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Abstract

Photoelectron spectroscopy with pulsed laser excitation can provide a low-background,

sensitive view of electronic states in the band gap and photo-populated states above

the Fermi level. Measurements of photoelectron emission for ultra-high vacuum

cleaved surfaces of CdSe, excited by 4.5 and 5.9 eV Ti:sapphire laser pulses of 150

femtosecond duration are reported. One- and two-photon excitation processes are

observed and analyzed in terms of features of the electronic structure. In order to

distinguish defect and surface contributions from the bulk properties of these systems,

computer modeling methods are needed.

The “SI-PAW” method is designed to solve the Kohn-Sham equations within the

projector augmented wave “PAW” formalism with boundary conditions appropriate

for the semi-infinite geometry of material surfaces. This method, which directly distin-

guishes between bulk, surface, and defect states, is an extension of the very successful

Appelbaum-Hamann method, modified to accommodate non-local potential terms in

the PAW formalism. In the bulk region, the wave functions are composed of linear

combinations of Bloch waves of the converged self-consistent periodic lattice. In the

vacuum region, the wave functions are composed of functions which decay or prop-

agate into the vacuum. In the interface region, the wavefunctions are composed of

extensions of the Bloch wavefunctions or surface states which decay into the material.

The interface wavefunctions are determined by putting the Kohn-Sham equations in

the form of boundary value problems, using the Numerov algorithm to approximate

the differential equations and the GMRES algorithm to solve them efficiently.



1

Chapter 1

Introduction

1.1 Simulation and physics

Many aspects of computational modelling make it a worthy partner of experimen-

tal science. The chemist studying a particular reaction can reach into the computer

simulation, alter bond lengths or angles, and then observe the effect of such changes

on the process taking place. The geophysicist interested in phase transitions occur-

ring deep inside the earth can model pressures and temperatures which could never

be reached in a laboratory. All of this can be achieved with a single piece of apparatus

- the computer itself.

Quantum-mechanical calculations stand out because they are by design ab initio

i.e. from first-principles, calculations. They do not depend upon any external param-

eters except the atomic numbers of the constituent atoms to be modelled and cannot

therefore be biased by preconceptions about the final result. Such calculations are

reliable and can be used with confidence to predict the behavior of nature.

Nevertheless, the same complexity which bars exact analytical solution also results

in the highly unfavorable scaling of computational effort and resources required. The

computational demands of “exact” (most accurate) calculations grow exponentially

with the size of the system being studied, so that they are too costly to be of significant

practical use. Despite the relentless progress of computer technology, this scaling

makes this approach inviable for some time yet.
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Well-controlled approximations can be employed to enable the equations to be

solved much more efficiently without sacrificing the predictive power or parameter-

free nature of quantum-mechanical calculations. Much progress has been made in

recent years in developing methods which exhibit polynomial rather than exponential

scaling. One such method, that of density-functional theory, coupled with a sim-

ple description of the quantum-mechanical effects of exchange and correlation and

the pseudopotential approximation, has proved to be remarkably successful and is

currently applied worldwide by scientists in a wide range of disciplines. Even this

method, however, requires a computational effort which scales with the cube of the

system-size i.e. is O(N 3), and so is limited in the scale of simulation which can be

realistically attempted.

There is a renewed interest in studying the detailed properties of interfaces and

surfaces of materials for both fundamental and technological reasons. For example

quantum oscillations have recently been observed and modeled in thin metallic films

[71, 11]. These oscillations have been shown to affect the stability of structures at

the nano scale. Similarly, extended systems with a single planar surface will also

have oscillatory behavior near the surface which can have significant effects on the

properties of intrinsic surfaces as well as of adsorbates and defects on surfaces. There

are a lot of technologies which depend upon or are affected by the detailed properties

of the electronic states on the surfaces of materials such as catalysis, chemical sensors,

the manufacture of electronic devices, and substrates for materials of interest in the

National Nanotechology Initiative

Here at Wake Forest university, R. T. Williams and his collaborators and students

[43, 58, 65, 72] have shown that sub-photoelectron-threshold (from valence band)

laser photoelectron spectroscopy is a particularly sensitive probe of surface defects

in a comparison with conventional photoemission spectroscopy. Specially Thoma

et.al.[65] have found high density of states in the band gap in most of the II-VI and

III-V group semiconductors. Laser photoemission has high power and low background

noise comparing to the conventional photoelectron emission. This makes it surface

specific and excellent for studying surface defects in the gap [40].

A crucial parameter in many applications and experiments is the energy of intrinsic
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and defect surface states relative to the bulk band edge and to the Fermi level. For

full understanding and predictive theory, it is important to be able to calculate bulk

and surface electronic states within the same theoretical framework. The main aim

of this project was to develop that capability. The experimental portion illustrates

one kind of data that we believe can be compared well to the theory in future work.

The computational methods can improve the means for calculating of surface states

properly referenced to bulk bands in a wide range of materials.

1.2 Previous work

In the large literature of surface simulations, the vast majority of the results have

been obtained using a supercell approach in the slab geometry. While this work has

been very successful in studying surface properties of materials, formulation of the

problem in the semi-infinite geometry has several advantages.

• The full computational effort can be focused on the interface region itself using

knowledge of the bulk calculation as input.

• Interference effects from the additional boundary of the slab are avoided,

• The semi-infinite geometry more closely represents the physical system and we

expect this to allow us to model details of surface physics which may not be so

readily apparent in other approaches.

There have been a relatively smaller number of the surface treatments based on the

semi infinite geometry. Some of these include the pioneering work of Lang and Kohn

[35, 36] on the self-consistent jellium surface, later extended by Lang and William

[37, 38] to treat an atomic adsorbate on a jellium surface. Appelbaum and Hamman

[3, 4] developed a method based on the local pseudopotential formalism and on nu-

merical integration of the Schrodinger equation in the surface region, matching to a

linear combination of Bloch waves in the interior of the solid. In order to treat ener-

getic electrons in low energy electron emission [28, 51] or in photoemission [24, 41] ,
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Green’s function methods using a muffin-tin potential approximation have been suc-

cessful. Unfortunately, it would be difficult to extend this formalism to self consistent

calculations. Stiles and Hamann[62] developed a method based on constructing a

Green’s function from generalized Bloch states in a linearized augmented plane wave

(LAPW) basis for treating electron transmission through interfaces [63]. In this case,

the self-consistency of the system was treated separately. In order to self-consistently

determine the electronic and structural ground state of semiconductor surfaces, Kri-

iger and Pollmann developed a method based on a Green’s functions expressed in a

Gaussian basis. [33] This approach has been quite successful for studying the lat-

tice relaxation and surface state structure of several semiconductor surfaces[54, 55].

However, since the perturbing potential of this method is the difference between the

surface potential and the potential of two semi-infinite perfect crystals, it is difficult

to treat the effects of longer range interactions such as the image potential or to

represent states which carry photocurrent. Recently, there is an interest of using the

semi infinite method in quantum wires. Choi et.al [8], calculated the low temprature

conductance of (10,10) carbon nanotubes with defects.

This report is organized as follows. In Chapter 2, we present a fundamental

introduction to density functional theory, since it is the basis of our method. In

Chapter 3, we present results of our laser photoelectron spectroscopy study on CdSe

112̄0 crystal surface to identify the surface states. Detailed explanations of our semi-

infinite calculation method are shown in Chapter 4. Chapter 5 presents an analysis of

our theoretical method compared to our “unsuccessful” methods. Chapter 6 gives a

user guide to our surface pwpaw code. Chapter 7 contains some concluding remarks

and a list of future work.
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Chapter 2

Background

2.1 Defects/Impurities

It is useful to think about solids in terms of a regular repeating pattern of planes of

particles. Few crystals are perfect in that all unit cells consist of the ideal arrangement

of atoms or molecules and all cells line up in a three dimensional space with no

distortion. Some cells may have one or more atoms less whereas others may have one

or more atoms than the ideal unit cell. The imperfection of crystals are called crystal

defects. Crystal defects can be classified as point, line, or plane defects.

2.1.1 Point defects

There are four types of point defects. When a particle is missing at one or more

lattice sites we get a vacancy. When a particle forces its way between lattice sites,

we get an interstitial impurity1. Substitutional impurities result from replacing the

particle that should occupy a lattice site with a different particle. Dislocations are

one-dimensional defects caused by holes that are not large enough to be a vacancy.

Point defects (vacancies or interstitial defects) are common in crystals with large

anions. In some cases, these ions have some freedom to move about in crystals,

making them relatively good conductors. So this shows that point defects are not

1We have done some oxygen interstitial defect studies in PbWO4 and CaMoO4 crystals[1]
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always bad, they can be useful if they are well enginered.

2.1.2 Line defects

Line defects are mostly due to misalignment of ions or presence of vacancies along

a line. The hammering and stretching of materials often involve the movement of

edge dislocation. Movements of dislocations give rise to their plastic behavior. Line

dislocations usually do not end inside the crystal, and they either form loops or end

at the surface of a single crystal.

2.1.3 Plane defects

Plane defects occur along a 2-dimensional surface. Surface atoms are different

from those deep in the crystals. One of the common plane defect is the stacking fault

defect. For example, in the perfect crystal, the adjacent layers may have an ordered

relationship, such as ABAB or ABCABC.... A plane defect could be described by

one of the layers occurring out of sequence such as ABAAB ... or ABABCABC.....

2.1.4 Surface defects

Surfaces are created by cutting a periodic bulk crystal along a certain plane. This

breaks the periodicity along the direction perpendicular to the surface. This break

in periodicity creates surface defects. Atoms at the surface experience a different

bonding environment than the ones deep inside the bulk. This causes the layers at

near the surface to relax and reconstruct.

The phenomena of relaxation and reconstruction involve rearrangements of surface

atoms, this process is driven by the energetics of the system i.e. the desire to reduce

the surface free energy. The arrangement of atoms at a free surface differs slightly

from the interior structure because the surface atoms do not have neighboring atoms

on one side.

Relaxation is a small and subtle rearrangement of the surface layers. It involves

adjustments in the layer spacings perpendicular to the surface, there is no change
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either in the periodicity parallel to the surface or to the symmetry of the surface. So

in principle if one take a low energy electron diffraction2 of a relaxed surface only, the

pattern should look similar to the unrelaxed surface.

Unlike relaxation, the phenomenon of reconstruction involves a change in the

periodicity of the surface structure along the surface plane.

2.2 Density functional theory

Over the past four decades, our ability to treat materials properties at a funda-

mental, quantum level has improved tremendously, in large part because advances in

computer power has allowed us to actually solve hard equations and try things out.

Today it is possible, for instance, to calculate the unit cell dimensions of a crystalline

solid from first principles with a reliability in the range of a few percent. A wide

variety of geometric and structural behaviors, such as the location of impurities, the

structures of defects, dislocations, grain boundaries, and surfaces can similarly be

calculated from first principles. Once the geometry has been determined, a range

of properties-electronic, optical, and magnetic can also be calculated with varying

degrees of reliability.

The advances that made this possible were largely incremental and are described

in various contexts in terms of one-electron theory, band theory or self-consistent-field

theory. From the late 1960s onwards, these terms found some formal legitimacy in a

theory of energy and force in electronic systems called density functional theory.

In principle, all knowledge about a system can be obtained from the quantum

mechanical wave function. This is obtained (non-relativistically) by solving the

Schrödinger equation of the complete many electron system. However in practice

solving such an N-body problem proves to be impossible. This chapter will give a

brief description of earlier approximations made to solve this many-body problem

and a description of the important physical features omitted from these theories. For

these reasons it is necessary to use density functional theory developed by Kohn and

2More discussion about low energy electron diffraction will appear in Chapter 3.
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Sham [31] based on the theory of Hohenberg and Kohn [22] which, in principle, is

an exact ground state theory. As the name suggests, the fundamental variational

parameter is the electron charge density rather than the electronic wavefunctions.

In this formalism, the N-electron problem is expressed as N one-electron equations

where each electron interacts with all other electrons via an effective Coulomb and

exchange-correlation potential. These interactions are then calculated using the local

density approximation to exchange and correlation. Plane wave basis sets and total

energy pseudopotential techniques are then used to solve the Kohn-Sham one electron

equations.

There are now many articles on this subject which review the topics involved in

total energy calculations in depth such as those in references [46, 47, 50] . Therefore

in this chapter only a brief description of the methods used for the total energy

calculations used in later chapters will be discussed.

2.2.1 Schrödinger equation

Until the end of the nineteenth century, it was thought that atomic and subatomic

particles behaved in the same way as much larger objects. Newton’s laws of classical

mechanics accurately described the motion of everyday objects and planets and it

was assumed that the same laws governed the motion of particles such as atoms and

electrons.

However, experimental evidence was accumulating to suggest that this was not

the case. Inconsistencies were observed by scientists studying black body radiation,

heat capacities, atomic and molecular spectra and electromagnetic radiation which

suggested that only certain discrete values for the energy of a system are possible [13].

This was in complete contrast to classical mechanics which predicts that there should

be no restrictions on the energy which a system can take. This phenomenon is known

as quantization and these observations led to the birth of Quantum Mechanics. The

discovery of quantization forced scientists to change the way in which they described

matter. Classical physics described matter as particles which travel along definite

paths but quantum mechanics requires matter to be described as particles distributed
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through space like a wave.

This wave is called the wavefunction, Ψ. It is a mathematical expression which

contains all the information known about the particle. The wavefunction can be

found by solving the Schrodinger Equation [13]. The time-independent Schrödinger

equation is:

HΨ = EΨ (2.1)

Where,

H = − ~2

2m

∑

i

∇2
i −

∑

i,a

Zae
2

|ri − Ra|
+

1

2

∑

i6=j

e2

|ri − rj|
. (2.2)

Where Za is the atomic number of ion a,e is the charge of an electron, Ra is the

position of the ath ion, ri and rj are the positions of the ith and jth electrons, m is

the mass of an electron, ~ is the Plank’s constant.

By including all the forces acting on the particle, its position in space relative to

the other particles with which it is interacting and other boundary conditions, such

as the space in which the particle is confined, the Schrödinger equation calculates the

particle’s allowed wavefunctions and corresponding energy levels. Each energy level

is defined in terms of a set of quantum numbers. The Born Interpretation of the

wavefunction relates to the probability of finding the particle at different positions in

space.

If the wavefunction of a particle has the value Ψ at some point r, the probability

of finding the particle between r and r + dr is proportional to |Ψ|2dr. Ψ is called the

probability amplitude and |Ψ|2 is called the probability density

The probability of finding the particle at a given position is not the only infor-

mation contained in the wavefunction. The wavefunction carries all the information

known about the particle. Properties such as the particle’s kinetic energy can also be

found from the wavefunction.
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2.2.2 Hartree-Fock theory

Schrödinger equation rarely solved exactly. In most cases, one has to use ap-

proximations. The first successful attempt to derive approximate wave functions for

atoms was devised by Hartree (1928) [20]. In this approach the many-electron wave

function Ψ is approximated by the product of one-electron functions ψ for each of the

N electrons:

Ψ(r1, r2, ..., rN) = ψ1(r1)ψ2(r2), ..., ψN(rN) (2.3)

where ri, are the positional coordinates for the i-th electron. For the sake of clarity

the spin variables are not shown. The individual one-electron functions ψi are called

orbitals and describe each electron in the atom. This approximation have some short-

comings:

• It assumes that electrons in the atom can be described independently, that

is, their movements do not depend upon each other and their interaction is not

pairwise, but each electron interacts with some averaged field of other electrons.

This is a neat idea, the problem is that it is not true. Electrons have to avoid

each another or correlate their movements, since the Coulomb interaction causes

them to repel each other.

• The Hartree function does not have a proper symmetry for interchanging parti-

cle indices for fermions. The Pauli principle states that the many electron wave

function has to be antisymmetric to the exchange of neighboring indices, that

is, change sign:

Ψ(r1, r2, · · · ri, ri+1, · · · rN) = −Ψ(r1, r2, · · · ri+1, ri, · · · rN) (2.4)

The Hartree wavefunction (2.3) is in violation of the Pauli principle, which in general

imposes a change of sign of the total wavefunction when two electrons are switched.

Their next level of theory beyond the Hartree approximation is Hartree-Fock the-

ory. The many body electronic wavefunction is also constructed from one-electron

functions. The total wave function for the system was not a simple product of or-

bitals, but an antisymmetrized sum of all the products which can be obtained by



11

interchanging electron labels. It is conveniently represented as a determinant called

Slater determinant:

Ψ(r1, r2, ..., rN) =
1√
N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1) ψ2(r1) · · · ψN (r1)

ψ1(r2) ψ2(r2) · · · ψN (r2)

ψ1(r3) ψ2(r3) · · · ψN (r3)
...

...
...

...

ψ1(rN) ψ2(rN) · · · ψN (rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.5)

The Pauli principle approximated in the independent electron approximation de-

scribed above, does not allow more than one electron to occupy a given state. This

wavefunction can be inserted into the Hamiltonian, equation 2.2, and an expression

for the total energy derived. Applying the theorem that the value of a determinant is

unchanged by any non-singular linear transformation, we may choose the ψi to be an

orthonormal set. We now introduce a Lagrange multiplier εi to impose the condition

that the ψi are normalized, and minimize with respect to the ψi functions.

δ

δψ

[
< ~H > −

∑

j

εj|ψj|2dr
]

= 0 (2.6)

An enormous simplification of the expressions for the orbitals ψ results. They

reduce to a set of one-electron equations of the form

−1

2
∇2ψi(r) + Vnuc(r)ψi(r) + U(r)ψi(r) = εiψi(r) (2.7)

where U(r) is a non-local potential and the local nuclear potential is denoted by

Vnuc(r). The one-electron equations resemble single-particle Schrödinger equations.

The full Hartree-Fock equations are given by

εiψi(r) =

(
−1

2
∇2 + Vnuc(r)

)
ψi(r) +

∑

j

e2
∫
dr′

|ψi(r′)|2
|r− r′| ψi(r) (2.8)

− e2
∑

j

δσiσj

∫
dr′

ψ∗
j (r

′)ψi(r
′)

|r − r′| ψj(r) (2.9)
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The right hand side of the equations consists of four terms. The first and second

give rise are the kinetic energy contribution and the electron-nuclear potential. The

third term, or Hartree term, is the simply electrostatic repulsion potential arising from

the charge distribution of N electrons. As written, the term includes an unphysical

self-interaction of electrons when i = j. This term is cancelled in the fourth, or

exchange term. The exchange term results from our inclusion of the Pauli principle

and the assumed determinantal form of the wavefunction. The effect of exchange

is for electrons of like-spin to avoid each other. Each electron of a given spin is

consequently surrounded by an “exchange hole”, a small volume around the electron

which like-spin electron avoid.

Hartree-Fock theory, by assuming a single-determinant form for the wavefunction,

neglects correlation between electrons. The electrons are subject to an average non-

local potential arising from the other electrons, which can lead to a poor description

of the electronic structure. Although qualitatively correct in many materials and

compounds, Hartree-Fock theory is often insufficiently accurate to make accurate

quantitative predictions.

The Hartree-Fock equations are solved using an iterative scheme. The starting

point is an approximative description of the single particle functions, ψi(r). These

could be hydrogen-like functions, but usually some better approximations are used.

With these starting functions, the Hartree-Fock potential is constructed and the eigen-

value equation (2.8) is solved. Then a new set of single-particle functions are obtained

and a new Hartree-Fock potential is constructed and again the eigenvalue equation

is solved. This is done over and over again until the single particle functions ψi(r) as

well as the energy eigenvalues εi are stable.

2.2.3 Variational principle

The Variational Principle provides the starting point for almost all methods which

aim to find an approximate solution to Schrödinger’s equation. It was discovered very

early in the history of quantum mechanics [5] . The variational principle states that if

we take some trial wave function Ψ for a system and calculate the expectation value
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of energy E, this energy will be either higher, or equal to the ground state energy E0,

which is the expectation value of the system calculated using the true ground state

wave function Ψ0.

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 ≥ E0 =

〈Ψ0|H|Ψ0〉
〈Ψ0|Ψ0〉

(2.10)

The E = E0 occurs only if Ψ is equivalent to Ψ0, but otherwise,E > E0. For proof of

the theorem refer to [60, 42]

What is more important however, that this theorem provides us with the pre-

scription how to find the good wave function: try to go as low with the expectation

value of energy, as you can since you cannot go lower than the true value. And the

lower you go, the better you are. But be careful, the principle is true only if we are

applying a true Hamiltonian in the expression for expectation energy. Of course, if

your Hamiltonian does not represent a physical system, you can get whatever you

wish.

2.2.4 Hohenberg and Kohn theorems

The basics of the rigorous density functional theory (DFT) were laid in 1964 with

the publication of the Hohenberg and Kohn paper [22] in which they proved two

theorems which will be formulated below. For an N -electron system, the external

potential or Vext (the electrostatic potential of the electrons due to nuclei) completely

fixes the Hamiltonian; thus N and Vext determine all properties for the ground state.

We consider non-degenerate ground states only, but the theory can be extended to

degenerate systems [49]. This of course is not surprising since Vext defines the whole

nuclear framework of a system, which together with the number of electrons N, deter-

mines all the electronic properties. Notice also that ρ(r) and N are related through

the normalization condition

N =

∫
ρ(r)d3r, (2.11)

Instead of N and Vext, the first Hohenberg-Kohn theorem legitimizes the use of electron

density ρ(r) as basic variable. It states:

The external potential Vext is determined, within a trivial additive con-
stant, by the electron density ρ(r).
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Notice that this constant does not change anything, since the Schrödinger equation

with Hamiltonians H and H + const will yield exactly the same eigenfunctions and

all the energies will be simply shifted by the value of this const, which just establishes

the zero energy reference.

An alternative formulation of the theorem is: Every observable of a stationary

quantum mechanical system (including energy), can be calculated, in principle ex-

actly, from the ground-state density alone, i.e., every observable can be written as a

functional of the ground-state density.

The proof of this theorem is quite simple. The proof was made through contra-

diction.

1. Assume that we have an exact ground state density ρ(r).

2. Assume that the ground state is nondegenerate.

3. Assume that for the density there are two possible external potentials: Vext

and V ′
ext , which obviously produce two different Hamiltonians: H and H ′,

respectively. These produce two different wave functions for the ground state:

Ψ and Ψ′, respectively. They correspond to energies E = 〈Ψ|H|Ψ〉 and E ′ =

〈Ψ′|H ′|Ψ′〉.

4. The expectation value of energy for the Ψ′ with the Hamiltonian H is always

larger than the ground state energy according to the variational theorem:

E0 = 〈Ψ|H|Ψ〉
< 〈Ψ′|H|Ψ′〉 (2.12)

< 〈Ψ′|H −H ′ +H ′|Ψ′〉
< 〈Ψ′|H −H ′|Ψ′〉 + 〈Ψ′|H ′|Ψ′〉
<

∫
ρ(r)[Vext(r) − V ′

ext(r)]dr + E ′
0 (2.13)

5. Now let’s calculate the expectation value of energy for the Ψ with the Hamil-

tonian H ′ and apply again the variational theorem:

E ′
0 = 〈Ψ′|H ′|Ψ′〉
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< 〈Ψ|H ′|Ψ〉 (2.14)

< 〈Ψ|H ′ −H +H|Ψ〉
< 〈Ψ|H ′ −H|Ψ〉 + 〈Ψ|H|Ψ〉
< −

∫
ρ(r)[Vext(r) − V ′

ext(r)]dr + E0 (2.15)

6. By adding eqs. (2.13) and eqs. (2.15) we arrive at:

E0 − E ′
0 < E ′

0 − E0

This obviously leads to a contradiction, and so there cannot be two different

Vext that give the same ρ(r) for their ground states. Thus, ρ(r) determines N

and Vext and hence all properties of the ground state. This will give us a chance

to write the total energy as a functional of the density as E[ρ].

The second Hohenberg-Kohn theorem provides the energy variational principle. It

reads:

For a trial density ρ̃(r) such that ρ̃(r) ≥ 0 and
∫
ρ̃(r)d3r = N,

E0 < E[ρ̃].

In other words, if some density represents the correct number of electrons N , the

total energy calculated from this density cannot be lower than the true energy of the

ground state and the ground state density can be calculated, in principle exactly,

using the variational method involving only density.

To prove this theorem is straight forward by using the first theorem above. Note

that the previous theorem assures that ρ̃(r) determines its own Vext, Hamiltonian H,

and wave function Ψ̃. Using this wave function as a trial wave function, one can

calculate the expectation value of the ground state Hamiltonian, which is E[ρ̃]. But

we know from variational principle that this energy should be greater that the energy

of the true wave function (E[ρ] ≡ E0). Therefore, E[ρ̃] ≥ E0.
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2.2.5 Kohn-Sham theorems

The total-energy functional looks like the following [31].

