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ABSTRACT 

Graphene is a monolayer of carbon atoms constructing a two-dimensional honeycomb 

structure, and it has an excellent carrier mobility and a very high thermal conductivity. Remarkably, 

it has been experimentally demonstrated that a monolayer graphene exhibits an exotic optical 

properties. To be specific, the plasmonic dispersion relation of a transverse magnetic graphene 

plasmon is electronically tunable by adjusting carrier density in graphene with external gate bias, 

and graphene plasmonic nano cavities have been utilized to modulate mid-infrared light. 

In this thesis, we present how to efficiently modulate mid-infrared light by combining 

graphene plasmonic ribbons with noble metal plasmonic structures. 

First, we propose and demonstrate electronically tunable resonant perfect absorption in 

graphene plasmonic metasurface enhanced by noble metal plasmonic effect, which results in 

modulating reflecting light. In this device, we improve coupling efficiency of free-space photons 

into graphene plasmons by reducing wavevector mismatching with a low permittivity substrate. In 

addition, the graphene plasmonic resonance is significantly enhanced by plasmonic light focusing 

effect of the coupled subwavelength metallic slit structure, which results in strongly fortifying 

resonance absorption in the graphene plasmonic metasurface. In the proposed device, theoretical 

calculation expects that perfect absorption in the graphene plasmonic metasurface is achievable 

with low graphene carrier mobility. We also present an analytical model based on surface 

admittance in order to fully understand how this enhancement occurs. 

In the second device, we propose and demonstrate a transmission type light modulator by 

combining graphene plasmonic ribbons with subwavelength metal slit arrays. In this device, 

extraordinary optical transmission resonance is coupled to graphene plasmonic ribbons to create 

electrostatic modulation of mid-infrared light. Absorption in graphene plasmonic ribbons situated 

inside metallic slits can efficiently block the coupling channel for resonant transmission, leading to 

a suppression of transmission. This phenomenon is also interpreted by anti-crossing between the 

graphene plasmonic resonance in the ribbons and the noble metal plasmonic resonance in the 

subwavelength metal slit arrays. 

Finally, we devise a platform to demonstrate graphene plasmonic resonance energy 

transport along graphene plasmonic ribbons. In this device, two metal-insulator-metal waveguides 

are connected by a subwavelength metal slit, and graphene plasmonic ribbons are located inside 

this slit. Due to the large impedance mismatch at the junction, light coupling efficiency across the 

junction is poor. If the graphene plasmonic ribbons are tuned to support strong graphene plasmonic 
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resonances, the light energy can be transferred via graphene plasmons along the ribbons, and it 

leads to significant improvement in the light coupling efficiency across the junction. In addition to 

enhanced light coupling efficiency, we also present how to totally suppress the transmission by 

inducing a Fano resonance between a non-resonant propagation mode across the junction and a 

resonant graphene plasmonic transport mode, which can be utilized to efficiently modulate light in 

a noble metal plasmonic waveguide with the graphene plasmon resonance energy transfer. 
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CHAPTER 1 

INTRODUCTION 

1.1 Plasmonics on Noble Metal Surfaces 

Light has been utilized in a wide range of fields including optical imaging, data storage, 

energy conversion, communication, analytical chemistry, and photochemistry [1-5]. A major issue 

in those fields is how to overcome the diffraction limit in order to increase optical resolution [6]. 

In addition, intensifying the light-matter interaction is also important in light-energy conversion 

and photon-mediated reactions [7, 8]. These aspects are the reason why the field of plasmonics has 

drawn considerable attention. Surface plasmon polaritons are a longitudinal electromagnetic wave 

coupled to free carriers collectively oscillating on noble metal surface [9]. Due to its low-

dimensional properties [10], surface plasmon polaritons excited on noble metal surfaces can 

confine light below the optical diffraction limit and significantly enhance the light intensity in a 

nanoscale local region resulting in strong light-matter interaction. Enormous advances in nanoscale 

fabrication technology allow for realization of subwavelength metallic structures exhibiting 

interesting plasmonic effect such as plasmonic optical circuits, artificially created metasurfaces, 

surface enhanced Raman scattering, plasmonic beam shaping, and beam focusing in subwavelength 

scale [11-15]. 

 

1.1.1 Surface Plasmon Polaritons Dispersion Relation 

Surface plasmon polariton excited on metal/dielectric interface, as shown in Figs. 1.1(a) 

and (b), is characterized by dispersion relation derived from phase matching condition of Maxwell’s 

equations, and the dispersion relation is given by [16] 

𝜔 = 𝑐0𝑘sp√
𝜀m + 𝜀d
𝜀m𝜀d

 (1.1) 

where c0 is the light speed in air, ksp is the propagation constant of surface plasmon polariton, and 

εm and εd are the frequency-dependent permittivities of the metal and the dielectric, respectively. 
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Figure 1.1 | Surface plasmon polariton on semi-infinite metal surface. (a) Schematic of 

surface plasmon polariton (SPP) excited on metal/dielectric interface displaying induced surface 

charges (red: holes, blue: electrons) on the metal surface and electric fields. (b) Ex field 

distribution of SPP excited on Ag/air interface. Free-space wavelength is 532 nm, and the 

propagation constant normalized by free-space wavenumber (ksp/k0) is calculated by 1.05+i0.46 

with εAg=-10.2+i0.83 [17]. (c) Schematic of SPP dispersion curve excited on metal/air interface. 

 

In the Drude model, the conduction electrons in metal is treated as an ideal gas moving 

freely between scattering events [18]. Neglecting the oscillation damping of the electrons in the 

metal [19], and the relative permittivity of the metal can be written as 

𝜀m(𝜔) ≈ 1 −
𝜔p
2

𝜔2
 (1.2) 

where 𝜔p = √𝑁𝑒
2 𝜀0𝑚⁄  is the plasma frequency, N is the conduction electron density in the metal, 

e is the elementary charge, and m is the electron mass. In Eq. (1.2), the important point is that the 

(b)

(a)

ksp

ω

ωp

𝜔sp =
𝜔p

 

Light line in air
𝜔 = 𝑐0𝑘

SPP dispersion curve

400 nm

ksp

Ag

Air

Ex
> 0.3

0

> -0.3

+ - + --

ksp

(c)

λsp

x

z



3 

 

permittivity of the metal can be negative below the plasma frequency, and it can satisfy the 

following condition in Eq. (1.3) [20]: 

𝜀m(𝜔sp) + 𝜀d(𝜔sp) = 0 (1.3) 

This condition makes a zero numerator in Eq. (1.1), and it indicates collective oscillations bound 

to the metal/dielectric interface with infinite surface plasmon propagation [20]. Assuming that air 

is the homogeneous dielectric medium (εd=1), Eq. (1.4) is derived from Eqs. (1.2) and (1.3). 

𝜔sp =
𝜔p

√ 
 (1.4) 

On the metal/air interface, the surface plasmon polariton dispersion relation is given by Eq. 

(1.5) from Eqs. (1.1) and (1.2), and the dispersion curve is plotted in Fig. 1.1(c) [19]. 

𝜔 = √
𝜔p
2

 
+ (𝑐0𝑘sp)

2
− [
𝜔p
4

 
+ (𝑐0𝑘sp)

2
]

1/2

 (1.5) 

In Eq. (1.5), the dispersion curve approaches the light line in air (ω=c0k) at a small propagation 

constant limit (ksp≪ωp/c0). When ksp≫ωp/c0, the dispersion curve is saturated to the ωsp in Eq. (1.4). 

