# Electronic Supporting Information (ESI) for $\left[\mathrm{CH}_{3} \mathrm{NH}_{3}\right]_{2} \mathrm{Ag}_{4} \mathrm{Sn}^{\mathrm{IV}}{ }_{2} \mathrm{Sn}^{\mathrm{II}} \mathrm{S}_{8}$ : An Open-Framework Mixed-Valent Chalcogenidostannate 

<br>${ }^{\dagger}$ State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China<br>${ }^{\ddagger}$ University of Chinese Academy of Sciences, Beijing, 100049, P. R. China

Fax: +86 591 63173145; Tel: +86 591 63173145; E-mail: xyhuang@fjirsm.ac.cn

## 1. Synthesis

The reagents of $\mathrm{AgCl}(0.143 \mathrm{~g}, 1 \mathrm{mmol}), \mathrm{Sn}(0.118 \mathrm{~g}, 1 \mathrm{mmol}), \mathrm{S}(0.128 \mathrm{~g}, 4$ mmol ) and methylamine ( $33-40 \%$ alcohol solution, 4.0 mL ) were sealed in a 23 mL Teflon-lined stainless steel autoclave, heated at $160{ }^{\circ} \mathrm{C}$ for 8 days. Then the closed apparatus was taken out from the oven and cooled to room temperature naturally under ambient condition. An orange needle-shaped crystalline product was isolated by filtration ( 0.094 g , yield $\approx 34 \%$ based on AgCl$)$, washed several times with water and ethanol, and dried under vacuum. EDS analysis gave the average $\mathrm{Ag} / \mathrm{Sn} / \mathrm{S}$ ratio of 1.43: 1.00: 2.40, very close to that determined by the single crystal diffraction. Elemental analysis: calcd. (\%) for $\left[\mathrm{CH}_{3} \mathrm{NH}_{3}\right]_{2} \mathrm{Ag}_{4} \mathrm{Sn}^{\mathrm{IV}}{ }_{2} \mathrm{Sn}^{\mathrm{II}} \mathrm{S}_{8}$ (1): C $2.17, \mathrm{H} 1.09, \mathrm{~N}$ $2.53 \%$; found: C 2.30 , H 1.09, N $2.50 \%$.

## 2. Crystal Structure

Single-crystal X-ray diffraction data were collected on a Rigaku MM007-CCD diffractometer with graphite-monochromated $\mathrm{MoK} \alpha \cdot \operatorname{radiation}(\lambda=0.71073 \AA$ ) at 100 K for compound $\mathbf{1}$. The structure of compound $\mathbf{1}$ was solved by direct methods and refined by full-matrix least-squares on $F^{2}$ using the SHELX-2014 program package. ${ }^{1}$ Non-hydrogen atoms were refined with anisotropic displacement parameters and the hydrogen atoms attached to the C and N atoms are located at geometrically calculated positions. The empirical formulae were confirmed by the

TGA and EA results. Detailed crystallographic data and structure-refinement parameters of compound $\mathbf{1}$ are summarized in Table S1.

Table S1 Crystal data and structure refinement parameters for 1.

| Compound | 1 |
| :---: | :---: |
| Empirical formula | $\mathrm{C}_{2} \mathrm{H}_{12} \mathrm{Ag}_{4} \mathrm{~N}_{2} \mathrm{~S}_{8} \mathrm{Sn}_{3}$ |
| Formula weight | 1108.17 |
| Crystal system | orthorhombic |
| Space group | Pnma |
| $T / \mathrm{K}$ | 100(2) |
| $\lambda / \AA$ | 0.71073 |
| $a / \AA$ | 19.378(9) |
| $b / \AA$ | 7.390(3) |
| c/ $\AA$ | 13.683(7) |
| $V / \AA^{3}$ | 1959.5(16) |
| $Z$ | 4 |
| $D_{c} / \mathrm{Mg} \cdot \mathrm{m}^{-3}$ | 3.756 |
| $\mu / \mathrm{mm}^{-1}$ | 8.512 |
| $F(000)$ | 2400 |
| Measured refls. | 14609 |
| Independent refls. | 2390 |
| $R_{\text {int }}$ | 0.0450 |
| No. of parameters | 107 |
| GOF | 0.995 |
| ${ }^{a} R_{1}, w R_{2}[I>2 \sigma(I)]$ | $0.0287,0.0603$ |
| $R_{1}, w R_{2}$ (all data) | 0.0342, 0.0629 |