E[{ψ(r)}] =
∑

i

fi

∫
ψ∗
i (r)

(
− ~2

2m
∇2ψi(r)

)
d3r (2.16)

+

∫
Vnuc(r)ρ(r)d

3r

+
1

2

∫
φ(r)ρ(r)d3r

+

∫
fxc(ρ(r))d

3r

+ Unn

for i = 1, 2, ..., number of orbital, and where:

• fi (usually equal to two) is the number of electrons in orbital i.

• ψi(r) are called the Kohn-Sham orbitals. An orbital often is described as a

three-dimensional region within which there is a high probability of finding the

electron [48]. These orbitals also describe the behavior of the electrons.

• ψ∗
i (r) is the complex conjugate of ψi(r).

• ~ is the Plank’s constant.

• m is the mass of an electron.

• d3r is a volume element.

• Vnuc(r) = −Ke2
∑

a
Za

|r−Ra|
is the single electron potential at point r, where K

is the Coulomb’s constant, Ra is the distance from point r to nucleus a. e is

the elementary charge, and Za is the atomic number of nucleus a.

• Unn = 1
2
Ke2

∑
a6=b

ZaZb

Rab
is the total potential energy arising from the interactions

among all the nuclei. Where Rab is the separation between nuclei a and b.

• ρ(r) =
∑

i fi|ψi(r)|2is the volume density (number per unit volume) of electrons.
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• φ(r) = Ke2
∫ ρ(r′)d3r

|r−r′|
is the total Coulomb potential for a single electron at

position r due to electronic charge density ρ(r).

• fxc is the exchange and correlation function.

It is important to note that not all parts of the right hand side of (2.16) are known. In

particular, the eXchange-Correlation (XC) part (which is the fxc(ρ(r)) term) must be

approximated. This function depends on what approximation method we are using.

The orbital wave functions ψi can be any functions as long as they obey the following

constraint of orthonormality:

∫
ψ∗
i (r)ψj(r)d

3r =

{
1 i = j

0 i 6= j
. (2.17)

We now have an expression for the energy in terms of the orbitals, but which

orbitals are the right ones to use? The answer is quite sensible: the correct orbitals

are those which minimize the total energy E (2.16) while satisfying the orthonormality

condition (2.17). To minimize (2.16) we need to solve ∂E({ψi(r)})
∂ψi(r)∗

= 0. This leads to

Kohn-Sham equations [31]:

To make things simpler, we can combine (2.16) and (2.17) using Lagrange multi-

plier λi and minimize it as follows:

0 =
δ

δψ∗
i (r)

(
E[{ψ(r)}] −

∑

i

λi

∫
ψ∗
i (r)ψi(r)

)
(2.18)

Now we can apply the derivative term by term. The first term (the kinetic energy

of the electrons), has only one ψ∗
i (r) in it, so the derivative looks like : −fi ~

2

2m
∇2ψi(r).

For the electron-nuclear potential energy (second term), the only term which depends

on ψ∗
i (r) is the charge density. But the nuclear potential, Vnuc(r), is independent of

ψ∗
i (r). So its derivative takes of the form of fiVnuc(r)ψi(r). The electron-electron en-

ergy, (third term), has a very similar structure and it will take of the form fiφ(r)ψi(r).

For the exchange-correlation term, (fourth term), applying chain rule will lead to

fif
′
xc(ρ(r))ψi(r). Where f ′

xc(ρ(r)) ≡ δfxc(ρ(r))
δρ

. The final term of (2.16), the ion-ion

interaction does not depend on ψ∗
i (r), so there is no contribution to the derivative
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term. Finally, the constraint term in (2.18) has only one ψ∗
i (r) and contributes to the

form −λiψi(r).
Collecting all the terms and setting the result to zero and dividing all the terms

by fi, results in the following equation:

− ~2

2m
∇2ψi(r) + [Vnuc(r) + φ(r) + f ′

xc(ρ(r))] =
λi
fi
ψi(r). (2.19)

We can re-write (2.19), so as to look like the famous Schrodinger equation as

follows.

− ~2

2m
∇2ψi(r) + V (r)ψi(r) = εiψi(r), (2.20)

where,

V (r) ≡ Vnuc(r) + φ(r) + f ′
xc(ρ(r)) (2.21)

and εi ≡ λi

fi
.

So how do we find the correct wave function? Lets see the steps needed to compute

the best wave functions using the above mentioned equations of Kohn and Sham.

To evaluate the various terms in (2.16), we need the correct orbitals ψi(r), which

we can find from V (r) using a Kohn-Sham-solver routine to solve (2.19). But to

determine V (r) according to (2.21), we need the nuclear potential, the potential from

the electrons and a simple subroutine to evaluate the functions fxc and f ′
xc for a

giving starting density ρ(r). The minimum of E obtains only when all of the above

equations hold simultaneously. In particular, the density must be self-consistent.

That is, the density ρ1(r) which we input must lead to a potential V (r) which gives

rise to a set of orbitals ψi(r) that sum to a final density ρ2(r) which should equal

to the input density ρ1(r). If ρ1(r) 6= ρ2(r), we generate a new input density ρ1(r)

from a combination of previous densities and continue the self consistent iterations.

Figure (2.1), shows these process graphically. This method of solution is called Self

Consistent Field theory (SCF).

2.3 The pseudopotential approximation

To calculate the electronic wavefunctions for a relatively large slab including all

the electrons is an extremely hard task; in an element such as silicon, where the
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Figure 2.1: Basic self consistent field loop for solving Kohn-Sham equations.
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outer, or valence, electrons are in the 3s and 3p orbitals, their wavefunctions must be

orthogonal to those of the inner, core states due to the Pauli exclusion principle. This

entails introducing nodes into these wavefunctions, which in turn gives them a high

kinetic energy in the core region, requiring a high plane wave cutoff and increasing

computational time enormously. What is done in practice to make the calculation

easier is to replace both the inner electrons and potential with another potential.

Because the orthogonality requirement, due to the inner, core electrons, means that

the nuclear charge has less effect on the outer electrons - they are screened. There is

a close cancellation between the attractive, Coulomb potential from the nucleus and

the repulsive orthogonality requirement from the core electrons. This can be taken

advantage of, by replacing the strong, nuclear Coulomb potential inside a certain

radius with a weaker “pseudopotential”, and modelling only the valence electrons

(which should now be referred to more properly as pseudoelectrons). Figure (2.2)

shows an example of pseudopotential for Cd atom generated using the projector

augmented wave (PAW) formulation using ATOMPAW [27].

Electrons with different angular momentum components (e.g. s or p electrons)

will scatter differently from an atomic potential (or a pseudopotential). The best

way to correctly represent this different scattering with a pseudopotential is to use

different projectors and potentials for different angular momentum components:

VNL =
∑

lm

|lm〉Vl〈lm| (2.22)

where Vl s the pseudopotential for angular momentum component l. This form of

pseudopotential is known as a non-local pseudopotential, and it allows the mainte-

nance of softness of a pseudopotential (i.e. allowing the plane wave cutoff to be kept

small) while correctly reproducing the scattering and phase shift of the electrons.

Another key feature of a pseudopotential is that the wavefunctions and charge

density outside the core region should be identical to those produced by the genuine

ionic potential. If the integral of the pseudo-charge density within the core is made

to be equal to the integral of the real charge density in the core, then this condition,

known as norm conservation, is fulfilled. Norm-conserving pseudopotentials were first

introduced by Starkloff and Joannopoulos ([29, 61] for local pseudopotentials only, and
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Figure 2.2: A plot of true potential (red solid line in (a)) and its corresponding

pseudopotential (green dashed line in (a)) for Cd. Diagram (b) shows the 4s all

electron (red solid line) and pseudowavefunction (green dashed line) for Cd atom.

These were generated in the the PAW formulation using ATOMPAW.
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accurately described the valence energies and wave functions of many heavy atoms

accurately. The method was extended to non-local pseudopotentials by several groups

[56, 19, 73, 6]. As Hamann et al. [19] observed, the matching of the real and pseudo

wavefunctions outside the core guarantees that the first order energy dependence of

the scattering is correct, so that the scattering is described correctly for a wide range

of energies. The most recent development in pseudopotentials involves relaxing the

norm conservation criterion, in order to reduce further the plane wave cutoff required

(in particular for extremely hard elements such as oxygen)[68]. This in turn requires

non local pseudo potentials to reproduce the energy scattering properties for the

same wide range of energies. The use of Vanderbilt pseudopotentials (also known as

ultrasoft pseudopotentials) can speed up calculations.

Vanderbilt’s ultra-soft pseudopotential is the most widely used at this time. But

there are several drawbacks that intimidate users. One of the problems is that the

method to construct the pseudo potentials needs many parameters and several cutoff

radii. This leads to testing the potentials extensively in order to obtain an accurate

and highly transferable pseudopotential.

A very similar approach is given by Blöchl’s projector augmented wave method[7]

(PAW), with an additional advantage. The PAW method maps all electron (AE) wave

functions (one-electron eigenfunctions of the Kohn-Sham equations) onto a pseud-

ofunction that is smooth in the regions close to the nuclei. Unlike the ultrasoft

approach, a key advantage here is that the mapping is reversible. That is, one can re-

cover the complete nodal behavior of the all electron wave function. This is achieved

without increasing computational calculation. For more derivations of this approach,

readers are advised to read references [7, 25, 26].
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Chapter 3

Experimental motivation

3.1 Foundations of our experiment

3.1.1 Photoelectron spectroscopy

Electron spectroscopy is when electrons created by photoionization are used as

carriers of information about the system they have just left behind, and the interaction

mechanisms. The photoelectric effect was explored in 1887 by Heinrich Hertz. He

could produce an electric current in a photocell by simply illuminating the cathode

with light of sufficiently short wavelength [13]. The photoelectric law was formulated

by Albert Einstein in 1905. He introduced a quantization of the radiation and in

this description the radiation appears in the form of wave packets, or energy quanta.

Each photon has a given wavelength λ and, accordingly, E is given by

E = h
c

λ
= hν (3.1)

where h is Planck’s constant, c is the speed of light and ν is the frequency of the

radiation.

The photoelectric law was written originally

hν = EB + Ekin (3.2)

where Ekin is the kinetic energy of the photoelectron, hν is the energy of the photon

absorbed and EB is the binding energy of the electron in the atom. This atomic



24

phenomenon can be modified to work for solid surfaces. In solids, the highest filled

electronic state is the valence band. The electrons in this band are prevented from

escaping the sample by an energy barrier called the work function. The relation in

(3.2), then needs to be modified to account for the work function (φ)as:

Ekin = hν − EB − φ. (3.3)

The Ekin is usually measured relative to vacuum energy (Evac). The vacuum level

is the energy of an electron which is just outside the sample surface with zero kinetic

energy.

In principle, it should be possible to put an instrument in front of the photoelectron

and measure its kinetic energy, thereby gaining information about the binding energy

of the electron via the photoelectric law. In fact,this is precisely what is being done

and this idea forms the basis of the technique of photoelectron spectroscopy.

3.1.2 Recording of photoelectron spectra

The independent experimental variable for recording a spectrum is the voltage

V applied between the cylindrical mirror analyzer. A voltage applied between two

cylindrical electrodes disperses the electrons with respect to their kinetic energy. In

order to record a full spectrum, the applied voltage must usually be swept. Therefore

a variable voltage supply that is controlled by a computer is normally used in the

place of V . In the simplest arrangement the electrons are detected by means of a

single channel electron detector behind a slit. A complete spectrum is obtained by

stepping the voltage between the cylindrical electrodes and counting the number of

electrons per unit time reaching the detector as a function of the applied voltage. The

time and voltage steps are determined by the operator depending on the requirements

of statistics and resolution in the experiment.

3.1.3 Two-photon photoemission

Photoemission spectroscopy has established its firm position as the most versatile

technique to study electronic states in solids and at surfaces as well as of adsorbates
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on solid surfaces. The photoemission spectrum is almost a copy of the density of

states below the Fermi level from which the electrons are excited above the vacuum

level. Photoemission occurs not only by absorbing a single photon exceeding the work

function (one-photon), but also by successive absorption of two (pump and probe)

photons of energy ω1 and ω2 respectively under the conditions

~ω1 < φ and ~(ω1 + ω2) > φ, (3.4)

where φ is the work function. One-photon photoemission can be used as a tool to

study the population and dynamics of normally occupied surface and valence band

states. In the process of two-photon photoemission the first pump photon ω1 excites

an electron from an occupied state below the Fermi level (EF ) to an intermediate

state between EF and Evac. Upon absorption of a second probe photon ω2, during the

survival time of the electron in a transiently populated intermediate state, electrons

are excited above Evac to final photoelectron states, whose kinetic energy distribution

curve is the two-photon photoemission spectrum.

Photoelectron spectroscopy is very sensitive to surface states. In previous experi-

ments done here at Wake Forest University, a high density of states in the band gap

was observed in most of the II-VI and III-V group semiconductors [43, 58, 65]. One-

and two-photon photoemission would be a handy method to better understand these

“unusual” (defect) states in the gap. Two-photon photoemission is used to excite

and probe unoccupied intermediate states while one-photon photoemission is used to

assess the occupied states.

The focus of our project was on using photon energies below the valence photoelec-

tron threshold to observe surface defects in the band gap of a cleaved crystal of CdSe.

These defects can be grouped into two groups: intrinsic and extrinsic. Vacancies,

interstitials (atoms occupying non lattice sites) and antisite defects (atoms occupy

a wrong lattice site) are considered in the intrinsic group while impurity atoms and

surface step structures caused by bad cleavage are considered to be extrinsic defects.

The advantage of our pulsed laser PES to that of a conventional PES is that, we

use a very low photon energy and an intense laser beam. We do not excite electrons

directly from the valence band with the low photon energy, and the laser beam power
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(∼ 1016 photons/second) allows high sensitivity.

3.1.4 AES basics

Auger Electron Spectroscopy (AES) is an analytical technique that uses a primary

electron beam to probe the surface of a solid material. Secondary electrons that are

emitted as a result of the Auger process are analyzed and their kinetic energy is

determined. The identity and quantity of the elements are determined from the

kinetic energy and intensity of the Auger peaks.

The Auger electrons start with narrow energy distribution, but they soon lose

energy as they pass through materials. Auger electrons fail to emerge with their

characteristic energies if they start from deeper than about 1 to 5 nm into the surface.

Thus, Auger analysis is surface specific. Auger electrons that escape from deeper

in the sample contribute lower energy loss tails to the spectrum background. The

secondary and backscattered electrons have broad energy distributions that tail into

the Auger region. The sum of these interfering signals is much greater than the Auger

signals themselves. Auger display algorithms use differentiation to enhance the signal

relative to the interferences.[16]

Auger electrons are emitted at discrete energies that allow the atom of origin to

be identified. The Auger process involves three steps:

• atom is ionized by removing a core electron,

• upper level electron falls to lower level,

• third electron (Auger electron) is excited by the energy given off in step 2 and

detected.

Note that the atom is left with two vacancies so that this technique cannot detect

hydrogen or helium.
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3.1.5 Low energy electron diffraction (LEED) basics

Electrons which have been accelerated through a potential of 30 to 500 volts (i.e.,

their kinetic energy is around 30 to 500 eV), have a wavelength given by the de Broglie

relation which varies from 2.2 Å to 0.5 Å in this case. This fits nicely into the range

of distances between atoms in solids and therefore these “low energy” electrons are

diffracted by them. The recording and analysis of the diffraction pattern can tell us

the arrangement of the atoms on the surface. The sharpness of the pattern is related

to the extent of order of the atoms on the surface.

The experiment consists of an electron gun that forms an electron beam with a

narrow kinetic energy spread. This beam scatters from the sample surface through a

set of charged grids which function to energy select only the electrons which elastically

scatter from the surface and are then accelerated to a fluorescent screen. When they

strike the screen, they cause the phosphor to glow, revealing a pattern of dots which

is the diffraction pattern.

3.2 Experimental setup

3.2.1 PES

Optical set up

A mode-locked Ti:sapphire laser system with 130 fs pulse width, 76 MHz repe-

tition rate, and an average power of 700 mW has been used as a photon source. It

has a tunable wavelength range in the infrared region between 770 to 900 nm. In

order to overcome the work function of our crystal, our experiment was done using

Second Harmonic (SH), Third Harmonic (TH) and Fourth Harmonic(FH) generated

for exciting and probing the defect states.

The TH light was generated using 820 nm wave length fundamental light, while

the FH was generated using 840 nm. These fundamentals gives rise to 4.5 eV and

5.9 eV TH and FH generated lights respectively. The reason we select two different

fundamental wave lengths are due to wave length restrictions on the optical lens and
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beta-barium borate (BBO) crystal used in the experiment.

The optical setup for second and fourth harmonic generation is shown in Figure

(3.1). The fundamental (IR) light was focused by the first lens into the first BBO

crystal. This produces blue light with double the frequency of the fundamental and

perpendicular polarization to the fundamental. A second lens is used to focus the blue

light to a second BBO crystal to generate the ultraviolet fourth harmonic light. The

frequency of the fourth harmonic is double that of second harmonic and quadruple

that of fundamental IR light.

In all the doubling process there is some residue of light that passes through the

BBO without doubling. Therefore the final light is not only fourth harmonic light but

also a combination of second harmonic and fundamental light. So a prism was used

to select which beam of light to send to the sample. A prism has been used instead

of a regular filter so as to gain more beam power. Regular filters decrease the power

of the transmitted beam by up to 50% whereas prisms have a loss of only about 10%

due to surface reflections and ultraviolet absorption.

The setup for third harmonic (THG) is shown in Figure (3.2). The first lens

focuses the fundamental (IR) light into the first BBO to produce the second harmonic

blue light. A second lens is used to collimate the beam. A dichroic mirror is used

to separate the visible (second harmonic) from the fundamental (IR) beam. The

dichroic mirror transmits IR (820 nm) and reflects SH (420 nm). The dichroic and

aluminum mirror are used to rotate the polarization of the SH beam from vertical to

horizontal. To generate THG, the polarization of SH and IR must both be aligned

with the ordinary axes of the second BBO crystal. Please note that after the first

BBO crystal the polarization of SH is 90o relative to the original IR beam.

The SH beam travels a fixed path while the IR travels a variable path length. This

is done by mounting two mirrors on a translation stage. This is necessary because

the IR and the SH must both spatially overlap and coincide in phase and time in the

second BBO. This is accomplished by moving a translation stage placed in the path

of the IR beam. A prism or dichroic mirror is used to filter out and send the desired

beam to ward the sample in the chamber.

Table (3.1) show the wavelength, photon energy and power of of the generated
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Figure 3.1: PES setup for second and fourth harmonic generation
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Figure 3.2: PES setup for third harmonic generation
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beams.

Harmonic Wave length (nm) † Photon Energy (eV) Average Power (mW)
SH 420 2.95 190
FH 210 5.90 0.5
TH 280 4.5 6

Table 3.1: Properties of the second, third and fourth harmonics of the Ti:sapphire

fundamentals. † Note that we used 840 nm Fundamental when we generate FH beam

and 820 for the TH generation as explained above.

Sample preparation

Surface analysis is very sensitive to impurities and the sample surface that we

want to study can easily be modified by air molecules if it is not kept in a vacuum

chamber. An ultrahigh vacuum chamber is crucial for creating very clean sample

surface and and keeping the sample clean for a relatively long enough time till the

experimental analysis is finished.

Our vacuum system consists of three interconnected chambers which I like to refer

it as Side, LEED and PES chambers. Figure(3.3) shows the chambers in more detail.

Each chamber is separated by a valve to prevent any contamination when we open

one of the chambers1. When a new sample is mounted, the side chamber would be

opened and brought to atmospheric pressure while the side-LEED valve is closed.

Once the sample is mounted on the horizontal translation arm, the side chamber is

closed and the turbomolecular pump would bring the pressure to 10−7 or 10−6 Torr in

about two to three hours.2 Once the desired low pressure is reached, the side-LEED

would be opened3 and the sample can be moved to the LEED chamber using the

horizontal translation arm. This horizontal translation arm only goes from the side

chamber to the LEED chamber. So if one needs to send the sample to the main

1For example when we open the side chamber to load new crystal we do not want to bring the
pressure in the LEED chamber to atmospheric pressure.

2The side chamber is very small in volume and that is why it takes it relatively small time to
take it to a lower pressure.

3It is important to make sure the pressure on LEED chamber does not go very high. This can be
checked by the pressure guage on the side of the LEED chamber. If it starts to go up, please close
the valve.
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Figure 3.3: Ultrahigh vacuum chambers
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chamber, the sample has to be transfered to the vertical translation arm located on

the LEED chamber first. The sample is then transfered from the vertical translation

to the horizontal translation arm that connects the LEED-main chamber4. It is a

good idea to keep checking the pressure gauge. If the pressure does not drop down to

what it was before the introduction of the sample in a few hours, you can help the ion

pump by heating the chamber. The LEED chamber has internal quartz lamp which

can be used to heat the chamber from inside to a temperature of 150o or greater. To

get a good result, it is good to wrap the chamber with heating tapes and blankets.

After the desired temperature is reached, the quartz lamp should be turned off and

the sublimator should be turned on to aid the ion pump removing water vapor from

the ultrahigh vacuum system5. The normal working pressure of the LEED chamber

is about 2.5 × 10−9 Torr.

Energy distribution curve

The PES experiment was conducted in ultrahigh vacuum (UHV) at a working

pressure of 4 × 10−10 Torr. The electron-energy analysis was accomplished with a

double-pass cylindrical mirror analyzer (CMA). A convex lens was placed inside the

vacuum chamber to focus the laser light to the sample. Minimum spot size on the

sample was obtained by translating the lens along the optical axis to maximize pho-

toelectron counts on the two-photon part of the spectrum characterized by quadratic

dependence on the laser intensity. In addition to that the sample was biased to about

-25 V to improve the CMA transmission efficiency.

We calculated the defect state energy (states could be occupied or unoccupied)

from the measured kinetic energy. A basic program NEDC3.EXE [39] that controls

voltage applied to the outer cylinder of the CMA records EK − eVBias and the loga-

rithm of the electron counts to an output data file. Since the detector and the sample

are at two different vacuum energy levels due to the negative bias voltage, we need

to relate the kinetic energy measured by the CMA to the “real” kinetic energy of

4At this point all the valves are closed and each chamber is isolated
5Usually the system does not need baking if one waits long enough for the turbo pump to drop

the pressure to a low value before the opening of the LEED-side chamber valve
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the photoelectron when it leaves the sample. Figure (3.4) shows a schematic energy

diagram represention the sample and the cylindrical mirror analyzer.

Figure 3.4: Energy diagram representing the sample and CMA

From Figure (3.4) we can derive the relationship between the sample and detector

parameters as follows:

EKS = Ei + hν − φs (3.5)

EK = EKS + ∆Evac

= EKS + φs − (φCMA − eVBias)

= EKS + φs − φCMA + eVBias
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= Ei + hν − φs + φs − φCMA + eVBias

= Ei + hν − φCMA + eVBias. (3.6)

Where:

• EKS is the kinetic energy of the photoelectron as measured relative to vacuum

level of the sample.

• Ei is the energy of the intermediate state (for the unoccupied states and initial

energy for the occupied states) the electron was occupying just before it was

excited out of the material.

• hν is the energy of the photon source.

• φs is the work function of the sample.

• EK is the kinetic energy of the photoexcited electron measured by the detector.

• eVBias is the negative bias voltage energy applied to the sample.

• φCMA is the work function of the CMA.

Equation (3.6) is not the complete relationship between the sample and CMA prop-

erties. According to Ref.[43], there are two terms that are not included in the above

equation. These are the effect of power of probe beam on band bending and the

effect of bias voltage. Rearranging (3.6) to solve for the intermediate state energy

and including the effect of power and bias voltage, the intermediate state energy can

be written as:

Ei = EK − eVBias − hν + φCMA ± EPhotovoltage − EBiasCorrection, (3.7)

where:

• EPhotovoltage is the correction to the voltage shift 6.

• EBiasCorrection is a correction for the bias voltage

6This term is very small for our samples. It will not be considered later. We just put it here for
completeness and if one wants to use it for other materials.
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Bias correction of CdSe (112̄0)

According to [43], the negative bias voltage applied to the sample can introduce

an unwanted effect if the bias voltage is relatively large. The main reason we want

to apply the negative bias voltage is to elevate the Fermi level of the sample so as

to get enough counts of photoelectrons. The bad thing is that this correction not

only depends on the value of the bias voltage but also on the type and shape of

crystal under investigation. This means that, for every new cleaved sample one has

to calculate this shift.