 As shown in Fig. 1.1(c), the propagation constant of surface plasmon polariton is always 

larger than the wavevector in air, and it indicates that we can confine the light below subwavelength 

scale by surface plasmon polaritons. In addition, it implies that it is not possible to match the non-

radiative surface plasmon resonance condition by free-space light in air. To overcome this 

wavevector mismatch, we need to diffract light using corrugated structures such as surface gratings 

[19]. In Fig. 1.2, the surface plasmon polariton is excited on Ag substrate by dielectric surface 

gratings diffracting incoming Gaussian beam to match the surface plasmon resonance condition. 

In the following section, we will briefly review three representative plasmonic structures 

in visible range: plasmonic nanobar antennas enhancing near-field intensity, subwavelength metal 

slit array exhibiting extraordinary optical transmission, and plasmonic metal-insulator-metal 

waveguide having subwavelength gap. These plasmonic structures will be coupled to graphene 

plasmonic light modulators through this thesis in order to enhance the light modulation 

performance. 
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Figure 1.2 | Surface gratings. (a) Electric field distribution and (b) Ex field distribution of 

surface plasmon polariton (SPP) on Ag/air interface excited by surface gratings with a Gaussian 

beam (beam width=500 nm). Free-space wavelength is 532 nm. Five surface gratings consist of 

SiO2 (εSiO2=2.13) [17], and the grating pitch, the grating width, and the grating thickness are 400 

nm, 200 nm, and 140 nm, respectively. 

 

1.1.2 Plasmonic Nanobar Antennas 

 Compared to surface plasmon polaritons propagating on a flat metal surface, localized 

surface plasmons are confined within finite size geometries, such as nanoparticles or nanobars, and 

those structures’ size is in subwavelength scale [9]. The advantage of the subwavelength plasmonic 

structures is that they can capture more light than its physical size by localized surface plasmon 

resonance, and it results in significantly enhancing near field intensity around the subwavelength 

plasmonic structures. This property has been utilized in surface enhanced Raman spectroscopy, 

photovoltaic, and plasmonic sensors in order to intensify the light-matter interaction, resulting in 

increasing the efficiencies of the devices [7, 13, 21]. 
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Figure 1.3 | Plasmonic nanobar antennas. Schematics of (a) a single-nanobar plasmonic 

antenna and (b) a dual-nanobar plasmonic antenna. In (a) and (b), the red and the blue arrows 

denote plasmons and interaction between antennas, respectively. The overlapped distributions 

represent the charge distribution on the surfaces (red: holes, blue: electrons). (c) Simulation 

results of scattering cross section of the plasmonic antennas. Electric field distributions of (d) 

the single-nanobar plasmonic antenna and (e) the dual-nanobar plasmonic antennas at their 

resonance frequencies. 
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Figure 1.3 shows simulation results of plasmonic antennas consisting of subwavelength 

nanobars. Both plasmonic antennas surrounded by air consist of 20 nm thick Ag and each antenna 

width is 120 nm (Figs. 1.3(a) and (b)). In the dual-nanobar plasmonic antenna, gap is 20 nm. As 

shown in Fig. 1.3(c), both plasmonic antennas exhibit plasmonic resonance, and their scattering 

cross sections exceed their physical size (i.e. antenna width). It indicates that they can capture more 

light than their physical size at the localized surface plasmon resonances, denoted as the arrows in 

Figs. 1.3(a) and (b). As a result of the localized surface plasmon resonance, near fields around the 

plasmonic antennas are significantly enhanced, as shown in Figs. 1.3(d) and (e). 

Compared with the single-nanobar antenna, the dual-nanobar antenna displays redshift in 

its spectrum, and this redshift originates from plasmonic interaction between two adjacent 

plasmonic antennas [22], which corresponds to the blue arrow in Fig. 1.3(b). As a result of the 

plasmonic interaction, the dual-nanobar plasmonic antenna strongly intensifies the inter-gap field, 

which could lead to inducing strong light-matter interaction inside the subwavelength metal gap. 

 

1.1.3 Extraordinary Optical Transmission 

 In classical electromagnetic theory, light passing through a subwavelength aperture is 

diffracted in all directions, and its transmission is suppressed by diffraction limit. In 1998, it has 

been demonstrated that subwavelength metal aperture array exhibits strong transmission into a 

forward direction at a certain frequency even through the aperture in deep-subwavelength scale 

[23]. This exotic optical phenomenon has been called as extraordinary optical transmission (EOT), 

and it has been proved that the EOT originates from the surface plasmon resonance [24, 25]. 

 Figure 1.4(a) shows the mechanism of the EOT through subwavelength metal slit array. 

Transverse magnetic (TM) polarized incoming light is diffracted by the periodically corrugated 

structure, and the scattered lights induce surface plasmons on the top metal surface. The surface 

plasmons then tunnel through the subwavelength metal slits and excite surface plasmons on the 

bottom metal surface. The surface plasmon on the bottom metal surface subsequently re-radiates 

into free space, resulting in strong transmission into a forward direction at the EOT resonance 

frequency, as shown in Fig. 1.4(b). At the EOT resonance, the absorption is also maximized due to 

the strong plasmonic resonance effect, as shown in Fig. 1.4(b). 
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Figure 1.4 | Extraordinary optical transmission. (a) Schematic of EOT through 

subwavelength metal slit array. The overlapped field distribution corresponds to Re(Ez). (b) 

Simulation results of the EOT spectrum exhibiting strong transmission at free-space wavelength 

λ0=532 nm. Electric field distributions (c) at the EOT resonance (λ0=532 nm) showing strong 

surface plasmons and (d) far from the EOT resonance (λ0=700 nm). 
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The subwavelength metal slits play a pivotal role in EOT [26, 27]. Due to the optical 

coupling between the surface plasmons on the top and bottom metal surfaces, significantly 

enhanced intergap electric fields are exhibited in Fig.1.4(c). For frequency far away from the EOT 

resonance, there is no strong surface plasmon on the top and the bottom side, and the intergap 

electric fields are not enhanced, as shown in Fig. 1.4(d). 

 

1.1.4 Plasmonic Metal-Insulator-Metal Waveguide 

 In an optical fiber, the core size is limited by the diffraction limit, and the smallest diameter 

is in the order of free-space wavelength divided by refractive index of the core. It means that it is 

difficult to realize highly integrated optical circuits with dielectric based waveguides. However, the 

optical circuit size can be miniaturized to subwavelength scale with plasmonic waveguides because 

of the high confinement factor of plasmons [11]. 

 

 
Figure 1.5 | Plasmonic metal-insulator-metal waveguide. (a) Schematic of plasmonic MIM 

waveguide and its frequency-dependent dispersion relation. (b) Ex, (c) Ez, and (d) Hy field 

distributions of the plasmonic MIM waveguide at λ0=532 nm. The (+) and (-) signs denote the 

induced surface charges coupled to the surface plasmon polaritons. 

