
Electronic Lecture Notes

DATA STRUCTURES

AND ALGORITHMS

15

8

14

9 17

21

35

26

5

12

24 14

2665 16

21

18

Singly linked list

Binary search tree Digraph

Graph

Binomial tree
Array of pointers

Skip list

3 7
9

12

6

19 21

25

26

NIL

A E

DC

B

Y. NARAHARI
Computer Science and Automation

Indian Institute of Science
Bangalore - 560 012

August 2000

Preface

As a subject, Data Structures and Algorithms has always fascinated me and it was a
pleasure teaching this course to the Master’s students at the Indian Institute of Science
for six times in the last seven years. While teaching this course, I had prepared some notes,
designed some programming assignments, and compiled what I thought were interesting
problems. In April-95, Professor Srikant and I offered a course on Data Structures to the
ITI engineers and followed it up with a more intensive AICTE-sponsored course on Object
Oriented Programming and Data Structures in November-95. On both these occasions,
I had prepared some lecture notes and course material. There was then a desire to put
together a complete set of notes and I even toyed with the idea of writing the ideal
book on DSA for Indian university students (later abandoned). Finally, encouraged by
Professor Mrutyunjaya, past Chairman, CCE, Professor Pandyan, current Chairman-
CCE, and Prof. K.R. Ramakrishnan (QIP co-ordinator, CCE), and supported by some
CCE funding, I embarked on the project of preparing a Web-enabled Lecture Notes.

At the outset, let me say this does not pretend to be a textbook on the subject, though
it does have some ingredients like examples, problems, proofs, programming assignments,
etc. The lecture notes offers an adequate exposure at theoretical and practical level to
important data structures and algorithms. It is safe to say the level of contents will lie
somewhere between an undergraduate course in Data Structures and a graduate course
in Algorithms. Since I have taught these topics to M.E. students with a non-CS back-
ground, I believe the lecture notes is at that level. By implication, this lecture notes will
be suitable for second year or third year B.E./B. Tech students of Computer Science and
for second year M.C.A. students. It is also useful to working software professionals and se-
rious programmers to gain a sound understanding of commonly used data structures and
algorithm design techniques. Familiarity with C programming is assumed from all readers.

OUTLINE

The Lecture Notes is organized into eleven chapters. Besides the subject matter, each
chapter includes a list of problems and a list of programming projects. Also, each chapter
concludes with a list of references for further reading and exploration of the subject.

ii

1. Introduction 2. Lists
3. Dictionaries 4. Binary Trees
5. Balanced Trees 6. Priority Queues
7. Directed Graphs 8. Undirected Graphs
9. Sorting Methods 10. NP-Completeness
11. References

Most of the material (including some figures, examples, and problems) is either sourced
or adapted from classical textbooks on the subject. However about 10 percent of the
material has been presented in a way different from any of the available sources. The
primary sources include the following six textbooks.

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algorithms.
Addison-Wesley, Reading, Massachusetts, 1983.

2. Gilles Brassard and Paul Bratley. Fundamentals of Algorithmics . Prentice-Hall,
1996. Indian Edition published by Prentice Hall of India, 1998.

3. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The
MIT Press and McGraw-Hill Book Company, Cambridge, Massachusetts, 1990.

4. D. E. Knuth. Fundamental Algorithms (The Art of Computer Programming: Vol-
ume 1). Second Edition, Narosa Publishing House, New Delhi, 1985.

5. R. L. Kruse. Data Structures and Program Design in C . Prentice Hall of India, New
Delhi, 1994.

6. A. Weiss. Data Structures and Algorithms in C++. Addison-Wesley, Reading,
Massachusetts, 1994.

Two topics that have been covered implicitly rather than in the form of independent
chapters are: Algorithm Analysis Techniques (such as recurrence relations) and Algorithm
Design Techniques (such as greedy strategy, dynamic programming, divide and conquer,
backtracking, local search, etc.). Two topics which have not been covered adequately
are: Memory management Techniques and Garbage Collection, and Secondary Storage
Algorithms. Pointers to excellent sources for these topics are provided at appropriate
places.

ACKNOWLEDGEMENTS

I should first acknowledge six generations of students at IISc who went through the course
and gave valuable inputs. Some of them even solved and latexed the solutions of many
problems. The following students have enthusiastically and uncomplainingly supported
me as teaching assistants. They certainly deserve a special mention:

Jan-Apr 1992 R.Venugopal, Somyabrata Bhattacharya
Aug-Dec 1993 R. Venugopal, G. Phanendra Babu
Aug-Dec 1994 S.R. Prakash, Rajalakshmi Iyer, N.S. Narayana Swamy, L.M. Khan
Aug-Dec 1995 S.R. Prakash, N. Gokulmuthu, V.S. Anil Kumar, G. Suthindran,

K.S. Raghunath
Aug-Dec 1998 Manimaran, Ashes Ganguly, Arun, Rileen Sinha, Dhiman Ghosh
Aug-Dec 1999 M. Bharat Kumar, R. Sai Anand, K. Sriram, Chintan Amrit

My special thanks to Professor N. Viswanadham for his encouragement. I shall like to
thank Dr. Ashok Subramanian for clarifying many technical subtleties in the subject at
various points. Many thanks to Professors V.V.S. Sarma, U.R. Prasad, V. Rajaraman,
D.K. Subramanian, Y.N. Srikant, Priti Shankar, S.V. Rangaswamy, M. Narasimha Murty,
C.E. Veni Madhavan, and Vijay Chandru for their encouragement. Thanks also to Dr. B.
Shekar for his interest. Special thanks to Professor Kruse for sending me all the material
he could on this subject.

More than 200 problems have been listed as exercises in the individual chapters of this
lecture notes. Many of these problems have been freely borrowed or adapted from various
sources, including the textbooks listed above and the question papers set by colleagues.
I would like to acknowledge the help received in this respect.

The Latexing of this document was done near flawlessly by Renugopal first and then by
Mrs Mary. The figures were done with good care by Amit Garde, Arghya Mukherjee, Mrs
Mary, and Chandra Sekhar. My thanks to all of them. Numerous students at CSA have
gone through drafts at various points and provided valuable feedback.

Behind any of my efforts of this kind, there are two personalities whose blessings form
the inspirational force. The first is my divine Mother, who is no more but whose powerful
personality continues to be a divine driving force. The second is my revered Father who
is the light of my life. He continues to guide me like a beacon. Of course, I simply cannot
forget the love and affection of Padmasri and Naganand and all members of my extended
family, which is like a distributed yet tightly coupled enterprise.

There are bound to be numerous typographical/logical/grammatical/stylistic errors in
this the first draft. I urge the readers to unearth as many as possible and to intimate
to me on the email (hari@csa.iisc.ernet.in). Any suggestions/comments/criticism on any
aspect of this lecture notes are most welcome.

Y. NARAHARI

Electronic Enterprises Laboratory
Department of Computer Science and Automation
Indian Institute of Science, Bangalore

Contents

Preface ii

1 Introduction 1
1.1 Some Definitions . 1

1.1.1 Four Fundamental Data Structures 3
1.2 Complexity of Algorithms . 3

1.2.1 Big Oh Notation . 4
1.2.2 Examples . 4
1.2.3 An Example: Complexity of Mergesort 5
1.2.4 Role of the Constant . 7
1.2.5 Worst Case, Average Case, and Amortized Complexity 7
1.2.6 Big Omega and Big Theta Notations 8
1.2.7 An Example: . 9

1.3 To Probe Further . 9
1.4 Problems . 10

2 Lists 13
2.1 List Abstract Data Type . 13

2.1.1 A Program with List ADT . 15
2.2 Implementation of Lists . 16

2.2.1 Array Implementation of Lists . 16
2.2.2 Pointer Implementation of Lists . 18
2.2.3 Doubly Linked List Implementation 19

2.3 Stacks . 20
2.4 Queues . 24

2.4.1 Pointer Implementation . 24
2.4.2 Circular Array Implementation . 25
2.4.3 Circular Linked List Implementation 25

2.5 To Probe Further . 26
2.6 Problems . 27
2.7 Programming Assignments . 29

2.7.1 Sparse Matrix Package . 29
2.7.2 Polynomial Arithmetic . 29
2.7.3 Skip Lists . 29

v

2.7.4 Buddy Systems of Memory Allocation 29

3 Dictionaries 31
3.1 Sets . 31
3.2 Dictionaries . 32
3.3 Hash Tables . 33

3.3.1 Open Hashing . 34
3.4 Closed Hashing . 36

3.4.1 Rehashing Methods . 37
3.4.2 An Example: . 38
3.4.3 Another Example: . 40

3.5 Hashing Functions . 40
3.5.1 Division Method . 42
3.5.2 Multiplication Method . 42
3.5.3 Universal Hashing . 43

3.6 Analysis of Closed Hashing . 44
3.6.1 Result 1: Unsuccessful Search . 44
3.6.2 Result 2: Insertion . 46
3.6.3 Result 3: Successful Search . 46
3.6.4 Result 4: Deletion . 47

3.7 Hash Table Restructuring . 48
3.8 Skip Lists . 49

3.8.1 Initialization: . 52
3.9 Analysis of Skip Lists . 55

3.9.1 Analysis of Expected Search Cost 56
3.10 To Probe Further . 59
3.11 Problems . 60
3.12 Programming Assignments . 62

3.12.1 Hashing: Experimental Analysis . 62
3.12.2 Skip Lists: Experimental Analysis 65

4 Binary Trees 66
4.1 Introduction . 66

4.1.1 Definitions . 66
4.1.2 Preorder, Inorder, Postorder . 68
4.1.3 The Tree ADT . 69
4.1.4 Data Structures for Tree Representation 69

4.2 Binary Trees . 70
4.3 An Application of Binary Trees: Huffman Code Construction 74

4.3.1 Implementation . 77
4.3.2 Sketch of Huffman Tree Construction 78

4.4 Binary Search Tree . 82
4.4.1 Average Case Analysis of BST Operations 85

4.5 Splay Trees . 88

4.5.1 Search, Insert, Delete in Bottom-up Splaying 93
4.6 Amortized Algorithm Analysis . 94

4.6.1 Example of Sorting . 94
4.6.2 Example of Tree Traversal (Inorder) 95
4.6.3 Credit Balance . 95
4.6.4 Example of Incrementing Binary Integers 97
4.6.5 Amortized Analysis of Splaying . 97

4.7 To Probe Further . 103
4.8 Problems . 104

4.8.1 General Trees . 104
4.8.2 Binary Search Trees . 105
4.8.3 Splay Trees . 107

4.9 Programming Assignments . 108
4.9.1 Huffman Coding . 108
4.9.2 Comparison of Hash Tables and Binary Search Trees 108
4.9.3 Comparison of Skip Lists and Splay Trees 110

5 Balanced Trees 112
5.1 AVL Trees . 112

5.1.1 Maximum Height of an AVL Tree 113
5.1.2 AVL Trees: Insertions and Deletions 115

5.2 Red-Black Trees . 120
5.2.1 Height of a Red-Black Tree . 121
5.2.2 Red-Black Trees: Insertions . 124
5.2.3 Red-Black Trees: Deletion . 126

5.3 2-3 Trees . 132
5.3.1 2-3 Trees: Insertion . 133
5.3.2 2-3 Trees: Deletion . 136

5.4 B-Trees . 137
5.4.1 Definition of B-Trees . 137
5.4.2 Complexity of B-tree Operations 138
5.4.3 B-Trees: Insertion . 140
5.4.4 B-Trees: Deletion . 141
5.4.5 Variants of B-Trees . 142

5.5 To Probe Further . 143
5.6 Problems . 145

5.6.1 AVL Trees . 145
5.6.2 Red-Black Trees . 145
5.6.3 2-3 Trees and B-Trees . 146

5.7 Programming Assignments . 147
5.7.1 Red-Black Trees and Splay Trees 147
5.7.2 Skip Lists and Binary search Trees 149
5.7.3 Multiway Search Trees and B-Trees 149

6 Priority Queues 151
6.1 Binary Heaps . 151

6.1.1 Implementation of Insert and Deletemin 153
6.1.2 Creating Heap . 154

6.2 Binomial Queues . 157
6.2.1 Binomial Queue Operations . 158
6.2.2 Binomial Amortized Analysis . 164
6.2.3 Lazy Binomial Queues . 167

6.3 To Probe Further . 168
6.4 Problems . 169
6.5 Programming Assignments . 170

6.5.1 Discrete Event Simulation . 170

7 Directed Graphs 171
7.1 Directed Graphs . 171

7.1.1 Data Structures for Graph Representation 172
7.2 Shortest Paths Problem . 174

7.2.1 Single Source Shortest Paths Problem: Dijkstra’s Algorithm 174
7.2.2 Dynamic Programming Algorithm 179
7.2.3 All Pairs Shortest Paths Problem: Floyd’s Algorithm 182

7.3 Warshall’s Algorithm . 185
7.4 Depth First Search and Breadth First Search 186

7.4.1 Breadth First Search . 188
7.5 Directed Acyclic Graphs . 190

7.5.1 Test for Acyclicity . 190
7.5.2 Topological Sort . 191
7.5.3 Strong Components . 193

7.6 To Probe Further . 196
7.7 Problems . 198
7.8 Programming Assignments . 199

7.8.1 Implementation of Dijkstra’s Algorithm Using Binary Heaps and
Binomial Queues . 199

7.8.2 Strong Components . 200

8 Undirected Graphs 201
8.1 Some Definitions . 201
8.2 Depth First and Breadth First Search . 203

8.2.1 Breadth-first search of undirected graph 204
8.3 Minimum-Cost Spanning Trees . 204

8.3.1 MST Property . 205
8.3.2 Prim’s Algorithm . 209
8.3.3 Kruskal’s Algorithm . 212

8.4 Traveling Salesman Problem . 217
8.4.1 A Greedy Algorithm for TSP . 218

8.4.2 Optimal Solution for TSP using Branch and Bound 220
8.5 To Probe Further . 225
8.6 Problems . 226
8.7 Programming Assignments . 227

8.7.1 Implementation of Some Graph Algorithms 227
8.7.2 Traveling Salesman Problem . 228

9 Sorting Methods 229
9.1 Bubble Sort . 230
9.2 Insertion Sort . 231
9.3 Selection Sort . 232
9.4 Shellsort . 233
9.5 Heap Sort . 234
9.6 Quick Sort . 237

9.6.1 Algorithm: . 237
9.6.2 Algorithm for Partitioning . 238
9.6.3 Quicksort: Average Case Analysis 239

9.7 Order Statistics . 242
9.7.1 Algorithm 1 . 242
9.7.2 Algorithm 2 . 243
9.7.3 Algorithm 3 . 243

9.8 Lower Bound on Complexity for Sorting Methods 246
9.8.1 Result 1: Lower Bound on Worst Case Complexity 247
9.8.2 Result 2: Lower Bound on Average Case Complexity 249

9.9 Radix Sorting . 250
9.10 Merge Sort . 255
9.11 To Probe Further . 259
9.12 Problems . 261
9.13 Programming Assignments . 263

9.13.1 Heap Sort and Quicksort . 263

10 Introduction to NP-Completeness 264
10.1 Importance of NP-Completeness . 264
10.2 Optimization Problems and Decision Problems 265
10.3 Examples of some Intractable Problems . 266

10.3.1 Traveling Salesman Problem . 266
10.3.2 Subset Sum . 267
10.3.3 Knapsack Problem . 267
10.3.4 Bin Packing . 267
10.3.5 Job Shop Scheduling . 268
10.3.6 Satisfiability . 268

10.4 The Classes P and NP . 269
10.5 NP-Complete Problems . 270

10.5.1 NP-Hardness and NP-Completeness 270

10.6 To Probe Further . 272
10.7 Problems . 273

11 References 274
11.1 Primary Sources for this Lecture Notes . 274
11.2 Useful Books . 275
11.3 Original Research Papers and Survey Articles 276

List of Figures

1.1 Growth rates of some functions . 6

2.1 A singly linked list . 18
2.2 Insertion in a singly linked list . 19
2.3 Deletion in a singly linked list . 20
2.4 A doubly linked list . 20
2.5 An array implementation for the stack ADT 21
2.6 A linked list implementation of the stack ADT 21
2.7 Push operation in a linked stack . 23
2.8 Pop operation on a linked stack . 23
2.9 Queue implementation using pointers . 24
2.10 Circular array implementation of a queue 25
2.11 Circular linked list implementation of a queue 26

3.1 Collision resolution by chaining . 35
3.2 Open hashing: An example . 35
3.3 Performance of closed hashing . 48
3.4 A singly linked list . 49
3.5 Every other node has an additional pointer 50
3.6 Every second node has a pointer two ahead of it 50
3.7 Every (2i)th node has a pointer to a node (2i) nodes ahead (i = 1, 2, ...) . . 50
3.8 A skip list . 51
3.9 A skip list . 53

4.1 Recursive structure of a tree . 67
4.2 Example of a general tree . 69
4.3 A tree with i subtrees . 70
4.4 Examples of binary trees . 71
4.5 Level by level numbering of a binary tree 71
4.6 Examples of complete, incomplete binary trees 72
4.7 Binary tree traversals . 73
4.8 Code 1 and Code 2 . 76
4.9 An example of Huffman algorithm . 77
4.10 Initial state of data structures . 78
4.11 Step 1 . 79

xi

4.12 Step 2 and Step 3 . 80
4.13 Step 4 and Step 5 . 81
4.14 An example of a binary search tree . 83
4.15 Deletion in binary search trees: An example 84
4.16 A typical binary search tree with n elements 86
4.17 Zig rotation and zag rotation . 90
4.18 Zig-zag rotation . 90
4.19 Zag-zig rotation . 90
4.20 Zig-zig and zag-zag rotations . 90
4.21 Two successive right rotations . 91
4.22 An example of splaying . 92
4.23 An example of searching in splay trees . 93
4.24 An example of an insert in a splay tree . 94
4.25 An example of a delete in a splay tree . 95
4.26 A zig-zig at the ith splaying step . 99

5.1 Examples of AVL trees . 113
5.2 An AVL tree with height h . 114
5.3 Fibonacci trees . 115
5.4 Rotations in a binary search tree . 115
5.5 Insertion in AVL trees: Scenario D . 117
5.6 Insertion in AVL trees: Scenario C . 118
5.7 Deletion in AVL trees: Scenario 1 . 118
5.8 Deletion in AVL trees: Scenario 2 . 119
5.9 A red-black tree with black height 2 . 121
5.10 Examples of red-black trees . 122
5.11 A simple red-black tree . 123
5.12 Rotations in a red-black tree . 124
5.13 Insertion in RB trees: Different scenarios 125
5.14 Insertion in red-black trees: Example 1 . 126
5.15 Insertion in red-black trees: Example 2 . 127
5.16 Deletion in RB trees: Situation 1 . 128
5.17 Deletion in red-black trees: Situation 2 . 128
5.18 Deletion in red-black trees: Situation 3 . 128
5.19 Deletion in red-black trees: Situation 4 . 128
5.20 Deletion in red-black trees: Situation 5 . 128
5.21 Deletion in red-black trees: Example 1 . 129
5.22 Deletion in red-black trees: Example 2 . 130
5.23 An example of a 2-3 tree . 133
5.24 Insertion in 2-3 trees: An example . 134
5.25 Deletion in 2-3 trees: An Example . 135
5.26 An example of a B-tree . 138
5.27 Insertion and deletion in B-trees: An example 139

6.1 An example of a heap and its array representation 152
6.2 Insertion into a heap . 154
6.3 Deletemin . 155
6.4 Creation of heap . 156
6.5 Examples of Binomial Trees . 157
6.6 A binomial queue H1 with six elements . 158
6.7 Examples of Merging . 160
6.8 Merge of H1 and H2 . 161
6.9 Examples of Inserts . 162
6.10 Merges of H

′

and H
′′

. 163

7.1 A digraph with 4 vertices and 5 arcs . 172
7.2 Adjacency list representation of the digraph 173
7.3 Adjacency list using cursors . 173
7.4 The shortest path to v cannot visit x . 176
7.5 A digraph example for Dijkstra’s algorithm 177
7.6 Principle of dynamic programming . 180
7.7 An example digraph to illustrate dynamic programming 181
7.8 Principle of Floyd’s algorithm . 183
7.9 A digraph example for Floyd’s algorithm 184
7.10 Depth first search of a digraph . 187
7.11 Breadth-first search of the digraph in Figure 7.11 189
7.12 Examples of directed acyclic graphs . 190
7.13 A cycle in a digraph . 190
7.14 A digraph example for topological sort . 192
7.15 Strong components of a digraph . 193
7.16 Step 1 in the strong components algorithm 194
7.17 Step 3 in the strong components algorithm 195

8.1 Examples of undirected graphs . 202
8.2 Depth-first search of an undirected graph 203
8.3 Breadth-first search of an undirected graph 204
8.4 Spanning trees in a connected graph . 205
8.5 An illustration of MST property . 206
8.6 Construction of a minimal spanning tree 206
8.7 An example graph for finding an MST . 207
8.8 A spanning tree in the above graph, with cost 26 207
8.9 Another spanning tree, but with cost 22 208
8.10 Illustration of MST Lemma . 208
8.11 Illustration of Prim’s algorithm . 211
8.12 An example graph for illustrating Prim’s algorithm 211
8.13 An illustration of Kruskal’s algorithm . 215
8.14 A six-city TSP and some tours . 218
8.15 An intermediate stage in the construction of a TSP tour 219

8.16 A TSP tour for the six-city problem . 220
8.17 Example of a complete graph with five vertices 222
8.18 A solution tree for a TSP instance . 223
8.19 Branch and bound applied to a TSP instance 224

9.1 Example of a heap . 235
9.2 Illustration of some heap operations . 236
9.3 Quicksort applied to a list of 10 elements 239
9.4 A decision tree scenario . 247
9.5 Decision tree for a 3-element insertion sort 247
9.6 Two possibilities for a counterexample with fewest nodes 249

Chapter 1

Introduction

“Data Structures and Algorithms” is one of the classic, core topics of Com-
puter Science. Data structures and algorithms are central to the develop-
ment of good quality computer programs. Their role is brought out clearly
in the following diagram (Aho, Hopcroft, and Ullman (1983)).

Mathe- Abstract Data
matical =⇒ Data =⇒ Structures
Model type
Informal Pseudo
Algorithm =⇒ Language =⇒ Program in

Program C or Java or ...

The Problem Solving Process in Computer Science

1.1 Some Definitions

We provide below informal definitions of a few important, common notions
that we will frequently use in this lecture notes.

DEF. Algorithm. A finite sequence of instructions, each of which has a
clear meaning and can be executed with a finite amount of effort in

1

Chapter 1. Introduction 2

finite time.

• whatever the input values, an algorithm will definitely terminate after
executing a finite number of instructions.

DEF. Data Type. Data type of a variable is the set of values that the
variable may assume.

Basic data types in C :

• int char float double

Basic data types in Pascal:

• integer real char boolean

DEF. Abstract Data Type (ADT): An ADT is a set of elements with a
collection of well defined operations.

– The operations can take as operands not only instances of the
ADT but other types of operands or instances of other ADTs.

– Similarly results need not be instances of the ADT

– At least one operand or the result is of the ADT type in question.

Object-oriented languages such as C++ and Java provide explicit support
for expressing ADTs by means of classes.

Examples of ADTs include list, stack, queue, set, tree, graph, etc.

DEF. Data Structures: An implementation of an ADT is a translation
into statements of a programming language,

– the declarations that define a variable to be of that ADT type

– the operations defined on the ADT (using procedures of the pro-
gramming language)

Chapter 1. Introduction 3

An ADT implementation chooses a data structure to represent the ADT.
Each data structure is built up from the basic data types of the underlying
programming language using the available data structuring facilities, such
as arrays, records (structures in C), pointers, files, sets, etc.

Example: A “Queue” is an ADT which can be defined as a sequence of
elements with operations such as null(Q), empty(Q), enqueue(x, Q), and
dequeue(Q). This can be implemented using data structures such as

– array

– singly linked list

– doubly linked list

– circular array

1.1.1 Four Fundamental Data Structures

The following four data structures are used ubiquitously in the description
of algorithms and serve as basic building blocks for realizing more complex
data structures.

• Sequences (also called as lists)

• Dictionaries

• Priority Queues

• Graphs

Dictionaries and priority queues can be classified under a broader cate-
gory called dynamic sets . Also, binary and general trees are very popular
building blocks for implementing dictionaries and priority queues.

1.2 Complexity of Algorithms

It is very convenient to classify algorithms based on the relative amount
of time or relative amount of space they require and specify the growth of

Chapter 1. Introduction 4

time /space requirements as a function of the input size. Thus, we have
the notions of:

– Time Complexity: Running time of the program as a function of
the size of input

– Space Complexity: Amount of computer memory required during
the program execution, as a function of the input size

1.2.1 Big Oh Notation

– A convenient way of describing the growth rate of a function and hence
the time complexity of an algorithm.

Let n be the size of the input and f(n), g(n) be positive functions of n.

DEF. Big Oh. f(n) is O(g(n)) if and only if there exists a real, positive
constant C and a positive integer n0 such that

f(n) ≤ Cg(n) ∀ n ≥ n0

• Note that O(g(n)) is a class of functions.

• The ”Oh” notation specifies asymptotic upper bounds

• O(1) refers to constant time. O(n) indicates linear time; O(nk) (k
fixed) refers to polynomial time; O(log n) is called logarithmic time;
O(2n) refers to exponential time, etc.

1.2.2 Examples

• Let f(n) = n2 + n + 5. Then

– f(n) is O(n2)

– f(n) is O(n3)

– f(n) is not O(n)

• Let f(n) = 3n

Chapter 1. Introduction 5

– f(n) is O(4n)

– f(n) is not O(2n)

• If f1(n) is O(g1(n)) and f2(n) is O(g2(n)), then

– f1(n) + f2(n) is O(max(g1(n), g2(n)))

1.2.3 An Example: Complexity of Mergesort

Mergesort is a divide and conquer algorithm, as outlined below. Note that
the function mergesort calls itself recursively . Let us try to determine the
time complexity of this algorithm.

list mergesort (list L, int n);

{
if (n = = 1)

return (L)

else {
Split L into two halves L1 and L2 ;

return (merge (mergesort (L1,
n
2
), (mergesort (L2,

n
2
))

}
}

Let T(n) be the running time of Mergesort on an input list of size n.
Then,

T (n) ≤ C1 (if n = 1) (C1 is a constant)

≤ 2 T

(

n

2

)

︸ ︷︷ ︸

two recursive calls

+ C2n
︸ ︷︷ ︸

cost of merging

(if n > 1)

If n = 2k for some k, it can be shown that

T (n) ≤ 2kT (1) + C2k2k

That is, T (n) is O(n log n).

Chapter 1. Introduction 6

100n

5n
n /22n 3

2

n

T(n)

Figure 1.1: Growth rates of some functions

Maximum Problem Size that can be solved in
T(n) 100 1000 10000

Time Units Time Units Time Units

100 n 1 10 100

5 n2 5 14 45

n3/2 7 12 27

2n 8 10 13

Table 1.1: Growth rate of functions

Chapter 1. Introduction 7

1.2.4 Role of the Constant

The constant C that appears in the definition of the asymptotic upper
bounds is very important. It depends on the algorithm, machine, compiler,
etc. It is to be noted that the big ”Oh” notation gives only asymptotic
complexity. As such, a polynomial time algorithm with a large value of the
constant may turn out to be much less efficient than an exponential time
algorithm (with a small constant) for the range of interest of the input
values. See Figure 1.1 and also Table 1.1.

1.2.5 Worst Case, Average Case, and Amortized Complexity

• Worst case Running Time: The behavior of the algorithm with
respect to the worst possible case of the input instance. The worst-case
running time of an algorithm is an upper bound on the running time
for any input. Knowing it gives us a guarantee that the algorithm will
never take any longer. There is no need to make an educated guess
about the running time.

• Average case Running Time: The expected behavior when the
input is randomly drawn from a given distribution. The average-case
running time of an algorithm is an estimate of the running time for an
”average” input. Computation of average-case running time entails
knowing all possible input sequences, the probability distribution of
occurrence of these sequences, and the running times for the individual
sequences. Often it is assumed that all inputs of a given size are
equally likely.

• Amortized Running Time Here the time required to perform a
sequence of (related) operations is averaged over all the operations
performed. Amortized analysis can be used to show that the average
cost of an operation is small, if one averages over a sequence of opera-
tions, even though a simple operation might be expensive. Amortized
analysis guarantees the average performance of each operation in the
worst case.

Chapter 1. Introduction 8

1. For example, consider the problem of finding the minimum element in
a list of elements.

Worst case = O(n)

Average case = O(n)

2. Quick sort

Worst case = O(n2)

Average case = O(n log n)

3. Merge Sort, Heap Sort

Worst case = O(n log n)

Average case = O(n log n)

4. Bubble sort

Worst case = O(n2)

Average case = O(n2)

5. Binary Search Tree: Search for an element

Worst case = O(n)

Average case = O(log n)

1.2.6 Big Omega and Big Theta Notations

The Ω notation specifies asymptotic lower bounds.

DEF. Big Omega. f(n) is said to be Ω(g(n)) if ∃ a positive real constant
C and a positive integer n0 such that

f(n) ≥ Cg(n) ∀ n ≥ n0

An Alternative Definition : f(n) is said to be Ω(g(n)) iff ∃ a positive real
constant C such that

f(n) ≥ Cg(n) for infinitely many values of n.

Chapter 1. Introduction 9

The Θ notation describes asymptotic tight bounds.

DEF. Big Theta. f(n) is Θ(g(n)) iff ∃ positive real constants C1 and C2

and a positive integer n0, such that

C1g(n) ≤ f(n) ≤ C2g(n) ∀ n ≥ n0

1.2.7 An Example:

Let f(n) = 2n2 + 4n + 10. f(n) is O(n2). For,

f(n) ≤ 3n2 ∀ n ≥ 6

Thus, C = 3 and n0 = 6

Also,

f(n) ≤ 4n2 ∀ n ≥ 4

Thus, C = 4 and n0 = 4

f(n) is O(n3)

In fact, if f(n) is O(nk) for some k, it is O(nh) for h > k

f(n) is not O(n).

Suppose ∃ a constant C such that

2n2 + 4n + 10 ≤ Cn ∀n ≥ n0

This can be easily seen to lead to a contradiction. Thus, we have that:

f(n) is Ω(n2) and f(n) is Θ(n2)

1.3 To Probe Further

The following books provide an excellent treatment of the topics discussed
in this chapter. The readers should also study two other key topics: (1)
Recursion; (2) Recurrence Relations, from these sources.

Chapter 1. Introduction 10

1. Alfred V Aho, John E. Hopcroft, and Jeffrey D Ullman. Data Struc-
tures and Algorithms . Addison-Wesley, 1983.

2. Gilles Brassard and Paul Bratley. Fundamentals of Algorithmics .
Prentice-Hall, 1996. Indian Edition published by Prentice Hall of
India, 1998.

3. Thomas H. Cormen, Charles E. Leiserson, and Donald L. Rivest. In-
troduction to Algorithms . The MIT Electrical Engineering and Com-
puter Science Series, 1990. Indian Edition published in 1999.

4. Mark Allen Weiss. Data Structures and Algorithm Analysis in C++.
Benjamin-Cummings, 1994. Indian Edition published in 1998.

5. R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics .
Addison-wesley, Reading, 1990. Indian Edition published by Addison-
Wesley Longman, 1998.

1.4 Problems

1. Assuming that n is a power of 2, express the output of the following program in
terms of n.

int mystery (int n)

{ int x=2, count=0;

while (x < n) { x *=2; count++}

return count;

}

2. Show that the following statements are true:

(a) n(n−1)
2

is O(n2)

(b) max(n3, 10n2) is O(n3)

(c)
∑n

i=1 ik is O(nk+1) and Ω(nk+1), for integer k

(d) If p(x) is any kth degree polynomial with a positive leading coefficient, then
p(n) is O(nk) and Ω(nk).

3. Which function grows faster?

(a) nlog n; (log n)n

Chapter 1. Introduction 11

(b) log nk; (log n)k

(c) nlog log log n; (log n)!

(d) nn; n!.

4. If f1(n) is O(g1(n)) and f2(n) is O(g2(n)) where f1 and f2 are positive functions of
n, show that the function f1(n) + f2(n) is O(max(g1(n), g2(n))).

5. If f1(n) is O(g1(n)) and f2(n) is O(g2(n)) where f1 and f2 are positive functions of n,
state whether each statement below is true or false. If the statement is true(false),
give a proof(counter-example).

(a) The function |f1(n) − f2(n)| is O(min(g1(n), g2(n))).

(b) The function |f1(n) − f2(n)| is O(max(g1(n), g2(n))).

6. Prove or disprove: If f(n) is a positive function of n, then f(n) is O(f(n
2
)).

7. The running times of an algorithm A and a competing algorithm A
′

are described
by the recurrences

T (n) = 3T (
n

2
) + n; T

′

(n) = aT
′

(
n

4
) + n

respectively. Assuming T (1) = T
′

(1) = 1, and n = 4k for some positive integer k,
determine the values of a for which A

′

is asymptotically faster than A.

8. Solve the following recurrences, where T (1) = 1 and T (n) for n ≥ 2 satisfies:

(a) T (n) = 3T (n
2
) + n

(b) T (n) = 3T (n
2
) + n2

(c) T (n) = 3T (n
2
) + n3

(d) T (n) = 4T (n
3
) + n

(e) T (n) = 4T (n
3
) + n2

(f) T (n) = 4T (n
3
) + n3

(g) T (n) = T (n
2
) + 1

(h) T (n) = 2T (n
2
) + log n

(i) T (n) = 2T (n
2
) + n2

(j) T (n) = 2T (n − 1) + 1

(k) T (n) = 2T (n − 1) + n

9. Show that the function T (n) defined by T (1) = 1 and

T (n) = T (n − 1) +
1

n

for n ≥ 2 has the complexity O(log n).

Chapter 1. Introduction 12

10. Prove or disprove: f(3**n) is O(f(2**n))

11. Solve the following recurrence relation:

T (n) ≤ cn +
2

n − 1

n−1∑

i=1

T (i)

where c is a constant, n ≥ 2, and T (2) is known to be a constant c1.

Chapter 2

Lists

A list, also called a sequence, is a container that stores elements in a certain
linear order, which is imposed by the operations performed. The basic op-
erations supported are retrieving, inserting, and removing an element given
its position. Special types of lists include stacks and queues, where inser-
tions and deletions can be done only at the head or the tail of the sequence.
The basic realization of sequences is by means of arrays and linked lists.

2.1 List Abstract Data Type

A list is a sequence of zero or more elements of a given type

a1, a2, . . . , an (n ≥ 0)

• n : length of the list
• a1 : first element of the list
• an : last element of the list
• n = 0 : empty list
• elements can be linearly ordered according to their position in the list

We say ai precedes ai+1, ai+1 follows ai, and ai is at position i

Let us assume the following:

13

Chapter 2. Lists 14

L : list of objects of type element type
x : an object of this type
p : of type position
END(L) : a function that returns the position following the

last position in the list L

Define the following operations:

1. Insert (x, p, L)

• Insert x at position p in list L

• If p = END(L), insert x at the end

• If L does not have position p, result is undefined

2. Locate (x, L)

• returns position of x on L

• returns END(L) if x does not appear

3. Retrieve (p, L)

• returns element at position p on L

• undefined if p does not exist or p = END(L)

4. Delete (p, L)

• delete element at position p in L

• undefined if p = END(L) or does not exist

5. Next (p, L)

• returns the position immediately following position p

6. Prev (p, L)

• returns the position previous to p

7. Makenull (L)

• causes L to become an empty list and returns position END(L)

Chapter 2. Lists 15

8. First (L)

• returns the first position on L

9. Printlist (L)

• print the elements of L in order of occurrence

2.1.1 A Program with List ADT

A program given below is independent of which data structure is used to
implement the list ADT. This is an example of the notion of encapsulation
in object oriented programming.

Purpose:

To eliminate all duplicates from a list

Given:

1. Elements of list L are of element type

2. function same (x, y), where x and y are of element type, returns true
if x and y are same, false otherwise

3. p and q are of type position

p : current position in L

q : moves ahead to find equal elements

Pseudocode in C:

{
p = first (L) ;

while (p! = end(L)) {
q = next(p, L) ;

while (q! = end(L)) {
if (same (retrieve (p,L), retrieve (q, L))))

Chapter 2. Lists 16

delete (q,L);

else

q = next (q, L) ;

}
p = next (p, L) ;

}
}

2.2 Implementation of Lists

Many implementations are possible. Popular ones include:

1. Arrays

2. Pointers (singly linked, doubly linked, etc.)

3. Cursors (arrays with integer pointers)

2.2.1 Array Implementation of Lists

• Here, elements of list are stored in the (contiguous) cells of an array.

• List is a structure with two members.

member 1 : an array of elements

member 2 : last — indicates position of the last element of the list

Position is of type integer and has the range 0 to maxlength–1

define maxlength 1000

typedef int elementtype; /∗ elements are integers ∗/
typedef struct list–tag {

elementtype elements [maxlength];

int last;

} list–type;

Chapter 2. Lists 17

end(L)

int end (list–type ∗ℓp)

{
return (ℓp → last + 1)

}

Insert (x, p,L)

void insert (elementtype x ; int p ; list–type ∗ℓp) ;

{
int v; /∗ running position ∗/
if (ℓp → last >= maxlength–1)

error (“list is full”)

elseif ((p < 0) || (p > ℓp → last + 1))

error (position does not exist)

else

for (q = ℓp → last ; q <= p, q−−)

ℓp → elements [q + 1] = ℓp → elements [q] ;

ℓp → last = ℓp → last + 1 ;

ℓp → elements [p] = x

}

Delete (p, L)

void delete (int p ; list–type ∗ℓp)

{
int q ; /∗ running position ∗/
if ((p > ℓp → last) || (p < 0))

error (“position does not exist”)

else /∗ shift elements ∗/ {
ℓp → last −− ;

for (q = p ; q <= ℓp → last; q ++)

ℓp → elements [q] = ℓp → elements [q+1]

}
}

Chapter 2. Lists 18

header

null

a a a1 2 n

Figure 2.1: A singly linked list

Locate (x, L)

int locate (element type ∗x ; list–type ∗ℓp)

{
int q ;

for (q = 0 ; q <= ℓp → last ; q++)

if (ℓp → elements [q] = = x]

return (q) ;

return (ℓp → last + 1) /∗ if not found ∗/
}

2.2.2 Pointer Implementation of Lists

• In the array implementation,

1. we are constrained to use contiguous space in the memory

2. Insertion, deletion entail shifting the elements

• Pointers overcome the above limitations at the cost of extra space for
pointers.

• Singly Linked List Implementation

A list a1, a2, . . . , an is organized as shown in Figure 2.1

• Let us follow a convention that position i is a pointer to the cell holding
the pointer to the cell containing ai, (for i = 1, 2, . . . , n). Thus,

– Position 1 is a pointer to the header

Chapter 2. Lists 19

Before Insertion

After Insertion

a b

p

p

a b

x

//
broken

temp

Figure 2.2: Insertion in a singly linked list

– End (L) is a pointer to the last cell of list L

• If position of ai is simply a pointer to the cell holding ai, then

– Position 1 will be the address in the header

– end (L) will be a null pointer

• Insert (x, p, L) : See Figure 2.2

• Delete (x, L) : See Figure 2.3

2.2.3 Doubly Linked List Implementation

∗ makes searches twice as efficient

∗ needs as many extra pointers as the number of elements (See Figure
2.4); consequently insertions and deletions are more expensive in terms
of pointer assignments

Chapter 2. Lists 20

p

a b c

Figure 2.3: Deletion in a singly linked list

a a a a1 2 nn-1

header

Figure 2.4: A doubly linked list

2.3 Stacks

• Stack is a special kind of list in which all insertions and deletions occur
at one end, called the top.

