
orbitals. The orbitals can be described in a shorthand notation
using quantum numbers.

6.6 REPRESENTATIONS OF ORBITALS
We consider the three-dimensional shapes of orbitals and how
they can be represented by graphs of electron density.

6.7 MANY-ELECTRON ATOMS
We recognize that the energy levels for an atom with one electron
are altered when the atom contains multiple electrons. Each
electron has a quantum-mechanical property called spin. The
Pauli exclusion principle states that no two electrons in an atom
can have the same four quantum numbers (three for the orbital

and one for the spin). Therefore, an orbital can hold a maximum of
two electrons.

6.8 ELECTRON CONFIGURATIONS
We learn that knowing orbital energies as well as some
fundamental characteristics of electrons described by Hund’s rule
allows us to determine how electrons are distributed in an atom
(electron configurations).

6.9 ELECTRON CONFIGURATIONS 
AND THE PERIODIC TABLE
We observe that the electron configuration of an atom is related to
the location of the element in the periodic table.
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revolutionary discoveries of the twentieth century—the quantum theory, which explains
much of the behavior of electrons in atoms.

In this chapter we explore the quantum theory and its importance in chemistry.
We begin by looking at the nature of light and how our description of light was
changed by the quantum theory. We will explore some of the tools used in quantum
mechanics, the “new” physics that had to be developed to describe atoms correctly. We
will then use the quantum theory to describe the arrangements of electrons in atoms—
what we call the electronic structure of atoms. The electronic structure of an atom
refers to the number of electrons in the atom as well as their distribution around the
nucleus and their energies. We will see that the quantum description of the electronic
structure of atoms helps us to understand the arrangement of the elements in the
periodic table—why, for example, helium and neon are both unreactive gases, whereas
sodium and potassium are both soft, reactive metals.

ELECTRONIC
STRUCTURE
OF ATOMS
WHAT HAPPENS WHEN SOMEONE switches on a neon light? Electrons
in the neon atoms are excited to a higher energy by electricity.
An electron can remain in a higher-energy state for only a very
short time, and it emits light when it returns to a lower energy.
The resulting glow is explained by one of the most 
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! FIGURE 6.2 Water waves. The
wavelength is the distance between two
adjacent peaks or two adjacent troughs.

208 CHAPTER 6 Electronic Structure of Atoms

! FIGURE 6.1 Water waves. The
movement of a boat through the water forms
waves that move away from the boat.

6.1 | THE WAVE NATURE OF LIGHT
Much of our present understanding of the electronic structure of atoms has come from
analysis of the light either emitted or absorbed by substances. To understand electronic
structure, therefore, we must first learn about light. The light we see with our eyes,
visible light, is one type of electromagnetic radiation. Because electromagnetic radia-
tion carries energy through space, it is also known as radiant energy.

There are many types of electromagnetic radiation in addition to visible light.
These different types—radio waves that carry music to our radios, infrared radiation
(heat) from a glowing fireplace, X-rays—may seem very different from one another, but
they all share certain fundamental characteristics.

All types of electromagnetic radiation move through a vacuum at ,
the speed of light. All have wavelike characteristics similar to those of waves that move
through water. Water waves are the result of energy imparted to the water, perhaps by
the dropping of a stone or the movement of a boat on the water surface (" FIGURE
6.1). This energy is expressed as the up-and-down movements of the water.

A cross section of a water wave (" FIGURE 6.2) shows that it is periodic, which
means that the pattern of peaks and troughs repeats itself at regular intervals. The dis-
tance between two adjacent peaks (or between two adjacent troughs) is called the
wavelength. The number of complete wavelengths, or cycles, that pass a given point
each second is the frequency of the wave.

Just as with water waves, we can assign a frequency and wavelength to electromag-
netic waves, as illustrated in " FIGURE 6.3. These and all other wave characteristics of
electromagnetic radiation are due to the periodic oscillations in the intensities of the
electric and magnetic fields associated with the radiation.

The speed of water waves can vary depending on how they are created—for exam-
ple, the waves produced by a speedboat travel faster than those produced by a rowboat. In
contrast, all electromagnetic radiation moves at the same speed, m>s, the
speed of light. As a result, the wavelength and frequency of electromagnetic radiation are
always related in a straightforward way. If the wavelength is long, fewer cycles of the wave
pass a given point per second, and so the frequency is low. Conversely, for a wave to have
a high frequency, it must have a short wavelength. This inverse relationship between the
frequency and wavelength of electromagnetic radiation is expressed by the equation

[6.1]

where c is the speed of light, (lambda) is wavelength, and (nu) is frequency.
Why do different types of electromagnetic radiation have different properties?

Their differences are due to their different wavelengths. # FIGURE 6.4 shows the vari-
ous types of electromagnetic radiation arranged in order of increasing wavelength, a
display called the electromagnetic spectrum. Notice that the wavelengths span an enor-
mous range. The wavelengths of gamma rays are comparable to the diameters of atomic
nuclei, whereas the wavelengths of radio waves can be longer than a football field. Notice
also that visible light, which corresponds to wavelengths of about 400 to 750 nm
( to ), is an extremely small portion of the electromagnetic
spectrum. The unit of length chosen to express wavelength depends on the type of radi-
ation, as shown in $ TABLE 6.1.

7 * 10-7 m4 * 10-7 m

nl

c = ln

3.00 * 108

3.00 * 108 m>s

Wavelength l

l

(a)

(b)

G O  F I G U R E
If wave (a) has a wavelength of 1.0
m and a frequency of cy-
cles/s, what are the wavelength
and frequency of wave (b)?

3.0 * 108

! FIGURE 6.3 Electromagnetic waves.
Like water waves, electromagnetic radiation
can be characterized by a wavelength.
Notice that the shorter the wavelength, , the
higher the frequency, The wavelength in
(b) is half as long as that in (a), and the
frequency of the wave in (b) is therefore twice
as great as the frequency in (a).

n .
l

TABLE 6.1 • Common Wavelength Units for Electromagnetic Radiation

Unit Symbol Length (m) Type of Radiation

Angstrom Å X-ray
Nanometer nm Ultraviolet, visible
Micrometer Infrared
Millimeter mm Microwave
Centimeter cm Microwave
Meter m 1 Television, radio
Kilometer km 1000 Radio

10-2
10-3
10-6mm
10-9
10-10
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! FIGURE 6.4 The electromagnetic
spectrum. Wavelengths in the spectrum
range from very short gamma rays to very
long radio waves.

G O  F I G U R E
How do the wavelength and frequency of an X-ray compare with those of 
the red light from a neon sign?

Frequency is expressed in cycles per second, a unit also called a hertz (Hz). Because
it is understood that cycles are involved, the units of frequency are normally given
simply as “per second,” which is denoted by or . For example, a frequency of
820 kilohertz (kHz), a typical frequency for an AM radio station, could be written as
820 kHz, 820,000 Hz, , or .820,000>s820,000 s-1

>ss-1

Since Rømer’s time, increasingly sophisticated techniques have
been used to measure the speed of light. For example, in 1927, A. A.
Michelson (1852–1931) set up a rotating mirror at the top of Mount
Wilson in California. The mirror bounced light to the top of Mount
San Antonio, 22 miles away, where another mirror bounced the light
back to Mount Wilson. Michelson was able to change the speed of
the rotating mirror and measure small displacements in the position
of the reflected spot. The value for the speed of light (in air) based on
this experiment was . The main source
of error was the distance between the mirrors, which was measured
within a fifth of an inch in 22 miles.

By 1975, the measured value was even more precise,
m>s (in vacuum), the error being

mostly due to the uncertainty in the length of the meter. In 1983, the
meter was redefined based on the distance that light travels in vac-
uum in one second. As a result, the value for the speed of light
became a fixed, exact quantity, m>s.c = 2.99792458 * 108

2.99792458 ; 0.00000004 * 108

2.9980 ; 0.0002 * 108 m>s

THE SPEED OF LIGHT

How do we know that light has a finite speed and does
not move infinitely fast?

During the late 1600s, the Danish astronomer
Ole Rømer (1644–1710) measured the orbits of

several of Jupiter’s moons. These moons move
much faster than our own—they have orbits of 1–7 days and are
eclipsed by Jupiter’s shadow at every revolution. Over many months,
Rømer measured discrepancies of up to 10 minutes in the times of
these orbits. He reasoned that the discrepancies occurred because
Jupiter was farther from Earth at different times of the year. Thus,
light from the Sun, which reflected off Jupiter and ultimately to his
telescope, had farther to travel at different times of the year, implying
that light travels at a finite speed. Rømer’s data led to the first esti-
mate of the speed of light, .3.5 * 108 m>s

A CLOSER LOOK

SAMPLE EXERCISE 6.1 Concepts of Wavelength and Frequency

Two electromagnetic waves are represented in the margin. (a) Which wave has the higher
frequency? (b) If one wave represents visible light and the other represents infrared radiation,
which wave is which?

SOLUTION
(a) The lower wave has a longer wavelength (greater distance between peaks). The longer the

wavelength, the lower the frequency . Thus, the lower wave has the lower
frequency, and the upper wave has the higher frequency.

(b) The electromagnetic spectrum (Figure 6.4) indicates that infrared radiation has a longer
wavelength than visible light. Thus, the lower wave would be the infrared radiation.

PRACTICE EXERCISE
If one of the waves in the margin represents blue light and the other red light, which is which?

Answer: The expanded visible-light portion of Figure 6.4 tells you that red light has a longer
wavelength than blue light. The lower wave has the longer wavelength (lower frequency) and
would be the red light.

(n = c>l)

SECTION 6.1 The Wave Nature of Light 209
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SAMPLE EXERCISE 6.2 Calculating Frequency from Wavelength

The yellow light given off by a sodium vapor lamp used for public lighting has a wavelength of
589 nm. What is the frequency of this radiation?

SOLUTION
Analyze We are given the wavelength, , of the radiation and asked to calculate its 
frequency, .

Plan The relationship between the wavelength and the frequency is given by Equation 6.1. We
can solve for and use the values of and c to obtain a numerical answer. (The speed of light,
c, is a fundamental constant whose value is .)

Solve Solving Equation 6.1 for frequency gives . When we insert the values for c and
, we note that the units of length in these two quantities are different. We can convert the

wavelength from nanometers to meters, so the units cancel:

Check The high frequency is reasonable because of the short wavelength. The units are
proper because frequency has units of “per second,” or .

PRACTICE EXERCISE
(a) A laser used in eye surgery to fuse detached retinas produces radiation with a wavelength of
640.0 nm. Calculate the frequency of this radiation. (b) An FM radio station broadcasts electro-
magnetic radiation at a frequency of 103.4 MHz (megahertz; ). Calculate the
wavelength of this radiation. The speed of light is to four significant digits.

Answers: (a) , (b) 2.899 m

G I V E  I T  S O M E  T H O U G H T
Our bodies are penetrated by X-rays but not by visible light. Is this because
X-rays travel faster than visible light?

6.2 | QUANTIZED ENERGY AND PHOTONS
Although the wave model of light explains many aspects of its behavior, this model can-
not explain several phenomena. Three of these are particularly pertinent to our
understanding of how electromagnetic radiation and atoms interact: (1) the emission of
light from hot objects (referred to as blackbody radiation because the objects studied ap-
pear black before heating), (2) the emission of electrons from metal surfaces on which
light shines (the photoelectric effect), and (3) the emission of light from electronically ex-
cited gas atoms (emission spectra). We examine the first two phenomena here and the
third in Section 6.3.

Hot Objects and the Quantization of Energy
When solids are heated, they emit radiation, as seen in the red glow of an electric stove
burner or the bright white light of a tungsten lightbulb. The wavelength distribution of
the radiation depends on temperature; a red-hot object, for instance, is cooler than a
yellowish or white-hot one (! FIGURE 6.5). During the late 1800s, a number of physi-
cists studied this phenomenon, trying to understand the relationship between the
temperature and the intensity and wavelength of the emitted radiation. The prevailing
laws of physics could not account for the observations.

In 1900 a German physicist named Max Planck (1858–1947) solved the problem by
assuming that energy can be either released or absorbed by atoms only in discrete
“chunks” of some minimum size. Planck gave the name quantum (meaning “fixed
amount”) to the smallest quantity of energy that can be emitted or absorbed as electro-
magnetic radiation. He proposed that the energy, E, of a single quantum equals a
constant times the frequency of the radiation:

[6.2]E = hn

4.688 * 1014 s-1
2.998 * 108 m>s1 MHz = 106 s-1

s-1

n = c
l

= a 3.00 * 108 m>s
589 nm

b a 1 nm

10-9 m
b = 5.09 * 1014 s-1

l
n = c>l3.00 * 108 m>sln

n
l

" FIGURE 6.5 Color and temperature.
The color and intensity of the light emitted by
a hot object, such as this pour of molten
steel, depend on the temperature of the
object.

G O  F I G U R E
Which area in the photograph
corresponds to the highest
temperature?
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The constant h is called Planck’s constant and has a value of joule-
second (J-s).

According to Planck’s theory, matter can emit and absorb energy only in whole-
number multiples of , such as , , , and so forth. If the quantity of energy
emitted by an atom is , for example, we say that three quanta of energy have been
emitted (quanta being the plural of quantum). Because the energy can be released only
in specific amounts, we say that the allowed energies are quantized—their values are re-
stricted to certain quantities. Planck’s revolutionary proposal that energy is quantized
was proved correct, and he was awarded the 1918 Nobel Prize in Physics for his work on
the quantum theory.

If the notion of quantized energies seems strange, it might be helpful to draw an
analogy by comparing a ramp and a staircase (! FIGURE 6.6). As you walk up a ramp,
your potential energy increases in a uniform, continuous manner. When you climb a
staircase, you can step only on individual stairs, not between them, so that your potential
energy is restricted to certain values and is therefore quantized.

If Planck’s quantum theory is correct, why are its effects not obvious in our daily
lives? Why do energy changes seem continuous rather than quantized, or “jagged”? No-
tice that Planck’s constant is an extremely small number. Thus, a quantum of energy,

, is an extremely small amount. Planck’s rules regarding the gain or loss of energy are
always the same, whether we are concerned with objects on the scale of our ordinary ex-
perience or with microscopic objects. With everyday objects, however, the gain or loss of
a single quantum of energy is so small that it goes completely unnoticed. In contrast,
when dealing with matter at the atomic level, the impact of quantized energies is far
more significant.

G I V E  I T  S O M E  T H O U G H T
Calculate the energy (to one significant figure) of one quantum of electromag-
netic radiation whose frequency is . Can this radiation produce a
burst of energy J? Why or why not?

The Photoelectric Effect and Photons
A few years after Planck presented his quantum theory, scientists began to see its appli-
cability to many experimental observations. In 1905, Albert Einstein (1879–1955) used
Planck’s theory to explain the photoelectric effect (" FIGURE 6.7). Light shining on a
clean metal surface causes the surface to emit electrons. A minimum frequency of light,
different for different metals, is required for the emission of electrons. For example, light
with a frequency of or greater causes cesium metal to emit electrons,
but light of lower frequency has no effect.

To explain the photoelectric effect, Einstein assumed that the radiant energy strik-
ing the metal surface behaves like a stream of tiny energy packets. Each packet, which is
like a “particle” of energy, is called a photon. Extending Planck’s quantum theory,

4.60 * 1014 s-1

E = 5 * 10-36
5 * 10-3 s-1

hn

3hn
3hn2hnhnhn

6.626 * 10-34

Potential energy of person walking
up steps increases in stepwise,
quantized manner

Potential energy of person walking 
up ramp increases in uniform,
continuous manner

# FIGURE 6.6 Quantized versus
continuous change in energy.
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! FIGURE 6.7 The photoelectric effect.

G O  F I G U R E
Why is it necessary to carry out
this experiment in an evacuated
chamber?
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Einstein deduced that each photon must have an energy equal to Planck’s constant times
the frequency of the light:

[6.3]

Thus, radiant energy itself is quantized.
Under the right conditions, photons striking a metal surface can transfer their en-

ergy to electrons in the metal. A certain amount of energy—called the work function —is
required for the electrons to overcome the attractive forces holding them in the metal. If
the photons striking the metal have less energy than the work function, the electrons do
not acquire sufficient energy to escape from the metal, even if the light beam is intense.
If the photons have energy greater than the work function of the particular metal, how-
ever, electrons are emitted. The intensity (brightness) of the light is related to the
number of photons striking the surface per unit time but not to the energy of each
photon. Einstein won the Nobel Prize in Physics in 1921 for his explanation of the
photoelectric effect.

To better understand what a photon is, imagine you have a light source that pro-
duces radiation of a single wavelength. Further suppose that you could switch the light
on and off faster and faster to provide ever-smaller bursts of energy. Einstein’s photon
theory tells us that you would eventually come to the smallest energy burst, given by

. This smallest burst consists of a single photon of light.E = hn

Energy of photon = E = hn

SAMPLE EXERCISE 6.3 Energy of a Photon

Calculate the energy of one photon of yellow light that has a wavelength of 589 nm.