 

Figure 1.5(a) shows the schematic of plasmonic metal-insulator-metal (MIM) waveguide 

consisting of 100 nm of air gap and Ag clads and its frequency-dependent dispersion relation. In 

this plasmonic MIM waveguide, the electromagnetic wave is highly confined within the 

subwavelength air gap due to the low-dimensional property of the plasmons, as shown Figs. 1.5(b-

d). 
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 To calculate the dispersion relation of the fundament plasmonic waveguide mode, we have 

to consider the field continuity boundary conditions between the top and bottom air/metal interfaces, 

and the propagation constant the propagating mode kp corresponds to the root of the characteristic 

equation given by [28] 

(
𝜀air𝑘𝑧,Ag

𝜀Ag𝑘𝑧,air
+ 1)(

𝜀air𝑘𝑧,Ag

𝜀Ag𝑘𝑧,air
+ 1)

− (
𝜀air𝑘𝑧,Ag

𝜀Ag𝑘𝑧,air
− 1)(

𝜀air𝑘𝑧,Ag

𝜀Ag𝑘𝑧,air
− 1)exp(𝑖 𝑘𝑧,air𝑑air) = 0 

(1.6) 

where 𝑘𝑧,air = 𝑘0√𝜀air − (𝑘p 𝑘0⁄ )
2

, 𝑘𝑧,Ag = 𝑘0√𝜀Ag − (𝑘p 𝑘0⁄ )
2

, and dair is the air thickness 

inside the core. For an infinite air core (dair=∞), Eq. (1.6) becomes the dispersion relation of surface 

plasmon polariton on a semi-infinite metal surface in Eq. (1.1) because kz,air is always imaginary 

due to the fact that the surface plasmons are bound to the air/metal interface. 

 

1.1.5 Limitation in Tunable Plasmonic Resonance 

Although plasmons on noble metal surfaces possess a lot of benefits in terms of enhancing 

light-matter interaction and reducing optical device size into subwavelength scale, electrically 

tuning the plasmonic response for light modulation is not easily achievable. The main reason for 

this difficulty is the fact that such plasmons are excited on noble metal surfaces with high free 

carrier density. To tune the plasmonic resonance, we have to adjust the permittivities of noble 

metals by increasing or decreasing their free carrier densities in Eq. (1.2). However, the carrier 

density of noble metals supporting surface plasmons, such as Au or Ag, is in the order of 1022 cm-

3, and this value is too high to adjust by external electrical bias. There are some alternative strategies 

to tune the plasmons resonance by coupling plasmonic structures with electro-optic materials, 

adjusting the size of plasmonic structures, or utilizing phase transition in surrounding materials [29-

34]. Potential drawbacks in the alternative ways to tune the plasmonic resonance is that switching 

speed would be limited by the relaxation time, tunability would be not enough for ultra-speed light 

modulation, or large scale of active region would be required to achieve desirable light modulation 

efficiency. 
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1.2 Graphene 

 
Figure 1.6 | Graphene. (a) Schematic of monolayer graphene. The a1 and the a2 denote primitive 

basis vectors. Electronic band structure (b) in the honeycomb lattice graphene and (c) at the 

Dirac points. 

 

Graphene is a monolayer of carbon atoms constructing two-dimensional honeycomb lattice 

having two sp2-bonded atoms in the primitive unit cell [35], as shown in Fig. 1.6(a). In the graphene, 

electrons in carbon atoms corresponding to 2S, 2Px, and 2Py make the σ-bonds between the adjacent 

carbon atoms, and the remaining 2Pz electrons form the π-orbitals determining the low-energy 

electronic band structure [36], and the electronic dispersion relation neglecting the next nearest-

neighbor hopping energy is given by [37] 

𝐸 = ±𝑡√3 +  cos(√3𝑘𝑦𝑎) + 4 cos (
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where t is the nearest-neighbor hopping energy (~2.8 eV), a is the carbon-carbon distance (~1.42 

Å ) and the (+) and the (-) denote the conduction band and the valence band, respectively, and the 

electronic band structure is shown in Fig. 1.6(b). 

The monolayer graphene possess a lot of exotic physical properties: strong mechanical 

properties with an intrinsic tensile strength of 130 GPa and Young’s modulus of 1 TPa [38], a high 

thermal conductivity of about 5 kW/mK [39]. In particular, graphene exhibits a superior electrical 

property with a superior carrier mobility because the graphene has a linear electronic dispersion 

relation at K and the K' points, which results in massless Dirac Fermions in graphene [35], 

approximated by  

𝐸 ≈ ±ℏ𝑣F√𝑘𝑥
2 + 𝑘𝑦

2 (1.8) 

where vF is the Fermi velocity in graphene (vF≈1×108 cm/s). Here, the crossing points are called as 

Dirac point [37], and the conduction and valence bands meet at the Dirac points, as shown in Fig. 

1.6(c), 

 

1.2.1 Tunable Optical Properties in Graphene 

 One of the most important properties of graphene is that graphene carrier density is tunable 

by doping the graphene, and the doping is achievable via external electronic bias. In an electrostatic 

gating method, the graphene carrier density is tunable from charge neutral point to the order of 1013 

cm-2. It means that we can electronically tune the optical response of graphene as well as the surface 

conductivity in graphene. 

 Figure 1.7 shows a simple light modulation via interband transition in graphene. When 

light is illuminated on a monolayer graphene in Fig. 1.7(a), there is different light absorption 

mechanisms depending on the graphene Fermi level EF, or doping level. If EF < ħω/2, the incoming 

photon is absorbed by inducing interband transition. In this interband absorption, the absorbance is 

about 2.3% independent of the photon energy, and it is called as a universal absorbance [40]. In 

intraband transition regime (EF > ħω/2), the interband transition is suppressed by Pauli blocking, 

and the absorbance becomes much smaller than the universal absorbance, as shown in Fig. 1.7(b). 

The smooth transition between the interband absorption and the intraband absorption originates 

from Fermi-Dirac distribution of the free carriers in graphene. As a result of light absorption, the 

transmitted light is modulated as a function of the graphene Fermi level, as shown in Fig. 1.7(c), 

and this light modulation is achievable by electrical gating method. 
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Figure 1.7 | Light modulation via interband transition. (a) Schematic of light modulation via 

interband transition in graphene surrounded by air. (b) Simulation results of absorption spectrum 

and (c) transmission spectrum depending on different graphene Fermi level (EF). In this 

simulation, the graphene carrier mobility is assumed as 10,000 cm2V-1s-1. 

 

1.2.2 Light Modulation via Graphene Plasmons 

 It has been reported that free carries in graphene can be coupled with photons, and it excites 

plasmons in graphene similar to the plasmons on noble metal surface [41-43]. Compared with the 

noble metal plasmons, it has been reported that the graphene plasmon exhibit lower loss as 
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(~100) than the noble metal plasmons [44], and this property is beneficial to miniaturize the 

graphene plasmonic devices. The most important advantage in graphene plasmons is that it is 

possible to electronically adjust the carrier density of graphene, and it allows us to directly tune the 

strong graphene plasmonic resonance from mid-infrared to terahertz range [45-50], which is not 

possible in the noble metal plasmons. 

Figure 1.8 shows light modulation using simple graphene plasmonic ribbons (GPRs) array. 

In Fig. 1.8(a), TM polarized light is illuminated onto the GPRs with width/gap=100 nm/100 nm, 

and the graphene carrier mobility is assumed as 10,000 cm2V-1s-1 in this simulation. If the graphene 

Fermi level is tuned to match the graphene plasmonic resonance condition between the light 
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before, the graphene Fermi level is adjustable by gating bias, and it indicates that the light 

modulation is also tunable depending on the graphene Fermi levels, as shown in Figs. 1.8(b) and 

(c). Figs. 1.8(d-f) shows field distributions around the GPRs with graphene plasmons, and the near 

fields are significantly enhanced at the graphene plasmonic resonance. 

In addition, we can observe that the size of the GPRs is comparable to the plasmonic 

nanobar antennas in Fig. 1.3 although the wavelength of the GPRs is more than 10 times longer 

than the wavelength of the plasmonic nanobar antennas. It indicates that the confinement factor in 

the graphene plasmons is significantly larger than the noble metal plasmons. Compared with the 

light modulation via interband transition, we can also obtain strong light modulation effect by 

exploiting the tunable graphene plasmons. 