• Stack ADT is a special case of the List ADT. It is also called as a
LIFO list or a pushdown list.

• Typical Stack ADT Operations:

1. makenull (S) creates an empty stack
2. top (S) returns the element at the top of the stack.

Same as retrieve (first (S), S)
3. pop (S) deletes the top element of the stack

Same as deletes (first (S), S)
4. push (x, S) Insert element x at the top of stack S.

Same as Inserts (x, first (S), S)
5. empty (S) returns true if S is empty and false otherwise

• Stack is a natural data structure to implement subroutine or procedure
calls and recursion.

• Stack Implementation : Arrays, Pointers can be used. See Figures 2.5

Chapter 2. Lists 21

0
1

maxlength-1

top element

second element

last element

top

}

}}

}unused space
in the array

stack

Figure 2.5: An array implementation for the stack ADT

top top element next to top last element

NULL

Figure 2.6: A linked list implementation of the stack ADT

and 2.6

• Pointer Implementation of Stacks: The following code provides func-
tions for implementation of stack operations using pointers. See Fig-
ures 2.7 and 2.8 for an illustration of push and pop operations on a
linked stack.

typedef struct node-tag {
item-type info ;

struct node-tag ∗ next ;

} node-type ;

typedef struct stack-tag {
node-type ∗ top ;

} stack-type ;

stack-type stack ; /∗ define a stack ∗/

Chapter 2. Lists 22

stack-type ∗ sp = & stack ; /∗ pointer to stack ∗/
node-type ∗np ; /∗ pointer to a node ∗/

/∗ makenode allocates enough space for a new node and initializes it ∗/
node-type ∗ makenode (item-type item)

{
node-type ∗p ;

if ((p = (node-type ∗) malloc (sizeof

(node-type))) = = null)

error (“exhausted memory”) ;

else {
p → info = item ;

p → next = null ;

}
return (p) ;

}

/∗ pushnode pushes a node onto the top of the linked stack ∗/
void pushnode (node-type ∗np, stack-type ∗sp)

{
if (np = = null)

error (“attempt to push a nonexistent node”)

else {
np → next = sp → top ;

sp → top = np

}
}

void popnode (node-type ∗∗np ; stack-type ∗sp)
{

if (sp → top = = null)

error (“empty stack”) ;

else {
∗np = sp → top ;

sp → top = (∗ np) → next ;

}
}

Chapter 2. Lists 23

being pushednp

sp top old top of stack

new node

X

Figure 2.7: Push operation in a linked stack

sp top

old top of stack

np

new top of stack

Figure 2.8: Pop operation on a linked stack

/∗ push-make a new node with item and push it onto stack ∗/
void push (item-type item ; stack-type ∗sp)

{
pushnode (makenode (item), sp) ;

}
/∗ pop–pop a node from the stack and return its item ∗/

void pop (item-type ∗ item, stack-type ∗sp)

{
node-type ∗ np ;

popnode (& np, sp) ;

∗ item = np → info ;

free (np) ;

}

Chapter 2. Lists 24

a a n

headerfront

rear

PointerImplementation

1

Figure 2.9: Queue implementation using pointers

2.4 Queues

• A queue is a special kind of a list in which all items are inserted at
one end (called the rear or the back or the tail) and deleted at the
other end (called the front or the head)

• useful in

– simulation

– breadth-first search in graphs

– tree and graph algorithms

• The Queue ADT is a special case of the List ADT, with the following
typical operations

1. makenull (Q)

2. front (Q) ≡ retrieve (first (Q), Q)

3. enqueue (x, Q) ≡ insert (x, end(Q), Q)

4. dequeue (Q) ≡ delete (first (Q), Q)

5. empty (Q)

• Implementation : Pointers, Circular array, Circular linked list

2.4.1 Pointer Implementation

See Figure 2.9.

Chapter 2. Lists 25

Maxlength - 1

0

 1

Front

Rear

Queue

Elements

Figure 2.10: Circular array implementation of a queue

2.4.2 Circular Array Implementation

See Figure 2.10.

• Rear of the queue is somewhere clockwise from the front

• To enqueue an element, we move rear one position clockwise and write
the element in that position

• To dequeue, we simply move front one position clockwise

• Queue migrates in a clockwise direction as we enqueue and dequeue

• emptiness and fullness to be checked carefully.

2.4.3 Circular Linked List Implementation

• A linked list in which the node at the tail of the list, instead of having
a null pointer, points back to the node at the head of the list. Thus
both ends of a list can be accessed using a single pointer.

See Figure 2.11.

• If we implement a queue as a circularly linked list, then we need only
one pointer namely tail, to locate both the front and the back.

Chapter 2. Lists 26

Tail

Figure 2.11: Circular linked list implementation of a queue

2.5 To Probe Further

1. Alfred V Aho, John E. Hopcroft, and Jeffrey D Ullman. Data Struc-
tures and Algorithms . Addison-Wesley, 1983.

2. Thomas H. Cormen, Charles E. Leiserson, and Donald L. Rivest. In-
troduction to Algorithms . The MIT Electrical Engineering and Com-
puter Science Series, 1990. Indian Edition published in 1999.

3. Robert L. Kruse, Bruce P. Leung, and Clovis L. Tondo. Data Struc-
tures and Program design in C . Prentice Hall, 1991. Indian Edition
published by Prentice Hall of India, 1999.

4. Mark Allen Weiss. Data Structures and Algorithm Analysis in C++.
Benjamin-Cummings, 1994. Indian Edition published in 1998.

5. Duane A. Bailey. Java Structures: Data Structures in Java for the
Principled Programmer . McGraw-Hill International Edition, 1999.

6. Ellis Horowitz and Sartaz Sahni. Fundamentals of Data structures .
Galgotia Publications, New Delhi, 1984.

7. Y. Langsam, M.J. Augenstein, and A.M. Tenenbaum. Data Struc-
tures using C and C++. Second Edition, Prentice Hall, 1996. Indian
Edition published by Prentice Hall of India, 2000.

8. Sartaj Sahni. Data Structures, Algorithms, and Applications in Java.
McGraw-Hill Higher Education, 2000.

9. Thomas A. Standish. Data Structures in Java. Addison-Wesley, 1998.
Indian Edition published by Addison Wesley Longman, 2000.

Chapter 2. Lists 27

2.6 Problems

1. A linked list has exactly n nodes. The elements in these nodes are selected from
the set {0, 1, . . . , n}. There are no duplicates in the list. Design an O(n) worst case
time algorithm to find which one of the elements from the above set is missing in
the given linked list.

2. Write a procedure that will reverse a linked list while traversing it only once. At the
conclusion, each node should point to the node that was previously its predecessor:
the head should point to the node that was formerly at the end, and the node that
was formerly first should have a null link.

3. How would one implement a queue if the elements that are to be placed on the
queue are arbitrary length strings? How long does it take to enqueue a string?

4. Let A be an array of size n, containing positive or negative integers, with A[1] <
A[2] < . . . < A[n]. Design an efficient algorithm (should be more efficient than
O(n)) to find an i such that A[i] = i provided such an i exists. What is the worst
case computational complexity of your algorithm ?

5. Consider an array of size n. Sketch an O(n) algorithm to shift all items in the array
k places cyclically counterclockwise. You are allowed to use only one extra location
to implement swapping of items.

6. In some operating systems, the least recently used (LRU) algorithm is used for page
replacement. The implementation of such an algorithm will involve the following
operations on a collection of nodes.

• use a node.

• replace the LRU node by a new node.

Suggest a good data structure for implementing such a collection of nodes.

7. A queue Q contains the items a1, a2, . . . , an, in that order with a1 at the front and an

at the back. It is required to transfer these items on to a stack S (initially empty) so
that a1 is at the top of the stack and the order of all other items is preserved. Using
enqueue and dequeue operations for the queue and push and pop operations for the
stack, outline an efficient O(n) algorithm to accomplish the above task, using only
a constant amount of additional storage.

8. A queue is set up in a circular array C[0..n−1] with front and rear defined as usual.
Assume that n−1 locations in the array are available for storing the elements (with
the other element being used to detect full/empty condition). Derive a formula for
the number of elements in the queue in terms of rear , front , and n.

9. Let p1p2 . . . pn be a stack-realizable permutation of 12 . . . n. Show that there do not
exist indices i < j < k such that pj < pk < pi.

Chapter 2. Lists 28

10. Write recursive algorithms for the following problems:

(a) Compute the number of combinations of n objects taken m at a time.

(b) Reverse a linked list.

(c) Reverse an array.

(d) Binary search on an array of size n.

(e) Compute gcd of two numbers n and m.

11. Consider the following recursive definition:

g(i, j) = i (j = 1) (2.1)

g(i, j) = j (i = 1) (2.2)

g(i, j) = g(i − 1, j) + g(i, j − 1) else (2.3)

Design an O(mn) iterative algorithm to compute g(m,n) where m and n are positive
integers.

12. Consider polynomials of the form:

p(x) = c1x
e1 + c2x

e2 . . . c1x
en ;

where e1 > e2 . . . > en ≥ 0. Such polynomials can be represented by a linked lists
in which each cell has 3 fields: one for the coefficient, one for the exponent, and one
pointing to the next cell. Write procedures for

(a) differentiating,

(b) integrating,

(c) adding,

(d) multiplying

such polynomials. What is the running time of these procedures as a function of
the number of terms in the polynomials?

13. Suppose the numbers 1, 2, 3, 4, 5 and 6 arrive in an input stream in that order.
Which of the following sequences can be realized as the output of (1) stack, and (2)
double ended queue?

a) 1 2 3 4 5 6

b) 6 5 4 3 2 1

c) 2 4 3 6 5 1

d) 1 5 2 4 3 6

e) 1 3 5 2 4 6

Chapter 2. Lists 29

2.7 Programming Assignments

2.7.1 Sparse Matrix Package

As you might already know, sparse matrices are those in which most of the elements
are zero (that is, the number of non-zero elements is very small). Linked lists are very
useful in representing sparse matrices, since they eliminate the need to represent zero
entries in the matrix. Implement a package that facilitates efficient addition, subtraction,
multiplication, and other important arithmetic operations on sparse matrices, using linked
list representation of those.

2.7.2 Polynomial Arithmetic

Polynomials involving real variables and real-valued coefficients can also be represented
efficiently through linked lists. Assuming single variable polynomials, design a suitable
linked list representation for polynomials and develop a package that implements various
polynomial operations such as addition, subtraction, multiplication, and division.

2.7.3 Skip Lists

A skip list is an efficient linked list-based data structure that attempts to implement
binary search on linked lists. Read the following paper: William Pugh. Skip Lists: A
probabilistic alternative to balanced trees. Communications of the ACM , Volume 33,
Number 6, pp. 668-676, 1990. Also read the section on Skip Lists in Chapter 4 of this
lecture notes. Develop programs to implement search, insert, and delete operations in
skip lists.

2.7.4 Buddy Systems of Memory Allocation

The objective of this assignment is to compare the performance of the exponential and
the Fibonacci buddy systems of memory allocation. For more details on buddy systems,
refer to the book: Donald E Knuth. Fundamental Algorithms , Volume 1 of The Art
of Computer Programming, Addison-Wesley, 1968, Second Edition, 1973. Consider an
exponential buddy system with the following allowable block sizes: 8, 16, 32, 64, 128,
512, 1024, 2048, and 4096. Let the allowable block sizes for the Fibonacci system be 8,
13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2594, and 4191. Your tasks are the
following.

1. Generate a random sequence of allocations and liberations. Start with an empty
memory and carry out a sequence of allocations first, so that the memory becomes

Chapter 2. Lists 30

adequately committed. Now generate a sequence of allocations and liberations in-
terleaved randomly. You may try with 100 or 200 or even 1000 such allocations and
liberations. While generating the memory sizes requested for allocations, you may
use a reasonable distribution. For example, one typical scenario is:

Range of block size Probability

8–100: 0.1
100–500: 0.5
500–1000: 0.2
1000–2000: 0.1
2000-4191: 0.1

2. Simulate the memory allocations and liberations for the above random sequences.
At various intermediate points, print out the detailed state of the memory, indicating
the allocated portions, available portions, and the i-lists. Use recursive algorithms
for allocations and liberations. It would be excellent if you implement very general
allocation and liberation algorithms, that will work for any arbitrary order buddy
system.

3. Compute the following performance measures for each random sequence:

• Average fragmentation.

• Total number of splits.

• Total number of merges.

• Average size of all linked lists used in maintaining the available block informa-
tion.

• Number of blocks that cannot be combined with buddies.

• Number of contiguous blocks that are not buddies.

4. Repeat the experiments for several random sequences and print out the average
performance measures. You may like to repeat the experimentation on different
distributions of request sizes.

Chapter 3

Dictionaries

A dictionary is a container of elements from a totally ordered universe that
supports the basic operations of inserting/deleting elements and searching
for a given element. In this chapter, we present hash tables which provide
an efficient implicit realization of a dictionary. Efficient explicit implemen-
tations include binary search trees and balanced search trees. These are
treated in detail in Chapter 4. First, we introduce the abstract data type
Set which includes dictionaries, priority queues, etc. as subclasses.

3.1 Sets

• A set is a collection of well defined elements. The members of a set
are all different.

• A set ADT can be defined to comprise the following operations:

1. Union (A, B, C)

2. Intersection (A, B, C)

3. Difference (A, B, C)

4. Merge (A, B, C)

5. Find (x)

6. Member (x, A) or Search (x, A)

7. Makenull (A)

31

Chapter 3. Dictionaries 32

8. Equal (A, B)

9. Assign (A, B)

10. Insert (x, A)

11. Delete (x, A)

12. Min (A) (if A is an ordered set)

• Set implementation: Possible data structures include:

– Bit Vector

– Array

– Linked List

∗ Unsorted

∗ Sorted

3.2 Dictionaries

• A dictionary is a dynamic set ADT with the operations:

1. Makenull (D)

2. Insert (x, D)

3. Delete (x, D)

4. Search (x, D)

• Useful in implementing symbol tables, text retrieval systems, database
systems, page mapping tables, etc.

• Implementation:

1. Fixed Length arrays

2. Linked lists : sorted, unsorted, skip-lists

3. Hash Tables : open, closed

4. Trees

– Binary Search Trees (BSTs)

Chapter 3. Dictionaries 33

– Balanced BSTs

∗ AVL Trees

∗ Red-Black Trees

– Splay Trees

– Multiway Search Trees

∗ 2-3 Trees

∗ B Trees

– Tries

• Let n be the number of elements is a dictionary D. The following is a
summary of the performance of some basic implementation methods:

Worst case complexity of

Search Delete Insert min

Array O(n) O(n) O(n) O(n)

Sorted List O(n) O(n) O(n) O(1)

Unsorted List O(n) O(n) O(n) O(n)

Among these, the sorted list has the best average case performance.

• In this chapter, we discuss two data structures for dictionaries, namely
Hash Tables and Skip Lists.

3.3 Hash Tables

• An extremely effective and practical way of implementing dictionaries.

• O(1) time for search, insert, and delete in the average case.

• O(n) time in the worst case; by careful design, we can make the proba-
bility that more than constant time is required to be arbitrarily small.

• Hash Tables

– Open or External

– Closed or Internal

Chapter 3. Dictionaries 34

3.3.1 Open Hashing

Let:

• U be the universe of keys:

– integers

– character strings

– complex bit patterns

• B the set of hash values (also called the buckets or bins). Let B =
{0, 1, . . . , m − 1} where m > 0 is a positive integer.

A hash function h : U → B associates buckets (hash values) to keys.

Two main issues:

1. Collisions

If x1 and x2 are two different keys, it is possible that h(x1) = h(x2).
This is called a collision. Collision resolution is the most important
issue in hash table implementations.

2. Hash Functions

Choosing a hash function that minimizes the number of collisions and
also hashes uniformly is another critical issue.

Collision Resolution by Chaining

• Put all the elements that hash to the same value in a linked list. See
Figure 3.1.

Example:

See Figure 3.2. Consider the keys 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100. Let
the hash function be:

Chapter 3. Dictionaries 35

0

1

B-2

B-1

{h(x) = 0}

{h(x) = 1}

Lists of elements in individual buckets

Bucket Table (Hash Table)
Headers

Figure 3.1: Collision resolution by chaining

NULL

NULL

NULL

0

2

3

4

5

6

1

0

1

4

49

36

16

25 81

100

64

2

Figure 3.2: Open hashing: An example

Chapter 3. Dictionaries 36

h(x) = x % 7

• Bucket lists

– unsorted lists

– sorted lists (these are better)

• Insert (x, T)

Insert x at the head of list T[h(key (x))]

• Search (x, T)

Search for an element x in the list T[h(key (x))]

• Delete (x, T)

Delete x from the list T[h(key (x))]

Worst case complexity of all these operations is O(n)

In the average case, the running time is O(1 + α), where

α = load factor ∆=
n

m
where (3.1)

n = number of elements stored (3.2)

m = number of hash values or buckets

It is assumed that the hash value h(k) can be computed in O(1) time. If
n is O(m), the average case complexity of these operations becomes O(1) !

3.4 Closed Hashing

• All elements are stored in the hash table itself

• Avoids pointers; only computes the sequence of slots to be examined.

• Collisions are handled by generating a sequence of rehash values.

h : U
︸︷︷︸

universe of primary keys

× {0, 1, 2, ...}
︸ ︷︷ ︸

probe number

→ {0, 1, 2, ..., m− 1}

Chapter 3. Dictionaries 37

• Given a key x, it has a hash value h(x,0) and a set of rehash values

h(x, 1), h(x,2), . . . , h(x, m-1)

• We require that for every key x, the probe sequence

< h(x,0), h(x, 1), h(x,2), . . . , h(x, m-1)>

be a permutation of <0, 1, ..., m-1>.

This ensures that every hash table position is eventually considered
as a slot for storing a record with a key value x.

Search (x, T)

• Search will continue until you find the element x (successful search)
or an empty slot (unsuccessful search).

Delete (x, T)

• No delete if the search is unsuccessful.

• If the search is successful, then put the label DELETED (different from
an empty slot).

Insert (x, T)

• No need to insert if the search is successful.

• If the search is unsuccessful, insert at the first position with a DELETED

tag.

3.4.1 Rehashing Methods

Denote h(x, 0) by simply h(x).

1. Linear probing
h(x, i) = (h(x) + i) mod m

Chapter 3. Dictionaries 38

2. Quadratic Probing

h(x, i) = (h(x) + C1i + C2i
2) mod m

where C1 and C2 are constants.

3. Double Hashing

h(x, i) = (h(x) + i h′(x))
︸ ︷︷ ︸

another
hash
function

mod m

A Comparison of Rehashing Methods

Linear Probing m distinct probe Primary clustering

sequences

Quadratic Probing m distinct probe No primary clustering;

sequences but secondary clustering

Double Hashing m2 distinct probe No primary clustering

sequences No secondary clustering

3.4.2 An Example:

Assume linear probing with the following hashing and rehashing functions:

h(x, 0) = x%7
h(x, i) = (h(x, 0) + i)%7

Start with an empty table.

Chapter 3. Dictionaries 39

Insert (20, T) 0 14
Insert (30, T) 1 empty
Insert (9, T) 2 30
Insert (45, T) 3 9
Insert (14, T) 4 45

5 empty
6 20

Search (35, T) 0 14
Delete (9, T) 1 empty

2 30
3 deleted
4 45
5 empty
6 20

Search (45, T) 0 14
Search (52, T) 1 empty
Search (9, T) 2 30
Insert (45, T) 3 10
Insert (10, T) 4 45

5 empty
6 20

Delete (45, T) 0 14
Insert (16, T) 1 empty

2 30
3 10
4 16
5 empty
6 20

Chapter 3. Dictionaries 40

3.4.3 Another Example:

Let m be the number of slots.

Assume : • every even numbered slot occupied and every odd
numbered slot empty
• any hash value between 0 . . . m-1 is equally likely
to be generated.
• linear probing

empty

occupied

empty

occupied

empty

occupied

empty

occupied

Expected number of probes for a successful search = 1

Expected number of probes for an unsuccessful search

=

(

1

2

)

(1) +

(

1

2

)

(2)

= 1.5

3.5 Hashing Functions

What is a good hash function?

• Should satisfy the simple uniform hashing property.

Let U = universe of keys

Let the hash values be 0, 1, . . . , m-1

Chapter 3. Dictionaries 41

Let us assume that each key is drawn independently from U according
to a probability distribution P. i.e., for k ∈ U

P (k) = Probability that k is drawn

Then simple uniform hashing requires that

∑

k:h(k)=j

P (k) =
1

m
for each j = 0, 1, . . . , m − 1

that is, each bucket is equally likely to be occupied.

• Example of a hash function that satisfies simple uniform hashing prop-
erty:

Suppose the keys are known to be random real numbers k indepen-
dently and uniformly distributed in the range [0,1).

h(k) = ⌊km⌋

satisfies the simple uniform hashing property.

Qualitative information about P is often useful in the design process.
For example, consider a compiler’s symbol table in which the keys are
arbitrary character strings representing identifiers in a program. It is
common for closely related symbols, say pt, pts, ptt, to appear in the
same program. A good hash function would minimize the chance that
such variants hash to the same slot.

• A common approach is to derive a hash value in a way that is expected
to be independent of any patterns that might exist in the data.

– The division method computes the hash value as the remainder
when the key is divided by a prime number. Unless that prime is
somehow related to patterns in the distribution P , this method
gives good results.

Chapter 3. Dictionaries 42

3.5.1 Division Method

• A key is mapped into one of m slots using the function

h(k) = k mod m

• Requires only a single division, hence fast

• m should not be :

– a power of 2, since if m = 2p, then h(k) is just the p lowest order
bits of k

– a power of 10, since then the hash function does not depend on
all the decimal digits of k

– 2p − 1. If k is a character string interpreted in radix 2p, two
strings that are identical except for a transposition of two adjacent
characters will hash to the same value.

• Good values for m

– primes not too close to exact powers of 2.

3.5.2 Multiplication Method

There are two steps:

1. Multiply the key k by a constant A in the range 0 < A < 1 and extract
the fractional part of kA

2. Multiply this fractional part by m and take the floor.

h(k) = ⌊m(kA mod 1)⌋

where

kA mod 1 = kA − ⌊kA⌋
h(k) = ⌊m(kA − ⌊kA⌋)⌋

Chapter 3. Dictionaries 43

• Advantage of the method is that the value of m is not critical. We
typically choose it to be a power of 2:

m = 2p

for some integer p so that we can then easily implement the function
on most computers as follows:

Suppose the word size = w. Assume that k fits into a single word.
First multiply k by the w-bit integer ⌊A.2w⌋. The result is a 2w - bit
value

r12
w + r0

where r1 is the high order word of the product and r0 is the low order
word of the product. The desired p-bit hash value consists of the p
most significant bits of r0.

• Works practically with any value of A, but works better with some
values than the others. The optimal choice depends on the character-
istics of the data being hashed. Knuth recommends

A ≃
√

5 − 1

2
= 0.6180339887 . . . (Golden Ratio)

3.5.3 Universal Hashing

This involves choosing a hash function randomly in a way that is indepen-
dent of the keys that are actually going to be stored. We select the hash
function at random from a carefully designed class of functions.

• Let Φ be a finite collection of hash functions that map a given universe
U of keys into the range {0, 1, 2, . . . , m − 1}.

• Φ is called universal if for each pair of distinct keys x, y ∈ U , the
number of hash functions h ∈ Φ for which h(x) = h(y) is precisely
equal to

|Φ|
m

Chapter 3. Dictionaries 44

• With a function randomly chosen from Φ, the chance of a collision
between x and y where x 6= y is exactly 1

m .

Example of a universal class of hash functions:

Let table size m be prime. Decompose a key x into r +1 bytes. (i.e.,
characters or fixed-width binary strings). Thus

x = (x0, x1, . . . , xr)

Assume that the maximum value of a byte to be less than m.

Let a = (a0, a1, . . . , ar) denote a sequence of r + 1 elements chosen
randomly from the set {0, 1, . . . , m− 1}. Define a hash function ha ∈ Φ by

ha(x) =
r∑

i=0

aixi mod m

With this definition, Φ =
⊔

a{ha} can be shown to be universal. Note that
it has mr+1 members.

3.6 Analysis of Closed Hashing

Load factor α

α ∆=
n

m
=

of elements stored the table

total # of elements in the table

Assume uniform hashing. In this scheme, the probe sequence

< h(k, 0), . . . , h(k, m − 1) >

for each key k is equally likely to be any permutation of
< 0, 1, . . . , m − 1 >

3.6.1 Result 1: Unsuccessful Search

• The expected number of probes in an unsuccessful search ≤ 1
1−α

Chapter 3. Dictionaries 45

Proof: In an unsuccessful search, every probe but the last accesses
an occupied slot that does not contain the desired key and the last
slot probed is empty.

Let the random variable X denote the number of occupied slots probed
before hitting an empty slot. X can take values 0, 1, . . . , n. It is easy
to see that the expected number of probes in an unsuccessful search
is 1 + E[X].

pi = P{ exactly i probes access occupied slots}, for i = 0, 1, 2, . . .

for i > n, pi = 0 since we can find at most n occupied slots.

Thus the expected number of probes

= 1 +
n∑

i=0

ipi (∗)

To evaluate (*), define

qi = P{at least i probes access occupied slots}

and use the identity:
n∑

i=0

ipi =
n∑

i=1

qi

To compute qi, we proceed as follows:

q1 =
n

m

since the probability that the first probe accesses an occupied slot is
n/m.

With uniform hashing, a second probe, if necessary, is to one of the
remaining m − 1 unprobed slots, n − 1 of which are occupied. Thus

q2 =

(

n

m

) (

n − 1

m − 1

)

since we make a second probe only if the first probe accesses an occu-
pied slot.

Chapter 3. Dictionaries 46

In general,

qi =

(

n

m

) (

n − 1

m − 1

)

· · ·
(

n − i + 1

m − i + 1

)

≤
(

n

m

)i

= αi since
n − j

m − j
≤ n

m

Thus the expected number of probes in an unsuccessful search

= 1 +
n∑

i=o

ipi

≤ 1 + α + α2 + · · ·
=

1

1 − α

• Intuitive Interpretation of the above:

One probe is always made, with probability approximately α a second
probe is needed, with probability approximately α2 a third probe is
needed, and so on.

3.6.2 Result 2: Insertion

• Insertion of an element requires at most 1
1−α probes on average.

• Proof is obvious because inserting a key requires an unsuccessful search
followed by a placement of the key in the first empty slot found.

3.6.3 Result 3: Successful Search

• The expected number of probes in a successful search is at most

1

α
ln

1

1 − α
+

1

α

assuming that each key in the table is equally likely to be searched
for.

A search for a key k follows the same probe sequence as was followed
when the element with key k was inserted. Thus, if k was the (i+1)th

Chapter 3. Dictionaries 47

key inserted into the hash table, the expected number of probes made
in a search for k is at most

1

1 − i
m

=
m

m − i

Averaging over all the n keys in the hash table gives us the expected
of probes in a successful search:

1

n

n−1∑

i=0

m

m − i
=

m

n

n−1∑

i=0

1

m − i

=
1

α
(Hm − Hm−n)

where

Hi =
i∑

j=1

1

j
is the ith Harmonic number.

Using the well known bounds,

ln i ≤ Hi ≤ ln i + 1,

we obtain

1

α
(Hm − Hm−n) ≤ 1

α
[ln m + 1 − ln(m − n)]

=
1

α
ln

m

m − n
+

1

α

=
1

α
ln

1

1 − α
+

1

α

3.6.4 Result 4: Deletion

• Expected # of probes in a deletion

≤ 1

α
ln

1

1 − α
+

1

α

Proof is obvious since deletion always follows a successful search.

Chapter 3. Dictionaries 48

 Load Factor a

Cost of
Operation

cost of insertion

<= 1____
1-a

cost of deletion

<= 1_
a

ln
1____

1-a +
1_
a

Figure 3.3: Performance of closed hashing

Figure 3.3 depicts the performance of closed hashing for all the four oper-
ations discussed above.

3.7 Hash Table Restructuring

• When a hash table has a large number of entries (ie., let us say n ≥ 2m
in open hash table or n ≥ 0.9m in closed hash table), the average time
for operations can become quite substantial. In such cases, one idea is
to simply create a new hash table with more number of buckets (say
twice or any appropriate large number).

• In such a case, the currently existing elements will have to be inserted
into the new table. This may call for

– rehashing of all these key values

– transferring all the records

This effort will be less than it took to insert them into the original
table.

Chapter 3. Dictionaries 49

• Subsequent dictionary operations will be more efficient and can more
than make up for the overhead in creating the larger table.

3.8 Skip Lists

REF. William Pugh. Skip Lists: A probabilistic alternative to balanced
trees. Communications of the ACM , Volume 33, Number 6, pp. 668-
676, 1990.

• Skip lists use probabilistic balancing rather than strictly enforced bal-
ancing.

• Although skip lists have bad worst-case performance, no input se-
quence consistently produces the worst-case performance (like quick-
sort).

• It is very unlikely that a skip list will be significantly unbalanced. For
example, in a dictionary of more than 250 elements, the chance is that
a search will take more than 3 times the expected time ≤ 10−6.

• Skip lists have balance properties similar to that of search trees built
by random insertions, yet do not require insertions to be random.

3 6 7 9 12 17

26 25 21 19

Figure 3.4: A singly linked list

Consider a singly linked list as in Figure 3.4. We might need to examine
every node of the list when searching a singly linked list.

Chapter 3. Dictionaries 50

Figure 3.5 is a sorted list where every other node has an additional pointer,
to the node two ahead of it in the list. Here we have to examine no more
than ⌈ n

2⌉ +1 nodes.

6
3 7

9
12

17
19

21
25

26

Figure 3.5: Every other node has an additional pointer

6
3 7

9
12

17
19 25

2621

Figure 3.6: Every second node has a pointer two ahead of it

In the list of Figure 3.6, every second node has a pointer two ahead of it;
every fourth node has a pointer four ahead if it. Here we need to examine
no more than ⌈n

4⌉ + 2 nodes.

In Figure 3.7, (every (2i)th node has a pointer (2i) node ahead (i = 1, 2, ...);
then the number of nodes to be examined can be reduced to ⌈log2 n⌉ while
only doubling the number of pointers.

6
3 7

9
12

17
19 25

2621

Figure 3.7: Every (2i)th node has a pointer to a node (2i) nodes ahead (i = 1, 2, ...)

• A node that has k forward pointers is called a level k node. If every
(2i)th node has a pointer (2i) nodes ahead, then

Chapter 3. Dictionaries 51

3 7
9

12
17

19

6

21

25

26

Figure 3.8: A skip list

of level 1 nodes 50 %

of level 2 nodes 25 %

of level 3 nodes 12.5 %

• Such a data structure can be used for fast searching but insertions
and deletions will be extremely cumbersome, since levels of nodes will
have to change.

• What would happen if the levels of nodes were randomly chosen but
in the same proportions (Figure 3.8)?

– level of a node is chosen randomly when the node is inserted

– A node’s ith pointer, instead of pointing to a node that is 2i−1

nodes ahead, points to the next node of level i or higher.

– In this case, insertions and deletions will not change the level of
any node.

– Some arrangements of levels would give poor execution times but
it can be shown that such arrangements are rare.

Such a linked representation is called a skip list.

• Each element is represented by a node the level of which is chosen
randomly when the node is inserted, without regard for the number
of elements in the data structure.

• A level i node has i forward pointers, indexed 1 through i. There is
no need to store the level of a node in the node.

• Maxlevel is the maximum number of levels in a node.

– Level of a list = Maxlevel

– Level of empty list = 1

– Level of header = Maxlevel

Chapter 3. Dictionaries 52

3.8.1 Initialization:

An element NIL is allocated and given a key greater than any legal key.
All levels of all lists are terminated with NIL. A new list is initialized so
that the level of list = maxlevel and all forward pointers of the list’s header
point to NIL

Search:

We search for an element by traversing forward pointers that do not over-
shoot the node containing the element being searched for. When no more
progress can be made at the current level of forward pointers, the search
moves down to the next level. When we can make no more progress at level
1, we must be immediately in front of the node that contains the desired
element (if it is in the list).

Insertion and Deletion:

• Insertion and deletion are through search and splice

• update [i] contains a pointer to the rightmost node of level i or higher
that is to the left of the location of insertion or deletion.

• If an insertion generates a node with a level greater than the previous
maximum level, we update the maximum level and initialize appro-
priate portions of update list.

• After a deletion, we check to see if we have deleted the maximum level
element of the list and if so, decrease the maximum level of the list.

• Figure 3.9 provides an example of Insert and Delete. The pseudocode
for Insert and Delete is shown below.

search (list, searchkey);

{ x = list → header;

for (i = list → level; i ≥ 1; i – –) {

while (x → forward[i] → key < searchkey)

Chapter 3. Dictionaries 53

x = x → forward[i];

}

x = x → forward[i];

if (x → key = searchkey) return (true)

else return false;

}

3 7
9

12

6

3 7
9

12

6

19 21

25

26

This is where 17 is to be inserted

NIL

This is where 17 is to be inserted

17
19 21 26

3 7
9

12

6

This is where 17 is to be inserted

25

17

19 21 26

25

Figure 3.9: A skip list

insert (list, searchkey);

{ x = list → header ;

for (i = list → level; i ≥ 1; i – –) {

while (x → forward[i] → key < searchkey)

x = x → forward[i];

update[i] = x

}

Chapter 3. Dictionaries 54

x = x → forward[1];

if (x → key = searchkey) return (“key already present”)

else {

newLevel = randomLevel();

if newLevel > list → level {

for (i = list → level + 1; i ≤ newLevel; i ++)

update[i] = list → header;

}

x = makenode(newLevel, searchkey);

for (i = 1, i ≤ newLevel; i++) {

x → forward[i] = update[i] → forward[i];

update[i] → forward[i] = x

}

} }

delete (list, searchkey);

{ x = list → header ;

for (i = list → level; i ≥ 1; i –) {

while (x → forward[i] → key < searchkey)

x = x → forward[i];

update[i] = x

}

x = x → forward[1];

if (x → key = searchkey) {

for (i = 1; i ≤ list → level; i ++) {

if (update[i] → forward[i] 6= x)

break;

if (update[i] → forward[i] = x → forward[i];

}

free(x)

Chapter 3. Dictionaries 55

While ((list → 1) &&

(list → header → forward [list+level] = NIL))

list → level = list → level - 1

3.9 Analysis of Skip Lists

In a skiplist of 16 elements, we may have

• 9 elements at level 1

• 3 elements at level 2

• 3 elements at level 3

• 1 element at level 6

• One important question is:
Where do we start our search? Analysis shows we should start from
level L(n) where

L(n) = log2 n

In general if p is the probability fraction,

L(n) = log 1

p
n

where p is the fraction of the nodes with level i pointers which also
have level (i + 1) pointers.

• However, starting at the highest level does not alter the efficiency in
a significant way.

• Another important question to ask is:
What should be MaxLevel? A good choice is

MaxLevel = L(N) = log 1

p
N

where N is an upperbound on the number of elements is a skiplist.

Chapter 3. Dictionaries 56

• Complexity of search, delete, insert is dominated by the time required
to search for the appropriate element. This in turn is proportional to
the length of the search path. This is determined by the pattern in
which elements with different levels appear as we traverse the list.

• Insert and delete involve additional cost proportional to the level of
the node being inserted or deleted.

3.9.1 Analysis of Expected Search Cost

We analyze the search path backwards, traveling up and to the left. We
pretend as if the level of a node is being determined only when it is observed
while backtracking the search path.

1. From level 1, we rise to level L(n)

2. We move leftward

3. We climb from L(n) to maxLevel.

At a particular point in the climb, we are at the ith forward pointer of
a node x and we have no knowledge about the levels of nodes to the left
of x or about the level of x (other than that the level of x must be ≥ i).
See situation (a) in figure.

• Assume “x′′ is not the header.

• If level of x is i, then we are in situation (b). If level of x is > i, we
are in situation (c).

• Prob{ we are in situation cA} = p

• Each time we are in situation c, we climb up one level.

Let
C(k) = expected length of a search path that

climbs up k levels in an infinite list.

Chapter 3. Dictionaries 57

Then:
C(0) = 0
C(k) = p {cost in situation c }

(1 − p) { cost in situation b }

We get

C(k) = p {1 + C(k − 1)} + (1 − p){1 + C(k)}
C(k) = 1

p + C(k − 1)

C(k) = k
p

Our assumption that the list is infinite is pessimistic.

When we bump into the header in our backward climb, we simply climb it
up without performing any leftward (horizontal) movements.

This gives us an upperbound of

L(n) − 1

p

On the expected length of a path that climbs up from level 1 to level L(n)
in a list of n elements. (because L(n) − 1 level are being climbed).

The rest of the journey includes

1. leftward movements, the number of which is bounded by the number
of elements of level L(n) or higher. his has an expected value = 1

p

2. We also move upwards from level L(n) to the maximum level in the
list.

p { maximum level in the list > k}
= 1 − (1 − pk)n

≤ npk

Chapter 3. Dictionaries 58

p { an element has a level > k} = pk

=⇒ p { an element has level ≤ k} = 1 − pk

=⇒ p { all n elements have level ≤ k} = (1 − pk)n

=⇒ p { at least one element has level ≥ k} = 1 − (1 − pk)n

Expected maximum level ≤ npk

=⇒ Expected maximum level ≤ L(n) + 1
1−p

Putting our results together, we get:

Total expected cost to climb out of a list on n elements

≤ L(n)
p + 1

p which is O(log n).

We can also compute the probability if the actual cost of a search exceeds
expected cost by more than a specified ratio.

Examples

1. p = 1
2 ; n = 256

p {search will take longer than 3 times the expected cost } = 10
6

2. p = 1
2 ; n = 4096

p {search will take longer than 2 times the expected cost } = 10
4

3. p = 1
2 ; n = 1024

p {search will take longer than 3 times } = 10
18

How do we choose p ?

• Decreasing p increases variability of running times.

• p = 1
2 ; generation of random level can be done from a stream of

random bits.

Chapter 3. Dictionaries 59

• Decreasing p decreases # of pointers per node.

• Overheads are related to L(n) rather than L(n)
p .

• p = 1
4 is probably the best choice, unless variability of running times

is an issue.

3.10 To Probe Further

1. Alfred V Aho, John E. Hopcroft, and Jeffrey D Ullman. Data Struc-
tures and Algorithms . Addison-Wesley, 1983.

2. Thomas H. Cormen, Charles E. Leiserson, and Donald L. Rivest. In-
troduction to Algorithms . The MIT Electrical Engineering and Com-
puter Science Series, 1990. Indian Edition published in 1999.

3. Donald E Knuth. Fundamental Algorithms , Volume 1 of The Art
of Computer Programming, Addison-Wesley, 1968, Second Edition,
1973.

4. Robert L. Kruse, Bruce P. Leung, and Clovis L. Tondo. Data Struc-
tures and Program design in C . Prentice Hall, 1991. Indian Edition
published by Prentice Hall of India, 1999.

5. Mark Allen Weiss. Data Structures and Algorithm Analysis in C++.
Benjamin-Cummings, 1994. Indian Edition published in 1998.

6. Ellis Horowitz, Sartaz Sahni, and Rajasekaran. Fundamentals of Com-
puter Algorithms . W.H. Freeman and Company, 1998. Indian Edition
published by Galgotia Publications, 2000.

7. Donald E. Knuth. Sorting and Searching , Volume 3 of The Art of
Computer Programming, Addison-Wesley, 1973.

8. Donald E Knuth. Seminumerical Algorithms . Volume 2 of The Art
of Computer Programming, Addison-Wesley, 1969, Second Edition,
1981.

Chapter 3. Dictionaries 60

9. Y. Langsam, M.J. Augenstein, and A.M. Tenenbaum. Data Struc-
tures using C and C++. Second Edition, Prentice Hall, 1996. Indian
Edition published by Prentice Hall of India, 2000.

