x′k

ek = δjkek −
υj (t′)

c
nkek (4-2.114)

that is

∇′uj = ej −
υj (t′)

c
n (4-2.115)

After this detailed analysis on differentiations and since now we have a feeling what’s
going on, we note that equation (4-2.115) could be extracted in one stroke applying the
operator ∇′ to equation (4-2.108)

∇′uj = ∇′x′j︸︷︷︸
ej

−∇′ξj (t′) = ej −
dξj (t′)

dt′
∇′t′ = ej −

υj (t′)

c
n (4-2.116)

since from equation (4-2.108)

∇′t′ = n

c
=

x− x′

c ‖x− x′‖
(4-2.117)

Returning now to our Jacobian, equation (4-2.103) we have

∂ (u1, u2, u3)

∂ (x′1, x
′
2, x
′
3)

=

∣∣∣∣∣∣∣∣∣∣∣

∂u1

∂x′1

∂u1

∂x′2

∂u1

∂x′3
∂u2

∂x′1

∂u2

∂x′2

∂u2

∂x′3
∂u3

∂x′1

∂u3

∂x′2

∂u3

∂x′3

∣∣∣∣∣∣∣∣∣∣∣
= ∇′u1 ◦ (∇′u2 ×∇′u2)

=

(
e1 −

υ1 (t′)

c
n

)
◦
[(

e2 −
υ2 (t′)

c
n

)
×
(

e3 −
υ3 (t′)

c
n

)]

=

(
e1 −

υ1 (t′)

c
n

)
◦

(e2 × e3)︸ ︷︷ ︸
e1

−υ2 (t′)

c
(n× e3)− υ3 (t′)

c
(e2 × n)


= (e1 ◦ e1)− υ1 (t′)

c
(e1 ◦ n)− υ2 (t′)

c
[e1 ◦ (n× e3)]︸ ︷︷ ︸

(e2◦n)

−υ3 (t′)

c
[e1 ◦ (e2 × n)]︸ ︷︷ ︸

(e3◦n)

so

∂ (u1, u2, u3)

∂ (x′1, x
′
2, x
′
3)

= 1−
(
υ1 (t′) e1 + υ2 (t′) e2 + υ3 (t′) e3

c

)
◦ n

and finally

∂ (u1, u2, u3)

∂ (x′1, x
′
2, x
′
3)

= 1− v (t′) ◦ n

c
= 1−

v

(
t− ‖x− x′‖

c

)
◦
(

x− x′

‖x− x′‖

)
c

(4-2.118)

In the expressions (4-2.18) and (4-2.19) of the scalar and vector potentials respec-
tively, the value of this Jacobian is needed at u = 0 or equivalently at x′ = x∗ (= ξ (t∗))
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[
∂ (u1, u2, u3)

∂ (x′1, x
′
2, x
′
3)

]
u=0

=

[
∂ (u1, u2, u3)

∂ (x′1, x
′
2, x
′
3)

]
x′=x∗

= 1− v (t∗) ◦ n
R

c

= 1−
v

(
t− ‖x− x∗‖

c

)
◦
(

x− x∗

‖x− x∗‖

)
c

= 1−
v

(
t− R

c

)
◦
(

R

R

)
c

def≡ κ (4-2.119)

where

R = x− x∗ = x− ξ (t∗) (4-2.120)

R = ‖R‖ = ‖x− x∗‖ (4-2.121)

n
R

=
R

‖R‖
=

x− x∗

‖x− x∗‖
(4-2.122)

Note that R is the position vector of the field point as seen from the retarded position
of the charge, see Figure 4.4 in Subsection 4-2.1

4-2.6 The factor κ = 1− v (t∗) ◦ n
R

c

OWNER
Rectangle
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Figure I.7: Charge q moving in any arbitrary way ξ (t) .
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Figure I.8: Charge q at point P∗ emits a light beam at time t∗ towards field point A.
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Figure I.9: Charge q is at point P at time t when its emitted (from P∗ at time t∗) light beam arrives at
field point A.
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Figure I.10: The field point A as seen by charge q from the retarded point P∗ and time t∗ of the later.
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Figure I.11: When the charge q is at its present position, point P time t , a spherical light wave is emitted
from field point A to the past and the video of the motion of the charge is played from t backwards in
time.



515

Figure I.12: The spherical light wave front emitted to the past, see Figure I.11, is moving with radial
speed c greater than the radial speed of the charge, so coming closer and closer to arrest on its trajectory
the backwards in time moving charge q .
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Figure I.13: The spherical light wave front emitted to the past, see Figures I.11 and I.12 , is arresting at
the retarded time t∗ on the retarded point P∗ on its trajectory the backwards in time moving charge q .