 



14 

 

 
Figure 1.8 | Light modulation in graphene plasmonic ribbons. (a) Schematic of GPRs 

surrounded by air for tunable light modulation. The red and the blue arrows denote graphene 

plasmons and interaction between adjacent GPRs, respectively. The overlapped distributions 

represent the charge distribution in graphene (red: holes, blue: electrons) (b) Simulation results 

of absorption spectra and (c) transmission spectra depending on different graphene Fermi level 

(EF). (d) Electric field, (e) Ex, and (f) Ez field distributions representing graphene plasmons at 

free-space wavelength λ0=6.66 μm with graphene Fermi level EF=0.6 eV. 
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1.3 Scope of this Thesis 

In this thesis, we present how to electronically tune the plasmonic resonance in graphene. 

Using the tunable property of graphene plasmon, we devise electronically tunable light modulators 

using graphene plasmon in mid-infrared range. In addition to the tunable graphene plasmonic 

resonance properties, we also demonstrate that the graphene plasmonic resonance can be enhanced 

when we couple the graphene plasmonic light modulators with noble metal plasmonic structures, 

which results in increasing light modulation efficiency. 

To begin with, we will review the details on the tunable graphene plasmons and strong 

light absorption in graphene plasmonic ribbons. In addition, we will show how to grow large scale 

graphene by chemical vapor deposition (CVD), and how to transfer and characterize the CVD 

graphene. Then, we will present three kinds of electronically tunable light modulators based on 

graphene plasmonic ribbons coupled to noble metal plasmonic structures. 

 

1.3.1 Electronically Tunable Resonant Absorption in Graphene Plasmonic 

Metasurface Enhanced by Noble Metal Plasmonic Effect 

In the first light modulator, we propose and demonstrate electronically tunable resonant 

absorption in graphene plasmonic metasurface enhanced by noble metal plasmonic effect, which 

results in modulating reflecting light. The ultimate purpose of this devices is to achieve strong 

graphene plasmonic resonance even with low quality graphene, such as CVD graphene.  

Theoretical calculations predict perfect absorption in the proposed graphene plasmonic 

metasurface despite a low graphene carrier mobility (200 cm2V-1s-1) at a graphene Fermi level easily 

accessible with electrostatic grating. We present a rigorous analytic model based on effective 

surface admittance to elucidate the origin of the enhanced absorption, which shows that the perfect 

absorption corresponds to a critical coupling between the graphene plasmonic metasurface and the 

carefully controlled substrate.  

Experimental measurements reveal 96.9% absorption in the graphene plasmonic 

metasurface at 1,389 cm-1, corresponding to a modulation efficiency of 95.9% in reflection, 

corresponding to a 2.15 fold improvement in the modulation efficiency over reflection without the 

coupled subwavelength metal slits. 
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1.3.2 Electronically Tunable Extraordinary Optical Transmission in 

Graphene Plasmonic Ribbons Coupled to Subwavelength Metallic Slit 

Arrays 

In the second device, we present how to efficiently modulate transmitting light using 

graphene plasmonic ribbons. In contrast to the reflective type graphene plasmonic modulators, a 

strategy of using electrostatically tunable graphene plasmons to modulate transmitted light with 

near-unity efficiency has not yet been reported. In order to enhance the graphene plasmonic 

resonance in a transmission type light modulator, we couple the graphene plasmonic ribbons to 

subwavelength metal slit array exhibiting extraordinary optical transmission in mid-infrared. 

In this structure, extraordinary optical transmission resonance in subwavelength metal slit 

array is coupled to electrostatically tunable graphene plasmonic resonance in graphene plasmonic 

ribbons to create electrostatic modulation of mid-infrared light. Absorption in graphene plasmonic 

ribbons situated inside metallic slits can efficiently block the coupling channel for resonant 

transmission, leading to a suppression of transmission. We also present anti-crossing model to 

analyze the light modulation effect between the extraordinary optical transmission resonance and 

the graphene plasmonic resonance. 

Full wave simulations predict a transmission modulation of 95.7% via this mechanism. 

Experimental measurements reveal a modulation efficiency of 28.6% in transmission at 1,397 cm-

1, corresponding to a 2.67 fold improvement over transmission without a metallic slit array. 

 

1.3.3 Electronically Tunable Graphene Plasmonic Resonance Energy 

Transport 

Finally, we report electronically tunable graphene plasmonic resonance energy transport 

along graphene plasmonic ribbons, and we devise a platform to demonstrate the energy traport in 

mid-infrared. In this structure, two metal-insulator-metal plasmonic waveguides are connected by 

a subwavelength metal slit, and graphene plasmonic ribbons are located inside this slit. Due to the 

large impedance mismatch between the noble metal plasmonic waveguide and the subwavelength 

metal slit, light coupling efficiency across the junction is poor. 

If the graphene plasmonic ribbons inside the slit are tuned to support strong graphene 

plasmonic resonances, this generates another pathway for transporting light energy across the 

junction. As a result, the light transmission across the subwavelength metal slit is enhanced 

significantly compared to a bare slit without the graphene plasmonic resonance energy transport. 
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In order to electronically modulate the transmission in the noble metal plasmonic 

waveguide using the graphene plasmonic resonance energy transport, we also have to actively 

suppress the light energy transport across the junction. To achieve this, we engineer the junction 

geometry in order to induce a strong Fano resonance between a non-resonant propagation mode 

across the junction and a resonant transmission mode via the graphene plasmonic resonance energy 

transport. Theoretical calculations predict a 100% light modulation efficiency with moderate 

graphene carrier mobility (1,660 cm2V-1s-1) at a graphene Fermi level easily accessible with 

electrostatic gating. The maximum resonant transmission in the plasmonic waveguide across the 

junction is 43.4%, while the transmission is 14.2% without the graphene plasmonic resonance 

energy transport. 
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CHAPTER 2 

GRAPHENE PLASMONS AND CHEMICAL VAPOR 

DEPOSITION GROWN GRAPHENE 

 In this chapter, we will review the details on dispersion relation of tunable graphene 

plasmons in mid-infrared and how to enhance electronically tunable light modulation efficiency in 

graphene plasmonic ribbons (GPRs) by intensifying light-matter interaction in the GPRs. Then, we 

will present large scale graphene growth using the chemical vapor deposition (CVD) method and 

a method to transfer the CVD-grown graphene onto arbitrary substrates. To characterize the CVD-

grown graphene, we will briefly explain Raman spectroscopy and transport measurement in 

graphene. 

 

2.1 Graphene Plasmons 

As shown in Chapter 1, the graphene plasmonic ribbons exhibit higher confinement factor 

and stronger near field enhancement compared to the noble metal plasmonic antennas. It is also 

possible to adjust the carrier density in graphene by doping the graphene via external gate bias, and 

it allows us to electronically tune the graphene plasmonic resonance. In addition, it has been 

demonstrated that graphene plasmons exhibit a lifetime in the order of femtosecond or sub-

picosecond timescales [51, 52]. It indicates that we can realize ultrafast optical switching using 

graphene plasmons. 

Graphene can support transverse magnetic (TM) and transverse electric (TE) modes. 