SOLUTION
Analyze Our task is to calculate the energy, E, of a photon, given .l = 589 nm

Plan We can use Equation 6.1 to convert the wavelength to frequency: n = c>l
We can then use Equation 6.3 to calculate energy: E = hn

Solve The frequency, , is calculated from the given wavelength, as shown
in Sample Exercise 6.2:

n
n = c>l = 5.09 * 1014 s-1

The value of Planck’s constant, h, is given both in the text and in the table of
physical constants on the inside back cover of the text, and so we can easily
calculate E: E = (6.626 * 10-34 J-s)(5 .09 * 1014 s-1) = 3.37 * 10-19 J
Comment If one photon of radiant energy supplies , then
one mole of these photons will supply

3.37 * 10-19 J

= 2.03 * 105 J>mol
(6.02 * 1023 photons>mol)(3.37 * 10-19 J>photon)

PRACTICE EXERCISE
(a) A laser emits light that has a frequency of . What is the energy of one photon of this
radiation? (b) If the laser emits a pulse containing of this radiation, what is the total energy
of that pulse? (c) If the laser emits of energy during a pulse, how many photons are emitted?

Answers: (a) , (b) 0.16 J, (c) 4.2 * 1016 photons3.11 * 10-19 J

1.3 * 10-2 J
5.0 * 1017 photons
4.69 * 1014 s-1

The idea that the energy of light depends on its frequency helps us understand the
diverse effects of different kinds of electromagnetic radiation. For example, because of
the high frequency (short wavelength) of X-rays (Figure 6.4), X-ray photons cause tissue
damage and even cancer. Thus, signs are normally posted around X-ray equipment
warning us of high-energy radiation.

Although Einstein’s theory of light as a stream of photons rather than a wave ex-
plains the photoelectric effect and a great many other observations, it also poses a
dilemma. Is light a wave, or is it particle-like? The only way to resolve this dilemma is to
adopt what might seem to be a bizarre position: We must consider that light possesses
both wave-like and particle-like characteristics and, depending on the situation, will
behave more like waves or more like particles. We will soon see that this dual nature of
light is also a characteristic trait of matter.

G I V E  I T  S O M E  T H O U G H T
Which has more energy, a photon of infrared light or a photon of ultraviolet light?
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! FIGURE 6.8 Quantum giants. Niels
Bohr (right) with Albert Einstein. Bohr
(1885–1962) made major contributions to the
quantum theory and was awarded the Nobel
Prize in Physics in 1922.
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6.3 | LINE SPECTRA AND THE BOHR MODEL
The work of Planck and Einstein paved the way for understanding how electrons are
arranged in atoms. In 1913, the Danish physicist Niels Bohr (" FIGURE 6.8) offered a
theoretical explanation of line spectra, another phenomenon that had puzzled scientists
during the nineteenth century.

Line Spectra
A particular source of radiant energy may emit a single wavelength, as in the light from
a laser. Radiation composed of a single wavelength is monochromatic. However, most
common radiation sources, including lightbulbs and stars, produce radiation contain-
ing many different wavelengths and is polychromatic. A spectrum is produced when
radiation from such sources is separated into its component wavelengths, as shown in
" FIGURE 6.9. The resulting spectrum consists of a continuous range of colors—violet
merges into indigo, indigo into blue, and so forth, with no blank spots. This rainbow 
of colors, containing light of all wavelengths, is called a
continuous spectrum. The most familiar
example of a continuous spectrum is the
rainbow produced when raindrops or
mist acts as a prism for sunlight.

Not all radiation sources produce a
continuous spectrum. When a high volt-
age is applied to tubes that contain different
gases under reduced pressure, the gases emit different colors of light (" FIGURE 6.10).
The light emitted by neon gas is the familiar red-orange glow of many “neon” lights,
whereas sodium vapor emits the yellow light characteristic of some modern streetlights.
When light coming from such tubes is passed through a prism, only a few wavelengths
are present in the resultant spectra (# FIGURE 6.11). Each colored line in such spectra
represents light of one wavelength. A spectrum containing radiation of only specific
wavelengths is called a line spectrum.

When scientists first detected the line spectrum of hydrogen in the mid-1800s, they
were fascinated by its simplicity. At that time, only four lines at wavelengths of 410 nm
(violet), 434 nm (blue), 486 nm (blue-green), and 656 nm (red) were observed
(Figure 6.11). In 1885, a Swiss schoolteacher named Johann Balmer showed that
the wavelengths of these four lines fit an intriguingly simple formula that relates
the wavelengths to integers. Later, additional lines were found in the ultraviolet
and infrared regions of hydrogen’s line spectrum. Soon Balmer’s equation was
extended to a more general one, called the Rydberg equation, which allows us to
calculate the wavelengths of all the spectral lines of hydrogen:

[6.4]

In this formula is the wavelength of a spectral line, is the Rydberg constant
, and and are positive integers, with being largern2n2n1(1.096776 * 107 m-1)

RHl
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! FIGURE 6.9 Creating a spectrum. A
continuous visible spectrum is produced
when a narrow beam of white light is passed
through a prism. The white light could be
sunlight or light from an incandescent lamp.
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! FIGURE 6.11 Line spectra of hydrogen and neon.

! FIGURE 6.10 Atomic emission of
hydrogen and neon. Different gases emit
light of different characteristic colors when
an electric current is passed through them.
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than . How could the remarkable simplicity of this equation be explained? It took
nearly 30 more years to answer this question.

Bohr’s Model
To explain the line spectrum of hydrogen, Bohr assumed that electrons in hydrogen
atoms move in circular orbits around the nucleus, but this assumption posed a problem.
According to classical physics, a charged particle (such as an electron) moving in a circu-
lar path should continuously lose energy. As an electron loses energy, therefore, it should
spiral into the positively charged nucleus. This behavior, however, does not happen—
hydrogen atoms are stable. So how can we explain this apparent violation of the laws of
physics? Bohr approached this problem in much the same way that Planck had ap-
proached the problem of the nature of the radiation emitted by hot objects: He assumed
that the prevailing laws of physics were inadequate to describe all aspects of atoms. Fur-
thermore, he adopted Planck’s idea that energies are quantized.

Bohr based his model on three postulates:

1. Only orbits of certain radii, corresponding to certain specific energies, are
permitted for the electron in a hydrogen atom.

2. An electron in a permitted orbit is in an “allowed”energy state.An electron in an allowed
energy state does not radiate energy and, therefore, does not spiral into the nucleus.

3. Energy is emitted or absorbed by the electron only as the electron changes from one
allowed energy state to another. This energy is emitted or absorbed as a photon that
has energy .

G I V E  I T  S O M E  T H O U G H T
Before reading further about Bohr’s model, speculate as to how it explains the
fact that hydrogen gas emits a line spectrum (Figure 6.11) rather than a continu-
ous spectrum.

The Energy States of the Hydrogen Atom
Starting with his three postulates and using classical equations for motion and for inter-
acting electrical charges, Bohr calculated the energies corresponding to the allowed
orbits for the electron in the hydrogen atom. Ultimately, the calculated energies fit the

formula

[6.5]

where h, c, and are Planck’s constant, the speed of light, and the
Rydberg constant, respectively. The integer n, which can have
whole-number values of 1, 2, 3, . . . , is called the principal quan-
tum number. Each orbit corresponds to a different value of n, and
the radius of the orbit gets larger as n increases. Thus, the first al-
lowed orbit (the one closest to the nucleus) has , the next
allowed orbit (the one second closest to the nucleus) has ,
and so forth. The electron in the hydrogen atom can be in any al-
lowed orbit, and Equation 6.5 tells us the energy the electron has in
each allowed orbit.

Note that the energies of the electron given by Equation 6.5 are
negative for all values of n. The lower (more negative) the energy is,
the more stable the atom is. The energy is lowest (most negative)
for . As n gets larger, the energy becomes less negative and

therefore increases. We can liken the situation to a ladder in which the rungs are num-
bered from the bottom. The higher one climbs (the greater the value of n), the higher
the energy. The lowest-energy state ( , analogous to the bottom rung) is called the
ground state of the atom. When the electron is in a higher-energy state (n = 2 or
higher), the atom is said to be in an excited state. ! FIGURE 6.12 shows the energy of
the electron in a hydrogen atom for several values of n.
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" FIGURE 6.12 Energy states in the
hydrogen atom. Only states for 
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Energy is released or absorbed when an
electron moves from one energy state to
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G O  F I G U R E
If the transition of an electron from
the n = 3 state to the n = 2 state
results in emission of visible light,
is the transition from the n = 2
state to the n = 1 state more likely
to result in the emission of infrared
or ultraviolet radiation?
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What happens to the orbit radius and the energy as n becomes infinitely large? The
radius increases as , so when the electron is completely separated from the
nucleus, and the energy of the electron is zero:

The state in which the electron is removed from the nucleus is called the reference, or
zero-energy, state of the hydrogen atom.

In his third postulate, Bohr assumed that the electron can “jump” from one allowed
orbit to another by either absorbing or emitting photons whose radiant energy corre-
sponds exactly to the energy difference between the two orbits. The electron must
absorb energy in order to move to a higher-energy state (higher value of n). Conversely,
radiant energy is emitted when the electron jumps to a lower-energy state (lower value
of n).

If the electron jumps from an initial state of energy to a final state of energy ,
the change in energy is

[6.6]

Bohr’s model of the hydrogen atom states, therefore, that only the specific frequencies of
light that satisfy Equation 6.6 can be absorbed or emitted by the atom.

Substituting the energy expression in Equation 6.5 into Equation 6.6 and recalling
that , we have

[6.7]

where and are the principal quantum numbers of the initial and final states of the
atom, respectively. If is smaller than , the electron moves closer to the nucleus and

is a negative number, indicating that the atom releases energy. For example, if the
electron moves from to , we have

Knowing the energy of the emitted photon, we can calculate either its frequency or
its wavelength. For the wavelength, we have

We have not included the negative sign of the energy in this calculation because wave-
length and frequency are always reported as positive quantities. The direction of
energy flow is indicated by saying that a photon of wavelength has
been emitted.

If we solve Equation 6.7 for and replace by its equivalent,
from Equation 6.5, we find that Equation 6.7 derived from Bohr’s theory corre-

sponds to the Rydberg equation, Equation 6.4, which was obtained using experimental
data:

Thus, the existence of discrete spectral lines can be attributed to the quantized jumps of
electrons between energy levels.

G I V E  I T  S O M E  T H O U G H T
As the electron in a hydrogen atom jumps from the orbit to the 
orbit, does it absorb energy or emit energy?
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SAMPLE EXERCISE 6.4 Electronic Transitions in the Hydrogen Atom

Using Figure 6.12, predict which of these electronic transitions produces the spectral line hav-
ing the longest wavelength: to , to , or to .

SOLUTION
The wavelength increases as frequency decreases . Hence, the longest wavelength will
be associated with the lowest frequency. According to Planck’s equation, , the lowest
frequency is associated with the lowest energy. In Figure 6.12 the energy levels (horizontal
lines) that are closest together represents the smallest energy change. Thus, the to 
transition produces the longest wavelength (lowest frequency) line.

PRACTICE EXERCISE
Indicate whether each of the following electronic transitions emits energy or requires the
absorption of energy: (a) to ; (b) to .

Answers: (a) emits energy, (b) requires absorption of energy

Limitations of the Bohr Model
Although the Bohr model explains the line spectrum of the hydrogen atom, it cannot
explain the spectra of other atoms, except in a crude way. Bohr also avoided the problem
of why the negatively charged electron would not just fall into the positively charged nu-
cleus by simply assuming it would not happen. Furthermore, there is a problem with
describing an electron merely as a small particle circling the nucleus. As we will see in
Section 6.4, the electron exhibits wavelike properties, a fact that any acceptable model of
electronic structure must accommodate. As it turns out, the Bohr model was only an
important step along the way toward the development of a more comprehensive model.
What is most significant about Bohr’s model is that it introduces two important ideas
that are also incorporated into our current model:

1. Electrons exist only in certain discrete energy levels, which are described by quantum
numbers.

2. Energy is involved in the transition of an electron from one level to another.

We will now start to develop the successor to the Bohr model, which requires that we
take a closer look at the behavior of matter.

6.4 | THE WAVE BEHAVIOR OF MATTER
In the years following the development of Bohr’s model for the hydrogen atom, the dual
nature of radiant energy became a familiar concept. Depending on the experimental cir-
cumstances, radiation appears to have either a wave-like or a particle-like (photon)
character. Louis de Broglie (1892–1987), who was working on his Ph.D. thesis in physics
at the Sorbonne in Paris, boldly extended this idea. If radiant energy could, under ap-
propriate conditions, behave as though it were a stream of particles (photons), could
matter, under appropriate conditions, possibly show the properties of a wave?

De Broglie suggested that an electron moving about the nucleus of an atom behaves
like a wave and therefore has a wavelength. He proposed that the wavelength of the elec-
tron, or of any other particle, depends on its mass, m, and on its velocity, :

[6.8]

(where h is Planck’s constant). The quantity mv for any object is called its momentum.
De Broglie used the term matter waves to describe the wave characteristics of material
particles.

Because de Broglie’s hypothesis is applicable to all matter, any object of mass m and
velocity would give rise to a characteristic matter wave. However, Equation 6.8 indi-
cates that the wavelength associated with an object of ordinary size, such as a golf ball, is
so tiny as to be completely unobservable. This is not so for an electron because its mass
is so small, as we see in Sample Exercise 6.5.

v

l = h
mv

v

n = 4n = 2n = 1n = 3

n = 3n = 4
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(l = c>n)

n = 3n = 4n = 2n = 3n = 1n = 2
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SAMPLE EXERCISE 6.5 Matter Waves

What is the wavelength of an electron moving with a speed of The mass of the electron is

SOLUTION
Analyze We are given the mass, m, and velocity, v, of the electron, and we must calculate its de Broglie
wavelength, .

Plan The wavelength of a moving particle is given by Equation 6.8, so is calculated by inserting the
known quantities h, m, and v. In doing so, however, we must pay attention to units.

l

l

9.11 * 10-31 kg .
5.97 * 106 m>s?

Solve Using the value of Planck’s constant, h = 6.626 * 10-34 J-s

we have the following:

= 1.22 * 10-10 m = 0.122 nm = 1.22 Å

=
(6.626 * 10-34 J-s)

(9.11 * 10-31 kg)(5.97 * 106 m>s)
a 1 kg-m2>s2

1 J
b

l = h
mv

Comment By comparing this value with the wavelengths of electromagnetic radiation shown in Figure
6.4, we see that the wavelength of this electron is about the same as that of X-rays.

PRACTICE EXERCISE
Calculate the velocity of a neutron whose de Broglie wavelength is 500 pm. The mass of a neutron is given in
the table inside the back cover of the text.

Answer: 7.92 * 102 m>s
A few years after de Broglie published his theory, the wave properties of the electron

were demonstrated experimentally. When X-rays pass through a crystal, an interference
pattern results that is characteristic of the wavelike properties of electromagnetic radia-
tion. This phenomenon is called X-ray diffraction. As electrons pass through a crystal,
they are similarly diffracted. Thus, a stream of moving electrons exhibits the same kinds
of wave behavior as X-rays and all other types of electromagnetic radiation.

The technique of electron diffraction has been highly developed. In the electron
microscope, for instance, the wave characteristics of electrons are used to obtain images
at the atomic scale. This microscope is an important tool for studying surface phenom-
ena at very high magnifications (! FIGURE 6.13). Electron microscopes can magnify
objects by 3,000,000 times ( ), far more than can be done with visible light ( ),
because the wavelength of the electrons is so much smaller than the wavelengths of vis-
ible light.

G I V E  I T  S O M E  T H O U G H T
A baseball pitcher throws a fastball that moves at 95 miles per hour. Does that
moving baseball generate matter waves? If so, can we observe them?

The Uncertainty Principle
The discovery of the wave properties of matter raised some new
and interesting questions. Consider, for example, a ball rolling
down a ramp. Using the equations of classical physics, we can cal-
culate, with great accuracy, the ball’s position, direction of
motion, and speed at any instant. Can we do the same for an elec-
tron, which exhibits wave properties? A wave extends in space
and its location is not precisely defined. We might therefore an-
ticipate that it is impossible to determine exactly where an
electron is located at a specific instant.

The German physicist Werner Heisenberg (! FIGURE 6.14)
proposed that the dual nature of matter places a fundamental
limitation on how precisely we can know both the location and

1000**

" FIGURE 6.13 Electrons as waves.
The white dots in this transmission electron
micrograph indicate the tops of columns of
atoms.

# FIGURE 6.14 Werner
Heisenberg (1901–1976).
During his postdoctoral
assistantship with Niels Bohr,
Heisenberg formulated his
famous uncertainty principle.
At 32 he was one of the
youngest scientists to receive
a Nobel Prize.
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the momentum of an object at a given instant. The limitation becomes important only
when we deal with matter at the subatomic level (that is, with masses as small as that of
an electron). Heisenberg’s principle is called the uncertainty principle. When applied to
the electrons in an atom, this principle states that it is impossible for us to know simul-
taneously both the exact momentum of the electron and its exact location in space.