10. Kurt Mehlhorn. Sorting and Searching. Volume 1 of Data Structures
and Algorithms. Springer-Verlag, 1984.

11. William Pugh. Skip Lists: A probabilistic alternative to balanced
trees. Communications of the ACM , Volume 33, Number 6, pp. 668-
676, 1990.

3.11 Problems

1. Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59 into a closed hash table
of length m = 11 using the primary hashing function h(k) = k mod m. Illustrate
the result of inserting these keys using

(a) Linear probing.

(b) Quadratic probing with hi(k) = (h(k) + i + 3i2) mod m.

(c) Double hashing with rehashing function hi(k) = (h(k) + i(1 + k mod (m −
1)) mod m.

2. A closed hash table of size m is used to store n items, where n ≤ m/2.

(a) Assuming uniform hashing, show that for i = 1, 2, . . . , n, the probability that
the ith insertion requires strictly more than k probes is at most 2−k.

(b) Show that for i = 1, 2, . . . , n, the probability that the ith insertion requires
more than 2 log n probes is at most n−2.

3. Consider a closed hash table with 2n buckets (n > 0), employing the hash function
h(x) = x mod 2n. Which of the following rehash strategies would you prefer and
why?

(a) Strategy 1: hi(x) = (h(x) + i) mod 2n.

(b) Strategy 2: hi(x) = (h(x) + 2i) mod 2n.

4. Given a set of a maximum of 52 names of 5 characters each and that not more
than two names start with the same character, is it possible to find a closed hashing
function that operates on a hash table of size 56? Each element of the hash table
can be a string of 5 characters. The hashing function should provide for membership
test in at most 3 time units. Either exhibit such a hashing function or provide a
counter-example. Assume that only upper case alphabetic characters are used in

Chapter 3. Dictionaries 61

names and that the hashing function can be computed in one time unit. Comparison
of strings also takes one time unit.

5. Consider all two character names with each character being from the set {A,B,C,D,E, F,G,H, I, J
Design an efficient hashing function such that there would be no collisions on inser-
tion. Assume a hash table of size 115.

6. Suppose that we are given a key k to search for in a closed hash table with positions
0, 1, . . . ,m − 1, where m is known to be a power of 2. Let h be a hash function.
Consider the following search scheme:

1. Compute i = h(k) and set j = 0.

2. Probe in position i. Terminate if the required item is found or that position is
empty.

3. Set j = (j + 1) mod m and i = (i + j) mod m. Return to Step 2.

Answer the following questions and justify your answers.

a. Does the algorithm examine every table position in the worst case?

b. Is this linear probing or quadratic probing or double hashing or none?

c. What is the distinct number of probe sequences?

7. Given a skip list of 16 elements, compute the (best case) minimum number of probes
required for an unsuccessful search in each case below:

(a) All nodes in the list are level 4 nodes

(b) There are 14 nodes of level 1 and 2 nodes of level 3

(c) There is one level 4 node, one level 3 node, and the rest are level 1 nodes

8. The following results have been experimentally observed by William Pugh in his
CACM article on skip lists, while comparing the average case performance of skip
lists, splay trees, non-recursive AVL trees, and recursive 2-3 trees. Provide an
intuitive justification for each of these:

(a) The non-recursive AVL tree has the least average case complexity for a dictio-
nary search operation

(b) The skip list outperforms all other data structures for insertions and deletions

(c) Splay trees perform better than 2-3 trees for insertions

Chapter 3. Dictionaries 62

3.12 Programming Assignments

3.12.1 Hashing: Experimental Analysis

The objective of this assignment is to compare the performance of different hash table
organizations, hashing methods, and collision resolution techniques.

Generation of Keys

Assume that your keys are character strings of length 10 obtained by scanning a C pro-
gram. Call these as tokens. Define a token as any string that appears between successive
occurrences of a forbidden character, where the forbidden set of characters is given by:

F = {!, ”, #, %, &, (,), ∗, +,−, ., /, :, ; , <,>, =, ?, [,], {, }, , |, backslash, comma, space}

Exceptions to the above rule are:

• Ignore anything that appears as comment (that is between /* and */)

• Ignore anything that appears between double quotes

That is, in the above two cases, the character strings are not to be taken as tokens.
If a string has less than 10 characters, make it up to 10 characters by including an
appropriate number of trailing *’s. On the other hand, if the current string has more
than 10 characters, truncate it to have the first ten characters only.

From the individual character strings (from now on called as tokens), generate a
positive integer (from now on called as keys) by summing up the ASCII values of the
characters in the particular token. Use this integer key in the hashing functions. However,
remember that the original token is a character string and this is the one to be stored in
the hash table.

Hash Table Methods to be Evaluated

As discussed in the class, the following eleven schemes are to be evaluated.

1. Open with division method for hashing and unsorted lists for chaining

2. Open with division method for hashing and sorted lists for chaining

Chapter 3. Dictionaries 63

3. Open with multiplication method for hashing and unsorted lists for chaining

4. Open with multiplication method for hashing and sorted lists for chaining

5. Closed with simple coalesced hashing

6. Closed with linear probing

7. Closed with quadratic probing

8. Closed with double hashing

9. Closed with linear probing and Knuth-Amble method (Keys with same hash value
appear in descending order)

10. Closed with quadratic probing and Knuth-Amble method

11. Closed with double hashing and Knuth-Amble method

Hashing Functions

For the sake of uniformity, use the following hashing functions only. In the following, m
is the hash table size (that is, the possible hash values are, 0, 1, . . . ,m − 1), and x is an
integer key.

1. Division Method
h(x) = x mod m

2. Multiplication Method

h(x) = Floor(m ∗ Fraction(k ∗ x))

where k =

√
(5)−1

2
, the Golden Ratio.

3. Linear Probing

h(x, i) = (h(x, 0) + i) mod m; i = 0, . . . ,m − 1

4. Quadratic Probing

h(x, i) = (h(x, 0) + i + i2) mod m; i = 0, . . . ,m − 1

5. Double Hashing

Use the division method for h(x) and the multiplication method for h
′

(x).

Chapter 3. Dictionaries 64

Inputs to the Program

The possible inputs to the program are:

• m: Hash table size. Several values could be given here and the experiments are
to be repeated for all values specified. If nothing is specified, assume all primary
numbers between 7 and 97.

• n: The initial number of insertions to be made for setting up a hash table with a
particular load factor.

• M : This is a subset of the set {1, 2, . . . , 11} indicating the set of methods to be
investigated.

• I: This is a decimal number from which a ternary string is to be generated (namely
the radix-3 representation of I). In this representation, assume that a 0 represents
the search operation, a 1 represents the insert operation, and a 2 represents the
delete operation.

• A C program, from which the tokens are to be picked up for setting up and experi-
menting with the hash table.

What should the Program Do?

1. For each element of M and for each value of m, do the following.

2. Scan the given C program and as you scan, insert the first n tokens scanned into
an initially empty hash table.

3. Now scan the rest of the C program token by token, searching for it or inserting it
or deleting it, as dictated by the radix-3 representation of I. Note that the most
significant bit (tigit?) is to be considered first while doing this and you proceed
from left to right in the radix-3 representation. For each individual operation, keep
track of the number of probes.

4. Compute the average number of probes for a typical successful search, unsuccessful
search, insert, and delete.

5. Repeat Steps 2, 3, and 4 for each value of M and each value of m.

6. For each individual method investigated, obtain a table that lists the average number
of probes for the four cases for various values of m. The table entries can be of the
following format:

Hash table size Average Number of Probes for
Usearch Ssearch Insert Delete

Chapter 3. Dictionaries 65

7. For each individual value of m, obtain a table that lists the average number of
probes for various methods. The table entries can be of the following format:

Hash table method Average Number of Probes for
Usearch Ssearch Insert Delete

3.12.2 Skip Lists: Experimental Analysis

Implement skip list data structure. Analyze the efficiency of search, insert, and delete operations

on randomly generated inputs. Carefully take into account all the tradeoffs involved in designing

and implementing skip lists. Validate the experimental results with those given in the article

by William Pugh (Skip Lists: A probabilistic alternative to balanced trees. Communications

of the ACM , Volume 33, Number 6, pp. 668-676, 1990). Design and carry out experiments to

compare the performance of skip lists with that of hash tables.

Chapter 4

Binary Trees

4.1 Introduction

Trees are very useful and important abstractions in Computer Science.
They are ideally suited to representing hierarchical relationships among
elements in a universe. Efficient implementations of abstract data types
such as dictionaries and priority queues are invariably in terms of binary
or general trees.

4.1.1 Definitions

We shall first present some definitions and then introduce the Tree ADT.

• Tree:

1. A single node is a tree and this node is the root of the tree.

2. Suppose r is a node and T1, T2, . . . , Tk are trees with roots r1, r2, . . . , rk,
respectively, then we can construct a new tree whose root is r and
T1, T2, . . . , Tk are the subtrees of the root. The nodes r1, r2, . . . , rk

are called the children of r.

See Figure 4.1. Often, it is convenient to include among trees, the
null tree, which is a tree with no nodes.

66

Chapter 4. Binary Trees 67

r

2r

1 TkT

1r kr

T2

Figure 4.1: Recursive structure of a tree

• Path

A sequence of nodes n1, n2, . . . , nk, such that ni is the parent of ni+1

for i = 1, 2, . . . , k − 1. The length of a path is 1 less than the number
of nodes on the path. Thus there is a path of length zero from a node
to itself.

• Siblings

The children of a node are called siblings of each other.

• Ancestor and Descendent

If there is a path from node a to node b, then

a is called an ancestor of b

b is called a descendent of a

If a 6= b, then a is a proper ancestor and b is a proper descendent.

• Subtree

A subtree of a tree is a node in that tree together with all its descen-
dents.

• Height

The height of a node in a tree is the length of a longest path from the
node to a leaf. The height of a tree is the height of its root.

• Depth

The depth of a node is the length of the unique path from the root to
the node.

Chapter 4. Binary Trees 68

• Tree Traversal

This is a systematic way of ordering the nodes of a tree. There are
three popular schemes (many other schemes are possible):

1. Preorder

2. Inorder

3. Postorder

All these are recursive ways of listing or visiting all the nodes (each
node exactly once)

4.1.2 Preorder, Inorder, Postorder

• If a tree is null, then the empty list is the preorder, inorder, and
postorder listing of T

• If T comprises a single node, that node itself is the preorder, inorder,
and postorder list of T

• Otherwise

1. The preorder listing of T is the root of T , followed by the nodes
of T1 in preorder, . . . , and the nodes of Tk in preorder.

2. The inorder listing of T is the nodes of T1 in inorder, followed by
the root r, followed by the nodes of T2 in inorder, . . . , and the
nodes of Tk in inorder.

3. The postorder listing of T is the nodes of T1 in postorder, . . . ,
the nodes of Tk in postorder, all followed by the root r.

• Example: see Figure 4.2.

Preorder 1,2,3,5,8,9,6,10,4,7

Postorder 2,8,9,5,10,6,3,7,4,1

Inorder 2,1,8,5,9,3,10,6,7,4

• Note that the order of appearance of the leaves is the same in all the
three schemes. This is true in general.

Chapter 4. Binary Trees 69

3

1

2

5

9 10

6

4

7

8

Figure 4.2: Example of a general tree

4.1.3 The Tree ADT

A tree ADT can be defined to comprise the following operations.

1. parent (n, T)

2. lmostchild (n, T)

3. rsibling (n, T)

4. root (T)

5. makenull (n, T)

6. height (n, T)

7. depth (n, T)

8. createi (v, T1, T2, . . . , Ti) creates the tree shown in Figure 4.3

4.1.4 Data Structures for Tree Representation

The data structure chosen should be able to support efficiently the ADT
operations given above. Simple schemes include:

1. Arrays

Chapter 4. Binary Trees 70

V

1T 2T iT

Figure 4.3: A tree with i subtrees

2. Lists of children

3. Leftmost child-right sibling representation

For a detailed discussion of data structures to support Tree ADT opera-
tions, refer to the book by Aho, Hopcroft, and Ullman (1983).

4.2 Binary Trees

Definition: A binary tree is either empty or consists of a node called the
root together with two binary trees called the left subtree and the right
subtree.

• If h = height of a binary tree,

max # of leaves = 2h

max # of nodes = 2h+1 − 1

• A binary tree with height h and 2h+1 − 1 nodes (or 2h leaves) is called
a full binary tree

• Figure 4.4 shows several examples of binary trees.

• The nodes of a binary tree can be numbered in a natural way, level
by level, left to right. For example, see Figure 4.5.

Chapter 4. Binary Trees 71

1

2

3

4 5

6 7

Full Binary Tree

1 1 1

1 1

1

2 2 2

2 2
2

3

3 3

3

4 5

Figure 4.4: Examples of binary trees

1

2

5

98

4

3

7
6

Figure 4.5: Level by level numbering of a binary tree

Chapter 4. Binary Trees 72

• A binary tree with n nodes is said to be complete if it contains all
the first n nodes of the above numbering scheme. Figure 4.6 shows
examples of complete and incomplete binary trees.

• Total number of binary trees having n nodes

= number of stack-realizable permutations of length n

= number of well-formed parentheses (with n left parentheses and n
right parentheses)

=
(

1
n+1

)

2n
n

 Catalan Number

7

1

2 3

5 64

Complete Binary Tree

1 1

2 23

4 5

Not Complete

4

Not Complete

Figure 4.6: Examples of complete, incomplete binary trees

Binary Tree Traversal:

1. Preorder

Visit root, visit left subtree in preorder, visit right subtree in preorder

2. Postorder

Visit left subtree in postorder, right subtree in postorder, then the
root

3. Inorder

Visit left subtree in inorder, then the root, then the right subtree in
inorder

• Figure 4.7 shows several binary trees and the traversal sequences in
preorder, inorder, and postorder.

Chapter 4. Binary Trees 73

1

2

3

3 5

1

2

1

2 2

2

2 2

2

1

1 1

1 1

3

3 3

3

4

Pre:

Pre:

Pre:

Pre: Pre:

Pre:

Pre:

Pre:

Post:

Post:

Post:

Post:

Post:

Post:

Post:

Post:

In:

In:

In:

In:

In:

In:

In:

In:

12
21

231
213

123

321

132

12345
32541

32145

21
21
12

12

123
321

321

123

123

123
321

123
321

231

Figure 4.7: Binary tree traversals

• We can construct a binary tree uniquely from preorder and inorder or
postorder and inorder but not preorder and postorder.

Data Structures for Binary Trees:

1. Arrays, especially suited for complete and full binary trees

2. Pointer-based

Pointer-based Implementation:

typedef struct node-tag {
item-type info ;

struct node-tag ∗ left ;

struct node-tag ∗ right ;

} node-type ;

node-type ∗ root ; /∗ pointer to root ∗/

Chapter 4. Binary Trees 74

node-type ∗ p ; /∗ temporary pointer ∗/
void preorder(node-type ∗ root)

{
if (root) {

visit (root) ;

preorder (root → left) ;

preorder (root → right) ;

}
}

void inorder (node-type ∗ root)

{
if (root) {

inorder (root → left) ;

visit (root) ;

inorder (root → right) ;

}
}

void postorder (node-type ∗ root)

{
if (root) {

postorder (root → left) ;

postorder (root → right) ;

visit (root) ;

}
}

4.3 An Application of Binary Trees: Huffman Code

Construction

REF. David A Huffman. A method for the construction of minimum-redundancy
codes. Proceedings of the IRE . Volume 40, Number 9, pp. 1098-1101,
1952.

• Suppose we have messages consisting of sequences of characters. In
each message, the characters are independent and appear with a known
probability in any given position; the probabilities are the same for

Chapter 4. Binary Trees 75

all positions.

e.g. - Suppose we have a message made from the five characters a, b,
c, d, e, with probabilities 0.12, 0.40, 0.15, 0.08, 0.25, respectively.

We wish to encode each character into a sequence of 0s and 1s so
that no code for a character is the prefix of the code for any other
character. This prefix property allows us to decode a string of 0s
and 1s by repeatedly deleting prefixes of the string that are codes for
characters.

Symbol Prob code 1 code 2
a 0.12 000 000
b 0.40 001 11
c 0.15 010 01
d 0.08 011 001
e 0.25 100 10

In the above, Code 1 has the prefix property. Code 2 also has the
prefix property.

• The problem: given a set of characters and their probabilities, find a
code with the prefix property such that the average length of a code
for a character is a minimum.

Code 1: (0.12)(3)+(0.4)(3)+(0.15)(3)+(0.08)(3)+(0.25)(3) = 3

Code 2: (0.12)(3)+(0.4)(2)+(0.15)(2)+(0.08)(3)+(0.25)(2) = 2.2

• Huffman’s algorithm is one technique for finding optional prefix codes.
The algorithm works by selecting two characters a and b having the
lowest probabilities and replacing them with a single (imaginary) char-
acter, say x, whose probability of occurrence is the sum of probabilities
for a and b. We then find an optimal prefix code for this smaller set of
characters, using this procedure recursively. The code for the original
character set is obtained by using the code for x with a 0 appended
for ′′a′′ and a 1 appended for ′′b′′.

• We can think of prefix codes as paths in binary trees. For example,
see Figure 4.8.

Chapter 4. Binary Trees 76

a b c d

e

0

0
0

0

0 1

1

10

1

Code 1

a d

c c

b
1

1

1

1

0

0

0

Code 2

Figure 4.8: Code 1 and Code 2

• The prefix property guarantees that no character can have a code that
is an interior node, and conversely, labeling the leaves of any binary
tree with characters gives us a code with the prefix property for these
characters.

• Huffman’s algorithm is implemented using a forest (disjoint collection
of trees), each of which has its leaves labeled by characters whose
codes we desire to select and whose roots are labeled by the sum of
the probabilities of all the leaf labels. We call this sum the weight of
the tree.

• Initially each character is in a one-node tree by itself and when the
algorithm ends, there will be only one tree, with all the characters
as its leaves. In this final tree, the path from the root to any leaf
represents the code for the label of that leaf.

• The essential step of the algorithm is to select the two trees in the
forest that have the smallest weights (break ties arbitrarily). Combine
these two trees into one, whose weight is the sum of the weights of
the two trees. To combine the trees, we create a new node, which
becomes the root and has the roots of the two given trees as left and
right children (which is which doesn’t matter). This process continues
until only one tree remains.

Chapter 4. Binary Trees 77

Example

0.12 0.40 015 0.08 0.25
0 0 00
a b c d

0
e

1) Initial state

1.00

3) Merge

ad

c

b

e

0.20

d a b c

0.40 015 0.25

e
0 0 0

2) Merge a and d

0.60

4) Merge {a,c,d} with e

ad

c

e

0.40

0
b

0.35

b
0 0

3) Merge {a,d} with c

a

c

d

0.40

e

0.25

Figure 4.9: An example of Huffman algorithm

• An example of Huffman algorithm is shown in Figure 4.9 for five al-
phabets.

4.3.1 Implementation

We use three arrays, tree, alphabet, and forest.

• Each element in the array “tree” has 3 fields: lchild, rchild, parent,
and represents a node of a tree. This array has information about all
nodes in all trees in the forest.

• The array “alphabet” associates with each symbol of the alphabet
being encoded, its corresponding leaf.

Chapter 4. Binary Trees 78

1

2

3

4

5

.12

.40

.15

.08

.25

1

2

3

4

5

weight root

Forest

1

2

3

4

5

.12

.40

.15

.08

.25

1

2

3

4

5

a

c

d

e

b

1 0 0

0

0

0

00

0

0

00

0

0

0

0

lchild rchild parent

2

3

4

5

(Dynamic)(Dynamic) (Static)

Alphabet

Shrinks grows

as many elements as the number
of trees in the forest currently

as many elements as the number
of nodes in all the current trees
of the forest

Figure 4.10: Initial state of data structures

• The array “forest” represents the collection of all trees. Initial values
of these arrays are shown as follows:

• Figure 4.10 shows the above three data structures for our example.

4.3.2 Sketch of Huffman Tree Construction

1. while (there is more than one tree in the forest) do {

2. i = index of tree in forest with smallest weight ;

3. j = index of tree in forest with second smallest weight ;

4. create a new node with

lchild = forest [i].root ;

rchild = forest [j].root ;

5. replace tree i in forest by a tree with root as new node, with

weight = forest [i] → weight + forest[j] → weight ;

6. delete tree j from forest

}

Chapter 4. Binary Trees 79

1

2

3

4

5

.12

.40

.15

.08

.25

1

2

3

4

5

1 0 0

0

0

0

00

0

0

00

0

0

0

0

lchild rchild parent

2

3

4

5

weight root

last tree
last node

.12 .40 .15 .08 .25 1

2

3

4

5

.12

.40

.15

.08

.25

1

2

3

4

5

a

c

d

e

b0 0 0 00
c d eba

Inintial Forest

Forest

Alphabet

Figure 4.11: Step 1

Line (4) −→ increases the number of cells of the array tree. Lines (5) and
(6) −→ decrease the number of utilized cells of forest. Figures 4.11, 4.12,
and 4.13 illustrate different steps of the above algorithm for our example
problem.

Chapter 4. Binary Trees 80

1

2

3

.40 2

7

.25 5

weight root

b
0 0

a

0.40

e

0.25

c

d
4 1

3

6

7
0.35

2 5

i = least = 3
j = second = 4

0.35

last tree

1

5

0 6

0

7

6

00

0

0

00

0

0

0

0

4 1 7

2

3

6

lchild rchild parent

0637

last node Tree

Step 3

Step 2

0.20

d a

0.40 015 0.25

4 1

0 0 0
2 3 5

i = least = 4
j = second = 1

last node

1

2

3

4

.40

.15

.20

2

3

6

.25 5

Forestlast tree

weight root

1

5

0 6

0

0

6

00

0

0

00

0

0

0

0

4 1 0

lchild rchild parent

2

3

6

Tree

4

4

Figure 4.12: Step 2 and Step 3

Chapter 4. Binary Trees 81

1

5

0 6

0

7

6

0

0

0

00

0

0

0

0

4 1 7

2

3

6

lchild rchild parent

63

4

7

8

last node

8

8

075

b
0

0.40

2

0.60

d

c

a

i = least = 1
j = second = 3

Step 4

4 1

5
e

3

Step 5

1.00

ad

c

b

e

1 9

weight root

1.0

1

5

0 6

7

6

0

0

0

00

0

0

0

0

4 1 7

2

3

6

lchild rchild parent

63

4

7

8

8

8

75

1

2 .40

8

weight root

0.60

last tree

2

Forest

last tree

9
last node

2 8 0

9

9

Figure 4.13: Step 4 and Step 5

Chapter 4. Binary Trees 82

4.4 Binary Search Tree

• A prominent data structure used in many systems programming ap-
plications for representing and managing dynamic sets.

• Average case complexity of Search, Insert, and Delete Operations is
O(log n), where n is the number of nodes in the tree.

• DEF: A binary tree in which the nodes are labeled with elements of
an ordered dynamic set and the following BST property is satisfied:
all elements stored in the left subtree of any node x are less than the
element stored at x and all elements stored in the right subtree of x
are greater than the element at x.

• An Example: Figure 4.14 shows a binary search tree. Notice that
this tree is obtained by inserting the values 13, 3, 4, 12, 14, 10, 5, 1,
8, 2, 7, 9, 11, 6, 18 in that order, starting from an empty tree.

• Note that inorder traversal of a binary search tree always gives a
sorted sequence of the values. This is a direct consequence of the BST
property. This provides a way of sorting a given sequence of keys:
first, create a BST with these keys and then do an inorder traversal
of the BST so created.

• Note that the highest valued element in a BST can be found by travers-
ing from the root in the right direction all along until a node with no
right link is found (we can call that the rightmost element in the BST).

• The lowest valued element in a BST can be found by traversing from
the root in the left direction all along until a node with no left link is
found (we can call that the leftmost element in the BST).

• Search is straightforward in a BST. Start with the root and keep
moving left or right using the BST property. If the key we are seeking
is present, this search procedure will lead us to the key. If the key is
not present, we end up in a null link.

• Insertion in a BST is also a straightforward operation. If we need
to insert an element x, we first search for x. If x is present, there is

Chapter 4. Binary Trees 83

nothing to do. If x is not present, then our search procedure ends in a
null link. It is at this position of this null link that x will be included.

• If we repeatedly insert a sorted sequence of values to form a BST, we
obtain a completely skewed BST. The height of such a tree is n− 1 if
the tree has n nodes. Thus, the worst case complexity of searching or
inserting an element into a BST having n nodes is O(n).

122

10

5 11

8

7

6

9

18

13

143

41

Figure 4.14: An example of a binary search tree

Deletion in BST

Let x be a value to be deleted from the BST and let X denote the node
containing the value x. Deletion of an element in a BST again uses the
BST property in a critical way. When we delete the node X containing x,
it would create a ”void” that should be filled by a suitable existing node
of the BST. There are two possible candidate nodes that can fill this void,
in a way that the BST property is not violated: (1). Node containing
highest valued element among all descendants of left child of X. (2). Node

Chapter 4. Binary Trees 84

delete 4

/* delete leaf */

delete 10

/* delete a node with no left
subtree */

delete 27

/* delete node with no
right subtree */

delete 13

/* delete node with both

left and right subtrees */

Method 1.

Find highest valued element
among the descendants of
left child

Find lowest valued element

Method 2

among the descendants of
right child

17

13 21

15 2410

4 11 16 23 27

25

26

17

13 21

15 24

16 23

11

25

26

17

21

15 24

16 23 25

26

11

17

13 21

15 24

16 23 27

25

26

11

17

21

24

23 25

26

15

1611

17

13 21

15 2410

11 16 23 27

25

26

Figure 4.15: Deletion in binary search trees: An example

containing the lowest valued element among all the descendants of the right
child of X. In case (1), the selected node will necessarily have a null right
link which can be conveniently used in patching up the tree. In case (2),
the selected node will necessarily have a null left link which can be used in
patching up the tree. Figure 4.15 illustrates several scenarios for deletion
in BSTs.

Chapter 4. Binary Trees 85

4.4.1 Average Case Analysis of BST Operations

RESULT

If we insert n random elements into an initially empty BST, then the
average path length from the root to a node is O(log n)

• Note that the BST is formed by insertions only. Obviously the tree
so formed need not be complete.

• We shall assume that all orders of n inserted elements are equally
likely. This means that any of the n! permutations is equally likely to
be the sequence of keys inserted.

Let
P(n) = average path length in a BST with n nodes

(average number of nodes on the path from the root
to a node, not necessarily a leaf)

Let
a = first element inserted. This will be the root of

the BST. Also this is equally likely to be the first, second
. . . , ith, . . . , or nth in the sorted order of the
n elements.

Note that P(0) = 0 and P(1) = 1. Consider a fixed i, 0 ≤ i ≤ n − 1. If i
elements are less than a, the BST will look like in Figure 4.16.

• Since all orders for the i small elements are equally likely and likewise
for the (n − i − 1) larger elements,

Average path length in the

– left subtree = P(i)

– right subtree = P(n − i − 1)

• For a fixed i, let us compute the average path length of the above tree.

Number of probes if the element a is being sought = 1

Chapter 4. Binary Trees 86

a

n-i-1
elements

< a

> a

BST with
i elements

BST with

Root

Figure 4.16: A typical binary search tree with n elements

Average number of probes if an element from the LST is sought =
1+P(i)

Average number of probes if an element from the RST is sought = 1
+ P(n − i − 1)

Probability of seeking any of the n elements = 1
n

Thus, average path length for a fixed i

=
1

n
{1 + i(1 + P (i)) + (n − i − 1)(1 + P (n − i − 1))}

= 1 +
i

n
P (i) +

n − i − 1

n
P (n − i − 1)

= P (n, i), say.

• Observe that P (n) is given by

P (n) =
n−1∑

i=0

Prob{LST has i nodes }P (n, i)

Since the probability that the LST has i elements which is the same as
the probability that a is the (i + 1th element (where i = 0, 1, . . . , n −
1) = 1

n , we have

P (n) =
1

n

n−1∑

i=0

P (n, i)

Chapter 4. Binary Trees 87

=
1

n

n−1∑

i=0

[

1 +
i

n
P (i) +

n − i − 1

n
P (n − i − 1

]

= 1 +
1

n2

n−1∑

i=0

[iP (i) + (n − i − 1)P (n − i − 1]

= 1 +
2

n2

n−1∑

i=0

iP (i)

since
n−1∑

i=0

iP (i) =
n−1∑

i=0

(n − i − 1)P (n − i − 1)

• Thus the average path length in a BST satisfies the recurrence:

P (n) = 1 +
2

n2

n−1∑

i=0

iP (i)

• We shall show that P (n) ≤ 1 + 4 log n, by Induction.

Basis:

P (1) is known to be 1. Also the RHS = 1 for n = 1

Induction:

Let the result be true ∀ i < n. We shall show that the above is true
for i = n.

Consider

P (n) ≤ 1 +
2

n2

n−1∑

i=1

i(1 + 4 log i)

= 1 +
2

n2

n−1∑

i=1

4i log i +
2

n2

n−1∑

i=0

i

≤ 1 +
2

n2

n−1∑

i=1

4i log i +
2

n2

n2

2

 since
n−1∑

i=1

i ≤ n2

2

Chapter 4. Binary Trees 88

Thus

P (n) ≤ 2 +
8

n2

n−1∑

i=1

i log i

Now

n−1∑

i=1

i log i =
⌈n

2
⌉−1

∑

i=1

i log i +
n−1∑

i=⌈n
2
⌉

i log i

≤
⌈n

2
⌉−1

∑

i=1

i log
n

2
+

n−1∑

i=⌈n
2
⌉

i log n

≤ n2

8
log

n

2
+

3n2

8
log n

=
n2

2
log n − n2

8

Therefore

P (n) ≤ 2 +
8

n2

n2

2
log−n2

8

 = 1 + 4 log n

A more careful analysis can be done and it can be shown that

P (n) ≤ 1 + 1.4 log n

4.5 Splay Trees

REF. Daniel D Sleator and Robert E. Tarjan. Self-adjusting binary search
trees. Journal of the ACM , Volume 32, Number 3, pp. 652-686, 1985.

REF. Robert E. Tarjan. Amortized computational complexity. SIAM Jour-
nal on Algebraic and Discrete Methods , Volume 6, Number 2, pp.
306-318, 1985.

• These are binary search trees which are self-adjusting in the following
way:

Every time we access a node of the tree, whether for retrieval or in-
sertion or deletion, we perform radical surgery on the tree, resulting

Chapter 4. Binary Trees 89

in the newly accessed node becoming the root of the modified tree.
This surgery will ensure that nodes that are frequently accessed will
never drift too far away from the root whereas inactive nodes will get
pushed away farther from the root.

• Amortized complexity

– Splay trees can become highly unbalanced so that a single access
to a node of the tree can be quite expensive.

– However, over a long sequence of accesses, the few expensive cases
are averaged in with many inexpensive cases to obtain good per-
formance.

• Does not need heights or balance factors as in AVL trees and colours
as in Red-Black trees.

• The surgery on the tree is done using rotations, also called as splaying
steps. There are six different splaying steps.

1. Zig Rotation (Right Rotation)

2. Zag Rotation (Left Rotation)

3. Zig-Zag (Zig followed by Zag)

4. Zag-Zig (Zag followed by Zig)

5. Zig-Zig

6. Zag-Zag

• Consider the path going from the root down to the accessed node.

– Each time we move left going down this path, we say we “zig”
and each time we move right, we say we “zag.”

• Zig Rotation and Zag Rotation

– Note that a zig rotation is the same as a right rotation whereas
the zag step is the left rotation.

– See Figure 4.17.

• Zig-Zag

Chapter 4. Binary Trees 90

large small

large (target)
small

(target)

T1 T2

 T3

Zig rotation

Zag rotation

T1

T2 T3

Figure 4.17: Zig rotation and zag rotation

large

small

middle (target) T1

T2 T3

T4

T3 T4

small

middle

large

T1 T2

Figure 4.18: Zig-zag rotation

T3 T4

small

middle

large

small

large

T4

 T1

T2 T3

(target) mid

T1 T2

Figure 4.19: Zag-zig rotation

 T3

T2

T2

 T3T1

T4

large

mid T1

T4

small

large
(target)

mid

small
(target)

Zag - Zag

 Zig - Zig

Figure 4.20: Zig-zig and zag-zag rotations

Chapter 4. Binary Trees 91

 T3

T2T1

T4

large

mid

small

Two successive

Right Rotations

T1

small

T4

 T3T2

mid

large

Figure 4.21: Two successive right rotations

– This is the same as a double rotation in an AVL tree. Note that
the target element is lifted up by two levels.

– See Figure 4.18.

• Zag-Zig

– This is also the same as a double rotation in an AVL tree.

– Here again, the target element is lifted up by two levels.

– See Figure 4.19.

• Zig-Zig and Zag-Zag

– The target element is lifted up by two levels in each case.

– Zig-Zig is different from two successive right rotations; zag-zag
is different from two successive left rotations. For example, see
Figures 4.20, and 4.21.

• See Figure 4.22 for an example

• The above scheme of splaying is called bottom-up splaying.

• In top-down splaying, we start from the root and as we locate the
target element and move down, we splay as we go. This is more
efficient.

Chapter 4. Binary Trees 92

h

a

b

c

d

e

f

g

i

a

b

c

d

e

f

g

h

i

c

a

b

h

i

f

d

e

g

a

b

c

h

i

g

f

d

e

Zig - Zag

Zig - Zig

Zig

Figure 4.22: An example of splaying

Chapter 4. Binary Trees 93

30

10

Search (80,t)

leads to splay at 70

50

60

 90

1007020

15

40

70

50

30

10

20

15

40

60

 90

100

Figure 4.23: An example of searching in splay trees

4.5.1 Search, Insert, Delete in Bottom-up Splaying

Search (i, t)

If item i is in tree t, return a pointer to the node containing i; otherwise
return a pointer to the null node.

• Search down the root of t, looking for i

• If the search is successful and we reach a node x containing i, we
complete the search by splaying at x and returning a pointer to x

• If the search is unsuccessful, i.e., we reach the null node, we splay at
the last non-null node reached during the search and return a pointer
to null.

• If the tree is empty, we omit any splaying operation.

Example of an unsuccessful search: See Figure 4.23.

Insert (i, t)

• Search for i. If the search is successful then splay at the node con-
taining i.

• If the search is unsuccessful, replace the pointer to null reached during
the search by a pointer to a new node x to contain i and splay the
tree at x

Chapter 4. Binary Trees 94

100

30

10

50

20

15

40

 90

70

80

60Insert (80, t)

Splay at x

80 x

30

10

50

60

 90

1007020

15

40

Figure 4.24: An example of an insert in a splay tree

For an example, See Figure 4.24.

Delete (i, t)

• Search for i. If the search is unsuccessful, splay at the last non-null
node encountered during search.

• If the search is successful, let x be the node containing i. Assume x is
not the root and let y be the parent of x. Replace x by an appropriate
descendent of y in the usual fashion and then splay at y.

For an example, see Figure 4.25.

4.6 Amortized Algorithm Analysis

Amortized analysis considers a long sequence of related events rather than
a single event in isolation. Amortized analysis gives a worst case estimate
of the cost of a long sequence of related events.

4.6.1 Example of Sorting

A list is first sorted and then after some use, a random element is included
and then sorted. If we want to do this repeatedly, then amortized analysis
will indicate insertion sort rather than heapsort or quicksort.

Chapter 4. Binary Trees 95

60Delete (30,t)

Splay at y

 x

y y100

30

10

50

20

15

40

 90

70

80

60

100

 90

80

70

10

50

40

20

15

60

10

50

40

20

15

100

 90

70

80

Figure 4.25: An example of a delete in a splay tree

4.6.2 Example of Tree Traversal (Inorder)

• Let the cost of visiting a vertex be the number of branches traversed
to reach that vertex from the last one visited.

Best case cost = 1 Worst case cost = n -1

• If we amortize the cost over a traversal of the entire binary tree, then
the cost of going from each vertex to the next is less than 2. To see
why, note that every binary tree with n vertices has exactly n − 1
branches and a complete traversal of the tree goes over each branch
exactly twice. Thus the total number of steps in a full traversal =
2(n − 1).

• Amortized number of steps from one vertex to the next = 2(n−1)
n < 2

4.6.3 Credit Balance

• The credit function behaves like the bank balance of a well-budgeted
family. It will be large when the next operation is expensive and

Chapter 4. Binary Trees 96

smaller when the next operation can be done quickly.

• Consider a sequence of m operations on a data structure. Let

ti = Actual cost of operation i for 1 ≤ i ≤ m

Let the values of the credit between balance function be

C0, C1, C2, . . . , Cm

C0 = Credit balance before the first operation
Ci = Credit balance after operation i

Amortized Cost

• The amortized cost ai of each operation i is defined by

ai = ti + Ci − Ci−1
︸ ︷︷ ︸

change in
the credit

balance during
operation i

choose the credit balance function Ci so as to make the amortized
costs ai as nearly equal as possible, no matter how the actual costs
may vary.

We have

ti = ai − Ci + Ci−1

Hence
m∑

i=1

ti = (a1 − C1 + C0) + (a2 − C2 + C1) + · · · + (am − Cm + Cm−1)

=

m∑

i=1

ai

 + (C0 − Cm)

Thus
m∑

i=1

ti =

m∑

i=1

ai

 + C0 − Cm

Chapter 4. Binary Trees 97

• Thus the total actual cost can be computed in terms of the amortized
costs and the initial and final values of the credit balance function.

4.6.4 Example of Incrementing Binary Integers

• Consider an algorithm to continually increment a binary integer by 1.
Start at the LSB (least significant bit, i.e. right most bit); while the
current bit is 1, change it to 0 and move left, stopping when we reach
far left or hit a 0 bit, which we change to 1 and stop.

• For the credit balance, take the total number of 1s in the binary
integer:

Step i Integer ti Ci ai

0 —— 0000 ——– - 0 -
1 —— 0001 ——– 1 1 2
2 —— 0010 ——– 2 1 2
3 —— 0011 ——– 1 2 2
4 —— 0100 ——– 3 1. 2
5 —— 0101 ——– 1 2 2
6 —— 0110 ——– 2 2 2
7 —— 0111 ——– 1 3 2
8 —— 1000 ——– 4 1 2
9 —— 1001 ——– 1 2 2
10 —— 1010 ——– 2 2 2
11 —— 1011 ——– 1 3 2
12 —— 1100 ——– 3 2 2
13 —— 1101 ——– 1 3 2
14 —— 1110 ——– 2 3 2
15 —— 1111 ——– 1 4 2
16 —— 0000 ——– 4 0 0

4.6.5 Amortized Analysis of Splaying

• As a measure of complexity, we shall take the depth within the tree
that the desired node has before splaying.

Chapter 4. Binary Trees 98

T : BST on which we are performing a splay
insertion or retrieval

Ti : tree T as it has been transformed after
step i of the splaying process, with T0 = T

x : any node in Ti

Ti(x) : subtree of Ti with root x
|Ti(x)| : number of nodes of Ti(x)

• We consider bottom-up splaying at a node x, so that x begins some-
where in the tree T but after m splaying steps, ends up as the root of
T .

• Rank

For each step i of the splaying process and each vertex x ∈ T , we
define rank at step i of x to be

ri(x) = log |Ti(x)|
︸ ︷︷ ︸

height of
Ti(x) if it

were completely
balanced.

• Portion out the credit balance of the tree among all its vertices by
requiring the following credit invariant to hold:

For every node x of T and after every step i of splaying, node x has
credit equal to its rank ri(x).

• Define the total credit balance for the tree as

Ci =
∑

x∈Ti

ri(x)

• If the tree is empty or contains only one node, then its credit balance
is 0. As the tree grows, its credit balance increases. The credit balance
should reflect the work needed to build the tree.