Similar to the surface plasmons on noble metal surface, TM graphene modes are electric dipole 

waves coupled to free carriers in graphene. In contrast, TE graphene plasmon modes, which are not 

observable on noble metal surface, correspond to magnetic dipole waves with no spatial charge 

density perturbation, and the TE graphene plasmon modes exhibit the propagating speed close to 

the light speed in surrounding media [53-55], and thus show a weak damping but less confinement 

factors than TM graphene plasmon modes. To take advantage of high confinement factors and 

strong graphene plasmonic resonances, this thesis will be limited to consideration of the TM 

graphene plasmon modes. 

In this section, we will present tunable dispersion relation of graphene plasmons in a 

graphene plasmonic waveguide, and the properties of graphene plasmons will be compared with 



19 

 

noble metal plasmons in an insulator-metal-insulator (IMI) waveguide. Then, the strong light 

absorption in graphene plasmonic ribbons will be discussed for tunable light modulation. At the 

end of this section, we will explain how to model the graphene in full-wave electromagnetic 

simulations. 

 

2.1.1 Dispersion Relation of Graphene Plasmons 

 Figure 2.1(a) shows the schematic of TM graphene plasmon propagating along graphene, 

and its dispersion relation [45, 56, 57] is given by 

𝜀r1

√𝑘p(𝜔)
2 − 𝜀r1𝜔

2/𝑐0
2

+
𝜀r2

√𝑘p(𝜔)
2 − 𝜀r2𝜔

2/𝑐0
2

= −𝑖
𝜎(𝜔)

𝜔𝜀0
 

(2.1) 

where εr1 and εr2 are the relative permittivities of surrounding media above and below the graphene, 

respectively,  and σ(ω) is the frequency dependent surface conductivity of graphene neglecting 

spatial dispersion. When we use a semi-classical Drude-like expression for the surface conductivity 

of graphene given by Eq. (2.2), the dispersion relation of graphene plasmon in a quasi-static regime 

(kp≫ω/c0) is expressed by Eq. (2.3) [45]. 

𝜎(𝜔) ≈ 𝑖
𝑒2|𝐸F|

𝜋ℏ2(𝜔 + 𝑖𝜏−1)
 (2.2) 

𝑘p(𝜔) ≈
𝜋ℏ2𝜀0(𝜀r1 + 𝜀r2)

𝑒2|𝐸F|
(1 +

𝑖

𝜏𝜔
)𝜔2 (2.3) 

In Eqs. (2.2-3), EF is the graphene Fermi level and τ is the intrinsic relaxation time constant induced 

by impurities, defects, or scattering processes. This intrinsic relaxation time constant determines 

the graphene carrier mobility, and the graphene carrier mobility represents the quality of graphene. 

More rigorous expression for the surface conductivity of graphene will be presented in Section 

2.1.3, and the graphene plasmonic resonance depending on the graphene carrier mobility will be 

discussed in Section 2.1.4. 

The graphene plasmon shown in Fig. 2.1(a) resembles the Ex-symmetric (or Hy-

antisymmetric) plasmonic mode in an IMI waveguide [28, 58] shown in Fig. 2.2(a) in that 

electromagnetic waves propagating along the surfaces are highly confined in the graphene or the 

thin metal layer, the electromagnetic waves exponentially decay along the perpendicular directions. 

However, the most distinctive difference is that the graphene plasmon dispersion relation in Eq. 

(2.3) indicates that the dispersion relation is tunable by adjusting the graphene Fermi level, i.e. 
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doping graphene, as shown Fig. 2.1(b). Notably, the graphene plasmon dispersion relation implies 

that the graphene plasmonic resonance frequency is proportional to the graphene Fermi level. 

 

 
Figure 2.1 | Graphene plasmonic waveguide. (a) Schematic of graphene plasmonic waveguide 

surrounded by air. The graphene carrier mobility is assumed as 10,000 cm2V-1s-1. (b) Real part 

of graphene plasmon wavenumber (kp) normalized by free-space wavenumber (k0) with different 

graphene Fermi level (EF). (c) Graphene plasmon propagation length (Lp) over graphene plasmon 

wavelength (λp) with different graphene Fermi level.  

  

In addition to the tunable dispersion relation, the graphene plasmon exhibit significantly 

high confinement factor compared to the IMI plasmonic mode shown in Fig. 2.2. With EF=0.5 eV, 

light having 7 μm of free-space wavelength (λ0) is coupled to graphene plasmon with 279 nm of 

graphene plasmon wavelength (λp), and it corresponds to 25.1 of Re(kp/k0). However, the IMI 

plasmonic mode exhibits only 1.95 of Re(kp/k0) with λ0=532 nm and λp=273 nm. 
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Figure 2.2 | Insulator-metal-insulator plasmonic waveguide. (a) Schematic of Ex-symmetric 

(or Hy-antisymmetric) IMI plasmonic waveguide with 10 nm thick Ag surrounded by air. (b) 

Real part of plasmon wavenumber (kp) normalized by free-space wavenumber (k0). (c) Plasmon 

propagation length (Lp) over plasmon wavelength (λp). 

 

Moreover, the graphene plasmon has lower loss than the plasmon in the IMI waveguide, 

as shown in Figs. 2.1(c) and 2.2(c), although the graphene plasmon shows a higher confinement 

factor. In Fig. 2.1(a), the propagation length of the graphene plasmon (LP) is 2.89 μm, and it 

indicates that the graphene plasmon can propagate 10.4 times longer distance than its wavelength. 

However, the propagation length over the plasmon wavelength in Fig. 2.2(a) exhibits only 1.33 

with Lp=362 nm. 

As discussed in this section, the graphene plasmon has tunable dispersion relation 

depending on the graphene Fermi level, and the graphene plasmon exhibits lower loss and higher 

confinement factor than the noble metal plasmon.  
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2.1.2 Perfect Absorption in Graphene Plasmonic Ribbons 

 As shown in Chapter 1, we can tune light absorption in graphene plasmonic ribbons (GPRs) 

by adjusting the graphene Fermi level. In particular, it has been theoretically demonstrated that 

perfect absorption is achievable if we increase the light-matter interactions in the GPRs with 

Salisbury screen [59], and nearly 40% of electronically tunable absorption in the GPRs has been 

demonstrated experimentally [60]. 

  

 
Figure 2.3 | Graphene plasmonic ribbons on Salisbury screen. (a) Schematic of GPRs on 

Salisbury screen consisting of a dielectric layer (n=1.75) and a perfect electric conductor 

reflector. (b) Electric intensity on the air/dielectric interface depending on frequency with 

different dielectric layer thickness. Electric intensity distributions (c) with maximum 

constructive interference and (d) maximum destructive interference on the air/dielectric 

interface. 
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Figure 2.3(a) shows the schematic of GPRs-based mid-infrared light modulator with 

Salisbury screen. The GPRs’ width/gap are assumed as 50 nm/50 nm, and 1.01 μm thick dielectric 

layer with n=1.75 with perfect electric conductor reflector constitute the Salisbury screen. 

Salisbury screen was invented during World War II in order to reduce radar cross section 

for stealthy operation [61]. The principle of the Salisbury screen is that incoming light and outgoing 

light reflected from a back reflector interfere, maximum constructive interference occurs at quarter 

wavelength position above the back reflector because light undergoes π-phase shift when it is 

reflected by the back reflector, as shown in Figs. 2.3(b) and (c). In the same manner, the electric 

field is minimized at the air/dielectric interface if the interface is located at the half wavelength 

position because of the destructive interference between the incoming light and the reflected light 

from the perfect electric conductor reflector, as shown in Figs. 2.3(b) and (d). Therefore, we can 

significantly enhance the absorption if absorbing materials are positioned at this quarter wavelength 

position due to the intensified electric field induced by the Salisbury screen resonance leading to 

strong light-matter interaction. In this device, we design the Salisbury screen exhibiting maximized 

electric field at the air/dielectric (n=1.75) interface with free-space wavelength λ0=7 μm, 

corresponding to 1 μm thick dielectric layer. Then, the GPRs are located at the air/dielectric 

interface in order to enhance the absorption in the GPRs, which results in high modulation 

efficiency in reflection. 