Heisenberg mathematically related the uncertainty in position, , and the uncer-
tainty in momentum, , to a quantity involving Planck’s constant:

[6.9]

A brief calculation illustrates the dramatic implications of the uncertainty princi-
ple. The electron has a mass of and moves at an average speed of about

in a hydrogen atom. Let’s assume that we know the speed to an uncertainty
of [that is, an uncertainty of ] and that this is
the only important source of uncertainty in the momentum, so that .
We can use Equation 6.9 to calculate the uncertainty in the position of the electron:

Because the diameter of a hydrogen atom is about m, the uncertainty in
the position of the electron in the atom is an order of magnitude greater than the size of
the atom. Thus, we have essentially no idea where the electron is located in the atom. On
the other hand, if we were to repeat the calculation with an object of ordinary mass,
such as a tennis ball, the uncertainty would be so small that it would be inconsequential.
In that case, m is large and is out of the realm of measurement and therefore of no
practical consequence.

De Broglie’s hypothesis and Heisenberg’s uncertainty principle set the stage for a new
and more broadly applicable theory of atomic structure. In this approach, any attempt to
define precisely the instantaneous location and momentum of the electron is abandoned.
The wave nature of the electron is recognized, and its behavior is described in terms ap-
propriate to waves. The result is a model that precisely describes the energy of the electron
while describing its location not precisely but rather in terms of probabilities.
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wavelength of the radiation used. Thus, if we want an accurate posi-
tion measurement for an electron, we must use a short wavelength.
This means that photons of high energy must be employed. The
more energy the photons have, the more momentum they impart to
the electron when they strike it, which changes the electron’s motion
in an unpredictable way. The attempt to measure accurately the elec-
tron’s position introduces considerable uncertainty in its
momentum; the act of measuring the electron’s position at one mo-
ment makes our knowledge of its future position inaccurate.

Suppose, then, that we use photons of longer wavelength. Be-
cause these photons have lower energy, the momentum of the
electron is not so appreciably changed during measurement, but its
position will be correspondingly less accurately known. This is the
essence of the uncertainty principle: There is an uncertainty in simul-
taneously knowing either the position or the momentum of the electron
that cannot be reduced beyond a certain minimum level. The more ac-
curately one is known, the less accurately the other is known.
Although we can never know the exact position and momentum of
the electron, we can talk about the probability of its being at certain
locations in space. In Section 6.5 we introduce a model of the atom
that provides the probability of finding electrons of specific energies
at certain positions in atoms.

RELATED EXERCISES: 6.47 and 6.48

MEASUREMENT AND THE
UNCERTAINTY PRINCIPLE

Whenever any measurement is made, some uncer-
tainty exists. Our experience with objects of

ordinary dimensions, such as balls or trains or
laboratory equipment, indicates that using more

precise instruments can decrease the uncertainty of a measurement.
In fact, we might expect that the uncertainty in a measurement can
be made indefinitely small. However, the uncertainty principle states
that there is an actual limit to the accuracy of measurements. This
limit is not a restriction on how well instruments can be made;
rather, it is inherent in nature. This limit has no practical conse-
quences when dealing with ordinary-sized objects, but its
implications are enormous when dealing with subatomic particles,
such as electrons.

To measure an object, we must disturb it, at least a little, with
our measuring device. Imagine using a flashlight to locate a large
rubber ball in a dark room. You see the ball when the light from the
flashlight bounces off the ball and strikes your eyes. When a beam of
photons strikes an object of this size, it does not alter its position or
momentum to any practical extent. Imagine, however, that you wish
to locate an electron by similarly bouncing light off it into some de-
tector. Objects can be located to an accuracy no greater than the

A CLOSER LOOK
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G I V E  I T  S O M E  T H O U G H T
What is the principal reason we must consider the uncertainty principle when
discussing electrons and other subatomic particles but not when discussing our
macroscopic world?

6.5 | QUANTUM MECHANICS 
AND ATOMIC ORBITALS

In 1926 the Austrian physicist Erwin Schrödinger (1887–1961) proposed an equation,
now known as Schrödinger’s wave equation, that incorporates both the wave-like behav-
ior of the electron and its particle-like behavior. His work opened a new approach to
dealing with subatomic particles, an approach known as quantum mechanics or wave
mechanics. The application of Schrödinger’s equation requires advanced calculus, and so we
will not be concerned with its details. We will, however, qualitatively consider the results
Schrödinger obtained because they give us a powerful new way to view electronic structure.
Let’s begin by examining the electronic structure of the simplest atom, hydrogen.

Schrödinger treated the electron in a hydrogen atom like the wave on a plucked gui-
tar string (! FIGURE 6.15). Because such waves do not travel in space, they are called
standing waves. Just as the plucked guitar string produces a standing wave that has a fun-
damental frequency and higher overtones (harmonics), the electron exhibits a
lowest-energy standing wave and higher-energy ones. Furthermore, just as the over-
tones of the guitar string have nodes, points where the amplitude of the wave is zero, so
do the waves characteristic of the electron.

Solving Schrödinger’s equation for the hydrogen atom leads to a series of mathemat-
ical functions called wave functions that describe the electron in an atom. These wave
functions are usually represented by the symbol (lowercase Greek letter psi). Although
the wave function has no direct physical meaning, the square of the wave function, ,
provides information about the electron’s location when it is in an allowed energy state.

For the hydrogen atom, the allowed energies are the same as those predicted by the
Bohr model. However, the Bohr model assumes that the electron is in a circular orbit of
some particular radius about the nucleus. In the quantum mechanical model, the elec-
tron’s location cannot be described so simply.

According to the uncertainty principle, if we know the momentum of the electron
with high accuracy, our simultaneous knowledge of its location is very uncertain. Thus,
we cannot hope to specify the exact location of an individual electron around the

c2
c

Fundamental

First overtone

Second overtone

1 node

n = 1

n = 2

n = 3

2 nodes

" FIGURE 6.15 Standing waves in a
vibrating string.
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! FIGURE 6.16 Electron-density
distribution. This rendering represents the
probability, , of finding the electron in a
hydrogen atom in its ground state. The origin
of the coordinate system is at the nucleus.
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nucleus. Rather, we must be content with a kind of statistical knowledge. We therefore
speak of the probability that the electron will be in a certain region of space at a given in-
stant. As it turns out, the square of the wave function, , at a given point in space
represents the probability that the electron will be found at that location. For this rea-
son, is called either the probability density or the electron density.

One way of representing the probability of finding the electron in various regions
of an atom is shown in " FIGURE 6.16, where the density of the dots represents the
probability of finding the electron. The regions with a high density of dots correspond
to relatively large values for and are therefore regions where there is a high probabil-
ity of finding the electron. Based on this representation, we often describe atoms as
consisting of a nucleus surrounded by an electron cloud.

Orbitals and Quantum Numbers
The solution to Schrödinger’s equation for the hydrogen atom yields a set of wave func-
tions called orbitals. Each orbital has a characteristic shape and energy. For example, the
lowest-energy orbital in the hydrogen atom has the spherical shape illustrated in Figure
6.16 and an energy of . Note that an orbital (quantum mechanical
model, which describes electrons in terms of probabilities, visualized as “electron
clouds”) is not the same as an orbit (Bohr model, which visualizes the electron moving
in a physical orbit, like a planet around a star). The quantum mechanical model does
not refer to orbits because the motion of the electron in an atom cannot be precisely
determined (Heisenberg uncertainty principle).

The Bohr model introduced a single quantum number, n, to describe an orbit. The
quantum mechanical model uses three quantum numbers, n, l, and , which result
naturally from the mathematics used, to describe an orbital.

1. The principal quantum number, n, can have positive integral values 1, 2, 3, . . . . As
n increases, the orbital becomes larger, and the electron spends more time farther
from the nucleus. An increase in n also means that the electron has a higher en-
ergy and is therefore less tightly bound to the nucleus. For the hydrogen atom,

, as in the Bohr model.

2. The second quantum number—the angular momentum quantum number, l—can
have integral values from 0 to for each value of n. This quantum number
defines the shape of the orbital. The value of l for a particular orbital is generally
designated by the letters s, p, d, and f, * corresponding to l values of 0, 1, 2, and 3:

3. The magnetic quantum number, , can have integral values between and l, in-
cluding zero. This quantum number describes the orientation of the orbital in
space, as we discuss in Section 6.6.

Notice that because the value of n can be any positive integer, an infinite number of
orbitals for the hydrogen atom are possible. At any given instant, however, the electron
in a hydrogen atom is described by only one of these orbitals—we say that the electron
occupies a certain orbital. The remaining orbitals are unoccupied for that particular state
of the hydrogen atom.

G I V E  I T  S O M E  T H O U G H T
What is the difference between an orbit in the Bohr model of the hydrogen atom
and an orbital in the quantum mechanical model?

The collection of orbitals with the same value of n is called an electron shell. All
the orbitals that have , for example, are said to be in the third shell. The set ofn = 3

- lml

0

s

1

p

2

d

3

f

Value of l

Letter used

(n - 1)

En = -(2.18 * 10-18 J)(1>n2)

ml

-2.18 * 10-18 J

c2

c2

c2

*The letters come from the words sharp, principal, diffuse, and fundamental, which were used to describe
certain features of spectra before quantum mechanics was developed.

G O  F I G U R E
Where in the figure is the region of
highest electron density?
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orbitals that have the same n and l values is called a subshell. Each subshell is designated
by a number (the value of n) and a letter (s, p, d, or f, corresponding to the value of l ).
For example, the orbitals that have and are called 3d orbitals and are in the
3d subshell.

! TABLE 6.2 summarizes the possible values of l and for values of n through
. The restrictions on possible values give rise to the following very important

observations:

1. The shell with principal quantum number n consists of exactly n subshells. Each
subshell corresponds to a different allowed value of l from 0 to . Thus, the
first shell consists of only one subshell, the ; the second shell

consists of two subshells, the and ; the
third shell consists of three subshells, 3s, 3p, and 3d, and so forth.

2. Each subshell consists of a specific number of orbitals. Each orbital
corresponds to a different allowed value of . For a given value of l,
there are allowed values of , ranging from to . Thus,
each subshell consists of one orbital; each sub-
shell consists of three orbitals; each subshell consists of five
orbitals, and so forth.

3. The total number of orbitals in a shell is , where n is the principal
quantum number of the shell. The resulting number of orbitals for
the shells—1, 4, 9, 16—are related to a pattern seen in the periodic
table: We see that the number of elements in the rows of the periodic
table—2, 8, 18, and 32—equals twice these numbers. We will discuss
this relationship further in Section 6.9.

" FIGURE 6.17 shows the relative energies of the hydrogen atom
orbitals through . Each box represents an orbital, and orbitals of
the same subshell, such as the three 2p orbitals, are grouped together.
When the electron occupies the lowest-energy orbital (1s ), the hydrogen
atom is said to be in its ground state. When the electron occupies any
other orbital, the atom is in an excited state. (The electron can be excited
to a higher-energy orbital by absorption of a photon of appropriate
energy.) At ordinary temperatures, essentially all hydrogen atoms are in
the ground state.

G I V E  I T  S O M E  T H O U G H T
Notice in Figure 6.17 that the energy difference between the 
and levels is much greater than the energy difference 
between the and levels. How does Equation 6.5 
explain this trend?

n = 3n = 2
n = 2

n = 1

n = 3

n2

d (l = 2)
p (l = 1)s (l = 0)

+ l- lml(2l + 1)
ml

2p (l = 1)2s (l = 0)(n = 2)
1s (l = 0)(n = 1)

(n - 1)

n = 4
ml

l = 2n = 3

TABLE 6.2 • Relationship among Values of n, l, and ml through n 4!

n
Possible 
Values of l

Subshell 
Designation

Possible 
Values of ml

Number of
Orbitals in 
Subshell

Total Number 
of Orbitals 
in Shell

1 0 1s 0 1 1

2 0 2s 0 1
1 2p 1, 0, -1 3 4

3 0 3s 0 1
1 3p 1, 0, -1 3
2 3d 2, 1, 0, ,-2-1 5 9

4 0 4s 0 1
1 4p 1, 0, -1 3
2 4d 2, 1, 0, , -2-1 5
3 4f 3, 2, 1, 0, , , -3-2-1 7 16
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n ! "

n ! 3
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3s 3p

n ! 2

2s

n ! 1

1s

2p

3d

Each box represents
one orbital

Each row represents
one shell

Each cluster of boxes
represents one subshell

n = 1 shell has one orbital
n = 2 shell has two subshells composed of four orbitals
n = 3 shell has three subshells composed of nine orbitals

! FIGURE 6.17 Energy levels in the
hydrogen atom.

G O  F I G U R E
If the fourth shell (the n = 4 energy
level) were shown, how many sub-
shells would it contain? How
would they be labeled?
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SAMPLE EXERCISE 6.6 Subshells of the Hydrogen Atom

(a) Without referring to Table 6.2, predict the number of subshells in the fourth shell, that is,
for . (b) Give the label for each of these subshells. (c) How many orbitals are in each of
these subshells?

Analyze and Plan We are given the value of the principal quantum number, n. We need to
determine the allowed values of l and for this given value of n and then count the number
of orbitals in each subshell.

SOLUTION
There are four subshells in the fourth shell, corresponding to the four possible values of l (0, 1,
2, and 3).

These subshells are labeled 4s, 4p, 4d, and 4f. The number given in the designation of a
subshell is the principal quantum number, n; the letter designates the value of the angular mo-
mentum quantum number, l : for , s; for , p; for , d; for .

There is one 4s orbital (when , there is only one possible value of : 0). There are
three 4p orbitals (when , there are three possible values of : 1, 0, ). There are five 4d
orbitals (when , there are five allowed values of ). There are seven 4f
orbitals (when , there are seven permitted values of ).

PRACTICE EXERCISE
(a) What is the designation for the subshell with and ? (b) How many orbitals are
in this subshell? (c) Indicate the values of for each of these orbitals.
Answers: (a) ; (b) 3; (c) 1, 0,

6.6 | REPRESENTATIONS OF ORBITALS
So far we have emphasized orbital energies, but the wave function also provides infor-
mation about an electron’s probable location in space. Let’s examine the ways in which
we can picture orbitals because their shapes help us visualize how the electron density is
distributed around the nucleus.

The s Orbitals
We have already seen one representation of the lowest-energy orbital of the hydrogen
atom, the 1s (Figure 6.16). The first thing we notice about the electron density for the 1s
orbital is that it is spherically symmetric—in other words, the electron density at a given
distance from the nucleus is the same regardless of the direction in which we proceed
from the nucleus. All of the other s orbitals (2s, 3s, 4s, and so forth) are also spherically
symmetric and centered on the nucleus.

Recall that the l quantum number for the s orbitals is 0; therefore, the quantum
number must be 0. Thus, for each value of n, there is only one s orbital.

So how do s orbitals differ as the value of n changes? One way to address this ques-
tion is to look at the radial probability function, also called the radial probability
density, which is defined as the probability that we will find the electron at a specific dis-
tance from the nucleus.

! FIGURE 6.18 shows the radial probability density for the 1s, 2s, and 3s orbitals of
hydrogen as a function of r, the distance from the nucleus. Three features of these
graphs are noteworthy: the number of peaks, the number of points at which the proba-
bility function goes to zero (called nodes), and how spread out the distribution is,
which gives a sense of the size of the orbital.

For the 1s orbital, we see that the probability rises rapidly as we move away from the
nucleus, maximizing at about . Thus, when the electron occupies the 1s orbital, it is
most likely to be found this distance from the nucleus.* Notice also that in the 1s orbital
the probability of finding the electron at a distance greater than about from the
nucleus is essentially zero.

3 Å

0.5 Å

ml

-15p
ml

l = 1n = 5

ml: 3, 2, 1, 0, -1, -2, -3l = 3
ml: 2, 1, 0, -1, -2l = 2

-1mll = 1
mll = 0

l = 3, fl = 2l = 1l = 0

ml

n = 4

*In the quantum mechanical model, the most probable distance at which to find the electron in the 1s orbital
is actually , the same as the radius of the orbit predicted by Bohr for . The distance is
often called the Bohr radius.

0.529 Ån = 10.529 Å
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Comparing the radial probability distributions for the 1s, 2s, and 3s orbitals reveals
three trends:

1. The number of peaks increases with increasing n, with the outermost peak being
larger than inner ones.

2. The number of nodes increases with increasing n.

3. The electron density becomes more spread out with increasing n.

One widely used method of representing orbital shape is to draw a boundary sur-
face that encloses some substantial portion, say , of the electron density for the
orbital. This type of drawing is called a contour representation, and the contour repre-
sentations for the s orbitals are spheres (! FIGURE 6.19). All the orbitals have the same
shape, but they differ in size, becoming larger as n increases, reflecting the fact that the
electron density becomes more spread out as n increases. Although the details of how
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" FIGURE 6.18 Radial probability distributions for the 1s, 2s, and 3s orbitals of
hydrogen. These graphs of the radial probability function plot probability of finding the electron
as a function of distance from the nucleus. As n increases, the most likely distance at which to
find the electron (the highest peak) moves farther from the nucleus.

