Electron Configuration and Orbital Notation

Dmitri Mendeleyev

\square Father of the Modern P.T.

Periods and Group

\square Period - horizontal row on P.T.
\square Each period represents an energy level (think back to models of the atom)
\square Atoms in period 1 have 1
energy level, atoms in period 5 have 5 energy levels

Where are the electrons?

-The Bohr Atom
\square Bohr Model

\square Based on Line Emission Spectrum of Hydrogen
\square Atoms consists of nucleus and energy Levels
\square Stated electrons followed specific circular paths called orbits

Quantum Mechanical Model

Consists of Energy levels, sublevels, and orbitals

Key Points:
Electrons do not follow orbits, nor can location be known exactly
2. Electrons are located within orbitals (probable location of electron)

Sublevel (also called subshell)

\square Found within energy levels
\square Designated by s, p, d, or f
\square Letter corresponds to orbital shapes found in sublevel
"s" sublevel (1 orbital)

The p sublevels (three orbitals)

The d sublevel (five orbitals)

The f sublevel (7 orbitals)

Relative size of the $1 \mathrm{~s}, 2 \mathrm{~s}$, 3 s orbitals

Orbitals

\square Generalized location of electron

- You know I'm probably in this room all day, you just don't know if I'm at my desk or in the storeroom or walking around
\square Does not have sharp edges
$\square 1$ orbital can contain a maximum of 2 electrons

Electron Configuration

\square Electron configuration: description of what sublevels and orbitals are filled by electrons in any given atom (like a roadmap of the electrons in an atom)
\square Determined by the number of electrons the atom has
\square Governed by 3 rules!

e- configuration rules

\square Aufbau Principle: an electron occupies the lowest energy level \& orbital available
\square Pauli Exclusion Principle: only two electrons can occupy any orbital, and they must have opposite spins
\square Hund's Rule: Each orbital in a given sublevel (s, p, d, or f orbital) must have 1 electron before any can have two

Electron Configurations

in that orbital

\square Nitrogen:

$1 s^{2} 2 s^{2} 2 p^{3}$

(atomic number $=7$)
Tro's Introductory Chemistry, Chapter 9

Outline the sections on your blank periodic table to match this diagram. Use different colors for each sublevel.

Orbital Notation - Pictures

\square Using the periodic table from the previous slide, we can also create picture representations of the electron configuration (called orbital notation)
\square We use arrows ($\uparrow \downarrow$) to represent the electrons
\square Remember those three rules:
\square Fill lowest energy levels first
\square Any subshell with multiple orbitals must get one arrow in each orbital first (in the same direction) before doubling up
\square Two arrows in each orbital (one up, one down)

Orbital Notation ctd

\square Each s subshell only has 1 orbital (holding 2 arrows)
\square Each p subshell has 3 orbitals (holding 2 arrows each $=6$)
\square Each d subshell has 5 orbitals (holding 2 arrows each = 10)
\square The orbitals are represented by boxes or just lines

2 s

2p

3 s

3p

Orbital Notation Example

\square Write the orbital notation for Oxygen
\square How many electrons (arrows) does neutral oxygen have? 8

$$
\begin{array}{lll}
\uparrow \downarrow & \uparrow \downarrow \\
1 \mathrm{~s} & \uparrow \downarrow \frac{\uparrow}{2 \mathrm{~s}} & \uparrow \\
\hline
\end{array}
$$

Shorthand - Noble Gas Notation

\square Group 18 on the periodic table are called the Noble Gases --- To create a shorthand for electron configuration, we use the noble gases as a reference
\square For example, the electron configuration of silicon is:

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}
$$

\square to write the shorthand, we find which Noble gas comes before silicon --- Neon (Ne)
\square Neon's electron configuration is:

$$
1 s^{2} 2 s^{2} 2 p^{6}
$$

\square The noble gas notation for silicon then would be:

$$
[\mathrm{Ne}] 3 s^{2} 3 p^{2}
$$

Noble Gas Notation Practice

\square Write the noble gas notation for manganese
\square First, find which noble gas comes before manganese--- Ar

Argon

\square Full electron configuration:

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{5}
$$

\square Noble Gas Notation:

$$
[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{5}
$$