Table S2 Selected bond lengths $(\AA)$ and bond angles $\left({ }^{\circ}\right)$ for $\mathbf{1}$.

| $\mathrm{Sn}(1)-\mathrm{S}(3)$ | $2.3742(19)$ | $\mathrm{Ag}(1)-\mathrm{S}(5)$ | $2.6023(15)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Sn}(1)-\mathrm{S}(1)$ | $2.3928(19)$ | $\mathrm{S}(3)-\mathrm{Ag}(1) \# 4$ | $2.5672(13)$ |
| $\mathrm{Sn}(1)-\mathrm{S}(2) \# 4$ | $2.4163(14)$ | $\mathrm{S}(5)-\mathrm{Ag}(1) \# 1$ | $2.6022(15)$ |
| $\mathrm{Sn}(1)-\mathrm{S}(2)$ | $2.4164(14)$ | $\mathrm{Ag}(1)-\mathrm{Ag}(1) \# 1$ | $3.1127(17)$ |
| $\mathrm{Sn}(2)-\mathrm{S}(4)$ | $2.5193(19)$ | $\mathrm{Ag}(1)-\mathrm{Ag}(2)$ | $3.2283(13)$ |
| $\mathrm{Sn}(2)-\mathrm{S}(2) \# 5$ | $2.5675(14)$ | $\mathrm{Ag}(2)-\mathrm{S}(1)$ | $2.5564(15)$ |
| $\mathrm{Sn}(2)-\mathrm{S}(2) \# 4$ | $2.5675(14)$ | $\mathrm{Ag}(2)-\mathrm{S}(6)$ | $2.4547(16)$ |
| $\mathrm{S}(2)-\mathrm{Sn}(2) \# 9$ | $2.5676(14)$ | $\mathrm{Ag}(2)-\mathrm{S}(1) \# 2$ | $2.7753(14)$ |
| $\mathrm{Sn}(3)-\mathrm{S}(4)$ | $2.425(2)$ | $\mathrm{S}(1)-\mathrm{Ag}(2) \# 4$ | $2.5563(15)$ |
| $\mathrm{Sn}(3)-\mathrm{S}(5)$ | $2.3918(19)$ | $\mathrm{S}(1)-\mathrm{Ag}(2) \# 2$ | $2.7753(14)$ |
| $\mathrm{Sn}(3)-\mathrm{S}(6) \# 7$ | $2.3874(14)$ | $\mathrm{S}(1)-\mathrm{Ag}(2) \# 8$ | $2.7753(14)$ |
| $\mathrm{Sn}(3)-\mathrm{S}(6) \# 6$ | $2.3873(14)$ | $\mathrm{Ag}(2)-\mathrm{Ag}(2) \# 4$ | $3.0436(17)$ |
| $\mathrm{S}(6)-\mathrm{Sn}(3) \# 10$ | $2.3874(14)$ | $\mathrm{Ag}(2)-\mathrm{S}(2) \# 3$ | $2.8887(18)$ |
| $\mathrm{Ag}(1)-\mathrm{S}(6)$ | $2.5534(17)$ | $\mathrm{S}(2)-\mathrm{Ag}(2) \# 8$ | $2.8887(18)$ |