G O  F I G U R E
How many maxima would you expect to find in the radial probability function
for the 4s orbital of the hydrogen atom? How many nodes would you expect
in this function?

3s
2s

1s

(a) (b)

# FIGURE 6.19 Comparison of the 1s,
2s, and 3s orbitals. (a) Electron-density
distribution of a 1s orbital. (b) Contour
representions of the 1s, 2s, and 3s orbitals.
Each sphere is centered on the atom’s
nucleus and encloses the volume in which
there is a 90% probability of finding the
electron.
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electron density varies within a given contour representation are lost in these represen-
tations, this is not a serious disadvantage. For qualitative discussions, the most
important features of orbitals are shape and relative size, which are adequately displayed
by contour representations.

The p Orbitals
The distribution of electron density for a 2p orbital is shown in ! FIGURE 6.22(a). The
electron density is not distributed spherically as in an s orbital. Instead, the density is
concentrated in two regions on either side of the nucleus, separated by a node at the nu-
cleus. We say that this dumbbell-shaped orbital has two lobes. Recall that we are making
no statement of how the electron is moving within the orbital. Figure 6.22(a) portrays
only the averaged distribution of the electron density in a 2p orbital.

Beginning with the shell, each shell has three p orbitals. Recall that the l
quantum number for p orbitals is 1. Therefore, the magnetic quantum number can
have three possible values: , 0, and . Thus, there are three 2p orbitals, three 3p
orbitals, and so forth, corresponding to the three possible values of . Each set of p
orbitals has the dumbbell shapes shown in Figure 6.22(a) for the 2p orbitals. For each
value of n, the three p orbitals have the same size and shape but differ from one another
in spatial orientation. We usually represent p orbitals by drawing the shape and orienta-
tion of their wave functions, as shown in Figure 6.22(b). It is convenient to label these as
the , , and orbitals. The letter subscript indicates the Cartesian axis along which
the orbital is oriented.* Like s orbitals, p orbitals increase in size as we move from 2p to
3p to 4p, and so forth.

pzpypx

ml

+1-1
ml

n = 2

*We cannot make a simple correspondence between the subscripts (x, y, and z) and the allowed values (1, 0,
and ). To explain why this is so is beyond the scope of an introductory text.-1

ml

Let’s examine the difference between probability density and ra-
dial probability function more closely. ! FIGURE 6.21 shows plots
of as a function of r for the 1s, 2s, and 3s orbitals of the[c(r)]2

PROBABILITY DENSITY AND RADIAL
PROBABILITY FUNCTIONS

According to quantum mechanics, we must describe
the position of the electron in the hydrogen atom

in terms of probabilities. The information about
the probability is contained in the wave func-

tions, , obtained from Schrödinger’s equation. The square of the
wave function, , called either the probability density or the elec-
tron density, as noted earlier, gives the probability that the electron
is at any point in space. Because s orbitals are spherically symmetric,
the value of for an s electron depends only on its distance from
the nucleus, r. Thus, the probability density can be written as

, where is the value of at r. This function gives
the probability density for any point located a distance r from the
nucleus.

The radial probability function, which we used in Figure 6.18,
differs from the probability density. The radial probability function
equals the total probability of finding the electron at all the points at
any distance r from the nucleus. In other words, to calculate this
function, we need to “add up” the probability densities over
all points located a distance r from the nucleus. ! FIGURE 6.20
compares the probability density at a point ( ) with the radial
probability function.

[c(r)]2

[c(r)]2

[c(r)]2cc(r)[c(r)]2

c

c2
c

A CLOSER LOOK

" FIGURE 6.20 Comparing probability density 
and radial probability function .4Pr 2 [C (r )]2[C(r )]2

[y (r)]2 is probability 
density at any given 
point

4p r2[y (r)]2 is radial probability
function ! sum of all [y (r)]2

having any given value of r
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hydrogen atom. You will notice that these plots look distinctly differ-
ent from the radial probability functions shown in Figure 6.18.

As shown in Figure 6.20, the collection of points a distance r
from the nucleus is the surface of a sphere of radius r. The probabil-
ity density at each point on that spherical surface is . To add
up all the individual probability densities requires calculus and so is
beyond the scope of this text. However, the result of that calculation
tells us that the radial probability function is the probability density,

, multiplied by the surface area of the sphere, :

Thus, the plots of radial probability function in Figure 6.18 are
equal to the plots of in Figure 6.21 multiplied by . The
fact that increases rapidly as we move away from the nucleus
makes the two sets of plots look very different from each other. For
example, the plot of for the 3s orbital in Figure 6.21 shows
that the function generally gets smaller the farther we go from the
nucleus. But when we multiply by , we see peaks that get larger
and larger as we move away from the nucleus (Figure 6.18).

The radial probability functions in Figure 6.18 provide us with
the more useful information because they tell us the probability of
finding the electron at all points a distance r from the nucleus, not
just one particular point.

RELATED EXERCISES: 6.50, 6.59, 6.60, and 6.91

4pr2

[c(r)]2

4pr2
4pr2[c(r)]2

Radial probability function = 4pr2[c(r)]2

4pr2[c(r)]2

[c(r)]2

n ! 1, l ! 0
1s

r
n ! 2, l ! 0

2s

Node Nodes

r
n ! 3, l ! 0

3s

r

c2s
2c1s

22 c3s

! FIGURE 6.21 Probability density in the 1s, 2s, and 3s
orbitals of hydrogen.

[C(r )]2

px pypz

(a) (b)

x x x xy yyy

z z z z

" FIGURE 6.22 The p orbitals.
(a) Electron-density distribution of a 2p orbital.
(b) Contour representations of the three p
orbitals. The subscript on the orbital label
indicates the axis along which the orbital lies.

G O  F I G U R E
(a) Note on the left that the color is deep pink in the interior of each lobe
but fades to pale pink at the edges. What does this change in color repre-
sent? (b) What label is applied to the 2p orbital aligned along the x axis?

The d and f Orbitals
When n is 3 or greater, we encounter the d orbitals (for which ). There are five 3d
orbitals, five 4d orbitals, and so forth because in each shell there are five possible values
for the quantum number: , , 0, 1, and 2. The different d orbitals in a given shell
have different shapes and orientations in space, as shown in # FIGURE 6.23. Four of the
d-orbital contour representations have a “four-leaf clover” shape, and each lies primarily
in a plane. The , , and lie in the xy, xz, and yz planes, respectively, with the lobes
oriented between the axes. The lobes of the orbital also lie in the xy plane, but the
lobes lie along the x and y axes. The orbital looks very different from the other four:
It has two lobes along the z axis and a “doughnut” in the xy plane. Even though the 
orbital looks different from the other d orbitals, it has the same energy as the other four
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dyzdxzdxy
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Orbitals in a subshell are 
degenerate (have same 
energy)

Energies of subshells 
follow order
ns < np < nd < nf
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! FIGURE 6.23 Contour
representations of the five d orbitals.

d orbitals. The representations in Figure 6.23
are commonly used for all d orbitals,

regardless of principal quantum number.
When n is 4 or greater, there are seven

equivalent f orbitals (for which ).
The shapes of the f orbitals are even more

complicated than those of the d orbitals
and are not presented here. As you will see in

the next section, however, you must be aware of
f orbitals as we consider the electronic structure of

atoms in the lower part of the periodic table.
In many instances later in the text you will find

that knowing the number and shapes of atomic orbitals
will help you understand chemistry at the molecular
level. You will therefore find it useful to memorize the
shapes of the s, p, and d orbitals shown in Figures 6.19,
6.22, and 6.23.

6.7 | MANY-ELECTRON ATOMS
One of our goals in this chapter has been to determine the electronic structures of
atoms. So far, we have seen that quantum mechanics leads to an elegant description of
the hydrogen atom. This atom, however, has only one electron. How does our descrip-
tion change when we consider an atom with two or more electrons (a many-electron
atom)? To describe such an atom, we must consider the nature of orbitals and their rel-
ative energies as well as how the electrons populate the available orbitals.

Orbitals and Their Energies
We can describe the electronic structure of a many-electron atom in terms of orbitals
like those of the hydrogen atom. Thus, we continue to designate orbitals as ls, , and so
forth. Further, these orbitals have the same general shapes as the corresponding hydro-
gen orbitals.

Although the shapes of the orbitals of a many-electron atom are the same as those
for hydrogen, the presence of more than one electron greatly changes the energies of the
orbitals. In hydrogen the energy of an orbital depends only on its principal quantum
number, n (Figure 6.17). For instance, the 3s, 3p, and 3d subshells all have the same en-
ergy. In a many-electron atom, however, the electron–electron repulsions cause the
various subshells in a given shell to be at different energies, as shown in " FIGURE 6.24.

To explain this fact, we must consider the forces between the electrons and
how these forces are affected by the shapes of the orbitals. We will, how-
ever, forgo this analysis until Chapter 7.

The important idea is this: In a many-electron atom, for a given value of
n, the energy of an orbital increases with increasing value of l. For example, no-

tice in Figure 6.24 that the orbitals increase in energy in the order .
Notice also that all orbitals of a given subshell (such as the five 3d orbitals) have the same
energy as one another. Orbitals with the same energy are said to be degenerate.

Figure 6.24 is a qualitative energy-level diagram; the exact energies of the orbitals
and their spacings differ from one atom to another.

G I V E  I T  S O M E  T H O U G H T
a. How may orbitals have the principal quantum number n = 3? 
b. In a many-electron atom, what are the relative energies of these orbitals?

3s 6 3p 6 3dn = 3

2px

l = 3

! FIGURE 6.24 General energy
ordering of orbitals for a many-electron
atom.

G O  F I G U R E
Not all of the orbitals in the n = 4
shell are shown in this figure.
Which subshells are missing?
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! FIGURE 6.25 Electron spin. The
electron behaves as if it were spinning about
an axis, thereby generating a magnetic field
whose direction depends on the direction of
spin. The two directions for the magnetic
field correspond to the two possible values
for the spin quantum number, .ms

N

S

! !
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Electron Spin and the Pauli Exclusion Principle
We have now seen that we can use hydrogen-like orbitals to describe many-electron
atoms. What, however, determines which orbitals the electrons occupy? That is, how do
the electrons of a many-electron atom populate the available orbitals? To answer this
question, we must consider an additional property of the electron.

When scientists studied the line spectra of many-electron atoms in great detail, they
noticed a very puzzling feature: Lines that were originally thought to be single were ac-
tually closely spaced pairs. This meant, in essence, that there were twice as many energy
levels as there were “supposed” to be. In 1925 the Dutch physicists George Uhlenbeck
and Samuel Goudsmit proposed a solution to this dilemma. They postulated that elec-
trons have an intrinsic property, called electron spin, that causes each electron to
behave as if it were a tiny sphere spinning on its own axis.

By now it probably does not surprise you to learn that electron spin is quantized.
This observation led to the assignment of a new quantum number for the electron, in
addition to n, l, and , which we have already discussed. This new quantum number,
the spin magnetic quantum number, is denoted (the subscript s stands for spin).
Two possible values are allowed for , or , which was first interpreted as indicat-
ing the two opposite directions in which the electron can spin. A spinning charge
produces a magnetic field. The two opposite directions of spin therefore produce oppo-
sitely directed magnetic fields (" FIGURE 6.25).* These two opposite magnetic fields
lead to the splitting of spectral lines into closely spaced pairs.

Electron spin is crucial for understanding the electronic structures of atoms. In 1925
the Austrian-born physicist Wolfgang Pauli (1900–1958) discovered the principle that
governs the arrangements of electrons in many-electron atoms. The Pauli exclusion
principle states that no two electrons in an atom can have the same set of four quantum
numbers n, l, , and . For a given orbital, the values of n, l, and are fixed. Thus, if wemlmsml

-1
2+1

2ms

ms

ml

*As we discussed earlier, the electron has both particle-like and wave-like properties. Thus, the picture of an
electron as a spinning charged sphere is, strictly speaking, just a useful pictorial representation that helps us
understand the two directions of magnetic field that an electron can possess.

EXPERIMENTAL EVIDENCE 
FOR ELECTRON SPIN

Even before electron spin had been proposed, there
was experimental evidence that electrons had an ad-

ditional property that needed explanation. In 1921,
Otto Stern and Walter Gerlach succeeded in sepa-

rating a beam of electrically neutral atoms into two groups by passing
them through a nonhomogeneous magnetic field (" FIGURE 6.26).

Let’s assume they used a beam of hydrogen atoms (in actuality,
they used silver atoms, which contain just one unpaired electron). We
would normally expect electrically neutral atoms to be unaffected by
a magnetic field. However, the magnetic field arising from the elec-
tron’s spin interacts with the magnet’s field, deflecting the atom from
its straight-line path. As shown in Figure 6.26, the magnetic field
splits the beam in two, suggesting that there are two (and 
only two) equivalent values for the electron’s magnetic field. The
Stern–Gerlach experiment could be readily interpreted once it was
realized that there are exactly two values for the spin of the electron.
These values produce equal magnetic fields that are opposite in
direction.

A CLOSER LOOK

Slit

Beam of
atoms

Magnet

Atoms having unpaired electron with spin quantum number 
ms " #1/2 de!ect in one direction; those having unpaired 
electron with ms " !1/2 de!ect in opposite direction

Beam collector
plate

! FIGURE 6.26 The Stern–Gerlach experiment.
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Medicine for their discoveries concerning MRI. The major drawback
of this technique is expense: The current cost of a new MRI instru-
ment for clinical applications is over $1.5 million.

RELATED EXERCISE: 6.93

NUCLEAR SPIN AND MAGNETIC
RESONANCE IMAGING

A major challenge facing medical diagnosis is seeing
inside the human body. Until recently, this was ac-

complished primarily by using X-rays to image
human bones, muscles, and organs. However,

there are several drawbacks to using X-rays for medical imaging.
First, X-rays do not give well-resolved images of overlapping physio-
logical structures. Moreover, because damaged or diseased tissue
often yields the same image as healthy tissue, X-rays frequently fail to
detect illness or injuries. Finally, X-rays are high-energy radiation that
can cause physiological harm, even in low doses.

During the 1980s, a technique called magnetic resonance imag-
ing (MRI) moved to the forefront of medical imaging technology.
The foundation of MRI is a phenomenon called nuclear magnetic
resonance (NMR), which was discovered in the mid-1940s. Today
NMR has become one of the most important spectroscopic methods
used in chemistry. It is based on the observation that, like electrons,
the nuclei of many elements possess an intrinsic spin. Like electron
spin, nuclear spin is quantized. For example, the nucleus of has
two possible magnetic nuclear spin quantum numbers, and .
The hydrogen nucleus is the most common one studied by NMR.

A spinning hydrogen nucleus acts like a tiny magnet. In the ab-
sence of external effects, the two spin states have the same energy.
However, when the nuclei are placed in an external magnetic field,
they can align either parallel or opposed (antiparallel) to the field,
depending on their spin. The parallel alignment is lower in energy
than the antiparallel one by a certain amount, (! FIGURE 6.27).
If the nuclei are irradiated with photons having energy equal to ,
the spin of the nuclei can be “flipped,” that is, excited from the paral-
lel to the antiparallel alignment. Detection of the flipping of nuclei
between the two spin states leads to an NMR spectrum. The radia-
tion used in an NMR experiment is in the radiofrequency range,
typically 100 to 900 MHz, which is far less energetic per photon than
X-rays.

Because hydrogen is a major constituent of aqueous body fluids
and fatty tissue, the hydrogen nucleus is the most convenient one for
study by MRI. In MRI a person’s body is placed in a strong magnetic
field. By irradiating the body with pulses of radiofrequency radiation
and using sophisticated detection techniques, medical technicians
can image tissue at specific depths in the body, giving pictures with
spectacular detail (! FIGURE 6.28). The ability to sample at differ-
ent depths allows the technicians to construct a three-dimensional
picture of the body.

