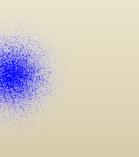
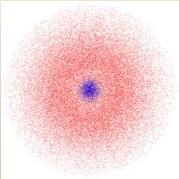

Electron Arrangement in an Atom

- The arrangement of electrons in an atom is its <u>electron configuration</u>.
- It is <u>impossible</u> to know where an electron is or <u>how fast</u> it is traveling at any given time (Heisenberg Uncertainty Principle? Walter White?).
- Models of the atom, such as the <u>Bohr model</u> are very <u>inaccurate (oops!)</u> according to modern atomic theory.
- Atoms and electrons are *more complicated* than planets orbiting the Sun.


Energy Levels


 There are "shells" or <u>energy levels</u> around an atom. The <u>farther away</u> an energy level is from the nucleus, the more energy the sublevel has.

Electron Orbitals

- Orbitals are clouds of probability within an energy level, so an actual orbital is a region of space, where an electron might be found.
- Two orbital clouds are pictured below. There are more dots near the center of the picture, because an electron is most likely to be near the nucleus (center) of the atom (the electron which is negative is attracted to the positive protons).

Types of Orbitals

 Within the energy shells are <u>different shaped</u> orbitals (represented by the letters s, p, d, and f) that can contain different <u>total numbers</u> of electrons. A <u>number</u> can be placed in front of the orbital letter to represent the energy level that an orbital belongs to.

For example: 1s is an s shaped orbital on the 1st energy level, which is closest to the nucleus

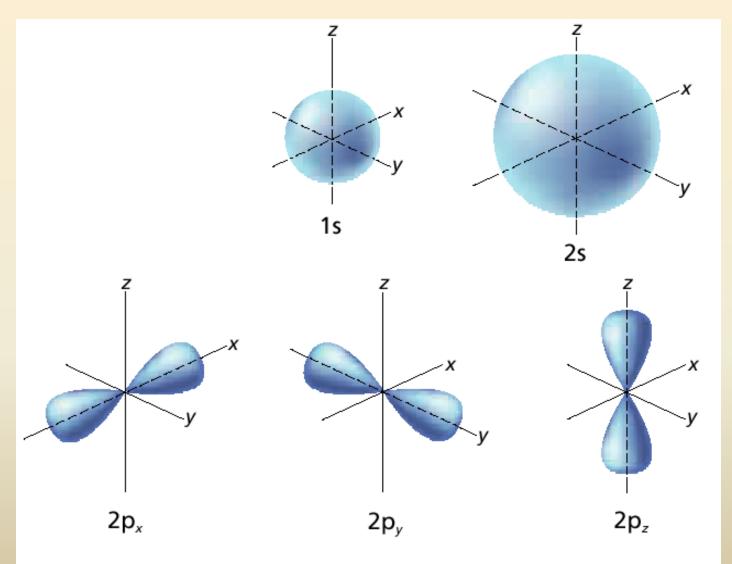
Orbitals, con'td

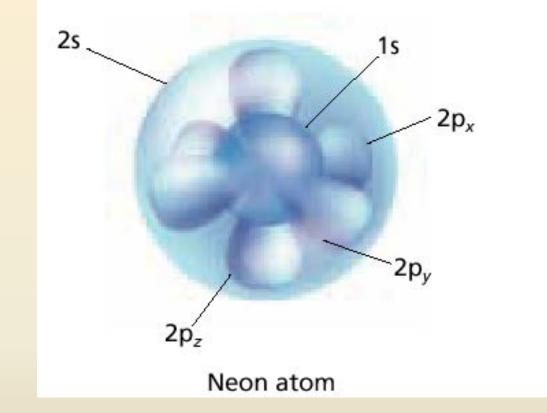
• Different shaped orbitals can hold different numbers of electrons:

- -s orbital can hold up to 2 electrons (1 pair)
- -p orbital can hold up to $\underline{6}$ electrons (3 pairs)
- d orbitals can hold up to 10 electrons (5 pairs)
- f orbitals can hold up to 14 electrons (7 pairs)