| $\mathrm{Ag}(1)-\mathrm{S}(3)$ | $2.5672(13)$ |  |  |
| :--- | :--- | :--- | :--- |
| $\mathrm{S}(3)-\mathrm{Sn}(1)-\mathrm{S}(2)$ | $111.44(4)$ | $\mathrm{S}(6) \# 6-\mathrm{Sn}(3)-\mathrm{S}(4)$ | $105.83(4)$ |
| $\mathrm{S}(1)-\mathrm{Sn}(1)-\mathrm{S}(2)$ | $104.25(4)$ | $\mathrm{S}(6) \# 7-\mathrm{Sn}(3)-\mathrm{S}(4)$ | $105.83(4)$ |
| $\mathrm{S}(3)-\mathrm{Sn}(1)-\mathrm{S}(2) \# 4$ | $111.44(4)$ | $\mathrm{S}(5)-\mathrm{Sn}(3)-\mathrm{S}(4)$ | $113.60(5)$ |
| $\mathrm{S}(1)-\mathrm{Sn}(1)-\mathrm{S}(2) \# 4$ | $104.25(4)$ | $\mathrm{S}(6) \# 6-\mathrm{Sn}(3)-\mathrm{S}(5)$ | $107.67(4)$ |
| $\mathrm{S}(3)-\mathrm{Sn}(1)-\mathrm{S}(1)$ | $118.05(6)$ | $\mathrm{S}(6)-\mathrm{Ag}(1)-\mathrm{S}(3)$ | $119.98(5)$ |
| $\mathrm{S}(2) \# 4-\mathrm{Sn}(1)-\mathrm{S}(2)$ | $106.52(7)$ | $\mathrm{S}(6)-\mathrm{Ag}(1)-\mathrm{S}(5)$ | $108.33(5)$ |
| $\mathrm{S}(4)-\mathrm{Sn}(2)-\mathrm{S}(2) \# 5$ | $94.07(4)$ | $\mathrm{S}(3)-\mathrm{Ag}(1)-\mathrm{S}(5)$ | $116.48(5)$ |
| $\mathrm{S}(4)-\mathrm{Sn}(2)-\mathrm{S}(2) \# 4$ | $94.07(4)$ | $\mathrm{S}(6)-\mathrm{Ag}(2)-\mathrm{S}(1)$ | $141.87(5)$ |
| $\mathrm{S}(2) \# 5-\mathrm{Sn}(2)-\mathrm{S}(2) \# 4$ | $86.47(6)$ | $\mathrm{S}(6)-\mathrm{Ag}(2)-\mathrm{S}(1) \# 2$ | $113.60(5)$ |
| $\mathrm{S}(6) \# 6-\mathrm{Sn}(3)-\mathrm{S}(6) \# 7$ | $116.44(7)$ | $\mathrm{S}(1)-\mathrm{Ag}(2)-\mathrm{S}(1) \# 2$ | $88.51(4)$ |
| $\mathrm{S}(6) \# 7-\mathrm{Sn}(3)-\mathrm{S}(5)$ | $107.67(4)$ | $\mathrm{S}(1) \# 2-\mathrm{Ag}(2)-\mathrm{S}(2) \# 3$ | $84.14(5)$ |

Symmetry transformations used to generate equivalent atoms: for $1 \# 1 x,-y+3 / 2, z \# 2-x+1,-y+1$, $-z+1 \# 3-x+1, y+1 / 2,-z+1 \# 4 x,-y+1 / 2, z \# 5 x, y+1, z \# 6-x+1 / 2, y+1 / 2, z-1 / 2 ; \# 7-x+1 / 2,-y+1$, $z-1 / 2 \# 8-x+1, y-1 / 2,-z+1 \# 9 x, y-1, z \# 10-x+1 / 2,-y+1, z+1 / 2$.

## Table S3 Selected Hydrogen Bonds Data for 1.

| $\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$ | $\mathrm{D}-\mathrm{H}(\AA)$ | $\mathrm{H} \cdots \mathrm{A}(\AA)$ | $\mathrm{D} \cdots \mathrm{A}(\AA)$ | $<(\mathrm{DHA})\left({ }^{\circ}\right)$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{N}(2)-\mathrm{H}(2 \mathrm{~A}) \cdots \mathrm{S}(6) \# 11$ | 0.91 | 2.81 | $3.384(6)$ | 122.4 |
| $\mathrm{~N}(2)-\mathrm{H}(2 \mathrm{~B}) \cdots \mathrm{S}(5) \# 7$ | 0.91 | 2.84 | $3.585(8)$ | 140.4 |
| $\mathrm{~N}(2)-\mathrm{H}(2 \mathrm{~B}) \cdots \mathrm{S}(6) \# 7$ | 0.91 | 2.82 | $3.384(6)$ | 120.9 |
| $\mathrm{~N}(2)-\mathrm{H}(2 \mathrm{C}) \cdots \mathrm{S}(3)$ | 0.91 | 2.65 | $3.357(8)$ | 135.2 |
| $\mathrm{~N}(1)-\mathrm{H}(1) \cdots \mathrm{S}(2) \# 12$ | 0.91 | 2.72 | $3.525(5)$ | 147.6 |
| $\mathrm{~N}(1)-\mathrm{H}(2) \cdots \mathrm{S}(6) \# 11$ | 0.91 | 2.65 | $3.279(5)$ | 126.9 |
| $\mathrm{~N}(1)-\mathrm{H}(3) \cdots \mathrm{S}(3)$ | 0.91 | 2.65 | $3.374(6)$ | 137.6 |
| $\mathrm{~N}(1)-\mathrm{H}(3) \cdots \mathrm{S}(6) \# 7$ | 0.91 | 2.83 | $3.279(5)$ | 111.6 |