MRI has none of the disadvantages of X-rays. Diseased tissue
appears very different from healthy tissue, resolving overlapping
structures at different depths in the body is much easier, and the radio
frequency radiation is not harmful to humans in the doses used. The
technique has had such a profound influence on the modern practice
of medicine that Paul Lauterbur, a chemist, and Peter Mansfield,
a physicist, were awarded the 2003 Nobel Prize in Physiology or
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" FIGURE 6.27 Nuclear spin. Like electron spin, nuclear spin
generates a small magnetic field and has two allowed values. (a) In
the absence of an external magnetic field, the two spin states have
the same energy. (b) When an external magnetic field is applied, the
spin state in which the spin direction is parallel to the direction of the
external field is lower in energy than the spin state in which the spin
direction is antiparallel to the field direction. The energy difference,

, is in the radio frequency portion of the electromagnetic
spectrum.
¢E

" FIGURE 6.28 MRI image. This image of a human head,
obtained using magnetic resonance imaging, shows a normal brain,
airways, and facial tissues.
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want to put more than one electron in an orbital and satisfy the Pauli exclusion principle,
our only choice is to assign different values to the electrons. Because there are only two
such values, we conclude that an orbital can hold a maximum of two electrons and they must
have opposite spins. This restriction allows us to index the electrons in an atom, giving their
quantum numbers and thereby defining the region in space where each electron is most
likely to be found. It also provides the key to understanding the structure of the periodic
table of the elements.

6.8 | ELECTRON CONFIGURATIONS
Armed with knowledge of the relative energies of orbitals and the Pauli exclusion prin-
ciple, we are in a position to consider the arrangements of electrons in atoms. The way
electrons are distributed among the various orbitals of an atom is called the electron
configuration of the atom.

The most stable electron configuration—the ground state—is that in which the
electrons are in the lowest possible energy states. If there were no restrictions on the pos-
sible values for the quantum numbers of the electrons, all the electrons would crowd
into the ls orbital because it is the lowest in energy (Figure 6.24). The Pauli exclusion
principle tells us, however, that there can be at most two electrons in any single orbital.
Thus, the orbitals are filled in order of increasing energy, with no more than two electrons
per orbital. For example, consider the lithium atom, which has three electrons. (Recall
that the number of electrons in a neutral atom equals its atomic number.) The ls orbital
can accommodate two of the electrons. The third one goes into the next lowest energy
orbital, the 2s.

We can represent any electron configuration by writing the symbol for the occupied
subshell and adding a superscript to indicate the number of electrons in that subshell.
For example, for lithium we write (read “ls two, 2s one”). We can also show the
arrangement of the electrons as

In this representation, which we call an orbital diagram, each orbital is denoted by a
box and each electron by a half arrow. A half arrow pointing up (_) represents an elec-
tron with a positive spin magnetic quantum number and a half arrow
pointing down (]) represents an electron with a negative spin magnetic quantum num-
ber . This pictorial representation of electron spin, which corresponds to the
directions of the magnetic fields in Figure 6.25, is quite convenient.

Electrons having opposite spins are said to be paired when they are in the same
orbital (g). An unpaired electron is one not accompanied by a partner of opposite spin.
In the lithium atom the two electrons in the 1s orbital are paired and the electron in the
2s orbital is unpaired.

Hund’s Rule
Consider now how the electron configurations of the elements change as we move from
element to element across the periodic table. Hydrogen has one electron, which occu-
pies the 1s orbital in its ground state:

The choice of a spin-up electron here is arbitrary; we could equally well show the
ground state with one spin-down electron. It is customary, however, to show unpaired
electrons with their spins up.

H

1s

: 1s1

(ms = -1
2)

(ms = +1
2)

Li

1s 2s

ls22s1
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The next element, helium, has two electrons. Because two electrons with opposite
spins can occupy the same orbital, both of helium’s electrons are in the 1s orbital:

The two electrons present in helium complete the filling of the first shell. This arrange-
ment represents a very stable configuration, as is evidenced by the chemical inertness
of helium.

The electron configurations of lithium and several elements that follow it in the pe-
riodic table are shown in ! TABLE 6.3. For the third electron of lithium, the change in
principal quantum number from n = 1 for the first two electrons to n = 2 for the third
electron represents a large jump in energy and a corresponding jump in the average dis-
tance of the electron from the nucleus. In other words, it represents the start of a new
shell occupied with electrons. As you can see by examining the periodic table, lithium
starts a new row of the table. It is the first member of the alkali metals (group 1A).

The element that follows lithium is beryllium; its electron configuration is 
(Table 6.3). Boron, atomic number 5, has the electron configuration . The fifth
electron must be placed in a 2p orbital because the 2s orbital is filled. Because all the
three 2p orbitals are of equal energy, it does not matter which 2p orbital we place this
fifth electron in.

With the next element, carbon, we encounter a new situation. We know that the
sixth electron must go into a 2p orbital. However, does this new electron go into the 2p
orbital that already has one electron or into one of the other two 2p orbitals? This ques-
tion is answered by Hund’s rule, which states that for degenerate orbitals, the lowest
energy is attained when the number of electrons having the same spin is maximized. This
means that electrons occupy orbitals singly to the maximum extent possible and that
these single electrons in a given subshell all have the same spin magnetic quantum num-
ber. Electrons arranged in this way are said to have parallel spins. For a carbon atom to
achieve its lowest energy, therefore, the two 2p electrons must have the same spin. For
this to happen, the electrons must be in different 2p orbitals, as shown in Table 6.3.
Thus, a carbon atom in its ground state has two unpaired electrons.

Similarly, for nitrogen in its ground state, Hund’s rule requires that the three 2p
electrons singly occupy each of the three 2p orbitals. This is the only way that all three
electrons can have the same spin. For oxygen and fluorine, we place four and five

1s22s22p1
1s22s2

He

1s

: 1s2

2p 3s1s 2s

TABLE 6.3 • Electron Configurations of Several Lighter Elements

Element Total Electrons Orbital Diagram Electron Configuration

Li 3

Be 4

B 5

C 6

N 7

Ne 10

Na 11 1s22s22p63s1

1s22s22p6

1s22s22p3

1s22s22p2

1s22s22p1

1s22s2

1s22s1
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electrons, respectively, in the 2p orbitals. To achieve this, we pair up electrons in the 2p
orbitals, as we will see in Sample Exercise 6.7.

Hund’s rule is based in part on the fact that electrons repel one another. By occupy-
ing different orbitals, the electrons remain as far as possible from one another, thus
minimizing electron–electron repulsions.

SAMPLE EXERCISE 6.7 Orbital Diagrams and Electron Configurations

Draw the orbital diagram for the electron configuration of oxygen, atomic number 8. How
many unpaired electrons does an oxygen atom possess?

SOLUTION
Analyze and Plan Because oxygen has an atomic number of 8, each oxygen atom has 8 elec-
trons. Figure 6.24 shows the ordering of orbitals. The electrons (represented as arrows) are
placed in the orbitals (represented as boxes) beginning with the lowest-energy orbital, the 1s.
Each orbital can hold a maximum of two electrons (the Pauli exclusion principle). Because the
2p orbitals are degenerate, we place one electron in each of these orbitals (spin-up) before
pairing any electrons (Hund’s rule).

Solve Two electrons each go into the 1s and 2s orbitals with their spins paired. This leaves
four electrons for the three degenerate 2p orbitals. Following Hund’s rule, we put one electron
into each 2p orbital until all three orbitals have one electron each. The fourth electron is then
paired up with one of the three electrons already in a 2p orbital, so that the orbital diagram is

The corresponding electron configuration is written . The atom has two unpaired
electrons.

PRACTICE EXERCISE
(a) Write the electron configuration for phosphorus, element 15. (b) How many unpaired
electrons does a phosphorus atom possess?

Answers: (a) , (b) three

Condensed Electron Configurations
The filling of the 2p subshell is complete at neon (Table 6.3), which has a stable config-
uration with eight electrons (an octet) in the outermost occupied shell. The next
element, sodium, atomic number 11, marks the beginning of a new row of the periodic
table. Sodium has a single 3s electron beyond the stable configuration of neon. We can
therefore abbreviate the electron configuration of sodium as

The symbol [Ne] represents the electron configuration of the ten electrons of neon,
. Writing the electron configuration as focuses attention on the outer-

most electron of the atom, which is the one largely responsible for how sodium behaves
chemically.

We can generalize what we have just done for the electron configuration of sodium.
In writing the condensed electron configuration of an element, the electron configuration
of the nearest noble-gas element of lower atomic number is represented by its chemical
symbol in brackets. For lithium, for example, we write

We refer to the electrons represented by the bracketed symbol as the noble-gas core
of the atom. More usually, these inner-shell electrons are referred to as the core elec-
trons. The electrons given after the noble-gas core are called the outer-shell electrons.
The outer-shell electrons include the electrons involved in chemical bonding, which are
called the valence electrons. For the elements with atomic number of 30 or less, all of
the outer-shell electrons are valence electrons. By comparing the condensed electron
configurations of lithium and sodium, we can appreciate why these two elements are so

Li: [He]2s1

[Ne]3s11s22s22p6

Na: [Ne]3s1

1s22s22p63s23p3

1s22s22p4

1s 2s 2p
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! FIGURE 6.29 The outer-shell
electron configurations of the alkali
metals (group 1A in the periodic table).
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similar chemically. They have the same type of electron configuration in the outermost
occupied shell. Indeed, all the members of the alkali metal group (1A) have a single s
valence electron beyond a noble-gas configuration (" FIGURE 6.29).

Transition Metals
The noble-gas element argon marks the end of the row started by
sodium. The element following argon in the periodic table is potassium (K), atomic
number 19. In all its chemical properties, potassium is clearly a member of the alkali
metal group. The experimental facts about the properties of potassium leave no doubt
that the outermost electron of this element occupies an s orbital. But this means that the
electron with the highest energy has not gone into a 3d orbital, which we might expect it
to do. Because the 4s orbital is lower in energy than the 3d orbital (Figure 6.24), the con-
densed electron configuration of potassium is

Following the complete filling of the 4s orbital (this occurs in the calcium atom),
the next set of orbitals to be filled is the 3d. (You will find it helpful as we go along to
refer often to the periodic table on the front inside cover.) Beginning with scandium and
extending through zinc, electrons are added to the five 3d orbitals until they are com-
pletely filled. Thus, the fourth row of the periodic table is ten elements wider than the
two previous rows. These ten elements are known as either transition elements or
transition metals. Note the position of these elements in the periodic table.

In writing the electron configurations of the transition elements, we fill orbitals in
accordance with Hund’s rule—we add them to the 3d orbitals singly until all five or-
bitals have one electron each and then place additional electrons in the 3d orbitals with
spin pairing until the shell is completely filled. The condensed electron configurations
and the corresponding orbital diagram representations of two transition elements are as
follows:

Once all the 3d orbitals have been filled with two electrons each, the 4p orbitals
begin to be occupied until the completed octet of outer electrons is reached
with krypton (Kr), atomic number 36, another of the noble gases. Rubidium (Rb)
marks the beginning of the fifth row. Refer again to the periodic table on the front inside
cover. Notice that this row is in every respect like the preceding one, except that the value
for n is greater by 1.

G I V E  I T  S O M E  T H O U G H T
Based on the structure of the periodic table, which becomes occupied first, the
6s orbital or the 5d orbitals?

The Lanthanides and Actinides
The sixth row of the periodic table begins with one electron in the 6s orbital of cesium
(Cs) and two electrons in the 6s orbital of barium (Ba). Notice, however, that the peri-
odic table then has a break, with elements 57–70 placed below the main portion of the
table. This break point is where we begin to encounter a new set of orbitals, the 4f.

There are seven degenerate 4f orbitals, corresponding to the seven allowed values of
, ranging from 3 to . Thus, it takes 14 electrons to fill the 4f orbitals completely.

The 14 elements corresponding to the filling of the 4f orbitals are known as either the
lanthanide elements or the rare earth elements. These elements are set below the

-3ml
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Mn:
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other elements to avoid making the periodic table unduly wide. The properties of the
lanthanide elements are all quite similar, and these elements occur together in nature.
For many years it was virtually impossible to separate them from one another.

Because the energies of the 4f and 5d orbitals are very close to each other, the elec-
tron configurations of some of the lanthanides involve 5d electrons. For example, the
elements lanthanum (La), cerium (Ce), and praseodymium (Pr) have the following
electron configurations:

Because La has a single 5d electron, it is sometimes placed below yttrium (Y) as the
first member of the third series of transition elements; Ce is then placed as the first
member of the lanthanides. Based on their chemistry, however, La can be considered the
first element in the lanthanide series. Arranged this way, there are fewer apparent
exceptions to the regular filling of the 4f orbitals among the subsequent members of
the series.

After the lanthanide series, the third transition element series is completed by the
filling of the 5d orbitals, followed by the filling of the 6p orbitals. This brings us to radon
(Rn), heaviest of the known noble-gas elements.

The final row of the periodic table begins by filling the 7s orbitals. The actinide
elements, of which uranium (U, element 92) and plutonium (Pu, element 94) are the
best known, are then built up by completing the 5f orbitals. The actinide elements are
radioactive, and most of them are not found in nature.

6.9 | ELECTRON CONFIGURATIONS 
AND THE PERIODIC TABLE

We just saw that the electron configurations of the elements correspond to their loca-
tions in the periodic table. Thus, elements in the same column of the table have related
outer-shell (valence) electron configurations. As ! TABLE 6.4 shows, for example, all
2A elements have an outer configuration, and all 3A elements have an outer
configuration, with the value of n increasing as we move down each column.

As shown in " FIGURE 6.30, the periodic table can be divided into four blocks
based on the filling order of orbitals. On the left are two blue columns of elements.
These elements, known as the alkali metals (group 1A) and alkaline earth metals
(group 2A), are those in which the valence s orbitals are being filled. These two columns
make up the s block of the periodic table.

On the right is a block of six pink columns that comprises the p block, where the va-
lence p orbitals are being filled. The s block and the p block elements together are the
representative elements, sometimes called the main-group elements.

The orange block in Figure 6.30 has ten columns containing the transition metals.
These are the elements in which the valence d orbitals are being filled and make up the
d block.

ns2np1ns2

[Xe]6s25d1 [Xe]6s25d14f 1 [Xe]6s24f 3

Lanthanum Cerium Praseodymium

TABLE 6.4 •
Electron Configurations 
of Group 2A and 3A Elements
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# FIGURE 6.30 Regions of the periodic table. The order in which electrons are added to
orbitals is read left to right beginning in the top left corner.
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The elements in the two tan rows containing 14 columns are the ones in which the
valence f orbitals are being filled and make up the f block. Consequently, these elements
are often referred to as the f-block metals. In most tables, the f block is positioned
below the periodic table to save space:

The number of columns in each block corresponds to the maximum number of
electrons that can occupy each kind of subshell. Recall that 2, 6, 10, and 14 are the num-
bers of electrons that can fill the s, p, d, and f subshells, respectively. Thus, the s block has
2 columns, the p block has 6, the d block has 10, and the f block has 14. Recall also that ls
is the first s subshell, 2p is the first p subshell, 3d is the first d subshell, and 4f is the first f
subshell, as Figure 6.30 shows. Using these facts, you can write the electron configura-
tion of an element based merely on its position in the periodic table.

Let’s use the periodic table to write the electron configuration of selenium (Se, ele-
ment 34). We first locate Se in the table and then move backward from it through the
table, from element 34 to 33 to 32 and so forth, until we come to the noble gas that pre-
cedes Se. In this case, the noble gas is argon, Ar, element 18. Thus, the noble-gas core for
Se is [Ar]. Our next step is to write symbols for the outer electrons. We do this by mov-
ing across period 4 from K, the element following Ar, to Se:

Because K is in the fourth period and the s block, we begin with the 4s electrons, mean-
ing our first two outer electrons are written . We then move into the d block, which
begins with the 3d electrons. (The principal quantum number in the d block is always
one less than that of the preceding elements in the s block, as seen in Figure 6.30.) Tra-
versing the d block adds ten electrons, . Finally we move into the p block, whose
principal quantum number is always the same as that of the s block. Counting the
squares as we move across the p block to Se tells us that we need four electrons, . The
electron configuration for Se is therefore . This configuration can also be
written with the subshells arranged in order of increasing principal quantum number:

.
As a check, we add the number of electrons in the [Ar] core, 18, to the number of

electrons we added to the 4s, 3d, and 4p subshells. This sum should equal the atomic
number of Se, 34: 18 + 2 + 10 + 4 = 34.
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SAMPLE EXERCISE 6.8 Electron Configurations for a Group

What is the characteristic valence electron configuration of the group 7A elements, the
halogens?

SOLUTION
Analyze and Plan We first locate the halogens in the periodic table, write the electron con-
figurations for the first two elements, and then determine the general similarity between the
configurations.

Solve The first member of the halogen group is fluorine (F, element 9). Moving backward
from F, we find that the noble-gas core is [He]. Moving from He to the element of next higher
atomic number brings us to Li, element 3. Because Li is in the second period of the s block, we
add electrons to the 2s subshell. Moving across this block gives . Continuing to move to the
right, we enter the p block. Counting the squares to F gives . Thus, the condensed electron
configuration for fluorine is

The electron configuration for chlorine, the second halogen, is

From these two examples, we see that the characteristic valence electron configuration of a
halogen is , where n ranges from 2 in the case of fluorine to 6 in the case of astatine.

PRACTICE EXERCISE
Which family of elements is characterized by an electron configuration in the outer-
most occupied shell?