Figures 2.4(a) and (b) show the gate-dependent tunable reflection and absorption and in the 

GPRs on the Salisbury screen. As mentioned in Section 2.1.1, the graphene plasmon dispersion 

relation is tunable by adjusting the graphene Fermi level. In Eq. (2.3), we can derive that the 

graphene plasmonic resonance frequency is approximately proportional to the square root of the 

graphene Fermi level. Therefore, the graphene plasmonic resonance peaks in the GPRs exhibit 

blue-shift as increasing the graphene Fermi level. 

In general, we can induce stronger graphene plasmonic resonance with higher graphene 

Fermi level because there are more free carriers interacting with graphene plasmons. Suppose that 

the geometry of the GPRs is fixed, it indicates that stronger absorption occurs at higher frequency 

due to the relation between the resonance frequency and the graphene Fermi level. However, the 

perfect absorption is achieved when the graphene plasmonic resonance frequency matches the 

quarter wavelength condition of the Salisbury screen, as shown in Figs. 2.4(a) and (b), and the 

absorption decrease at higher frequency (or higher graphene Fermi level). This is the result of the 

enhanced electric fields around the GPRs by the maximized constructive interference from the 

Salisbury screen. 
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Figure 2.4 | Perfect absorption in graphene plasmonic ribbons. Gate-dependent (a) 

absorption spectra and (b) reflection spectra from the GPRs on Salisbury screen. (c) Absorption 

depending on the graphene carrier mobility (μ). (d) Absorption depending on the graphene Fermi 

level (EF) with different graphene carrier mobility (μ). 

 

In the GPRs-based light modulation, graphene carrier mobility is an important factor to 

determine the light modulation efficiency. The graphene carrier mobility indicates the carrier 

scattering in the graphene, and it represents the graphene quality [62]. Therefore, the degree of the 

graphene plasmonic resonance is limited by the graphene carrier mobility. With high graphene 

carrier mobility, or high quality graphene, we can induce strong graphene plasmonic resonance 

having high Q-factor in the graphene plasmonic resonators. However, low graphene carrier 

mobility weakens the graphene plasmonic resonance resulting in reducing Q-factor in the graphene 

plasmonic resonators. Figure 2.4 (c) shows the absorption depending on the graphene carrier 

mobility. The perfect absorption occurs with graphene carrier mobility μ=1,730 cm2V-1s-1, and the 

absorption decreases with lower graphene carrier mobility because of lower graphene plasmonic 
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resonance. Above graphene carrier mobility μ=1,730 cm2V-1s-1, the absorption also decrease as 

increasing the graphene carrier mobility, as shown in Figs. 2.4(c) and (d). This is not because the 

graphene plasmonic resonance is reduced with higher graphene carrier mobility, but because the 

condition of graphene carrier mobility μ>1,730 cm2V-1s-1 corresponds to over-coupling between the 

graphene plasmonic resonance and the Salisbury screen resonance. The details on the absorption 

depending on the graphene carrier mobility will be discussed in Chapter 3. 

 

2.1.3 Modeling Graphene in Electromagnetics 

 To calculate the optical response of graphene in electromagnetics, we first have to derive 

the dynamical optical surface conductivity of the graphene. In the local limit of random phase 

approximation neglecting the spatial dispersion, the frequency dependent optical conductivity of 

graphene is given by [63-65] 

𝜎(𝜔) = 𝜎intra(𝜔) + 𝜎inter(𝜔) 

=
𝑒2𝜔

𝑖𝜋
[∫ 𝑑𝐸

|𝐸|

(ℏ𝜔)2
∙
𝑑𝑓d(𝐸)

𝑑𝐸
−∫ 𝑑𝐸

𝑓d(−𝐸) − 𝑓d(𝐸)

(ℏ𝜔)2 − 4𝐸2

∞

0

 
∞

−∞

] 
(2.4) 

where σintra(ω) and σinter(ω) are the conductivities originating from the intraband and the interband 

transitions in graphene, respectively. And 𝑓d(𝐸) =
1

1+exp[(𝐸−𝐸F) 𝑘B𝑇⁄ ]
 is the Fermi-Dirac 

distribution function with graphene Fermi level EF. If there are impurities, defects, or disorders in 

graphene, it creates electron-electron scattering, and it results in reducing the graphene carrier 

mobility. In order to consider this electron disorder scattering process, the frequency ω is replaced 

with ω+τ-1, where τ is the intrinsic relaxation time. The intrinsic relaxation time τ is given by 

𝜏 =
𝜇|𝐸F|

𝑒𝜈F
2  (2.5) 

where μ is the graphene carrier mobility, EF is the graphene Fermi level, e is the elementary charge, 

and vF is the Fermi velocity in graphene. With this intrinsic relaxation time, the σintra(ω) and σinter(ω) 

are simplified by 

𝜎intra(𝜔) =
𝑖 𝑒2𝑘B𝑇

𝜋ℏ2(𝜔 + 𝑖𝜏−1)
log [ cosh (

|𝐸F|

 𝑘B𝑇
)] (2.6) 

𝜎inter(𝜔) =
𝑒2

4ℏ
𝐺 (
ℏ𝜔
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𝑖𝑒2𝜔
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)
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 (2.7) 
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where 𝐺(𝐸) =
sinh(𝐸/𝑘B𝑇)

cosh(𝐸/𝑘B𝑇)+cosh(|𝐸F|/𝑘B𝑇)
. Figure 2.5 shows the real part and the imaginary part of 

the frequency dependent optical surface conductivity of graphene normalized by e2/ħ with EF=0.3 

eV and graphene carrier mobility μ=10,000 cm2V-1s-1 at room temperature (T=300 K). As shown 

in Fig. 2.5(a), the real part of the graphene optical surface conductivity is dominated by the σinter(ω) 

because of the interband transition absorption. 

 

 
Figure 2.5 | Graphene optical surface conductivity. (a) Real part and (b) imaginary part of 

frequency dependent optical surface conductivity of graphene with EF=0.3 eV and μ=10,000 

cm2V-1s-1 at room temperature (T=300 K). 

 

 In full-wave electromagnetic simulations, there are two ways to model the atomically thin 

monolayer graphene. First, we can model the graphene with surface current 𝐉∥ = 𝜎𝐄∥, where the 

subscript ∥ denotes the parallel component to graphene surface. Second, the graphene can be 

modeled by a very thin layer with frequency dependent permittivity given by [59, 63, 64] 

𝜀(𝜔) = 1 +
𝑖𝜎(𝜔)

𝜀0𝜔𝑑g
 (2.8) 

where dg is the graphene thickness. Figure 2.6(a) shows the permittivity of graphene with dg=0.1 

nm depending on the graphene Fermi level at ħω=0.5 eV with graphene carrier mobility μ=10,000 

cm2V-1s-1. If the graphene thickness dg is chosen below 0.5 nm, the difference between the surface 

current modeling and the thin layer modeling is negligible in mid-infrared range, as shown in Fig. 

