Vincenzo Balzani (Ed.)

Electron Transfer in Chemistry

Catalysis of Electron Transfer Heterogeneous Systems Gas-phase Systems

Weinheim · New York · Chichester Brisbane · Singapore · Toronto

Volume IV

Part 1	Catalysis of Electron Transfer Shunichi Fukuzumi (Ed.)	1
1	Fundamental Concepts of Catalysis in Electron Transfer	3
	Shunichi Fukuzumi	
1.1	Introduction	3
1.2	Factors to Accelerate Rates of Electron Transfer	5
1.3	Acid Catalysis in Electron Transfer	8
1.3.1	Catalysis of Brønsted Acid	8
1.3.2	Deceleration and Acceleration Effects of Brønsted Acid	14
1.3.3	Catalysis of Metal Ions	15
1.3.4	Acid Catalysis in Overall Reactions	27
1.3.5	Lewis Acid Catalysis in C-C bond Formation via Electron	
	Transfer	43
1.3.6	Acid Catalysis in Photoinduced Electron Transfer	44
1.4	Base Catalysis in Electron Transfer	47
1.4.1	Base Catalysis by Deprotonation of Electron Donors	48
1.4.2	Base Catalysis via Formation of Base Adducts	51
1.4.2	Control of Reorganization Energy by Base Catalysis	54
1.4.5	Conclusions and Future Prospects	58
1.5		50 59
	Acknowledgments	59
	References	39
2	Redox Modulation by Molecular Recognition	68
2.1	Introduction	68
2.2	Modulation of Redox Potentials by Noncovalent Interactions	69
2.2.1	Hydrogen Bonding	71
2.2.2	Aromatic Stacking	74
2.2.3	Other Electrostatic Interactions	77
2.3	Recognition-mediated Control of Molecular Orbital Geometries	79
2.4	Proton-coupled Electron Transfer	82
2.5	Summary and Outlook	85
2.5	References	86
3	Homogeneous Redox Catalysis in CO ₂ Fixation	88
3	Etaular Eniita and David Catalysis in CO2 Fixation	00
2 1	Etsuko Fujita and Bruce S. Brunschwig	00
3.1	Introduction	88
3.2	Macrocyclic Complexes of Cobalt and Nickel	89
3.2.1	Overview of CO_2 Reduction Systems Mediated by Cobalt and	0.0
	Nickel Macrocycles	89
3.2.2	Properties of the Cobalt and Nickel Macrocycles	92
3.2.3	Electrocatalytic Systems	97

3.2.4 3.3	Photocatalytic Systems Re(α -diimine)(CO) ₃ X, Re(α -diimine)(CO) ₂ XX' and Similar	98
	Complexes	104
3.3.1	Overview of CO ₂ Reduction System-mediated Rhenium	
	Complexes	104
3.3.2	Properties of $Re(\alpha$ -diimine)(CO) ₃ X and $Re(\alpha$ -diimine)(CO) ₂ XX'	104
3.3.3	Electrochemical Systems: One- and Two-electron Pathways	116
3.3.4	Photochemical Systems	118
3.4	Conclusions	121
	Acknowledgments	122
	Abbreviations	122
	References	123
4	The Electrochemical and Photochemical Activation of Redox	
	Enzymes	127
	Eugenii Katz, Andrew N. Shipway and Itamar Willner	
4.1	Introduction	127
4.2	The Electrochemical Activation of Enzymes	128
4.2.1	Direct, Nonmediated Electron Transfer Between Enzymes and	
	Electrodes	128
4.2.2	Electron Transfer Between Enzymes and Electrodes Provided by	
	Diffusional Mediators	131
4.2.3	Electrochemistry of Enzymes at Electrodes Functionalized with	
	Monolayers of Redox Relays	133
4.2.4	Electrochemical Activation of Enzymes by the Attachment of	
	Redox Relays to the Protein Backbone	135
4.2.5	Electrical 'Wiring' of Enzymes Entrapped in Polymeric Matrices on	
	Electrode Supports	140
4.2.6	Electrical 'Wiring' of Enzymes Incorporated into Inorganic	
	Matrices	146
4.2.7	Electrical 'Wiring' of Nano-engineered Enzymes	151
4.2.8	Biosensor, Bioelectronic and Biotechnological Applications of	
	Electrically 'Wired' Enzymes	159
4.3	The Photochemical Activation of Enzymes	170
4.3.1	Biological Transformations Driven by the Photochemical	
	Regeneration of NAD(P) ⁺ /NAD(P) ^H Cofactors	172
4.3.2	Enzymatic Reactions Driven by the Photochemical Regeneration of	
	Synthetic Electron Relays	179
4.3.3	Photochemical Activation of Enzymes Using Dyes Covalently	
	Tethered to the Protein Backbone	181
4.3.4	Photochemical Activation of Semi-synthetic Enzymes Reconstituted	
	with Non-natural Photosensitive Cofactors	185
4.3.5	Applications of Photoactivated Redox Enzymes	190
4.4	Conclusion and Perspectives.	191
r. 	Acknowledgments	193
	References	193
		1,2