To calculate this correction, one needs to obtain a set of energy distribution curves

for different applied sample bias voltage. Table (3.2) shows peak energy value as a

function of bias voltage. The peak value was generated using a FORTRAN program

(B.2), which selects the energy value that corresponds to the one that has peak

photoelectron count for a given energy distribution curve.

B peak pos B peak pos

-12 3.94814491 -23 4.34658194
-13 3.89833999 -24 4.3963871
-14 4.14736414 -25 4.495996
-15 4.04775381 -26 4.54580116
-17 4.19716787 -27 4.54580116
-18 4.19716787 -28 4.54580116
-19 4.24697304 -29 4.64541101
-20 4.19716787 -30 4.69521523
-21 4.34658194 -31 4.69521523
-22 4.44619179 -32 4.69521523

Table 3.2: Measurement of peak position as a function of B(eVBias(volts)) for CdSe

112̄0

When the peak position of the spectrum is plotted as a function of bias voltage,

the shift can be determined from the slope of a linear fit. Figure (3.5) shows the linear

fit of Table (3.2). The slope of the linear fit is 0.039037(eV/volt). The correction to

the photoelectron intensity is given by:

EBiasCorrection = slope(eV/volt) × eVBias(volts) (3.8)
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Figure 3.5: Voltage bias correction calculation for CdSe 1120

Calculation of φCMA

A Cylindrical Mirror analyzer (CMA) consists of two concentric metal cylinders

arranged such that their axes are coincident. Different voltages are placed on each

cylinder such that there is an electric field between the two cylinders. Electrons are

injected from a point on the axis into the gap between the two cylinders. If the

electrons are travelling very fast, they will impinge on the outer cylinder. If they

are travelling very slowly, they will be attracted to the inner cylinder. Hence only

electrons in a narrow energy region called the pass energy succeed in getting all the

way along the cylinders to the detector.

The CMA detector’s work function needs to be known as it is used in (3.7). Even

though this work function should be a fixed value, in our experience it looks like
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it fluctuates over a very long time interval. We thought that this value should be

consistent with the value used by former students. The first time when we started

taking PES data, we decided to reproduce the ZnTe PES curve. We had a hard time

reproducing it because our curves were shifted by same constant value. That is why

we decided to recalculate the work function of the CMA. The CMA was idle for a

very long time (about two years) before we used it.

To calibrate the φCMA we used a gold surface and hν = 5.9eV (FH). The reason

we use FH is because the work function of gold is to a high ( 5.1 to 5.47 eV [70]) for

SH or TH photons. Figure (3.6) shows the energy distribution curve for gold surface.

Since gold is metal, the highest filled state (Fermi level) is at Ei = 0. Setting Ei = 0

in (3.7), the CMA work function is then given as:

φCMA = eVBias + hν − Ekmax (3.9)

= hν − (Ekmax − eVBias).

Where Ekmax is the maximum kinetic energy measured by the CMA. It is worth

noting that this does not involve the sample (gold) work function φs. Remember that

in Figure (3.6), the x-axis represents Ek− eVBias. The energy used to probe (hν) was

5.90eV and Ekmax − eVBias is about 5.0 eV.7 Putting all this together in to (3.9) will

get:

φCMA = hν − (Ekmax − eVBias) (3.10)

= 5.90 − 5.0

= 0.90eV

It was assumed that the shoulder above 5 eV in Figure (3.6) is an artifact (due to

light scattered into the CMA by the gold, eg).

7According to Figure (3.6), Ekmax − eVBias would be about 6.3 eV. But since the work function
is comparable to the hν = 5.9, all the value above 5 eV we think it is from two-photon process. It
is also clearly visible a “shoulder” that suggests a boundary between one- and two-photon processes
in that Figure. The other reason is also we have to make sure that we do not get a negative work
function for the CMA
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where we we choose the Ekmax − eVBias.
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3.2.2 Interpretation of PES spectra

To interpret any energy distribution curve, one first needs to know the relative

position of the band edges. The placement of the band edges, the valence band

maximum (VBM) and conduction band minimum (CBM) with respect to the Fermi

level requires information about the ionization threshold, electron affinity, band gap

and work function of the material under investigation. The following expressions will

help us relate the photoemission results with the above terminology.

• Vacuum Energy ≡ Evac

• Ionization Threshold ≡ Eth = Evac − EV BM

• Electron Affinity ≡ χ = Evac − ECBM

• Work Function ≡ φsample = Evac − EF

• Band Gap ≡ Egap = ECBM − EV BM

We took measurements of PES on CdSe crystals under different conditions. These

conditions were: different bias voltage, incrementally reduced beam power, and dif-

ferent probing photon energies. The result from these measurements provide a key

ingredient for calculation the intermediate state energies, locating band edges and

determining the order of the photon process.

We generated a series of Energy Distribution Curves (EDC) as a function of power.

Different neutral density filters are used to change the power of the TH light. We

have used six neutral optical density filters with specified optical density value of:

0.2, 0.4, 0.6, 0.8, 1.0 and 2.0. The actual values of these optical densities depend

on wavelength. The Melles Griot transmission curve manual does not give the exact

value for all of the filters used with in our range of wavelength. To determine the

exact value we used a spectrophotometer to measure the transmission coefficients.

Figure (3.7) shows the transmission values for some of the filters. Equation 3.11 was

used to calculate the exact value of these filters and the results are shown in Table

(3.3).
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Figure 3.7: Transmission coefficient of of the density filters as a function of wave

length. (a) for OD labeled 0.2, (b) for OD=0.4 (c)for OD=0.6 and (d) for OD=1.0

label FH(210nm) TH(280nm) SH(420)
0.2 0.365 0.288 0.271
0.4 0.432 0.397 0.443
0.6 0.544 0.527 0.606
0.8 0.909 0.815 0.877
1 1.056 0.986 1.066
2 2.492 2.199 2.182

Table 3.3: OD as a function of wave length (λ)
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The relationship between the Optical Density (OD) specification and intensity of

the photoelectrons is the basis for finding if the photoemission was a linear, quadratic

or cubic process corresponding to one-, two- or three photon processes. Knowledge

of the n photon process is a key ingredient to the identification of whether or not the

last state from which the photoelectron escaped was a filled state. In the following

few lines, we derive the relationship between the n-photon process, the photoelectron

counts and the optical density values of the filters used in the experiment.

The OD specification on the neutral density filter is defined as:[43]

I = I0
1

10OD
(3.11)

Where, I0 and I are the photon flux or beam power before and after the neutral

density filter respectively.

The electron count (C) is also defined as :

C = AIn (3.12)

Where C is Count, A is arbitrary proportionality constant, I is the photon flux and

n is the number of photons ( or order n ). We can use Eqns [3.11]and [3.12] to find

a linear equation of I as a function of OD as follows.

C = AIn

Log(C) = Log(A) + nLog(I) (3.13)

Log(I) = Log(I0) − OD

Log(C) = Log(A) + nLog(I0) − nOD

These can also be written as:

y = b + ax (3.14)

where, b = Log(A) + nLog(I0) , a = −n , y = log(C) and x = OD.

The number of photons (n) involved in the excitation of an electron with a partic-

ular energy is found by determining the slope of the best linear fit of Log(C) verses
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optical density. To automate our experiment, we wrote a small FORTRAN program

[B.1] that takes the output of basic program NEDC3.EXE [39] (controls voltage ap-

plied to the outer cylinder of the CMA records EK − eVBias and the logarithm of the

electron counts to file), and the set of OD’s to generate the order n automatically.

3.3 Photoelectron spectra from band states

The CdSe (112̄0) crystal was probed with 4.5 ev pulses. This single crystal was cut

into a rectangular rod oriented along (112̄0) cleavage plane and cleaved in a ultrahigh

vacuum. It has uniform notches of cuts on the side to help the cleaving blades align

along the (112̄0) plane to produce a better cleave surface.
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Figure 3.8: Linear energy distribution curve for photoelectrons excited from CdSe

(112̄0) excited by 4.5 eV pulse showing the position of the threshold energy.

In Figure (3.8) the energy on the x-axis is the intermediate state energy with

respect to the Fermi level, which is set to be 0 eV. This intermediate energy is cal-
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culated using Equation (3.7). The y-axis represents the linear photoelectron count

per second. The point of interest in this figure is the energy level labled as threshold

energy. This is the lowest energy state from which a photon of energy hν = 4.5eV can

excite an electron into the vacuum. This energy is located by looking at the plot and

finding the energy value at which there exists a sharp rise in the photoelectron count.

A bias voltage of -25 eV was used to improve transmission efficiency and to distin-

guish photoelectrons from extraneous electrons elsewhere in the vacuum chamber or

analyzer.
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Figure 3.9: Energy distribution curve for photoelectrons exited from CdSe (112̄0) by

4.5 eV TH beam (Red solid line). The number of photons corresponding to this curve

is shown in dotted line (Green) with respect to the right-hand ordinate order n.

The left ordinate of Figure (3.9) shows the same data as in Figure (3.8) with a

logarithmic photoelectron count scale. The counts data are shown in red solid line.

The energy scale at the bottom is obtained from (3.7) same as above. The number of

photons involved in the photoelectron process is shown in green dotted line relative
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to the right-hand ordinate. The order n of the photon process was calculated using

equation (3.13).

In addition to the threshold energy reference determined in Figure (3.8), Figure

(3.9) also shows the relative positions of valence band maximum (VBM), conduction

band minimum (CBM) and vacuum level8. These reference points usually are called

band edges. The position of the vacuum level is the first to be identified after iden-

tifying the threshold initial state for photoemission. The vacuum energy thus lies

hν = 4.5 eV above the threshold initial state, which is about 0.78 eV below the Fermi

energy level. This puts the position of vacuum to be about 3.72 eV above the Fermi

energy level. Similarly, the work function, which is the energy difference between

vacuum and the Fermi level, would be about 3.72 eV. The position of CBM was fixed

by looking at the “shoulder” of the spectra above the Fermi level and by noting that

our sample is an n-type semiconductor.9 The Fermi level of an n-type crystal is closer

to the conduction band.

Once the CBM is fixed, the VBM is then found by knowing the gap energy, which

is 1.98 eV [45]. This indicates the VBM to be about 1.78 eV below the Fermi level.

The electron affinity is defined as the difference in energies between the vacuum and

CBM energy levels. Electron affinity is about 3.52 eV.

3.3.1 Comparison of PES to band structure

The spectra of Figures 3.9 and 3.16 are plotted versus Ei. It is the energy level

from which the electron is removed by the last photon in n−photon photoemission. Ei

is the initial state for one-photon PES and it is the intermediate state for two-photon

PES. The zero of Ei is taken to be EF (Fermi energy).

In order to explain the features of Figure (3.9) compared to measured and calcu-

lated band structures, we need to know some properties of CdSe (112̄0). Reference

[44] has an experimental electronic band structure for wavevector along the Γ −M

8The vacuum level is the point at which an electron is just outside the sample surface zero kinetic
energy

9To determine the doping type of our sample we ran a Hall effect experiment with the help of
Mr. Gang Xiong. The direction of Hall voltage indicates whether it is an n-type or p-type crystal.
For more information on the whole experiment read his dissertation.



46

line using angle resolved photoelectron spectroscopy and inverse photoemission for the

same crystal cut. We have also calculated electronic band structure using PWPAW

code. Figure (3.11) shows the calculated band structure after shifting the conduction

bands to compensate the well known under-estimation of band gap energies by the

density functional theory calculation.

Reference [45] has the experimental values for work function, band gap and the

position of Fermi level relative to valence band maximum. Once we know these

values relative to our energy distribution curve, it will be easy to see which part of

the spectra belongs to surface defect states and whether or not the states were empty

or occupied. The values are shown below with their relevance to locating the position

of valence band maximum, conduction band minimum and Fermi level.

• Vacuum level (Evac)≈6.2 eV above EV BM ≡“photoelectron threshold”†.

• Egap =(ECBM − EV BM ) ≈ 1.98 eV †

• Work function = (Evac − EF )≈5.35 eV.

† Ref [45]

The 6.2 eV vacuum level is referenced from the top of the valence band. To make

sure that this is really true in the case of our experiment, we can make a simple

check using the width of the two-photon conduction band spectrum located at the

end of Figure (3.9). It has about 1.7 eV width. Now if we use two photons each

with an energy of 4.5eV (TH), starting from the top of the valence band around

the wavevector at the point M , which is around -1.44eV, the photoelectrons will be

thrown out to the empty conduction bands around 7.55 eV. To find the vacuum level,

now we can subtract the width of our top of the conduction band spectrum in Figure

3.9. This indicates the vacuum level to be at about 5.8 eV above the valence band

minimum. This will translate to about 4.07 eV above the Fermi level, which is 0.35

eV higher than what we calculated above. This is not that bad considering the very

limited resolving power of the method they used to generate those results.

Our calculated band structure Figure (3.11), could also be used to verify the

location of the vacuum level. If we use the same procedure as above, the initial
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state would be about -0.75eV. The two photon energy of third harmonic will lift

the photoelectrons to about 8.25eV and this implies that the vacuum level is about

6.75eV. According to Vogel et.al.[69], CdSe shows a strong spin-orbit interaction. But

in our calculation, spin-orbit coupling is not included due to the fact that the code

does not have the ability to do so.

Considering all the above parameters, we can get some picture of the EDC now.

Since our sample is n-type crystal, the Fermi level is closer to the conduction band.

From looking at the spectrum, we suggest that the CBM is about 0.2 eV above EF .

Now looking at the first peak (from around -1.6 to 0.2eV) of Fig.3.9, it lies in the

gap of the material and it should not be there for an ideal material. So these must

be defect states. The order n calculation shows that it is a one-photon process. This

means that the defect states in the gap must have been occupied!

The second peak (from around 0.2 eV to 1 eV) in Figure 3.9 is a combination of

states in the gap and in the conduction band. As we expected, they are initially unoc-

cupied, because of the order n ∼ 2,which indicates a two-photon process. We believe

that it is a result of two photon excitation around the M point on the bandstructure

plot on fig. 3.10.

The third group is in the range from about 1.5 eV to about 3eV. These entirely

lay on the conduction band and it is a two photon process. It is probably excited

from the M point of the conduction band.

Comments on the difference in some of the parameters

On an n-type semiconductor, the band edges bend upwards with the Fermi level

pinned by surface states or surface defects at equilibrium condition. Equilibrium con-

dition is when there is no or very few photons of illumination. This is sometimes

refered to as a dark condition[66]. Electron-hole pairs created under intense illumina-

tion during photoelectron spectroscopy can cause the bending of bands at the surface

to change. This flattening of the bands creates a photovoltage shift. Figure (3.12)

shows a schematic diagram for n-type semiconductor under different illumination and

its effect on band flattening.
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Figure 3.10: CdS 112̄0 band structure adjusted to CdSe band gap in Ref. [44]. The

experimental points are from an inverse photoemission from Ref [44]. The 4.5 eV

arrows show the possible transitions that correspond to our TH phonon excitation.
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Figure 3.11: Theoretical CdSe (112̄0) band structure calculated using our PWPAW

code. The conduction bands are shifted to compensate for the under estimation of

the band gap. The experimental points are from an inverse photoemission from Ref

[44] indicated with ×.
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Figure 3.12: Schematic diagram for n-type semiconductor showing the effect of illu-

mination on band edges.
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As the illumination strength used by reference ([44]) is smaller then our beam

power, this could have been one of the contributing factors to our slightly difference

in our results.

3.3.2 Theoretical band structure of CdSe (112̄0)

In order to explain some features of the photoelectron spectra in Figure (3.9 ), we

used the PWPAW code [64] based on the projector augmented wave (PAW) approach

of Blöchl to [7] calculate the band diagram shown in Figure (3.11). The local density

approximation (LDA) form of Perdew and Wang [52] was used to approximate the

exchange-correlation interactions.

The first step of the PAW procedure is to produce the necessary projectors and

basis functions. This is done using the ATOMPAW code [27]. The local potential

contributions ṽaloc(r) were constructed using the squared sinc shape function.

Table (3.4) lists the parameters used in this work. In the table the notation ε

indicates a continuum function, where the positive energy ε is chosen to insure that

φaεl(r) basis function has the correct number of nodes in the augmentation region.

Atom za Core Charge nl basis rac (Bohr)
Cd 48 28 4s,5s,4p,εp,4d,εd 2.01
Se 34 18 4s,es,4p,εp,3d,εd 2.41

Table 3.4: List of parameters used to construct basis and projector functions

We minimized the energy with respect to lattice constants as can be seen in Figure

(3.14), and found that a=4.315 Ao and c=7.096 Ao and u=0.3748. The values quoted

by Cohen et.al[10] for this crystal are a=4.299 A, c=7.01 A and u=0.375. In addition

to the lattice parameters, we need to find the optimal cutoff for the plane wave basis

expansion. This is done by finding the minimum value of the reciprocal vector G0,

that converges the total energy of the crystal. Ideally, if one uses G value that

is greater than G0, the total energy should remain constant within some tolerance

value. Figure (3.13) shows the total energy as a function of reciprocal vector G. For

our calculation we use G0 = 8 (bohr)−1.
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5.9-eV excitation

For further investigation we also studied CdSe (112̄0) using a 5.9 eV fourth har-

monic pulse. The fourth harmonic pulse width is very broad compared to the 4.5

eV third harmonic pulse. This is due to the dispersion of the beam in the BBO

crystal and in the optics. This decreases the power in the photon beam. As men-

tioned before, the two-photon process depends on power quadratically. As a result

of this, the resulting peak power was insufficient to produce measurable two-photon

photoemission.

Figure (3.15) shows the energy distribution curve for CdSe (112̄0)excited by 5.9

eV FH beam. The ordinate axis is in linear scale to make it easy to identify the

threshold energy. The threshold is about 2.33 eV below the Fermi level. The vacuum

level is then marked at about 3.57 eV above the Fermi level. The CBM and VBM

can be placed as shown in Figure (3.16) using the same hypothesis as above.

3.4 Surface defects

3.4.1 Background

The relaxation of a few top layers of a crystal due to termination of a perfect

symmetry of the crystal results in surface states. Both intrinsic and extrinsic defects

can occur at the surface. Intrinsic defects are due to vacancies, interstitials (atoms

occupying nonlattice sites), and antisite lattice defects (when the wrong constituent

atom of a compound crystal occupies the sublattice site of another).

In order to observe the population of the defect states in the energy band gap,

we introduced more defects to the crystal by using 2 KeV electron beam of Auger

electron spectroscopy and by sputtering with Argon ions.

3.4.2 Quality of the cleaved surface

Auger Electron Spectroscopy (AES) is a technique used to measure elemental

surface composition. Each atom species has its own unique Auger spectrum that acts
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as a finger print to identify the elemental components on the surface.

Auger Electronic Spectroscopy was measured to make sure the composition of our

surface contains the right elements. This is also, like the PES, conducted in ultrahigh

vacuum (UHV) at a working pressure of 4 × 10−9 Torr. The AES results of CdSe

(112̄0) are shown in Figure 3.17. According to the Handbook of AES [12] cadmium

(Cd) peaks are located at 396 and 382 eV and selenium (Se) peaks are at 1315 and

1355 eV. The spectra demonstrated that our crystal has a clean composition of Cd

and Se elements. But it has also some contamination with carbon (C) at around 280

eV.
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Figure 3.17: AES result for CdSe (112̄0). The plot is a derivative of number of

electrons as a function of Energy ( dn
dE

).
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In connection with AES, we also have done a LEED experiment to make sure the

atoms on the surface have the correct arrangements. Figure (3.18) shows a LEED

pattern obtained from CdSe (112̄0) surface. The bright spot represents the diffraction

patterns from atom. The results agrees with the proposed CdSe (112̄0) structure in

reference [9]. This assures as that we had a well reconstructed surface.

The LEED measurement was done by following the recipe in Mark Rowe’s thesis[57].

The sharp patterns were generated using the parameters in Table (3.5).

Filament Current 2.67 A
Retarding Voltage -56 V
Beam Energy -60 V
Focus Voltage 60 V
Screen Voltage 4.03 kV
Beam Current 1.0 A

Table 3.5: Values used in setting the LEED pattern for CdSe (112̄0)

3.4.3 Damaging the surface

To make sure that the states we found in the gap are really defect states, we

introduced more defects by damaging the surface. If the states are really defect

states, their density should increase or change when the surface gets damaged.

We followed the procedure below to create more defects and to monitor them.

1. Take photoelectron measurements.

2. Measure Auger spectroscopy.

3. Take photoelectron spectroscopy.

4. Measure low energy electron diffraction.10

5. Take photoelectron spectroscopy.

10LEED is only done for the first couple iterations. This is because once the surface is sputtered,
no visible LEED patterns are found. The Auger electron beam also had much more effect.
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Figure 3.18: LEED pattern obtained from CdSe (112̄0) surface. The bright spots

represent the diffraction patterns of an atom.
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6. Do Argon sputtering.

7. Do all over again.

This process is illustrated in Figure (3.19).

We have done three cycles and the results will follow shortly.

Start

Cleave surface

PES

AES

PES

sputter

LEED

Figure 3.19: Flow chart showing the process of introducing defect and their measure-

ments .

Argon sputtering

Sputtering is a process in which atoms, ions, and molecular species in the surface

of a target material are ejected under the action of ion-beam irradiation. Argon ion

bombardment is used here to avoid unwanted chemical interactions between the ions

of the beam and our sample. An incident Argon ion strikes atoms on the surface and

one or more atoms may be ejected from the surface.

The detailed experimental procedure can be found in reference [43]. We sputter

at each cycle for about 4 minutes using 1 keV ion beam energy. The current on the
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raster scan was 0.38 µA. Sputtering increases the vacuum pressure. It ranged between

5 × 10−5 and 6.4 × 10−5 Torr.

Figure (3.20) shows the photoelectron spectroscopy measurements after each step

in Figure (3.19). The Auger spectroscopy was done using beam energy of 3 keV and

current of 0.4 mA for about 10 minutes. The results show that the effects of Auger

spectroscopy (electron beam) is larger than that of sputtering. This is because of

the energy of the Auger beam is stronger than that of sputtering. The other main

feature is that the relative density of states in the gap is higher at each step. To

see this effect more clearly we plot the difference of photoelectron spectroscopy after

each Auger measurement in Figure (3.21). Figure(3.22) shows the photoelectron spec-

troscopy measurements after each Auger measurement relative to the original cleave

measurements. This clearly shows that the intensity of the defect states increases

dramatically relative to the unoccupied conduction bands for each AES cycle.
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Figure 3.20: Different PES spectra after we apply more defects
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Chapter 4

The semi-infinite surface formalism

Several researchers have done a lot of surface state investigation for II-VI group

semiconductors using slab and supercell methods[32]. One of the main disadvan-

tages of such methods is that it is very hard to distingush the calculated slab states

corresponding to bulk or surface states. Our formulation is based on the use of Semi-

Infinite boundary conditions which we believe will let us understand those effects

clearly. In this approach, the crystal surface is divided in to three regions in the

direction perpendicular to the xy surface. These regions are known as, “bulk”, “in-

terface” and “vacuum”. We can solve for the wave function in each of these regions,

forming the complete solution by matching them on the boundaries.

4.1 General equations from PAW formalism

In the PAW method[7, 25, 27, 64], the Schrödinger equation takes the form

{
HPAW(r) − EnkO

}
|Ψ̃nk(r)〉 = 0, (4.1)

where

HPAW ≡ H̃(r) +
∑

aij

|p̃ai 〉Da
ij〈p̃aj | and O ≡ 1 +

∑

aij

|p̃ai 〉Oa
ij〈p̃aj |. (4.2)

The local term contribution to the PAW Hamiltonian is given by

H̃(r) = − ~2

2m
∇2 + ṽeff(r), (4.3)
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with the smooth local potential given by

ṽeff(r) =
1

V
∑

G

¯̃vloc(G)eiG·r +
4πe2

V
∑

G6=0

¯̃n(G) + ¯̂n(G)

G2
eiG·r + µxc[ñ(r)]. (4.4)

The first term in this expression is the fixed local potential term. The second term

represents the Coulomb contribution of the smooth density ñ and the compensation

charge density n̂, while the last term represents the exchange-correlation potential

function[52]. The non-local contribution to the PAW Hamiltonian is given by

Da
ij = Ka

ij + [vaat]ij − [v̂a]ij + [V a
H ]ij + [va0 ]ij + [V a

xc]ij (4.5)

and

Oa
ij ≡ 〈φai |φaj 〉 − 〈φ̃ai |φ̃aj 〉 = Oa

nilinj lj
δliljδmimj

. (4.6)

These matrix elements will be described in more detail below.