Chapter 4. Binary Trees 99

x

y

z

A B

C

D Zig-Zag

Step i

x

y

z

A

B

C D

Figure 4.26: A zig-zig at the ith splaying step

• Our goal is to determine bounds on ai that will allow us to find the
cost of the splaying process, amortized over a sequence of retrievals
and insertions.

• A useful Result:

If α, β, γ are positive real numbers with α + β ≤ γ, then

log α + log β ≤ 2 log γ − 2 (∗)

This can be easily proved as follows:

(√
α −

√

β
)2

≥ 0 ⇒
√

αβ ≤ α + β

2
⇒

√

αβ ≤ γ

2
⇒ log α + log β ≤ 2 log γ − 2

Result 1

If the ith splaying step is a zig-zig or a zag-zag step at node x, then its
amortized complexity ai satisfies

ai < 3(ri(x) − ri−1(x))

See Figure 4.26.

• The actual complexity ti of a zig-zig or a zag-zag is 2 units

• Only the sizes of the subtrees rooted at x, y, z change in this step.
Hence, all terms in the summation defining Ci cancel against those

Chapter 4. Binary Trees 100

for Ci−1 except those indicated below

ai = ti + Ci − Ci−1

= 2 + ri(x) + ri(y) + ri(z)
−ri−1(x) − ri−1(y) + ri−1(z)

= 2 + ri(y) + ri(z) − ri−1(x) − ri−1(y) (•)

Since |Ti(x)| = |Ti−1(z)| as the subtree rooted at z before the splaying step
has the same size as that rooted at x after the step.

Let

α = |Ti−1(x)|, β = |Ti(z)|, and γ = |Ti(x)|. Then observe that α+β ≤ γ.
This is because

Ti−1(x) contains components x, A, B

Ti(z) contains components z, C, D
Ti(x) contains all these components (plus y besides).

Thus by (∗)
ri−1(x) + ri(z) ≤ 2ri(x) − 2

⇒ 2ri(x) − ri−1(x) − ri(z) − 2 ≥ 0

Adding this to (•), we get

ai ≤ 2ri(x) − 2ri−1(x) + ri(y) − ri−1(y)

Before step i, y is the parent of x so that

|Ti−1(y)| > |Ti−1(x)|

After step i, x is the parent of y so that

|Ti(x)| > |Ti(y)|

Taking logarithms we have

ri−1(y) > ri−1(x) and ri(x) > ri(y)

Chapter 4. Binary Trees 101

Thus we obtain
ai < 3ri(x) − 3ri−1(x)

Similarly, we can show Results 2 and 3 below:

Result 2

If the ith splaying step is a zig-zag or zag-zig at node x, then its amortized
complexity ai satisfies

ai < 2(ri(x) − ri−1(x))

Result 3

If the ith splaying step is a zig or a zag, then

ai < 1 + (ri(x) − ri−1(x))

Result 4

The total amortized cost over all the splaying steps can be computed by
adding the costs of all the splay steps. If there are k such steps, only the
last can be a zig or zag and the others are all zig-zag or zig-zag or zag-zig
or zag-zag. Since (∗) provides the weaker bound, we get,

k∑

i=1

ai =
k−1∑

i=1

ai + ak

≤
k−1∑

i−1

3(ri(x) − ri−1(x)) + (1 + 3rk(x) − 3rk−1(x))

= 1 + 3rk(x) − 3r0(x)

≤ 1 + 3rk(x)

= 1 + 3 log n

Chapter 4. Binary Trees 102

Thus the amortized cost of an insertion or retrieval with splaying in a
BST with n nodes does not exceed 1 + 3 log n upward moves of the target
node in the tree.

Result 5

Now consider a long sequence of m splay insertions or retrievals. We seek
to compute the actual cost of all these m operations.

Let Tj and Aj be the actual cost and amortized cost of the jth opera-
tion, where j = 1, 2, . . . , m, now represents a typical insertion or retrieval
operation.

We have
m∑

j=1

Tj =

m∑

j=1

Aj

 + CO − Cm

If the tree never has more than n nodes, then C0 and Cm lie between 0 and
log n, so that

C0 − Cm ≤ log n

Also we know that

Aj ≤ 1 + 3 log n for j = 1, 2, . . . , m

Thus the above becomes

m∑

j=1

Tj = m(1 + 3 log n) + log n

The above gives the total actual time of m insertions or retrievals on a
tree that never has more than n nodes.

This gives O(log n) actual running time for each operation.

Chapter 4. Binary Trees 103

4.7 To Probe Further

1. Alfred V Aho, John E. Hopcroft, and Jeffrey D Ullman. Data Struc-
tures and Algorithms . Addison-Wesley, 1983.

2. Gilles Brassard and Paul Bratley. Fundamentals of Algorithmics .
Prentice-Hall, 1996. Indian Edition published by Prentice Hall of
India, 1998.

3. Thomas H. Cormen, Charles E. Leiserson, and Donald L. Rivest. In-
troduction to Algorithms . The MIT Electrical Engineering and Com-
puter Science Series, 1990. Indian Edition published in 1999.

4. Donald E Knuth. Fundamental Algorithms , Volume 1 of The Art
of Computer Programming, Addison-Wesley, 1968, Second Edition,
1973.

5. Robert L. Kruse, Bruce P. Leung, and Clovis L. Tondo. Data Struc-
tures and Program design in C . Prentice Hall, 1991. Indian Edition
published by Prentice Hall of India, 1999.

6. Mark Allen Weiss. Data Structures and Algorithm Analysis in C++.
Benjamin-Cummings, 1994. Indian Edition published in 1998.

7. Duane A. Bailey. Java Structures: Data Structures in Java for the
Principled Programmer . McGraw-Hill International Edition, 1999.

8. Ellis Horowitz and Sartaz Sahni. Fundamentals of Data structures .
Galgotia Publications, New Delhi, 1984.

9. Donald E Knuth. Seminumerical Algorithms . Volume 2 of The Art
of Computer Programming, Addison-Wesley, 1969, Second Edition,
1981.

10. Donald E. Knuth. Sorting and Searching , Volume 3 of The Art of
Computer Programming, Addison-Wesley, 1973.

11. Y. Langsam, M.J. Augenstein, and A.M. Tenenbaum. Data Struc-
tures using C and C++. Second Edition, Prentice Hall, 1996. Indian
Edition published by Prentice Hall of India, 2000.

Chapter 4. Binary Trees 104

12. Kurt Mehlhorn. Sorting and Searching. Volume 1 of Data Structures
and Algorithms. Springer-Verlag, 1984.

13. Sataj Sahni. Data Structures, Algorithms, and Applications in Java.
McGraw-Hill Higher Education, 2000.

14. Thomas A. Standish. Data Structures in Java. Addison-Wesley, 1998.
Indian Edition published by Addison Wesley Longman, 2000.

15. Nicklaus Wirth. Data Structures + Algorithms = Programs. Prentice-
Hall, Englewood Cliffs. 1975.

16. David A Huffman. A method for the construction of minimum-redundancy
codes. Proceedings of the IRE Volume 40, Number 9, pp. 1098-1101,
1952.

17. Daniel D Sleator and Robert E. Tarjan. Self-adjusting binary search
trees. Journal of the ACM , Volume 32, Number 3, pp 652-686, 1985.

18. Robert E. Tarjan. Amortized computational complexity. SIAM Jour-
nal on Algebraic and Discrete Methods , Volume 6, Number 2, pp.306-
318, 1985.

4.8 Problems

4.8.1 General Trees

1. Show in any binary tree that the number of leaves is one more than the number of
nodes of degree two.

2. The degree of a node in a tree is the number of children the node has. If a tree has
n1 nodes of degree 1, n2 nodes of degree 2, ..., nm nodes of degree m, compute the
number of leaves in the tree in terms of n1, n2, . . . , nm.

3. Show that if T is a k-ary tree with n nodes, each having a fixed size, then nk+1−n
of the nk link fields are null links (n ≥ 1).

4. Provide an efficient O(n) time algorithm to determine the height of a tree containing
n nodes, represented using parent links. You may build any other supporting data
structures, if needed.

Chapter 4. Binary Trees 105

5. Associate a weight w(x) = 2−d with each leaf x of depth d in a binary tree T . Show
that

∑

x

w(x) ≤ 1

where the sum is taken over all leaves x in T .

6. Consider a complete binary tree with an odd number of nodes. Let n be the number
of internal nodes (non-leaves) in the tree. Define the internal path length, I, as the
sum, taken over all the internal nodes of the tree, of the depth of each node. Likewise,
define the external pathlength, E, as the sum, taken over all the leaves of the tree,
of the depth of each leaf. Show that E = I + 2n.

7. What is the optimal Huffman code for the following set of frequencies, based on the
first 8 Fibonacci numbers?

a b c d e f g h
1 1 2 3 5 8 13 21

Write down the resulting Huffman tree. Can you generalize your answer to find the
optimal code when the frequencies are the first n Fibonacci numbers?

4.8.2 Binary Search Trees

1. Suppose that we have numbers between 1 and 1000 in a binary search tree and want
to search for the number 363. Which of the following sequences could not be the
sequence of nodes examined?

(a) 2, 252, 401, 398, 330, 344, 397, 363.

(b) 924, 220, 911, 244, 898, 258, 362, 363.

(c) 925, 202, 911, 240, 912, 245, 363.

(d) 2, 399, 387, 219, 266, 382, 381, 278, 363.

(e) 935, 278, 347, 621, 299, 392, 358, 363.

2. In a binary search tree, given a key x, define successor(x) as the key which is
the successor of x in the sorted order determined by an inorder tree walk. Define
predecessor(x) similarly. Explain how, given x, its successor and predecessor may
be found.

3. A binary search tree is constructed by inserting the key values 1, 2, 3, 4, 5, 6, 7
in some order specified by a permutation of 1, . . ., 7, into an initially empty tree.
Which of these permutations will lead to a complete binary search tree (1 node at
level 1, 2 nodes at level 2, and 4 nodes at level 3)?

Chapter 4. Binary Trees 106

4. Suppose that the search for key k in a binary search tree ends up in a leaf. Consider
three sets: A, the keys to the left of the search path; B, the keys on the search path;
and C, the keys to the right of the search path. Investigate if the following is true:
a ≤ b ≤ c ∀ a ∈ A; b ∈ B; c ∈ C. Give a proof or a counter-example as the case
may be.

5. Is the operation of deletion in a binary search tree commutative in the sense that
deleting x and then y from a binary search tree leaves the same tree as deleting y
and then x? Argue why it is so or give a counter-example.

6. Devise an algorithm that takes two values, a and b such that a ≤ b, and visits all
keys x in a BST such that a ≤ x ≤ b. The running time of your algorithm should
be O(N +log n), where N is the number of keys visited and n is the number of keys
in the tree.

7. A random binary search tree having n nodes, where n = 2k − 1, for some positive
integer k, is to be reorganized into a perfectly balanced binary search tree. Outline
an efficient algorithm for this task. The algorithm should not use any memory
locations other than those already used by the random binary search tree.

8. Consider three keys, k1, k2, k3, such that k1 < k2 < k3. A binary search tree is
constructed with these three keys. Depending on the order in which the keys are
inserted, five different binary search trees are possible.

(a) Write down the five binary search trees.

(b) Let p, q, r be the probabilities of probing for k1, k2, k3, respectively in the given
binary search trees (p+q+r = 1). Compute the average number of comparisons
(or probes) on a successful search for each of the above five binary search trees.

(c) Define the optimum binary search tree as the one for which the average number
of comparisons on a successful search is minimum. Determine the range of
values of p, q, r, for which the completely balanced search tree is the optimum
search tree.

9. Given a set of 31 names, each containing 10 uppercase alphabets, we wish to set up
a data structure that would lead to efficient average case performance of successful
and unsuccessful searches on this set. It is known that not more than 5 names start
with the same alphabet. Also, assume that successful and unsuccessful searches are
equally likely and that in the event of a successful search, it is equally likely that
any of the 31 names was searched for. The two likely choices for the data structure
are:

• A closed hash table with 130 locations where each location can accommodate
one name.

• A full binary search tree of height 4, where each of the 31 nodes contains a
name and lexicographic ordering is used to set up the BST.

Chapter 4. Binary Trees 107

Answer the following questions:

(a) What is the hashing function you would use for the closed hash table?

(b) Assume that the computation of the hash function above takes the same time
as comparing two given names. Now, compute the average case running time
of a search operation using the hash table. Ignore the time for setting up the
hash table.

(c) Compute the average case running time of a search operation using the BST.
Ignore the time for setting up the BST.

4.8.3 Splay Trees

1. Complete the proof of the following lemmas in the amortized analysis of splay trees:

(a) If the ith splaying step is a zig-zag step or a zag-zig step at node x, then its
amortized complexity ai satisfies ai ≤ 2(ri(x) − ri−1(x)).

(b) If the ith splaying step is a zig step or a zag step at node x, then its amortized
complexity ai satisfies ai ≤ 1 + (ri(x) − ri−1(x)).

2. Define a rank function r(x) for the nodes of any binary tree as follows: If x is the
root, then r(x) = 0; If x is the left child of y, then r(x) = r(y) − 1; If x is the right
child of y, then r(x) = r(y)+1. Define the credit balance of a tree during a traversal
to be the rank of the node being visited. For several binary trees, determine the
ranks at each node and prepare a table showing the actual cost, credit balance, and
amortized cost (in edges traversed) of each step of an inorder traversal.

3. Generalize the amortized analysis for incrementing four digit binary integers to n
digit binary integers.

4. A sequence of n operations is performed on a data structure. The ith operation
costs i if i is an exact power of 2, and 1 otherwise. Use a suitable credit function
and compute the amortized cost per operation.

5. Keys 1, 2, . . . , n are inserted in that order into an empty splay tree, using splay
insertions. What will be the resulting tree? Also write down the splay tree that
results when the key n is deleted, using splay deletion.

6. Consider a sequence of m accesses (search operations) to an n-node splay tree. Show
that the total running time of this sequence of operations is O((m + n) log n + m).

Chapter 4. Binary Trees 108

4.9 Programming Assignments

4.9.1 Huffman Coding

1. Problem: Given a set of alphabets and their relative frequencies, find the Huffman
binary code using binary trees and an optimal ternary code using ternary trees.

2. Reading: Read pages 94-102 of ”Data Structures and Algorithms” by Aho, Hopcroft,
and Ullman.

3. Input: The number of alphabets and relative frequencies of those, for example,

8 .2 .02 .3 .05 .03 .15 .22 .03

Assume the alphabets as 1, 2, 3, ..., without loss of generality.

4. Output: For each alphabet, print the Huffman binary code and an optimal ternary
code. Also print the average length of code.

5. Data structures: For binary trees, use the data structures suggested by Aho,
Hopcroft, and Ullman. For ternary trees, use similar data structures based on
leftmostchild-right sibling representation with nodes organized into cellspace.

6. Programming language: Use C or C++or Java. Best practices in programming
should be adhered to.

4.9.2 Comparison of Hash Tables and Binary Search Trees

The objective of this assignment is to compare the performance of open hash tables, closed
hash tables, and binary search trees in implementing search, insert, and delete operations
in dynamic sets. You can initially implement using C but the intent is to use C++ and
object-oriented principles.

Generation of Keys

Assume that your keys are character strings of length 10 obtained by scanning a text
file. Call these as tokens. Define a token as any string that appears between successive
occurrences of a forbidden character, where the forbidden set of characters is given by:

F = {comma, period, space}

If a string has less than 10 characters, make it up into a string of exactly 10 characters by
including an appropriate number of trailing *’s. On the other hand, if the current string
has more than 10 characters, truncate it to have the first ten characters only.

Chapter 4. Binary Trees 109

From the individual character strings (from now on called as tokens), generate a
positive integer (from now on called as keys) by summing up the ASCII values of the
characters in the particular token. Use this integer key in the hashing functions. However,
remember that the original token is a character string and this is the one to be stored in
the data structure.

Methods to be Evaluated

The following four schemes are to be evaluated.

1. Open hashing with multiplication method for hashing and unsorted lists for chaining

2. Open hashing with multiplication method for hashing and sorted lists for chaining

3. Closed hashing with linear probing

4. Binary search trees

Hashing Functions

For the sake of uniformity, use the following hashing functions only. In the following, m
is the hash table size (that is, the possible hash values are, 0, 1, . . . ,m − 1), and x is an
integer key.

1. Multiplication Method

h(x) = Floor(m ∗ Fraction(k ∗ x))

where k =

√
(5)−1

2
, the Golden Ratio.

2. Linear Probing

h(x, i) = (h(x, 0) + i) mod m; i = 0, . . . ,m − 1

Inputs to the Program

The possible inputs to the program are:

• m: Hash table size. Several values could be given here and the experiments are to
be repeated for all values specified. This input has no significance for binary search
trees.

Chapter 4. Binary Trees 110

• n: The initial number of insertions of distinct strings to be made for setting up a
data structure.

• M : This is a subset of the set {1, 2, 3, 4} indicating the set of methods to be inves-
tigated.

• I: This is a decimal number from which a ternary string is to be generated (namely
the radix-3 representation of I). In this representation, assume that a 0 represents
the search operation, a 1 represents the insert operation, and a 2 represents the
delete operation.

• A text file, from which the tokens are to be picked up for setting up and experi-
menting with the data structure

What should the Program Do?

1. For each element of M and for each value of m, do the following.

2. Scan the given text file and as you scan, insert the first n distinct strings scanned
into an initially empty data structure.

3. Now scan the rest of the text file token by token, searching for it or inserting it
or deleting it, as dictated by the radix-3 representation of I. Note that the most
significant digit is to be considered first while doing this and you proceed from left
to right in the radix-3 representation. For each individual operation, keep track of
the number of probes.

4. Compute the average number of probes for a typical successful search, unsuccessful
search, insert, and delete.

4.9.3 Comparison of Skip Lists and Splay Trees

The objective of this assignment is to compare the performance of splay trees and skip
lists in implementing search, insert, and delete operations in dictionaries. The context is
provided by symbol table operations in a C compiler.

What is Required?

Assume that your keys are identifiers in a C program (strings that are different from
special symbols). Use LEX to design a scanner (lexical analyzer) that will scan the C
program and split it into a set of identifiers. Each identifier is a regular expression. Call
these identifiers as tokens from henceforth. The tokens are to be put it into a symbol
table. The following two data structures are to be evaluated.

1. Splay trees with bottom-up splaying

Chapter 4. Binary Trees 111

2. Skip lists

Inputs to the Program

The inputs to the program are:

• A C program of sufficient size

• n: The initial number of insertions of distinct tokens to be carried out to set up a
base data structure.

What should the Program Do?

Do the following steps for splay tree (skip list):

1. Scan the given C program and as you scan, insert the first n distinct tokens into an
initially empty data structure.

2. Now scan the rest of the C program token by token, inserting or deleting the token,
by tossing a fair coin. For each individual operation, keep track of the number of
probes and number of rotations (if applicable). Count the number of elementary
operations for each insert or delete (comparisons, assignments of pointers, etc.)

3. Compute the average number of elementary operations for insert and delete.

Programming Language

C++ or Java is recommended. A serious attempt should be made to use ideas of data

abstraction, encapsulation, modularity, inheritance, and polymorphism.

Chapter 5

Balanced Trees

5.1 AVL Trees

Also called as: Height Balanced Binary Search Trees.

REF. G.M. Adel’son-Vel’skii and E.M. Landis. An algorithm for the or-
ganization of information. Soviet Mathematics Monthly Volume 3,
pp.1259-1263, 1962.

Search, Insertion, and Deletion can be implemented in worst case O(log n)
time

Definition

An AVL tree is a binary search tree in which

1. the heights of the right subtree and left subtree of the root differ by
at most 1

2. the left subtree and the right subtree are themselves AVL trees

3. A node is said to be

112

Chapter 5. Balanced Trees 113

left-high if the left subtree has /
greater height

right-high if the right subtree has
greater height \

equal if the heights of the LST and
RST are the same −

AVL

AVLnot AVL
not AVL

not AVLAVL Tree

AVL
(skewed)

-

-- -

- - - -

/

/

-

- -

-

/

/

-

/

\

-

-

/

\

-

-

\

\

-

-

-

/

/

\

\

Figure 5.1: Examples of AVL trees

Examples: Several examples of AVL trees are shown in Figure 5.1.

5.1.1 Maximum Height of an AVL Tree

What is the maximum height of an AVL tree having exactly n nodes? To
answer this question, we will pose the following question:

What is the minimum number of nodes (sparsest possible AVL tree) an
AVL tree of height h can have ?

Chapter 5. Balanced Trees 114

lF
F

root

h-2
h-1

r

Figure 5.2: An AVL tree with height h

Let Fh be an AVL tree of height h, having the minimum number of
nodes. Fh can be visualized as in Figure 5.2.

Let Fl and Fr be AVL trees which are the left subtree and right subtree,
respectively, of Fh. Then Fl or Fr must have height h-2.

Suppose Fl has height h–1 so that Fr has height h–2. Note that Fr

has to be an AVL tree having the minimum number of nodes among
all AVL trees with height of h–1. Similarly, Fr will have the minimum
number of nodes among all AVL trees of height h—2. Thus we have

|Fh| = |Fh−1| + |Fh−2| + 1

where |Fr| denotes the number of nodes in Fr. Such trees are called
Fibonacci trees. See Figure 5.3. Some Fibonacci trees are shown in
Figure 4.20. Note that |F0| = 1 and |F1| = 2.

Adding 1 to both sides, we get

|Fh| + 1 = (|Fh−1| + 1) + (|Fh−2| + 1)

Thus the numbers |Fh|+ 1 are Fibonacci numbers. Using the approx-
imate formula for Fibonacci numbers, we get

|Fh| + 1 ≈ 1√
5

1 +

√
5

2

h+3

⇒ h ≈ 1.44 log |Fn|

Chapter 5. Balanced Trees 115

⇒ The sparsest possible AVL tree with n nodes has height

h ≈ 1.44 log n

⇒ The worst case height of an AVL tree with n nodes is

1.44 log n

-

F
0

-

/

F1 -

-

/

/

F2

-

- -

/

/

/

/

F3

Figure 5.3: Fibonacci trees

5.1.2 AVL Trees: Insertions and Deletions

• While inserting a new node or deleting an existing node, the resulting
tree may violate the (stringent) AVL property. To reinstate the AVL
property, we use rotations. See Figure 5.4.

Rotation in a BST

• Left rotation and right rotation can be realized by a three-way rotation
of pointers.

1T 2

3T 1T

2T
3TT

x

yx

y

pp

RightRotate (T,y)

LeftRotate (T,x)

Figure 5.4: Rotations in a binary search tree

Chapter 5. Balanced Trees 116

• Left Rotation:

temp = p → right ;
p → right = temp → left ;
temp → left = p ;
p = temp ;

• Left rotation and right rotation preserve

∗ BST property

∗ Inorder ordering of keys

Problem Scenarios in AVL Tree Insertions

– left subtree of node has degree higher by ≥ 2

∗ left child of node is left high (A)

∗ left child or node is right high (B)

– right subtree has degree higher by ≥ 2

∗ right child of node is left high (C)

∗ right child or node is right high (D)

• The AVL tree property may be violated at any node, not necessarily
the root. Fixing the AVL property involves doing a series of single or
double rotations.

• Double rotation involves a left rotation followed or preceded by a right
rotation.

• In an AVL tree of height h, no more than ⌈h
2⌉ rotations are required

to fix the AVL property.

Insertion: Problem Scenario 1: (Scenario D)

Scenario A is symmetrical to the above. See Figure 5.5.

Insertion: Problem Scenario 2: (Scenario C)

Scenario B is symmetrical to this. See Figure 5.6.

Chapter 5. Balanced Trees 117

T
3

T
3

T1

T2
T

3

T1

T2 T
3

T2

T
3

Insert a node into
so as to increase
height of

LeftRotate (T,y)

\

-

y

x

}{

{h

hh-1 or h

h+1

y

x

\\

\{

{ } h+1h-1 or h

h + 2
h

x

y
}

}{h h-1 or h

h+1

-

Height of tree = h + 2

}
}
}

}
}
}

T1

Figure 5.5: Insertion in AVL trees: Scenario D

Chapter 5. Balanced Trees 118

h

h - 1
or
h

 h

h - 1
or
h

 x

wT1

T2 T3

T4
h + 3

w

y x
-

 T1 T2 T3 T4
h + 1

Double
Rotation

 y

h + 1

Figure 5.6: Insertion in AVL trees: Scenario C

x

 T2

 T1
h + 1

y

h - 1h

hT3

h

h - 1

x

y

 T1 T2

T3

h - 1 or h

Deletion of element decreases
the height of T1, violating the
AVL property.
Left Rotate (T, y)

Figure 5.7: Deletion in AVL trees: Scenario 1

Chapter 5. Balanced Trees 119

x

 T1

y

h

h - 1

y

 T1 T2

 T2 T3
h

h - 1

w

T4

h - 1

Overall height = h + 2

Double Rotate

T3 T4

x

w

h - 1

Overall height = h + 1

Figure 5.8: Deletion in AVL trees: Scenario 2

Deletion: Problem Scenario 1:

Depending on the original height of T2, the height of the tree will
be either unchanged (height of T2 = h) or gets reduced (if height of
T2 = h − 1). See Figure 5.7.

There is a scenario symmetric to this.

Deletion: Problem Scenario 2:

See Figure 5.8. As usual, there is a symmetric scenario.

Chapter 5. Balanced Trees 120

5.2 Red-Black Trees

• Binary search trees where no path from the root to a leaf is more than
twice as long as any other path from the root to a leaf.

REF. R. Bayer. Symmetric binary B-trees: Data Structures and mainte-
nance algorithms, Acta Informatica, Volume 1, pp.290-306, 1972.

Definition

A BST is called an RBT if it satisfies the following four properties.

1. Every node is either red or black

2. Every leaf is black (Missing node property)

3. If a node is red, then both its children are black

(RED constraint)

4. Every simple path from a node to a descendent leaf contains the same
number of black nodes

(BLACK constraint)

Black-Height of a Node

• Number of black nodes on any path from, but not including a node x
to a leaf is called the black height of x and is denoted by bh(x).

• Black height of an RBT is the black height of its root.

• Each node of a red black tree contains the following fields.

colour key left right parent

• If a child of a node does not exist, the corresponding pointer field will
be NULL and these are regarded as leaves.

• Only the internal nodes will have key values associated with them.

Chapter 5. Balanced Trees 121

3

7 15

10

12

16

14

blackblackblackblackblack

blackblack

black

black

black

black

red

red

red
black

(leaf)

(leaf)(leaf)(leaf)(leaf)(leaf)

(leaf) (leaf)

0 0

0 0 0 0 0

0

1

1 1

2

1

1

2
blackheight = 2

Figure 5.9: A red-black tree with black height 2

• The root may be red or black.

Examples : See Figures 5.9 and 5.10.

5.2.1 Height of a Red-Black Tree

Result 1

In a RBT, no path from a node x to a leaf is more than twice as long as
any other path from x to a leaf.

Let bh(x) be the black height of x. Then the length of a longest path
from x to a leaf

= 2bh(x) {a path on which red and black nodes alternate}

Length of the shortest possible path from x to a leaf

bh(x) {a path that only contains blacks}

Hence the result.

Chapter 5. Balanced Trees 122

0 0 0 0 0 0 0 0

1 1 1 1

11

2

2

 Black height = 2

 Black height = 2

1 1 1 1

0 0 0 0 0 0 0 0

2 2

Black height = 3

1 1 1 1

0 0 0 0 0 0 0 0

2 2

3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

1111

2 2

2

 Black height = 2

Figure 5.10: Examples of red-black trees

Chapter 5. Balanced Trees 123

x

x2x1

Figure 5.11: A simple red-black tree

Result 2

A red-black tree with n internal nodes has height at most

2 log(n + 1)

Consider any node x and the subtree rooted at x. We will first show that
this subtree has at least

2bh(x) − 1 internal nodes

We do this by induction on the height of x. If h(x) = 0, bh(x) = 0, x is
leaf and hence the subtree has no internal nodes, as corroborated by

20 − 1 = 0

Let h(x) > 0 and let x1 and x2 be its two children (Figure 5.11)

Note that h(x1), h(x2) are both ≤ h(x) − 1. Assume the result to be true
for x1 and x2. We shall show the result is true for x.

Now,

bh(x1) ≤ bh(x) and ≥ bh(x) − 1
bh(x2) ≤ bh(x) and ≥ bh(x) − 1

Therefore, the tree with root x1 has at least
(

2bh(x)−1 − 1
)

internal nodes

Chapter 5. Balanced Trees 124

T1 T2

T3 x

 y x

 yT1

T2 T3

Right rotate (T, y)

Left rotate (T, x)

Figure 5.12: Rotations in a red-black tree

whereas the tree with root x2 has at least
(

2bh(x)−1 − 1
)

internal nodes

Thus the tree with root x has at least

1 + 2bh(x)−1 − 1 + 2bh(x)−1 − 1 =
(

2bh(x) − 1
)

⇐ internal nodes

To complete the proof, let h be the height of the tree. Then

bh (root) ≥ h

2

Thus

n ≥ 2h/2 − 1
⇒ h ≥ 2 log(n + 1)

5.2.2 Red-Black Trees: Insertions

• While inserting a node, the resulting tree may violate the red-black
properties. To reinstate the violated property, we use

– Recolouring and/or

– Rotation (same as in AVL trees: See Figure 5.12)

∗ left

∗ right

∗ double

• To insert a node x, we first insert the node as if in an ordinary BST
and colour it red. If the parent of the inserted node is black, then

Chapter 5. Balanced Trees 125

Right rotate

and change
colours

10

 8 15

 9

10

15

 8

 9

 8

10

15

15

10

 8

 6

6

k

k - 1k

 k

 x

Uncle is black

y

 k

 k

k - 1

k -1
 x

y

10 10

20 20

Uncle is right child of root

Fig. 5

Fig. 4

Fig. 3

Just

inserted
x

y

Uncle is red

10

 8

 9

15
y

x

15

 9

 8

10

Uncle is red

inserted
Just

x x
y y

k

k

k k + 1

kk

k
 8

10

15 15

10

 8

6 6

This need not
be the root

Fig. 1

Fig. 2

Double rotate

and change

colours
x

x

Uncle is black

just
inserted

just
inserted

just
inserted

Figure 5.13: Insertion in RB trees: Different scenarios

Chapter 5. Balanced Trees 126

 x

y
4

5

7

8

 1

2

11

14

15

 (Fig. 1)

 (Fig. 5)

11

2 14

1571

5 8

4

 x

y

7

11

14

15

2

5

4

1 8

Figure 5.14: Insertion in red-black trees: Example 1

we are done since none of the RB properties will be violated. If the
parent is red, then the red constraint is violated. See Figure 5.13.

In such a case, we bubble the violation up the tree by repeatedly
applying the recolouring transformation of Figure 1 or Figure 2 until
it no longer applies. This either eliminates the violation or produces a
situation in which one of the transformations in Figures 3, 4, 5 applies,
each of which leaves no violation.

• An insertion requires O(log n) recolourings and at most two rotations.

• Figures 5.14 and 5.15 illustrate two examples.

5.2.3 Red-Black Trees: Deletion

See Figures 4.33 – 4.37.

First, search for an element to be deleted.

Chapter 5. Balanced Trees 127

(Fig. 2) Recolouring

(Fig. 4) Right rotate with recolouring

25

 20 30

 28 35 10

 15 8

 9
Just inserted

y

x

25

 20 30

 28 35 10

 15 8

 9

x

y

15

 25

30

 3528
 9

20

 8

 10

Figure 5.15: Insertion in red-black trees: Example 2

Chapter 5. Balanced Trees 128

Figure 5.16: Deletion in RB trees: Situation 1

Figure 5.17: Deletion in red-black trees: Situation 2

Figure 5.18: Deletion in red-black trees: Situation 3

Figure 5.19: Deletion in red-black trees: Situation 4

Figure 5.20: Deletion in red-black trees: Situation 5

Chapter 5. Balanced Trees 129

Figure 5.21: Deletion in red-black trees: Example 1

Chapter 5. Balanced Trees 130

Figure 5.22: Deletion in red-black trees: Example 2

Chapter 5. Balanced Trees 131

• If the element to be deleted is in a node with only left child, swap this
node with the one containing the largest element in the left subtree.
(This node has no right child).

• If the element to be deleted is in a node with only right child, swap
this node with the one containing the smallest element in the right
subtree (This node has no left child).

• If the element to be deleted is in a node with both a left child and a
right child, then swap in any of the above two ways.

While swapping, swap only the keys but not the colours.

• The item to be deleted is now in a node having only a left child or
only a right child. Replace this node with its sole child. This may
violate red constraint or black constraint. Violation of red constraint
can be easily fixed.

• If the deleted node is block, the black constraint is violated. The
removal of a black node y causes any path that contained y to have
one fewer black node.

• Two cases arise:

1. The replacing node is red, in which case we merely colour it black
to make up for the loss of one black node.

2. The replacing node is black.

In this case, we “bubble” the “shortness” up the tree by repeatedly
applying the recolouring transformation of Figure 5.16 until it no
longer applies.

Then we perform the transformation in Figure 5.17 if it applies, fol-
lowed if necessary by one application of Figure 5.18, Figure 5.19, or
Figure 5.20.

• RB-deletion requires O(log n) recolourings and at most 3 rotations.

• See Figures 5.21 and 5.22 for two examples.

Chapter 5. Balanced Trees 132

5.3 2-3 Trees

Definition

• A 2-3 Tree is a null tree (zero nodes) or a single node tree (only one
node) or a multiple node tree with the following properties:

1. Each interior node has two or three children

2. Each path from the root to a leaf has the same length.

Fields of a Node :

Internal Node

p1 k1 p2 k2 p3

p1 : Pointer to the first child
p2 : Pointer to the second child
p3 : Pointer to the third child
k1 : Smallest key that is a descendent of the second child
k2 : Smallest key that is a descendent of the third child

Leaf Node

key other fields

• Records are placed at the leaves. Each leaf contains a record (and key)

Example: See Figure 5.23

Search

• The values recorded at the internal nodes can be used to guide the
search path.

• To search for a record with key value x, we first start at the root. Let
k1 and k2 be the two values stored here.

Chapter 5. Balanced Trees 133

7 16

5 - 8 12 19 -

 2 5 7 8 12 16 19

Figure 5.23: An example of a 2-3 tree

1. If x < k1, move to the first child

2. If x ≥ k1 and the node has only two children, move to the second
child

3. If x ≥ k1 and the node has three children, move to the second
child if x < k2 and to the third child if x ≥ k2.

• Eventually, we reach a leaf. x is in the tree iff x is at this leaf.

Path Lengths

• A 2-3 Tree with k levels has between 2k−1 and 3k−1 leaves

• Thus a 2-3 tree with n elements (leaves) requires

at least 1 + log3 n levels

at most 1 + log2 n levels

5.3.1 2-3 Trees: Insertion

For an example, see Figure 5.24.

Insert (x)

1. Locate the node v, which should be the parent of x

2. If v has two children,

Chapter 5. Balanced Trees 134

5 -

5 -

 2 5

8 -

 7 8

v 12 -

10 12

v‘

16 18 19

1918

v

7 16

8 - 12

16 18 19

 -

 7 8 10 12

w

v v‘ 1918

- - 7 16w

10 - New root

Old root

Insert(18)

Insert(10)
Split v into v and v‘

Split w into w and w‘ and make
a new root

7 16

5 - 8 12 19 -

 2 5 7 8 12 16 18 19

 2 5

7 16

5 - 8 12 19 -

 2 5 7 8 12 16 19

Figure 5.24: Insertion in 2-3 trees: An example

Chapter 5. Balanced Trees 135

5 -

5 -

p

delete (12)

 -

10

16 18 -

16 18 19

 5 8

of node v
delete(7).This leads to deletion

--

12 18

 5 8 16 19

12 16 18 19

leads to deletion of p and p’
and decreases the number of levels by 1

- - 7

10 -

8 -

 7 8

 -

10

18

16 18 -

16 18 19

p

v

L
 2 5

- -

-

18p p’

 2 5 8

 2 5 8

- - 7 16

10 -

8 -

 7 8

12 -

10 12

v

 2 5 16 18 19

1918

Figure 5.25: Deletion in 2-3 trees: An Example

Chapter 5. Balanced Trees 136

• make x another child of v and place it in the proper order

• adjust k1 and k2 at node v to reflect the new situation

3. If v has three children,

• split v into two nodes v and v′. Make the two smallest among
four children stay with v and assign the other two as children of
v′.

• Recursively insert v′ among the children of w where

w = parent of v

• The recursive insertion can proceed all the way up to the root,
making it necessary to split the root. In this case, create a new
root, thus increasing the number of levels by 1.

5.3.2 2-3 Trees: Deletion

Delete (x)

1. Locate the leaf L containing x and let v be the parent of L

2. Delete L. This may leave v with only one child. If v is the root, delete
v and let its lone child become the new root. This reduces the number
of levels by 1. If v is not the root, let

p = parent of v

If p has a child with 3 children, transfer an appropriate one to v

if this child is adjacent (sibling) to v.

If children of p adjacent to v have only two children, transfer the
lone child of v to an adjacent sibling of v and delete v.

– If p now has only one child, repeat recursively with p in place
of v. The recursion can ripple all the way up to the root,
leading to a decrease in the number of levels.

Example: See Figure 5.25.

Chapter 5. Balanced Trees 137

5.4 B-Trees

• Generalization of 2-3 Trees

• Multi-way search tree, very well suited for external storage

• Standard organization for indices in database systems

• Balanced tree, which achieves minimization of disk accesses in database
retrieval applications.

REF R. Bayer. Symmetric binary B-trees: Data Structures and mainte-
nance algorithms. Acta Informatica, Volume 1, pp.290-306, 1972.

REF R. Bayer and E.M. McCreight. Organization and maintenance of large
ordered indexes. Acta Informatica, Volume 1, Number 3, pp. 173-189,
1972.

REF D. Comer. The ubiquitous B-tree. ACM Computing Surveys , Volume
11, Number 2, pp 121-137, 1979.

5.4.1 Definition of B-Trees

A B-tree of order m is an m-ary search tree with the following properties:

• The root is either a leaf or has at least two children

• Each node, except for the root and the leaves, has between ⌈m/2⌉ and
m children

• Each path from the root to a leaf has the same length.

• The root, each internal node, and each leaf is typically a disk block.

• Each internal node has up to (m−1) key values and up to m pointers
(to children)

• The records are typically stored in leaves (in some organizations, they
are also stored in internal nodes)

Chapter 5. Balanced Trees 138

18

10 12 22 28 34 38

 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

Figure 5.26: An example of a B-tree

Figure 5.26 shows a B-tree of order 5 in which at most 3 records fit
into a leaf block .

• A B-tree can be viewed as a hierarchical index in which the root is
the first level index.

• Each non-leaf node is of the form

(p1, k1, p2, k2, . . . , km−1, pm)

where

pi is a pointer to the ith child, 1 ≤ i ≤ m

ki Key values, 1 ≤ i ≤ m − 1, which are in the sorted order, k1 <

k2 < · · · < km−1, such that

∗ all keys in the subtree pointed to by p1 are less than k1

∗ For 2 ≤ i ≤ m− 1, all keys in the subtree pointed to by pi are
greater than or equal to ki−1 and less than ki

∗ All keys in the subtree pointed to by pm are greater than (or
equal to) km−1

5.4.2 Complexity of B-tree Operations

Let there be n records. If each leaf has b records on the average, we have,

average number of leaves = L = ⌈n/b⌉

Longest paths occur if the number of children at every stage = ⌈m/2⌉ = l,
say

Chapter 5. Balanced Trees 139

38 40 42

4 6 8 10 12 14 16 1819 20 22 23 24 26 28 30 32 34 36 38 40 42

Insert record with key = 19
Insert record with key = 23

Delete record with key = 28
Delete record with key = 10

30

12 18 22 24 34 38

4 6 8 12 14 16 18 20 22 23 24 26 30 32 34 36

18 28

10 12 22 24 34 38

18

10 12 22 28 34 38

4 6 10 12 14 168 2818 20 22 24 26 30 32 34 3836 40 42

Figure 5.27: Insertion and deletion in B-trees: An example

Chapter 5. Balanced Trees 140

Average number of nodes that are parents of leaves = L
l

Average number of nodes that are second level parents

=

(

L

l

) /

l =
L

l2

If h is the level of the leaves, we have

L

lh−1
≥ 1

or h ≤ logl L
i.e., h ≤ log⌈m/2⌉⌈n/b⌉

If n = 106 records (1 million records), b = 10, and m = 100, we have

h ≤ 3.9

5.4.3 B-Trees: Insertion

Insert (r, x)

Insert a record r with key value = x

• Locate the leaf L at which r should belong.