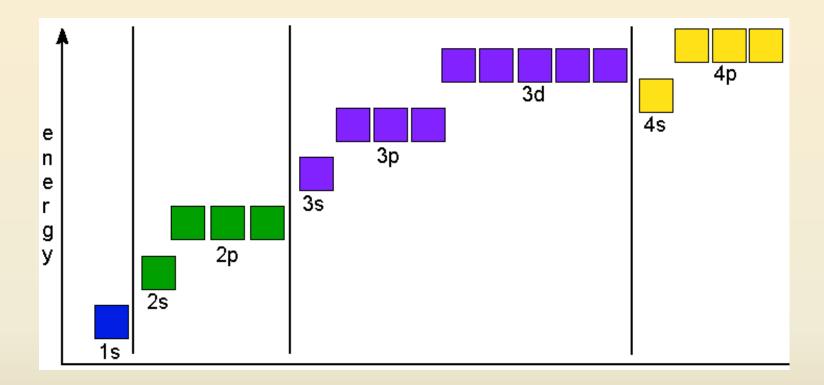
If a vehicle were an orbital....

• Match the orbital to the vehicle that most represents it!





So how do the orbitals REALLY look?



Putting the s and p orbitals together.....

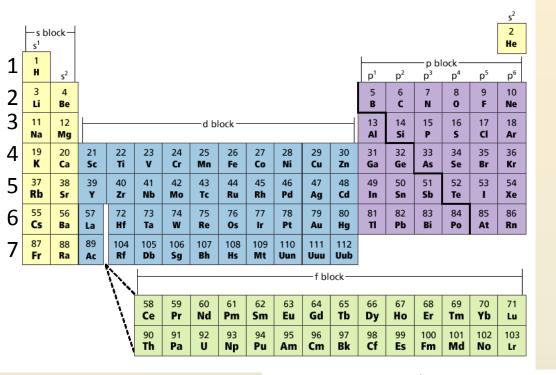
So what number represents the highest energy level as well as the outermost level in this atom of Neon?

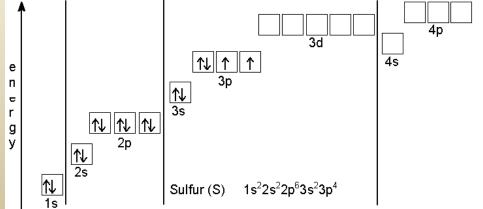
Another way to look at it....

• The boxes represent the different <u>orbitals</u>. As the number of the level increases, the energy increases. Each individual box can hold <u>2</u> electrons at a time.

How are electrons in their orbitals like an apartment house?

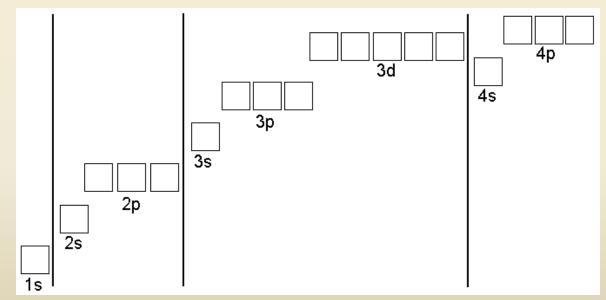
- <u>Different floors</u> in the apartment represent <u>different energy levels</u> or shells.
- <u>Each room</u> on each floor of the apartment house <u>corresponds to an orbital</u>, or one box from the previous diagram.

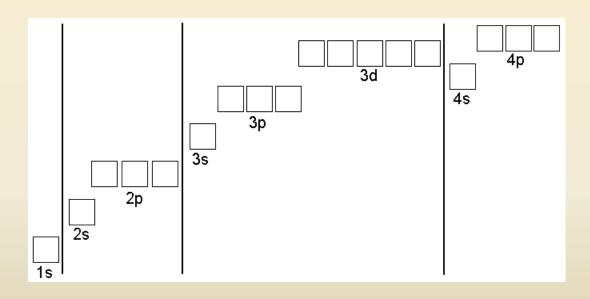

How are electrons in their orbitals like an apartment house?