Symmetry transformations used to generate equivalent atoms: for $1 \# 1 x,-y+3 / 2, z \# 2-x+1,-y+1$, $-z+1 \# 3-x+1, y+1 / 2,-z+1 \# 4 x,-y+1 / 2, z \# 5 x, y+1, z \# 6-x+1 / 2, y+1 / 2, z-1 / 2 ; \# 7-x+1 / 2,-y+1$, $z-1 / 2 \# 8-x+1, y-1 / 2,-z+1 \# 9 x, y-1, z \# 10-x+1 / 2,-y+1, z+1 / 2 \# 11-x+1 / 2, y-1 / 2, z-1 / 2 \# 12$ $x-1 / 2,-y+1 / 2,-z+1 / 2$.


Figure S1. Perspective view of the structure of compound 1 along the $b$ axis showing the 1D channels filled with the protonated $\left[\mathrm{CH}_{3} \mathrm{NH}_{3}\right]^{+}$cations.


Figure S2. The coordination modes of $\mathrm{Ag}^{+}, \mathrm{Sn}^{4+}$ and $\mathrm{Sn}^{2+}$ ions in compound 1 .


Figure S3. (a) The $\left[\mathrm{Ag}_{4} \mathrm{Sn}^{\mathrm{IV}} \mathrm{Sn}^{\mathrm{II}} \mathrm{S}_{8}\right]_{n}{ }^{6 n-}$ ribbon showing the $\mathrm{S}(1)$ atoms and the $\left[\mathrm{Ag}_{2} \mathrm{~S}_{2}\right]$ rings. (b) The $\left[\mathrm{Ag}_{2} \mathrm{~S}_{2}\right]$ ring.


Figure S4. The window of channel extending along the $b$ axis in compound 1.
It deserves to be specially noted that in the $\left[\mathrm{Ag}_{4} \mathrm{Sn}^{\mathrm{IV}} \mathrm{Sn}^{\mathrm{II}} \mathrm{S}_{8}\right]_{n}{ }^{6 n-}$ ribbon, the $\mathrm{S}(1)$ atoms adopt an infrequent $\mu_{5}$-quadrangular pyramidal geometry to bond four $\operatorname{Ag}(2)$
and one $\operatorname{Sn}(1)$ atoms (Figure S3). The channels parallel to the $b$ axis are distorted cross-shaped with a cross-section of $6.89 \times 10.59 \AA^{2}$, which are composed of a 20-membered ring defined by two $\left[\mathrm{AgS}_{3}\right]$, two $\left[\mathrm{AgS}_{4}\right]$, four $\left[\mathrm{SnS}_{4}\right]$ and two $\left[\mathrm{SnS}_{3}\right]$ units via corner-sharing (Figure S4).

## 3. BVS Calculation

The valence sum $=\sum \exp [(\mathrm{d} 0-\mathrm{d}) / \mathrm{B}], \mathrm{d} 0=2.45$ for $\mathrm{Sn}-\mathrm{S}, \mathrm{B}=0.37 ;{ }^{2}$
(1) Four values of $\mathrm{d}_{(\mathrm{Sn}(1)-\mathrm{S})}$ are 2.3742, 2.3928, 2.4163 and 2.4164, respectively.

The valence sum $=\exp [(2.45-2.3742) / 0.37]+\exp [(2.45-2.3928) / 0.37]+$ $\exp [(2.45-2.4163) / 0.37]+\exp [(2.45-2.4164) / 0.37]=4.585$
(2) Three values of $\mathrm{d}_{(\operatorname{Sn}(2)-\mathrm{S})}$ are 2.5193, 2.5675 and 2.5675, respectively.

The valence sum $=\exp [(2.45-2.5193) / 0.37]+\exp [(2.45-2.5675) / 0.37]+$ $\exp [(2.45-2.5675) / 0.37]=2.285$
(3) Four values of $\mathrm{d}_{(\mathrm{Sn}(3)-\mathrm{S})}$ are $2.425,2.3918,2.3874$ and 2.3874 , respectively.