• If there is room for r in L,

– Insert r into L in the proper order.

– Note that no modifications are necessary to the ancestors of L.

• If there is no room for r in L,

– request the file system for a new block L′ and move the last half
of the records from L to L′, inserting r into its proper place in L
or L′.

Let

P = parent of L

k′ = smallest key value in L′

Chapter 5. Balanced Trees 141

ℓ′ = pointer to L′

Insert k′ and ℓ′ in P (recursively)

– If P already has m pointers, insertion of k′ and ℓ′ into P will
cause P to be split and will necessitate an insertion of a key and
a pointer in the parent of P .

– The recursive scheme can ripple all the way up to the root causing
the root to be split, in which case

∗ Create a new root with the two halves of the old root as its
two children. This

· increases the number of levels

· is the only situation where a node has fewer than ⌈m/2⌉
children.

Example: See Figure 5.27.

5.4.4 B-Trees: Deletion

Delete (r, x)

Delete a record r with key value = x

• Locate the leaf L containing r

• Remove r from L.

Case 1: L does not become empty after deletion

– if r is not the first record in L, then there is no need to fix the
key values at higher levels.

– If r is the first record in L, then

– if L is not the first child of its parent P , then set the key value
in P ’s entry for L to be the new first key value in L

– if L is the first child of P , the key of r is not recorded in
P ; locate the lowest ancestor A of P such that L is not the
leftmost descendent of A and set the appropriate key value in
A.

Chapter 5. Balanced Trees 142

Case 2: L becomes empty after deletion of r

– Return L to the file system

– Adjust the keys and pointers in P (parent of L) to reflect the
removal of L

– If the number of children of P now < ⌈m/2⌉, examine the node P ′

immediately to the left or the right. If P ′ has at least 1 + ⌈m/2⌉
children, distribute the keys and pointers in P and P ′ evenly
between P and P ′.

– Modify the key values for P and P ′ in the parent of P

– If necessary, ripple the effects to as many ancestors of P as
are affected.

– If the number of children of P ′ is exactly ⌈m/2⌉, we combine
P and P ′ into a single node with 2⌈m/2⌉ -1 children. Then
remove the key and pointer to P ′ from the parent for P ′. If the
effects of deletion ripple all the way back to the root, combine
the only two children of the root. The resulting combined
node is the new root and the old root is returned to the file
system. The number of levels decreases by 1.

See Figure 5.27 for an example.

5.4.5 Variants of B-Trees

B+-Trees

• Internal nodes contain the indices to the records corresponding to the
key values k1, k2, . . . , km stored at the internal node. This obviates the
need for repeating these key values and associated indices at the leaf
level.

• More efficient than B-Trees in the case of successful searches.

Chapter 5. Balanced Trees 143

B∗-Trees

• The minimum number of children at each internal node (except the
root) is

⌈

2m

3

⌉

• Pathlengths are smaller for obvious reasons

• Insertions and deletions are more complex.

5.5 To Probe Further

1. Alfred V Aho, John E. Hopcroft, and Jeffrey D Ullman. Data Struc-
tures and Algorithms . Addison-Wesley, 1983.

2. Gilles Brassard and Paul Bratley. Fundamentals of Algorithmics .
Prentice-Hall, 1996. Indian Edition published by Prentice Hall of
India, 1998.

3. Thomas H. Cormen, Charles E. Leiserson, and Donald L. Rivest. In-
troduction to Algorithms . The MIT Electrical Engineering and Com-
puter Science Series, 1990. Indian Edition published in 1999.

4. Robert L. Kruse, Bruce P. Leung, and Clovis L. Tondo. Data Struc-
tures and Program design in C . Prentice Hall, 1991. Indian Edition
published by Prentice Hall of India, 1999.

5. Mark Allen Weiss. Data Structures and Algorithm Analysis in C++.
Benjamin-Cummings, 1994. Indian Edition published in 1998.

6. Duane A. Bailey. Java Structures: Data Structures in Java for the
Principled Programmer . McGraw-Hill International Edition, 1999.

7. Donald E. Knuth. Sorting and Searching , Volume 3 of The Art of
Computer Programming, Addison-Wesley, 1973.

8. Y. Langsam, M.J. Augenstein, and A.M. Tenenbaum. Data Struc-
tures using C and C++. Second Edition, Prentice Hall, 1996. Indian
Edition published by Prentice Hall of India, 2000.

Chapter 5. Balanced Trees 144

9. Kurt Mehlhorn. Sorting and Searching. Volume 1 of Data Structures
and Algorithms. Springer-Verlag, 1984.

10. Sartaj Sahni. Data Structures, Algorithms, and Applications in Java.
McGraw-Hill Higher Education, 2000.

11. Thomas A. Standish. Data Structures in Java. Addison-Wesley, 1998.
Indian Edition published by Addison Wesley Longman, 2000.

12. Nicklaus Wirth. Data Structures + Algorithms = Programs. Prentice-
Hall, Englewood Cliffs. 1975.

13. G.M. Adel’son-Vel’skii and E.M. Landis. An algorithm for the or-
ganization of information. Soviet Mathematics Monthly , Volume 3,
pp.1259-1263, 1962.

14. R. Bayer. Symmetric binary B-trees: Data Structures and mainte-
nance algorithms, Acta Informatica, Volume 1, pp.290-306, 1972.

15. R. Bayer and E.M. McCreight. Organization and maintenance of large
ordered indexes. Acta Informatica, Volume 1, Number 3, pp. 173-189,
1972.

16. D. Comer. The ubiquitous B-tree. ACM Computing Surveys , Volume
11, Number 2, pp 121-137, 1979.

17. William Pugh. Skip Lists: A probabilistic alternative to balanced
trees. Communications of the ACM , Volume 33, Number 6, pp. 668-
676, 1990.

18. Daniel D Sleator and Robert E. Tarjan. Self-adjusting binary search
trees. Journal of the ACM , Volume 32, Number 3, pp 652-686, 1985.

19. Robert E. Tarjan. Amortized computational complexity. SIAM Jour-
nal on Algebraic and Discrete Methods , Volume 6, Number 2, pp.306-
318, 1985.

Chapter 5. Balanced Trees 145

5.6 Problems

5.6.1 AVL Trees

1. Draw all possible binary search trees containing the key values 1, 2, 3, 4. Which of
these are AVL trees?

2. In each of the following, insert the keys in the order shown, to build them into AVL
trees.

(a) A, Z, B, Y, C, X, D, W, E, V, F.

(b) A, B, C, D, E, F, G, H, I, J, K, L.

(c) A, V, L, T, R, E, I, S, O, K.

In each case, do the following:

(a) Delete each of the the keys inserted in LIFO order (last key inserted is first
deleted).

(b) Delete each of the keys inserted in FIFO order (first key inserted is first
deleted).

3. An AVL tree is constructed by inserting the key values 1, 2, 3, 4, 5 in some order
specified by a permutation of 1, 2, 3, 4, 5, into an initially empty tree. For which
of these permutations is there no need to do any rotations at any stage during the
insertions?

4. Show that the number of (single or double) rotations done in deleting a key from
an AVL tree cannot exceed half the height of the tree.

5.6.2 Red-Black Trees

1. Show that any arbitrary n-node binary tree can be transformed into any other
arbitrary n-node binary tree using O(n) rotations.

2. Draw the complete binary search tree of height 3 on the keys {1, 2, · · · , 15}. Add the
NIL leaves and colour the nodes in three different ways such that the black-heights
of the resulting red-black trees are 2, 3, and 4.

3. Show the red-black trees that result after successively inserting the keys 41, 38, 31,
12, 19, 8 into an initially empty red-black tree. Now show the RB trees that result
from the successive deletion of the keys in the order 8, 12, 19, 31, 31, 38, 41.

4. Suppose that a node x is inserted into an RB tree and then immediately deleted. Is
the resulting RB tree the same as the initial RB tree? Justify your answer.

Chapter 5. Balanced Trees 146

5. Construct the RB-trees that result by repeated insertions in each of the following
cases, starting from an initially empty tree.

(a) 1, 2, . . . , 15

(b) 8, 4, 12, 6, 14, 2, 10, 7, 11, 5, 9, 3, 8, 1, 15

(c) 1, 2, 3, 4, 5, 6, 7, 15, 14, 13, 12, 11, 10, 9, 8

5.6.3 2-3 Trees and B-Trees

1. For a 2-3 tree with n leaves, compute the following:

(a) Minimum height

(b) Maximum height

2. For a 2-3 tree with height h, compute the following:

(a) Minimum number of leaves

(b) Maximum number of leaves

3. What are the minimum and maximum numbers of internal nodes a B-tree of order
m and height h (ie. (h + 1) levels) may have?

4. Suppose we insert the keys 1,2, ..., in ascending order into an initially empty 2-3
tree. Which key would cause the leaves to be at level 4 for the first time? (Assume
that the root is at level 1). Write down the resulting 2-3 tree.

5. Devise an algorithm to find the kth largest element in a

(a) 2-3 tree.

(b) B-tree.

6. Suppose that the keys 1, 2, . . . , 20, are inserted in that order into a B-tree with
m = 2. How many internal nodes does the final B-tree have? Show the final B-tree.
Compare this with a binary search tree for the same sequence of inserted elements.
Assume that each leaf block can only store one record.

7. Suppose that the keys 1, 2, . . . , 20, are inserted in that order into a B-tree with
m = 4. How many internal nodes does the final B-tree have? Show the final B-tree.
Compare this with a 4-way search tree for the same sequence of inserted elements.
Assume that each leaf block can only store one record.

8. Given a B-tree, explain how to find

(a) the minimum key inserted.

(b) predecessor of a given key stored.

Chapter 5. Balanced Trees 147

(c) successor of a given key stored.

9. Suppose we have a file of one million records where each record takes 100 bytes.
Blocks are 1000 bytes long and a pointer to a block takes 4 bytes. Also each key
value needs two bytes. Devise a B-tree organization for this file.

10. Design a B-tree organization if it is required to contain at least one billion keys
but is constrained to have a height of 4 (ie. 5 levels). Assume that the number of
records for each leaf block is 16.

11. Compute the smallest number of keys, which when inserted in an appropriate order
will force a B-tree of order 5 to have exactly m levels (root at level 1 and leaves at
level m).

12. A B∗-tree is a B-tree in which each interior node is at least 2/3 full (rather than
half full). How do the algorithms for search and delete change for a B∗-tree? What
would be the advantages and disadvantages of B∗-trees compared to B-trees?

13. Assume that it takes a + bm milliseconds to read a block containing a node of an
m-ary search tree. Assume that it takes c + d log2 m milliseconds to process each
node in internal memory. If there are n nodes in the tree, compute the total time
taken to find a given record in the tree.

14. Suppose that disk hardware allows us to choose the size of a disk block arbitrarily,
but that the time it takes to read the disk block is a+bt, where a and b are specified
constants and t is the degree of a B-tree that uses blocks of the selected size (i.e.
each disk block contains (t−1) key values and t pointers). Assume that a total of N
records are stored in the B-tree database, with each disk block storing one record.

(a) Compute the minimum number of disk blocks required by the above B-tree
organization, including the blocks for storing the records.

(b) Assuming that any record is equally likely to be searched for, estimate the total
average disk block reading time for accessing a record.

(c) How do you choose t so as to minimize the total average disk block reading
time?

5.7 Programming Assignments

5.7.1 Red-Black Trees and Splay Trees

This assignment involves the implementation of searches, insertions, and deletions in
red-black trees and splay trees, and evaluating the performance of each data structure
in several scenarios. The intent is to show that these trees are better than ordinary
(unbalanced) binary search trees and also to compare red-black trees with splay trees.

Chapter 5. Balanced Trees 148

Generation of Keys

Assume that your keys are character strings of length 10 obtained by scanning a C pro-
gram (identical to Programming assignment 1). If a string has less than 10 characters,
make it up to 10 characters by including an appropriate number of trailing *’s. On the
other hand, if the current string has more than 10 characters, truncate it to have the first
ten characters only.

Inputs to the Program

The possible inputs to the program are:

• n: The initial number of insertions of distinct strings to be made for setting up an
initial search tree (RBT or ST).

• I: This is a decimal number from which a ternary string is to be generated (namely
the radix-3 representation of I). In this representation, assume that a 0 represents
the search operation, a 1 represents the insert operation, and a 2 represents the
delete operation.

• N : Number of operations to be performed on the data structure.

• A C program, from which the tokens are to be picked up for setting up and experi-
menting with the search trees.

What should the Program Do?

1. Scan the given C program and as you scan, insert the first n distinct strings scanned
into an initial search tree (BST or RBT or ST).

2. For each individual operation, keep track of:

• Number of probes (comparison of two strings of 10 characters each)

• Number of pointer assignments (a single rotation involves three pointer assign-
ments)

• Number of single rotations and number of double rotations (in the case of
RBTs and STs)

• Examining or changing the colour (in a red-black tree)

Now, compute for the BST, RBT, and ST so created, the following:

• Height of the search tree

Chapter 5. Balanced Trees 149

• Total number of probes for all the operations

• Average number of probes (averaged over all the operations) for a typical suc-
cessful search, unsuccessful search, insert, and delete.

• Total number of pointer assignments

• Total number of single rotations (in the case of RBTs and STs)

• Total number of double rotations (in the case of RBTs and STs)

• Total number of each type of splaying steps (Zig, Zag, Zig-zig, Zig-zag, Zag-zig,
Zag-zag) in the case of STs

• Total number of recolourings in the case of RBTs

3. Scan the rest of the C program token by token, searching for it or inserting it or
deleting it, as dictated by the radix-3 representation of I and its permutations. You
are to carry out a total of N operations.

4. Repeat Step 2 to evaluate the trees over the N operations.

5.7.2 Skip Lists and Binary search Trees

The paper by William Pugh (Skip Lists: A probabilistic alternative to balanced trees.
Communications of the ACM , Volume 33, Number 6, pp. 668-676, 1990) compares the
performance of skip lists with AVL trees, splay trees, and 2-3 trees. Implement all these
data structures, design experiments on these data structures, and verify the results pre-
sented in that article.

5.7.3 Multiway Search Trees and B-Trees

The objective of this assignment is to implement insertions and deletions in multi-way
search trees and B-trees , and evaluate their performance. Three scenarios are considered:
insertions alone; deletions alone; and insertions and deletions interleaved randomly.

• Scenario 1 – Insertions only:
Generate a random permutation of n numbers, say a1, a2, . . . , an. Insert these ele-
ments into an initially empty data structure. This process will result in a multi-way
search tree and a B-tree, each with n nodes. The order of the tree to be constructed,
m, is given as an input. Note that a binary search tree is a multi-way search tree
with m = 2, whereas a 2-3 tree is a B-tree with m = 3. Also the number of records
per leaf is also to be specified as part of the input. Choose a small number, say 2
or 3, here.

• Scenario 2 – Deletions only:
Start with the tree constructed in Scenario 1 and delete the n elements, one by one,
in the following orders:

Chapter 5. Balanced Trees 150

– In the order of insertion

– In the reversed order of insertion

– In a random order

• Scenario 3 – Interleaved Insertion and Deletions:
Start with the tree constructed in Scenario 1 and do a series of randomly interleaved
insertions and deletions. Assume that insertions and deletions are equally likely.
Assume that elements currently in the tree and elements not currently in the tree
are generated with equal probabilities.

The performance measures are the following:

• Average height of the tree. You should compute it for both MST and BT in all the
three scenarios. Also, you should be able to compute the respective heights at any
intermediate stage. It should be possible to break execution at any desired point
and track the probe sequence for a desired operation.

• Average number of probes required for insertions and deletions. This can be com-
puted for each type of tree in each of the three scenarios.

Repeat the above experiment for several random sequences to obtain better and more

credible performance estimates. You will get bonus marks if you implement B∗-trees also.

Chapter 6

Priority Queues

A Priority queue is an important abstract data type in Computer Sci-
ence. Major operations supported by priority queues are INSERT and
DELETEMIN. They find extensive use in

• implementing schedulers in OS, and distributed systems

• representing event lists in discrete event simulation

• implementing numerous graph algorithms efficiently

• selecting kth largest or kth smallest elements in lists (order statistics
problems)

• sorting applications

Simple ways of implementing a priority queue include:

• Linked list – sorted and unsorted

• Binary search tree

6.1 Binary Heaps

Heaps (occasionally called as partially ordered trees) are a very popular
data structure for implementing priority queues.

151

Chapter 6. Priority Queues 152

3 5 9 6 8 20 10 12 18 9

4 5 6 7 8 9 101 2 3

3

5 9

6 8 10

12 18 9

20

Figure 6.1: An example of a heap and its array representation

• A heap is either a min-heap or a max-heap. A min-heap supports the
insert and deletemin operations while a max-heap supports the insert
and deletemax operations.

• Heaps could be binary or d-ary. Binary heaps are special forms of
binary trees while d-ary heaps are a special class of general trees.

• Binary heaps were first introduced by Williams in 1964.

REF. J.W.J. Williams. Algorithm 232: Heapsort. Communications of
the ACM, Volume 7, 1964, pp 347-348

We discuss binary min-heaps. The discussion is identical for binary max-
heaps.

DEF. A binary heap is a complete binary tree with elements from a par-
tially ordered set, such that the element at every node is less than (or equal
to) the element at its left child and the element at its right child. Figure
6.1 shows and example of a heap.

• Since a heap is a complete binary tree, the elements can be conve-
niently stored in an array. If an element is at position i in the array,

Chapter 6. Priority Queues 153

then the left child will be in position 2i and the right child will be in
position 2i + 1. By the same token, a non-root element at position i
will have its parent at position ⌊ i

2 ⌋

• Because of its structure, a heap with height k will have between 2k

and 2k+1 − 1 elements. Therefore a heap with n elements will have
height = ⌊log2 n ⌋

• Because of the heap property, the minimum element will always be
present at the root of the heap. Thus the findmin operation will have
worst-case O (1) running time.

6.1.1 Implementation of Insert and Deletemin

Insert

To insert an element say x, into the heap with n elements, we first create a
hole in position (n+1) and see if the heap property is violated by putting
x into the hole. If the heap property is not violated, then we have found
the correct position for x. Otherwise, we “push-up” or “percolate-up” x
until the heap property is restored. To do this, we slide the element that is
in the hole’s parent node into the hole, thus bubbling the hole up toward
the root. We continue this process until x can be placed in the whole. See
Figure 6.2 for an example.

Worstcase complexity of insert is O (h) where h is the height of the heap.
Thus insertions are O (log n) where n is the number of elements in the heap.

Deletemin

When the minimum is deleted, a hole is created at the root level. Since
the heap now has one less element and the heap is a complete binary tree,
the element in the least position is to be relocated. This we first do by
placing the last element in the hole created at the root. This will leave the
heap property possibly violated at the root level. We now “push-down” or
“percolate-down” the hole at the root until the violation of heap property
is stopped. While pushing down the hole, it is important to slide it down

Chapter 6. Priority Queues 154

Insert (4)
3

5 9

6 8 10

12 18 9

3

5 7

20 10

18

4 7

6

10 18

20

12

6

20 10

3

89

89

5

Figure 6.2: Insertion into a heap

to the less of its two children (pushing up the latter). This is done so as
not to create another violation of heap property. See Figure 6.3. It is easy
to see that the worst-case running time of deletemin is O (log n) where n
is the number of elements in the heap.

6.1.2 Creating Heap

Given a set of n elements, the problem here is to create a heap of these
elements.

• obvious approach is to insert the n elements, one at a time, into an
initially empty heap. Since the worstcase complexity of inserts is O
(log n), this approach has a worstcase running time of O (n log n)

• Another approach, purposed by Floyd in 1964, is to use a procedure
called “pushdown” repeatedly, starting with the array consisting of
the given n elements in the input-order.

– The function pushdown (first,last) assumes that the elements a[first],
..., a[last] obey the heap property, except possibly the children of

Chapter 6. Priority Queues 155

deletemin
3

5

6 8 10

12 18 9

9

5 7

8 20 10

18

9 7

6 8

10 18

5

6 7

9 208 10

12 18

20

12

6

20 10

5

7

Figure 6.3: Deletemin

a[first]. The function pushes down a[first] until the heap property
violation is stopped.

– The following code will accomplish what is required:
for (i = n

2 ; i ≥ 1; i −−)
pushdown (i,n)

• Figure 6.4 shows an example of this for an array [5 9 4 2 1 6]

• The worstcase complexity of this approach can be shown to b O (n)
by virtue of the following result.

Result: For the perfect binary tree of height h containing 2h+1 − 1 nodes,
the sum of the heights of the nodes is 2h+1 − 1 − (h + 1).

Proof: The perfect or full binary tree of height h has 1 node at height h,
2 nodes art height (h-1), 4 nodes at height (h-2), ...

Therefore the required sum S is given by

S =
∑h

i=0 2i(h − i)
= h + 2(h − 1) + 4(h − 2) + ... + 2h−1

Chapter 6. Priority Queues 156

pushdown (3,6)

pushdown (1,6)

pushdown (2,6)

1

5

2

9

5

2

1

9

5

2

9

1 6

5

2

9

1 6

4 4

4
4

6
6

Figure 6.4: Creation of heap

Multiplying both sides by 2 yields

2S = 2h + 4(h − 1) + 8(h − 2) + ... + 2h

Subtracting this above equation from the equation prior to that, we
obtain

S = 2h+1 − 1 − (h + 1)

It is easy to see that the above is an upper bound on the sum of heights
of nodes of a complete binary tree. Since a complete binary tree of height
h has between 2h and 2h+1 nodes, the above sum is therefore O (n) where
n is the number of nodes in the heap.

Since the worstcase complexity of the heap building algorithm is of the
order of the sum of heights of the nodes of the heap built, we then have
the worst-case complexity of heap building as O (n).

Chapter 6. Priority Queues 157

6.2 Binomial Queues

REF. Jean Vuillemin. A data structure for manipulating priority queues.
Communications of the ACM, Volume 21, Number 4, pp.309-315,
1978.

REF. Mark R. Brown. Implementation and analysis of binomial queue al-
gorithms. SIAM Journal on Computing , Volume 7, Number 3, pp.
298-319, 1978.

• Support merge, insert, and deletemin operations in O(log n) worstcase
time.

• A binomial queue is a forest of heap-ordered trees.

– Each of the heap-ordered trees is of a constrained form known as
a binomial tree.

B 3

B 0 B 1 B 2

Figure 6.5: Examples of Binomial Trees

Chapter 6. Priority Queues 158

• A binomial tree of height 0 is a one-node tree; A binomial tree Bk of
height k is formed by attaching a binomial tree Bk−1 to the root of
another binomial tree, Bk−1.

• See Figure 6.5 for an example of binomial tree.

• A binomial tree Bk consists of a root with children B0, B1, ... Bk−1.

• Bk has exactly 2k nodes.

• Number of nodes at depth d is kCd

• If we impose heap order on the binomial trees and allow at most one
binomial tree of any height, we can uniquely represent a priority queue
of any size by a forest of binomial trees.

• Example: A priority queue of size 13 could be represented by the
forest B3, B2, B0. A natural way of writing this is: 1101. See Figure
6.6 for a binomial queue with six elements.

16

18

12

21

24

65

Figure 6.6: A binomial queue H1 with six elements

6.2.1 Binomial Queue Operations

Find-min

This is implemented by scanning the roots of all the trees. Since there are
at most log n different trees, this leads to a worstcase complexity of 0(log n).

Chapter 6. Priority Queues 159

Alternatively, one can keep track of the current minimum and perform
find-min in 0(1) time if we remember to update the minimum if it changes
during other operations.

Merge

Let H1: 6 elements

H2: 7 elements

We are now left with

1 tree of height 0

3 trees of height 2

Note that of the 3 binomial trees of height 2, we could have any pair to get
another binomial heap. Since merging two binomial trees takes constant
time and there are 0(log n) binomial trees, merge takes 0(log n) in the
worstcase. See Figures 6.7 and 6.8 for two examples.

Insertion

This is a special case of merging since we merely create a one-node tree
and perform a merge.

Worstcase complexity therefore will be O(log n).

More precisely; if the priority queue into which the element is being in-
serted has the property that the smallest nonexistent binomial tree is Bi,
the running time is proportional to i + 1.

Chapter 6. Priority Queues 160

14

26

23

24

65

51

13

2 : 7 elementsH

16

18 21

24

65

12

H1 : 6 elements

14

26

16

18Merge of and yields

26

16

18

14

We are now left with
 1 tree of height 0
 3 trees of height 2

Figure 6.7: Examples of Merging

Eg: Insertion into H3 (which has 13 elements) terminates in two steps.

Since each tree of a particular degree in a binomial queue is present with
probability 1

2 , if we define the random variable X as representing the num-
ber of steps in an insert operation, then

Chapter 6. Priority Queues 161

H3 : 13

12

65

2421

65

24

26

14

16

18

14

26

12

24

23

51

65

21

23

51

18

16

24

65

13
H ’ : 3

Figure 6.8: Merge of H1 and H2

X = 1 with prob 1
2 (B0 not present)

= 2 with prob 1
2 (B0 not present) (B1 not present)

= 3 with prob 1
8

...

Thus average number of steps in an insert operation = 2

Thus we expect an insertion to terminate in two steps on the average.
Further more, performing n inserts on an initially empty binomial queue
will take 0(n) worstcase time.

See Figures 6.9 and 6.10 for an example.

Deletemin

• First find the binomial tree with the smallest root. Let this be Bk.
Let H be the original priority queue.

Chapter 6. Priority Queues 162

Inser (5)

3

5

5

10

+

6 3

5

=

6

10

3

5

3

5

10

Inser (3)

Inser (10)

Inser (6)

18

6

10

3

5

Inser (18)

Inser (14) 14

18 6

10

3

5

6

3

5

14

18

2Inser (2)

18 5

314

6

100

10

Inser (100) 2 10

Figure 6.9: Examples of Inserts

Chapter 6. Priority Queues 163

• Remove Bk from the forest in H forming another binomial queue H
′

.

• Now remove the root of Bk creating binomial trees B0, B1, ..., Bk−1,
which collectively form a binomial queue H

′′

.

• Now, merge H
′

and H
′′

.

13

21

1223

51

65 26

18

16

24

65

1424

65

24

24

23

51

65

13

26

18

16

14

65

2421 16

18

14

26 23

51 24

65

H’ :

H :

H’’ :

Merge

21

13

H’’ :H’ and

Figure 6.10: Merges of H
′

and H
′′

It is easy to see that the worstcase complexity of deletemin is 0(log n).

Chapter 6. Priority Queues 164

Implementation of a Binomial Queue

• deletemin operation requires ability to find all subtrees of the root.
Thus children of each node should be available (say a linked list)

• deletemin requires that the children be ordered by the size of their
subtrees.

• we need to make sure it is easy to merge tress. Two binomial trees can
be merged only if they have the same size, hence the size of the tree
must be stored in the root. While merging, one of the trees becomes
the last child of the other, so we should keep track of the last child of
each node. A good data structure to use is a circular doubly linked
list what each node is of the following form:

data first left right rank No. of
child sibling sibling children

6.2.2 Binomial Amortized Analysis

Amortized Analysis of Merge

• To merge two binomial queues, an operation similar to addition of
binary integers is performed:

At any stage, we may have zero, one, two, or three Bk trees,
depending on whether or not the two priority queues contain a
Bk tree and whether or not a Bk tree is carried over from the
previous step.

∗ if there is zero or more Bk tree, it is placed as a tree in the
resulting binomial queue.

∗ If there are two, they are merged into a Bk+1 tree and carried
over

∗ If there are three, one is retained and other two merged.

Chapter 6. Priority Queues 165

Result 1:

• A binomial queue of n elements can be built by n successive insertions
in 0(n) time.

• Brute force Analysis
Define the cost of each insertions to be

– 1 time unit + an extra unit for each linking step
Thus the total will be n units plus the total number of linking
steps.

– The 1st, 3rd, ... and each odd-numbered step requires no linking
steps since there is no B0 present.

– A quarter of the insertions require only one linking step: 2nd, 6th,
10, ...

– One eighth of insertions require two linking steps.

We could do all this and bound the number of linking steps by n.

The above analysis will not help when we try to analyze a sequence
of operations that include more than just insertions.

• Amortized Analysis

Consider the result of an insertion.

– If there is no B0 tree, then the insertion costs one time unit. The
result of insertion is that there is now a B0 tree and the forest has
one more tree.

– If there is a B0 tree but not B1 tree, then insertion costs 2 time
units. The new forest will have a B1 tree but not a B0 tree. Thus
number of trees in the forest is unchanged.

– An insertion that costs 3 time units will create a B2 tree but
destroy a B0 and B1, yielding one less tree in the forest.

– In general, an insertion that costs c units results in a net increase
of 2 − c trees. Since

∗ a Bc−1 tree is created

Chapter 6. Priority Queues 166

∗ all Bi trees, 0 ≤ i ≤ c − 1 are removed.

Thus expensive insertions remove trees and cheap insertions create
trees.

Let ti = cost of ith insertion
ci = no. of trees in forest after ith insertion

We have
c0 = 0
ti + (ci − ci−1) = 2

Result 2:

• The amortized running times of Insert, Delete-min, and Merge are
0(1), 0(log n), and 0(log n) respectively.

Potential function = # of trees in the queue

To prove this result we choose:

• Insertion

ti = actual cost of ith insertion
ci = no. of trees in forest after ith

ai = ti + (ci − ci−1)
ai = 2 ∀ i
∑n

i=1 ti =
∑n

i=1 ai − (cn − c0)
= 2n − (cn − c0)

As long as (cn − c0) is positive, we are done.

In any case (cn − c0) is bounded by log n if we start with an empty
tree.

• Merge:

Assume that the two queues to be merged have n1 and n2 nodes with
T1 and T2 trees. Let n = n1+ n2. Actual time to perform merge is
given by:

Chapter 6. Priority Queues 167

ti = 0(log n1 + log n2)
= 0(max(log n1, log n2)
= 0(log n)

(ci − ci−1) is at most (log n) since there can be at most (log n) trees
after merge.

• Deletemin:
The analysis here follows the same argument as for merge.

6.2.3 Lazy Binomial Queues

Binomial queues in which merging is done lazily.

Here, to merge two binomial queues, we simply concatenate the two lists
of binomial trees. In the resulting forest, there may be several trees of the
same size.

Because of the lazy merge, merge and insert are both worstcase 0(1) time.

• Deletemin:

– Convert lazy binomial queue into a standard binomial queue

– Do deletemin as in standard queue.

Fibonacci Heaps

Fibonacci heap supports all basic heap operations in 0(1) amortized time,
with the exception of deletemin and delete which take 0(log n) amortized
time.

Fibonacci heaps generalize binomial queues by adding two new concepts:

Chapter 6. Priority Queues 168

• A different implementation of decrease-key

• Lazy merging: Two heaps are merged only when it is required.

It can be shown in a Fibonacci heap that any node of rank r ≥ 1 has at
least Fr+1 descendents.

6.3 To Probe Further

1. Alfred V Aho, John E. Hopcroft, and Jeffrey D Ullman. Data Struc-
tures and Algorithms . Addison-Wesley, 1983.

2. Gilles Brassard and Paul Bratley. Fundamentals of Algorithmics .
Prentice-Hall, 1996. Indian Edition published by Prentice Hall of
India, 1998.

3. Thomas H. Cormen, Charles E. Leiserson, and Donald L. Rivest. In-
troduction to Algorithms . The MIT Electrical Engineering and Com-
puter Science Series, 1990. Indian Edition published in 1999.

4. Mark Allen Weiss. Data Structures and Algorithm Analysis in C++.
Benjamin-Cummings, 1994. Indian Edition published in 1998.

5. Ellis Horowitz, Sartaz Sahni, and Rajasekaran. Fundamentals of Com-
puter Algorithms . W.H. Freeman and Company, 1998. Indian Edition
published by Galgotia Publications, 2000.

6. Y. Langsam, M.J. Augenstein, and A.M. Tenenbaum. Data Structures
using C and C++. Second Edition, Prentice Hall, 1996.XS Indian
Edition published by Prentice Hall of India, 2000.

7. Sataj Sahni. Data Structures, Algorithms, and Applications in Java.
McGraw-Hill Higher Education, 2000.

8. Thomas A. Standish. Data Structures in Java. Addison-Wesley, 1998.
Indian Edition published by Addison Wesley Longman, 2000.

9. Mark R. Brown. Implementation and analysis of binomial queue al-
gorithms. SIAM Journal on Computing, Volume 7, Number 3, pp.
298-319, 1978.

Chapter 6. Priority Queues 169

10. Michael L. Fredman and Robert E. Tarjan. Fibonacci heaps and their
uses in improved network optimization algorithms. Journal of the
ACM , Volume 34, Number 3, pp. 596-615, 1987.

11. Robert W. Floyd. Algorithm 245 (TreeSort). Communications of the
ACM , Volume 7, pp.701, 1964.

12. Jean Vuillemin. A data structure for manipulating priority queues.
Communications of the ACM, Volume 21, Number 4, pp.309-315,
1978.

13. J.W.J. Williams. Algorithm 232 (Heapsort). Communications of the
ACM , Volume 7, pp.347-348, 1964.

6.4 Problems

1. Show the result of inserting 10, 5, 1, 17, 20, 15, 6, 4, 2, one at a time, into an initially
empty binary heap. For the same input, show the result of building the heap by the linear
time algorithm discussed.

2. Design an algorithm to find all nodes less than some value, x, in a binary heap. Your
algorithm should run in O (m), worst-case time, where m is the number of nodes output.

3. A min-max heap is a data structure that supports both deletemin and deletemax in O (
log n) worst-case time. The structure is identical to a binary heap, but the heap order
property is that, for any node x, at even depth, the key stored at x is the smallest in its
subtree, and for any node x at odd depth, the key stored at x is the largest in its subtree.

(a) How do we find minimum and maximum elements

(b) Present an algorithm to insert a new node into the min-max heap

(c) Give an algorithm to perform deletemin and deletemax

4. Prove that a binomial tree Bk has binomial trees B0, B1, . . . , Bk−1 as children of the root.

5. Prove that a binomial tree of height k has stackrel(k)(d) nodes at depth d.

6. Present an algorithm to insert m nodes into a binomial queue of n elements in O(m+log n)
worst-case time. Prove your bound.

7. It is required to increment the value of the roots of all binomial trees in a binomial queue.
What is the worst-case running time of this in terms of the number of elements in the
binomial queue.

Chapter 6. Priority Queues 170

8. Design an algorithm to search for an element in a binary heap. What is the worst-case
complexity of your algorithm. Can you use the heap property to speedup the search
process?

9. Prove that a binomial queue with n items has at most log n binomial trees, the largest of
which contains 2log n items.

10. How do you implement the following operations in a binary heap?

• Decrease the key at some position

• Increase the key at some position

• Remove element at some position

11. What is the worstcase complexity of each problem below, given a binomial queue with n
elements? Explain with reason or example in each case.

(a) Find the second smallest element

(b) Find the second largest element

12. Consider lazy binomial queues where the merge operation is lazy and it is left to the
deletemin operation to convert the lazy binomial queue into a binomial queue in standard
form. Obviously, the merge operation is O(1), but the deletemin operation is not worst
case O(log n) anymore. However, show that deletemin is still O(log n) in amortized time.

6.5 Programming Assignments

6.5.1 Discrete Event Simulation

Priority queues provide a natural dats structure to use in event list maintenance in discrete event
simulations. The objective of this assignment is to develop event list algorithms using priority
queues and use these as a component in a discrete event simulation package. Singly linked lists
are commonly used in implementing event lists. One can use binary heaps and binomial queues
for better performance.

Write a simulation package for a discrete event system (with a large number of events) and

compare the performance of naive linked lists, binary heaps, and binomial queues in event list

related aspects of the simulation.

Chapter 7

Directed Graphs

In numerous situations in Computer Science, Mathematics, Engineering,
and many other disciplines, Graphs have found wide use in representing
arbitrary relationships among data objects. There are two broad categories
of graphs: Directed graphs (digraphs) and Undirected graphs. In this
chapter, we study some important graph-based algorithms in Computer
Science and examine data structure related issues.

7.1 Directed Graphs

A directed graph or digraph G comprises

1. a set of vertices V

2. a set of directed edges or arcs, E (an arc is an ordered pair of vertices)

Example: See Figure 7.1

V = {1, 2, 3, 4}
E = {(1,2), (1,3), (2,4), (3,2), (4,3)}

• If there is an arc (v, w), we say w is adjacent to v.

• A path is a sequence of vertices v1, v2, . . . vn such that the vertex pairs
(v1, v2), (v2, v3), . . ., (vn−1, vn) are arcs in the graph. The length of

171

Chapter 7. Directed Graphs 172

3 4

1 2

Figure 7.1: A digraph with 4 vertices and 5 arcs

a path is the number of arcs on the path. A single vertex v by itself
denotes a path of length zero.

• A path v1, v2, . . . , vn is said to be simple if the vertices are distinct,
except possibly v1 and vn. If v1 = vn and n > 1, we call such a path
a simple cycle.

7.1.1 Data Structures for Graph Representation

1. Adjacency Matrix: The matrix is of order (n × n) where n is the
number of vertices. The adjacency matrix for the graph in Figure 7.2
is

0 1 1 0
0 0 0 1
0 1 0 0
0 0 1 0

2. Adjacency List: Figures 7.2 and 7.3 provide two different adjacency
list representations for the graph of Figure 7.1

Chapter 7. Directed Graphs 173

1

2

3

4

2

2

3

3.

.

.

.

.

4

head

Figure 7.2: Adjacency list representation of the digraph

1

2

4

3

4

8

1

6
0
4

0
2
0

0

3
2

3

Figure 7.3: Adjacency list using cursors

Chapter 7. Directed Graphs 174

7.2 Shortest Paths Problem

Given : A digraph G = (V, E) in which each arc has a non-negative
cost and one vertex is designated as the source.

Problem : To determine the cost of the shortest path from the source
to every other vertex in V (where the length of a path is
just the sum of the costs of the arcs on the path).

7.2.1 Single Source Shortest Paths Problem: Dijkstra’s Algo-
rithm

REF. E.W. Dijkstra. A note on two problems in connection with graphs.
Numerische Mathematik , Volume 1, pp. 269-271, 1959.

• Greedy algorithm

• It works by maintaining a set S of “special” vertices whose shortest
distance from the source is already known. At each step, a “non-
special” vertex is absorbed into S.

• The absorption of an element of V − S into S is done by a greedy
strategy.

• The following provides the steps of the algorithm.

Let

V = {1, 2, . . . , n} and source = 1 (7.1)

C[i, j] = Cost of the arc (i, j) if the arc (i, j) exists; otherwise ∞

{
S= { 1 };
for (i = 2; i < n; i++)

D[i] = C[1,i];

Chapter 7. Directed Graphs 175

for (i=1; i < = n-1; i++)

{
choose a vertex w ∈ V–S such that D[w] is a minimum;

S = S ∪ {w };
for each vertex v ∈ V–S

D[v] = min (D[v], D[w] + C[w, v])

}
}

• The above algorithm gives the costs of the shortest paths from source
vertex to every other vertex.