5	Interprotein and Intraprotein Electron Transfer Mechanisms	202
	Gordon Tollin	
5.1	Introduction	202
5.2	Experimental Methods for Investigating Protein ET Reactions	205
5.2.1	Time-resolved Spectrophotometry	205
5.2.2	Use of Ionic Strength to Probe Electrostatic Interactions	208
5.3	Interprotein Electron Transfer Reactions	210
5.3.1	Ferredoxin (Fd)–Ferredoxin:NADP ⁺ Reductase (FNR)	210
5.3.2	Cytochrome f (Cyt f)-Plastocyanin (Pc)	218
5.3.3	Cytochrome c (cyt c)–Cytochrome c Peroxidase (ccp)	221
5.4	Intraprotein Electron Transfer Reactions	222
5.4.1	Flavocytochrome b_2 (Fcyt b)	222
5.4.2	Sulfite Oxidase (SO).	224
5.4.3	Cytochrome P450BM-3	225
5.5	Conclusions	227
5.5	Acknowledgments	228
	References	228
		220
6	Novel Organic Syntheses Through Semiconductor Photocatalysis	232
Č	Horst Kisch and Matthias Hopfner	202
6.1	Scope and Introduction	232
6.2	Heterogeneous Photocatalysis with Semiconductor Powders	234
6.2.1	Fundamentals	234
6.2.2	Thermodynamic Aspects	235
6.2.3	Kinetic Aspects.	237
6.2.4	Surface Area and Particle Size	239
6.2.5	Photocorrosion	239
6.2.6	Characterization of ZnS and CdS	240
6.3		
	Semiconductor Photocatalysis Type A	245
6.3.1	Dealkylation, Cyclization and Hydroalkylation	245
6.3.2	Dehydrodimerization of Cyclic Enol/Allyl Ethers and Olefins	248
6.4	Semiconductor Photocatalysis Type B	256
6.4.1	Linear Addition of Cyclic Enol/Allyl Ethers and Olefins to	
	1,2-Diazenes	256
6.4.2	Linear Addition of Cyclic Enol/Allyl Ethers and Olefins to Imines	264
6.5	Summary and Outlook	270
	References	270
Daví 2	Hadava zana ang Sundama	077
Part 2	Heterogeneous Systems Thomas E. Mallouk (Ed.)	277
1	Floatson Transfor at Somison ductor. Floats-late Laterforce	270
1	Electron Transfer at Semiconductor–Electrolyte Interfaces	279
1 1	Krishnan Rajeshwar	070
1.1	Introduction and Scope	279
1.2	Electron Energy Levels in Semiconductors and Energy Band Model	280