The valence sum $=\exp [(2.45-2.425) / 0.37]+\exp [(2.45-2.3918) / 0.37]+$ $\exp [(2.45-2.3874) / 0.37]+\exp [(2.45-2.3874) / 0.37]=4.609$

## 4. Physical Measurements

Elemental analyses of C, H, and N were performed using a German Elementary Vario EL III instrument. Energy-dispersive spectroscopy (EDS) was recorded on a JEOL JSM-6700F scanning electron microscope. Thermogravimetric analyses were carried out with a NETZSCH STA449C at a heating rate of $10{ }^{\circ} \mathrm{C} / \mathrm{min}$ under a nitrogen atmosphere. Powder X-ray diffraction (PXRD) patterns were collected at room temperature on a Miniflex II diffractometer using $\mathrm{Cu} \mathrm{K} \alpha$ radiation ( $\lambda=1.5406$ $\AA$ ) in the $2 \theta$ range of $5-50^{\circ}$. Room-temperature optical diffuse reflectance spectrum of powder samples was obtained using a UV-vis-NIR Varian 86 Cary 500 Scan spectrophotometer. Absorption $(\alpha / S)$ data were calculated from reflectance using the Kubelka-Munk function $\alpha / S=(1-R)^{2} / 2 R$, where $\alpha$ is the absorption coefficient, $S$ is the scattering coefficient which is practically independent of wavelength when the particle size is larger than $5 \mu \mathrm{~m}$, and $R$ is the reflectance. ${ }^{3 a}$ For a crystalline semiconductor with an indirect band gap, its optical absorption near the band edge follows the equation given by Tauc, $(\alpha E)^{1 / 2}=A\left(E-E_{\mathrm{g}}\right)$, where $\alpha$ is the absorption coefficient, $A$ is the proportionality constant, $E$ is the photon energy, and $E_{\mathrm{g}}$ is the optical band gap. ${ }^{3 b}$ Fourier transform infrared (FT-IR) spectrum was taken on a

Nicolet Magna 750 FT-IR spectrometer in the $4000-400 \mathrm{~cm}^{-1}$ region by using a KBr pellet. XPS experiments were carried out on an ESCALAB 250Xi spectrometer with Al $\mathrm{K} \alpha$ radiation as X-ray source for radiation. The supernate of photocatalytic experiment was analyzed with the help of UV-vis absorption spectra instrument (SHIMADZU UV-2600 UV-vis spectrometer).

## (1) EDS

Data collected from five points on the surface of one single crystal of $\mathbf{1}$ confirmed that the average $\mathrm{Ag}: \mathrm{Sn}: \mathrm{S}$ ratio was 1.43: 1.00: 2.40 , very close to that determined by the single crystal diffraction.


Figure S5. The energy dispersive X-ray (EDX) spectrum of $\mathbf{1}$.
(2) PXRD


Figure S6. Experimental and simulated PXRD patterns of $\mathbf{1}$.

## (3) TGA

The TG curve of compound 1 (Figure S7) displays one main step weight loss of $8.51 \%$ (theoretical value of $8.68 \%$ ) in the range of $244-590{ }^{\circ} \mathrm{C}$, corresponding to the loss of two $\mathrm{CH}_{3} \mathrm{NH}_{2}$ and one $\mathrm{H}_{2} \mathrm{~S}$ molecule per formula. With increasing the temperatures, the progressive weight loss observed in compound $\mathbf{1}$ continued and still
did not achieve the balance at $800^{\circ} \mathrm{C}$.


Figure S7. Thermogravimetric curve for 1.

## (4) FT-IR spectrum



Figure S8. FT-IR spectrum of compound 1.

## (4) Photocatalytic Activity for Degradation of CV

The photocatalytic activity of compound $\mathbf{1}$ for the degradation of CV was evaluated under the visible light irradiation of a 300 W Xe lamp equipped with a cutoff filter ( $\lambda>$ 420 nm ). The distance between the Xe lamp and the reaction vessel was $\sim 20 \mathrm{~cm}$. In a typical photocatalytic reaction, 30 mg of photocatalyst was suspended in 50 ml of CV solution $\left(1.0 \times 10^{-5} \mathrm{M}\right)$. Prior to visible light illumination, the suspension was magnetically stirred in the dark for 30 min to reach an adsorption-desorption equilibrium between the photocatalyst and solution. After each 40 min intervals, 4 mL
of CV solution was removed from the system for analysis. After 240 min of photoreaction, the suspension was centrifugalized at a speed of $9000 \mathrm{rpm} / \mathrm{min}$ for 5 min, and the resulting solution was analyzed on a SHIMADZU UV-2600 UV-vis spectrometer. Meanwhile, a blank experiment in the absence of the photocatalyst was also performed under identical conditions, and the corresponding CV aqueous solution was dealt with via the above-mentioned method.