• The actual shortest paths can also be constructed by modifying the
above algorithm.

Theorem: Dijkstra’s algorithm finds the shortest paths from a single
source to all other nodes of a weighted digraph with positive weights.

Proof: Let V = 1, 2, ..., n and 1 be the source vertex. We use mathematical
induction to show that

(a) If a node i (6= 1) ∈ S, then D[i] gives the length of the shortest path
from the source to i.

(b) if a node i /∈ S, then D[i] gives the length of the shortest special path
from the source to i.

Basis: Initially S = 1 and hence (a) is vacuously true. For i ∈ S, the only
special path from the source is the direct edge if present from source to i
and D is initialized accordingly. Hence (b) is also true.

Induction for condition (a)

Chapter 7. Directed Graphs 176

Source
1

x

v

Figure 7.4: The shortest path to v cannot visit x

• The induction hypothesis is that both (a) and (b) hold just before we
add a new vertex v to S.

• For every node already in S before adding v, nothing changes, so
condition (a) is still true.

• We have to only show (a) for v which is just added to S.

• Before adding it to S, we must check that D[v] gives the length of
the shortest path from source to v. By the induction hypothesis, D[v]
certainly gives the length of the shortest special path. We therefore
have to verify that the shortest path from the source to v does not
pass through any nodes that do not belong to S.

• Suppose to the contrary. That is, suppose that when we follow the
shortest path from source to v, we encounter nodes not belonging to S.
Let x be the first such node encountered (see Figure 7.4). The initial
segment of the path from source to x is a special path and by part (b)
of the induction hypothesis, the length of this path is D[x]. Since edge
weights are no-negative, the total distance to v via x is greater than or
equal to D[x]. However since the algorithm has chosen v ahead of x,
D[x] ≥ D[v]. Thus the path via x cannot be shorter than the shortest
special path leading to v.

Chapter 7. Directed Graphs 177

1

2 3

45

10

50

20

10

60

100

30

Figure 7.5: A digraph example for Dijkstra’s algorithm

Induction step for condition (b): Let ω 6= v and ω ∈ S. When v is
added to S, these are two possibilities for the shortest special path from
source to w:

1. It remains as before

2. It now passes through v (and possibly other nodes in S)

In the first case, there is nothing to prove. In the second case, let y be
the last node of S visited before arriving at w. The length of such a path
is D[y] + C[y,w].

• At first glance, to compute the new value of d[w], it looks as if we
should compare the old value of D[w] with D[y] + C[y,w] for every
y ∈ S (including v)

• This comparison was however made for all y ∈ S except v, when
y was added to S in the algorithm. Thus the new value of D[w] can
be computed simply by comparing the old value with D[v] + C[v,w].
This the algorithm does.

When the algorithm stops, all the nodes but one are in S and it is clear
that the vector D[1], D[2], ..., D[n]) contains the lengths of the shortest
paths from source to respective vertices.

Example: Consider the digraph in Figure 7.5.

Chapter 7. Directed Graphs 178

Initially:

S = {1} D[2] = 10 D[3] = ∞ D[4] = 30 D[5] = 100

Iteration 1

Select w = 2, so that S = {1, 2}

D[3] = min(∞, D[2] + C[2, 3]) = 60 (7.2)

D[4] = min(30, D[2] + C[2, 4]) = 30 (7.3)

D[5] = min(100, D[2] + C[2, 5]) = 100

Iteration 2

Select w = 4, so that S = {1, 2, 4}

D[3] = min(60, D[4] + C[4, 3]) = 50 (7.4)

D[5] = min(100, D[4] + C[4, 5]) = 90

Iteration 3

Select w = 3, so that S = {1, 2, 4, 3}

D[5] = min(90, D[3] + C[3, 5]) = 60

Iteration 4

Select w = 5, so that S = {1, 2, 4, 3, 5}

D[2] = 10 (7.5)

D[3] = 50 (7.6)

D[4] = 30 (7.7)

D[5] = 60

Chapter 7. Directed Graphs 179

Complexity of Dijkstra’s Algorithm

With adjacency matrix representation, the running time is O(n2) By us-
ing an adjacency list representation and a partially ordered tree data
structure for organizing the set V − S, the complexity can be shown to be

O(e log n)

where e is the number of edges and n is the number of vertices in the
digraph.

7.2.2 Dynamic Programming Algorithm

REF. Richard Bellman. Dynamic Programming . Princeton University Press,
1957.

REF. Richard Bellman. On a routing problem. Quarterly of Applied Math-
ematics , Volume 16, Number 1, pp. 87-90, 1958.

Consider a directed acyclic graph (digraph without cycles) with non-
negative weights on the directed arcs.

Given a destination vertex z, the problem is to find a shortest cost path
from each vertex of the digraph. See Figure 7.6.

Let

C(i, j) = Cost of the directed arc from vertex i to

vertex j (∞ in case there is no link) (7.8)

J(i) = Optimal cost of a path from vertex i, to the (7.9)

destination vertex z

J(i) Satisfies :
J(z) = 0

and if the optimal path from i to z traverses the link (i, j) then

J(i) = C(i, j) + J(j)

Chapter 7. Directed Graphs 180

i z

1

2

n(i)
j

j

j

Figure 7.6: Principle of dynamic programming

Suppose that for each vertex j such that the link (i, j) exists, the optimal
cost J(j) is known. Then, the principle of DP immediately implies:

J(i) = min
j

[C(i, j) + J(j)]

A DP algorithm based on the above observations:

1. Set J(z) = 0. At this point, this is the only node whose cost has been
computed.

2. Consider vertices i ∈ V such that

• J(i) has not yet been found

• for each vertex j such that a link (i, j) exists, J(j) is already
computed

Assign J(i) according to

J(i) = min
j

[C(i, j) + J(j)]

3. Repeat Step 2 until all vertices have their optimal costs computed.

Chapter 7. Directed Graphs 181

Example: Consider the digraph in Figure 7.7

B C E

H D F

A Z

5

2 7

1

5

5 1

2
1

2

3 1 3

2

Figure 7.7: An example digraph to illustrate dynamic programming

Step 1. J(Z) = 0

Step 2. E is the only vertex such that J(j) is known ∀ j such that
C(E, j) 6= 0

J(E) = C(E, Z) + J(Z) = 1

Step 3. Select F .

J(F) = min

C(F, Z) + J(Z) = 5
C(F, E) + J(E) = 3

(7.10)

= min(5, 3) = 3

This yields the optimal path F → E → Z.

Step 4. Select C.

J(C) = min

C(C, E) + J(E) = 8
C(C, F) + J(F) = 6

(7.11)

= min(8, 6) = 6

This yields the optimal path C → F → E → Z.

Chapter 7. Directed Graphs 182

Step 5. Select D

J(D) = min

C(D, C) + J(C) = 7
C(D, E) + J(E) = 3 = 3
C(D, F) + J(F) = 4

This yields the optimal path D → E → Z.
...

Eventually, we get all the optimal paths and all the optimal costs.

Complexity of the Algorithm

• It is easy to see that the algorithm has a worst case complexity of
O(n2), where n is the number of vertices.

• Limitation of the algorithm

– doesn’t work if there are cycles in the digraph.

7.2.3 All Pairs Shortest Paths Problem: Floyd’s Algorithm

REF. Robert W Floyd. Algorithm 97 (Shortest Path). Communications of
the ACM , Volume 5, Number 6, pp. 345, 1962.

Given : A digraph G = (V, E) in which each arc v → w has

a nonnegative cost C[v, w]

To find : For each ordered pair of vertices (v, w), the smallest

length of any path from v to w

Floyd’s Algorithm

• This is an O(n3) algorithm, where n is the number of vertices in the
digraph.

Chapter 7. Directed Graphs 183

i

[i,k]Ak-1

A k-1

[k,j]A k-1

[i,j]

j

k

Figure 7.8: Principle of Floyd’s algorithm

• Uses the principle of Dynamic Programming

• Let V = {1, 2, . . . , n}. The algorithm uses a matrix A[1..n][1..n] to
compute the lengths of the shortest paths.

• Initially,

A[i, j] = C[i, j] if i 6= j (7.12)

= 0 if i = j

Note that C[i, j] is taken as ∞ if there is no directed arc from i to j.

• The algorithm makes n passes over A. Let A0, A1, . . . , An be the values
of A on the n passes, with A0 being the initial value. Just after the
k − 1th iteration,

Ak−1[i, j] = Smallest length of any path from vertex i to vertex j(7.13)

that does not pass through the vertices k, k + 1, . . . , n(7.14)

(i.e. that only passes through possibly 1, 2, . . . k − 1)

See Figure 7.8

• The kth pass explores whether the vertex k lies on an optimal path
from i to j, ∀ i, j

• We use

Ak[i, j] = min

Ak−1[i, j]
Ak−1[i, k] + Ak−1[k, j]

Chapter 7. Directed Graphs 184

2

8

3

2

5

1 2 3

Figure 7.9: A digraph example for Floyd’s algorithm

• The algorithm:

void Floyd (float C[n − 1][n − 1], A[n − 1][n − 1])

{ int i, j, k;

{ for (i = 0, i ≤ n − 1; i + +)

for (j = 0; j ≤ n − 1, j + +)

A[i, j] = C[i, j];

for (i = 0; i ≤ n − 1; i + +)

A[i, i] = 0;

for (k = 0; k ≤ n − 1; k + +);

{
for (i = 0; i ≤ n − 1; i + +)

{
for (j = 0; j ≤ n − 1, j + +)

if (A[i, k] + A[k, j] < A[i, j])

A[i, j] = A[i, k] + A[k, j]

}
}

}
}

Chapter 7. Directed Graphs 185

Example: See Figure 7.9.

C =

2 8 5
3 ∞ ∞
∞ 2 ∞

A0 =

0 8 5
3 0 ∞
∞ 2 0

; A1 =

0 8 5
3 0 8
∞ 2 0

(7.15)

A2 =

0 8 5
3 0 8
5 2 0

; A3 =

0 8 5
3 0 8
5 2 0

• With adjacency matrix representation, Floyd’s algorithm has a worst
case complexity of O(n3) where n is the number of vertices

• If Dijkstra’s algorithm is used for the same purpose, then with an adja-
cency list representation, the worst case complexity will be O(ne log n).
Thus if e is O(n2), then the complexity will be O(n3 log n) while if e

is O(n), then the complexity is O(n2 log n).

7.3 Warshall’s Algorithm

REF. Stephen Warshall. A theorem on boolean matrices. Journal of the
ACM , Volume 9, Number 1, pp. 11-12, 1962.

Given a digraph G = (V,E), determine
for each i, jǫV ether or not there exists a path of length one
or more from vertex i to vertex j

Def: Given the adjacency matrix C of any digraph C = (v,E), the matrix
A is called the transitive closure of C if ∀ i, j ǫ V,

A[i, j] = 1 if there is a path of length one or more from vertex i to vertex j
= 0 otherwise

Chapter 7. Directed Graphs 186

Warshall’s algorithm enables to compute the transitive closure of the
adjacency matrix f any digraph. Warshall’s algorithm predates Floyd’s
algorithm and simple uses the following formula in the kth passes of Floyd’s
algorithm:

Ak[i, j] = Ak−1[i, j] ∨ (Ak−1[i, k] ∧ Ak−1[k, j])

where the matrix elements are treated as boolean values 0 or 1 and the
symbols ∨ and ∧ denote “logical or” and “logical and” respectively. It is
easy to see that Warshall’s algorithm has a worst case complexity of O(n3)
where n is the number of vertices of the graph.

7.4 Depth First Search and Breadth First Search

• An important way of traversing all vertices of a digraph, with appli-
cations in many problems.

• Let L[v] be the adjacency list for vertex v. To do a depth first search of
all vertices emanating from v, we have the following recursive scheme:

void dfs (vertex v)

{
vertex w;

mark v as visited;

for each vertex w ∈ L[v]

dfs(w)

}

• To do a dfs on the entire digraph, we first unmark all vertices and do
a dfs on all unmarked vertices:

Chapter 7. Directed Graphs 187

A B

C D

E

F

G

H

10

7

A

B

C D

E

F

G H

1

2

2

4

3

8 5

1

11

7

14
8

12

6

13

93

5
6

Figure 7.10: Depth first search of a digraph

Chapter 7. Directed Graphs 188

{
for v ∈ V

mark v as unvisited;

for v ∈ V

if (v is unvisited)

dfs(v);

}

Example: See Figure 7.10.

DFS Arcs:

• Tree Arcs: a → b, N(a) < N(b) leading to unvisited vertices

• Non-Tree Arcs:

– back arcs: a → b, N(a) ≥ N(b), b is an ancestor

– forward arcs: a → b, N(a) < N(b), b is a proper descendant

– cross arcs: a → b. Neither ancestor nor descendant

7.4.1 Breadth First Search

• Level by level traversal

• A queue data structure is used

• The complexity of both DFS and BFS is O(e).

Implementation of Breadth-First Search

void bfs (v) /∗ visits all vertices connected to v

in breadth-first fashion ∗/

Chapter 7. Directed Graphs 189

14

1

1 2

3 3

54

4

2

7 8

6
A

B C

D E

F

G H

6

7

8

5
9

10 11

12

13

Figure 7.11: Breadth-first search of the digraph in Figure 7.11

vertex x, y;

vertexqueue Q;

{
mark [v] = visited ;

enqueue (v, Q);

while (Q not empty)

{ x = front (Q) ;

dequeue (Q) ;

for (each vertex y adjacent to x)

if (mark[y] = unvisited)

{
mark[y] = visited ;

enqueue(y,Q) ;

insert ((x,y), T)

}
}

}

Chapter 7. Directed Graphs 190

A

C

ED

B
C E

D

BA

Tree DAG but not a tree.

Figure 7.12: Examples of directed acyclic graphs

v u

Figure 7.13: A cycle in a digraph

Example: See Figure 7.11.

7.5 Directed Acyclic Graphs

• Digraph without any cycles.

• More general than trees

• See Figure 7.12 for some examples

• Useful in many applications, such as

1. Representing syntactic structure of arithmetic expressions

2. Representing task graphs

3. Precedence relations in many scheduling applications

7.5.1 Test for Acyclicity

Result:

A digraph is acyclic if and only if its first search does not have back arcs.

Chapter 7. Directed Graphs 191

Proof:

First we prove that

backarc =⇒ cycle.

Let (u =⇒ w) be a backarc. This means that w is an ancestor of v.
Thus (w, ..., v, w) will be a cycle in the digraph.

Next we show that

cycle =⇒ backarc.

Suppose G is cyclic. Consider a cycle and let v be the vertex with the
lowest dfnumber on the cycle. See Figure 7.13. Because v is on a cycle,
there is a vertex u such that (u =⇒ v) is an edge. Since v has the lowest
dfnumber among all vertices on the cycle, u must be an descendant of v.

• it can not be a tree arc since dfnumber(v) ≤ dfnumber(u)

• it can not be a forward arc for the same reason

• it can not be a cross arc since v and u are on the same cycle.

Note that the above test for acyclicity has worst case complexity O(e).

7.5.2 Topological Sort

Topological sort is a process of assigning a linear ordering to the vertices
of a DAG so that if there is an arc from vertex i to vertex j, then i appears
before j in the linear ordering

• Useful in scheduling applications

• Example: Consider the DAG in Figure 7.14. A topological sort is
given by: B, A, D, C, E. There could be several topological sorts for
a given DAG

• Topological sort can be easily accomplished by simply including an
additional statement in the depth first search procedure of the given
graph.

Chapter 7. Directed Graphs 192

A

B

C

D

E

Figure 7.14: A digraph example for topological sort

• Let number [vertex] be the number that we assign in topological sort.
We use a global integer variable n, whose initial value is zero.

int n = 0;

void topsort (vertex v);

/∗ assigns numbers to vertices accessible from v in

reverse topological order ∗/
vertex w;

{
mark[v] = visited;

for (w ∈ L[v])

if (mark[w] == unvisited)

topsort (w);

number[v] = n+1

}

• This technique works because a DAG has no back arcs.

Consider what happens when the DFS leaves a vertex x for the last time.
The only arcs emanating from v are tree, forward, and cross arcs. But all
these arcs are directed towards vertices that have been completely visited
by the search and therefore precede x in the order being constructed.

Chapter 7. Directed Graphs 193

A AB B

C CD D

A Digraph G Strong Components of G

Figure 7.15: Strong components of a digraph

7.5.3 Strong Components

REF. Rao S. Kosaraju. Unpublished. 1978.

REF. Robert E. Tarjan. Depth first search and linear graph algorithms.
SIAM Journal on Computing , Volume 1, Number 2, pp. 146-160,
1972.

• A strongly connected component of a digraph is a maximal set of
vertices in which there is a path from any one vertex to any other
vertex in the set. For an example, see Figure 7.15.

• Let G = (V, E) be a digraph. We can partition V into equivalence
classes Vi, 1 ≤ i ≤ r, such that vertices v and w are equivalent if there
is a path from v to w and a path from w to v.

Let Ei, 1 ≤ i ≤ r, be the set of arcs with head and tail both in Vi.

Then the graphs (Vi, Ei) are called the strong components of G.

A digraph with only one strong component is said to be strongly
connected.

• Depth-first-search can be used to efficiently determine the strong com-
ponents of a digraph.

• Kosaraju’s (1978) algorithm for finding strong components in a graph:

1. Perform a DFS of G and number the vertices in order of comple-
tion of the recursive calls.

Chapter 7. Directed Graphs 194

A B

CD

A

B

D

C
G

DFS of G

After Step 1.

Figure 7.16: Step 1 in the strong components algorithm

2. Construct a new directed graph Gr by reversing the direction of
every arc in G.

3. Perform a DFS on Gr starting the search from the highest num-
bered vertex according to the numbering assigned at step 1. If
the DFS does not reach all vertices, start the next DFS from the
highest numbered remaining vertex.

4. Each tree in the resulting spanning forest is a strong component
of G.

Example: See Figures 7.16 and 7.17

Proof of Kosaraju’s Algorithm

• First we show: If v and w are vertices in the same strong component,
then they belong to the same spanning tree in the DFS of Gr.
v and w in the same strong component

=⇒ ∃ a path in G from v to w and
from w to v

=⇒ ∃ a path in G from w to v and
from v to w

Chapter 7. Directed Graphs 195

A B

CD C

B

A D
1

2

3

4

Gr
DFS of Gr

Figure 7.17: Step 3 in the strong components algorithm

Let us say in the DFS of Gr we start at some x and reach v or w.
Since there is a path from v to w and vice versa, v and w will end up
in the same spanning tree (having root x).

• Now we show: If v and w are in the same spanning tree in the DFS

of Gr, then, they are in the same strong component of G.

Let x be the root of the spanning tree containing v and w.

=⇒ v is a descendant of x
=⇒ ∃ a path in Gr from x to v
=⇒ ∃ a path in G from v to x

In the DFS of Gr, vertex v was still unvisited when the DFS at x
was initiated (since x is the root)

=⇒ xx has a higher number than v
(since DFS of Gr starts from highest numbered (remaining) vertex).

=⇒ In the DFS of G, the recursive call at v terminated before the
recursive call at x did. (due to the numbering done in step 1)

u ; x (7.16)

+

Chapter 7. Directed Graphs 196

Recursive call at v terminates before that of x in G (7.17)

In the DFS of G, there are two possibilities.

1) Search of v occurs before x (7.18)

2) Search of x occurs before v (7.19)

(1), (3) =⇒ DFS of v ... invokes DFS of x back to v.

=⇒ search at x would start and end before the search starts at v ends.
=⇒ recursive call at v terminates after the call at x contradicts (2).

=⇒ search of x occurs before v.
(4), (2) =⇒ v is visited during the search of x.

=⇒ v is descendant of x.
=⇒ ∃ a path from x to v.

=⇒ x and v are in the same strong component.

Similarly, x and w are in the same strong component.
=⇒ Similarly, v and w are in the same strong component.

7.6 To Probe Further

1. Alfred V Aho, John E. Hopcroft, and Jeffrey D Ullman. Data Struc-
tures and Algorithms . Addison-Wesley, 1983.

2. Gilles Brassard and Paul Bratley. Fundamentals of Algorithmics .
Prentice-Hall, 1996. Indian Edition published by Prentice Hall of
India, 1998.

3. Thomas H. Cormen, Charles E. Leiserson, and Donald L. Rivest. In-
troduction to Algorithms . The MIT Electrical Engineering and Com-
puter Science Series, 1990. Indian Edition published in 1999.

4. Mark Allen Weiss. Data Structures and Algorithm Analysis in C++.
Benjamin-Cummings, 1994. Indian Edition published in 1998.

5. Alfred V Aho, John E. Hopcroft, and Jeffrey D Ullman. The Design

Chapter 7. Directed Graphs 197

and Analysis of Computer Algorithms , Addison-Wesley, 1974.

6. Sara Baase and Allen Van Gelder. Computer Algorithms: Introduction
to Design and Analysis . Addison-Wesley, Third Edition, 2000. Indian
Edition published by Pearson Education Asia, 2000.

7. Richard Bellman. Dynamic Programming . Princeton University Press,
1957.

8. Gilles Brassard and Paul Bratley. Algorithmics : Theory and Practice.
Prentice-Hall, 1988.

9. Ellis Horowitz, Sartaz Sahni, and Rajasekaran. Fundamentals of Com-
puter Algorithms . W.H. Freeman and Company, 1998. Indian Edition
published by Galgotia Publications, 2000.

10. Kurt Mehlhorn. Graph Algorithms and NP-Completeness . Volume 2
of Data Structures and Algorithms , Springer-Verlag, 1984.

11. Robert Sedgewick. Algorithms. Addison-Wesley, Second Edition,
1988.

12. Nicklaus Wirth. Data Structures + Algorithms = Programs. Prentice-
Hall, Englewood Cliffs. 1975.

13. Richard Bellman. On a routing problem. Quarterly of Applied Math-
ematics . Volume 16, Number 1, pp. 87–90, 1958.

14. E.W. Dijkstra. A note on two problems in connection with graphs.
Numerische Mathematik , Volume 1, pp 269-271, 1959.

15. Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Math-
ematics , Volume 17, pp 449-467, 1965.

16. Robert W Floyd. Algorithm 97 (Shortest Path). Communications of
the ACM , Volume 5, Number 6, pp. 345, 1962.

17. John E Hopcroft and Robert E. Tarjan. Efficient algorithms for graph
manipulation. Communications of the ACM , Volume 16, Number 6
pp.372-378, 1973.

Chapter 7. Directed Graphs 198

18. Robert E. Tarjan. Depth first search and linear graph algorithms.
SIAM Journal on Computing , Volume 1, Number 2, pp.146-160, 1972.

19. Stephen Warshall. A theorem on boolean matrices. Journal of the
ACM , Volume 9, Number 1, pp.11-12, 1962.

7.7 Problems

1. Give a simple example of a directed graph with negative-weight edges for which
Dijkstra’s algorithm produces incorrect answers. Why doesn’t the proof of Dijkstra’s
algorithm go through when negative-weight edges are allowed?

2. Give an example of a four node directed graph with some negative-weight edges
for which Dijkstra’s algorithm produces incorrect answers. Also, give an example
of a four node directed graph with some negative-weight edges for which Dijkstra’s
algorithm always produces correct answers. In either case, justify your answer.

3. Explain how to modify Dijkstra’s algorithm so that if there is more than one mini-
mum path from source to a destination vertex, then a path with the fewest number
of edges is chosen.

4. Suppose that in implementing Dijkstra’s shortest path algorithm, one uses an AVL
tree rather than a partially ordered tree for representing the dynamic set of non-
special vertices. What will be the worst case complexity of the algorithm if an
adjacency list representation is used for the digraph? Would you still prefer the
partially ordered tree implementation?

5. We are given a directed graph G = (V,E) on which each edge (u, v) ∈ E has an
associated value r(u, v), which is a real number in the range 0 ≤ r(u, v) ≤ 1 that
represents the reliability of a communication channel from vertex u to vertex v. We
interpret r(u, v) as the probability that the channel from u to v will not fail, and
we assume that these probabilities are independent. Give an efficient algorithm to
find the most reliable path between two vertices.

6. Write a program to find the longest path in a directed acyclic graph. What is the
complexity of the algorithm?

7. Describe a mathematical model for the following scheduling problem: Given tasks
T1, T2, . . . , Tn, which require time t1, t2, . . . , tn to complete, and a set of constraints,
each of the form Tj must be completed prior to the start of Ti, find the minimum
time necessary to complete all the tasks assuming unlimited number of processors
to be available.

Chapter 7. Directed Graphs 199

8. In a depth-first search of a directed graph G = (V,E), define d(v) as the timestamp
when v is visited for the first time and f(v) the timestamp when the search finishes
examining the adjacency list of v. Show that an edge (u, v) ∈ E is

(a) a tree edge or forward edge if and only if d[u] < d[v] < f [v] < f [u].

(b) a back edge if and only if d[v] < d[u] < f [u] < f [v].

(c) a cross edge if and only if d[v] < f [v] < d[u] < f [u].

9. An Euler Tour of a connected, directed graph G = (V,E) is a cycle that traverses
each edge of G exactly once, although it may visit a vertex more than once.

(a) Show that G has an Euler tour if and only if indegree(v) = outdegree(v)
∀v ∈ V .

(b) Describe an O(e) algorithm to find an Euler tour of G if one exists, where e is
the number of edges.

10. Design an efficient algorithm to determine whether a given DAG is a tree.

11. Let G= (V, E) be a digraph. Define a relation R on V such that uRv if and only if u
and v lie on a common (not necessarily simple) cycle. Prove that R is an equivalence
relation on V.

7.8 Programming Assignments

7.8.1 Implementation of Dijkstra’s Algorithm Using Binary Heaps
and Binomial Queues

The objective of this assignment is to compare the performance of binary heaps and bino-
mial queues in implementing the single source shortest path algorithm of Dijkstra, which
computes the costs and paths of the shortest cost paths from a source vertex to every
other vertex in a labeled digraph with non-negative weights. Note that the dynamic set
V − S is implemented using binary heaps or binomial queues.

Input graph

The graph that is input to the algorithm is either through a simple text file or is generated
randomly. In the first case, assume the input to be in the following format:

• Line 1: Number of vertices in the graph

• Line 2: Source vertex (an integer between 1 and n, where n is the number of vertices

• Line 3: List of immediate neighbours of Node 1 with the weights on associated arcs

• Line 4: List of immediate neighbours of Vertex 2 with the weights on associated
arcs

Chapter 7. Directed Graphs 200

• etc · · ·

In the second case, to generate a random digraph, assume three inputs:

1. Number of vertices, n

2. Average degree of a node

3. Range of (integer) weights to be randomly generated for the directed arcs

Choose an appropriate data structure for the graph.

What is to be done ?

Implement Dijkstra’s algorithm, using binary heaps and using binomial queues. Make sure
to use the standard array data structure for binary heaps and an efficient, appropriate data
structure for binomial queues (for example, look at the book by Alan Weiss). Attempt
to do it in C++ but C is also good enough. As usual, special care should be taken
to structure your program according to best practices in software engineering: use of
good abstractions, smart algorithms, discipline in coding, documentation, provision for
exceptions (for example, negative weights should be detected immediately; errors in input
should be flagged asap; etc.).

For the input graph and the source vertex, print the following:

• shortest cost path to each vertex and the cost of this shortest path

• Execution times of the program with binary heaps and binomial queues

• Total number of heap operations executed with binary heaps and binomial queues
(this includes: probes, swaps, link traversals, etc.)

7.8.2 Strong Components

Finding strong components of a given digraph is an important practical problem. You have

studied Kosaraju’s algorithm for this purpose. There are other algorithms available in the

literature for determining the strong components. Many of the references lister earlier can be

consulted for this. Implement Kosaraju’s and at least one other algorithm for determining strong

components and compare the performance of the two algorithms.

Chapter 8

Undirected Graphs

8.1 Some Definitions

• G = (V, E)

Each edge is an unordered pair of vertices

• v and w are adjacent if (v, w) or equivalently (w, v) is an edge. The
edge (v, w) is incident upon the vertices v and w.

• A path is a sequence of vertices v1, v2, . . . , vn, such that (vi, vi+1) is an
edge for 1 ≤ i < n. A path is simple if all vertices on it are distinct,
except possibly v1 and vn. The path has length n− 1 and connects v1

and vn.

• A graph is connected if every pair of vertices is connected.

• A subgraph G′ = (V ′, E ′) of a graph G = (V, E) is a graph such that

1. V ′ ⊆ V

2. E ′ contains some edges (u, v) of E such that both u and v are in
V ′

If E ′ contains all edges (u, v) ∈ E for which u, v ∈ V ′, the subgraph
G′ is called an induced subgraph.

• A connected component of a graph is an induced subgraph which is
connected and which is not a proper subgraph of any other connected
subgraph of G (i.e., maximal connected induced subgraph).

201

Chapter 8. Undirected Graphs 202

e

b

d

f

c

a
a b

c d

A Graph G
A Subgraph of G

(not induced)

Induced Subgraph
(but not connected)

(connected graph
with cycles)

a b c d

A Free Tree

b

c

d

f

a
An Unconnected Subgraph

Another Free Tree

Figure 8.1: Examples of undirected graphs

• A simple cycle is a simple path of length ≥ 3, that connects a vertex
to itself.

• A graph is cyclic if it contains at least one (simple) cycle.

• A free tree is a connected, acyclic graph.

• Observe that

1. Every free tree with n vertices contains exactly n − 1 edges

2. If we add any edge to a free tree, we get a cycle.

• See Figure 8.1 for several examples.

Chapter 8. Undirected Graphs 203

b a

e

c

f gd

 a

b

d

e

c

f

g

Figure 8.2: Depth-first search of an undirected graph

8.2 Depth First and Breadth First Search

See Figure 8.2 for an example. Assume the following adjacency lists.

Vertex Adj. List

a (b, c, d, e)
b (a, d, e)
c (a, f, g)
d (a, b, e)
e (a, b, d)
f (c, g)
g (c, f)

• DFS of an undirected graph involves only two types of arcs.

1. Tree arcs.

2. Back arcs (there is no distinction between back arcs and forward
arcs)

• Cross arcs also don’t exist because given any two vertices, if there
exists an arc between them, then one of them will be an ancestor and

Chapter 8. Undirected Graphs 204

b a

e

c

f gd

a

b d e c

f g

BFS

Figure 8.3: Breadth-first search of an undirected graph

the other a descendant in the DFS. Thus all arcs that would have been
cross arcs in the DFS of a digraph would become tree arcs in the case
of an undirected graph.

8.2.1 Breadth-first search of undirected graph

Example: See Figure 8.3.

Assume the adjacency lists:

Vertex Adj. List

a (b, c, d, e)
b (a, d, e)
c (a, f, g)
d (a, b, e)
e (a, b, d)
f (c, g)
g (c, f)

8.3 Minimum-Cost Spanning Trees

Let G = (V, E) be a connected graph in which each edge (u, v) ∈ E has an
associated cost C(u, v).

Chapter 8. Undirected Graphs 205

1

3

2 4

5 6

1

3

2 4

5 6

1

3

2 4

5 6

1

3

2 4

5 6

6
5

2

6

3

5
1

5

4
6

5

5

4

6

3

1

5

46

5 1

2
4

5

3

A connected graph. A spanning tree with cost = 23

Another spanning tree with cost 21
MST, cost = 15

Figure 8.4: Spanning trees in a connected graph

• A Spanning Tree for G is a subgraph of G that it is a free tree
connecting all vertices in V . The cost of a spanning tree is the sum
of costs on its edges.

• An MST of G is a spanning tree of G having a minimum cost.

• See Figure 8.4 for several examples.

8.3.1 MST Property

Suppose G = (V, E) is a connected graph with costs defined on all e ∈ E.
Let U be some proper subset of V .

If (u, v) is an edge of lowest cost such that u ∈ U and v ∈ V − U , then
there exists an MST that includes (u, v) as an edge. See Figure 8.5.

Chapter 8. Undirected Graphs 206

lowest cost edge

u v

U V-U

Figure 8.5: An illustration of MST property

U V - U

u

u’

v

v’

Figure 8.6: Construction of a minimal spanning tree

Proof of MST Property

Suppose to the contrary that there is no MST for the graph G which
includes the edge (u, v).

Let T be any MST of G. By our assumption, T does not contain (u, v).
Adding (u, v) to T will introduce a cycle since T is a free tree. This cycle
involves (u, v). Therefore there is a path from v to u that does not pass
through this edge. This means that ∃ another edge (u′, v′) in T such that
u′ ∈ U and v′ ∈ V − U . See Figure 8.6.

Deleting edge (u′, v′) breaks the cycle and yields a spanning tree T ′ whose
cost is certainly ≤ that of T since C(u, v) ≤ C(u′, v′). Thus we have
constructed an MST that includes (u, v).

To illustrate, consider the graph in Figure 8.7 and refer to Figures 8.8

Chapter 8. Undirected Graphs 207

6
5

6 4

4

6

5

3

1

5

2

6
5

2

3

1

Figure 8.7: An example graph for finding an MST

6
5

6 4

1

3

42

5 6

5

Figure 8.8: A spanning tree in the above graph, with cost 26

and 8.9. Consider the sets:

U = {1, 2, 5}
V − U = {3, 4, 6}.

Spanning tree with cost = 26. Now, least cost edge from U to V −U is
(1,3).

By including (1,3) in the above spanning tree, a cycle will form (for exam-
ple, 1-2-3-1). Let us replace the edge (2,3) by the edge (1,3).

This has yielded a ST with cost = 22

DEF. A set of edges T in a connected graph promising if it can be extended
to produce a minimal spanning tree for the graph.

• By definition, T = φ is always promising since a weighted connected
graph always has at least one MST.

Chapter 8. Undirected Graphs 208

6
5

1

6 4

1

3

42

5 6

Figure 8.9: Another spanning tree, but with cost 22

e

f in S

UV - U

Figure 8.10: Illustration of MST Lemma

• Also, if a promising set of edges T is a spanning tree, then it must be
an MST.

Def: An edge is said to leave a given set of nodes if exactly one end of this
edge is in the set.

MST Lemma: Let

• G = (V, E) be weighted connected graph

• U ⊂ V a strict subset of nodes in G

• T ⊆ E a promising set of edges in E such that no edge in T leaves U

• e a least cost edge that leaves U

Then the set of edges T
′

= T ∪ {e} is promising.

Chapter 8. Undirected Graphs 209

Proof

Since T is promising, it can be extended to obtain an MST, says S. If
e ∈ S, there is nothing to prove.

If e ∈ S, then we add edge e to S, we create exactly one cycle (since S
is a spanning tree). In this cycle, since e leaves U there exists at least one
other edge, f say, that also leaves U (otherwise the cycle could not close).
See Figure 8.10.

If we now remove f, the cycle disappears and we obtain a new tree R that
spans G.

Note that R = (S ∪ {e}) − {f}

Also note that weight of e ≤ weight of f since e is a least cost edge leaving
U.

Therefore R is also an MST and it includes edge e. Furthermore T ⊆ R

and so can be extended to the MST R. Thus T is a promising set of edges.

8.3.2 Prim’s Algorithm

This algorithm is directly based on the MST property. Assume that V =
{1, 2, . . . , n}.

REF. R.C. Prim. Shortest connection networks and some generalizations.
Bell System Technical Journal , Volume 36, pp. 1389-1401, 1957.

{
T = φ;

U = { 1 };
while (U 6= V)

{
let (u, v) be the lowest cost edge

such that u ∈ U and v ∈ V − U ;

Chapter 8. Undirected Graphs 210

T = T ∪ {(u, v)}
U = U ∪ {v}

}
}

• See Figure 8.11 for an example.

• O(n2) algorithm.

Proof of Correctness of Prim’s Algorithm

Theorem: Prim’s algorithm finds a minimum spanning tree.

Proof: Let G = (V,E) be a weighted, connected graph. Let T be the
edge set that is grown in Prim’s algorithm. The proof is by mathematical
induction on the number of edges in T and using the MST Lemma.

Basis: The empty set φ is promising since a connected, weighted graph
always has at least one MST.

Induction Step: Assume that T is promising just before the algorithm
adds a new edge e = (u,v). Let U be the set of nodes grown in Prim’s
algorithm. Then all three conditions in the MST Lemma are satisfied and
therefore T U e is also promising.

When the algorithm stops, U includes all vertices of the graph and hence
T is a spanning tree. Since T is also promising, it will be a MST.

Implementation of Prim’s Algorithm

Use two arrays, closest and lowcost.

• For i ∈ V − U , closest[i] gives the vertex in U that is closest to i

• For i ∈ V − U , lowcost[i] gives the cost of the edge (i, closest(i))

Chapter 8. Undirected Graphs 211

1

2 4

3

5 6

1

2 4

3

5 6

1

2 4

3

5 6

1

2 4

3

5 6

1

2 4

3

5 6

1

2 4

3

5 6

56

1
5

 5

6

23

1 1

4

1

4 2

1

4
2

5
1

5

3 4 2

Iteration 1. U = {1} Iteration 2. U = {1,3}
Iteration 3. U = {1,3,6}

Iteration 4. U = {1,3,6,4} Iteration 5. U = {1,3,6,4,2}

Figure 8.11: Illustration of Prim’s algorithm

6
5

6 4

4

6

5

3

1

5

2

6
5

2

3

1

Figure 8.12: An example graph for illustrating Prim’s algorithm

Chapter 8. Undirected Graphs 212

• At each step, we can scan lowcost to find the vertex in V − U that is
closest to U . Then we update lowcost and closest taking into account
the new addition to U .

• Complexity: O(n2)

Example: Consider the digraph shown in Figure 8.12.
Step 1

U = {1} V − U = {2, 3, 4, 5, 6}
closest lowcost

V − U U
2 1 6
3 1 1
4 1 5
5 1 ∞
6 1 ∞

Select vertex 3 to include in U
Step 2

U = {1, 3} V − U = {2, 4, 5, 6}
closest lowcost

V − U U
2 3 5
4 1 5
5 3 6
6 3 4

Now select vertex 6

Step 3

U = {1, 3, 6} V − U = {2, 4, 5, 6}
closest lowcost

V − U U
2 3 5
4 6 2
5 3 6
Now select vertex 4, and so on

8.3.3 Kruskal’s Algorithm

REF. J.B. Kruskal. On the shortest spanning subtree of a graph and the
traveling salesman problem. Proceedings of the American Mathemat-
ical Society , Volume 7, pp. 48-50, 1956.

• Complexity is O(e log e) where e is the number of edges. Can be made
even more efficient by a proper choice of data structures.

• Greedy algorithm

• Algorithm:

Chapter 8. Undirected Graphs 213

Let G = (V, E) be the given graph, with |V | = n

{
Start with a graph T = (V, φ) consisting of only the

vertices of G and no edges; /∗ This can be viewed as n

connected components, each vertex being one connected compo-
nent ∗/

Arrange E in the order of increasing costs;

for (i = 1, i ≤ n − 1, i + +)

{ Select the next smallest cost edge;

if (the edge connects two different connected components)

add the edge to T ;

}
}

• At the end of the algorithm, we will be left with a single component
that comprises all the vertices and this component will be an MST for
G.

Proof of Correctness of Kruskal’s Algorithm

Theorem: Kruskal’s algorithm finds a minimum spanning tree.

Proof: Let G = (V, E) be a weighted, connected graph. Let T be
the edge set that is grown in Kruskal’s algorithm. The proof is by
mathematical induction on the number of edges in T.

– We show that if T is promising at any stage of the algorithm, then
it is still promising when a new edge is added to it in Kruskal’s
algorithm

– When the algorithm terminates, it will happen that T gives a
solution to the problem and hence an MST.

Chapter 8. Undirected Graphs 214

Basis: T = φ is promising since a weighted connected graph always
has at least one MST.