Answer: group 4A

SAMPLE EXERCISE 6.9 Electron Configurations from the Periodic Table

(a) Based on its position in the periodic table, write the condensed electron configuration for
bismuth, element 83. (b) How many unpaired electrons does a bismuth atom have?

SOLUTION
(a) Our first step is to write the noble-gas core. We do this by locating bismuth, element 83, in
the periodic table. We then move backward to the nearest noble gas, which is Xe, element 54.
Thus, the noble-gas core is [Xe].

Next, we trace the path in order of increasing atomic numbers from Xe to Bi. Moving
from Xe to Cs, element 55, we find ourselves in period 6 of the s block. Knowing the block and
the period identifies the subshell in which we begin placing outer electrons, 6s. As we move
through the s block, we add two electrons: .

As we move beyond the s block, from element 56 to element 57, the curved arrow below
the periodic table reminds us that we are entering the f block. The first row of the f block
corresponds to the 4f subshell. As we move across this block, we add 14 electrons: .

With element 71, we move into the third row of the d block. Because the first row of the d
block is 3d, the second row is 4d and the third row is 5d. Thus, as we move through the ten elements
of the d block, from element 71 to element 80, we fill the 5d subshell with ten electrons: .

Moving from element 80 to element 81 puts us into the p block in the 6p subshell.
(Remember that the principal quantum number in the p block is the same as in the s block.)
Moving across to Bi requires 3 electrons: . The path we have taken is
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Putting the parts together, we obtain the condensed electron configuration: .
This configuration can also be written with the subshells arranged in order of increasing prin-
cipal quantum number: .

Finally, we check our result to see if the number of electrons equals the atomic number of
Bi, 83: Because Xe has 54 electrons (its atomic number), we have 54 + 2 + 14 + 10 + 3 = 83.
(If we had 14 electrons too few, we would realize that we have missed the f block.)

(b) We see from the condensed electron configuration that the only partially occupied subshell
is 6p. The orbital diagram representation for this subshell is

In accordance with Hund’s rule, the three 6p electrons occupy the three 6p orbitals singly, with
their spins parallel. Thus, there are three unpaired electrons in the bismuth atom.

PRACTICE EXERCISE
Use the periodic table to write the condensed electron configuration for (a) Co (element 27),
(b) Te (element 52).

Answers: (a) or , (b) or

! FIGURE 6.31 gives, for all the elements, the ground-state electron configurations
for the valence electrons. You can use this figure to check your answers as you practice
writing electron configurations. We have written these configurations with orbitals
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" FIGURE 6.31 Valence electron configurations of the elements.
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listed in order of increasing principal quantum number. As we saw in Sample Exercise
6.9, the orbitals can also be listed in order of filling, as they would be read off the peri-
odic table.

Figure 6.31 allow us to reexamine the concept of valence electrons. Notice, for exam-
ple, that as we proceed from to we add a complete
subshell of 3d electrons to the electrons beyond the [Ar] core. Although the 3d electrons
are outer-shell electrons, they are not involved in chemical bonding and are therefore
not considered valence electrons. Thus, we consider only the 4s and 4p electrons of Br to
be valence electrons. Similarly, if we compare the electron configurations of Ag (element
47) and Au (element 79), we see that Au has a completely full subshell beyond its
noble-gas core, but those 4f electrons are not involved in bonding. In general, for repre-
sentative elements we do not consider the electrons in completely filled d or f subshells to be
valence electrons, and for transition elements we do not consider the electrons in a com-
pletely filled f subshell to be valence electrons.

Anomalous Electron Configurations
The electron configurations of certain elements appear to violate the rules we have just
discussed. For example, Figure 6.31 shows that the electron configuration of chromium
(element 24) is rather than the configuration we might expect.
Similarly, the configuration of copper (element 29) is instead of .

This anomalous behavior is largely a consequence of the closeness of the 3d and 4s
orbital energies. It frequently occurs when there are enough electrons to form precisely
half-filled sets of degenerate orbitals (as in chromium) or a completely filled d subshell
(as in copper). There are a few similar cases among the heavier transition metals (those
with partially filled 4d or 5d orbitals) and among the f-block metals. Although these
minor departures from the expected are interesting, they are not of great chemical
significance.

G I V E  I T  S O M E  T H O U G H T
The elements Ni, Pd, and Pt are all in the same group. By examining the electron
configurations for these elements in Figure 6.31, what can you conclude about
the relative energies of the nd and orbitals for this group?

SAMPLE INTEGRATIVE EXERCISE Putting Concepts Together

Boron, atomic number 5, occurs naturally as two isotopes, and , with natural abun-
dances of and , respectively. (a) In what ways do the two isotopes differ from each
other? Does the electronic configuration of differ from that of (b) Draw the orbital di-
agram for an atom of . Which electrons are the valence electrons? (c) Indicate three major
ways in which the 1s electrons in boron differ from its 2s electrons. (d) Elemental boron reacts
with fluorine to form , a gas. Write a balanced chemical equation for the reaction of solid
boron with fluorine gas. (e) for (g) is . Calculate the standard en-
thalpy change in the reaction of boron with fluorine. (f) When , also a gas at room
temperature, comes into contact with water, the two react to form hydrochloric acid and boric
acid, , a very weak acid in water. Write a balanced net ionic equation for this reaction.

SOLUTION
(a) The two isotopes of boron differ in the number of neutrons in the nucleus. •(Sections
2.3 and 2.4) Each of the isotopes contains five protons, but contains five neutrons, whereas

contains six neutrons. The two isotopes of boron have identical electron configurations,
, because each has five electrons.

(b) The complete orbital diagram is

The valence electrons are the ones in the outermost occupied shell, the and electrons.
The electrons constitute the core electrons, which we represent as [He] when we write the
condensed electron configuration, .[He]2s22p1
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(c) The 1s and 2s orbitals are both spherical, but they differ in three important respects: First,
the 1s orbital is lower in energy than the 2s orbital. Second, the average distance of the 2s elec-
trons from the nucleus is greater than that of the 1s electrons, so the 1s orbital is smaller than
the 2s. Third, the 2s orbital has one node, whereas the 1s orbital has no nodes (Figure 6.18).

(d) The balanced chemical equation is

(e) . The reaction is strongly exothermic.

(f) . Note that because
is a very weak acid, its chemical formula is written in molecular form, as discussed in

Section 4.3.
H3BO3

BCl3(g) + 3 H2O(l) ¡ H3BO3(aq) + 3 H+(aq) + 3 Cl-(aq)

¢H° = 2(-1135.6) - [0 + 0] = -2271.2 kJ

2 B(s) + 3 F2(g) ¡ 2 BF3(g)

INTRODUCTION AND SECTION 6.1 The electronic structure of
an atom describes the energies and arrangement of electrons around
the atom. Much of what is known about the electronic structure of
atoms was obtained by observing the interaction of light with matter.
Visible light and other forms of electromagnetic radiation (also
known as radiant energy) move through a vacuum at the speed of
light, . Electromagnetic radiation has both electric
and magnetic components that vary periodically in wavelike fashion.
The wave characteristics of radiant energy allow it to be described in
terms of wavelength, , and frequency, , which are interrelated:

.

SECTION 6.2 Planck proposed that the minimum amount of
radiant energy that an object can gain or lose is related to the fre-
quency of the radiation: . This smallest quantity is called a
quantum of energy. The constant h is called Planck’s constant:

. In the quantum theory, energy is quantized,
meaning that it can have only certain allowed values. Einstein used the
quantum theory to explain the photoelectric effect, the emission of
electrons from metal surfaces when exposed to light. He proposed that
light behaves as if it consists of quantized energy packets called
photons. Each photon carries energy, .

SECTION 6.3 Dispersion of radiation into its component wave-
lengths produces a spectrum. If the spectrum contains all wave-
lengths, it is called a continuous spectrum; if it contains only certain
specific wavelengths, the spectrum is called a line spectrum. The radi-
ation emitted by excited hydrogen atoms forms a line spectrum.

Bohr proposed a model of the hydrogen atom that explains its
line spectrum. In this model the energy of the electron in the hydrogen
atom depends on the value of a quantum number, n. The value of n
must be a positive integer (1, 2, 3, . . .), and each value of n corresponds
to a different specific energy, . The energy of the atom increases as n
increases. The lowest energy is achieved for ; this is called the
ground state of the hydrogen atom. Other values of n correspond to
excited states. Light is emitted when the electron drops from a
higher-energy state to a lower-energy state; light is absorbed to excite
the electron from a lower energy state to a higher one. The frequency
of light emitted or absorbed is such that h equals the difference in
energy between two allowed states.

SECTION 6.4 De Broglie proposed that matter, such as electrons,
should exhibit wavelike properties. This hypothesis of matter waves
was proved experimentally by observing the diffraction of electrons.
An object has a characteristic wavelength that depends on its
momentum, . Discovery of the wave properties of the
electron led to Heisenberg’s uncertainty principle, which states that

mv: l = h>mv

n

n = 1
En

E = hn

h = 6.626 * 10-34 J-s

E = hn

c = ln
nl

c = 3.00 * 108 m>s

there is an inherent limit to the accuracy with which the position and
momentum of a particle can be measured simultaneously.

SECTION 6.5 In the quantum mechanical model of the hydrogen
atom, the behavior of the electron is described by mathematical func-
tions called wave functions, denoted with the Greek letter . Each al-
lowed wave function has a precisely known energy, but the location of
the electron cannot be determined exactly; rather, the probability of it
being at a particular point in space is given by the probability density,

. The electron density distribution is a map of the probability of
finding the electron at all points in space.

The allowed wave functions of the hydrogen atom are called
orbitals. An orbital is described by a combination of an integer and a
letter, corresponding to values of three quantum numbers. The
principal quantum number, n, is indicated by the integers 1, 2, 3, . . . .
This quantum number relates most directly to the size and energy of
the orbital. The angular momentum quantum number, l, is indicated by
the letters s, p, d, f, and so on, corresponding to the values of 0, 1, 2, 3, .
. . . The l quantum number defines the shape of the orbital. For a given
value of n, l can have integer values ranging from 0 to . The
magnetic quantum number, , relates to the orientation of the orbital
in space. For a given value of l, can have integral values ranging
from to l, including 0. Subscripts can be used to label the orienta-
tions of the orbitals. For example, the three 3p orbitals are designated

, , and , with the subscripts indicating the axis along which
the orbital is oriented.

An electron shell is the set of all orbitals with the same value of n,
such as 3s, 3p, and 3d. In the hydrogen atom all the orbitals in an elec-
tron shell have the same energy. A subshell is the set of one or more
orbitals with the same n and l values; for example, 3s, 3p, and 3d are
each subshells of the shell. There is one orbital in an s subshell,
three in a p subshell, five in a d subshell, and seven in an f subshell.

SECTION 6.6 Contour representations are useful for visualizing the
shapes of the orbitals. Represented this way, s orbitals appear as spheres
that increase in size as n increases. The radial probability function tells
us the probability that the electron will be found at a certain distance
from the nucleus. The wave function for each p orbital has two lobes
on opposite sides of the nucleus. They are oriented along the x, y, and z
axes. Four of the d orbitals appear as shapes with four lobes around the
nucleus; the fifth one, the orbital, is represented as two lobes along
the z axis and a “doughnut” in the xy plane. Regions in which the wave
function is zero are called nodes. There is zero probability that the
electron will be found at a node.

SECTION 6.7 In many-electron atoms, different subshells of the
same electron shell have different energies. For a given value of n, the

dz2

n = 3

3pz3py3px

- l
ml

ml

(n - 1)

c2

c
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energy of the subshells increases as the value of l increases:
. Orbitals within the same subshell are degenerate,

meaning they have the same energy.
Electrons have an intrinsic property called electron spin, which is

quantized. The spin magnetic quantum number, , can have two
possible values, and , which can be envisioned as the two direc-
tions of an electron spinning about an axis. The Pauli exclusion
principle states that no two electrons in an atom can have the same
values for n, l, , and . This principle places a limit of two on the
number of electrons that can occupy any one atomic orbital. These two
electrons differ in their value of .

SECTIONS 6.8 AND 6.9 The electron configuration of an atom
describes how the electrons are distributed among the orbitals of the
atom. The ground-state electron configurations are generally obtained
by placing the electrons in the atomic orbitals of lowest possible energy
with the restriction that each orbital can hold no more than two elec-
trons. When electrons occupy a subshell with more than one degener-
ate orbital, such as the 2p subshell, Hund’s rule states that the lowest
energy is attained by maximizing the number of electrons with the
same electron spin. For example, in the ground-state electron configu-
ration of carbon, the two 2p electrons have the same spin and must
occupy two different 2p orbitals.

ms

msml

-1
2+1

2

ms

ns6np6nd6nf
Elements in any given group in the periodic table have the same

type of electron arrangements in their outermost shells. For example,
the electron configurations of the halogens fluorine and chlorine are

and , respectively. The outer-shell electrons are
those that lie outside the orbitals occupied in the next lowest noble-gas
element. The outer-shell electrons that are involved in chemical bond-
ing are the valence electrons of an atom; for the elements with atomic
number 30 or less, all the outer-shell electrons are valence electrons.
The electrons that are not valence electrons are called core electrons.

The periodic table is partitioned into different types of elements,
based on their electron configurations. Those elements in which the
outermost subshell is an s or p subshell are called the representative (or
main-group) elements. The alkali metals (group 1A), halogens (group
7A), and noble gases (group 8A) are representative elements. Those ele-
ments in which a d subshell is being filled are called the transition
elements (or transition metals). The elements in which the 4f subshell
is being filled are called the lanthanide (or rare earth) elements. The
actinide elements are those in which the 5f subshell is being filled. The
lanthanide and actinide elements are collectively referred to as the 
f-block metals. These elements are shown as two rows of 14 elements
below the main part of the periodic table. The structure of the periodic
table, summarized in Figure 6.30, allows us to write the electron config-
uration of an element from its position in the periodic table.

[Ne]3s23p5[He]2s22p5

KEY SKILLS
• Calculate the wavelength of electromagnetic radiation given its frequency or its frequency given its wavelength. (Section 6.1)

• Order the common kinds of radiation in the electromagnetic spectrum according to their wavelengths or energy. (Section 6.1)

• Explain what photons are and be able to calculate their energies given either their frequency or wavelength. (Section 6.2)

• Explain how line spectra relate to the idea of quantized energy states of electrons in atoms. (Section 6.3)

• Calculate the wavelength of a moving object. (Section 6.4)

• Explain how the uncertainty principle limits how precisely we can specify the position and the momentum of subatomic particles such as
electrons. (Section 6.4)

• Relate the quantum numbers to the number and type of orbitals and recognize the different orbital shapes. (Section 6.5)

• Interpret radial probability function graphs for the orbitals. (Section 6.6)

• Draw an energy-level diagram for the orbitals in a many-electron atom and describe how electrons populate the orbitals in the ground state
of an atom, using the Pauli exclusion principle and Hund’s rule. (Section 6.8)

• Use the periodic table to write condensed electron configurations and determine the number of unpaired electrons in an atom. (Section 6.9)

KEY EQUATIONS
• [6.1] light as a wave: , ,

• [6.2] light as a particle (photon): ,
,

(same frequency as previous formula)

• [6.8] matter as a wave: , , ,

• [6.9] Heisenberg’s uncertainty principle. The uncertainty in position ( ) and momentum [ ] of
an object cannot be zero; the smallest value of their product is h>4p ¢(mv)¢x¢x # ¢(mv) Ú h

4p

v = speed of object in m/s
m = mass of object in kgh = Planck’s constantl = wavelengthl = h>mv

n = frequency in s-1h = Planck’s constant (6.626 * 10-34 J-s)
E = energy of photon in joulesE = hn

n = frequency in s-1
l = wavelength in metersc = speed of light (3.00 * 108 m>s)c = ln
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EXERCISES
VISUALIZING CONCEPTS

6.1 Consider the water wave shown here. (a) How could you
measure the speed of this wave? (b) How would you deter-
mine the wavelength of the wave? (c) Given the speed and
wavelength of the wave, how could you determine the fre-
quency of the wave? (d) Suggest an independent experiment
to determine the frequency of the wave. [Section 6.1]

6.2 A popular kitchen appliance produces electromagnetic radia-
tion with a frequency of 2450 MHz. With reference to Figure
6.4, answer the following: (a) Estimate the wavelength of this
radiation. (b) Would the radiation produced by the appliance
be visible to the human eye? (c) If the radiation is not visible,
do photons of this radiation have more or less energy than
photons of visible light? (d) Propose the identity of the
kitchen appliance. [Section 6.1]

6.3 The following diagrams represent two electromagnetic waves.
Which wave corresponds to the higher-energy radiation?
Explain. [Section 6.2]

6.4 As shown in the accompanying photograph, an electric stove
burner on its highest setting exhibits an orange glow.
(a) When the burner setting is changed to low, the burner con-
tinues to produce heat but the orange glow disappears. How
can this observation be explained with reference to one of the
fundamental observations that led to the notion of quanta?
(b) Suppose that the energy provided to the burner could be
increased beyond the highest setting of the stove. What would
we expect to observe with regard to visible light emitted by the
burner? [Section 6.2]