4.2 Bulk and surface states

In the presence of a surface, bulk states of the material continue to exist. In

addition, new surface states may also exist in at energies within the surface band

gaps. In order to determine the energies for each k‖ where bulk states and where

band gaps exist, it is useful to construct a “smear” plot of the bulk structure. Based

on this scheme we will calculate the bulk calculations in the surface geometry as

follows. We will plot a diagram of bulk bands (smear plots). According to [23], if we

divide the Brillouin zone in to k⊥ and k‖, we can assign k‖ along the surface Brillouin

zone and k⊥ along the surface direction. For each value of k‖ distributed uniformly

over special directions in the surface Brillouin zone, the band energies E
nk and their

gradients ∇kE
nk will be evaluated for a series of values of ki⊥ ≡ (i+ 1

2
)δk⊥ spanning

the irreducible range of k⊥. For each of these points, the range of bulk band energies

for the given k‖ could then be approximated by

Ei

nk − δk⊥

2
· ∇kEnk ≤ E(k‖) ≤ Ei

nk +
δk⊥

2
· ∇kEnk. (4.7)
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Where δk⊥ is chosen to be a small value of about 0.039 (bohr−1)1 for CdSe (112̄0)

and 0.047 (bohr−1) for diamond (001). The band energy E
nk evaluated at k =

k⊥ + k‖. At each k‖, for each ki⊥ and each band index n, a vertical line drown from

Ei

nk− δk⊥

2
·∇kEnk to Ei

nk+ δk⊥

2
·∇kEnk contribute to the projected band structure

plot (smear diagram).

Details of the calculation of ∇kEnk

Enk = 〈ψ̃nk|HPAW |ψ̃nk〉 (4.8)

=
∑

G

|k +G|2|Ank(G)|2 +
∑

GG′

Ṽeff(G−G′)A∗
nk(G)Ank(G

′) (4.9)

+
∑

aij

〈ψ̃nk|p̃ai 〉Da
ij〈p̃j|ψ̃nk〉 (4.10)

Where

〈p̃j|ψ̃nk〉 =
1√
V

∑

G

(
4πiliY ∗

limi
(k̂ +G)ei(k+G).Ra ¯̃pniki

(|k +G|)
)
Ank(G).

Now using Hellman-Feynman theorem, ∇kEnk will have the following form.

∇kEnk =
∑

G

~(k +G)|Ank(G)|2 (4.11)

+
∑

aij

Da
ij

((
∇k〈ψ̃nk|p̃ai 〉

)
〈p̃j|ψ̃nk〉 + 〈ψ̃nk|p̃ai 〉

(
∇k〈p̃j|ψ̃nk〉

))
, (4.12)

where

∇k〈ψ̃nk|p̃ai 〉 =
4πili√
V

∑

G

∇kJnjljmj
(k +G)ei(k+G).Ra

Ank(G)

,

∇k〈p̃j|ψ̃nk〉 = ∇k〈ψ̃nk|p̃ai 〉∗.

,

and

1This value is calculated from the relation 2π

CNk

. Where C is the unit cell dimension along the

z-axis and Nk is the number of grid points.
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Figure 4.1: Diagram showing surface geometry.

∇kJnlm(k +G) = Y ∗
limi

(k̂ + G)Pnl(|k + G|)
~k + G

|k + G|

+
¯̃pnk(|k + G|)

|k + G|

(
−imY ∗

lm(k̂ + G)

sin(θ)
ϕ̂+

∂Y ∗
lm(k̂ + G)

∂θ
θ̂

)
.(4.13)

An example of smear plot using the above formalism for CdSe (112̄0) and Diamond

(001) are given in Chapter 6 section 6.2.

4.2.1 Surface geometry

It is helpful to visualize the surface in three regions. In region I, it is assumed

that the electronic wavefunctions satisfy the bulk Schrödinger equation. Region III

is defined to be outside the range of all of the atoms and asymptotically merges to

the vacuum. The “interface region” II is the most computationally demanding.

In the surface geometry, it will be convenient to expand the wavefunctions in

two-dimensional plane waves representing the surface plane and a discrete grid along

the surface (ẑ) direction. In the presence of the surface, the wavevector can be

decomposed according to k = k‖ + k⊥ẑ. While k⊥ is no longer conserved at the

surface, each bulk Bloch state corresponds to a state in the surface representation. It
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is convenient to label the semi-infinite wavefunctions by λk‖, where λ can represent

the band index n and the perpendicular wavevector k⊥ or a surface state label. The

general surface representation of the wavefunction takes the form

Ψ̃λk‖
(r) =

√
1

A
∑

G‖

fλk‖
(G‖, z)e

i(k‖+G‖)·r‖, (4.14)

where the function fλk‖
(G‖, z) must be determined in regions II and III and A is the

area of the surface. In particular, z will be discretized in region II with z1 located

at the boundary between regions I and II and zN located at the boundary between

regions II and III. Intermediate values are given by zn = z1 + (n− 1)hz.

For the surface representation (4.14), the Schrödinger equation (4.1) for fλk‖
(G‖, z)

takes the form

d2f(G‖, z)

dz2
= M(G‖, z), (4.15)

where

M(G‖, z) ≡M1(G‖, z) +M2(G‖, z), (4.16)

with

M1(G‖, z) ≡
[
|k‖ + G‖|2 −

2m

~2
Eλk‖

]
fλk‖

(G‖, z)

+
2m

~2

∑

G′
‖

¯̃veff(G‖ − G′
‖, z)fλk‖

(G′
‖, z), (4.17)

representing the local contributions and M2(G‖, z) representing the non-local contri-

butions. In order to evaluate these, we must expand the projector functions in the

surface representation which take the form

p̃ai (r) =

√
1

A
∑

G‖

ei(k‖+G‖)·r‖Pa
i (G‖, z). (4.18)

The two-dimensional Fourier coefficient for the projector is determined by inverting

the above equation.

Pa
i (G‖, z) ≡

√
1

A

∫
d2r‖e

−i(k‖+G‖)·r‖ p̃ai (r) (4.19)
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Writing the projector function in terms of its radial and spherical terms,

p̃ai (r) ≡
pnili(r)

r
Ylm(r̂), (4.20)

where Ylm(r̂) denotes a spherical harmonic function, the integral becomes

Pa
i (G‖, z) ≡

√
1

A

∫
d2r‖e

−i(k‖+G‖)·r‖
p̃anili

(|r− Ra|)
|r − Ra| Y mi

li
(r̂ − Ra). (4.21)

which can be evaluated using

Pa
i (G‖, z) = N a

limi
(k‖ + G‖)

∫ Ra
c

|z−Za|

dr pnili(r)P
|mi|
li

(
z − Za

r

)

×J|mi|

(
|k‖ + G‖|

√
r2 − (z − Za)2

)
, (4.22)

where P
|mi|
li

(u) represents an Associated Legendre function, J|mi|(u) represents a

Bessel function of integer order |mi|, and

N a
limi

(k‖ + G‖) ≡ e−i(k‖+G‖)·R
a
‖

[
(k‖ + G‖)x
|k‖ + G‖|

+ i
(k‖ + G‖)y
|k‖ + G‖|

]mi

e−imiπ/2

×
√
π(2li + 1)

A

√
(li − |mi|)!
(li + |mi|)!

. (4.23)

The non-local contribution to equation (4.17) can then be written

M2(G‖, z) =
∑

ai

Pa
i (G‖, z)Ka

i with Ka
i ≡

∑

j

2m

~2

(
Da
ij − Eλk‖

Oa
ij

)
〈p̃aj |Ψ̃λk‖

〉.

(4.24)

The summation of the atom index a should be taken over all atoms with a non-zero

contribution to the projector function Pa
i (G‖, z) at the given value of z, including

atoms on the boundary between regions I and II. In the surface representation, the

overlap of the projector function with the smooth wavefunction can be evaluated

using

〈p̃aj |Ψ̃λk‖
〉 =

∑

G‖

∫
dz Pa

i (G‖, z)
∗fλk‖

(G‖, z). (4.25)

Here the integration over z can extend into Region I for atoms on the boundary.

In order to solve the surface Schrödinger equation (4.15), we can use the Numerov

algorithm [21] which takes the following form in the interior of Region II:
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f(G‖, zn−1) −
h2
z

12
M(G‖, zn−1)

−2f(G‖, zn) −
10h2

z

12
M(G‖, zn)

+f(G‖, zn+1) −
h2
z

12
M(G‖, zn+1) = 0. (4.26)

In order to solve this equation, we need to specify boundary conditions.

First, consider the boundary between Region II and Region III. In Region III,

the surface Schrödinger equation is identical to (4.15), except that since there are

no atoms in the region the nonlocal term M2(G‖, z) term vanishes. Furthermore,

for z → ∞, the potential takes the asymptotic value ¯̃veff(G‖, z) → V∞δG‖,0. It

is convenient to find NG‖
independent solutions {f III

G0

‖
(G‖, z)} to the Schrödinger

equation in Region III by integrating Eq. (4.15) from z → ∞ to zN . The index G0
‖

corresponds to the boundary condition

f III
G0

‖
(G‖, z → ∞) = e

−κ
G0

‖
z
δG‖G

0

‖
, (4.27)

where

κG0

‖
≡





√
|k‖ + G0

‖|2 + 2m(V∞ − Eλk‖
)/~2 for Eλk‖

< V∞ + ~2|k‖ + G0
‖|2/2m

−i
√

2m(Eλk‖
− V∞)/~2 − |k‖ + G0

‖|2 for Eλk‖
> V∞ + ~2|k‖ + G0

‖|2/2m
.

(4.28)

In general, we expect that for z ≥ zN ,

f(G‖, z) =
∑

G0

‖

CG0

‖
f III
G0

‖
(G‖, z). (4.29)

Since the potential is continuous at z = zN , we can extend the Numerov integration

to the point zN+1 by using Eq. (4.29) to evaluate f(G‖, zN+1) and M(G‖, zN+1),

determining the coefficients {CG0

‖
} from the matching equation at zN . Setting the

matrix ΛG‖G
0

‖
≡ f III

G0

‖
(G‖, zN), we can determine

CG0

‖
=
∑

G‖

Λ−1
G0

‖
G‖
f(G‖, zN). (4.30)
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At the z1 boundary, there are several possible alternative approaches. In general

we expect that for z ≤ z1, the wavefunction can be expressed as a linear combination

of Bloch waves.

The Bloch wavefunctions in Region I can can be expanded in a 3 dimensional

Fourier expansion of the form:

Ψ̃Bloch
nk (r) =

√
1

V
∑

G

Ank(G)ei(k+G)·r, (4.31)

where V denotes the unit cell volume.

In terms of the 3-dimensional expansion coefficients, the surface representation of

the Bloch wave is given by

fBloch
nk‖k⊥

(G‖, z) =

√
A
V
∑

G⊥

Ank(G)ei(k⊥+G⊥)z. (4.32)

For the cases of interest in this treatment, we assume that the bulk symmetry

group includes the xyz → xyz̄ element so that for every Bloch state fBloch
nk‖k⊥

there

exists a degenerate “reflected” Bloch state fBloch
nk‖−k⊥

which can also be determined

from the bulk calculation.

In general, we expect that for z ≤ z1

f(G‖, z) = fBloch
nk‖k⊥

(G‖, z) + RfBloch
nk‖−k⊥

(G‖, z). (4.33)

Here the reflection coefficient R is a parameter to be calculated. The Numerov

equations (4.26) represent NG‖
· N equations for zn values 1 ≤ n ≤ N . The corre-

sponding wavefunction coefficients {f(G‖, zn)} represent NG‖
·N unknowns. However,

the matching condition (4.33) introduces an extra unknown R. In general, R will be

complex, but for wavefunctions with energies below the work function, which carry

no current, we expect that R = eiϕ, where ϕ denotes a real phase factor.
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4.3 Treatment of the bulk-surface boundary

The basic Numerov equations in the interface region take the form:

Q1 + P2 . . . . . . . . . = −P0

P1 + Q2 + P3 . . . . . . = 0

. . . P2 + Q3 + P4 . . . = 0
...

...
...

...
... = 0

. . . . . . PN−1 + QN + PN+1 = 0,

(4.34)

where

Pn ≡ f(G‖, zn) −
h2
z

12
M(G‖, zn), (4.35)

and

Qn ≡ −2f(G‖, zn) −
10h2

z

12
M(G‖, zn). (4.36)

Here the functions evaluated at zN+1 are determined from Eq. (4.29), with the coef-

ficients determined from a knowledge of the function at zN according to Eq. (4.30).

The function evaluated at z0 are in the bulk region and should be represented by the

linear combination of Bloch functions (4.33). There are possible variations of these

equations that can be solved.

4.3.1 Appelbaum and Hamann approach

Our adaptation of the Appelbaum and Hamann[3] approach uses the lastNG‖
(N−

1) equations of the Numerov set (4.34). The remaining NG‖
equations are given by

the Bloch wave matching condition (4.33) evaluated at z = z1

−RfBloch
nk‖−k⊥

(G‖, z1) + f(G‖, z1) = fBloch
nk‖k⊥

(G‖, z1). (4.37)

One additional equation must be used to determine the unknown reflectivity coef-

ficient R. The additional equation minimizes the z-derivative of equation (4.37)

relative to the choice of the reflectivity coefficient:

R
∑

G‖

∣∣∣∣∣
dfBloch
nk‖−k⊥

(G‖, z1)

dz

∣∣∣∣∣

2

=
∑

G‖

(
dfBloch
nk‖−k⊥

(G‖, z1)

dz

)∗(
df(G‖, z1)

dz
−
dfBloch
nk‖k⊥

(G‖, z1)

dz

)
,

(4.38)
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where the z-derivative of the wavefunction coefficients can be determined from the

forward difference formula

df(G‖, z1)

dz
=

1

hz

(
−25

12
f(G‖, z1) + 4f(G‖, z2) − 3f(G‖, z3) +

4

3
f(G‖, z4) −

1

4
f(G‖, z5)

)
.

(4.39)

For states carrying no current, we could in principle calculate the reflection phase

factor ϕ using the following equation instead of (4.38)

e2iϕ =

∑
G‖

(
dfBloch

nk‖−k⊥
(G‖,z1)

dz

)∗(
df(G‖,z1)

dz
−

dfBloch

nk‖k⊥
(G‖,z1)

dz

)

∑
G‖

(
dfBloch

nk‖−k⊥
(G‖,z1)

dz

)(
df(G‖,z1)

dz
−

dfBloch

nk‖k⊥
(G‖,z1)

dz

)∗ . (4.40)

Thus we have NG‖
·N+1 equations and unknowns. Unfortunately, Eq. (4.40) is non-

linear so we use the following procedure instead. For a fixed value of the reflectance

R = eiφ, Eqs. (4.34) and (4.37) can be written as NG‖
· N linear equations and

unknowns. For each solution, we can evaluate the mismatch

∆(φ) ≡
∑

G‖

∣∣∣∣∣

(
df1(G‖, z)

dz
−
dfBloch
nk‖k⊥

(G‖, z)

dz
− eiφ

dfBloch
nk‖−k⊥

(G‖, z)

dz

)∣∣∣∣∣

2

z=z1

. (4.41)

Minimizing the mismatch ∆(φ) as a function of the φ can be efficiently accomplished

by using an surrogate function[2] ∆(φ) ≈ FK(φ), where FK(φ) is a spline interpolation

function. After evaluating ∆(φ) for 4 initial values of φ, it is very efficient to fit to

the surrogate function and iteratively determine the minimum ∆(φ).

4.3.2 Alternative approach

The Appelbaum-Hamann approach is based on the assumption that interface

wavefunction takes the bulk values for z ≤ z1. If the potential is continuous at

z1, it makes sense to require that the Numerov equations (4.34) are all satisfied at z1,

representing the functions at z0 by

P0 ≡ f(G‖, z0) − h2
z

12
M(G‖, z0) = (4.42)

fBloch
nk‖k⊥

(G‖, z0) + RfBloch
nk‖−k⊥

(G‖, z0)

−h2
z

12

(
fBloch
nk‖k⊥

′′

(G‖, z0) + RfBloch
nk‖−k⊥

′′

(G‖, z0)
)
, (4.43)
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where
′′

denotes second derivative with respect to z. This approach ensures that

the interface wavefunction and its second derivative satisfies Eq. (4.33) at z0, but

does not explicitly require that it be continuous at z1. We can then added one more

equation to minimize the error in satisfying Eq. (4.33) at z1 by varying the reflectivity

coefficient, similar to Appelbaum-Hamann Eq. (4.38)

R
∑

G‖

∣∣∣fBloch
nk‖−k⊥

(G‖, z1)
∣∣∣
2

=
∑

G‖

(
fBloch
nk‖−k⊥

(G‖, z1)
)∗ (

f(G‖, z1) − fBloch
nk‖k⊥

(G‖, z1)
)
.

(4.44)

Alternatively, for the no current condition we have

e2iϕ =

∑
G‖

(
fBloch
nk‖−k⊥

(G‖, z1)
)∗ (

f(G‖, z1) − fBloch
nk‖k⊥

(G‖, z1)
)

∑
G‖

(
fBloch
nk‖−k⊥

(G‖, z1)
)(

f(G‖, z1) − fBloch
nk‖k⊥

(G‖, z1)
)∗ . (4.45)

Again we have NG‖
·N + 1 equations and unknowns.

Again, in practice we replace this with the minimization constraint:

∆(φ) ≡
∑

G‖

∣∣∣
(
f(G‖, z1) − fBloch

nk‖k⊥
(G‖, z1) − eiφfBloch

nk‖−k⊥
(G‖, z1)

)∣∣∣
2

. (4.46)

4.3.3 Alternative method II

Another slight variation of this is to also replace P1 in Eq. (4.34) with

P1 ≡ f(G‖, z1) − h2
z

12
M(G‖, z1) = (4.47)

fBloch
nk‖k⊥

(G‖, z1) + RfBloch
nk‖−k⊥

(G‖, z1)

−h2
z

12

(
fBloch
nk‖k⊥

′′

(G‖, z1) + RfBloch
nk‖−k⊥

′′

(G‖, z1)
)
.

This implies that we need to replace the second line of (4.34) by the following

equation:

Q2 + P3 = −(PBloch
1k⊥

+ RPBloch
1−k⊥

). (4.48)

The ∆(φ) is defined as the sum of the norm of the function and its derivative at

z1 as follows:

∆(φ) ≡
∑

G‖

∣∣∣
(
f(G‖, z1) − fBloch

nk‖k⊥
(G‖, z1) − eiφfBloch

nk‖−k⊥
(G‖, z1)

)∣∣∣
2

(4.49)
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+
∑

G‖

∣∣∣∣
d

dz
f(G‖, z1) −

(
d

dz
fBloch
nk‖k⊥

(G‖, z1) −R d

dz
fBloch
nk‖−k⊥

(G‖, z1)

)∣∣∣∣
2

.(4.50)

4.3.4 Alternative method III

This method is similar to method II, in fact the GMRES equations are exactly the

same. The only deference is the way the ∆(φ) function is defined. In this method,

∆(φ) does not require the derivative of the function to be matched. But instead, it

requires the wave function to be matched at more than one point to the Bloch wave

functions. We can also define ∆(φ) to include a sum over several match points {zi}
in the neighborhood of z1.

∆(φ) ≡
∑

G‖j

∣∣∣
(
f(G‖, zj) − fBloch

nk‖k⊥
(G‖, zj) − eiφfBloch

nk‖−k⊥
(G‖, zj)

)∣∣∣
2

(4.51)

Where j runs up to the desired matching grid points. The default is set to five

points. This means if ∆(φ) = 0 then f(G‖, z1), f(G‖, z2), ..., f(G‖, z5) matches the

Bloch wavefunctions exactly.

4.3.5 Alternative method IV

This method treats the 〈p̃aj |Ψ̃λk‖
〉 for the boundary atoms as an unknown variables

that go into the Numerov equations. This method does not need to recalculate the

dot product each time there is a new guess solution of the wave function. Its accuracy

should be comparable to the previous method. The ∆(φ) function is computed exactly

as 4.51.

4.4 Generalized minimum residual method

The Numerov equations (4.34) are efficiently solved as a linear algebra Ax = b

problem using the GMRES algorithm.[59, 17] In this case, the b vector is formed

from the Bloch wave contributions. Since the non-local terms of the Hamiltonian

M2(G‖, z) include integrals over all of the augmentation spheres, all spheres which
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pass through the z1 plane will contain additional contributions to the b vector. The

b vector is different for each of the boundary matching schemes listed above.

Once the desired boundary condition is set using one of the methods above, equa-

tion (4.34) can be treated as a system of linear equations. One can represent it as

AX = b, with AX representing the unknown terms on the left hand side of (4.34)

and b representing the known right hand side terms of (4.34). The exact dimension of

the system of equations depends on the choice of boundary conditions. But in most

cases A has the dimension of NG‖
∗Nz × NG‖

∗Nz and X, and b have the dimension

of (NG‖
∗Nz). For four layered interface diamond (001) for example NG‖

∼ 100 and

Nz ∼ 150. So storing A and b and solving for X would be very difficult specially

considering that each element is a double precision complex variable.

So our aim is to solve the systems of linear questions for X. It will hold the wave

function values as follows.

X =




f(1, 1)

f(2, 1)
...

f(NG‖
, 1)

f(1, 2)
...

f(NG‖
, Nz)




(4.52)

We need a solver that does not need to explicitly store values of the Amatrix, although

we can easily calculate the matrix-vector products AX. Even if we can come with an

explicit expresion for A, it would be very difficult to store it because of its size. For

the above example, we need to store about 15000 × 15000 complex double-precision

elements.

This is where the Generalized Minimum Residual (GMRES) method comes to the

rescue. GMRES method is designed to solve nonsymmetric linear systems [59]. The

most popular form of GMRES is based on the notation that orthogonalized vectors

of ApX, p = 1, 2, 3...m form an efficient basis for representing the solution X. Each

step of the procedure adds a new vector to the approximation, up to a chosen restart

parameter m.
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If no restarts are used, for an A matrix with dimension s, GMRES will converge

in no more than s steps (assuming exact arithmetic). Of course this is of no practical

value when s is large; moreover, the storage and computational requirements in the

absence of restarts are prohibitive. Indeed, the crucial element for successful appli-

cation of GMRES(m) revolves around the decision of when to restart; that is, the

choice of m. Unfortunately, there exist examples for which the method stagnates and

convergence takes place only at the sth step. For such systems, any choice of m less

than s fails to converge.

Saad and Schultz [59] have proved several useful results. In particular, they show

that if the coefficient matrix A is real and nearly positive definite, then a “reason-

able” value for m may be selected. When solving large nonsymmetric systems of

linear equations with the restarted GMRES algorithm, one is inclined to select a

relatively large restart parameter in the hope of mimicking the full GMRES process.

Surprisingly, cases exist where small values of the restart parameter yield convergence

in fewer iterations than larger values[14].

The clear advantage for us was that, GMRES only asks for us to construct a

procedure for calculating AX for any given X. So for our problem it is to our

advantage to not have an explicit form of A. This is because one can use a function

to generate AX from (4.34) and store it in an NG‖
∗Nz × 1 vector.

Figure (4.2) show a flow chart on how GMRES solves the system of linear equa-

tions iteratively. It starts with a initial guess value of X0 and known vector b. A

function then calculates the AX0 using (4.34). The GMRES subroutine then starts

to iteratively minimize the residue, r0 = b − AX0. The detailed algorithm is repre-

sented in the chart by the function labeled f(r0). The interested reader is advised

to consult reference [59] for the full “guts” of the procedure which provides a better

solution vector as X. The program is then run in a loop until self consistent up to

some tolerance or the maximum iteration is reached. At each step, when a new X

is determined, it updates the value of X0 and ask the user to provide the AX0 using

the updated value.

For our implementation, we used a GMRES Fortran77 library from the European

Center for Research and Advanced Training in Scientific Computation (CERFACS)
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GMRES

r0 = b − AX0

X = f(r0)

X

X − X0 < ε ?

No

update X0

b X0
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stop
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Figure 4.2: Flow chart for GMRES.
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website. The library has the ability to do real and complex, single and double precision

arithmetic, suitable for serial, shared memory and distributed memory computers

[18].

4.5 Surface states

In order to calculate surface states, we need to find new solutions to the PAW

within the band gap energies. From the smear plot results, we know the the possible

energies from which there are no bulk states and we assume that these surface states

are spatially confined to Region II and III.