Figure S9. Absorption spectra of a solution of CV in the presence of compound $\mathbf{1}$ under exposure to visible light.

PXRD indicated that compound 1 can keep its crystallinity after immersion in aqueous solutions of CV, presented in Figure S10.


Figure S10. PXRD patterns of compound 1 before and after the photocatalytic process.

## (5) Theoretical Calculations

Single-crystal structural data of compound $\mathbf{1}$ was used for the theoretical calculation. The present calculation was performed in the DFT framework,
implemented in the CASTEP package. ${ }^{4}$ The Perdew-Burke-Ernzerhof (PBE) functional of the generalized gradient approximations (GGA) was employed as the exchange-correlation functional. ${ }^{5}$ The valence atomic configurations were $1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}$, $2 s^{2} 2 p^{3}, 3 s^{2} 3 p^{4}, 4 d^{10} 5 s^{1}$ and $5 s^{2} 5 p^{2}$, for $\mathrm{H}, \mathrm{C}, \mathrm{N}, \mathrm{S}, \mathrm{Ag}$ and Sn , respectively. The number of plane waves included in the basis was determined by a cutoff energy of 400 eV , and the numerical integration of the Brillouin zone was performed using a 1 $\times 3 \times 2$ Monkhorst-Pack $k$-point.

DFT calculations on the band structure indicated compound $\mathbf{1}$ is an indirect semiconductor with a band gap of 1.27 eV (Figure S11), which is smaller than the experimental value of 2.10 eV . As is well-known, such a discrepancy between the experimental and calculated band gap is due to the inaccurate description of eigenvalues of the electronic states by generalized gradient approximation (GGA), ${ }^{5 b}$ which often causes quantitative underestimation of the band gaps for semiconductors and insulators. ${ }^{6}$ Further calculations on the partial density of states reveal that the conduction bands (CBs) above the Fermi level (the Fermi level is set at 0 eV ) are mainly made up of $\mathrm{S}-3 \mathrm{p}, \mathrm{Sn}-5 \mathrm{~s}$ and $\mathrm{Sn}-5 \mathrm{p}$ states, whereas the valance bands (VBs) just below the Fermi level are mainly derived from Ag-4d, S-3p and Sn-5p states (Figure S12).


Figure S11. The band structure of compound 1. Fermi level is set at 0 eV (dot line).


Figure S12. The total density of states and partial density of states of $\mathbf{1}$. Fermi level is set at 0 eV (dashed line).

## References

1. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Cryst. 2015, 71, 3-8.
2. Brese, N. E.; Okeeffe, M. Bond-Valence Parameters for Solids. Acta Crystallogr.,

Sec. B: Struct. Sci, 1991, 47, 192-197.
3. (a)Wendlandt, W. W.; Hecht, H. G. Reflectance Spectroscopy; Interscience, New York, 1966. (b) Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi B, 1966, 15, 627-637.
4. Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-Principles Simulation: Ideas, Illustrations and the CASTEP Code. J. Phys.: Condens. Matter, 2002, 14, 2717-2744.
5. (a) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., 1996, 77, 3865-3868. (b) Kresse, G.; Furthmuller, J. Efficient Iterative Schemes for AB Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B: Condens. Matter, 1996, 54, 11169-11186.
6. (a) Godby, R. W.; Schluter, M.; Sham, L. J. Trends in Self-Energy Operators and their Corresponding Exchange-Correlation Potentials. Phys. Rev. B, 1987, 36, 6497-6500; (b) Okoye, C. M. I. Theoretical Study of the Electronic Structure, Chemical Bonding and Optical Properties of $\mathrm{KNbO}_{3}$ in the Paraelectric Cubic Phase. J. Phys.: Condens. Matter, 2003, 15, 5945-5958; (c) Terki, R.; Bertrand, G.; Aourag, H. Full Potential Investigations of Structural and Electronic Properties of $\mathrm{ZrSiO}_{4}$. Microelectron. Eng., 2005, 81, 514-523.