(a) (b)

6.5 The familiar phenomenon of a rainbow results from the dif-
fraction of sunlight through raindrops. (a) Does the wave-
length of light increase or decrease as we proceed outward
from the innermost band of the rainbow? (b) Does the fre-
quency of light increase or decrease as we proceed outward?
(c) Suppose that instead of sunlight, the visible light from a
hydrogen discharge tube (Figure 6.10) was used as the light
source. What do you think the resulting “hydrogen discharge
rainbow” would look like? [Section 6.3]

6.6 A certain quantum mechanical system has the energy levels
shown in the diagram below. The energy levels are indexed by
a single quantum number n that is an integer. (a) As drawn,
which quantum numbers are involved in the transition that
requires the most energy? (b) Which quantum numbers are
involved in the transition that requires the least energy?
(c) Based on the drawing, put the following in order of in-
creasing wavelength of the light absorbed or emitted during
the transition: (i) to ; (ii) to ; (iii)

to ; (iv) to . [Section 6.3]

6.7 Consider a fictitious one-dimensional system with one elec-
tron. The wave function for the electron, drawn at the top of
the next page, is from to . (a)
Sketch the probability density, , from to .
(b) At what value or values of x will there be the greatest prob-

x = 2px = 0c2(x)
x =  2px = 0c(x) = sin x

n ! 4

n ! 3

n ! 2

n ! 1

En
er

gy

n = 1n = 3n = 4n = 2
n = 2n = 3n = 2n = 1



Exercises 241

ability of finding the electron? (c) What is the probability that
the electron will be found at ? What is such a point in a
wave function called? [Section 6.5]

6.8 The contour representation of one of the orbitals for the
shell of a hydrogen atom is shown below. (a) What is

the quantum number l for this orbital? (b) How do we label
this orbital? (c) How would you modify this sketch to show the
analogous orbital for the shell? [Section 6.6]

x y

z

n = 4

n = 3

p0
0 2p

x = p
6.9 The drawing below shows part of the orbital diagram for an

element. (a) As drawn, the drawing is incorrect. Why? (b) How
would you correct the drawing without changing the number
of electrons? (c) To which group in the periodic table does the
element belong? [Section 6.8]

6.10 State where in the periodic table these elements appear:
(a) elements with the valence-shell electron configuration

(b) elements that have three unpaired p electrons
(c) an element whose valence electrons are 
(d) the d-block elements

4s24p1

ns2np5

6.11 What are the basic SI units for (a) the wavelength of light,
(b) the frequency of light, (c) the speed of light?

6.12 (a) What is the relationship between the wavelength and the
frequency of radiant energy? (b) Ozone in the upper atmos-
phere absorbs energy in the 210–230-nm range of the spec-
trum. In what region of the electromagnetic spectrum does
this radiation occur?

6.13 Label each of the following statements as true or false. For
those that are false, correct the statement. (a) Visible light is a
form of electromagnetic radiation. (b) Ultraviolet light has
longer wavelengths than visible light. (c) X-rays travel faster
than microwaves. (d) Electromagnetic radiation and sound
waves travel at the same speed.

6.14 Determine which of the following statements are false and
correct them. (a) The frequency of radiation increases as the
wavelength increases. (b) Electromagnetic radiation travels
through a vacuum at a constant speed, regardless of wave-
length. (c) Infrared light has higher frequencies than visible
light. (d) The glow from a fireplace, the energy within a mi-
crowave oven, and a foghorn blast are all forms of electromag-
netic radiation.

6.15 Arrange the following kinds of electromagnetic radiation in
order of increasing wavelength: infrared, green light, red light,
radio waves, X-rays, ultraviolet light.

6.16 List the following types of electromagnetic radiation in order
of increasing wavelength: (a) the gamma rays produced by a
radioactive nuclide used in medical imaging; (b) radiation
from an FM radio station at 93.1 MHz on the dial; (c) a radio
signal from an AM radio station at 680 kHz on the dial; (d) the
yellow light from sodium vapor streetlights; (e) the red light of
a light-emitting diode, such as in a calculator display.

6.17 (a) What is the frequency of radiation that has a wavelength of
, about the size of a bacterium? (b) What is the wave-

length of radiation that has a frequency of ?
(c) Would the radiations in part (a) or part (b) be visible to the
human eye? (d) What distance does electromagnetic radiation
travel in ?

6.18 (a) What is the frequency of radiation whose wavelength is
(b) What is the wavelength of radiation that

has a frequency of ? (c) Would the radiations in
part (a) or part (b) be detected by an X-ray detector? (d) What
distance does electromagnetic radiation travel in 10.5 fs?

6.19 An argon ion laser emits light at 532 nm. What is the fre-
quency of this radiation? Using Figure 6.4, predict the color
associated with this wavelength.

6.20 It is possible to convert radiant energy into electrical energy
using photovoltaic cells. Assuming equal efficiency of conver-
sion, would infrared or ultraviolet radiation yield more elec-
trical energy on a per-photon basis?

2.5 * 108 s-1
5 .0 * 10-5 m?

50.0 ms

5.50 * 1014 s-1
10 mm

THE WAVE NATURE OF LIGHT (section 6.1)
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QUANTIZED ENERGY AND PHOTONS (section 6.2)
6.21 If human height were quantized in one-foot increments, what

would happen to the height of a child as she grows up?

6.22 Einstein’s 1905 paper on the photoelectric effect was the first
important application of Planck’s quantum hypothesis. De-
scribe Planck’s original hypothesis, and explain how Einstein
made use of it in his theory of the photoelectric effect.

6.23 (a) Calculate the energy of a photon of electromagnetic radia-
tion whose frequency is . (b) Calculate the en-
ergy of a photon of radiation whose wavelength is 322 nm. (c)
What wavelength of radiation has photons of energy

6.24 (a) A red laser pointer emits light with a wavelength of 650 nm.
What is the frequency of this light? (b) What is the energy of
one of these photons? (c) The laser pointer emits light because
electrons in the material are excited (by a battery) from their
ground state to an upper excited state. When the electrons re-
turn to the ground state, they lose the excess energy in the form
of 650 nm photons. What is the energy gap between the ground
state and excited state in the laser material?

6.25 (a) Calculate and compare the energy of a photon of wave-
length with that of wavelength 0.154 nm. (b) Use
Figure 6.4 to identify the region of the electromagnetic spec-
trum to which each belongs.

6.26 An AM radio station broadcasts at 1010 kHz, and its FM part-
ner broadcasts at 98.3 MHz. Calculate and compare the energy
of the photons emitted by these two radio stations.

6.27 One type of sunburn occurs on exposure to UV light of wave-
length in the vicinity of 325 nm. (a) What is the energy of a
photon of this wavelength? (b) What is the energy of a mole of
these photons? (c) How many photons are in a 1.00 mJ burst
of this radiation? (d) These UV photons can break chemical
bonds in your skin to cause sunburn—a form of radiation
damage. If the 325-nm radiation provides exactly the energy

3.3 mm

2.87 * 10-18 J?

6 .75 * 1012 s -1

to break an average chemical bond in the skin, estimate the av-
erage energy of these bonds in .

6.28 The energy from radiation can be used to cause the rupture of
chemical bonds. A minimum energy of is required
to break the nitrogen–nitrogen bond in . What is the
longest wavelength of radiation that possesses the necessary
energy to break the bond? What type of electromagnetic radi-
ation is this?

6.29 A diode laser emits at a wavelength of 987 nm. (a) In what
portion of the electromagnetic spectrum is this radiation
found? (b) All of its output energy is absorbed in a detector
that measures a total energy of 0.52 J over a period of 32 s.
How many photons per second are being emitted by the laser?

6.30 A stellar object is emitting radiation at 3.55 mm. (a) What
type of electromagnetic spectrum is this radiation? (b) If a de-
tector is capturing per second at this wave-
length, what is the total energy of the photons detected in 
one hour?

6.31 Molybdenum metal must absorb radiation with a minimum
frequency of before it can eject an electron
from its surface via the photoelectric effect. (a) What is the
minimum energy needed to eject an electron? (b) What wave-
length of radiation will provide a photon of this energy? (c) If
molybdenum is irradiated with light of wavelength of 120 nm,
what is the maximum possible kinetic energy of the emitted
electrons?

6.32 Sodium metal requires a photon with a minimum energy of
to emit electrons. (a) What is the minimum

frequency of light necessary to emit electrons from sodium via
the photoelectric effect? (b) What is the wavelength of this
light? (c) If sodium is irradiated with light of 405 nm, what is
the maximum possible kinetic energy of the emitted elec-
trons? (d) What is the maximum number of electrons that can
be freed by a burst of light whose total energy is ?1.00 mJ

4.41 * 10-19 J

1.09 * 1015 s-1

3.2 * 108 photons

N2

941 kJ>mol

kJ/mol

6.33 Explain how the existence of line spectra is consistent with
Bohr’s theory of quantized energies for the electron in the hy-
drogen atom.

6.34 (a) In terms of the Bohr theory of the hydrogen atom, what
process is occurring when excited hydrogen atoms emit radi-
ant energy of certain wavelengths and only those wavelengths?
(b) Does a hydrogen atom “expand” or “contract” as it moves
from its ground state to an excited state?

6.35 Is energy emitted or absorbed when the following electronic
transitions occur in hydrogen: (a) from to ,
(b) from an orbit of radius to one of radius ,
(c) an electron adds to the ion and ends up in the shell?

6.36 Indicate whether energy is emitted or absorbed when the fol-
lowing electronic transitions occur in hydrogen: (a) from

to , (b) from an orbit of radius 4.76 Å to one of
radius , (c) from the to the state.

6.37 (a) Using Equation 6.5, calculate the energy of an electron
in the hydrogen atom when and when . Calcu-
late the wavelength of the radiation released when an elec-
tron moves from to . (b) Is this line in the
visible region of the electromagnetic spectrum? If so, what
color is it?

n = 2n = 6

n = 6n = 2

n = 9n = 60.529 Å
n = 6n = 2

n = 3H+
8.46 Å2.12 Å
n = 2n = 4

6.38 (a) Calculate the energies of an electron in the hydrogen atom
for and for . How much energy does it require
to move the electron out of the atom completely (from 
to ), according to Bohr? Put your answer in .
(b) The energy for the process is
called the ionization energy of hydrogen. The experimentally
determined value for the ionization energy of hydrogen is

. How does this compare to your calculation?

6.39 The visible emission lines observed by Balmer all involved
. (a) Explain why only the lines with were ob-

served in the visible region of the electromagnetic spectrum.
(b) Calculate the wavelengths of the first three lines in the
Balmer series—those for which , and 5—and identify
these lines in the emission spectrum shown in Figure 6.11.

6.40 The Lyman series of emission lines of the hydrogen atom are
those for which . (a) Determine the region of the elec-
tromagnetic spectrum in which the lines of the Lyman series
are observed. (b) Calculate the wavelengths of the first three
lines in the Lyman series—those for which , and 4.

6.41 One of the emission lines of the hydrogen atom has a wave-
length of 93.8 nm. (a) In what region of the electromagnetic
spectrum is this emission found? (b) Determine the initial and
final values of n associated with this emission.

ni = 2, 3

nf = 1

ni = 3, 4

nf = 2nf = 2

1310 kJ>mol

H + energy: H+ + e-
kJ/moln = q

n = 1
n = qn = 1

BOHR’S MODEL; MATTER WAVES (sections 6.3 and 6.4)
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6.42 The hydrogen atom can absorb light of wavelength 2626 nm.
(a) In what region of the electromagnetic spectrum is this ab-
sorption found? (b) Determine the initial and final values of n
associated with this absorption.

6.43 Use the de Broglie relationship to determine the wavelengths
of the following objects: (a) an 85-kg person skiing at

, (b) a 10.0-g bullet fired at , (c) a lithium
atom moving at , (d) an ozone molecule
in the upper atmosphere moving at .

6.44 Among the elementary subatomic particles of physics is the
muon, which decays within a few nanoseconds after forma-
tion. The muon has a rest mass 206.8 times that of an electron.
Calculate the de Broglie wavelength associated with a muon
traveling at a velocity of .

6.45 Neutron diffraction is an important technique for determin-
ing the structures of molecules. Calculate the velocity of a
neutron needed to achieve a wavelength of . (Refer to
the inside cover for the mass of the neutron).

0 .955 Å

8.85 * 105 cm>s
550 m>s (O3)2.5 * 105 m>s 250 m>s50 km>hr

6.46 The electron microscope has been widely used to obtain
highly magnified images of biological and other types of ma-
terials. When an electron is accelerated through a particular
potential field, it attains a speed of . What is
the characteristic wavelength of this electron? Is the wave-
length comparable to the size of atoms?

6.47 Using Heisenberg’s uncertainty principle, calculate the uncer-
tainty in the position of (a) a 1.50-mg mosquito moving at a
speed of if the speed is known to within ;
(b) a proton moving at a speed of .
(The mass of a proton is given in the table of fundamental
constants in the inside cover of the text.)

6.48 Calculate the uncertainty in the position of (a) an electron
moving at a speed of , (b) a neutron
moving at this same speed. (The masses of an electron and a
neutron are given in the table of fundamental constants in the
inside cover of the text.) (c) What are the implications of these
calculations to our model of the atom?

(3.00;0.01) * 105 m>s
(5.00;0.01) * 104 m>s;0.01 m>s1.40 m>s
8.95 * 106 m>s

6.49 (a) Why does the Bohr model of the hydrogen atom violate the
uncertainty principle? (b) In what way is the description of the
electron using a wave function consistent with de Broglie’s hy-
pothesis? (c) What is meant by the term probability density?
Given the wave function, how do we find the probability den-
sity at a certain point in space?

6.50 (a) According to the Bohr model, an electron in the ground
state of a hydrogen atom orbits the nucleus at a specific radius
of . In the quantum mechanical description of the hy-
drogen atom, the most probable distance of the electron from
the nucleus is 0.53 Å. Why are these two statements different?
(b) Why is the use of Schrödinger’s wave equation to describe
the location of a particle very different from the description
obtained from classical physics? (c) In the quantum mechani-
cal description of an electron, what is the physical significance
of the square of the wave function, ?

6.51 (a) For , what are the possible values of l ? (b) For ,
what are the possible values of ? (c) If is 2, what are the
possible values for l ?

6.52 How many possible values for l and are there when (a)
; (b) ?

6.53 Give the numerical values of n and l corresponding to each of
the following orbital designations: (a) 3p, (b) 2s , (c) 4f , (d) 5d.

6.54 Give the values for n, l, and for (a) each orbital in the 2p
subshell, (b) each orbital in the 5d subshell.

6.55 Which of the following represent impossible combinations of
n and l: (a) 1p, (b) 4s, (c) 5f, (d) 2d?

6.56 For the table that follows, write which orbital goes with the
quantum numbers. Don’t worry about x, y, z subscripts. If the
quantum numbers are not allowed, write “not allowed.”

ml

n = 5n = 3
ml

mlml

l = 2n = 4

c2

0 .53 Å

QUANTUM MECHANICS AND ATOMIC ORBITALS (sections 6.5 and 6.6)

6.61 For a given value of the principal quantum number, n, how do
the energies of the s, p, d, and f subshells vary for (a) hydrogen,
(b) a many-electron atom?

6.62 (a) The average distance from the nucleus of a 3s electron in a
chlorine atom is smaller than that for a 3p electron. In light of
this fact, which orbital is higher in energy? (b) Would you expect

it to require more or less energy to remove a 3s electron from the
chlorine atom, as compared with a 2p electron? Explain.

6.63 (a) What experimental evidence is there for the electron hav-
ing a “spin”? (b) Draw an energy-level diagram that shows the
relative energetic positions of a 1s orbital and a 2s orbital. Put

MANY-ELECTRON ATOMS AND ELECTRON CONFIGURATIONS (sections 6.7–6.9)

n l Orbital

2 1 2p (example)
1 0 0
3 2
3 2
2 0
0 0 0
4 2 1
5 3 0

-1
-2

-3

-1

ml

6.57 Sketch the shape and orientation of the following types of
orbitals: (a) s, (b) , (c) .

6.58 Sketch the shape and orientation of the following types of
orbitals: (a) , (b) , (c) .

6.59 (a) What are the similarities and differences between the 1s and
2s orbitals of the hydrogen atom? (b) In what sense does a 2p or-
bital have directional character? Compare the “directional” char-
acteristics of the and orbitals. (That is, in what direction
or region of space is the electron density concentrated?) (c) What
can you say about the average distance from the nucleus of an
electron in a 2s orbital as compared with a 3s orbital? (d) For the
hydrogen atom, list the following orbitals in order of increasing
energy (that is, most stable ones first): 4f, 6s , 3d, 1s, 2p.