4.5.1 Region II states

For each k‖ and energy range, we guess an energy E0. Find N decaying solutions

in region II which vanish for z < z0 as described above. The Hamiltonian terms would

take of the form:

H̃PAW ≡ H̃ +
∑

aij

|p̃ai 〉Da
ij〈paj | (4.53)

ÕPAW ≡ 1 +
∑

aij

|p̃ai 〉Oa
ij〈paj |. (4.54)

We need to solve two Schrödinger equations for the surface state wave function

and its derivative with respect to its energy eigenvalue.

(
H̃PAW − E0Õ

PAW
)

ΨII
D = 0 (4.55)

(
H̃PAW − E0Õ

PAW
) ∂ΨII

D

∂E
= ÕPAW Ψ̃D. (4.56)

Once we have solved (4.55) and (4.56), the total surface states would be computed

using :

ΨII =
∑

D

CD

(
ΨII
D + [E − E0]

∂ΨII
D

∂E

)
(4.57)
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4.5.2 Region III states

We can make the same construction at E0 in region III. In this region, there are

no atoms, so the Schrödinger equation takes the simpler form:

(
H̃ − E0

)
ΨIII
s = 0 (4.58)

(
H̃ − E0

) ∂ΨII
s

∂E
= Ψ̃s (4.59)

ΨIII =
∑

s

Cs

(
ΨIII
s + [E − E0]

∂ΨIII
s

∂E

)
(4.60)

4.5.3 Match conditions

We require the surface state solutions and their z-derivatives to be continuous at

the II-III boundary:

ΨII(zN) = ΨIII(zN ) (4.61)

Ψ′II(zN) = Ψ′III(zN) (4.62)

In order for this conditions to be done easily with the same number of equations

and unknowns, we must choose N = NG‖

(
ΨII
D (zN) −ΨIII

s (zN )
∂ΨII

D
(zN )

∂z
−∂ΨIII

s (zN )
∂z

)(
CD

Cs

)
= (E − E0)

(
−∂ΨII

D
(zN )

∂E
∂ΨIII

s (zN )
∂E

−∂2ΨII
D

(zN )

∂E∂z
∂2ΨIII

s (zN )
∂E∂z

)(
CD

Cs

)
(4.63)

(4.64)

this gives us a 2NG‖
× 2NG‖

eigenvalue problem. A surface state solution would be

characterized by eigenvalue (E − E0) being real and of small magnitude. We may

have to try several E0’s for this method to work.

4.6 Numerical detail of surface state calculation

For an energy E0, there are NG||
physical solutions in the vacuum region. In order

to match the surface states at the vacuum boundary, we need to have NG||
unique
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solutions in the intermediate region. To achieve these, we choose to evaluate (4.55)

NG||
times with different initial conditions. This is done by dividing the intermediate

region into NG||
equally spaced grids. The first equation was then solved by setting

all the wave functions to the left of the first grid to zero with the exception of the last

one, which is set to some small initial value. these is demonstrated in Figure (4.3),

where it shows that ... = zi−3 = zi−2 = 0 and zi−1 = ε are used as initial values for

solving the values of zi, zi+1, ..., zN .

ZZZZ Z
i i+1i−1i−2i−3

Figure 4.3: Initialization scheme for the surface states in region II

The next solution is then solved similarly except now we used ... = zi−3 = zi−2 =

zi−10 and zi = ε as initial condition. This can be repeated NG||
times. This is demon-

strated graphically in Figure (4.4)

Equation (4.55) has the same form as (4.1) so its solution takes the form of (4.15)

d2

dz2
ΨII
D (G||, z) = M(G||, z) (4.65)

= M1(G||, z) +M2(G||, z) (4.66)

(4.67)
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Figure 4.4: Initial condition for region II for different surface states. Different colors

represents different initial contions.

Where

M1(G||, z) =

[
|k|| +G|||2 −

2m

~2
E0

]
ΨII
D (G||, z) (4.68)

+
2m

~2

∑

G′
||

Ṽeff(G|| −G′
||, z)Ψ

II
D (G||, z) (4.69)

and

M2(G||, z) =
∑

ai

Pa
i (G||, z)

∑

j

2m

~2

(
Da
ij − E0O

a
ij

)
〈Pa

j |ΨII
D 〉 (4.70)

M1(G||, z) is local and easy to implement. But M2(G||, z), has non-local contri-

butions. In addition to this, some of the non-local parts are completely known while

there rest are yet to be calculated. To make our formalism suitable for solving systems

of linear equations, we need to separate these two terms. Remember that 〈Pa
j |ΨII

D 〉
is defined as follows.

〈Pa
j |ΨII

D 〉 =
∑

G||

∫ zf

z0

dzPa
i (G||, z)

∗ΨII
D (G||, z). (4.71)
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Now Let zi be the first index of the wave function we are evaluating. This means

that all the wave function to the left of zi (that is, ..., zi−2, zi−1) are all known by de-

sign. Figure (4.5) shows the general indexing in the z direction and the augmentation

sphere of an atom. Remember that outside the augmentation sphere, the projector

(P) vanishes. Using all the above information, we can split (4.71) in to two parts

(known and unknown parts) as follows,

ZZZ Zi−2 i−1 i+1i

Figure 4.5: Shows general surface state wave function indexing and augmentation

sphere of an atom.

〈Pa
j |ΨII

D 〉 =
∑

G||

∫ zi

z0

dzPa
j (G||, z)Ψ

II
D (G||, z) (4.72)

+
∑

G||

∫ zf

zi

dzPa
j (G||, z)Ψ

II
D (G||, z)

Where the first term is known and the second term is unknown. The first term

is also farther simplified due to the fact that only one of the wave function is non-

zero, namely ΨII
D (1, zi−1). We have used Simpson’s integration rule to approximate it.
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Simpson’s rule needs three points to integrate, so we will use zi−2, zi−1, zi. Equation

(4.72) is then looks like the following,

〈Pa
j |ΨII

D 〉 =
4

3
hPa

j (1, zi−1)
∗ΨII

D (1, zi−1) (4.73)

+
h

3

∑

G||

Pa
j (G||, zi)

∗ΨII
D (G||, zi) (4.74)

+
∑

G||

∫ zf

zi

dzPa
j (G||, z)

∗ΨII
D (G||, z)

Where h the uniform step size along the z-axes. Note that ΨII
D (G||, zi−2) = 0 is

assumed.

Now if we substitute (4.73) in to (4.70), we get

M2(G||, z) =
∑

ak

Pa
k (G||, z)

∑

j

2m

~2

(
Da
kj − E0O

a
kj

) [4

3
hPa

j (1, zi−1)Ψ
II
D (1, zi−1)

+
h

3

∑

G||

Pa
j (G||, zi)Ψ

II
D (G||, zi)

+
∑

G||

∫ zf

zi

dzPa
j (G||, z)Ψ

II
D (G||, z)




= M2k(G||, z) +M2uk(G||, z)

Where

M2k(G||, z) =
8mh

3~2

∑

akj

Pa
k (G||, z)

(
Da
kj − E0O

a
kj

)
Pa
j (1, zi−1)Ψ

II
D (1, zi−1)(4.75)

M2uk(G||, z) =
2mh

3~2

∑

akj

Pa
k (G||, z)

(
Da
kj − E0O

a
kj

)
(4.76)


∑

G||

Pa
j (G||, zi)Ψ

II
D (G||, zi)

+
∑

G||

∫ zf

zi

dzPa
j (G||, z)Ψ

II
D (G||, z)


 .
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The Numerov solution to the surface states looks like

Pi−2 + Qi−1 + Pi = 0

Pi−1 + Qi + Pi+1 = 0
...

...
...

...

PN−2 + QN−1 + PN = 0

(4.77)

where

Pi = ΨII
D (zi) −

h2

12
(M1(zi) +M2uk(zi)) −

h2

12
M2k(zi) (4.78)

Qi = −2ΨII
D (zi) −

h2

12
(Mi(zi) +M2uk(zi)) −

10h2

12
M2k(zi). (4.79)

Note that the G|| index is suppressed for clarity.

Substituting (4.75) , (4.76), (4.78) and (4.79) into (4.77) and rearranging it so

that it will take the following form.

Ax = b

where

Ax =




f(zi) − h2

12
[MA(zi−2) + 10MA(zi−1) +MA(zi)]

−2f(zi) + f(zi+1) − h2

12
[MA(zi−1) + 10MA(zi) +MA(zi+1)]

...

f(zN−2) − 2f(zN−1) + f(zN) − h2

12
[MA(zN−2) + 10MA(zN−1) +MA(zN)]




(4.80)

b =




−f(zi−2) + 2f(zi−1) + h2

12
[M2k(zi−2) + 10M2k(zi−1) +M2k(zi)]

−f(zi−1) + h2

12
[M2k(zi−1) + 10M2k(zi) +M2k(zi+1)]

...

h2

12
[M2k(zN−2) + 10M2k(zN−1) +M2k(zN )]



. (4.81)

Where MA(zi) ≡M1(zi) +M2uk(zi).
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Note that the dimension of Ax is NG||
∗ (N − i+ 1). where NG||

is the number of

G||’s and N is the index number of the region II and III. The contents of vector b is

completely known for a given zi.

4.7 Self-consistency loop

The self-consistency process needs the smooth potential ṽeff(r) and the atom cen-

tered Hamiltonian matrix elements Da
ij.

The potential needs to be expressed in the surface form

ṽeff(r) =
∑

G‖

¯̃veff(G‖, z)e
iG‖·r‖. (4.82)

where the contributions are given in equation (4.4).

The local potential term has the form of a sum of spherically symmetric function

Valoc(|r− Ra|).
In order to put this term in the surface representation, we must evaluate

ˆ̃vloc(G‖, z) =
2π

A
∑

a

e−iG‖·R
a
‖

∫ Ra
c

|z−Za|

dr J0

(
G‖

√
r2 − |z − Za|2

)
rValoc(r). (4.83)

Once the wavefunctions in Region II and III are determined, we can determine

the smooth density:

ñ(r) =
∑

λk‖

wλk‖
|Ψ̃λk‖

(r)|2, (4.84)

where wλk‖
represents a weighting factor depending on surface Brillouin zone sampling

and on occupancy. We can also evaluate the projected occupancy coefficients

W a
ij ≡

∑

λk‖

wλk‖
〈Ψ̃λk‖

|p̃ai 〉〈p̃aj |Ψ̃λk‖
〉. (4.85)

These two results enable us to update the Hamiltonian.

Qa
LM = (−Za +Qa

core)δL0δM0 +
∑

i,j

W a
ij G

LM
`imi `jmj

naLni`inj`j
. (4.86)
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Where the Gaunt coefficient is defined by:

GLM
l1m1l2m2

≡
√

4π

∫
d3rY ∗

l1m1
(r̂)Y ∗

LM(r̂)Yl2m2
(r̂).

From this result, we can calculate the compensation charge density

n̂(r) =
∑

aLM

Qa
LMg

a
LM(r − Ra), (4.87)

where the functions gaLM(r) are defined to be

gaLM(r) ≡ NLr
Lka(r)YLM(r̂), where, [

√
4πN L]

−1 ≡
∫ Ra

c

0

dr r2+2L ka(r) (4.88)

and where the shape function ka(r) is defined by

ka(r) =





[
sin(πr/Ra

c )
(πr/Ra

c )

]2
for r < Ra

c

0 for r ≥ Ra
c

. (4.89)

Writing the electron density in the surface representation, we have

ñ(r) =
∑

G‖

¯̃n(G‖, z)e
iG‖·r‖, (4.90)

where

¯̃n(G‖, z) ≡
1

A

∫
d2r‖e

−iG‖·r‖ñ(G‖r) =
∑

G⊥

¯̃n(G⊥)eiG⊥z. (4.91)

We also need to represent the compensation charge density in the surface geometry.

These can be evaluated

¯̂n(G‖, z) =
∑

aLM

Qa
LMe−iG‖·R

a
‖Ka

LM(G‖, z − Za), (4.92)

where

Ka
LM(G‖, z − Za) ≡ NL

A

[
G‖x

|G‖|
+ i

G‖y

|G‖|

]M
(4.93)

×e−iMπ/2

√
π(2L+ 1)(L− |M |)!

(L+ |M |)!

×
∫ Ra

c

|z−Za|

dr rL+1ka(r)P
|M |
L

(
z − Za

r

)
(4.94)

×J|M |

(
|G‖|

√
r2 − (z − Za)2

)
.
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The total pseudodensity in the surface representation ¯̃nT (G‖, z) should be used

to calculate the Coulomb contribution to the potential as a solution to the Poisson

equation (
−G2

‖ +
d2

dz2

)
¯̃vCoul(G‖, z) = −4πe2 ¯̃nT (G‖, z). (4.95)

The zero potential for Eq. (4.95) is set by the solution of the 3-dimensional Poisson

equation in the bulk and can be calculated from

¯̃vCoul(G‖, z1) =
4πe2

V
∑

G⊥,G6=0

¯̃n(G) + ¯̂n(G)

G2
‖ +G2

⊥

eiG⊥z1 . (4.96)

The Green’s function solution of (4.95) can be written as follows,

Case 1 (G|| 6= 0)

¯̃vCoul(G||, z) =
2πe2

G‖

∫
z

z1

e−G‖(z−z′) ¯̃nT (G‖, z
′)dz′ (4.97)

+
2πe2

G‖

∫ ∞

z

eG‖(z−z
′) ¯̃nT (G‖, z

′)dz′

+ CG||
e−G‖(z−z1)

Where CG||
is a constant. It is also assumed that ¯̃vCoul(G||, z → ∞) approaches

to zero exponentially. Now lets find the value of CG||
. Let zρ be the value of z where

¯̃nT (G||, zρ) ≡ 0.

For z = z1 (4.97) can be written as

¯̃vCoul(G‖, z1) =
2πe2

G‖

∫ zρ

z1

eG‖(z1−z′) ¯̃nT (G‖, z
′)dz′ + CG‖

. (4.98)

Here it assumed that

2πe2

G‖

∫ ∞

zρ

e−G‖(z−z′) ¯̃nT (G‖, z
′)dz′ ≡ 0.
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Remember that the value of the ¯̃vCoul(G‖, z1) is known from the matching condi-

tion at the bulk-intermediate boundary. Equation (4.98) can be rearranged to solve

for CG|| as follows

CG||
= ¯̃vCoul(G‖, z1) −

2πe2

G‖

∫ zρ

z1

eG‖(z1−z′) ¯̃nT (G‖, z
′)dz′.

Therefore, (4.97) can be written

¯̃vCoul(G||, z) =
2πe2

G‖

∫ z

z1

e−G‖(z−z′) ¯̃nT (G‖, z
′)dz′

+
2πe2

G‖

∫ zρ

z

eG‖(z−z′) ¯̃nT (G‖, z
′)dz′

+

[
¯̃vCoul(G‖, z1) −

2πe2

G‖

∫ zρ

z1

eG‖(z1−z′) ¯̃nT (G‖, z
′)dz′

]
e−G‖(z−z1).

Case 2 G|| = 0

¯̃vCoul(0, z) can be solved similarly

¯̃vCoul(0, z) = ¯̃vCoul(0, z1) + 4πe2

∫ z

z1

(z′ − z)¯̃nT (0, z′)dz′. (4.99)

In order for this to have no net electric field, the system must be neutral:

∫ ∞

z1

¯̃nT (0, z′)dz′ = 0. (4.100)

Also, in order that this form be consistent with the bulk periodic potential, z1 must

be chosen so that ∫ z1+c/2

z1−c/2

(z′ − z1)¯̃n
Bulk
T (0, z′)dz′ = 0. (4.101)

The expression for the G‖ = 0 contribution allows us to evaluate V∞ which is used

in Eq. (4.28)

V∞ = ¯̃vCoul(0, z1) + 4πe2

∫ ∞

z1

(z′ − z1)¯̃nT (0, z′)dz′. (4.102)

The exchange correlation term µxc[ñ(r)] can be evaluated by using a 2-dimensional

FFT.
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The Da
ij coefficients (4.5) can be determined from a combination of matrix ele-

ments set in the atompaw code and the projected weight coefficients. The equations

we need for updating the Da
ij coefficients are for the most part, the same as for the

bulk PAW formalism as described in reference [26] and are summarized below. By

assumption, Da
ij is taken to be the bulk value if Za ≤ z1 and we need to update only

those for Za > z1.

The kinetic energy and the ionic and local potential terms are taken directly from

the stored matrix elements:

Ka
ij + [vaat]ij = δliljδmimj

(Ka
nili nj lj

+ [vat]nili nj lj ). (4.103)

The matrix element of the compensation potential is given by

[v̂a]ij =
∑

LM

Qa
LM (−1)M GL−M

`imi `jmj
v̂aLnilinj`j

. (4.104)

The Hartree terms can be calculated according to

[V a
H ]ij =

∑

LM,(k,l)

(−1)M GL−M
limi ljmj

GLM
lkmk llml

W a
kl V

aL
nilinj lj ;nklknlll

. (4.105)

In this equation, the sum over L and lk and ll is restricted by |lk− ll| ≤ L ≤ lk+ ll and

|li−lj | ≤ L ≤ li+lj. The sum over mk andml is restricted by M = mj−mi = mk−ml.

The Coulomb shift term can be evaluated:

[va0 ]ij =
∑

LM

∂E

∂Qa
LM

GLM
limi ljmj

naLnilinj lj
. (4.106)

The coefficients ∂E
∂Qa

LM

have several contributions which can be written:

∂E

∂Qa
LM

=
∑

G‖

e−iG‖·R
a
‖

∫ Za+Ra
c

Za−Ra
c

¯̃v(G‖, z)
∗Ka

LM(G‖, z − Za)dz

−
∑

i,j

W a
ij (−1)M GL−M

limi ljmj
v̂aLnilinj lj

− 2Qa ∗
LM Ê

aL. (4.107)

The exchange correlation term can be calculated according to

[V a
XC ]ij =

∑

α

wα Y
∗
limi

(r̂α) Yljmj
(r̂α)
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×
∫ ra

c

0

dr

[
µxc[n

a(r̂αr) + nacore(r)]φ
a
nili

(r)φanj lj
(r)

−µxc[ña(r̂αr)]φ̃anili
(r) φ̃anj lj

(r)

]
, (4.108)

where the radial integral over r is performed for each angular mesh point r̂α. The

efficiency of evaluating (4.108), can be improved by separating the angular and radial

contributions in the atomic density functions according to:

na(r̂αr) =
∑

i,j

W a
ij Y

∗
limi

(r̂α) Yljmj
(r̂α)

φanili
(r) φanj lj

(r)

r2
and

ña(r̂αr) =
∑

i,j

W a
ij Y

∗
limi

(r̂α) Yljmj
(r̂α)

φ̃anili
(r) φ̃anj lj

(r)

r2
. (4.109)

4.8 Convergence of interface charge density toward

bulk region

The presence of an impurity in a metal is known to cause oscillations in the density

profile due to the sharp Fermi surface. The decay of the density oscillations induced

by a defect is a long-standing problem in solid state physics. This phenomenon,

called Friedel oscillations [34, 67], is closely related to the singularity in the response

function for wave-vectors close to 2kF (Fermi level), also occurs in the vicinity of the

surface.

For z ≈ z1: ρ̃ =
∑

k‖k⊥

wk‖k⊥|Ψ̃Bloch
k‖k⊥

+ RΨ̃Bloch
k‖−k⊥

|2 = ρ̃Bloch + δρ̃Bloch
osc .

Interference term δρ̃Bloch
osc decreases in amplitude as z approaches bulk region pro-

vided that k⊥ sampling is sufficiently large.

It is expected that for the surface problem, the induced density decays asymptot-

ically as

δρ̃Bloch
osc ∼ cos(2kFz − γ)

z2
(4.110)

Where γ is some constant that depends on the Fermi level [34].

Figure (4.6) illustrates the effect of k-point sampling for a one-dimensional model

system. The exact solution is found by analytically integrating the model density. It
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is clearly shown that one needs to use enough k⊥ points to smooth out the Friedel

oscillations for density far from the interface plane.

−z

(z)ρ

2 k−points

8 k−pointsExact

Figure 4.6: Theoretical charge fluctuation as a function of k⊥ and z

Figure (4.7) shows convergence of the G|| = 0 charge density component of lithium

(001) crystal for different k⊥ sampling points. We used 16 layers in the interface

region.

4.9 Convergence of wave function

The surface relaxation introduced by the abrupt lattice termination in the surface

region should only affect the wave functions close to the surface. But the wave function

should resemble the bulk states as one goes from the surface to the bulk region. On

the other hand, if one choose different size for region II (interface region) the interface

wave function should remain the same. One way to check our method is to compare

the simulation results of two different sizes for region II. The results should not
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Bulk density
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z1

ρ
(0

,z
) (
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)

0

0.01
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Figure 4.7: Convergence of ρ(0, z) for Li (001) 16-layer interface region for different

k-point sampling noted in the form λ× µ× ν, where λ and µ refer to the number of

k‖ points in the 2 distinct surface directions and ν refers to the number of k⊥ points.
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depend on whether or not some of the bulk layers are treated in the interface region.

Figures (4.8 and 4.9) shows a wavefunction that extends from bulk to vacuum region

calculated for four interface layers and eight interface layers diamond (001). Two

different energy levels are presented. Figure (4.8) was generated by using the energy

labeled “1” in Figure (4.10) while Figure (4.9) generated using the energy labeled “2”

n the same plot. Figure (4.10) show the band structure of diamond (001) surface as

a function of k⊥ for the k‖ = (1/4, 1/4) in a fractional unit of the surface Brillouin

zone.

In our implementation, we have made an assumption that for each Bloch wave

traveling toward the interface at a given energy level, we have one reflected Bloch

wave. This is expressed by

fBloch
nk‖k⊥

(G‖, z) + RfBloch
nk‖−k⊥

(G‖, z). (4.111)

This assumption is true for the case “1” because there is only one k⊥ point that has

the same energy as “1”. In other words, if you draw a horizontal line E = −0.05

on Figure (4.10), that line intersects the band structure curve only once, that is, at

point “1”. That is why the results for different lattice layers converges on Figure

(4.8). This assumption would not work for the case of “2”. This is because we can

have more than one k⊥ for a given energy. The corresponding result shows that the

wave function changes a lot for different choices of the interface region. So to fix this,

we need to update our assumption to include the additional reflected wavefunctions.

The reflected Bloch wavefunctions should be

fBloch
nk‖k⊥

(G‖, z) +
∑

j

Rjf
Bloch
nk‖−k⊥j

(G‖, z). (4.112)

Where j sums over all of the degenerate k⊥ points representing refelected Bloch waves.
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Figure 4.8: Comparison of 4 and 8-layered diamond (001) interface wave functions for

the energy labeled as “1” in Figure 4.10. The z-axes is shifted to match the vacuum

layer from both cases.
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Figure 4.9: Comparison of 4 and 8-layered diamond (001) interface wave functions

for the energy labeled as “2” in Figure 4.10.
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Figure 4.10: Band structure for diamond (001) structure at k‖ = (0.25, 0.25). The

vertical dotted lines represent the k⊥ values used to calculate the surface wave func-

tions.
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Chapter 5

Analysis

When we first started the project, we formulated the solution of the equation in

region II (the intermediate region) (see fig 4.1 for geometry), as an initial value prob-

lem by taking the bulk wave functions to set the initial value. Since the differential

equations are second order,there are two independent solutions for each equation.

One of these equations is unphysical. We used the Predictor-Corrector method [15]

to solve our second order equations. It turned out that Predictor-corrector had diffi-

culty in filtering out the unphysical solution that grows exponentially. Figure (5.1),

shows one such result. The result shows the region II wave functions for lithium

in the body centered cubic structure. We tried to control the growing solutions by

using different methods, such as by using Green’s functions, by explicitly dropping

the growing solution, and by changing the step size. All of these failed to correct the

problem.

Why are the exponentially growing solutions bad? The reason is that we want

to match the solutions in regions II and III at the vacuum interface. Since the wave

function of the region III have a finite value at the interface then we would expect

the same for region II.

After a long try, we abandoned solving initial value problem for the region II wave

function. Instead, we have now formulated the problem as a boundary value problem.

This method is explained in detailed in previous Chapter 4. The down side of the

boundary value formulation is that we have to solve a very large system of equations.
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The size of equation is in the order of (NG‖
×Nz). Where NG‖

is number of G‖ wave

vectors and Nz is the number of z-steps. To give you some sense of how large this

is for lithium, constructing region II with 4 unit cells and by including all |G‖| ≤ 6

bohr−1, there are approximately 15000 equations and unknowns. This is far to big to

fit in to a single processor computer.

To overcome this difficulty we use the Generalized Minimum RESidual (GMRES)

method developed by Saad and Schultz in 1986 [59] in order to solve large nonsym-

metric linear systems. This method does not need the s× s coefficient matrix to be

stored. instead, you can use a function to generate the right hand side of the AX = b

system of equations. This way, you need only a storage for a dimension of s × m,

where m be is the “restart” parameter described in section (4.4).