1.3	The Semiconductor-Electrolyte Interface at Equilibrium	285
1.3.1	The Equilibration Process	285
1.3.2	The Depletion Layer	287
1.3.3	Mapping of the Semiconductor Band-edge Positions Relative to	
	Solution Redox Levels	289
1.3.4	Surface States and Other Complications	293
1.4	Experimental Methods for Studying Charge Transfer at	
	Semiconductor–Electrolyte Interfaces	294
1.5	Charge-transfer Processes in the Dark	296
1.5.1	Current–Potential Behavior	296
1.5.2	Dark Processes Mediated by Surface States or by Space Charge	_, _
	Layer Recombination	301
1.5.3	Rate-limiting Steps in Charge-transfer Processes in the Dark	304
1.6	Light Absorption by the Semiconductor Electrode and Carrier	20.
1.0	Collection	306
1.6.1	Light Absorption and Carrier Generation	306
1.6.2	Carrier Collection	307
1.6.3	Photocurrent–Potential Behavior	312
1.6.4	Dynamics of Photoinduced Charge Transfer	315
1.6.5	Hot Carrier Transfer.	320
1.7	Multi-electron Photoprocesses.	322
1.8	Nanocrystalline Semiconductor Films and Size Quantization	327
1.8.1	Introductory Remarks	327
1.8.2	Preparation of Nanocrystalline Electrode Films	328
1.8.3	The Nanocrystalline Film–Electrolyte Interface and Charge Storage	020
1.0.5	Behavior in the Dark	329
1.8.4	Photoexcitation and Carrier Collection: Steady-state Behavior	330
1.8.5	Photoexcitation and Carrier Collection: Dynamic Behavior	333
1.8.6	Size Quantization	335
1.9	Charge Transfer Across Chemically Modified Semiconductor–	555
1.9	Electrolyte Interfaces	336
1.9.1	Single Crystals	336
1.9.2	Nanocrystalline Semiconductor Films and Composites	338
1.10	Concluding Remarks	342
1.10	Acknowledgments	342
	References	343
		010
2	Dye Sensitization of Electrodes	353
-	Ping Qu and Gerald J. Meyer	
2.1	Dye Sensitization of Planar Electrodes	353
2.1.1	Thermodynamics and Sensitization Mechanisms	354
2.1.2	Examples of Sensitization Studies at Planar Electrodes	366
2.2	Dye Sensitization of Colloidal Semiconductor Electrodes	377
2.2.1	Materials, Spectroscopic and Electrochemical Properties of	- • •
	Nanocrystalline TiO ₂	379
2.2.2	Examples of Interfacial Electron Transfer at Colloidal	217
	Semiconductor Electrodes	392

2.3	Conclusions	405
	Acknowledgments	406
	References	406
•		
3	Electron-transfer Processes in Zeolites and Related	410
	Microheterogeneous Media.	412
	Anand S. Vaidyalingam, Michael A. Coutant and Prabir K. Dutta	
3.1	Introduction	412
3.2	Description of Porous Media	413
3.2.1	Microporous Materials and Zeolites	413
3.2.2	Mesoporous Materials	423
3.2.3	Sol-Gel Materials	427
3.3	Electron-transfer Reactions	429
3.3.1	Microporous Materials and Zeolites	429
3.3.2	Mesoporous Materials	465
3.3.3	Sol–Gel Materials	469
3.4	Conclusions	478
	Acknowledgments	479
	References	479
4	Flashing Transfer in Language and Internalists of Community	107
4	Electron Transfer in Layered and Intercalated Compounds Vasudeva Bhat and Kazunari Domen	487
4 1		407
4.1	Introduction	487
4.2	Layered Oxides of Transition Metals	487
4.2.1	K ₄ Nb ₆ O ₁₇	489
4.2.2	KTiNbO ₅ -type Oxides	505
4.2.3	Perovskite-related Layered Oxides	511
4.3	Clays	519
4.3.1	TiO ₂ in Montmorillonite	520
4.3.2	Fe ₂ O ₃ in Montmorillonite	521
4.3.3	CdS and ZnS Mixtures in Colloidal Montmorillonite	521
4.3.4	Photoactive Species Intercalated into Lamellar Oxides	522
4.4	Layered Double Hydroxides (LDHs) [171–174]	526
4.4.1	Photocatalysis in LDHs Intercalated with CdS and CdS/ZnS	527
4.4.2	Photocatalysis in LDHs Pillared with Polyoxometallates	527
4.4.3	LDHs Intercalated with Photoresponsive Species	528
4.5	Artificially Built Multilayer Systems	528
4.5.1	Towards Photoinduced Charge Separation	529
4.6	Conclusion	535
	References	536
5	Fundamental Aspects of Fleatren Transfer in Substrate supported	
5	Fundamental Aspects of Electron Transfer in Substrate-supported Organized Molecular Assemblies	541
	Robert S. Clegg and James E. Hutchison	_
5.1	Introduction	541
5.2	Background	543
5.2.1	Monolayer and Multilayer Systems	543
2.2.1		5.5