Induction Step: Let T be promising just before adding a new edge
e = (u, v). The edges T divide the nodes of G into one or more
connected components. u and v will be in two different components.
Let U be the set of nodes in the component that includes u. Note that

– U is a strict subset of V

– T is a promising set of edges such that no edge in T leaves U
(since an edge T either has both ends in U or has neither end in
U)

– e is a least cost edge that leaves U (since Kruskal’s algorithm,
being greedy, would have chosen e only after examining edges
shorter than e)

The above three conditions are precisely like in the MST Lemma and
hence we can conclude that the T ∪ {e} is also promising. When the
algorithm stops, T gives not merely a spanning tree but a minimal
spanning tree since it is promising.

• Program

void kruskal (vertex-set V ; edge-set E; edge-set T)

int ncomp; /∗ current number of components ∗/
priority-queue edges /∗ partially ordered tree ∗/
mfset components; /∗ merge-find set data structure ∗/
vertex u, v; edge e;

int nextcomp; /∗ name for new component ∗/
int ucomp, vcomp; /∗ component names ∗/
{

makenull (T); makenull (edges);

nextcomp = 0; ncomp = n;

Chapter 8. Undirected Graphs 215

6
5

6 4

6

5

3

1

5

2

6
5

2

3

1

4

65

2

3

1

4

65

2

3

1

4

65

2

3

1

4

Initial Configuration step1. choose (1,3) step2. choose (4,6)

65

2

3

1

4

65

2

3

1

4

65

2

3

1

4

step3. choose (2,5) step4. choose (3,6) step5. choose (2,3)

Figure 8.13: An illustration of Kruskal’s algorithm

Chapter 8. Undirected Graphs 216

for (v ∈ V) /∗ initialize a component to have one vertex of V ∗/
{ nextcomp++ ;

initial (nextcomp, v, components);

}
for (e ∈ E)

insert (e, edges); /∗ initialize priority queue of edges ∗/
while (ncomp > 1)

{
e = deletemin (edges);

let e = (u, v);

ucomp = find(u, components);

vcomp = find(v, components);

if (ucomp! = vcomp)

{
merge (ucomp, vcomp, components);

ncomp = ncomp − 1;

}
}

}

Implementation

• Choose a partially ordered tree for representing the sorted set of edges

• To represent connected components and interconnecting them, we
need to implement:

1. MERGE (A, B, C) . . . merge components A and B in C and call
the result A or B arbitrarily.

2. FIND (v, C) . . . returns the name of the component of C of which
vertex v is a member. This operation will be used to determine
whether the two vertices of an edge are in the same or in different
components.

Chapter 8. Undirected Graphs 217

3. INITIAL (A, v, C) . . . makes A the name of the component in
C containing only one vertex, namely v

• The above data structure is called an MFSET

Running Time of Kruskal’s Algorithm

• Creation of the priority queue

∗ If there are e edges, it is easy to see that it takes O(e log e) time
to insert the edges into a partially ordered tree

∗ O(e) algorithms are possible for this problem

• Each deletemin operation takes O(log e) time in the worst case. Thus
finding and deleting least-cost edges, over the while iterations con-
tribute O(log e) in the worst case.

• The total time for performing all the merge and find depends on the
method used.

O(e log e) without path compression
O(eα(e)) with the path compression, where
α(e) is the inverse of an Ackerman function.

Example: See Figure 8.13.

E = {(1,3), (4,6), (2,5), (3,6), (3,4), (1,4), (2,3), (1,2), (3,5), (5,6) }

8.4 Traveling Salesman Problem

REF. Eugene L Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B.Shmoys,
editors. The Traveling Salesman Problem. John Wiley & Sons, 1985.

• Tour (Hamilton) (Hamiltonian cycle)

Given a graph with weights on the edges a tour is a simple cycle
that includes all the vertices of the graph. For examples of tours, see
Figure 6.30.

Chapter 8. Undirected Graphs 218

b(4,3)

c(1,7) d(15,7)

f(18,0)

e(15,4)

a(0,0)

Tour 1. cost = 50.00

f

e

c d

b

a

a f

e

c d

b

a

c

b

d

f

e

Tour 2. cost = 48.39

a

c

b
e

d

f

Tour 4. cost = 49.78Tour 3. cost = 49.73

Figure 8.14: A six-city TSP and some tours

• TSP

Given a graph with weights on the edges, find a tour having a mini-
mum sum of edge weights.

• NP-hard problem

8.4.1 A Greedy Algorithm for TSP

• Based on Kruskal’s algorithm. It only gives a suboptimal solution in
general.

Chapter 8. Undirected Graphs 219

a

 b

c d

e

f

Figure 8.15: An intermediate stage in the construction of a TSP tour

• Works for complete graphs. May not work for a graph that is not
complete.

• As in Kruskal’s algorithm, first sort the edges in the increasing order
of weights.

• Starting with the least cost edge, look at the edges one by one and
select an edge only if the edge, together with already selected edges,

1. does not cause a vertex to have degree three or more

2. does not form a cycle, unless the number of selected edges equals
the number of vertices in the graph.

Example:

Consider the six city problem shown in Figure 8.14. The sorted set of
edges is

{((d, e), 3), ((b, c), 5), ((a, b), 5), ((e, f), 5), ((a, c), 7.08), ((d, f),
√

58),

((b, e),
√

22), ((b, d),
√

137), ((c, d), 14), . . . ((a, f), 18)

See Figures 8.15 and 8.16.

Chapter 8. Undirected Graphs 220

 fa

dc

e b

Figure 8.16: A TSP tour for the six-city problem

Select (d, e)
Select (a, b)
Select (b, c)
Select (e, f)
Reject (a, c) since it forms a cycle with (a, b) and (b, c)
Reject (d, f) since it forms a cycle with (d, e) and (e, f)
Reject (b, e) since that would make the degree of b equal to 3
Reject (b, d) for an identical reason
Select (c, d)

.

.

.
Select (a, f)

⇓
This yields a total cost = 50, which is about 4% from the optimal cost.

8.4.2 Optimal Solution for TSP using Branch and Bound

Principle

Suppose it is required to minimize an objective function. Suppose that
we have a method for getting a lower bound on the cost of any solution
among those in the set of solutions represented by some subset. If the best
solution found so far costs less than the lower bound for this subset, we
need not explore this subset at all.

Let S be some subset of solutions. Let

L(S) = a lower bound on the cost of
any solution belonging to S

Let C = cost of the best solution

Chapter 8. Undirected Graphs 221

found so far

If C ≤ L(S), there is no need to explore S because it does
not contain any better solution.

If C > L(S), then we need to explore S because it may
contain a better solution.

A Lower Bound for a TSP

Note that:

Cost of any tour

=
1

2

∑

v∈V

(Sum of the costs of the two tour
edges adjacent to v)

Now:

The sum of the two tour edges adjacent to a given vertex v

≥ sum of the two edges of least cost adjacent to v

Therefore:

Cost of any tour

≥ 1

2

∑

v∈V

(Sum of the costs of the two least cost
edges adjacent to v)

Example: See Figure 8.17.

Node Least cost edges Total cost

a (a, d), (a, b) 5
b (a, b), (b, e) 6
c (c, b), (c, a) 8
d (d, a), (d, c) 7
e (e, b), (e, f) 9

Thus a lower bound on the cost of any tour

=
1

2
(5 + 6 + 8 + 7 + 9) = 17.5

Chapter 8. Undirected Graphs 222

a b

e

d

c

3

4

4
3

7

8

6
2

6

5

Figure 8.17: Example of a complete graph with five vertices

A solution Tree for a TSP instance: (edges are considered in lexicographic
order): See Figure 8.18

• Suppose we want a lower bound on the cost of a subset of tours defined
by some node in the search tree.

In the above solution tree, each node represents tours defined by a set
of edges that must be in the tour and a set of edges that may not be
in the tour.

• These constraints alter our choices for the two lowest cost edges at
each node.

e.g., if we are constrained to include edge (a, e), and exclude (b,
c), then we will have to select the two lowest cost edges as follows:
a (a, d), (a, e) 9
b (a, b), (b, e) 6
c (a, c), (c, d) 9
d (a, d), (c, d) 7
e (a, e), (b, e) 10

Therefore lower bound with the above constraints = 20.5

• Each time we branch, by considering the two children of a node,
we try to infer additional decisions regarding which edges must be
included or excluded from tours represented by those nodes. The
rules we use for these inferences are:

Chapter 8. Undirected Graphs 223

All tours

tours with ab tours without
ab

tours with
ab and ac

tours with
ab but not ac

tours with
ac but not ab

tours without ac
and without ab

tours with tours with tours with
ab,ac and
not ad

ab,ad and
not ac

ab, not ac
not ad

Figure 8.18: A solution tree for a TSP instance

1. If excluding (x, y) would make it impossible for x or y to have
as many as two adjacent edges in the tour, then (x, y) must be
included.

2. If including (x, y) would cause x or y to have more than two
edges adjacent in the tour, or would complete a non-tour cycle
with edges already included, then (x, y) must be excluded.

• See Figure 8.19.

• When we branch, after making what inferences we can, we compute
lower bounds for both children. If the lower bound for a child is as
high or higher than the lowest cost found so far, we can “prune” that
child and need not consider or construct its descendants.

Interestingly, there are situations where the lower bound for a node n

is lower than the best solution so far, yet both children of n can be
pruned because their lower bounds exceed the cost of the best solution
so far.

• If neither child can be pruned, we shall, as a heuristic, consider first
the child with the smaller lower bound. After considering one child,
we must consider again whether its sibling can be pruned, since a new
best solution may have been found.

Chapter 8. Undirected Graphs 224

ad
__

ae
__

ab
__

ac
__

ad
__

ae
__

ad
__

bd
__

be

cd
__

bc
__

bd
__

de
__

cd
__

ce
__

bd
__

bc
__

de
__

cd
__

no constraints
A

B C

D E

F G

H I

J K

L M

N P

17.5

17.5 18.5

20.5 18 18.5 21

18 23 18.5 23.5

ac

ab

ac ad ae

ad ae ad ae

bc

ce

de

Tour

cd
ce

be

Tour

bc

de be

Tour

bd

be ce

Tourabceda abecda acbeda acebda
23 21 19 23

pruned

pruned

pruned

after discovery

after discovery

of I

of I

ae
__

ac
__

Figure 8.19: Branch and bound applied to a TSP instance

Chapter 8. Undirected Graphs 225

8.5 To Probe Further

1. Alfred V Aho, John E. Hopcroft, and Jeffrey D Ullman. Data Struc-
tures and Algorithms . Addison-Wesley, 1983.

2. Gilles Brassard and Paul Bratley. Fundamentals of Algorithmics .
Prentice-Hall, 1996. Indian Edition published by Prentice Hall of
India, 1998.

3. Thomas H. Cormen, Charles E. Leiserson, and Donald L. Rivest. In-
troduction to Algorithms . The MIT Electrical Engineering and Com-
puter Science Series, 1990. Indian Edition published in 1999.

4. Mark Allen Weiss. Data Structures and Algorithm Analysis in C++.
Benjamin-Cummings, 1994. Indian Edition published in 1998.

5. Alfred V Aho, John E. Hopcroft, and Jeffrey D Ullman. The Design
and Analysis of Computer Algorithms , Addison-Wesley, 1974.

6. Sara Baase and Allen Van Gelder. Computer Algorithms: Introduction
to Design and Analysis . Addison-Wesley, Third Edition, 2000. Indian
Edition published by Pearson Education Asia, 2000.

7. Ellis Horowitz, Sartaz Sahni, and Rajasekaran. Fundamentals of Com-
puter Algorithms . W.H. Freeman and Company, 1998. Indian Edition
published by Galgotia Publications, 2000.

8. Eugene L Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B.Shmoys,
editors. The Traveling Salesman Problem. John Wiley & Sons, 1985.

9. Kurt Mehlhorn. Graph Algorithms and NP-Completeness . Volume 2
of Data Structures and Algorithms , Springer-Verlag, 1984.

10. Robert Sedgewick. Algorithms. Addison-Wesley, Second Edition,
1988.

11. Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Math-
ematics , Volume 17, pp 449-467, 1965.

Chapter 8. Undirected Graphs 226

12. John E Hopcroft and Robert E. Tarjan. Efficient algorithms for graph
manipulation. Communications of the ACM , Volume 16, Number 6
pp.372-378, 1973.

13. J.B. Kruskal. On the shortest spanning subtree of a graph and the
traveling salesman problem. Proceedings of the American Mathemat-
ical Society , Volume 7, pp 48-50, 1956.

14. R.C. Prim. Shortest connection networks and some generalizations.
Bell System Technical Journal , Volume 36, pp.1389-1401, 1957.

15. Robert E. Tarjan. Depth first search and linear graph algorithms.
SIAM Journal on Computing , Volume 1, Number 2, pp.146-160, 1972.

8.6 Problems

1. Consider an undirected graph G=(V, E), with n vertices. Show how a one dimen-

sional array of length n(n−1)
2

can be used to represent G.

2. Give an algorithm that determines whether or not a given undirected graph G =
(V,E) contains a cycle. The algorithm should run in O(|V|) time independent of
|E|.

3. Design an algorithm to enumerate all simple cycles of a graph. How many such
cycles can there be? What is the time complexity of the algorithm?

4. Let (u, v) be a minimum-weight edge in a graph G. Show that (u, v) belongs to
some minimum spanning tree of G.

5. Let e be maximum-weight edge on some cycle of G = (V,E). Prove that there is a
minimum spanning tree of G′ = (V,E − {e}) that is also a minimum spanning tree
of G.

6. For an undirected graph G with n vertices and e edges, show that
∑n

i=1 di = 2e
where di is the degree of vertex i (number of edges incident on vertex i).

7. The diameter of a tree T = (V,E) is defined by maxu,v∈V δ(u, v) where δ(u, v) is
the shortest-path distance from vertex u to vertex v. Give an efficient algorithm to
compute the diameter of a tree, and analyze the running time of the algorithm.

8. An Eulerian walk in an undirected graph is a path that starts and ends at the same
vertex, traversing every edge in the graph exactly once. Prove that in order for such
a path to exist, all nodes must have even degree.

Chapter 8. Undirected Graphs 227

9. Two binary trees T1 and T2 are said to be isomorphic if T1 can be transformed
into T2 by swapping left and right children of (some of the) nodes in T1. Design an
efficient algorithm to decide id two given trees are isomorphic. What is the time
complexity of your algorithm?

8.7 Programming Assignments

8.7.1 Implementation of Some Graph Algorithms

This assignment involves five problems.

1. Generate a connected graph with n vertices and a certain number of edges, decided
by an average degree d of each vertex. The connected graph generated should have
several spanning trees and several Hamiltonian paths . Also, generate random costs
for all the edges.

2. Find a minimum cost spanning tree (MST) for the above graph, using an efficient
implementation of Prim’s algorithm. Compute the execution time of this program.

3. Find an MST using Kruskal’s algorithm. In the implementation, use the heap data
structure to organize the set of edges and the MFSET data structure to implement
union’s and find’s. Compare the execution time with that of Prim’s algorithm.

4. Find a second best MST by extending the Kruskal’s algorithm, using the following
property: If T is an MST, then there exist an edge (u, v) ∈ T and an edge (x, y) 6∈ T
such that (T − {(u, v)})U{(x, y)} is a second best MST.

5. Find a Hamiltonian path using a greedy strategy based on Kruskal’s algorithm.
You can compare the cost of this path to that of a minimal cost Hamiltonian path
(found by exhaustive enumeration) for values of n up to 10. In fact, you can do a
little better by using the branch and bound method to compute the minimal cost
Hamiltonian path.

6. Provide examples of connected graphs for situations specified below. If an example
cannot exist for the situation, provide reasons.

(a) A graph in which a maximum cost edge is a part of every MST in the graph

(b) A graph in which a maximum cost edge is never a part of any MST

(c) A graph in which a least cost edge is not a part of any MST

7. Let T be a minimum spanning tree of a connected graph G. Prove that there exist
edges (u, v) ∈ T and (x, y) 6∈ T such that T − {(u, v)} ∪ {(x, y)} is a second-best
minimum spanning tree of G.

Chapter 8. Undirected Graphs 228

8.7.2 Traveling Salesman Problem

This assignment involves implementing the following five problems.

1. Generate a complete graph with n vertices and random costs for all the edges. Let
the costs be positive integers uniformly distributed between 1 and 100.

2. Find a minimum cost spanning tree (MST) for the above graph, using an efficient
implementation of Prim’s algorithm. Compute the running time of this program.

3. Find an MST using Kruskal’s algorithm. In the implementation, use the partially
ordered tree data structure to organize the set of edges and the MFSET data struc-
ture to implement union’s and find’s. Compare the running time with that of Prim’s
algorithm.

4. Find a Hamiltonian path using a greedy strategy based on Kruskal’s algorithm.

5. Find an optimal Hamiltonian path for the above graph using the branch and bound
methodology.

It should be possible to input any desired graph and carry out steps 2, 3, 4, and 5 above.

Assume the following input format: Let the set of vertices be V = {1, . . . , n} Then the

input file would be: n, Cost of edge (1, 2), . . ., Cost of edge (1, n), Cost of edge (2, 3), . . .,

Cost of edge (2, n), Cost of edge (3, 4), . . ., Cost of edge (n − 1, n).

Chapter 9

Sorting Methods

The function of sorting or ordering a list of objects according to some linear
order is so fundamental that it is ubiquitous in engineering applications in
all disciplines. There are two broad categories of sorting methods: Inter-
nal sorting takes place in the main memory, where we can take advantage
of the random access nature of the main memory; External sorting is
necessary when the number and size of objects are prohibitive to be ac-
commodated in the main memory.

The Problem:

• Given records r1, r2, . . . , rn, with key values k1, k2, . . . , kn, produce the
records in the order

ri1, ri2, . . . , rin,

such that
ki1 ≤ ki2 ≤ . . . ≤ kin

• The complexity of a sorting algorithm can be measured in terms of

∗ number of algorithm steps to sort n records

∗ number of comparisons between keys (appropriate when the keys
are long character strings)

∗ number of times records must be moved (appropriate when record
size is large)

• Any sorting algorithm that uses comparisons of keys needs at least
O(n log n) time to accomplish the sorting.

229

Chapter 9. Sorting Methods 230

Sorting Methods

Internal External
(In memory) Appropriate for secondary storage

quick sort
heap sort mergesort
bubble sort radix sort
insertion sort polyphase sort
selection sort
shell sort

9.1 Bubble Sort

Let a[1], a[2], . . . , a[n] be n records to be sorted on a key field “key”. In
bubble sort, records with low keys (light records) bubble up to the top.

{
for (i = 1; i <= n − 1; i + +)

{
for (j = n; j >= i + 1; j −−)

if (a[j].key < a[j − 1].key)

swap the records a[j] and a[j − 1]

}
}

At the end of the (i − 1)st iteration, we have

a[1] . . . a[i − 1]
︸ ︷︷ ︸

sorted as in the
final order

a[i] . . . a[n]
︸ ︷︷ ︸

unsorted

In the ith iteration, the ith lowest key bubbles up to the ith position and

Chapter 9. Sorting Methods 231

we get
a[1] . . . a[i − 1]a[i]
︸ ︷︷ ︸

sorted

a[i + 1] . . . a[n]
︸ ︷︷ ︸

unsorted

Worst case complexity and also average case complexity is O(n2).

9.2 Insertion Sort

Here in the ith iteration, the record a[i] is inserted into its proper position
in the first i positions.

a[1] . . . a[i − 1]
︸ ︷︷ ︸

sorted (may not be as
in the final order)

a[i] . . . a[n]
︸ ︷︷ ︸

Insert a[i] into an
appropriate place

Let us assume, for the sake of convenience, a fictitious record a[0] with key
value = −∞.

{
for (i = 2; i <= n; i + +)

{
j = i ;

while (key of a[j] < key of a[j − 1])

{
swap records a[j] and a[j − 1];

j = j − 1

}
}

}

• Exhibits the worst case performance when the initial array is sorted

Chapter 9. Sorting Methods 232

in reverse order.

• Worst case and average case performance is O(n2)

9.3 Selection Sort

ith Iteration

A[1]A[2] · · · A[i − 1]
︸ ︷︷ ︸

sorted as in the
final sequence

A[i] · · · A[n]
︸ ︷︷ ︸

select least among these
and swap with A[i]

⇓
A[1]A[2] · · · A[i]
︸ ︷︷ ︸

sorted as in
final sequence

A[i + 1] · · · A[n]
︸ ︷︷ ︸

yet to be sorted

{
for (i = 1, i ≤ n − 1; i + +)

{
lowindex = i; lowkey = A[i] → key;

for (j = i + 1; j ≤ n; j + +)

if (A[j] → key < lowkey)

{
lowkey = A[j] → key;

lowindex = j

}
swap (A[i], A[lowindex])

}
}

Chapter 9. Sorting Methods 233

• Number of swaps = n − 1

• Number of comparisons = n(n−1)
2

9.4 Shellsort

• Invented by David Shell. Also called as Diminishing Increments sort.

REF. Shell. A High-speed Sorting Procedure.
Communications of the ACM , Volume 2, Number 7, pp. 30-
32,1959.

• The algorithm works by comparing elements that are distant; the
distance between comparisons decreases as the algorithm runs until
the last phase, in which adjacent elements are compared.

• Uses an increment sequence, h1, h2, ..., ht. Any increment sequence will
do as long as h1 = 1, however some choices are better than others.

• After a phase, using some increment hk, for every i, we have

a[i] ≤ a[i + hk] whenever i + hk ≤ n

That is, all elements spaced h apart are sorted and the sequence is
said to be
hk − sorted

• The following shows an array after some phases in shellsort.

OriginalArray 81 94 11 96 12 35 17 95 28 58 41 75 15
After5 − Sort 35 17 11 28 12 41 75 15 96 58 81 94 95
After3 − Sort 28 12 11 35 15 41 58 17 94 75 81 96 95
After1 − Sort 11 12 15 17 28 35 41 58 75 81 94 95 96

• An important property of Shellsort:

– A sequence which is hk - sorted that is then hk−1 - sorted will
remain hk - sorted.

Chapter 9. Sorting Methods 234

This means that work done by early phases is not undone by later
phases.

• The action of an hk - sorted is to perform an insertion sort on hk

independent subarrays.

• Shell suggested the increment sequence

ht = ⌊n
2
⌋; hk = ⌊hk=1

2
⌋

For various reasons, this turns out to be a poor choice of increments.
Hibbard suggested a better sequence; 1, 3, 7, ...2k − 1.

• Worst-case running time of Shellsort, using shell’s increments, has
been shown to be O(n2)

• Worst-case running time of Shellsort, using Hibbard’s increments, has
been shown to be O(n1.5)

• Sedgewick has proposed several increment sequences that give an O(n
4

3

worst-case running time.

• Showing the average -case complexity of shellsort has proved to be a
formidable theoretical challenge.

• Far more details, refer [weiss94, chapter 7, 256-260] and [knuth 73].

9.5 Heap Sort

Worst case as well as average case running time is O(n log n)

REF. Robert W. Floyd. Algorithm 245 (TreeSort). Communications of the
ACM , Volume 7, pp. 701, 1964.

REF. J.W.J. Williams. Algorithm 232 (Heapsort). Communications of the
ACM , Volume 7, pp. 347-348, 1964.

• Heap: Recall that a heap is a complete binary tree such that the
weight of every node is less than the weights of its children.

Chapter 9. Sorting Methods 235

1

2 4

6 8 16 10

7 9 15

1

2 3

4 5 6 7

8 9 10

Figure 9.1: Example of a heap

• A heap with n elements can be conveniently represented as the first n
elements of an array. Furthermore, the children of a[i] can be found
in a[2i] (left child) and a[2i + 1] (right child)

• See Figure 9.1 for an example

• Generic heap sort algorithm:

{
Insert all records to form a heap S;

while (S is not empty)

{
y = min (S);

print the value of y;

delete y from S;

}
}

Heap sort crucially uses a function called pushdown (first, last).

This assumes that the elements a[first], a[first + 1], . . ., a[last] obey the
heap property, except possibly the children of a[first]. The function pushes

Chapter 9. Sorting Methods 236

10

1 2

6 8 16 4

7 9 15

1

2 3

4 5 6 7

8 9 10

1

10 2

6 8 16 4

7 9 15

1

6 2

10 8 16 4

7 9 15

1

6 2

7 8 16 4

10 9 15

Pushdown (1,10)

Heap

Figure 9.2: Illustration of some heap operations

a[first] down until the heap property is restored.

Example: See Figure 9.2. Here, a[1], . . . , a[10] is a heap except that the
children of a[1] violate the heap property.

Heapsort Algorithm

{
for

(

i = n
2 , i >= 1; i −−

)

pushdown (i, n); /∗ initial heap construction ∗/
for (i = n; i >= 2; i −−)

{
swap records a[i] and a[1];

pushdown (1, i − 1)

}
}

• It can be shown that the initial heap construction takes O(n) time in
the worst case.

Chapter 9. Sorting Methods 237

• The sorting portion takes worst case O(n log n) time.

• Heap sort can also be used for computing order statistics, ie., kth

lowest in a list of records.

9.6 Quick Sort

REF. C.A.R. Hoare. Algorithm 63 (Partition) and Algorithm 65 (find).
Communications of the ACM , Volume 4, Number 7, pp. 321-322,
1961.

REF. C.A.R. Hoare. Quicksort. The Computer Journal , Volume 5, Number
1, pp. 10-15, 1962.

REF. Robert Sedgewick. Implementing quicksort programs. Communica-
tions of the ACM , Volume 21, Number 10, pp. 847-857, 1978.

• Divide and conquer algorithm designed by CAR Hoare in 1962.

• Worst case O(n2) time, but average case O(n log n) time. Better av-
erage case performance than heap sort.

9.6.1 Algorithm:

To sort the records a[i], a[i + 1], . . . , a[j], in place.

quicksort (i, j)

{
if (a[i] · · · a[j] contain at least two distinct keys)

{
let v be the larger of the first two distinct keys;

Partition a[i] · · · a[j] so that for some k between i + 1 and j,

a[i] · · · a[k − 1] all have keys < v, and

a[k] · · · a[j] all have keys ≥ v;

quicksort (i, k − 1);

quicksort (k, j);

}

Chapter 9. Sorting Methods 238

}

a[i] · · · a[k − 1]
︸ ︷︷ ︸

keys <v

a[k] · · · a[j]
︸ ︷︷ ︸

keys ≥v

v is called the pivot. It could be any element such that the resulting
partition desirably has two equal sized groups.

9.6.2 Algorithm for Partitioning

int partition (int i; int j; key-type pivot);

/∗ partitions the elements a[k] · · · a[j],

wrt the pivot and returns the position k ∗/
{

int ℓ, r;

{
ℓ = i; /∗ ℓ starts from left end ∗/
r = j; /∗ r starts from right end ∗/
do

swap the records a[ℓ] and a[r];

while (a[ℓ] . key < pivot)

ℓ = ℓ + 1;

while (a[r] . key ≥ pivot)

r = r − 1;

while (ℓ ≤ r);

return (ℓ);

}
}

• For an example, see Figure 9.3.

• Worst case arises when the input is already sorted: O(n2)

• Average case : O(n log n)

Chapter 9. Sorting Methods 239

3 3

3 3

3 3

3 3

3 3

3 3

3 3

1 1

1 1

1 1

1 1

1 1

2

2

2

2

2

4

4

4

4

4

4

4

5 5

5 5

5 5

5 5

5 5

5 5

5 5

5 5

5 5

6

6

6

6

6

6

6

6

9

9

9

9

9

9

9

9

done done

done done

done done

done

v = 3

v = 4 v = 9

v = 6

v = 5v = 2 }

}

}

} level 1

level 2

level 3

Figure 9.3: Quicksort applied to a list of 10 elements

9.6.3 Quicksort: Average Case Analysis

Assume that all initial orderings of the keys are equally likely;

• Assume that the keys are distinct

Note that the presence of equal keys will make the sorting easier, not
harder.

• Also assume that when we call quicksort (i, j), all orders for A[i] · · · A[j]
are equally likely.

Let T (n) = average time taken by quicksort to sort n elements

• T (1) = C1 where C1 is some constant.

Chapter 9. Sorting Methods 240

• Recall that the pivot is the larger of the first two elements.

• When n > 1, quicksort splits the subarray, taking C2n time, where C2

is another constant.

Also, since the pivot is the larger of the first two elements, left groups tend
to be larger than the right groups.

The left group can have i elements where i = 1, 2, . . . , n − 1, since the left
group has at least one element and the right group also has at least one
element.

Let us fix i and try to compute the probability:

P{ left group has i elements}

Now, left group has i elements

⇒ pivot must be the (i + 1)st element among the n elements

If the pivot is in position 1, then the element in position 2 is one of the i
smaller elements and vice-versa.

P{ Position 1 contains one of the i smaller elements }

=

(

i

n − 1

) (

1

n

)

Similarly,

P{ Position 2 contains one of the i smaller elements}

=

(

1

n

) (

i

n − 1

)

Therefore,

P{ left group has i elements}

=
2i

n(n − 1)

This leads to

Chapter 9. Sorting Methods 241

T (n) ≤ C2n +
n−1∑

i=1

2i

n(n − 1)
{T (i) + T (n − i)}

Using
n−1∑

i=1

f(i) =
n−1∑

i=1

f(n − i),

we get

T (n) ≤ C2n +
1

n − 1

n−1∑

i=1

{T (i) + T (n − i)}

The above expression is in the form it would have been if we had picked a
truly random pivot at each step.

The above simplifies to:

T (n) ≤ C2n +
2

n − 1

n−1∑

i=1

T (i)

The above is the recurrence that one would get if all sizes between 1 and
n − 1 for the left group were equally likely. Thus picking the larger of the
two elements doesn’t really affect the size distribution.

We shall guess the solution

T (n) ≤ Cn log n

for some constant C and prove its correctness using induction.

Basis:

n = 2 ⇒ Cn log n = 2C

which is correct.

Induction Step:

Assume T (i) ≤ Ci log i ∀ i < n.

T (n) ≤ C2n +
2C

n − 1

n−1∑

i=1

i log i

Chapter 9. Sorting Methods 242

≤ C2n +
2C

n − 1

n/2
∑

i=1

i log i +
2C

n − 1

n−1∑

i=n
2
+1

i log i

≤ C2n +
2C

n − 1

n/2
∑

i=1

i log
n

2
+

2C

n − 1

n−1∑

i=n
2
+1

i log n

≤ C2n + Cn log n − Cn

4
− Cn

2(n − 1)
, after simplification

Picking C ≥ 4C2, we have,

C2n − Cn

4
≥ 0

Thus T (n) is O(n log n)

9.7 Order Statistics

• Given a list of n records, and an integer k, find the record whose key
is the kth in the sorted order of keys.

• Note that

K = 1 corresponds to finding the minimum
K = n corresponds to finding the maximum

K =
n

2
corresponds to finding the median

9.7.1 Algorithm 1

One can arrange the n keys into a heap and pick the kth largest in k steps,
where each step takes logarithmic time in the number of elements of the
heap.

Since the construction of initial heap can be accomplished in worst case
O(n) time, the worst case complexity of this algorithm is:

O(n + k log n)

Therefore if k ≤ n
log n or k ≥ n

log n , the above algorithm will have O(n) worst
case complexity.

Chapter 9. Sorting Methods 243

9.7.2 Algorithm 2

Variation of quicksort.

Select (i, j, k) /∗ finds the kth element among A[i] · · · A[j] ∗/
{

pick a pivot element v;

partition A[i] · · · A[j] so as to get

A[i] · · · A[m − 1] with keys < v and

A[m] · · · A[j] with keys ≥ v;

if (k ≤ m − 1)

Select (i, m − 1, k)

else

Select (m, j, k − m + i)

}

• Worst case complexity of the above algorithm is O(n2) (as in quick-
sort).

• Average Case:

– Note that select calls itself only once at a time whereas quicksort
called itself twice each time.

– On an average, select calls itself on a subarray half as long as the
subarray. To be conservative, suppose that each call of select is

on an array
(

9
10

)th
the size on previous call. Then,

T (n) ≤ Cn + T

(

9n

10

)

which can be shown to be O(n).

9.7.3 Algorithm 3

Worst case linear time algorithm due to

Blum, Floyd, Pratt, Rivest, Tarzan.

Chapter 9. Sorting Methods 244

REF. Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L Rivest, and
Robert E. Tarjan. Time bounds for selection. Journal of Computer
and System Sciences , Volume 7, Number 4, pp. 448-461, 1973.

• This is also a variation of quicksort and the main idea is to find a good
pivot.

• Assume that all the elements are distinct. The algorithm works oth-
erwise too.

1. Divide the n elements into groups of 5 leaving aside between 0 and 4
elements that cannot be placed in a group.

Sort each group of 5 elements by any algorithm and take the middle
element from each group. This yields

⌊n/5⌋ medians.

2. Use the SELECT algorithm to find the median of these ⌊n/5⌋ ele-
ments. Choose this median as the pivot.

• Note that this pivot is in position ⌊n+5
10 ⌋

• Also, the pivot exceeds ⌊n−5
10 ⌋ of the middle elements and each of

these middle elements exceeds two elements. Thus, the pivot exceeds
at least

3⌊n − 5

10
⌋ elements.

Also, by a similar argument, the pivot is less than at least

3⌊n − 5

10
⌋ elements.

• If n ≥ 75,

3⌊n − 5

10
⌋ ≥ 3⌊70

10
⌋ = 21 >

75

4
In other words,

n ≥ 75 ⇒ 3

[

n + 5

10

]

≥ n

4

This would mean that, if n ≥ 75, the pivot is greater than at least n
4

elements and less than at least n
4 elements. Consequently, when we

Chapter 9. Sorting Methods 245

partition an array with this pivot, the kth element is isolated to within
a range of at most 3n

4 of the elements.

Implementation

keytype select (int i, j, k);

/∗ returns key of the kth largest element among A[i] · · · A[j] ∗/
{
if ((j − i) < 75)

find the kth largest by some simple algorithm

else {
for (m = 0; m ≤ (j − i − 4)/5; m + +)

{
find the third element among A[i+5 ∗m] · · · A[i+5 ∗m+4]

and swap it with A[i + m];

pivot = select (i, (j − i − 4)/5, (j − i − 4)/10)

m = partition (i, j, pivot);

if (k ≤ m − i)

return (select (i, m − 1, k))

else

return (select (m, j, (k − (m − i)))

}
}

}

The worst case complexity of the above algorithm can be described by

T (n) ≤ C1 if n ≤ 75

≤ C2n + T

(

n

5

)

+ T

(

3n

4

)

if n > 75

Let us guess the solution T (n) = Cn for n > 75. For n ≥ 75, assume

Chapter 9. Sorting Methods 246

T (m) ≤ Cm for m < n. Then

T (n) ≤ C2n +

(

Cn

5

)

+

(

3Cn

4

)

≤ C2n +
19

20
Cn

Thus T (n) is O(n).

• Instead of groups of 5, let us say we choose groups of 7. It is easy to
show that the worst case complexity is again O(n). In general, any
size of the groups that ensures the sum of the two arguments of T (.)
to be less than n will yield O(n) worst case complexity.

9.8 Lower Bound on Complexity for Sorting Meth-

ods

Result 1

The worst case complexity of any sorting algorithm that only uses key
comparisons is

Ω(n log n)

Result 2

The average case complexity of any sorting algorithm that only uses key
comparisons is

Ω(n log n)

The above results are proved using a Decision Tree which is a binary
tree in which the nodes represent the status of the algorithm after making
some comparisons.

Consider a node x in a decision tree and let y be its left child and z its
right child. See Figure 9.4.

Basically, y represents a state consisting of the information known at x

Chapter 9. Sorting Methods 247

k1 < k2 k1 > k2

z

x

y

Figure 9.4: A decision tree scenario

plus the fact that the key k1 is less than key k2. For a decision tree for
insertion sort on 3 elements, see Figure 9.5.

abc
acb
bac
bca
cab
cba

bac
bca
cba

abc
acb
cab

bca
cba

cba bca

bac

cab acb

abcacb
cab

A[2]<A[1] ?
(b<a ?)

A[3]<A[2]
(c<a ?)

A[2]<A[1] ?
(c<b ?)

A[2]<A[1] ?

(c<a ?)

A[3]<A[2]
(c<b ?)

Decision Tree for Insertion Sort

1

 2 3

 4

 5
 6 7

8 9 10 11

Figure 9.5: Decision tree for a 3-element insertion sort

9.8.1 Result 1: Lower Bound on Worst Case Complexity

• Given a list of n distinct elements, there are n! possible outcomes that
represent correct sorted orders.

Chapter 9. Sorting Methods 248

⇓

– any decision tree describing a correct sorting algorithm on a list
of n elements will have at least n! leaves.

– In fact, if we delete nodes corresponding to unnecessary compar-
isons and if we delete leaves that correspond to an inconsistent
sequence of comparison results, there will be exactly n! leaves.

The length of a path from the root to a leaf gives the number of
comparisons made when the ordering represented by that leaf is the
sorted order for a given input list L.

• The worst case complexity of an algorithm is given by the length of
the longest path in the associated decision tree.

• To obtain a lower bound on the worst case complexity of sorting algo-
rithm, we have to consider all possible decision trees having n! leaves
and take the minimum longest path.

In any decision tree, it is clear that the longest path will have a length of
at least log n!

Since

n! ∼
(

n

e

)n

log n! ∼ n log n

More Precisely,

n! ≥
(

n

2

)n
2

or log(n!) ≥ n

2
log

n

2

=
n

2
log n − n

2

Thus any sorting algorithm that only uses comparisons has a worst case

Chapter 9. Sorting Methods 249

 k leaves k1 leaves k2 leaves

 k1 < k k2 < k

TREE 1 TREE 2

 n

 n1 n1 n2

 n

left child or
 right child

Figure 9.6: Two possibilities for a counterexample with fewest nodes

complexity
Ω(n log n)

9.8.2 Result 2: Lower Bound on Average Case Complexity

We shall show that in any decision tree with K leaves, the average depth
of a leaf is at least log K

We shall show the result for any binary tree with K leaves.

Suppose the result is not true. Suppose T is the counterexample with the
fewest nodes.

T cannot be a single node because log 1 = 0. Let T have k leaves. T can
only be of the following two forms. Now see Figure 9.6.

Suppose T is of the from Tree 1. The tree rooted at n1, has fewer nodes
than T but the same number of leaves and the hence an even smaller coun-
terexample than T . Thus T cannot be of Tree 1 form.

Suppose T is of the form of Trees 2. The trees T1 and T2 rooted at n1 and

Chapter 9. Sorting Methods 250

n2 are smaller than T and therefore the

Average depth of T1 ≥ log k1

Average depth of T2 ≥ log k2

Thus the average depth of T

≥ k1

k1 + k2
log k1 +

k2

k1 + k2
log k2 + 1

=
k1

k
log k1 +

k2

k
log k2 +

(

k1

k
+

k2

k

)

=
1

k
(k1 log 2k1 + k2 log 2k2)

≥ log k

since the minimum value of
the above is attained at
k1 = k2 giving the value k

This contradicts the premise that the average depth of T is < log k.

Thus T cannot be of the form of Tree 2.

Thus in any decision tree with n! leaves, the average path length to a leaf
is at least

log(n!) ∼ O(n log n)

9.9 Radix Sorting

• Here we use some special information about the keys and design sort-
ing algorithms which beat the O(n log n) lower bound for comparison-
based sorting methods.

• Consider sorting n integers in the range 0 to n2 - 1. We do it in two
phases.

Phase 1: We use n bins, one for each of the integers 0, 1, · · · , n − 1. We

Chapter 9. Sorting Methods 251

place each integer i on the list to be sorted into the bin numbered

i mod n

Each bin will then contain a list of integers leaving the same re-
mainder when divided by n.

At the end, we concatenate the bins in order to obtain a list L.

Phase 2: The integers on the list L are redistributed into bins, but using
the bin selection function:

⌊ i

n
⌋

Now append integers to the ends of lists. Finally, concatenate the
lists to get the final sorted sequence.