So why do we need to know about the methods which have failed? There are two

reasons. First is that by explaining these methods, we will help prevent repeating

the same mistakes. The second reason is that our next generation method is likely

to use most of the procedures discussed below. This is because, we have recently

reexamined the initial value formulation and have developed a recurrence algorithm

that looks very promising for future development

The results for the boundary value formulation are really encouraging. Now it is

possible to solve the wave function for the complete region, i.e Region I, II and III

for one energy level with out the growing solutions. Figure(5.2) shows the real and

imaginary part of G‖ = 0 for the first occupied energy for one SCF cycle.

5.1 Explanation of the failed method

5.1.1 Basic equations for energies within bulk bands

• Assume that region I wave function is a sum of Bloch wave:

ΨI =
∑

nk⊥(Enk‖k⊥
=E)

C
k‖

nk⊥
ΨBloch
nk‖k⊥

(5.1)

• Divide region II wave function in two parts; one that propagates from bulk the

other that decay into the solid as follows:
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ΨII =
∑

nk⊥

C
k‖

nk⊥
ΨII
nk‖k⊥

+
∑

d

CdΨ
d
k‖

(5.2)

• Expand region III wave function as a sum of wave functions which decay or

propagate into the vacuum region with dominant parallel wavevector k‖ + G‖
′

:

ΨIII =
∑

G‖
′

CIII
G‖

′ΨIII
G‖

′ (r) (5.3)

• Determine unknown coefficients C
k‖

nk⊥
,Cd, C

III
G‖

′ from matching conditions:

ΨI = ΨII |z=z1 and ΨII = ΨIII |z=zN

+(similar expression for matching the derivatives).

5.1.2 For energies in bulk band gaps (surface states)

• ΨI ≡ 0 because bulk wave functions do not exist for energies within the band

gap.

• Using surface projected band diagram, guess surface state energy E within band

gaps.

• Expand region II wave functions as a sum of N decaying functions.

ΨII =
∑

d

CdΨ
d
k‖

(5.4)

• Expand region III wave function as a sum of wave functions which decay or

propagate into the vacuum region with dominant parallel wavevector k‖ + G‖
′

ΨIII =
∑

G‖
′

CIII
G‖

′ΨIII
G‖

′ (r) (5.5)

• Matching at the zN boundary determines coefficients Cd, C
III
G‖

′ at the correct E.

ΨII = ΨIII |z=zN
and

∂ΨII

∂z
=
∂ΨIII

∂z
|z=zN

(5.6)

• In practice, energy search is performed by linearizing matching conditions with

respect to energy.
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5.1.3 Detailed equations

Region I (Bloch waves)

Ψ̃I
nk(~r) =

√
1

ν

∑

G

Ank(G)ei(k+G)·r

~G = G‖ + G⊥

~k = k‖ + k⊥

Ψ̃nkI(~r) =

√
1

A

∑

G‖

f InkG‖
(z)ei(k‖+G‖).r||

f InkG‖
(z) =

√
A

V e
ik⊥z

∑

G⊥

Ank(G‖,G⊥)eiG⊥z

Region II

Similarly region II wavefunction would be represented as:

ΨII
nk =

√
1

A

∑

k‖

f IInkG‖
(z)ei(k‖+G‖)·r||. (5.7)

Its equivalent Shrödinger equation would be:

(
− ~2

2m

d2

dz2
+

~2(k‖ + G‖)
2

2m
− Enk

)
f IInkG‖

(z) +
∑

G‖
′

V (G‖ − G‖
′

, z)f II
nkG‖

′ (z) (5.8)

+
∑

aij

℘ai
G‖

(z)
(
Da
ij − EnkO

a
ij

)
〈p̃aj |Ψ̃α〉 = 0(5.9)

Where the notation are changed from the previous chapter. For reference here is the

equivalence syntax.

• ℘ai
G‖

(z) ≡ Pa
i (G‖, z)

• f II
G‖

(z) ≡ f IInk(G‖, z)
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Now lets expand f II
G‖

(z) using :

= f 0
G‖

(z) +
∑

ai

Caif
ai
G‖

(z). (5.10)

The functions f 0
G‖

(z) are solutions to the coupled equations:

(
− ~2

2m

d2

dz2
+

~2(k|| + G‖)
2

2m
− Enk

)
f 0
nkG‖

(z) (5.11)

+
∑

G‖
′

V
G‖−G‖

′ (z)f 0
nkG‖

′ (z) +
∑

ai

℘ai
G‖

(z)C0
ai = 0 (5.12)

Where

C0
ai =

∑

j

(
Da
ij − EnkO

a
ij

)
〈p̃aj |Ψ̃α〉 (5.13)

and the functions f ai
G‖

(z) are solutions to the equations

(
− ~2

2m

d2

dz2
+

~2(k|| + G‖)
2

2m
− Enk

)
fainkG‖

(z) (5.14)

+
∑

G‖
′

V
G‖−G‖

′ (z)f ai
nkG‖

′ (z) = −℘ai
G‖

(z). (5.15)

Since outside the 0 < z−za < rac and |z1−za| ≤ rac region, ℘ai
G‖

(z) = 0, we assume

faiG11
(z) ≡ 0 for z < za − rac for all a such that |z0 − za| > rac .

In order to find f II
G‖

(z) , we must find Cai coefficients.

Calculation of Cai coefficients

For b such that |z1 − zb| > rbc,

∑

bi

Cbi(−℘biG‖
(z)) +

∑

b′ jk

℘b
′
j

G‖
(z)
(
Db

′

jk − EnkO
b
′

jk

)
〈℘b

′
k

G‖
|f 0

G‖
+
∑

el

Celf
el
G‖

〉 = 0

Suppose that we would like to ensure that the coefficient of each ℘biG‖
(z) vanishes.

this gives us a linear equation for the Cai coefficients.

−Cbi +
∑

j

(
Db
ij − EnkO

b
ij

)
〈℘bj|f 0〉 +

∑

ejl

(
Db
ij − EnkO

b
ij

)
〈℘bj|f el〉Cel = 0 (5.16)

Defining

X0
bi ≡

∑

j

(
Db
ij − EnkO

b
ij

)
〈℘bj|f 0〉 (5.17)
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and

Xel
bi ≡

∑

j

(
Db
ij − EnkO

b
ij

)
〈℘bj|f el〉, (5.18)

a linear equation for Cbi coefficients takes of the form:

Cbi −
∑

el

Xel
biCel = Xo

bi (5.19)

and this uniquely determines ΨII for Bloch states.

Mbi,el ≡ δbi,el −Xel
bi

Cbi =
∑

el

M−1
bi,elX

0
el (5.20)

Region III In region III, the wave function takes of the form:

Ψ̃III
nk =

√
1

A

∑

G‖

χIIInkG‖
(z)ei(k||+G‖)·r|| (5.21)

as discussed before. Equations for z → ∞ become dominated by G‖ = 0 contribution.

{−~2

2m

d2

dz2
+

~2

2m
(k|| + G‖)

2 + V∞ − εnk‖k⊥

}
f III
G‖

0(z) = 0 (5.22)

suppose for z > zN

f III
G‖

(z) =
∑

G‖
0

CG‖
0

f
G‖

G‖
0(z) (5.23)

where for z → ∞, f
G‖

G‖
0(z) = e

−κ
G‖

0z
δG‖G‖

0 as defined in equation (4.27).

Matching condition at zN :

f II
G‖

(zN ) =
∑

G‖
0 CG‖

0

f
G‖

G‖
0(zN) and f II′

G‖
(zN ) =

∑
G‖

0 CG‖
0

f
G‖′

G‖
0(zN) Where the ′

denotes first derivative with respect to z.

If there are NG‖
values of G‖, we have NG‖

unknowns and 2NG‖
equations for

each Bloch wave. Actually there are at least 2 Bloch waves in region I; one traveling

in the direction +z and a degenerate solution traveling in the direction −z; suppose

we normalize the solution to the +z Bloch wave:
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f II+
G‖

(zN ) + Rf II−
G‖

(zN ) =
∑

G‖
0

CG‖
0

f
G‖

G‖
0(zN)

Now we have NG‖
+ 1 unknowns. Need to add NG‖

− 1 decaying wave solutions

at the energy Enk. These equations can be generalized as follows.

1. choose NG‖
− 1 of the grid points zi ; z0 < zq < zs

2. solve Schrödinger equations with f 0q
G‖

(z) with f 0q
G‖

(z) ≡ 0 for z < zq; corre-

sponding behavior for f ai
G‖

(z).

Thus matching condition becomes

f II+
G‖

(zs) + Rf II−
G‖

(zs) +
∑NG‖−1

q=1 Dqf
q
G‖

(zs) =
∑

G‖
0

CG‖
0

f
G‖

G‖
0(zs)

f II′+
G‖

(zs) + Rf II′−
G‖

(zs) +
∑NG‖−1

q=1 Dqf
′q
G‖

(zs) =
∑

G‖
0

CG‖
0

f
′G‖

G‖
0(zs)

Band gap solutions

The band gap solutions are very similar to those discussed in section 4.5.

5.2 Methods of integration

We have used two methods to solve the above equations namely, Predictor-Corrector

and Green’s function formulations.

5.2.1 Predictor-corrector

Since we have a special second-order equation of the form of y′′ = G(x, y) in which

y′ is not explicitly involved, we can use predictor corrector (PC) method to integrate

it inwards. Lets rewrite our equation in the PC form [15].

d2

dz2
fG0

G‖
(z) =

[
(k|| + G‖)

2 +
2m

~2

(
V∞ − εnk||k⊥

)]
f

G‖
0

G‖
(z) +

∑

G‖
′

V̄
G‖−G‖

′ (z)f
G‖

0

G‖
′ (z)
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The Predictor term of PC formalism is as follows:

yi = yi+3 + yi+1 − yi+4 +
h2

4

(
5y′′i+3 + 2y′′i+2 + 5y′′i+1

)

and the Corrector term of the PC will be:

yi = 2yi+1 − yi+2 +
h2

12

(
y′′i+2 + 10y′′i+1 + y′′i+1

)

Our regions II and III equations would take of the form:

• Predictor Term

fG‖
(z + h) = fG‖

(z) + fG‖
(z − 2h) − fG‖

(z − 3h)

+
h2

4

(
5f ′′

G‖
(z) + 2f ′′

G‖
(z − h) + 5f ′′

G‖
(z − 2h)

)

• Corrector Term

fG‖
(z + h) = 2fG‖

(z) − fG‖
(z − h)

+
h2

12

(
f ′′
G‖

(z + h) + 10f ′′(z) + f ′′
G‖

(z − h)
)
.

In all of these expressions f ′′
G‖

(z) is evaluated by M1(G‖, z). To use the PC we need

to know at least four points. For region II these values are taken from the known

Bloch functions . In region III, we need to integrate from zρ in the vacuum region

toward zN . The initial inputs are:

χ(0, zmax−i) = e
−κ

G0
11

∗h(zmax−i)

χ(1 : Gmax, zmax−3 : zmax) = 0

where i = 0, 1, 2 and 3.
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5.2.2 Green’s function method

It is possible also to use Green’s function to solve for the wave function in region

II. It will take of the form:

fG‖
(z + h) = fG‖

(z) cos(κh) +
f ′
G‖

(z)

κ
sin(κh) (5.24)

+
1

κ

∫ h

0

sin(κ(h− z′)GG‖
(z)dz′ (5.25)

where

GG‖
(z) =

2m

~2

∑

G‖

VG‖−G‖
′(z) ∗ fG‖

(z) (5.26)

κ =

√
2m

~2
E − |k|| + G‖|2 (5.27)

5.3 Some results

This section consites our results for the intermediate wavefunctions using the

above discussed methods. Figure (5.3) shows the initial potential used to simulate

lithium crystal in the body centered cube (bcc) structure. The solution for the Bloch

wavefunction that extends toward the intermediate region expressed in equation (5.12)

is shown in Figure (5.4). Predictor-Corrector method was used to integrate the wave-

functions. The G‖ = (0, 0), G‖ = (0, 1) and G‖ = (−1, 0) component of the wave-

function are shown. Figure (5.5) shows the solution of the intermediate wavefunction

those do not exist in the bulk as expressed in equation (5.15). The 2s and 2pz wave-

function for two lithium atoms and their corresponding atom augmentation sphere

are shown. Figure (5.6) show the total intermediate wavefunction computed using

equation (5.10) for lithium crystal. This are examples of the well behaved solution.

This means that the intermediate wave functions do not diverge at the region-II and

region-III boundary. This is due to the fact that we have a very simple surface. We

have one atom per unit cell and the atom is centered at the unite cell and no atom

got cut buy our boundary. But this method have an issue for complex surfaces, as

shown above for the case of diamond.
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Figure 5.3: Region II effective potential used for Li in bcc structure

Figure (5.7) demonstrates that many different integrating schemes can be used to

solve the intermediate wavefunctions. In particular, it shows the result of Predictor-

Corrector and Green’s function methods for lithium surface in bcc structure for dif-

ferent integrating step size. As can be seen, the results for different integration

algorithms agree better for small step size than for larger step sizes.
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Chapter 6

User guide

6.1 How to run

The “SIPAW” (Semi-Infinite PAW) method is written in Fortran90/95. The main

program is called surfpwpaw. It depends on PWPAW, GMRES, lapack, blas and fftw

libraries. A general Makefile is available that needs only a modification to the library

and compiler paths.

After a successful completion, we have a program called surfpwpaw and lets say

that this binary is saved in the directory /usr/local/bin. To run it, give the following

command:

/usr/local/bin/surfpwpaw bulkDia.paw surfDia.paw

Where bulkDia.paw and surfDia.paw are input filenames for the example described

below.

6.1.1 Bulk input

---------------------------bulkDia.paw--------------

#

# Input file for diamond

#

open Log ’diamond.log’ # Set output files
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Open Error ’diamond.error’

Open output ’diamond.out’

Max_AtomTypes 1

MAx_Specific_Atoms 4

Max_TotalPsi 60

MinPsi 40

Psi_Memory 200

Proj_Memory 50

Ylm_Memory 50

Bloch_Memory 50

SuperCell # Define the crystal

A (4.74097300545033813, 0.00000000000000000, 0.00000000000000000)

B (0.00000000000000000, 4.74097300545033813, 0.00000000000000000)

C (0.00000000000000000, 0.00000000000000000, 6.70474832315260166)

Include ’444’

Include ’diamondsurf.sym’

Gauss_Width 0.001

BZ_Method GAUSS

End

PlaneWave_Cutoffs

Gcut_LOW 8

Gcut_HIGH 16

End

Include ’/physp2/natalie/pwpawpaper/atompaw_work/atompaw/C/VNC2/C.atomicdata’

AtomType_Occupancy C

Orbitals_Size 2

Valence_Orbitals 1 2

Valence_occupancy 1 3

End

Atom_List Frac_Position

C1 C (-0.50000000000,-0.2500000000,-0.375)
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C2 C ( 0.00000000000,-0.2500000000,-0.125)

C3 C ( 0.00000000000, 0.2500000000, 0.125)

C4 C ( 0.50000000000, 0.2500000000, 0.375)

End

FORCES_ALWAYS_CALC_H

Mix_Veff

V_NewMix 1.0 0.2

Dij_NewMix 1.0 0.2

Mix_SecondValue 0.2

FORCES_ALWAYS_CALC_H

Store_Lowest_Energy ’diamond’

Set_Name Force_Name ’diamond.forces’

Set_Name Position_Archive_Name ’diamond.positions’

Initialize_System

Relax charge 30 1.0E-8

---------------------------bulkDia.paw--------------

The detailed instructions on what each keyword means for the bulk input is ex-

plained in reference [64]. The main difference is that, in the above case there is no

“QUIT” keyword at the end. This keyword sends an exit signal to the main program

and terminates the whole program before it processes the surface calculations. The

other important keyword is also the “relax charge”. This generates a self-consistent

electron wave function for the bulk unit cell. The bulk unit cell should be in surface

geometry, that is, G1 and G2 should be in the x− y plane while G3 should be in the

z−direction.

6.1.2 Surface input

---------------------------surfDia.paw--------------

Solution_method GMRES

Surf_mode AppelbaumBound

Slabinput /physp2/natalie/surface_project/diamond001/SL/4again/Dia8l.ham

RegionIIIsolver Predictor_Corrector

ZSTEP 0.0694071 # it is in bohr scale (not in A)
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NOZSTEPS 211 10 # for region II III

LAMBDA 2.0

ZZERO 0.0000000 # 3.3523748 #we used a/2 = 6.7047496/2

INTERFACEATOMS 4 #a=3.548A= 6.70474832315260165750 bohr

iC1 C C1 -2.370486502725169 -1.185243251362584 4.190467701970376

iC2 C C2 0.000000000000000 -1.185243251362584 5.866654782758526

iC3 C C3 0.000000000000000 1.185243251362584 0.838093540394075

iC4 C C4 2.370486502725169 1.185243251362584 2.514280621182225

END

MGMRES 1000

iterGMRES 90000

auxiterGMRES 20000

tolGMRES 1.e-5

toldelta 2.e-3

matchpts 120

R3SMALL 1.e-11

SETINTERFACEPARAMS

TEST_WAVEGMRES

Quit

---------------------------surfDia.paw--------------

The keywords and their default values for this file are as follows. (Note: the keywords

are not case sensitive.)

INTERFACEATOMS integer:: nodefault

INTERFACEATOMS Specific_atoms_2d

Name1 Type1 BulkName1 (x1,y1,z1) !Given in Cartesian coordinates

Name2 Type2 BulkName2 (x2,y2,z2) !and in bohr unit

.. .. ..

NameN TypeN BulkNameN (xN,yN,zN)

END

Where Name is any specific name for that atom, Type is the type of the atom. It is

the atomic symbol from the periodic table. BulkName is the symbolic name given
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for that atom in the bulk input file.

SURF_MODE character :: Plan3Bound

APPELBAUMBOUND

PLAN3BOUND Alternative plan I

PLAN4BOUND Alternative plan II

PLAN6BOUND Alternative plan III

PLAN8 Alternative plan IV

This defines what type of boundary condition at the region I and II interface the user

wants to use. All the different methods are explained in previous Chapter.

SOLUTION_METHOD real:: (GMRES)

GMRES

LAPACK

The solution method applies for the initial value formalism. GMRES is the best to

use for practical purpose. The LAPACK option should be used only for small systems

as it needs a huge memory.

REGIONIIISOLVER real :: (PREDICTOR_CORRECTOR)

PREDICTOR_CORRECTOR

NUMEROV

Region III can be solved using two different methods. From our experience the

two methods give very close accuracy and performance.

ZSTEP real:: (0.0)

The spacing between each grid points along

the z-direction in bohr unit.

NOZSTEPS real:: (0.0) (0.0)

It is the number of grid points along the z-direction.

It takes two arguments. The first one is the number of

on the interface region and the second one is for the vacuum region.

LAMBDA Real:: (no def)

Damping parameter for initial potential. It is used to change the

shape of the initial potential at the region II-III interface.
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SLABINPUT Character:: filename

If this is defined, it resets the initial potential for

region II-III region by the potential given in file ‘‘filename’’.

Usually this potential can be generated from a slab calculation

with the same surface geometry as the used wants to simulate in

the semi-infinite method.

ZZERO real :: (0.0)

Location of bulk-interface plane (z_1) relative to the origin of bulk

cell coordinates.

MGMRES integer (0)

restart parameter for GMRES calculation

ITERGMRES integer (0)

iterations for each GMRES calculation

AUXITERGMRES integer :: (0)

iterations for each auxiliary GMRES calculation

MATCHPTS integer :: (5)

number of Plan6 matching pts for Delta

TOLGMRES real :: (1.e-5)

tolerance parameter for each GMRES calculation

TOLDELTA real :: (1.e-3)

tolerance for iteration phiR

R3SMALL real :: (1.e-6)

SVD cut-off used in region three wave function calculation.

SETINTERFACEPARAMS character:: ()

a keyword to call the subroutine Set_Interface_Params

to setup most of the bulk parameters like converting the

three dimensional G-points to 2-dimensional G-point sets,

bulk density, bulk potential, boundary atoms etc.

INT_SCRP character :: ()

For debugging the 2D-projectors (scrptP)

TEST_WAVEGMRES character :: ()

a keyword to call most of the surface calculation routines.

It is kind of the driver program.
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6.2 Smear plot

To generate the smear diagram, one needs to relax the electron wave functions

using similar input as above. Once it converged and the PWPAW program termi-

nated, we need to run the program again but this time instead of “relax charge”, we

use “load solution” keyword followed by the wave function file name.

-----------------------------------------

Load_solution ’CdSe.wfn’

Set_Eigenmax 0.8

Calculate Surface_Bands CdSeX 40 1.E-5

-----------------------------------------

CdSeX is the input file that contains the k-vector coordinates of the Brillouin

zone.

--------------begin CdSeX---------------------------

0. 0. 1. 20 # Kp vector and n of k perpendicular

98 # maximum number of bands per k-point

0 0 0 # Gamma point

0.1 0.0 0.0

0.2 0.0 0.0

0.3 0.0 0.0

0.4 0.0 0.0

0.5 0.0 0.0 # XP point

0.5 0.1 0.0

0.5 0.2 0.0

0.5 0.3 0.0

0.5 0.4 0.0

0.5 0.5 0.0 #M

0.4 0.5 0.0

0.3 0.5 0.0

0.2 0.5 0.0

0.1 0.5 0.0

0.0 0.5 0.0 #X

0.0 0.4 0.0

0.0 0.3 0.0

0.0 0.2 0.0

0.0 0.1 0.0

---------------end CdSeX--------------------------
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The first line sets the magnitude of δk⊥ = |G⊥|
n

.

Once the pwpaw code finished running, it will produce an output file CdSeX.surfband.

CdSeX.surfband contains five columns data. These are, kx, ky, kz, Emin and Emax.

Smearplot2000 an IDL program is then used to generate a postscript smear plot

diagram. The source code for the smearplot2000 is given in Appendix (B.3).

Figure 6.1: Smear diagram of CdSe 112̄0

The Brillouin zone for the wurzite structure used to calculate Figure 6.1 is shown

in Figure 6.2.
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Figure 6.2: Diagram of the Brillouin zones for CdSe (112̄0)[30]
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Similarly the smear plot for diamond (001) is shown in Figure (6.3) and its corre-

sponding Brillouin zone in Figure (6.4)[53].

Figure 6.3: Smear diagram for diamond (001)[53]
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Figure 6.4: Diagram of the Brillouin zones for diamond (001)
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Chapter 7

Concluding Remarks and Future

Work

This project explored ways to understand surface defect states using different

experimental and theoretical methods. Experimentally, we have used photoelectron

spectroscopy measurements to study the surface states of a CdSe (112̄0) crystal. By

using specific crystal properties, such as band gap and photo theshold, we are able to

identify and label all the important band edges for our crystal. Auger electron spec-

troscopy and low-energy electron diffraction methods were also used to characterize

our our crystal. By damaging the crystal using Argon sputtering and a 2 KeV elec-

tron beam from Auger electron spectroscopy, we were able to observe the production

of surface defect states.

Theoretically, we have developed a semi-infinite method based on projector aug-

mented wave formalism. We investigated the different numerical problems associated

with modelling surface defects. Specially, we show the advantage and disadvantage

of an “initial value” formalism versus a “boundary value” formalism of the numerical

problem. In the “initial value” formalism, we use information from the bulk wave

functions to integrate the differential equations toward the surface. In the “boundary

value” formalism, both information from the bulk wave functions and from the phys-

ical solutions in the vacuum region are used to set up a full set of linear equations.

These equations are conveniently solved using the GMRES algorithm.
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Computationally, we have built the foundations for a modern modular FOR-

TRAN90/95 compliant robust package that can use all of the different methods dis-

cused in previous chapters. The code uses keywords to select different options. Since

it is modular, it is very simple to extend it to include any new idea of solving the

intermediate wavefunction. It is specially designed to interface well with the existing

PWPAW code for the bulk calculation. One does not need to run two different codes

explicitly; it is done automatically. At the time of this writting, the program is only

4.6MB in size. For diamond (001) with 16 layers of interface region, the run time size

was about 340MB which is not too large for modern systems.

For the future, we are in a process of implementing the “generalized Bloch” method

that accounts for the degenerate reflected Bloch waves. We think that this will solve

most of the shortcomings of the other methods. There is a high hope that the next

versions of the code will have some kind of parallel implementation. Specially the

projector and wavefunction dot products can be calculated in parallel very easily as

each of them are independent.

