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1. Introduction

   In order to prove the unzipped carbon nanotubes have good dispersion, we have 

prepared the aqueous dispersions of the Multi-walled carbon nanotubes (MWCNTs) 

and heterostructure carbon nanotubes (HCNTs) with same concentration (0.1 mg mL-

1). After sonication for 30 min, the HCNTs were homogeneously dispersed to form a 

black solution, while the pristine MWCNTs suspended themselves in the water (Fig. 

S1a). After a week, the dispersed solution still keeps homogeneous for the HCNTs 

while the sedimentation is obviously seen for the MWCNTs (Fig. S1b). For 

comparing the hydrophilicity, the contact angle measurements of MWCNTs and 

HCNTs were also provided. Seen from Fig S1c and Fig S1d, the corresponding 

contact angle for the MWCNTs is about 131.7˚ indicating that the MWCNTs are 

hydrophobic material. But for HCNTs, the contact angle is nearly 0˚. This suggests 
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that the HCNTs are completely hydrophilic, which is propitious to the accessibility of 

electrolyte ions to active sites during the electrochemical process. Moreover, in order 

to certify the specific surface area of HCNTs were increased, we have performed the 

BET measurement (Fig. S1e). It inferred from the BET analysis that the specific 

surface area of HCNTs (185.3 m2 g-1) is really larger than that of MWCNTs (102.3 m2 

g−1), which is consistent with the relevant literatures as shown in Table S1

2. Structure characterization 

2.1. FT-IR

Fig S2 shows the FT-IR spectrum of NHC. The broad and intense absorption 

band at around 3430 and 1608 cm-1 could be interpreted as O-H stretching vibrations 

and deformation vibrations of the water molecules.15 However, the N-H stretching 

vibration band at about 3300 cm-1 becomes inconspicuously, which may be covered 

by the absorption bond of O-H stretching vibrations. The bands at about 2925, 1398 

and 1262 cm-1 are assigned to C-H stretching vibration, C-O-C (epoxy) stretching 

vibration and C-N stretching vibration of a secondary amine from NHC, 

respectively.16 Besides, the bond near 802 cm-1 corresponds to aromatic C-H out-of-

plane deformation vibration.

3. Electrochemical Characterization 

3.1 Contents calculation

A segment of the cyclic voltammogram at a scan rate of 20 mV s-1 was 

integrated according to the equation (1) and (2):
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where Q (C), V (V), I (A), t (s), mA (g), nA (mol), MA (mol g-1), F and z represent 

voltammetric charge, potential, instantaneous anodic (cathodic) current, sampling 

time, mass of the material that takes part in redox reactions, amount of substance, 

molar mass, Faraday constant and stoichiometric coefficient of electron transport in 

the electrochemical processes, respectively. The Va (V) and Vb (V) are defined as the 

selected boundaries of potential range. The Q is numerically equal to the integral area 

of the dash area as shown in Fig S5 (a and b). The calculations indicated that the 

contents of TCBQ and AQ are about 22.1% and 18.6% of the total mass in the 

optimal sample, respectively.

Fig. S6a displays the CV curves of TCBQ-NHC with different mass ratio at a 

scan rate of 10 mV s-1. When the content of TCBQ-NHC is relatively low (1:4 and 

1:5), the CV curves show a single redox couple at the potential about 0.5 V. With 

increasing of the content of TCBQ (1:3), the CV curve appears the other pair of 

shoulder peaks at the potential around 0.4 V. At this point, the electrode has a 

maximum specific capacitance of 365 F g-1 with the current density at 1 A g-1. As the 

TCBQ content continues increase (1:2), the peak intensity of TCBQ-NHC is gradually 

weakened. The specific capacitances of TCBQ-NHC with different mass ratio are 

shown in Fig S6b. For AQ-NHC, with increasing of the content of AQ-NHC (1:4 to 

1:2), the shapes of the CV curve have almost no obverse change (Fig S6c). 
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Meanwhile, the specific capacitances of AQ-NHC with different mass ratio are 

presented in Fig S6d. Among them, the maximum specific capacitance of 331 F g-1 is 

achieved when the AQ-NHC content is 1:4.

In addition, we also directly used HCNTs as substrate to absorb AQ through 

refluxing to achieve AQ functionalized HCNTs (AQ-HCNTs). Fig S7 shows a series 

results of electrochemical measurements. As shown in Fig S7a, the CV curves display 

a couple of redox peaks with oxidation and reduction peaks locating at the potential 

near -0.09 and -0.11 V, respectively. Fig. S7b gives the galvanostatic charge-

discharge (GCD) curves of the HCNTs and AQ-HCNTs at the current density of 1A 

g-1. Based on calculation, the HCNTs show the specific capacitance of 165 F g-1, 

which is approximately 10 times larger than the pristine MWCNTs (12 F g-1). After 

modifying, the specific capacitance of AQ-HCNTs is 285 F g-1. When the current 

density is 20 A g-1, the specific capacitance retentions of MWCNTs, HCNTs and AQ-

HCNTs are 51.4%, 71.5% and 71.2% of the initial value at 1 A g-1.
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Fig. S1 Photographs of aqueous dispersions of MWCNTs and HCNTs (a, b) at a 

concentration of 0.1 mg mL-1, contact angle measurements of MWCNTs (c), and 

HCNTs (d), Nitrogen adsorption/desorption isotherms of MWCNTs and HCNTs (e).
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Table S1. Specific surface area and specific capacitance comparison of different 

materials.

Pristine

MWCNTs

(m2 g−1)

  Dissected 

MWCNTs

(m2 g−1)

Specific 

capacitance

(F g-1)

Ref

 (year)

Porous 

carbon 

(m2 g-1)

Specific 

capacitance               

(F g-1)

Ref 

(year)

47 85  256@0.3 A g-1   1 (2012)  1084 308@1 A g-1    8 (2015)

17.6 ± 2.4 33.1 ± 0.3 232.9@1A g-1 2 (2013) 1580 855 @1 A g-1 9 (2015)

172 391 152 @ 1 A g-1 3 (2011)  2572 228 @1 A g-1 10 (2015)

291 511 _ 4 (2010) 1938 254 @1 A g-1 11 (2015)

47.3 321.6 _ 5 (2014) 1749 313 @1 A g-1 12 (2015)

93 120         _ 6 (2014)  2080 304 @ 1 A g-1 13 (2014)

30 161   _ 7 (2014)  2988 306 @1 A g-1 14 (2015) 

102.1     185.3 165 @ 1A g-1 This work  1454 251 @ 1A g-1  This work
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Fig. S2 FT-IR spectrum of NHC
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Fig. S3 C 1s regions of NHC, TCBQ-NHC and AQ-NHC (a-c), O 1s regions of NHC, 

TCBQ-NHC and AQ-NHC (d-f).
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BET Surface Area:    234.5 m2 g-1

Fig. S4 Nitrogen adsorption/desorption isotherms of carbonized PANI/HCNTs.
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Fig. S5 CV curves of TCBQ-NHC (a) and AQ-NHC (b) at 20 mV s-1.
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Fig. S6 the CV curves of TCBQ-NHC (a) and AQ-NHC (b) with different mass ratio 

at a scan rate of 10 mV s-1, the specific capacitance of TCBQ-NHC (c) and AQ-NHC 

(d) with different mass ratio at the current of 1 A g-1.
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Fig. S7 the CV curves of AQ-HCNTs (a) at different scan rates, GCD curves of AQ-

HCNTs (b) at current density of 1 A g-1 and specific capacitances of  AQ-HCNTs (c) 

at various current density. 
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