6.60 (a) With reference to Figure 6.18, what is the relationship be-
tween the number of nodes in an s orbital and the value of the
principal quantum number? (b) Identify the number of
nodes; that is, identify places where the electron density is
zero, in the orbital; in the 3s orbital. (c) What information
is obtained from the radial probability functions in Figure
6.18? (d) For the hydrogen atom, list the following orbitals in
order of increasing energy: 3s, 2s, 2p, 5s, 4d.

2px

dx2 -y2px

dx2 -y2dz2px

dxypz
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two electrons in the 1s orbital. (c) Draw an arrow showing the
excitation of an electron from the 1s to the 2s orbital.

6.64 (a) State the Pauli exclusion principle in your own words.
(b) The Pauli exclusion principle is, in an important sense, the
key to understanding the periodic table. Explain.

6.65 What is the maximum number of electrons that can occupy
each of the following subshells: (a) 3p, (b) 5d, (c) 2s, (d) 4f ?

6.66 What is the maximum number of electrons in an atom that
can have the following quantum numbers: (a) ,

, (b) , ; (c) , , ;
(d) ?

6.67 (a) What are “valence electrons”? (b) What are “core elec-
trons”? (c) What does each box in an orbital diagram repre-
sent? (d) What quantity is represented by the half arrows in an
orbital diagram?

6.68 For each element, indicate the number of valence electrons,
core electrons, and unpaired electrons in the ground state:
(a) carbon, (b) phosphorus, (c) neon.

6.69 Write the condensed electron configurations for the following
atoms, using the appropriate noble-gas core abbreviations:
(a) Cs, (b) Ni, (c) Se, (d) Cd, (e) U, (f) Pb.

n = 4, l = 0, ml = 0
ml = -3l = 3n = 4l = 3n = 5ms = -1

2

n = 2

6.70 Write the condensed electron configurations for the following
atoms and indicate how many unpaired electrons each has:
(a) Mg, (b) Ge, (c) Br, (d) V, (e) Y, (f) Lu.

6.71 Identify the specific element that corresponds to each of the
following electron configurations and indicate the number of
unpaired electrons for each: (a) , (b) ,
(c) , (d) .

6.72 Identify the group of elements that corresponds to each of the
following generalized electron configurations and indicate the
number of unpaired electrons for each:
(a) [noble gas] 
(b) [noble gas] 
(c) [noble gas]
(d) [noble gas]

6.73 What is wrong with the following electron configurations for
atoms in their ground states? (a) , (b) ,
(c) .

6.74 The following electron configurations represent excited states.
Identify the element, and write its ground-state condensed
electron configuration. (a) , (b) ,
(c) .[Kr]4d65s25p1

[Ar]3d104s14p45s11s22s23p24p1

[Ne]3s23d5
[Ne]2s22p3ls22s23s1

ns2(n - 2)f 6
ns2(n - 1)d10np1
ns2(n - 1)d2
ns2np5

[Kr]5s24d105p4[Ar]4s13d5
1s22s22p41s22s2

6.75 Consider the two waves shown here, which we will consider to
represent two electromagnetic radiations:
(a) What is the wavelength of wave A? Of wave B?
(b) What is the frequency of wave A? Of wave B?
(c) Identify the regions of the electromagnetic spectrum to

which waves A and B belong.

6.76 If you put 120 volts of electricity through a pickle, the pickle
will smoke and start glowing orange-yellow. The light is emit-
ted because sodium ions in the pickle become excited; their re-
turn to the ground state results in light emission. (a) The
wavelength of this emitted light is 589 nm. Calculate its fre-
quency. (b) What is the energy of 0.10 mole of these photons?
(c) Calculate the energy gap between the excited and ground
states for the sodium ion. (d) If you soaked the pickle for a
long time in a different salt solution, such as strontium chlo-
ride, would you still observe 589-nm light emission? Why or
why not?

6.77 Certain elements emit light of a specific wavelength when they
are burned. Historically, chemists used such emission wave-
lengths to determine whether specific elements were present
in a sample. Characteristic wavelengths for some of the ele-
ments are given in the following table:

A

B

1.6 ! 10"7 m

(a) Determine which elements emit radiation in the visible
part of the spectrum. (b) Which element emits photons of
highest energy? Of lowest energy? (c) When burned, a sample
of an unknown substance is found to emit light of frequency

. Which of these elements is probably in the
sample?

6.78 In June 2004, the Cassini–Huygens spacecraft began orbiting
Saturn and transmitting images to Earth. The closest distance
between Saturn and Earth is 746 million miles. What is the
minimum amount of time it takes for the transmitted signals
to travel from the spacecraft to Earth?

6.79 The rays of the Sun that cause tanning and burning are in the
ultraviolet portion of the electromagnetic spectrum. These
rays are categorized by wavelength. So-called UV-A radiation
has wavelengths in the range of 320–380 nm, whereas UV-B
radiation has wavelengths in the range of 290–320 nm.
(a) Calculate the frequency of light that has a wavelength of
320 nm. (b) Calculate the energy of a mole of 320-nm pho-
tons. (c) Which are more energetic, photons of UV-A radia-
tion or photons of UV-B radiation? (d) The UV-B radiation
from the Sun is considered a greater cause of sunburn in hu-
mans than is UV-A radiation. Is this observation consistent
with your answer to part (c)?

6.80 The watt is the derived SI unit of power, the measure of energy
per unit time: . A semiconductor laser in a CD
player has an output wavelength of 780 nm and a power level
of 0.10 mW. How many photons strike the CD surface during
the playing of a CD 69 minutes in length?

6.81 Carotenoids are yellow, orange, and red
pigments synthesized by plants. The ob-
served color of an object is not the color
of light it absorbs but rather the com-
plementary color, as described by a
color wheel such as the one shown here.
On this wheel, complementary colors
are across from each other. (a) Based on this wheel, what color
is absorbed most strongly if a plant is orange? (b) If a particu-
lar carotenoid absorbs photons at 455 nm, what is the energy
of the photon?

1 W = 1 J-s

6.59 * 1014 s-1
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Ag 328.1 nm Fe 372.0 nm

Au 267.6 nm K 404.7 nm

Ba 455.4 nm Mg 285.2 nm

Ca 422.7 nm Na 589.6 nm

Cu 324.8 nm Ni 341.5 nm

O

B

Y

G

R

V
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6.82 A photocell is a device used to measure the intensity of light.
In a certain experiment, when light of wavelength 630 nm is
directed onto the photocell, electrons are emitted at the rate of

(coulombs per second). Assume that each
photon that impinges on the photocell emits one electron.
How many photons per second are striking the photocell?
How much energy per second is the photocell absorbing?

6.83 In an experiment to study the photoelectric effect, a scientist
measures the kinetic energy of ejected electrons as a function
of the frequency of radiation hitting a metal surface. She ob-
tains the following plot. The point labeled “ ” corresponds to
light with a wavelength of 680 nm. (a) What is the value of
in ? (b) What is the value of the work function of the metal
in units of of ejected electrons? (c) What happens
when the metal is irradiated with light of frequency less than

? (d) Note that when the frequency of the light is greater
than , the plot shows a straight line with a nonzero slope.
Why is this the case? (e) Can you determine the slope of the
line segment discussed in part (d)? Explain.

6.84 The human retina has three types of receptor cones, each sen-
sitive to a different range of wavelengths of visible light, as
shown in this figure (the colors are merely to differentiate the
three curves from one another; they do not indicate the actual
colors represented by each curve):

(a) Estimate the energies of photons with wavelengths at the
maximum for each type of cone. (b) The color of the sky is due
to scattering of solar light by the molecules of the atmosphere.
Lord Rayleigh was one of the first to study scattering of this
kind. He showed that the amount of scattering for very small
particles such as molecules is inversely proportional to the
fourth power of the wavelength. Estimate the ratio of the scat-
tering efficiency of light at the wavelength of the maximum for
the “blue” cones, as compared with that for the “green” cones.
(c) Explain why the sky appears blue even though all wave-
lengths of solar light are scattered by the atmosphere.
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2.6 * 10-12 C>s
6.85 The series of emission lines of the hydrogen atom for which

is called the Paschen series. (a) Determine the region of
the electromagnetic spectrum in which the lines of the
Paschen series are observed. (b) Calculate the wavelengths of
the first three lines in the Paschen series—those for which

, and 6.

6.86 When the spectrum of light from the Sun is examined in high
resolution in an experiment similar to that illustrated in
Figure 6.9, dark lines are evident. These are called Fraunhofer
lines, after the scientist who studied them extensively in the
early nineteenth century. Altogether, about 25,000 lines have
been identified in the solar spectrum between 2950 Å and
10,000 Å. The Fraunhofer lines are attributed to absorption of
certain wavelengths of the Sun’s “white” light by gaseous ele-
ments in the Sun’s atmosphere. (a) Describe the process that
causes absorption of specific wavelengths of light from the
solar spectrum. (b) To determine which Fraunhofer lines be-
longed to a given element, say neon, what experiments could a
scientist conduct here on Earth?

[6.87] Bohr’s model can be used for hydrogen-like ions—ions that
have only one electron, such as and . (a) Why is the
Bohr model applicable to ions but not to neutral He
atoms? (b) The ground-state energies of H, , and are
tabulated as follows:

Li2+He+
He+

Li2+He+

ni = 4, 5

nf = 3

By examining these numbers, propose a relationship between
the ground-state energy of hydrogen-like systems and the nu-
clear charge, Z. (c) Use the relationship you derive in part (b)
to predict the ground-state energy of the ion.

[6.88] An electron is accelerated through an electric potential to a ki-
netic energy of 18.6 keV. What is its characteristic wavelength?
[Hint: Recall that the kinetic energy of a moving object is

, where m is the mass of the object and is the
speed of the object.]

6.89 In the television series Star Trek, the transporter beam is a de-
vice used to “beam down” people from the Starship Enterprise
to another location, such as the surface of a planet. The writers
of the show put a “Heisenberg compensator” into the trans-
porter beam mechanism. Explain why such a compensator
(which is entirely fictional) would be necessary to get around
Heisenberg’s uncertainty principle.

6.90 Which of the quantum numbers governs (a) the shape of an
orbital, (b) the energy of an orbital, (c) the spin properties of
the electron, (d) the spatial orientation of the orbital?

[6.91] Consider the discussion of radial probability functions in “A
Closer Look” in Section 6.6. (a) What is the difference between
the probability density as a function of r and the radial proba-
bility function as a function of r ? (b) What is the significance
of the term in the radial probability functions for the 
s orbitals? (c) Based on Figures 6.18 and 6.21, make sketches of
what you think the probability density as a function of r and
the radial probability function would look like for the 4s
orbital of the hydrogen atom.

4pr2

nE = 1
2 mv2

C5+

Atom
or ion H He+ Li2+

Ground-state 
energy -1.96 * 10-17 J-8.72 * 10-18 J-2.18 * 10-18 J
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[6.92] For orbitals that are symmetric but not spherical, the contour
representations (as in Figures 6.22 and 6.23) suggest where
nodal planes exist (that is, where the electron density is zero).
For example, the orbital has a node wherever . This
equation is satisfied by all points on the yz plane, so this plane
is called a nodal plane of the orbital. (a) Determine the
nodal plane of the orbital. (b) What are the two nodal
planes of the orbital? (c) What are the two nodal planes of
the orbital?

[6.93] The “Chemistry and Life” box in Section 6.7 described the
techniques called NMR and MRI. (a) Instruments for obtain-
ing MRI data are typically labeled with a frequency, such as
600 MHz. Why do you suppose this label is relevant to the ex-
periment? (b) What is the value of in Figure 6.27 that
would correspond to the absorption of a photon of radiation

¢E

dx2 -y2

dxy

pz

px

x = 0px

Oxide K2O(s) CaO(s) TiO2(s) V2O5(s)

-1550.6-938.7-635.1-363.2¢H°f

with frequency 450 MHz? (c) In general, the stronger the mag-
netic field, the greater the information obtained from an NMR
or MRI experiment. Why do you suppose this is the case?

6.94 Suppose that the spin quantum number, , could have three
allowed values instead of two. How would this affect the num-
ber of elements in the first four rows of the periodic table?

6.95 Using the periodic table as a guide, write the condensed elec-
tron configuration and determine the number of unpaired
electrons for the ground state of (a) Si, (b) Zn, (c) Zr, (d) Sn,
(e) Ba, (f) Tl.

6.96 Scientists have speculated that element 126 might have a mod-
erate stability, allowing it to be synthesized and characterized.
Predict what the condensed electron configuration of this
element might be.

ms

6.97 Microwave ovens use microwave radiation to heat food. The
energy of the microwaves is absorbed by water molecules in
food and then transferred to other components of the food.
(a) Suppose that the microwave radiation has a wavelength of
11.2 cm. How many photons are required to heat 200 mL of
coffee from to ? (b) Suppose the microwave’s
power is 900 W . How long would
you have to heat the coffee in part (a)?

6.98 The stratospheric ozone layer helps to protect us from
harmful ultraviolet radiation. It does so by absorbing ultravio-
let light and falling apart into an molecule and an oxygen
atom, a process known as photodissociation.

Use the data in Appendix C to calculate the enthalpy change
for this reaction. What is the maximum wavelength a photon
can have if it is to possess sufficient energy to cause this disso-
ciation? In what portion of the spectrum does this wavelength
occur?

6.99 The discovery of hafnium, element number 72, provided a
controversial episode in chemistry. G. Urbain, a French
chemist, claimed in 1911 to have isolated an element number
72 from a sample of rare earth (elements 58–71) compounds.
However, Niels Bohr believed that hafnium was more likely to
be found along with zirconium than with the rare earths. D.
Coster and G. von Hevesy, working in Bohr’s laboratory in
Copenhagen, showed in 1922 that element 72 was present in a
sample of Norwegian zircon, an ore of zirconium. (The name
hafnium comes from the Latin name for Copenhagen,
Hafnia). (a) How would you use electron configuration argu-
ments to justify Bohr’s prediction? (b) Zirconium, hafnium’s

O3(g) ¡ O2(g) + O(g)

O2

(O3)

(1 Watt = 1 joule-second)
60 °C23 °C

neighbor in group 4B, can be produced as a metal by reduc-
tion of solid with molten sodium metal. Write a bal-
anced chemical equation for the reaction. Is this an
oxidation-reduction reaction? If yes, what is reduced and what
is oxidized? (c) Solid zirconium dioxide, , is reacted with
chlorine gas in the presence of carbon. The products of the re-
action are and two gases, and CO in the ratio .
Write a balanced chemical equation for the reaction. Starting
with a 55.4-g sample of , calculate the mass of
formed, assuming that is the limiting reagent and as-
suming yield. (d) Using their electron configurations,
account for the fact that Zr and Hf form chlorides and
oxides .

6.100 (a) Account for formation of the following series of oxides in
terms of the electron configurations of the elements and the
discussion of ionic compounds in Section 2.7: , CaO,

, , , . (b) Name these oxides. (c) Consider
the metal oxides whose enthalpies of formation (in )
are listed here.

kJ mol-1
CrO3V2O5TiO2Sc2O3

K2O

MO2

MCl4

100%
ZrO2

ZrCl4ZrO2

1:2CO2ZrCl4

ZrO2

ZrCl4

INTEGRATIVE EXERCISES

Calculate the enthalpy changes in the following general reac-
tion for each case:

(You will need to write the balanced equation for each case
and then compute .) (d) Based on the data given, estimate
a value of for .Sc2O3(s)¢Hf°

¢H°

MnOm(s) + H2(g) ¡ nM(s) + mH2O(g)



6.101 The first 25 years of the twentieth century were momentous
for the rapid pace of change in scientists’ understanding of the
nature of matter. (a) How did Rutherford’s experiments on the
scattering of particles by a gold foil set the stage for Bohr’s
theory of the hydrogen atom? (b) In what ways is de Broglie’s
hypothesis, as it applies to electrons, consistent with J. J.
Thomson’s conclusion that the electron has mass? In what
sense is it consistent with proposals preceding Thomson’s
work that the cathode rays are a wave phenomenon?

[6.102] The two most common isotopes of uranium are and .
(a) Compare the number of protons, the number of electrons,
and the number of neutrons in atoms of these two isotopes.
(b) Using the periodic table in the front inside cover, write the
electron configuration for a U atom. (c) Compare your answer

238U235U

a
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to part (b) to the electron configuration given in Figure 6.31.
How can you explain any differences between these two elec-
tron configurations? (d) undergoes radioactive decay to

. How many protons, electrons, and neutrons are gained
or lost by the atom during this process? (e) Examine the
electron configuration for Th in Figure 6.31. Are you surprised
by what you find? Explain.

6.103 Imagine sunlight falling on three square areas. One is an inert
black material. The second is a photovoltaic cell surface, which
converts radiant energy into electricity. The third is an area on
a green tree leaf. Draw diagrams that show the energy conver-
sions in each case, using Figure 5.9 as a model. How are these
three examples related to the idea of sustainable energy
sources?

238U

234Th

238U