Good software packages are not good enough if it is not easy for the end user to

use it. We are taking the necessary steps to implement a graphical user interface with

built in input error checking. The first version will be implemented using ITCL [incr

tcl] object oriented language based on tcl. The main reason we choose ITCL is that

it is portable across many platform and operating systems. Our ideal vision is to use

this interface to set-up the necessary input parameters, and using an ssh or any other

method to submit a job to a remote cluster. In addition to this, it could have result

visualization modules for monitoring an output of a running or terminated job. A

proto type of this interface is shown in Figures (7.1) and (7.2).
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Figure 7.1: A Graphical User Interface showing the input output control tab for

PWPAW/SIPAW
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Figure 7.2: A Graphical User Interface showing the memory control tab for PW-

PAW/SIPAW
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Several types of defect structures in PbWO4 and CaMoO4 are studied within the framework of density
functional theory. While PbWO4 is currently of greater technological interest, we were able to carry out more
extensive calculations for CaMoO4, including lattice relaxation, large simulation cells, and more complicated
defects. The structural and chemical similarity of the two materials suggests that their defect properties may
also be similar. The electronic structure of isolated oxygen vacancies, oxygen and Pb or Ca double vacancies,
and substitutional Y are modeled using a supercell approximation. We find that the main effect of oxygen
vacancies in PbWO4 and CaMoO4 is the introduction of states of W or Mo d character into the band gap. The
energies of these defect states are very sensitive to their occupancy. An isolated O vacancy produces a doubly
occupied defect state below the conduction band. Removing charge from this defect state lowers its energy and
causes additional states of W or Mo d character to move into the band gap. Large supercell simulations for the
Ca and O double vacancy in an unrelaxed or slightly relaxed structure produce an unstable electronic structure
suggesting the possibility of more extensive lattice distortion. In addition, we also present preliminary results
of simulations of interstitial oxygen atoms in CaMoO4, finding a relatively stable configuration with the
interstitial O forming a weak bond between two MoO4 clusters.

DOI: 10.1103/PhysRevB.64.245109 PACS number~s!: 61.72.Ji, 71.15.Nc, 71.55.Ht, 71.70.Ch

I. INTRODUCTION
Since the adoption of PbWO4 single crystals as part of the

scintillation detector system for the Large Hadron Collider at
CERN,1,2 there has been considerable interest in identifying
possible defect structures in PbWO4 and related crystals.
These defects, which can affect the detector performance,
may occur during crystal growth and also are likely to be
produced by radiation during use. Lead tungstate and related
materials have a long legacy of earlier work, some of which
is described in Refs. 3–7. New possible applications of these
materials have recently been reported, including Cherenkov
radiation production,8 high temperature ionic conductors,9

and Raman lasers.10

There is a large literature of experimental work directed at
identifying several types of defects in PbWO4 ~Ref. 11! and
related materials. It is believed that Pb vacancies are often
formed during the growth process. On the basis of x-ray and
neutron diffraction, an ordered modification of PbWO4 has
been identified in which 1 out of every 16 Pb atoms are
missing.12 It is apparently difficult to directly control the
stoichiometric concentration of Pb. However, it has been
found that during the growth process, the addition of mate-
rials that can be incorporated as trivalent positive ions such
as Y or La at the missing Pb sites can improve the lumines-
cence properties of the resultant crystals.13,14 The direct ob-
servation of O vacancies is difficult, but spectroscopic stud-
ies of doped and annealed crystals indicate the presence of
isolated oxygen vacancies and oxygen vacancies associated
with cation vacancies.15–18 In addition, studies of PbWO4
crystals annealed in an oxygen atmosphere suggest that
interstitial oxygen can also contribute to the defect
structures.16,17,19,20

The purpose of this paper is to survey the electronic struc-

tures of some models of defects in PbWO4 and CaMoO4 in
order to understand their ground state stability and qualita-
tive electronic signatures. The calculations were performed
within the framework of density functional theory,21,22 using
a supercell approach. Since density functional theory gives
us a variational approximation to the electronic ground state
of our defect models, we are able to estimate their energetics
and optimal geometries. In addition, from partial densities of
states, we obtain qualitative spectroscopic information. For
technical reasons, we are able to carry out a more thorough
investigation of CaMoO4 than of PbWO4. However, the
structural and chemical similarity of the two materials sug-
gests that their defect properties are likely to be similar.

Earlier electronic structure studies of perfect crystals of
these materials23 showed that states near the band gap are
well described by a molecular orbital picture24 of the anion
group @WO4#22. Here W ~or Mo! is in an approximately
tetrahedral site due to the four nearest neighbor oxygen ions
and the group has a formal charge of 22. A simplified ver-
sion of the molecular orbital diagram is presented in the left
panel of Fig. 1, showing the occupied bands of mainly O p
character well separated from the unoccupied bands of
mainly W ~or Mo! d character, split by the approximately
tetrahedral crystal field and antibonding interactions into
lower states of e symmetry and upper states of t2 symmetry.
Band gap defects could therefore be produced by changes to
this anion group such as changes to its charge, geometry,
and/or atomic constituents. In addition, since their crystal
structure is not closely packed, additional atoms can be in-
troduced into the lattice of these materials, and some of these
can introduce new states into the band gap region.

For the purposes of describing the defect configurations
simulated in this study we adopt the following notation in

PHYSICAL REVIEW B, VOLUME 64, 245109
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order to identify both the defect stoichiometry and the group
dominating the states in the band gap:

$added atoms/removed atoms%@BOn#q. ~1!

Here B represents the transition metal ~only W or Mo in this
study!, n represents the number of coordinated O’s ~only 3 or
4 in this study!, and q represents the net formal charge asso-
ciated with the BOn group. As we shall show, a simplified,
although useful model of some of these effects are shown in
the middle and left panels of Fig. 1.

The outline of the paper is as follows. In Sec. II, we
describe the computational details of our simulations. In or-
der to study the effects of geometry optimization in the vi-
cinity of the defect site and to simulate large supercells, we
used the PWPAW code25 to study some model defects in
CaMoO4. In particular, the results of simulations of oxygen
vacancies and interstitials, combined oxygen and Ca vacan-
cies, and substitutional Y alone and in combination with O
and Ca vacancies in CaMoO4 are reported in Sec. III A. In
order to extend some of these findings to PbWO4, we used
the WIEN97 code26 which has been implemented for treating
relativistic effects that better describe the heavy elements of
Pb and W. In Sec. III B, we report results from our study of
oxygen vacancies and combined oxygen and Pb vacancies
in PbWO4 simulated in an idealized geometry in a small
supercell. Conclusions are given in Sec. IV, based on the
comparison of the calculational results for CaMoO4 and
PbWO4 and on the analysis of the more complete simula-
tions for CaMoO4.

II. CALCULATIONAL METHODS

A. Choice of supercells

The scheelite crystal structure is characterized by the
body-centered tetragonal space group I41 /a . In terms of
the conventional unit cell parameters a and c, the following
lattice vectors were used for the 2 formula unit simulations
~‘‘2x’’!.

2 unit5
A25

1
2

~2a x̂1a ŷ1c ẑ!

B25

1
2

~1a x̂2a ŷ1c ẑ!

C25

1
2

~1a x̂1a ŷ2c ẑ!

~2!

This is, in fact, the same unit cell as the perfect crystal. The
nearest distance between defects is a.

For the 8 formula unit simulations ~‘‘8x’’!, the lattice vec-
tors were given by

8 unitH A85~a x̂1a ŷ!,

B85~a x̂2a ŷ!,

C85c ẑ.
~3!

The nearest distance between defects is A2a . Coincidentally,
this 8 formula unit cell is the same unit cell recently
analyzed12 for the Pb deficient crystal having the stoichi-
ometry Pb7.5W8O32 , with one of the Pb sites having 1

2

occupancy. For all of the simulations, the values of the lat-
tice constants were taken from experiment and are listed
in Table I.

B. PAW calculations of CaMoO4

In order to efficiently study the energetics and optimal
geometry of the defects and to carry out simulations in large
(8x) supercell, we used the PWPAW code25,29 based on the
projector augmented wave ~PAW! approach of Blöchl30 to
study the nonrelativistic material, CaMoO4. The local den-
sity approximation ~LDA! form of Perdew and Wang31 was
used to approximate the exchange-correlation interactions.

The first step of the PAW procedure is to produce the
necessary projector and basis functions ~analogous the con-
struction of a pseudopotential function in a pseudopotential
formalism!. This is done using the ATOMPAW code.32 Since
this material is both highly ionic and covalent, upper core
electron states can be important for determining the self-
consistent electronic structure. Specifically, we found it nec-
essary to include projector and basis functions for the upper
core states together with the valence states of Ca, Y, and Mo.
The values of the local potential contributions ṽ loc

a (r) were
constructed using the squared sinc shape function and
aligned so that the pseudopotential basis functions corre-
sponding to the valence s state of each atom are eigenstates
of a purely local pseudo-Hamiltonian as described in Ref. 32.
Table II lists the parameters used in this work. In this table,
the notation « indicates a continuum function, where the
positive energy « is chosen to ensure that the f«l

a (r) basis

FIG. 1. Simplified molecular orbital diagram for states near
band gap for @WO4#22 ~left panel!, @WO3#22 ~middle panel!, and
@WO3#0 ~right panel!. The numbers in parentheses represent the
degeneracy ~including spin! of the orbital; ‘‘←EF’’ indicates the
approximate location of the Fermi level. The @WO4#22 group is
found in the perfect crystal, while the other complexes represent
possible defect configurations.

TABLE I. Lattice constants used in the simulations.

Material Ref. a ~Å! c ~Å!

CaMoO4 27 5.222 11.425
PbWO4 28 5.456 12.020
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function has the correct number of nodes in the augmentation
region. For representing the valence l51 states of Ca, Y, and
Mo, continuum basis functions f«p

a were used instead of the
bound f4p

a or f5p
a functions which had nodes inconveniently

close to the augmentation radii. For O, in addition to the
valence f2s

O and f2p
O functions, continuum basis functions

f«s
O and f«p

O were also used to ensure that the negative ion
states would be well represented. In order to optimize the
plane wave convergence, the augmentation radii rc

a were
chosen to be as large as possible without allowing the aug-
mentation spheres to overlap. With this set of parameters, the
reciprocal lattice cut off parameters could be taken to be 8
and 10 Bohr21 for the plane wave representations of the
pseudowavefunctions C̃nk and the pseudodensity ñ , respec-
tively.

During the course of the project, several other parameter
sets were used, yielding similar results and demonstrating the
expected insensitivity of the calculation to these parameters.
Both the 2x and 8x defect supercells were studied using the
PWPAW code. For the 2x supercell, the Brillouin zone inte-
grals were approximated by sampling 8 k points throughout
the Brillouin zone. For the 8x supercell, the Brillouin zone
integrals were approximated sampling only the zone center.

The partial densities of states were evaluated using a
Gaussian smearing function33 in the following form:

Na~E !5

2

Aps
(
nk

Cnk
a Wke2(E2Enk)2/s2

. ~4!

Here the factor of 2 comes from assuming that each distinct
band is doubly occupied. The normalized Brillouin zone
weight factors are denoted by Wk . The band index is noted
by n, and Enk denotes the band energy. The coefficient Cnk

a

represents the charge contained in a single sphere enclosing
atom a, with radius taken to be the augmentation radius rc

a ,
averaged over similar spheres. The Gaussian smearing pa-
rameter was taken to be s50.12 eV.

For several of the defect systems studied, we were able to
optimize the geometry of the atoms around the defect by
moving the atoms within the supercell until the forces on
them were smaller than a specified tolerance. In addition to
obtaining the atomic positions of the optimized geometry,
two energy measures could be determined. For each set of
atomic positions $Ra%, the PWPAW program calculates the
LDA cohesive energy Ecoh($Ra%), defined to be the total
electronic energy of the periodic system subtracted from the
sum of the total electronic energies of the corresponding iso-
lated spherical atoms. The ‘‘relaxation energy’’ measures the

energy gained by geometry optimization, relative to the ini-
tial atomic positions $R0

a%, which, except for the missing
atoms, were taken from perfect crystal positions

DE[Ecoh~$Ra%!2Ecoh~$R0
a%!. ~5!

Also of interest, is an estimate of the formation energy for
the defect, whose zero order approximation can be deter-
mined from the cohesive energy difference of the perfect and
defective crystal simulations F0[Ecoh (crystal)2Ecoh ~de-
fect!. Two corrections must be considered. First, since our
defects involve oxygen, the final or initial state of the system
involves molecular oxygen whose dissociation energy can be
taken from the experimental value D55.08 eV.34 Second,
since the spherical atom approximation underestimates the
total energy of each atom, the cohesive energies are gener-
ally overestimated. For the systems we are considering, these
errors are negligible or cancel except for the total energy of
one of the O atoms. An approximate correction can be deter-
mined from spectroscopic data35,36 which allows one to cal-
culate the atomic ground state energy relative to the multiplet
average which corresponds to the total energy calculated in
the LDA results. For O, the multiplet correction energy can
be estimated as DEmult'0.94 eV.36 Therefore, the formation
energies for neutral defects can be approximated as

F'F0
6S 1

2
D1DEmultD'F0

63.48 eV , ~6!

where the plus or minus signs pertain to interstitial O or O
vacancies, respectively.

C. LAPW calculations of PbWO4

For modeling defects in PbWO4, where relativistic effects
are important, we used the WIEN97 code26 based on the lin-
earized augmented plane wave ~LAPW! ~Ref. 37! approach
using the local density approximation ~LDA! form of Perdew
and Wang,31 as in the PWPAW calculations. The calculational
parameters were taken to be the same as those used in our
previous perfect crystal studies.23 The defect simulations
were performed using the 2x supercell only and the Brillouin
zone integrals were approximated by sampling 27 k points
throughout the Brillouin zone.38 The partial densities of
states were evaluated using Eq. ~4!, with the sphere radius
chosen to be the muffin tin sphere radius.39 The reason
for switching codes for the PbWO4 study is that relativistic
effects, which have not yet been implemented in the PWPAW
code, are available in the WIEN97 code. In previous work,40,41

we have shown that the PAW and LAPW methods produce
essentially identical results for nonrelativistic calculations.

III. RESULTS AND DISCUSSION

A. Defects in CaMoO4

In order to study large simulation cells, atomic motions
about the defect site, and more complicated defects, we car-
ried out several calculations on CaMoO4 which is structur-
ally and chemically very similar to PbWO4. For these simu-

TABLE II. List of parameters used to construct basis and pro-
jector functions.

Atom Za nl basis rc
a ~Bohr!

O 8 2s ,«s ,2p ,«p 1.4
Ca 20 3s ,4s ,3p ,«p ,3d 1.9
Y 39 4s ,5s ,4p ,«p ,4d ,«d 1.9
Mo 42 4s ,5s ,4p ,«p ,4d ,«d 1.9
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lations, the atomic positions of the perfect crystal were
optimized, starting from the crystallographic results27 finding
the results listed in Table III. The calculated optimal Mo-O
bond length is found to be slightly longer than the experi-
mental value, as is typical of LDA calculations.42 The calcu-
lated bond angles for Mo-O were found to be essentially
identical to the experimental values. Table III also summa-
rizes the geometry optimization results obtained for some of
the defect simulations @using the notation defined in Eq. ~1!#
which are discussed in the following subsections.

1. O vacancy

The O vacancy ($/O%@MoO3#22) was studied in both the
2x and 8x supercells. Table III summarizes the results of the
geometry optimization. We see that the bond length and an-
gular changes are similar but slightly larger for the 2x super-
cell compared with that for the 8x supercell. This is under-
standable since, in the latter case, the relaxation effects are
spread over a larger number of sites. In both simulations, the
relaxation effects are relatively small—the bond lengths in-
crease by a few hundredths of an angstrom and the angles
change by a few degrees, indicating that the @MoO3#22 com-
plex is relatively stable and structurally similar to the
@MoO4#22 complex from which it is derived. The calculated
energy gained in optimizing the geometry was 0.2 eV and the
formation energy for a neutral O vacancy was estimated us-
ing Eq. ~6! to be 7.1 eV for both 2x and 8x simulations. The
two simulations differed by less than 2% and 0.2 % for the
relaxation energies and formation energies respectively.

The partial densities of states for the 2x and 8x supercell
simulations are compared with the partial densities of states
of the perfect crystals in the top two panels of Figs. 2 and 3,
respectively. The results for the two simulation cells look
very similar to each other, with the main differences attrib-
utable to the effects of the different k-point samplings of
the supercell Brillouin zones. The bottom panel of Fig. 3
shows the partial densities of states for the unrelaxed
geometry of the O vacancy in the 8x supercell. Comparison

of the two lower panels ~with and without geometry op-
timization! shows that changes in the partial densities of
states due to lattice relaxation around the oxygen vacancy are
very small. Similarly small lattice relaxation effects were
found for the 2x simulation. These results suggest that the
$/O%@MoO3#22 defect in CaMoO4 is rather insensitive to
small geometry changes and that its effects are are spatially
localized.

The partial density of states curves for the O vacancy
show that an impurity state associated with the MoO3
group is introduced below the conduction band. This state is
fully occupied because the O vacancy removes six oxygen p
states from the valence band while removing only four va-
lence electrons, leaving two extra electrons which can be
accommodated by the MoO3 group—as described by the
$/O%@MoO3#22 notation.

In order to further characterize the defect state, it is help-
ful to examine the charge density contours. In Figs. 4 and 5,
plots of charge density contours about the @MoO3#22 site in
a plane which contains an Mo-O bond and the missing O
site, are shown for the 8x simulation. Figure 4 is a plot for

TABLE III. Geometry optimization results for ideal crystal and
various defects in CaMoO4. The experimental bond lengths and
bond angles are quoted on the first line, in comparison with the
calculated optimization results quoted on the second line. The re-
maining lines summarize the results of defect geometry optimiza-
tions using (2x) and (8x) supercells, listing the range of bond
lengths and angles, the relaxation energies (DE) @Eq. ~5!#, and for-
mation energies ~F! @Eq. ~6!#.

Mo-O bond Mo-O bond DE F
System Case lengths ~Å! angles ~eV! ~eV!

Ideal crystal Exp. a 1.77 107°, 114°
Ideal crystal Cal. 1.79 107°, 114°
$/O%@MoO3#22 2x 1.79–1.83 105°–117° 0.2 7.1
$/O%@MoO3#22 8x 1.79–1.81 106°–115° 0.2 7.1
$/CaO%@MoO3#0 2x 1.74–1.83 103°–117° 0.9 15.8
$O/%@MoO4#22 2x 1.79–1.84 102°–116° 2.1 0.4

aExperimental x-ray results from Ref. 27.

FIG. 2. Partial densities of states for 2x simulation of CaMoO4:
perfect crystal ~top panel!, O vacancy ~middle panel!, and Ca and O
double vacancy ~bottom panel!. Calculations were done with lattice
relaxation. The zero of energy for each plot is adjusted so that the
top of the oxygen bands line up with that of the perfect crystal. For
the defect plots, the two types of W sites—the threefold coordinated
‘‘~3!’’ and the fourfold coordinated ‘‘~4!’’ are shaded differently.
The Fermi level ~‘‘EF’’! is indicated with an arrow in each plot.
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the uppermost occupied defect state near 2.2 eV. These con-
tours illustrate the shape of a distorted Mo 4d orbital which
has appreciable density in the vicinity of the missing O and
which we label ‘‘t29 ,’’ for reasons discussed below. This pic-
ture is in marked contrast to that found for states associated
with an oxygen vacancy in ‘‘simple’’ oxides such as MgO or
CaO,43–45 which is usually called an ‘‘F center.’’ For the F
center, the electrons are confined by the electrostatic poten-
tial of the surrounding ions forming an s-like ground state,46

while for the $/O%@MoO3#22 defect, the electrons occupy a
Mo 4d orbital which is lowered in energy by the crystal field
of the remaining oxygen ions.

Figure 5 plots the charge density contours about the
@MoO3#22 site for the unoccupied states: ~a! showing the
lower conduction band between the energies 2.5–4.0 eV and
~b! showing the upper conduction band starting above 4.0
eV. Since the partial density of states peaks for these two
groups of states show ~middle panel of in Fig. 3! comparable
contributions from both the threefold and fourfold Mo sites,
it is not surprising that these two charge contour plots are
similar to those of the perfect crystal,23 where the lower con-

duction band has e symmetry and the upper conduction band
has t2 symmetry. Also apparent in these plots are antibonding
contributions from the nearest neighbor O 2p orbitals in the
plotting plane.

The appearance of these three contour plots motivates us
to analyze the @BOn#q clusters in greater detail. For the per-
fect crystal,23 we showed that the @BO4#22 cluster could be
partially explained in terms of crystal field effects of the O2g

ions on the degenerate d states of W or Mo and partially in
terms of hybridization between the W or Mo d states and the
O 2p , summarized by the molecular diagram shown in the
left panel of Fig. 1. For the @BO3#22 cluster, the crystal field
effects can analyzed as follows. Idealizing the geometry of
the cluster slightly so that O2g ions are placed at three of the
four ideal tetrahedral positions at a distance R from a central
W or Mo ion, we find that the leading term in the degenerate
perturbation of the W or Mo d states can be written in the
form

FIG. 3. Partial densities of states for 8x simulation CaMoO4:
perfect crystal ~top panel! and O vacancy ~middle panel!, using the
same notations as in Fig. 2. These calculations were done with
lattice relaxation. For comparison, the bottom panel shows the par-
tial density of states for the unrelaxed O vacancy.

FIG. 4. Ball and stick model and contour plot for the 8x simu-
lation of an O vacancy in CaMoO4 at the @MoO3#22 site. The plane
on which the contours are drawn passes through the Mo atom, one
of it’s nearest neighbor O atoms, and the plane of the O vacancy.
The contour levels are drawn at intervals of 0.2 electrons/Å3,
with the lowest contour level at 0.2 electrons/Å3 and represent the
charge density of the occupied defect state.

FIG. 5. Ball and stick model and contour plots for the 8x simu-
lation of an O vacancy in CaMoO4 at the @MoO3#22 site similar
to Fig. 4, but with contour levels representing the charge density
associated ~if the states had been fully occupied! with the unoccu-
pied lower conduction band states ~a! and upper conduction band
states ~b!.
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dVmm8
5

ge2^rd
2&

7R3
M mm8

, ~7!

where M mm8
is a 535 matrix with indices m corresponding

to the five azimuthal quantum numbers associated with the
degenerate d (l52) states. Diagonalizing the matrix we find
three eigenvalues

dE5

ge2^rd
2&

7R3
3H 2 ~2 ! t28 ,

21 ~2 ! e8,

22 ~1 ! t29 ,

~8!

where the number in parenthesis denotes the degeneracy and
the label on the right indicates the approximate relation to
the corresponding state of pure tetrahedral symmetry. The
lowest singly degenerate energy state which we have labeled
‘‘t29’’ has pure t2 character. The two doubly degenerate states
have mixed character, with slightly more e or t2 character as
indicated by the labels e8 and t28 , respectively. We can esti-
mate these energies for B5Mo, using ^rd

2&'1 Å, corre-
sponding to the expectation value of the second power of the
radius of the d orbitals of Mo ~estimated from atomic orbit-
als!, R'1.79 Å corresponds to the Mo-O bond length, and
g52, we find the splitting between the extreme eigenvalues
to be DE t28

2DE t29
'2.8 eV. This is considerably larger than

the corresponding crystal field splittings for tetrahedral ge-
ometry in the perfect crystal.23 Interestingly, the partial den-
sities of states for threefold coordinated W and Mo shown in
Figs. 2, 3, and 9, as well as the charge density contour plots
shown in Figs. 4 and 5 are consistent with this analysis in the
sense that the self-consistent electronic structure of all of the
defects containing @BO3#22 clusters have three groups of
states, the lowest state is occupied and has a single spatial
degeneracy while the upper two states are unoccupied and
have double spatial degeneracy. In addition to the crystal
field analysis, hybridization of the d states of the B ion with
the p states of O are also important in determining the elec-
tronic structure as illustrated in the middle panel of Fig. 1.
Due to the spatial arrangement of the clusters, hybridization
affects the t28 states more than the others. Extending this
analysis to the uncharged cluster @BO3#0, we might expect
the energy diagram to be similar while the occupancies
change as illustrated in the right most panel of Fig. 1. How-
ever, as we shall show below, the situation becomes consid-
erably more complicated.