- Different floors in the apartment represent different energy levels or shells.
- Each room on each floor of the apartment house corresponds to an orbital, or one box from the previous diagram.
- Each room on each floor <u>can hold up to 2 people</u> (the electrons), and <u>each room is filled with one</u> <u>person first</u> before the rooms become <u>double</u> <u>occupancy.</u>
- Only a man and a woman can live together in a room in the apartment house. (<u>this represents</u> the "spin" of the electrons one has an up-spin, the other has a down-spin)

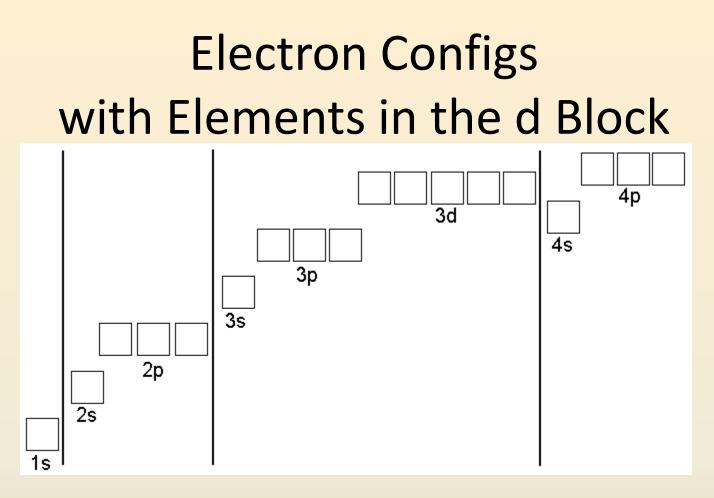
<u>Who</u> figured this out and <u>how does it relate</u> to the apartment analogy?!?

Apartment House Rules	Electron Rules
From the Bottom Up : Rooms must be filled from the ground floor up. Fill the one room on the first floor before starting to put new tenants on the second floor. Then fill the s room before the p rooms. At higher floors the order might change a bit.	Aufbau Principle: the electrons fill the available orbitals from lowest energy to highest energy. In the ground state all the electrons are in the lowest possible energy level.
Singles First : the owner of the building wants to have the tenants spread out as much as possible. For that reason singles are placed in rooms before couples. If couples must be placed into a room then all of the other rooms on that floor must already have a single in them.	Hund's Rule: The electrons must be placed into the orbitals in such a way that no pairs are put together unless absolutely necessary. That is, single electrons must be placed into boxes first and then paired up if necessary.
Opposite "Gender" Only : When two people are placed in a room they must be of opposite genders. No men may room together and no women may room together. This is an arbitrary rule on the part of the owners: in a just world we wouldn't have to follow it. But quantum mechanics has nothing to do with justice.	Pauli Exclusion Principle: Electrons come in two varieties based on the direction they are 'spinning'. There is an Up spin and a Down spin. Up and Down spins are always paired together and Up-Up or Down-Down combinations are not allowed. No two electrons can ever be in the same place at the same time.


The Periodic Table – A Cheat Sheet for Knowing the Order of Filling Electron Orbitals

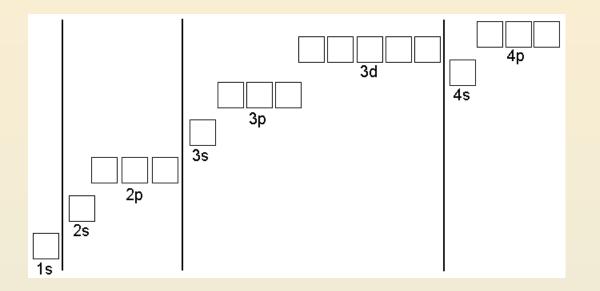

Practice!

 Fill in the electron orbitals corresponding to He, then write out the complete electron configuration.