5.2.2 5.3	Characterization of Molecular Assemblies Fundamental Studies of Electron Transfer in Organized	546
	Assemblies	550
5.3.1	Electron Transfer in Langmuir–Blodgett Systems	550
5.3.2	Electron Transfer in Self-assembled Systems	552
5.4	Summary and Outlook	572
5.1	References	574
6	Electron Transfer in Self-organizing Systems of Amphiphiles	578
U	James K. Hurst and Rafail F. Khairutdinov	570
6.1	Introduction	578
6.2	General Attributes of Surfactant Assemblies	578
6.2.1	Micelles and Reversed Micelles	579
6.2.2	Vesicles and Membranes	581
6.2.2 6.3		
	Surfactant Assembly Microenvironments	584
6.3.1	Partitioning of Dopants in Micelles	585
6.3.2	Partitioning of Dopants in Vesicles	586
6.3.3	Microviscosities of Surfactant Assemblies	586
6.3.4	Local Polarity and Electric Field Gradients	589
6.4	Electron-transfer Reactions in Micelles	592
6.4.1	Stabilization of Charge-separated States	592
6.4.2	Kinetic Analysis of Electron-transfer Reactions in Micelles	597
6.5	Electron-transfer Reactions in Vesicles and Membranes	601
6.5.1	Biological Electron Transport and 'Artificial Photosynthesis'	601
6.5.2	Primary Charge Separation Events.	602
6.5.3	Kinetic Analyses	607
6.5.4	Transmembrane Oxidation–Reduction Reactions	609
	Acknowledgments	617
	References.	618
D. 4 3		(25
Part 3	Gas-phase Systems Yehuda Haas (Ed.)	625
1	Introduction and Theoretical Background Yehuda Haas	627
1.1	Some Novel Experimental Advances	629
1.2	Theoretical Background	630
2	Electron-transfer Reactions Involving Atoms, Molecules and	(22
	Clusters.	632
0.1	Benoit Soep and Jean Michel Mestdagh	(22
2.1	Introduction.	632
2.2	Experimental Methods	635
2.3	The Harpoon Model and Beyond: a Historical Review	637