2. Ca and O double vacancy

Removing both Ca and O atoms changes the charge bal-
ance associated with the defect states since the missing Ca
removes two valence electrons from the system. We expect
the double vacancy defect to be characterized by $/CaO%
3@MoO3#0 in our adopted notation. The results of the 2x
simulation for the relaxed double vacancy are shown in the
bottom panel of Fig. 2 for the partial density of states in
Table III for the geometric and energetic results. The effects
of geometry optimization are much larger than those of the
single O vacancy, adjusting the energies of states associated

with the @MoO3#0 clusters relative to other states of the sys-
tem. Table III summarizes the relaxed Mo-O bond lengths
and angles. In particular, we find the Mo-O bond lengths
associated with the @MoO3#0 groups to be shortened by 0.05
Å, while those associated with the regular MoO4

22 groups are
approximately the same length as in the perfect crystal ex-
cept for one bond which points in the direction of the miss-
ing oxygen which is lengthened by 0.04 Å. The simple de-
scription of this process is that the @MoO3#0 is able to
compensate for the loss of charge by contracting its effective
volume, thereby increasing the local charge density available
for the Mo-O bonds. Correspondingly, the relaxation energy
listed in Table III is much larger than for the single O va-
cancy case. The estimated formation energy is also listed in
Table III.

While this explanation of the double vacancy seems rea-
sonable, it apparently is not the whole story. Recognizing
that the 2x simulation corresponds to an extremely high con-
centration of defects and that there are severe geometry re-
strictions consistent with the assumed supercell, we expect
the results for the 8x simulation to be more reliable. Unfor-
tunately, we have no results for the $/CaO%@MoO3#0 defect
in the 8x simulation cell because we found it impossible to
stabilize its self-consistency iterations with or without lattice
relaxation effects. What appears to be happening in the
more realistic simulation is that there is are two or more
nearly degenerate configurations of this system. In addition
to the @MoO3#0(@MoO4#22)4 configuration consistent
with the 2x simulations, another configuration of the form
@MoO3#24e(@MoO4#221e)4 seems to also exist. This second
configuration corresponds to the partial transfer of negative
charge ~denoted by e! to the @MoO3#q group. This charge
comes from the top of the O valence band and is presumably
associated with the four nearest neighbor @MoO4#22 groups.
Apparently, the energy of the @MoO3#q group is extremely
sensitive to its charge state when q becomes less negative
than q522, as confirmed by simulations with negatively
charged supercells ~compensated with a uniform positive
charge!.

3. Y substitutional and charge effects

In order to understand these charging effects in more de-
tail and also to study the effects of trivalent substitutional
impurities studied in the literature,14,47 we performed some
simulations with Y substituting for one of the Ca atoms
($Y/Ca%@MoO4#2(21d)). Here d represents the excess elec-
tronic charge incorporated into the lower conduction band
due to the trivalent substitutional impurity Y. These calcula-
tions were done using the 8x supercell but without geometry
optimization. Figure 6 ~top panel! shows the partial density
of states. The results show that Y adds electrons to the con-
duction band of CaMoO4 and introduces new unnoccupied
states primarily above the second conduction band, but
introduces no new states of Y character within the band gap.
This is similar to the behavior that we have found for
PbWO4 :La simulations.48 In future work, we hope to study
the geometry relaxation of this system, in order to find out
whether the model is consistent with the experimental obser-
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vation that excess electrons can localize on one of the mo-
lybdate sites to form @MoO4#23 centers. Recently, @WO4#23

and @WO4#23-La13 centers have been identified in electron
spin resonance studies of La doped PbWO4 at low
temperature49,50 with temperature dependences indicating
binding energies of 0.05 and 0.27 eV, respectively, below the
conduction band energy.

We also considered the effects of Y substitution im-
purities in conjunction with Ca and O double vacancies
($Y/Ca2O%@MoO3#21) using the 8x simulation cell without
geometry optimization. The partial density of states are
shown in the bottom panel of Fig. 6. Here we see that the
extra charge from the trivalent Y is accommodated by the
MoO3 group. In contrast to the neutral CaO double vacancy,
the excess charge from Y causes the @MoO3#21 group to be
electronically stable with a half-filled defect state ~of ‘‘t29’’
character! just above the top of the valence band and an
unfilled defect state ~of ‘‘e8’’ character! below the conduc-
tion band.

4. Interstitial O

There is a fair amount of experimental evidence18–20,51

that interstitial oxygen can be accommodated into the
PbWO4 lattice. It is therefore of interest to study the corre-
sponding defect in CaMoO4. We have carried out a 2x simu-
lation for an interstitial O atom initially placed between two
Ca sites, and finding a stable O site between two MoO4
groups. Figure 7 shows the optimized geometry with some of
the bond lengths and angles listed in Table III. As seen in the
figure, the interstitial O forms a weak bond which bridges

two oxygens associated with nearby @MoO4#22 clusters. The
O–O bond lengths are found to be 1.8 Å. Since we have not
carried out an exhaustive geometry optimization, we believe
there may be additional stable interstitial sites, such as found,
for example in recent empirical potential simulations.52 Table
III also lists our calculated formation energy for the neutral
interstitial O and finds it to be small ~'0.4 eV!, suggesting
that it could be relatively easy to introduce extra neutral O
into this lattice.

The partial density of states for our optimized geometry
shown in Fig. 8 shows that interstitial O states are energeti-
cally aligned close to the O bands of the perfect lattice. By
integrating the partial density of state curves in Fig. 8, we
estimate that interstitial O’s have a charge very similar to that
the of tetrahedral O’s. While formally the tetrahedral O’s
have a charge of 22e , molecular bonding reduces the actual
charge.

FIG. 6. Partial densities of states for 8x simulation CaMoO4
with Y substituting for one Ca alone ~top panel! and with a Ca and
O vacancy double vacancy ~lower panel!, using the same notations
as in Fig. 2. Calculations were done without lattice relaxation.

FIG. 7. Ball and stick model of stable configuration of intersti-
tial O in CaMoO4 for 2x simulation. Atomic sites are shown with
increasing sphere sizes in the order O, Mo, and Ca. Nearest neigh-
bor Mo-O and O-O bonds are also indicated.

FIG. 8. Partial densities of states for 2x simulation of CaMoO4
with an interstitial O atom, at the stable geometry shown in Fig. 7.
The shadings of the various partial density of states curves is the
same as in Fig. 2 except that the interstitial O states are indicated
with horizontal stripes.
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Since the simulations were carried out for the 2x super-
cell, the concentration of extra O in the simulation corre-
sponded to a stoichiometry of CaMoO4.5 . Experimentally,
rather high concentrations of extra O has been achieved. For
example, gravimetric analysis of PbWO4 annealed in an oxy-
gen atmosphere19 suggests that it is possible to achieve a
stoichiometry of PbWO4.1 , at least at high temperature.

B. Defects in PbWO4

For the two formula unit simulations in PbWO4, includ-
ing those for the ‘‘perfect crystal,’’ the atomic positions ~ex-
cept for those removed! were taken from the experimental
crystallographic results28 without allowing for optimization
of the defect geometry. Two kinds of defects were
modeled—an oxygen vacancy and a Pb and O double va-
cancy.

In Fig. 9, the results for the partial densities of states for
the two defect simulations are compared with those of the
perfect crystal. The results are very similar to the corre-
sponding results for the 2x simulations of the CaMoO4 sys-
tem shown in Fig. 2. The main differences in the occupied
states are that in PbWO4 there is a narrow Pb 6s band at
approximately 2 eV below the valence band and a corre-
sponding antibonding contribution of Pb 6s states at the top
of the valence band. The main differences in the unoccupied
states are that for CaMoO4, the crystal field split Mo d states
form two distinct bands of ‘‘e’’ and ‘‘t2’’ character separated
by nearly 1 eV. In PbWO4, the crystal field split W d states
of ‘‘e’’ and ‘‘t2’’ character overlap, but form two distinct
peaks. Also PbWO4 lacks the equivalent of the high density
of states at the top of the transition metal d states caused by
the Ca 3d states in CaMoO4.

What is of interest is the identification of defect states
introduced into the band gap. Since we have such a high
concentration of the defects, quantitative identification of the
valence and conduction band edges are difficult. However,
we can make the following qualitative analysis which is very
similar to the CaMoO4 case. For the O vacancy simulation, a
peak associated with the three-fold coordinated W site ap-
pears in the band gap, below the conduction band edge. This
state is fully occupied in our model crystal because the O
vacancy removes six oxygen p states from the valence band
while removing only four valence electrons. Therefore, this
defect would be given as $/O%@WO3#22 in our suggested
notation. The charge density contours associated with both
the filled band gap state and the unfilled states in the con-
duction band are very similar to those shown in Figs. 4 and 5
for CaMoO4. Since our CaMoO4 simulations on the oxygen
vacancy showed that our results were insensitive to supercell
size and relaxation effects, we expect these results for the O
vacancy in PbWO4 to be similarly insensitive to supercell
and relaxation effects.

For the Pb and O double vacancy, the partial density of
states plot ~bottom panel of Fig. 9! shows that two peaks
associated with the three-fold coordinated W site appear in
the band gap. These states are empty because the Pb vacancy
does not remove any states from the valence band ~other than
from the narrow 6s band below the valence band!, but re-

moves two additional valence electrons. Thus this defect
would be given as $/PbO%@WO3#0 in our suggested notation.
Since our CaMoO4 simulations on the Ca and O double va-
cancy could not be extended to the 8x supercell, we expect
that the double vacancy in PbWO4 to also be more compli-
cated than implied by these unrelaxed 2x simulations.

IV. SUMMARY

These simulations of oxygen vacancies in CaMoO4 and
PbWO4 focused attention on the ground state electronic
structure of the @BO3#q clusters. In addition to the electronic
structure of the @BO3#q clusters themselves, it is also impor-
tant to understand the alignment of the cluster states with
respect to the other states in the crystal. Our self-consistent
calculations indicate that the @BO3#q clusters are well de-
fined and stable for q522 as found in the $/O% simulations
and is also stable for q521 as found in the $Y/Ca2O% simu-
lations. For less negative values of q, the electronic balance
between the @BO3#q clusters associated with the O vacancy
and the @BO4#22 associated with the regular lattice seems to
be very delicate.

In summary, we have shown that the main effect of O
vacancies in PbWO4 and CaMoO4 is the introduction of
states of W or Mo d character into the band gap. The ener-
gies of these defect states are very sensitive to their charge.

For a single O vacancy in PbWO4 and CaMoO4

FIG. 9. Partial densities of states for PbWO4, perfect crystal
~Ref. 39! ~top panel!, O vacancy ~middle panel!, and Pb and O
double vacancy ~bottom panel!, using the same notations as in Fig.
2. Calculations were done without lattice relaxation.
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($/O%@BO3#22), based on 2x and 8x simulations with relax-
ation effects included ~for the CaMoO4 case!, we find a well-
defined filled defect state below the conduction band, whose
symmetry we have analyzed to be t29 with density contours
shown in Fig. 4. This defect is very insensitive to lattice
relaxation and simulation cell size. Since the state is filled
with 2 electrons, it cannot act as a trap for excess electrons
nor can it be observed by electron spin resonance. Further-
more, since its energy is approximately 0.7 eV below the
conduction band minimum, it cannot be an effective electron
donor. It might be observable in infrared excitation, but can-
not account for visible luminescence. If electrons are re-
moved from the defect, we expect its energy to be lowered
and the spectrum to become more complicated.

For a PbO or CaO double vacancy in PbWO4 or
CaMoO4($/AO%@BO3#0), based on 2x simulations, we find
two groups of unfilled defect states within the band gap. The
lower state is of t29 character, while the upper state is of e8

character. Geometric optimization of the 2x CaMoO4 simu-
lation showed that shortened Mo-O bonds for the @MoO3#0

cluster are energetically favored. However, our inability to
extend these calculations to the 8x supercell simulations sug-
gests that this defect system is electronically metastable or
perhaps unstable. Simulations with charged supercells and
with substitutional Y described in Sec. III A 3 show that the
@BO3#q defect is electronically stabilized with q<21. In the
absence of excess charge, such as provided by the substitu-
tional trivalent Y atom, the lowest @BO3#0 state becomes
degenerate with the O valence band. The fact that we are
unable to stabilize this calculation has led us to speculate that
there are at least two nearly degenerate configurations of this
system which we have described as involving the @BO3# site
and its four nearest neighbor @BO4# sites in the form
@MoO3#0(@MoO4#22)4 and @MoO3#24e(@MoO4#221e)4.
This type of degeneracy usually results in a lattice distortion
according to a Jahn-Teller mechanism.53 This reasoning
leads us to suggest that a CaO double vacancy may result in

a more complicated defect, perhaps involving lattice distor-
tions on several neighboring sites.

A single electron associated with an O vacancy in PbWO4
has been suggested by Laguta and co-workers54 as the model
for a photoinduced ‘‘Pb1-VO’’ center observed in electron
spin resonance. The electron spin resonance signature is that
of an electron interacting primarily with Pb nuclei adjacent
the oxygen vacancy, and the authors refer to it as a Pb1

center perturbed by a bare oxygen vacancy. The puzzle from
the perspective of the calculations presented here is that the
experiment finds little contribution from W 5d states. Laguta
and co-workers suggest54,55 that there may be another lattice
configuration of this defect, accessible over a thermal barrier,
which resembles more closely an electron localized in an W
5d orbital. This second configuration may perhaps corre-
spond to the @WO3#21 center discussed in the present nota-
tion. This experiment and analysis suggests that lattice dis-
tortion may also be significant for the q521 defect. Further
computational and experimental work is needed.

We have also presented preliminary simulations of inter-
stitial neutral O introduced into the 2x lattice. These studies
identified a possible stable site for the interstitial O and
found the corresponding states to be near the crystalline O
valence band. This preliminary work suggests that further
study of this system, including larger supercell simulations,
charging effects, and perhaps simulation of dynamical ef-
fects, may be useful.

Missing from this work, is any information about the ef-
fects of these defects on luminescence. For this, it is neces-
sary to go beyond the ground state density functional formal-
ism, considered here.
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Appendix B

Useful programs

B.1 Order n calculation (nphoton.f)

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

PROGRAM nphoton

C

C Program to fit PhotoElectron Spectroscopy (PES) experimental data to a linear

C curve p(x) = a*x+b directly. One can find a and b from

C partial D/partial a = 0 and partial D/partial b = 0 with

C D = sum(p(x i)-f(x i))**2. The result is a = (c1*c3-

C c4*n)/(c1**2-c2*n) and b = (c1*c4-c2*c3)/(c1**2-c2*n) with

C n being the number of points, c1 = sum x i, c2 = sum x i**2,

C c3 = sum f(x i), and c4 = sum x i*f(x i).

C

C ndata =131 this depend on the energy renge

integer nf, i, k, ii, errr, j, nff, ndata

PARAMETER (ndata = 131, nff = 7)

character(len=11) fname

real x(ndata), y(ndata,10), od(nff),a(ndata), lc(nff),aa,bb

DATA od /0,0.2,0.4,0.6,0.8,1.0,1.2/

c DATA od /0.0,0.305,0.380,0.6,0.685,1.05/

c DATA od /0.24,0.355,0.595,0.835,0.938/
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OPEN (UNIT=22, FILE=’nphotons.out’, IOSTAT=ios)

nf = nff

do ii = 1, nf

call getarg(ii,fname)

OPEN (UNIT=20, STATUS=’Old’, FILE=fname, IOSTAT=ios)

do k = 1, 17

read(20,*)

end do

i=1

do

read(20,*,iostat=errr) x(i),y(i,ii)

if(errr.lT.0)exit

if(errr.GT.0)exit

i= i+1

end do

end do

c by now we know that we have x(ndata) and y(ndata,nf)

do j = 1, ndata

do k = 1, nff

lc(k) = y(j,k)

end do

call fit(od,lc,nff,aa,bb)

a(j) = -aa

end do

c now lets output to fill 22

do j = 1, ndata

write (22,*) x(j), a(j)

end do

stop

end

c*****************************************************************

c* the subroutne fit, takes two real arrays and their size and *
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c* returns slope and intersept *

c*****************************************************************

SUBROUTINE FIT(X,F,N,A,B)

DIMENSION X(N),F(N)

C1 = 0.0

C2 = 0.0

C3 = 0.0

C4 = 0.0

DO 100 I = 1, N

C1 = C1 + X(I)

C2 = C2 + X(I)*X(I)

C3 = C3 + F(I)

C4 = C4 + F(I)*X(I)

100 CONTINUE

C = C1*C1-C2*N

A = (C1*C3-C4*N)/C

B = (C1*C4-C2*C3)/C

return

end

B.2 Photovoltage calculation (readdata.f)

Listing B.1: a program readdata.f90

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
c By Yonas Abraham

c On June 2001

c For Voltage Bias Correct ion

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
program readdata
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real x (1000 ) , y (1000)

integer i , e r r r , j , EB

character ( len=11) fname

i=1

ca l l getarg (1 , fname )

OPEN (UNIT=20 , STATUS=’Old ’ , FILE=fname , IOSTAT=io s )

OPEN (UNIT=22 , FILE=’ a l l . dat ’ , IOSTAT=io s )

do k = 1 , 13

read (20 ,∗ )

end do

read (20 ,10)EB

10 format (21X, I3 )

write ( ∗ , ∗ ) EB

read (20 ,∗ )

read (20 ,∗ )

read (20 ,∗ )

do

read (20 ,∗ , iostat=e r r r ) x ( i ) , y ( i )

i f ( e r r r . lT . 0 ) exit

i f ( e r r r .GT. 0 ) exit

i = i+1

end do

do

read (22 ,∗ , iostat=e r r r )

i f ( e r r r .NE. 0 ) exit

end do
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k = maxl (y , i )

write (22 ,∗ )EB, x (k )

stop

end

integer function maxl (a , n )

integer n

real a (n)

real tepm

integer tempi , i

temp = a (1 )

tempi = 1

do i = 1 , n

i f ( temp .LT. a ( i ) ) then

temp = a ( i )

tempi = i

end i f

end do

maxl = tempi

return

end

B.3 IDL smear plot program (SmearPlot2000.pro)
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Listing B.2: a program SmearPlot2000.pro

; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
; By Yonas Abraham

;On: Dec 2000

; For : p l o t t i n g smear p l o t in IDL

; ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
pro SmearPlot2000

print , ’ input Vector f i l ename ’

vec f i l ename=’ t r i c k ’

kv s e f i l ename=’ t r i c k ’

ou t f= ’ t r i c k ’

d e v i c e s t u f f=’ ps ’

gs= ’ t r i c k ’

crynam=’ t r i c k ’

read , v e c f i l ename

print , ’ input your c r y s t a l name ’

read , crynam

print , ’ Enter Fermi Leve l ( in Ry) ’

read , f e rmi

openr , 2 , v e c f i l ename

d=f l t a r r (3 , 3 )

d0=1.0

d1=1.0

d2=1.0

for i =0 ,2 do begin

readf , 2 , format=’ ( a5 , 3 e20 . 1 2 ) ’ , gs , d0 , d1 , d2

d (0 , i )=d0

d (1 , i )=d1

d (2 , i )=d2

endfor
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npanel=0

print , ’ Input K vs energy f i l e ’

read , kv s e f i l ename

print , ’ input number o f pane l s ’

read , npanel

; read the knames from the user

; in to kname( i ) . NOTE, f o r npanels t he re are npanel+1 name

kname=s t r a r r ( npanel+1)

print , ’ kname ’ , kname

bb=’ i r i c k ’

for i =0 , npanel do begin

print , ’ input the ’ , i , ’ th k−po int name Eg . ! 7C stands f o r Gamma and ! 5M f o r r e gu l a r M’

read , bb

kname ( i )=bb

endfor

; f o l l ow i n g are k0 and k f in th ree by npnel dim

k0=f l t a r r ( npanel , 3 )

k f=f l t a r r ( npanel , 3 )

k d i f f=f l t a r r ( npanel , 3 )

l ength=f l t a r r ( npanel )

l 1=f l t a r r (3 )

; f o l l o i n g are the i n i t i a l f o r the k0 ( x , y , z )

k0x=1.0

k0y=1.0

k0z=1.0

kfx =1.0

kfy =1.0
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k f z =1.0

; now input the k0 and k f matrix

for i =0 , npanel −1 do begin

print , ’ Input s t a r t i n g k po int in x y z format f o r the ’ , i +1, ’ th panel ’

read , k0x , k0y , k0z

k0 ( i ,0)=k0x

k0 ( i ,1)=k0y

k0 ( i ,2)=k0z

print , ’ Input end k po int in x y z format f o r the ’ , i +1, ’ th panel ’

read , kfx , kfy , k f z

k f ( i ,0)= kfx

k f ( i ,1)= kfy

k f ( i ,2)= k f z

; c a l u l a t e the l en g t h o f each panel

k d i f f=kf−k0

l 1=d##k d i f f [ i , ∗ ]

l ength ( i )= sq r t ( t ranspose ( l 1)##l1 )

endfor

; t o t a l l e n g t h

t o t a l l e n g t h=t o t a l ( l ength )

; s c a l e each panel l e n g t h to f i t 7 in width

for j =0,npanel −1 do begin

l ength ( j )=6.5∗ l ength ( j )/ t o t a l l e n g t h

endfor
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; i n i t i a l i z e some parameters

k1=1.0

k2=1.0

k3=1.0

ev11=1.

ev22=1.

emin=1.0

emax=1.0

ev1=f l t a r r (1 )

ev2=f l t a r r (1 )

k=f l t a r r (3 )

dl1=f l t a r r (3 )

d l =0.0

dl2 =0.0

inde=0

print , ’ input emin , emax , and i n t e r v a l in eV ’

read , emin , emax , eva l

s h i f t =0.0

v=f l t a r r (3 )

cv=f l t a r r (3 )

v2=f l t a r r (3 )

cd i r=f l t a r r (3 )

ymin=0.

ymax=to t a l ( l ength )

t i t l e l i n e=crynam

for j =0,npanel −1 do begin

openr , 3 , kv s e f i l ename

v2=kf [ j ,∗ ]−k0 [ j , ∗ ]
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cd i r =(d##v2 )/ ( l ength ( j )∗ t o t a l l e n g t h /6 . 5 )

WHILE NOT EOF( 3 ) DO BEGIN

READF, 3 , format=’ (5 f10 . 5 ) ’ , k1 , k2 , k3 , ev11 , ev22

k(0)=k1

k(1)=k2

k(2)=k3

ev1 (0)=( ev11−f e rmi )∗13 .6057

ev2 (0)=( ev22−f e rmi )∗13 .6057

v=transpose ( k)−k0 [ j , ∗ ]

cv=d##v

dl=sq r t ( t ranspose ( cv)##cv )

dl2=transpose ( cd i r)##cv

x d i f f=dl [0]− dl2 [ 0 ]

i f ( abs ( x d i f f ) l t 1 . 0E−7) then begin

dl=dl ∗6 .5/ t o t a l l e n g t h + s h i f t

nne=1

nne=(emax−emin )/ eva l

nne=f i x ( nne )

eev=f indgen ( nne+1)

eev=emin+eev ∗ eva l

xx=7.0

yy=9.5

xo=0.5

yo=0.5

s e t p l o t , ’ ps ’

device , / po r t r a i t , f o n t s i z e =20

device , / h e l v e t i c a , / bold

device , / inches , x s i z e=xx , y s i z e=yy , x o f f s e t=xo , y o f f s e t=yo

inde=inde+1



167

i f ( inde eq 1 ) then begin

plot , dl , ev1 , psym=3, x s t y l e =1, y s t y l e =1,yrange=[emin , emax ] , $

xrange=[ymin , ymax ] , x t i c k s =1, xt i ckn =[ ’ ’ , ’ ’ ] , xminor=−1,$

t i t l e=t i t l e l i n e , yminor=−1, y t i c k s=nne , y t i ckv=eev , $

y t i t l e=’ Energy (eV) ’

endif

i f ( ( ev1 [ 0 ] le emax ) and ( ev2 [ 0 ] le emax ) and $

( ev1 [ 0 ] ge emin ) and ( ev2 [ 0 ] ge emin ) ) then begin

oplot , [ dl , d l ] , [ ev1 , ev2 ] , th i ck=8

endif

; p l o t the v e r t i c a l l i n e to sepera t e the pane l s

endif

ENDWHILE

close , 3

oplot , [ l ength ( j )+ sh i f t , l ength ( j )+ s h i f t ] , [ emin , emax ]

s h i f t=s h i f t+length ( j )

endfor

; f o r i =0,npanel−1 do beg in

; end for

; wr i t e the knames on the p l o t

bib=f l t a r r ( npanel+1)

bib (0)=0.0

for i =1, npanel do begin
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bib ( i )=bib ( i−1)+length ( i −1)

endfor

for i =0 , npanel do begin

xyouts , bib ( i ) , emin−2.0 ,kname ( i ) ,/data

endfor

close , 2

device , / close

end