More Practice

• Fill in the electron orbitals for Si, then write out the complete electron configuration.



 $1s^{2}2s^{2}2p^{6}3s^{2}3p^{2}$

Notice that when you get to the 3d orbital, it is higher in energy than the 4s orbital. The rule is that electrons fill lower energy orbitals first, so electrons will actually fill the 4s orbital after 3p, then electrons will begin to fill the 3d orbital.

Practice with the d Block

 Write the electron configuration for Titanium (Ti).

 $1s^22s^22p^63s^23p^64s^23d^2$

Noble Gas Notation

- This is much <u>shorter</u> and <u>more convenient</u> than writing out the entire electron configuration.
- Use the symbol for the noble gas that is just before the element you are configuring. (The noble gas and the element will have the same configuration, or inner electron structure, **up to that point**)
- Then complete the configuration that comes after the noble gas for the element in question.
- Example: The <u>complete configuration</u> for Na is 1s²2s²2p⁶3s¹. Neon is the noble gas that comes before Na on the periodic table. So the <u>noble gas notation</u> for Na would be: [Ne]3s¹

Practice!

• Write the noble gas notation for the following elements:

- Chlorine [Ne]3s²3p⁵
- Beryllium [He]2s²

More Practice

 Which element has the following configuration: [Xe]6s^{2?}

<u>Barium</u>

Electron Configurations and Valence Electrons

- The outermost shell of electrons in an atom is the valence shell and it contains the valence electrons.
- The outermost shell contains the electrons that can <u>interact most with the rest of the world</u>.
- A full valence shell contains <u>8</u> electrons (2 from an s orbital and 6 from a p orbital), unless you're hydrogen or <u>helium</u> (only want 2 to fill their outermost s shell to become stable).

	Periodic Table of the Elements Acmicrumber 14 Symbol Si																	
	Group Atomic mass 28086 18																	
	LA Silicor, Name VIIIA																	
													011/0011		-			2 He
1	1.009	2	Ro	ma		Maa	m	<u>a ra</u>	le	Λh			13	14	15	16	17	1002E
	Hydrogen	2 11A	NU			IN U		5 I Q				E	HIA	IVA	VA	VIA	VIIA	Helium
	3	4											5	6	7	8	9	10
2		Be	Ea	ch	Co	blu	mr	n (((Gra	วนเ	0 A		В	С	N	0	F	Ne
	2 Li Be E.541 Buntz Lithium Berylium Carbon (Carbon (Group A) B C N O F Ne 10.81 12.011 14.007 15.999 18.998 20.179 Baran Carbon Nitrogen Oxygen Fluorine Neon																	
	11	12											13	14	15	16	17	18
3		Mg	з	4	5	6	7		~			4.0	AI	Si	Р	s	CI	Ar
	22.990 Sodium	24305 Misneiium	шв	IVB	VB	VIB	v́нв	8	9 VIII	10	11 IB	12 IIB	26.982 Aluminum	28.086 Silicon	30.974 Phosphorus	32.066 Sulfur	35.453 Chlorine	39.948 Argon
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.098 Potamium	40.0B Calcium	44.955 Somofum	4788 Ttanium	50.942 Varietium	51.998 Chromium	54 938 Малание	55.847 Iran	58.933 Cobalt	58.69 Nickel	63.546 Copper	6539 Znc	69.72 Galium	72.61 Germanium	74.922 Americ	78.95 Selanium	79904 Bramina	83.90 Krypton
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
8	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Bh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
	85.468 Bubidum	E7.62 Strontium	EE.90E Yttrium	91.224 Zirconium	92.906 Niobium	95.94 Molybdenum	(98) Technetium	101.07 Buthenium	102.006 Rhodium	106.42 Palladium	107.868 Bilver	112.41 Cedmium	114.E2 Indium	11871 Tin	121.763 Antimony	127.60 Tellurium	126.904 Iodine	131.29 Xenon
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
e	Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Bn
	132,905	137.33 Berium	138.906	178.49 Hetnium	180.948	183.84	186207	190.23	192.22	195.06 Platinum	196.967 Gold	200.52	204.365	207.2	208.980 Bianuth	(209)	(21.0)	(222)
	Cesium 87	Banuni 88	Lanthanum 89	104	Tartalum 105	Tungaten 106	Bhanium 107	Osmium 108	Initian 109	110		Mercury	Thalium	Lend	Bishitth	Polonium	Antotine	Radon
7	Fr	Ra	Ac	Bf	Db	Sg	Bh	Hs	Mt				entheses ar est common					
í	(223)	226.025	227.028	(261)	(262)	(263)	(262)	(265)	(266)	(269)				interesting of the second s				
	Francium	Radium	Actinium	Fuherkirdun	Dubnium	Sesbergium	Bahrium	Haaium	Meitnerium									
				\sim														
				1	58	7 8	60 Mai	61 Dm	62 Cm	63 E.:	2 g	65 T b	8	67 H a	68 E *	1 8	70	71
	I	anthani	de Serie	s 🔪 🛛	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
					140.12 Gerium	140.906 Rasedymium	144.24 Neodymium	(145) Pramethium	15036 Samarium	151.97 Europium	157.25 Gadalinium	168.926 Terbium	162.50 Dysprosium	164930 Helmium	167.26 Erbium	168.934 Thulum	173.04 Ytterbium	174.967 Lutetium
					90	91	92	98	94	95	96	97	98	99	100	101	102	103
		Actini	de Series	s \	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				<u>۱</u>	232.038 Thorium	231.036 Protactinium	238.029 Uranium	Z37.048 Neptunium	(244) Plutonium	(243) Americium	(247) Curium	(247) Berkelium	(251) Californium	(252) Einsteinium	(257) Fermium	(258) Mendelevium	(259) Nobelium	(262) La venencium