Example

n = 10

Initial list : 36, 9, 0, 25, 1, 49, 64, 16, 81, 4

Phase 1 : bin = i mod 10

= right most digit of i

Bin

0 0 •

1 1 81 •
2
3
4 64 4 •

5 25

6 36 16 •

7
8
9 9 49 •

Chapter 9. Sorting Methods 252

Concatenation would now yield the list:

L: 0, 1, 81, 64, 4, 25, 36, 16, 9, 49

Phase 2 : bin = ⌊i/10⌋
= right most digit of i

Bin

0 0 1 4 9

1 16

2 25

3 36

4 49

5

6 64

7

8 81

9

The concatenation now yields:

0, 1, 4, 9, 25, 36, 49, 64, 81

In general, assume that the key-type consists of k components f1, f2, · · · , fk,
of type t1, t2, · · · , tk.

Suppose it is required to sort the records in lexicographic order of their
keys. That is,

(a1, a2, . . . , ak) < (b1, b2, . . . , bk)

if one of the following holds:

Chapter 9. Sorting Methods 253

1. a1 < b1

2. a1 = b1; a2 < b2

3. a1 = b1; a2 = b2; a3 < b3

.

.

.
k. a1 = b1; . . . ; ak−1 = bk−1; ak < bk

Radix sort proceeds in the following way.

First binsort all records first on fk, the least significant digit, then concate-
nate the bins lowest value first.

Then binsort the above concatenated list on fk−1 and then concatenate the
bins lowest value first.

In general, after binsorting on fk, fk−1, . . . , fi, the records will appear in
lexicographic order if the key consisted of only the fields fi, . . . , fk.

void radixsort;

/ ∗ Sorts a list A of n records with keys consisting of fields

f1, . . . , fk of types t1, . . . , tk. The function uses k

arrays B1, . . . , Bk of type array [ti] of list-type, i = 1, . . . , k,

where list-type is a linked list of records ∗/
{
for (i = k; i ≥ 1; i −−)

{
for (each value v of type ti)

make Bi[v] empty; /∗ clear bins ∗/
for (each value r on list A)

move r from A onto the end of bin Bi[v],

where v is the value of the field fi of the key of r;

for (each value v of type ti from lowest to highest)

concatenate Bi[v] onto the end of A

}

Chapter 9. Sorting Methods 254

}

• Elements to be sorted are presented in the form of a linked list obvi-
ating the need for copying a record. We just move records from one
list to another.

• For concatenation to be done quickly, we need pointers to the end of
lists.

Complexity of Radix Sort

• Inner loop 1 takes O(si) time where si = number of different values
of type ti

• Inner loop 2 takes O(n) time

• Inner loop 3 times O(si) time

Thus the total time

=
k∑

i=1

O(si + n)

= O

kn +
k∑

i=1

si

= O

n +
k∑

i=1

si

 assuming k to be a constant

• For example, if keys are integers in the range 0 to nk − 1, then we can
view the integers as radix −n integers each k digits long. Then ti has
range 0 · · · n − 1 for 1 ≤ i ≤ k.

Thus si = n and total running time is O(n)

• similarly, if keys are character strings of length k, for constant k, then
si = 128 (say) for i = 1, . . . , k and again we get the total running time
as O(n).

Chapter 9. Sorting Methods 255

9.10 Merge Sort

• Divide and conquer algorithm

• O(n log n) worst case performance

• Useful in external sorting applications.

Algorithm

list-type mergesort (list-type L; int n)

{
if (n = 1)

return (L)

else {
split L into two halves L1 and L2;

return (merge (mergesort
(

L1,
n
2

)

, mergesort
(

L2,
n
2

))

}
}

Let T (n) be the running time of mergesort on a list of size n. Then.

T (n) ≤ C1 (n = 1)

≤ 2T

(

n

2

)

︸ ︷︷ ︸

divide
and
conquer

+ C2n
︸ ︷︷ ︸

merge
(n > 1)

It can be shown that T (n) is O(n log n).

Chapter 9. Sorting Methods 256

Mergesort as an External Sorting Procedure

• Assume that the data to be sorted is stored in a file

• The essential idea is to organize a file into progressively larger runs
where:

A run is a sequence of records r1, . . . , rk, such that ri ≤ ri+1 for
i = 1, . . . , k − 1.

• We say a file, r1, r2, . . . , rm, of records is organized into runs or length
k if: ∀ i ≤ 1 such that ki ≤ m, the sequence

(

rk(i−1)+1, rk(i−1)+2, . . . , rki

)

is a run of length k and furthermore if m is not divisible by k and
m = pk+q where q < k, the sequence (rm−q+1, . . . , rm) which is called
the tail is a run of length q.

Example

The following is organized into runs of length 3 with the tail having length
2.

7 15 29 8 11 13 16 22 31 5 12

Basic step

Consider two files f1 and f2 organized into runs of length k. Assume that

1. If ni is the number of runs (including tails) of f1(i = 1, 2), then |n1 −
n2| ≤ 1

2. At most one of f1 and f2 has a tail

3. The one with a tail (if any) has at least as many runs as the other.

In mergesort, we read one run from each of f1 and f2, merge the runs
into a run of length 2k and append it to one of two files g1 and g2. By
alternating between g1 and g2, these files would be organized into runs of
length 2k, satisfying (1), (2), and (3).

Chapter 9. Sorting Methods 257

Algorithm

• First divide all n records into two files f1 and f2 as evenly as possible.
f1 and f2 can be regarded as organized into runs of length 1.

• Merge the runs of length 1 and distribute them into files g1 and g2

which will now be organized into runs of length 2.

• Now make f1 and f2 empty and merge g1 and g2 into f1 and f2 creating
runs of length 4.

Repeat · · ·

Example

f1 28 3 93 54 65 30 90 10 69 8 22
f2 31 5 96 85 9 39 13 8 77 10

runs of length 1

⇓ merge into g1 and g2

g1 28 31 93 96 9 65 13 90 69 77 22
g2 3 5 54 85 30 39 8 10 8 10

runs of length 2

⇓ merge into f1 and f2

f1 3 5 28 31 9 30 39 65 8 10 69 77
f2 54 85 93 96 8 10 13 90 22

runs of length 4

⇓ merge into g1 and g2

g1 3 5 28 31 54 85 93 96 8 10 22 69 77
g2 8 9 10 13 30 39 65 90

runs of length 8

⇓ merge into f1 and f2

Chapter 9. Sorting Methods 258

f1 3 5 8 9 10 13 28 30 31
39 54 65 85 90 93 96

f2 8 10 22 69 77

runs of length 16

⇓ merge into g1 and g2

g1 will be left with the sorted sequence

• After i passes, we have two files consisting of runs of length 2i. If
2i ≥ n, then one of the two files will be empty and the other will
contain a single run of length n (which is the sorted sequence).

Therefore number of passes = ⌈log n⌉

• Each pass requires the reading of two files and the writing of two files,
all of length ∼ n

2 .

Total number of blocks read or written in a pass ∼ 2n
b

(where b is the number of records that fit into a block)

Total number of block reads or writes for the entire sorting} ∼ O
(

n log n
b

)

.

• The procedure to merge reads and writes only one record at a time.
Thus it is not required to have a complete run in memory at any time.

• Mergesort need not start with runs of length 1. We could start with a
pass that, for some appropriate k, reads groups of k records into main
memory, sorts them (say quicksort) and writes them out as a run of
length k.

Multiway Mergesort

• Here we merge m files at a time. Let the files f1, . . . , fm be organized
as runs of length k.

We can read m runs, one from each file, and merge them into one run
of length mk. This run is placed on one of m files g1, . . . , gm, each
getting a run in turn.

Chapter 9. Sorting Methods 259

• The merging process will involve each time selecting the minimum
among m currently smallest unselected records from each file.

By using a priority queue that supports insert and delete in logarith-
mic time (e.g., partially ordered tree), the process can be accomplished
in O(log m) time.

• Number of passes - ⌈logm n⌉
Effort in each pass = O(n log2 m)
overall complexity ∼ O(n log2 m. logm n)

• Advantages

• We save by a factor of log2 m, the number of times we read each
record

• We can process data O(m) times faster with m disk units.

9.11 To Probe Further

1. Alfred V Aho, John E. Hopcroft, and Jeffrey D Ullman. Data Struc-
tures and Algorithms . Addison-Wesley, 1983.

2. Gilles Brassard and Paul Bratley. Fundamentals of Algorithmics .
Prentice-Hall, 1996. Indian Edition published by Prentice Hall of
India, 1998.

3. Thomas H. Cormen, Charles E. Leiserson, and Donald L. Rivest. In-
troduction to Algorithms . The MIT Electrical Engineering and Com-
puter Science Series, 1990. Indian Edition published in 1999.

4. Mark Allen Weiss. Data Structures and Algorithm Analysis in C++.
Benjamin-Cummings, 1994. Indian Edition published in 1998.

5. Alfred V Aho, John E. Hopcroft, and Jeffrey D Ullman. The Design
and Analysis of Computer Algorithms , Addison-Wesley, 1974.

6. Sara Baase and Allen Van Gelder. Computer Algorithms: Introduction
to Design and Analysis . Addison-Wesley, Third Edition, 2000. Indian
Edition published by Pearson Education Asia, 2000.

Chapter 9. Sorting Methods 260

7. Ellis Horowitz, Sartaz Sahni, and Rajasekaran. Fundamentals of Com-
puter Algorithms . W.H. Freeman and Company, 1998. Indian Edition
published by Galgotia Publications, 2000.

8. Donald E Knuth. Fundamental Algorithms , Volume 1 of The Art
of Computer Programming, Addison-Wesley, 1968, Second Edition,
1973.

9. Donald E. Knuth. Sorting and Searching , Volume 3 of The Art of
Computer Programming, Addison-Wesley, 1973.

10. Y. Langsam, M.J. Augenstein, and A.M. Tenenbaum. Data Struc-
tures using C and C++. Second Edition, Prentice Hall, 1996. Indian
Edition published by Prentice Hall of India, 2000.

11. Kurt Mehlhorn. Sorting and Searching. Volume 1 of Data Structures
and Algorithms. Springer-Verlag, 1984.

12. Nicklaus Wirth. Data Structures + Algorithms = Programs. Prentice-
Hall, Englewood Cliffs. 1975.

13. Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L Rivest, and
Robert E. Tarjan. Time bounds for selection. Journal of Computer
and System Sciences , Volume 7, Number 4, pp.448-461, 1973.

14. Robert W. Floyd. Algorithm 245 (TreeSort). Communications of the
ACM , Volume 7, pp.701, 1964.

15. C.A.R. Hoare. Algorithm 63 (Partition) and Algorithm 65 (find).
Communications of the ACM , Volume 4, Number 7, pp 321-322, 1961.

16. C.A.R. Hoare. Quicksort. The Computer Journal , Volume 5, Number
1, pp.10-15, 1962.

17. Robert Sedgewick. Implementing quicksort programs. Communica-
tions of the ACM , Volume 21, Number 10, pp.847-857, 1978.

18. Shell. A High-speed Sorting Procedure. Communications of the ACM ,
Volume 2, Number 7, pp. 30-32,1959.

Chapter 9. Sorting Methods 261

9.12 Problems

1. Consider the following sorting methods: Bubble sort, Insertion Sort, Selection sort,
Shell sort, Merge sort, Quick sort, and Heap sort.

• Sort the following keys using each of the above methods:
22, 36, 6, 79, 26, 45, 2, 13, 31, 62, 10, 79, 33, 11, 62, 26

• A sorting algorithm is said to be stable if it preserves the original order of
records with equal keys. Which of the above methods are stable?

• Suppose you are to sort a list L comprising a sorted list followed by a few
random elements. Which of the above sorting methods would you prefer and
why?

2. Show that if k is the smallest integer greater than or equal to n+ log2 n− 2, k com-
parisons are necessary and sufficient to find the largest and second largest elements
of a set of n distinct elements.

3. Design an algorithm to find the two smallest elements in an array of length n. Can
this be done in fewer than 2n − 3 comparisons?

4. Show how to find the minimum and maximum elements in an array using only
(2n − 3) comparisons, where n is the size of the array.

5. Show that any sorting algorithm that moves elements only one position at a time
must have time complexity Ω(n2).

6. Design an efficient algorithm to find all duplicates in a list of n elements.

7. Find a sorting method for four keys that is optimal in the sense of doing the smallest
possible number of key comparisons in the worst case. Find how many comparisons
your algorithm does in the average case.

8. Suppose we have a set of words, i.e., strings of the letters a–z, whose total length
is n. Show how to sort these in O(n) time. Note that if the maximum length of
a word is constant, then bin sort will work. However, you must consider the case
where some of the words are very long.

9. Suppose we have a sorted array of strings s1, . . . , sn. Write an algorithm to determine
whether a given string x is a member of this sequence. What is the time complexity
of your algorithm as a function of n and the length of x?

10. Design an algorithm that will arrange a contiguous list of real numbers so that all
the items with negative keys will come first, then those with nonnegative keys. The
final list need not be sorted.

11. Design an algorithm that will rearrange a list of integers as described in each case
below.

Chapter 9. Sorting Methods 262

• All even integers come before all odd integers.

• Either all the integers in even-numbered positions will be even or all integers
in the odd-numbered positions will be odd. First, prove that one or the other
of these goals can be achieved, although it may not be possible to achieve both
goals at the same time.

12. Suppose that the splits at every level of quicksort are in the proportion 1− α to α,
where 0 < α ≤ 1

2
and α is a constant. Show that the minimum depth of a leaf in

the recursion tree of quicksort is approximately − log n

log α
and the maximum depth is

approximately − log n

log(1−α)
. (Ignore the integer round off).

13. Recall the algorithm Select(i, j, k) that finds the kth element in the sorted order of
the elements a[i], a[i + 1], ..., a[j]. Choose the pivot as follows. Divide the elements
into groups of 3 (leaving aside between 0 and 2 elements that cannot be placed in
a group), sort each group, and take the middle element from each group; a total of
say, p, middle elements will result. Choose the median of these p elements as the
pivot. Let T (n) be the time taken by a call to Select on n elements. Write down an
appropriate recurrence relation for T (n). Is T (n), O(n)?

14. In the above problem, choose the pivot as follows. Divide the elements into groups
of 7, leaving aside between 0 and 6 elements that cannot be placed in a group. Sort
each group and take the middle element from each group. Choose the median of
these middle elements as the pivot.

Let T (n) be the time taken by a call to select on n elements. Write down an
appropriate recurrence for T (n) and show that it is O(n).

15. A d-ary heap is like a binary heap, but in stead of two children, nodes have d
children.

• How would you represent a d-ary heap in an array?

• What is the height of a d-ary heap of n elements in terms of n and d?

• Give an efficient implementation of deletemin and insert operations and analyze
the running time in terms of d and n.

16. Consider constructing a heap by first forming a complete binary tree and then re-
peatedly applying the pushdown procedure. What input permutations of (1, 2, 3, 4, 5)
are transformed into (1, 2, 4, 3, 5) by this process?

17. Give a permutation of 1, 2, . . . , 8, which when input to the quicksort algorithm will
produce the best possible performance of the quicksort algorithm (assume that the
larger of the first two keys is selected as the pivot for partitioning).

18. Suppose we have an array of n data records such that the key of each record has
the value 0 or 1. Outline a worst case linear time algorithm to sort these records
in place, using only an additional amount of storage equal to that of one record. Is
your algorithm stable? Justify.

Chapter 9. Sorting Methods 263

19. Outline an O(n log k) algorithm to merge k sorted lists into a single sorted list,
where n is the total number of elements in all the input lists.

20. Outline an efficient algorithm, using the binomial queue data structure to merge
k sorted lists into a single sorted list. What is the worst-case complexity of your
algorithm (in terms of k and n), if n is the total number of elements in all the input
lists.

21. Suppose we have an array of n data records such that the key of each record has
the value 0, 1, or 2. Outline a worst case linear time algorithm to sort these records
in place, using only an additional amount of storage equal to that of one record. Is
your algorithm stable? Justify.

22. Write down a decision tree for sorting three elements a, b, c using bubble sort , with
proper annotations on the nodes and edges of the tree.

9.13 Programming Assignments

9.13.1 Heap Sort and Quicksort

Implement heapsort and quicksort. Design and carry out an experiment to compare their average

case complexities.

Chapter 10

Introduction to NP-Completeness

10.1 Importance of NP-Completeness

Most algorithms we have studied so far have polynomial-time running
times. According to Cormen, Leiserson, and Rivest, polynomial-time algo-
rithms can be considered tractable for the following reasons.

(1) Although a problem which has a running time of say O(n20) or O(n100)
can be called intractable, there are very few practical problems with
such orders of polynomial complexity.

(2) For reasonable models of computation, a problem that can be solved
in polynomial time in one model can also be solved in polynomial time
on another.

(3) The class of polynomial-time solvable problems has nice closure prop-
erties (since polynomials are closed under addition, multiplication,
etc.)

The class of NP-complete (Non-deterministic polynomial time complete)
problems is a very important and interesting class of problems in Computer
Science. The interest surrounding this class of problems can be attributed
to the following reasons.

1. No polynomial-time algorithm has yet been discovered for any NP-
complete problem; at the same time no NP-complete problem has
been shown to have a super polynomial-time (for example exponential
time) lower bound.

264

Chapter 10. Introduction to NP-Completeness 265

2. If a polynomial-time algorithm is discovered for even one NP-complete
problem, then all NP-complete problems will be solvable in polynomial-
time.

It is believed (but so far no proof is available) that NP-complete problems
do not have polynomial-time algorithms and therefore are intractable. The
basis for this belief is the second fact above, namely that if any single
NP-complete problem can be solved in polynomial time, then every NP-
complete problem has a polynomial-time algorithm. Given the wide range
of NP-complete problems that have been discovered to date, it will be
sensational if all of them could be solved in polynomial time.

It is important to know the rudiments of NP-completeness for anyone
to design ”sound” algorithms for problems. If one can establish a problem
as NP-complete, there is strong reason to believe that it is intractable.
We would then do better by trying to design a good approximation al-
gorithm rather than searching endlessly seeking an exact solution. An
example of this is the TSP (Traveling Salesman Problem), which has been
shown to be intractable. A practical strategy to solve TSP therefore would
be to design a good approximation algorithm. This is what we did in
Chapter 8, where we used a variation of Kruskal’s minimal spanning tree
algorithm to approximately solve the TSP. Another important reason to
have good familiarity with NP-completeness is many natural interesting
and innocuous-looking problems that on the surface seem no harder than
sorting or searching, are in fact NP-complete.

10.2 Optimization Problems and Decision Problems

NP-completeness has been studied in the framework of decision problems .
Most problems are not decision problems, but optimization problems (where
some value needs to be minimized or maximized). In order to apply the
theory of NP-completeness to optimization problems, we must recast them
as decision problems. We provide an example of how an optimization prob-
lem can be transformed into a decision problem.

Example: Consider the problem SHORTEST-PATH that finds a short-
est path between two given vertices in an unweighted, undirected graph

Chapter 10. Introduction to NP-Completeness 266

G = (V, E). An instance of SHORTEST-PATH consists of a particular
graph and two vertices of that graph. A solution is a sequence of vertices
in the graph, with perhaps an empty sequence denoting that no path exists.
Thus the problem SHORTEST-PATH is a relation that associates each in-
stance of a graph and two vertices with a solution (namely a shortest path
in this case). Note that a given instance may have no solution, exactly one
solution, or multiple solutions.

A decision problem PATH related to the SHORTEST-PATH problem
above is : Given a graph G = (V, E), two vertices u, v ∈ V , and a non-
negative integer k, does a path exist in G between u and v whose length
is at most k ?

Note that the decision problem PATH is one way of casting the orig-
inal optimization problem as a decision problem. We have done this by
imposing a bound on the value to be optimized. This is a popular way of
transforming an optimization problem into a decision problem.

If an optimization problem is easy then its related decision problem is
easy as well. Similarly, if we can provide evidence that a decision problem
is hard, we also provide evidence that its related optimization problem is
hard.

10.3 Examples of some Intractable Problems

10.3.1 Traveling Salesman Problem

A Hamiltonian cycle in an undirected graph is a simple cycle that passes
through every vertex exactly once.

Optimization Problem: Given a complete, weighted graph, find a minimum-
weight Hamiltonian Cycle.

Decision Problem: Given a complete, weighted graph and an integer k,
does there exist a Hamiltonian cycle with total weight at most k.

Chapter 10. Introduction to NP-Completeness 267

10.3.2 Subset Sum

The input is a positive integer C and n objects whose sizes are positive
integers s1, s2, . . . , sn.

Optimization Problem: Among all subsets of objects with sum at most
C, what is the largest subset sum?

Decision Problem: Is there a subset of objects whose sizes add up to
exactly C?

10.3.3 Knapsack Problem

This is a generalization of the subset sum problem. Consider a knapsack
of capacity C where C is a positive integer and n objects with positive
integer sizes s1, s2, . . . , sn and positive integer profits p1, p2, . . . , pn.

Optimization Problem: Find the largest total profit of any subset of
the objects that fits in the knapsack.

Decision Problem: Given k, is there a subset of the objects that fits in
the knapsack and has total profit at least k?

10.3.4 Bin Packing

Suppose we have unlimited number of bins each of unit capacity and n
objects with sizes s1, s2, . . . , sn where the sizes si(i = 1, . . . , n) are rational
numbers in the range 0 < si ≤ 1.

Optimization Problem: Determine the smallest number of bins into
which the objects can be packed and find an optimal packing.

Decision Problem: Given an integer k, do the objects fit in k bins?

Chapter 10. Introduction to NP-Completeness 268

10.3.5 Job Shop Scheduling

Suppose there are n jobs, J1, J2, . . . , Jn to be processed one at a time in
non-preemptive fashion. Let the processing time be t1, t2, . . . , tn and the
due dates be d1, d2, . . . , dn. A schedule for the jobs is a permutation π of
1, 2, . . . , n. Job Ji(i = 1, . . . , n) will incur a penalty of pi(i = 1, . . . , n)
if it misses the due-date in the given schedule π. If processed within the
due-date, the penalty is taken as zero. The processing times, due-dates,
and penalties are all positive integers. The penalty of a schedule is the
sum of penalties incurred by jobs processed according to that schedule.

Optimization Problem: Determine the minimum possible penalty for
a schedule and find an (optimal) schedule that achieves the minimum
penalty.

Decision Problem: Given a non-negative integer k, does there exist a
schedule with penalty at most k?

10.3.6 Satisfiability

A propositional variable is one that can be assigned the value true or false.
A literal is a propositional variable or its negation. A clause is a sequence
of literals separated by the logical OR operator. A propositional formula
is said to be in conjunctive normal form (CNF) if it consists of a sequence
of clauses separated by the logical AND operator. For example,

(p ∨ q ∨ s) ∧ (q ∨ r) ∧ (p ∨ q ∨ r ∨ s)

A truth assignment for a set of propositional variables is an assignment of
true or false value to each propositional variable. A truth assignment is
said to satisfy a formula if it makes the value of the formula true.

3-SAT (Decision Problem): Given a CNF formula in which each clause
is permitted to contain at most three literals, is there a truth assignment
to its variables that satisfies it?

Chapter 10. Introduction to NP-Completeness 269

10.4 The Classes P and NP

An algorithm is said to be polynomially bounded if its worst-case complex-
ity is bounded by a polynomial function of the input size. A problem is said
to be polynomially bounded if there is a polynomially bounded algorithm
for it.

P is the class of all decision problems that are polynomially bounded.
The implication is that a decision problem X ∈ P can be solved in polyno-
mial time on a deterministic computation model (such as a deterministic
Turing machine).

NP represents the class of decision problems which can be solved in
polynomial time by a non-deterministic model of computation. That is,
a decision problem X ∈ NP can be solved in polynomial-time on a non-
deterministic computation model (such as a non-deterministic Turing ma-
chine). A non-deterministic model can make the right guesses on every
move and race towards the solution much faster than a deterministic model.

A deterministic machine, at each point in time, executes an instruction.
Depending on the outcome of executing the instruction, it then executes
some next instruction, which is unique. A non-deterministic machine on
the other hand has a choice of next steps. It is free to choose any that it
wishes. For example, it can always choose a next step that leads to the
best solution for the problem. A non-deterministic machine thus has the
power of extremely good, optimal guessing.

As an example, let us consider the decision version of TSP: Given a
complete, weighted graph and an integer k, does there exist a Hamiltonian
cycle with total weight at most k?

A smart non-deterministic algorithm for the above problem starts with
a vertex, guesses the correct edge to choose, proceeds to the next vertex,
guesses the correct edge to choose there, etc. and in polynomial time dis-
covers a Hamiltonian cycle of least cost and provides an answer to the
above problem. This is the power of non-determinism. A deterministic al-
gorithm here will have no choice but take super-polynomial time to answer
the above question.

Another way of viewing the above is that given a candidate Hamiltonian
cycle (call it certificate), one can verify in polynomial time whether the

Chapter 10. Introduction to NP-Completeness 270

answer to the above question is YES or NO. Thus to check if a problem is
in NP, it is enough to prove in polynomial time that any YES instance is
correct. We do not have to worry about NO instances since the program
always makes the right choice.

It is easy to show that P ⊆ NP. However, it is unknown whether P
= NP. In fact, this question is perhaps the most celebrated of all open
problems in Computer Science.

10.5 NP-Complete Problems

The definition of NP-completeness is based on reducibility of problems.
Suppose we wish to solve a problem X and we already have an algorithm
for solving another problem Y. Suppose we have a function T that takes
an input x for X and produces T(x), an input for Y such that the correct
answer for X on x is yes if and only if the correct answer for Y on T(x) is
yes. Then by composing T and the algorithm for y, we have an algorithm
for X.

• If the function T itself can be computed in polynomially bounded
time, we say X is polynomially reducible to Y and we write X ≤ p Y.

• If X is polynomially reducible to Y, then the implication is that Y is
at least as hard to solve as X. i.e. X is no harder to solve than Y.

• It is easy to see that

X ≤p Y and Y ∈ P implies X ∈ P.

10.5.1 NP-Hardness and NP-Completeness

A decision problem Y is said to be NP-hard if X ≤p Y ∀ X ∈ NP. An
NP-hard problem Y is said to be NP-complete if Y ∈ NP. NPC is the
standard notation for the class of all NP-complete problems.

• Informally, an NP-hard problem is a problem that is at least as hard
as any problem in NP. If, further, the problem also belongs to NP,
it would become NP-complete.

Chapter 10. Introduction to NP-Completeness 271

• It can be easily proved that if any NP-complete problem is in P,
then NP = P. Similarly, if any problem in NP is not polynomial-
time solvable, then no NP-complete problem will be polynomial-time
solvable. Thus NP-completeness is at the crux of deciding whether or
not NP = P.

• Using the above definition of NP-completeness to show that a given
decision problem, say Y, is NP-complete will call for proving polyno-
mial reducibility of each problem in NP to the problem Y. This is
impractical since the class NP already has a large number of mem-
ber problems and will continuously grow as researchers discover new
members of NP.

• A more practical way of proving NP-completeness of a decision prob-
lem Y is to discover a problem X ∈ NPC such that X ≤p Y. Since X
is NP-complete and ≤p is a transitive relationship, the above would
mean that Z ≤p Y ∀ Z ∈ NP. Furthermore if Y ∈ NP, then Y is
NP-complete.

The above is the standard technique used for showing the NP-hardness
or NP-completeness of a given decision problem. For example, all
the decision problems given in Section 10.2 can be shown to be NP-
complete by the above technique.

• An interesting question is: how was the first member of NPC found?
Stephen Cook showed the NP-completeness of the problem 3-SAT by
directly proving that X ≤p 3-SAT ∀ X ∈ NP.

• If a problem is NP-complete, it does not mean that all hopes are lost.
If the actual input sizes are small, an algorithm with, say, exponential
running time may be acceptable. On the other hand, it may still
be possible to obtain near-optimal solutions in polynomial-time. Such
an algorithm that returns near-optimal solutions (in polynomial time)
is called an approximation algorithm. Using Kruskal’s algorithm to
obtain a suboptimal solution to the TSP (see Chapter 8) is an example
of this.

Chapter 10. Introduction to NP-Completeness 272

10.6 To Probe Further

This chapter has presented a first level introduction to the notion of NP-
completeness. We have consciously avoided a technical discussion of the
topics since that would be the subject of a more advanced course. For a rig-
orous treatment of the subject, you should consult the following references.

The following book is a classic source on the theory of NP-completeness
and also contains a catalogue of NP-complete problems discovered until
1979.

REF. M.R. Garey and D.S. Johnson. Computers and Intractability : A
Guide to the Theory of NP-completeness. W.H. Freeman, 1979.

The class P was first introduced by Cobham in 1964,

REF. Alan Cobham. The intrinsic computational difficulty of functions.
Proceedings of the 1964 Congress for Logic, Methodology, and Philos-
ophy of Sciences, North-Holland, 1964, pp.24-30.

The class P was also independently introduced in 1965 by Edmonds, who
also conjectured P 6= NP for the first time.

REF. Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Math-
ematics, Volume 17, 1965, pp. 449-467.

The notion of NP-completeness was first proposed in 1971 by Stephen Cook
who also gave the first NP-completeness proof for 3-SAT.

REF. Stephen Cook. The complexity of theorem proving procedures. Pro-
ceedings of the Third Annual ACM Symposium on Theory of Com-
puting, 1971, pp. 151-158.

The technique of polynomial reductions was introduced in 1972 by Karp,
who also demonstrated a rich variety of NP-complete problems.

REF. Richard M Karp. Reducibility among combinatorial problems. In
Complexity of computer computations, edited by R.E. Miller and J.W
Thather, Plenum Press, 1972 pp. 85-103.

Chapter 10. Introduction to NP-Completeness 273

This chapter has liberally drawn from the material presented in two
books: Chapter 36 of the book by Cormen, Leiserson, and Rivest and
Chapter 13 of the book by Sara Baase and Allen Van Gelder. These two
books are a rich source of NP-complete problems and NP-completeness
proofs.

10.7 Problems

1. Show that an algorithm that makes at most a constant number of calls to polynomial-time
subroutines runs in polynomial time, but that a polynomial number of calls to polynomial-
time subroutines may result in an exponential-time algorithm.

2. A Hamiltonian path in a graph is a simple path that visits every vertex exactly once.
Show that the decision problem of determining whether or not there is a Hamiltonian
path from a given vertex u to another given vertex v belongs to NP

3. Show that the ≤p relation is a transitive relation on the set of problems.

4. Given an undirected graph, the Hamiltonian cycle problem determines whether a graph
has a Hamiltonian cycle. Given that the Hamiltonian cycle problem for undirected graphs
is NP-Complete, what can you say about the Hamiltonian cycle problem for directed
graphs? Provide reasons for your answer.

Chapter 11

References

11.1 Primary Sources for this Lecture Notes

1. Alfred V Aho, John E. Hopcroft, and Jeffrey D Ullman. Data Struc-
tures and Algorithms . Addison-Wesley, 1983.

2. Gilles Brassard and Paul Bratley. Fundamentals of Algorithmics .
Prentice-Hall, 1996. Indian Edition published by Prentice Hall of
India, 1998.

3. Thomas H. Cormen, Charles E. Leiserson, and Donald L. Rivest. In-
troduction to Algorithms . The MIT Electrical Engineering and Com-
puter Science Series, 1990. Indian Edition published in 1999.

4. Donald E Knuth. Fundamental Algorithms , Volume 1 of The Art
of Computer Programming, Addison-Wesley, 1968, Second Edition,
1973.

5. Robert L. Kruse, Bruce P. Leung, and Clovis L. Tondo. Data Struc-
tures and Program design in C . Prentice Hall, 1991. Indian Edition
published by Prentice Hall of India, 1999.

6. Mark Allen Weiss. Data Structures and Algorithm Analysis in C++.
Benjamin-Cummings, 1994. Indian Edition published in 1998.

274

Chapter 11. References 275

11.2 Useful Books

1. Alfred V Aho, John E. Hopcroft, and Jeffrey D Ullman. The Design
and Analysis of Computer Algorithms , Addison-Wesley, 1974.

2. Sara Baase and Allen Van Gelder. Computer Algorithms: Introduction
to Design and Analysis . Addison-Wesley, Third Edition, 2000. Indian
Edition published by Pearson Education Asia, 2000.

3. Duane A. Bailey. Java Structures: Data Structures in Java for the
Principled Programmer . McGraw-Hill International Edition, 1999.

4. Richard Bellman. Dynamic Programming . Princeton University Press,
1957.

5. Jon L. Bentley. Writing Efficient Programs , Prentice-Hall, 1982.

6. Jon L. Bentley. Programming Pearls , Addison-Wesley, 1986.

7. Jon L. Bentley. More Programming Pearls , Addison-Wesley, 1988.

8. Gilles Brassard and Paul Bratley. Algorithmics : Theory and Practice.
Prentice-Hall, 1988.

9. Michael R. Garey and David S Johnson. Computers and Intractability:
A Guide to Theory of NP-Completeness . W.H. Freeman, 1979.

10. R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics .
Addison-wesley, Reading, 1990. Indian Edition published by Addison-
Wesley Longman, 1998.

11. Ellis Horowitz and Sartaz Sahni. Fundamentals of Data structures .
Galgotia Publications, New Delhi, 1984.

12. Ellis Horowitz, Sartaz Sahni, and Rajasekaran. Fundamentals of Com-
puter Algorithms . W.H. Freeman and Company, 1998. Indian Edition
published by Galgotia Publications, 2000.

13. Donald E Knuth. Fundamental Algorithms , Volume 1 of The Art
of Computer Programming, Addison-Wesley, 1968, Second Edition,
1973.

Chapter 11. References 276

14. Donald E Knuth. Seminumerical Algorithms . Volume 2 of The Art
of Computer Programming, Addison-Wesley, 1969, Second Edition,
1981.

15. Donald E. Knuth. Sorting and Searching , Volume 3 of The Art of
Computer Programming, Addison-Wesley, 1973.

16. Y. Langsam, M.J. Augenstein, and A.M. Tenenbaum. Data Struc-
tures using C and C++. Second Edition, Prentice Hall, 1996. Indian
Edition published by Prentice Hall of India, 2000.

17. Eugene L Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B.Shmoys,
editors. The Traveling Salesman Problem. John Wiley & Sons, 1985.

18. Kurt Mehlhorn. Sorting and Searching. Volume 1 of Data Structures
and Algorithms. Springer-Verlag, 1984.

19. Kurt Mehlhorn. Graph Algorithms and NP-Completeness . Volume 2
of Data Structures and Algorithms , Springer-Verlag, 1984.

20. Kurt Mehlhorn. Multidimensional Searching and Computational Ge-
ometry . Volume 3 of Data Structures and Algorithms , Springer-Verlag,
1984.

21. Sartaj Sahni. Data Structures, Algorithms, and Applications in Java.
McGraw-Hill Higher Education, 2000.

22. Robert Sedgewick. Algorithms. Addison-Wesley, Second Edition,
1988.

23. Thomas A. Standish. Data Structures in Java. Addison-Wesley, 1998.
Indian Edition published by Addison Wesley Longman, 2000.

24. Nicklaus Wirth. Data Structures + Algorithms = Programs. Prentice-
Hall, Englewood Cliffs. 1975.

11.3 Original Research Papers and Survey Articles

1. G.M. Adel’son-Vel’skii and E.M. Landis. An algorithm for the or-
ganization of information. Soviet Mathematics Monthly , Volume 3,
pp.1259-1263, 1962.

Chapter 11. References 277

2. R. Bayer. Symmetric binary B-trees: Data Structures and mainte-
nance algorithms, Acta Informatica, Volume 1, pp.290-306, 1972.

3. R. Bayer and E.M. McCreight. Organization and maintenance of large
ordered indexes. Acta Informatica, Volume 1, Number 3, pp. 173-189,
1972.

4. Richard Bellman. On a routing problem. Quarterly of Applied Math-
ematics . Volume 16, Number 1, pp. 87–90, 1958.

5. Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L Rivest, and
Robert E. Tarjan. Time bounds for selection. Journal of Computer
and System Sciences , Volume 7, Number 4, pp.448-461, 1973.

6. Mark R. Brown. Implementation and analysis of binomial queue al-
gorithms. SIAM Journal on Computing, Volume 7, Number 3, pp.
298-319, 1978.

7. Alan Cobham. The intrinsic computational difficulty of functions.
In Proceedings of the 1964 Congress for Logic, Methodology, and the
Philosophy of Science, pages 24-30, North-Holland, 1964.

8. D. Comer. The ubiquitous B-tree. ACM Computing Surveys , Volume
11, Number 2, pp 121-137, 1979.

9. Stephen Cook. The complexity of theorem proving procedures. In
Proceedings of the Third Annual ACM Symposium on Theory of Com-
puting , pages 151-158, 1971.

10. E.W. Dijkstra. A note on two problems in connection with graphs.
Numerische Mathematik , Volume 1, pp 269-271, 1959.

11. Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Math-
ematics , Volume 17, pp 449-467, 1965.

12. Robert W Floyd. Algorithm 97 (Shortest Path). Communications of
the ACM , Volume 5, Number 6, pp. 345, 1962.

13. Robert W. Floyd. Algorithm 245 (TreeSort). Communications of the
ACM , Volume 7, pp.701, 1964.

Chapter 11. References 278

14. Michael L. Fredman and Robert E. Tarjan. Fibonacci heaps and their
uses in improved network optimization algorithms. Journal of the
ACM , Volume 34, Number 3, pp. 596-615, 1987.

15. C.A.R. Hoare. Algorithm 63 (Partition) and Algorithm 65 (find).
Communications of the ACM , Volume 4, Number 7, pp 321-322, 1961.

16. C.A.R. Hoare. Quicksort. The Computer Journal , Volume 5, Number
1, pp.10-15, 1962.

17. John E Hopcroft and Robert E. Tarjan. Efficient algorithms for graph
manipulation. Communications of the ACM , Volume 16, Number 6
pp.372-378, 1973.

18. David A Huffman. A method for the construction of minimum-redundancy
codes. Proceedings of the IRE Volume 40, Number 9, pp. 1098-1101,
1952.

19. Richard M. Karp. Reducibility among combinatorial problems. In
Raymond E. Miller and James W. Thatcher, editors, Complexity of
Computer Computations . pages 85-103, Plenum Press, 1972.

20. J.B. Kruskal. On the shortest spanning subtree of a graph and the
traveling salesman problem. Proceedings of the American Mathemat-
ical Society , Volume 7, pp 48-50, 1956.

21. R.C. Prim. Shortest connection networks and some generalizations.
Bell System Technical Journal , Volume 36, pp.1389-1401, 1957.

22. William Pugh. Skip Lists: A probabilistic alternative to balanced
trees. Communications of the ACM , Volume 33, Number 6, pp. 668-
676, 1990.

23. Robert Sedgewick. Implementing quicksort programs. Communica-
tions of the ACM , Volume 21, Number 10, pp.847-857, 1978.

24. Daniel D Sleator and Robert E. Tarjan. Self-adjusting binary search
trees. Journal of the ACM , Volume 32, Number 3, pp 652-686, 1985.

25. Robert E. Tarjan. Depth first search and linear graph algorithms.
SIAM Journal on Computing , Volume 1, Number 2, pp.146-160, 1972.

Chapter 11. References 279

26. Robert E. Tarjan. Amortized computational complexity. SIAM Jour-
nal on Algebraic and Discrete Methods , Volume 6, Number 2, pp.306-
318, 1985.

27. Jean Vuillemin. A data structure for manipulating priority queues.
Communications of the ACM, Volume 21, Number 4, pp.309-315,
1978.

28. Stephen Warshall. A theorem on boolean matrices. Journal of the
ACM , Volume 9, Number 1, pp.11-12, 1962.

29. J.W.J. Williams. Algorithm 232 (Heapsort). Communications of the
ACM , Volume 7, pp.347-348, 1964.