2.3.1	The Early Age: the Harpoon, a Model to Describe Reactions of	
	Ground-state Alkali Metal Atoms	637
2.3.2	A First Multi-dimensional Reaction Model: the DIPR-DIP Model .	640
2.3.3	The Double Harpoon: a Mechanism Adapted to Alkaline Earth	
	Metal Atom Reactions	642
2.3.4	Beyond the Harpoon Model: the HOMO/LUMO Matching to	
	Describe Transition Metal Reactivity	647
2.3.5	Multicenter Harpoon Reactions	649
2.3.6	Harpoon Reactions with Surfaces	650
2.4	Effect of Changing the Internal State of the Reactants	651
2.4.1	Changing the Vibrational State of the Molecular Reactant	651
2.4.2	Electronic Excitation to Overcome an Endoergicity Barrier	652
2.4.3	Effect of Electronic Excitation on the Reaction Dynamics	654
2.5	Stereodynamics of the Electron Transfer	660
2.6	Van der Waals Complexes: a Tool to Explore the Potential Energy	000
2.0	Surface in the Electron-transfer Region	662
2.6.1	Local Excitation and Subsequent Electron Transfer	663
2.6.2	Time-resolved Observation of Electron Transfer in Excited-state	002
2.0.2	Reactions: the Ba–FCH ₃ case	675
2.6.3	Direct Excitation of an Electron-transfer Complex	675
2.0.5	Prereactive Behavior in Ground States	677
2.7.1	Stabilizing an Electron-transfer Complex	677
2.7.1	Observing Partial Electron Transfers in the Gas Phase	678
2.7.2	Towards Electron-transfer Reactions in Condensed Phases	680
2.8	Solvent-induced Electron Transfer in Clusters	680
2.8.1	Dynamics of Electron Solvation in Finite Water Clusters	681
2.8.2	Cluster Isolated Chemical Reactions	681
2.8.5		687
2.9	Summary and Conclusions	
	References	688
3	TICT Molecules	697
3		09/
2 1	Jerzy Herbich and Bernhard Brutschy Photoin duced Electron Transfer in Denor, Accentor (D. A)	
3.1	Photoinduced Electron Transfer in Donor–Acceptor (D–A)	(07
2 1 1	Molecules in Solutions	697
3.1.1	Introduction	697
3.1.2	Solvent-dependent Dual Luminescence	698
3.1.3	Electronic and Molecular Structure of Large D–A π -Systems	701
3.1.4	TICT Molecules.	706
3.2	Supersonic Jet Spectroscopy of Selected D-A Molecules	707
3.2.1	Introduction	707
3.2.2	Bare Molecules	711
3.2.3	Microsolvation Effects	716
3.2.4	Concluding Remarks	731
3.3	Summary and Perspectives	732
	Acknowledgments	733
	References	734

xl C	ontents

4	Exciplexes of Large Molecules	742
4.1	Introduction	742
4.1.1	Evidence for Electron Transfer in Isolated Systems	745
4.2	Structure–Reactivity Relationships	747
4.2.1	The Co-existence of Several Isomers	748
4.2.2	Hole-burning Spectroscopy	748
4.2.3	Two-color Photoionization	757
4.3	Distance Dependence of Charge Separation; Mechanisms	758
4.4	Rate of Electron Transfer	761
4.5	Exciplexes in Reactive Systems	763
4.6	Modeling	769
4.7	Conclusions	772
,	Acknowledgments	773
	References	773
5	Isolated Supermolecules	775
	Yasuhiro Ohshima, Okitsugu Kajimoto and Kiyokazu Fuke	
5.1	Introduction	775
5.2	Stepwise Charge Separation in Alkali Metal Atom-containing	
	Clusters	776
5.2.1	Alkali Metal Atom Clusters Solvated with Ammonia Molecules	777
5.2.2	Hydrated Clusters of Alkali Metal Atoms	781
5.3	Charge Transfer in Solvated Anion Clusters	786
5.3.1	Dipole-bound Excited States in I ⁻ Clusters Solvated with Small	
	Organic Molecules	787
5.3.2	CTTS Precursor States in I^- (water) _n Clusters	789
5.3.3	Dipole-bound Excited State in I^- (Xe) _n Clusters	793
5.4	Electron-transfer Reactions in Large Donor-Acceptor Molecules	
	Studied Under Jet-cooled Conditions	795
5.4.1	Directly Connected EDA Molecules	796
5.4.2	Bridged EDA Molecules	800
5.5	Conclusion and Outlook	801
	References	802