Revised October 15, 2001

How many valence electrons in....

Oxygen - 1s² 2s² 2p⁴

• Sulfur - 1s² 2s² 2p⁶ 3s² 3p⁴

The outermost shell contains the valence electrons, so find the highest number in the electron configuration and count the number of electrons in it.

Valence Electrons and Lewis Dot Structures

- Remember <u>valence electrons</u> determine the <u>chemical properties</u> of an element because they are the outermost electrons that interact with the outside world.
- We can use <u>Lewis dot structures</u> to help represent these important valence electrons for each element.

Electron-Dot Structures for Elements in Period Two									
Element	Atomic number	Electron configuration	Electron-dot structure						
Lithium	3	1s ² 2s ¹	Liv						
Beryllium	4	1s ² 2s ²	۰Be・						
Boron	5	1s ² 2s ² 2p ¹	۰B۰						
Carbon	6	1s ² 2s ² 2p ²	٠ċ٠						
Nitrogen	7	$1s^{2}2s^{2}2p^{3}$	٠Ņ٠						
Oxygen	8	1s ² 2s ² 2p ⁴	:Ö·						
Fluorine	9	1s ² 2s ² 2p ⁵	÷Ë·						
Neon	10	1s ² 2s ² 2p ⁶	:Ne:						

Practice!

- Step 1: Use the periodic table to determine the number of valence electrons in an atom of a certain element.
- Step 2: Write the element symbol and place the dots (valence electrons) on each of the four sides of the symbol; singles first and then pair them if necessary.

PRACTICE PROBLEMS

23. Draw electron-dot structures for atoms of the following elements.

- a. magnesium
- **b.** sulfur

- d. rubidium
- e. thallium

c. bromine

f. xenon

Check Your Work

Ions and Electron Configuration

- Remember that <u>CATIONS are positively charged</u> atoms and <u>ANIONS are negatively charged atoms</u>.
- These form because of the need for an atom to achieve <u>stability</u> that the noble gases have.
- Understanding electron arrangement in an atom, especially the electrons in the outermost shell (valence), can help you determine why the elements form the ions that they do.
 - PRE-AP ONLY