2.6(b). 
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Figure 2.6 | Graphene dielectric function. (a) Relative permittivity of graphene modeled by 

0.1 nm thick layer depending on the graphene Fermi level (EF) with photon energy ħω=0.5 eV 

and graphene carrier mobility μ=10,000 cm2V-1s-1. (b) Absorption comparison between the 

surface current modeling (Aσ) and relative permittivity with thin layer (Aε) for modeling graphene 

of the GPR structure in Fig. 2.3. The graphene Fermi levels (EF) for the Aσ and Aε with dg=0.1 

nm, 0.3 nm, and 0.5 nm are chosen by 0.555 eV, 0.552 eV, 0.556 eV, and 0.560 eV, respectively. 

 

2.2 Chemical Vapor Deposition Grown Graphene 

 Monolayer graphene can be grown by chemical vapor deposition (CVD) method, and the 

size of the CVD-grown graphene is scalable [66-69]. In 2010, 30-inch monolayer graphene for 

transparent electrodes has been demonstrated [70]. In addition, it allows us to transfer the 

monolayer graphene onto arbitrary substrates [71]. These two advantages of the CVD-grown 

graphene is very important in device fabrication. When it comes to the graphene quality, exfoliated 

graphene has higher graphene carrier mobility than CVD-grown graphene [72, 73]. However, it has 

been demonstrated that the graphene carrier mobility of CVD-grown graphene can be as good as 

the exfoliated graphene by growing millimeter size single crystal graphene [74-77]. 

 

2.2.1 Graphene Growth in Chemical Vapor Deposition Method 

Figure 2.7 shows the schematic of graphene growth in a CVD method. Copper foil (Alfa 

Aesar, 0.025 mm thick, purity=99.999%) is placed in a tube furnace, and the tube is pumped by a 

roughing pump. As heating the tube, we flow CH4 and H2 gases. Here, the CH4 gas supplies the 

carbon source for graphene growth, and the H2 gas corresponds to a purging gas. 
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Figure 2.7 | Graphene growth in chemical vapor deposition method. (a) Pristine copper foil 

with small grain size and a native oxide layer. (b) Annealed copper foil with large crystalline 

grain size. The native oxide layer is removed during the annealing process. (c) CH4 

decomposition on the copper foil and nucleation of carbon atoms. (d) Graphene growth with 

further CH4 decomposition. 

 

Before flowing CH4 gas, we first have to anneal the copper foil at 1,000 °C for an hour 

with H2 in order to remove the native oxide layer. In addition, the annealing process reduces the 

defects in the pristine copper foil and increases the copper grain size, as shown in Figs. 2.7(a) and 

(b). When we start flowing CH4 gas, the copper foil acts as catalyst to decompose the CH4 gas at 

high temperature, and the decomposition occurs randomly on arbitrary positions on the copper foil 

surface. Since copper has nearly zero affinity to carbon [68], the decomposed carbon atoms cannot 

diffuse into the copper foil, and they wander on the copper foil surface. As wandering on the copper 

foil surface, the decomposed carbon atoms are trapped by defects on the copper foil, as shown in 

Fig. 2.7(c). The trapped carbon atoms perform as nuclei for graphene growth, and further CH4 

decomposition leads to deposition of graphene islands, as shown in Fig. 2.7(d). In this process, each 

graphene island expands to different lattice orientation, and coalesced graphene layer becomes 

polycrystalline. When the graphene layer covers the copper foil surface, it prevents further CH4 

decomposition because the covered graphene layer acts as an inert blanket. After flowing CH4 gas 

for an hour at 1,000 °C, we can grow a continuous monolayer polycrystalline graphene layer on the 

copper foil. 

Figure 2.8 compares the size of the exfoliated graphene and the CVD-grown graphene on 

SiO2/Si substrate. As shown in Fig. 2.8, the size of the exfoliated graphene is not compared to the 
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CVD-grown graphene, and the CVD-grown graphene displays continuous coverage on a very large 

scale. 

 

 
Figure 2.8 | Graphene images. Optical microscope images of CVD-grown graphene on SiO2/Si 

substrate (a) with a large field of view and (b) with a small field of view. (c) Optical microscope 

images of exfoliated graphene on SiO2/Si substrate. 

 

There are critical parameters determining graphene quality [78]. First of all, the growth 

temperature is the most important parameters. High temperature near to copper melting temperature 

is required to anneal the copper foil as well as to decompose the CH4 gas. If the annealing and the 

growth temperature is too low, it leads to uncontrollable multilayer graphene growth, as shown in 

Fig. 2.9(a). We expect that the enough high temperature reduces the pristine defects in the copper 

foil, and it would lead to more conformal graphene growth. We cannot grow the graphene at too 
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high temperature because the copper foil is evaporated even below its melting temperature 

(1,085 °C). In our graphene growth CVD system, the optimized temperature is 1,000 °C. 

 

 
Figure 2.9 | Defective graphene growth. (a) CVD-grown Graphene with multi-layers. (b) 

Incompletely grown graphene. 

 

 The gas flow rate is also very important to grow graphene [77, 79, 80]. In order to grow 

high quality graphene, we have to reduce both the density of the carbon atom nuclei because it leads 

to larger crystalline graphene domain size. In addition, we also have to slow down the graphene 

growth rate in order to secure enough time to make appropriate carbon-carbon bonding. These two 

conditions are achievable by decreasing the CH4 gas flow rate and by increasing the H2 purging gas 

flow rate because it reduces the ratio of carbon source. However, the graphene would be 

incompletely grown if the CH4 gas rate is too small, as shown in Fig. 2.9(b). In our graphene growth 

CVD system, the 1 sccm of CH4 gas flow rate and the 50 sccm of H2 gas flow show the best quality 

of graphene. 

 

2.2.2 Graphene Transfer 

After growing a monolayer graphene on a copper foil using a CVD method, we can transfer 

the graphene onto arbitrary substrate. The procedure is shown in Figure. 2.10. To begin with, 

PMMA layer (MicroChem, 495 A4) is spin coated on the graphene/copper foil to support the 

graphene layer on etchant or DI water. About 200nm of PMMA is coated on the graphene with 

2,500 RPM for a minute spin-coating. To support the graphene layer, PDMS and polymeric tapes 

can be also used instead of PMMA [68]. However, PMMA spin-coating is most common because 

it induces less cracks during transferring process and it is easier to remove the PMMA without 

damaging the graphene than the PDMS or the polymeric taps. After baking the 
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PMMA/graphene/copper foil stack, the graphene grown on the backside of the copper foil is etched 

in a plasma asher with O2 at 100 W of power for a minute. In this process, the top graphene layer 

is protected by the PMMA layer. 

 

 
Figure 2.10 | Graphene transfer. (a) Etching copper foil in copper etchant. (b) Rinsing in DI 

water. (c) Scooping the PMMA/graphene layer onto a substrate. (d) Removing the top PMMA 

layer in acetone and rinsing in IPA. 

 

Then, the copper foil is etched in FeCl3 solution (Transene, CE 100) for an hour. After 

rinsing the PMMA/graphene stack on DI water thoroughly, the PMMA/graphene stack is scooped 

onto a target substrate.  

If the copper etching time is too short or the PMMA/graphene stack is not properly rinsed 

in DI water, some metallic residues could be trapped between the graphene and the substrate [81], 

as shown in Fig. 2.11(a). After annealing the PMMA/graphene/substrate stack at 80 °C for 

overnight in order to dry the water between the graphene and the substrate, the PMMA layer is 

remove by acetone and rinsed by IPA. If the PMMA/graphene/substrate stack is not annealed 

properly, it could cause weak adherence between the graphene and the substrate, and it leads to 

lifting off the graphene after removing the PMMA, as shown in Fig. 2.11(b). 
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Figure 2.11 | Defective graphene transfer. (a) Trapped metallic residues beneath graphene. (b) 

Improperly annealing graphene before removing top PMMA layer. 

