Electronic Circuits

Jón Tómas Guðmundsson

tumi@raunvis.hi.is

Summer 2011

1

Electronic Circuits

- Introduction of nonlinear circuit elements
- Diodes and diode circuits
- Circuit models for bipolar junction and field-effect transistors
- Small-signal and piecewise analysis of nonlinear circuits
- Analysis and design of basic single-stage transistor amplifiers
- $\bullet\,$ Biasing of single-stage transistor amplifiers
- Gain and frequency response of transistor amplifiers
- Digital logic circuits

Lecturer

• Jón Tómas Guðmundsson

Office: Room 120, UM-SJTU JI Building

Office hours: Monday and Thursday 13:15 - 14:15

e-mail: tumi@raunvis.hi.is

Schedule

- Lectures:
 - Monday 10:00 10:45 Dong Zhong Yuan 2-103
 - Tuesday 14:00 15:40 Dong Zhong Yuan 2-103
 - Thursday 10:00-11:40 Dong Shang Yuan 206

2

Books

Required text:

Richard C. Jaeger and Travis
N. Blalock, Microelectronic
Circuit Design, 4th edition,
McGraw Hill, 2011

Books

Recommended reference texts:

- Behzad Razavi, Fundamentals of Microelectronics, John Wiley & Sons, 2008
- Adel S. Sedra and Kenneth C. Smith, *Microelectronic Circuits*, Oxford University Press, 5th ed., 2003
- Paul R. Gray, Paul J. Hurst and Davis S. Lewis, and Robert Meyer, Analysis and Design of Analog Integrated Circuits, John Wiley & Sons, 5th ed., 2009

5

Integrated Circuit Fabrication

- R. C. Jaeger, Introduction to microelectronic fabrication, Addison-Wesley, 1993
- S. K. Ghandhi, VLSI Fabrication Principles: Silicon and Gallium Arsenide, 2nd ed., John Wiley & Sons, 1994
- S. M. Sze editor, VLSI Technology 2nd ed., McGraw-Hill 1988
- C. Y. Chang and S. M. Sze editors, ULSI Technology, McGraw-Hill 1996
- James D. Plummer, Michael D. Deal, and Peter B. Griffin, Silicon VLSI Technology: Fundamentals, Practice, and Modeling, Prentice Hall, 2000
- Stephen A. Campbell, The Science and Engineering of Microelectronic Fabrication (Oxford Series in Electrical Engineering), Oxford University Press, 1996
- Michael Quirk and Julian Serda, Semiconductor Manufacturing Technology, Prentice Hall, 2000

VLSI Design

• W. Wolf, Modern VLSI Design: Systems on Silicon, Prentice Hall, 1998

Other reference books:

Solid State Physics

- C. Kittel, Introduction to Solid State Physics, 7th ed., John Wiley & Sons, 1995
- J. S. Blakemore, Solid State Physics, Cambridege University Press, 1985
- Neil W. Ashcroft and N. David Mermin Solid State Physics, Brooks Cole, 1976
 - Classical texts on solid state physics.

Solid State Electronics

- A. S. Grove, Physics and Technology of Semiconductor Devices, John Wiley & Sons, 1967
- Ben G. Streetman og Sanjay Banerjee, Solid State Electronic Devices, 5th ed., Prentice Hall, 2000
- L. Solymar and D. Walsh, Lectures on the Electrical Properties of Materials, 5th ed., Oxford 1993
- Robert F. Pierret, Semiconductor Device Fundamentals, Addison-Wesley Pub Co 1996
- Y. P. Tsividis, MOSFET Operation and Modeling of the MOS Transistor, McGraw-Hill, 1988
- Gerold W. Neudeck, The Bipolar Junction Transistor, Addison-Wesley, 1983

6

Related Courses:

Ve215 Introduction to Circuits

- Kirchhoff's voltage and current laws
- Thévenin and Norton equivalent circuits
- Impedance

Ve320 Introduction to Semiconductor Devices

- pn junctions, metal-semiconductor junctions,
- bipolar junction transistors and MOSFETs

Related Courses:

Ve413 Monolithic Amplifier Circuits

- Analysis and design of BJT and MOS multi-transistor amplifiers
- Frequency response of amplifier circuits
 - Transfer function, bandwidth
- Feedback theory and application to feedback amplifiers
- Detailed analysis and design of BJT and MOS integrated operational amplifiers

9

Lectures

- Most of the lectures will be given using viewgraphs
- Some of the lectures will be on the blackboard
- When viewgraphs are used the lectures are available at
 - $\quad \verb|http://www.raunvis.hi.is/~tumi/Ve311.html| \\$
- The homework assignments will be posted on the webpage
 - http://www.raunvis.hi.is/~tumi/Ve311.html
- \bullet Homework are due Tuesdays at 11:00 am

Grading Policy

Grading

- Final Exam 40 % Closed book
- Midterm Exam 1 15 % Closed book
- Midterm Exam 2 15 % Closed book
- Homework 20 %
- Laboratory 10 %

Homework

• Homework is assigned weekly (20 % of the final grade)

10

Laboratory

- The course includes five laboratory projects:
 - 1. Review of Passive Networks
 - 2. Characterization of the 741 Op Amp
 - 3. Configurable Amplifiers Using Small-Signal MOS Resistors
 - 4. Biasing of Bipolar Transistors
 - 5. Common-Emitter Single-Stage Amplifier Design Project
- All of those have a pre-lab and some include simulation using SPICE

The Honor Code

- You are expected to turn in your own work in all cases
- You are encouraged to discuss the homework assignments with your fellow students, but you have to come up with your own solution
- Many of the homework assignments and significant part of the laboratory work are design projects, that have infinite solutions, so there should be no 2 solutions alike.

13

Introduction – The Integrated Circuit

- In 1958 Jack S. Kilby (Texas Instruments) demonstrated that it was possible to construct a simple integrated circuit in a semiconducting german
- In 1959 Robert Noyce (Fairchild Semiconductor) made an integrated circuit from silicon where SiO₂ was used as an insulator and Al as interconnects

Introduction – The Transistor

- The first transistor was invented at Bell Laboratories on December 24, 1947 by William Shockley, John Bardeen (left) and Walter Brattain (right)
- They were awarded the Nobel Prize in physics in 1956

14

Introduction

• The number of devices on a die has doubled every 18 months, however the price of every die has remained unchanged - Moores law

Introduction

• By interconnecting a number of circuit elements, where each one can perform a simple task, it is possible to construct an integrated circuit that can perform a complicated job

Course Objectives

- To give a practical experience in analysis, measurements and design of circuits that include nonlinear circuit elements
- To give a firm grounding in the analysis and design of MOS and bipolar analog single-stage amplifiers
- Circuit design is emphasized, in particular the use of SPICE as a simulation tool

18

17