 

2.2.3 Raman Spectroscopy of Graphene 

Raman spectroscopy is a technique to observe molecular vibrations in materials, and it is 

very sensitive to molecular geometry and bonding [82]. Therefore, the Raman spectroscopy has 

been widely in modern semiconductor technologies to characterize the carrier concentration and 

the defects in semiconductors [83].  

 

 
Figure 2.12 | Raman spectrum of graphene. Raman spectrum associated with phonons in 

graphene. The I2D/IG ratio is 2.01, and the IG/ID ratio is 16.8. ΓG and Γ2D denote the full width half 

maximums of the G and 2D peaks, respectively. 
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The Raman spectroscopy is also useful in the study of graphene because it can be utilized 

to investigate the characteristics of graphene. To be specific, we can figure out the doping level, 

the defect density, the strain, and the edge chirality of graphene [83-86]. In addition, it is possible 

to distinguish between a mono layer graphene and a multilayer graphene. Figure 2.12 shows Raman 

spectrum of the CVD-grown graphene transferred onto thermal SiO2/Si substrate, and there are 

three distinctive peaks: 2D band, G band, and D band, and these Raman bands are associated with 

iTO and iLO phonons in graphene [83], and the Raman shift is determined by the energy difference 

between the photon absorption and emission [86]. 

In the Raman spectrum, the 2D band has the strongest intensity appearing at around 2,700 

cm-1, and it corresponds to the second order in-plane breathing mode of the carbon rings involving 

two iTO phonons at around the K point, as shown in Figs 2.13(a) and 2.14(a-b). For a monolayer 

graphene, the 2D band exhibits a single symmetric peak, and multilayer graphene splits the 2D 

band by overlapping a couple of other vibrational modes. 

 

 
Figure 2.13 | Phonon vibrations in graphene. (a) iTO phonon at K point for D and 2D bands. 

(b) iTO phonon and (c) iLO phonon at Γ point for G band. 

 

At around 1,600 cm-1, there is a G band originating from the first order in-plane stretching 

mode of the carbon rings, and the G band is associated with doubly degenerate in-plane phonon 

modes (iTO and iLO phonons) at the center of the Brillouin zone (Γ point), as shown in Figs 2.13(b-

c) and 2.14(c). The G band position redshifts with increasing the number of graphene layer. 

The D band shown at around 1,350 cm-1 is referred to the disorder band or the defect band 

in graphene. The D band is also the second order in-plane breathing mode of the carbon rings (iTO 

phonon at around the K point), as shown in Figs 2.13(a) and 2.14(d). In contrast to the 2D band, it 

is activated by proximity to defects in graphene for the momentum conservation. Since the electron 
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scattering by the defects in graphene is an elastic scattering process, the Raman shift in the D band 

is half of the Raman shift in the 2D band. 

 

 
Figure 2.14 | Raman spectral process in graphene. (a) Double resonance 2D band process. 

(b) Triple resonance 2D band process. (c) First-order G band process. (d) Second-order D band 

process involving inelastic one phonon and elastic electron scattering on defects. 

 

By comparing the each peak intensity, we can characterize the properties of graphene. To 

begin with, we can easily determine whether the graphene is monolayer from the ratio between the 

intensities of the 2D band (I2D) and the G band (IG). If the graphene is multilayer, the I2D is usually 

smaller than the IG. In Fig. 2.12, the I2D/IG ratio is 2.01, and it indicates that the graphene is 

monolayer. 

When we transfer the graphene on a substrate, there could be several impurities. For 

example, water could be trapped between the graphene and the substrate during the scooping 

process [87-89]. There could be some remaining iron ions or chlorine ions beneath the graphene, 

which are the main components for the copper etchant [81]. In addition, it is very hard to completely 

remove the PMMA coated on the graphene because sp3 hybridization is produced between the 
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PMMA and the graphene [90, 91]. Those impurities act as dopants for graphene, and it induces the 

background doping in graphene. This background doping can be also estimated from the I2D/IG ratio. 

Assuming that the graphene Fermi level is aligned at the Dirac point, a monolayer graphene 

transferred onto a SiO2/Si substrate exhibits the I2D/IG~3. If there are some impurities in the 

graphene, this ratio decreases because of the background doping [92-94]. In Fig 2.12, the I2D/IG 

ratio is about 2.01 without a gating bias, and it indicates that there is a certain amount of background 

doping in the graphene. More accurate background doping level is measurable by a transport 

measurement, and it will be discussed in Section 2.2.4. 

The intensity of the D band (ID) is proportional to the density of the defects in graphene, 

and we can estimate the amount of the defects by measuring the D band. In exfoliated graphene or 

graphite, the D band is very weak because they are nearly defect free. When we grow graphene 

using a CVD method, there should be a certain amount of defects in graphene originating from 

missing carbon atoms or grain boundaries between adjacent crystalline domains. In Fig. 2.12, the 

D band is nearly discernible, and the IG/ID ratio is 16.8, which indicates that there are few defects 

in the CVD-grown graphene. We can observe a broad peak at around the D band, and it originates 

from the mixture of sp2 and sp3 hybridization of amorphous carbon produced by the PMMA 

residues on graphene [95, 96]. 

 

2.2.4 Transport Measurement 

 To determine the graphene Fermi level with a gating bias, we first have to measure the 

background doping level in graphene. During the transfer process, impurities, such as residual 

metallic ions or water, can be trapped between the graphene and the substrate. Moreover, it is not 

easy to completely remove the PMMA residue on the graphene in solvent [90, 91, 95]. Those 

impurities act as dopants in graphene, and it induces a certain amount of background doping. To 

measure the background doping level in graphene, we perform the transport measurement, as 

shown in Fig. 2.15(a). In this configuration, the resistance between the source and the drain is 

measured as varying the gate voltage (VG) between the graphene and the back electrode. As shown 

in Fig. 2.15(b), the resistance is maximized at the charge neutral point, where the graphene Fermi 

level is aligned with the Dirac point, because the carrier density is minimized at the CNP, and it 

leads to reducing the graphene conductivity. Here, the CNP is not located at zero gate voltage 

because impurities on the graphene and between the graphene and the substrate induces background 

doping. In most of the cases, such impurities mentioned above induce hole doping in graphene. 

Therefore, the CNP in graphene is observed in a positive gate voltage. 
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Figure 2.15 | Transport measurement. (a) Schematic of transport measurement in graphene to 

measure the charge neutral point (CNP). (b) Gate-dependent resistance of graphene transferred 

onto SiO2 285nm/Si substrate exhibiting the CNP at VG=55V.* 

  

In this electrostatic gating method, we can calculate gate-dependent graphene Fermi level 

using a simple capacitor model [92]. When we apply a gate voltage (VG), an electrostatic potential 

difference (ϕ) is created between the graphene and the back electrode, and additionally accumulated 

charges in graphene induce a small shift in the graphene Fermi level (ΔEF). Assuming there is no 

background doping in graphene, the gate voltage is expressed by 

𝑉𝐺 = 𝜙 +
Δ𝐸F
𝑒

 (2.9) 

                                                             
* This data is excerpted from Ref. 101 with the author’s approval. 
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where e is the elementary charge. In Eq. (2.9), electrostatic potential difference ϕ is determined by 

the geometric capacitance C, and the chemical capacitance of the graphene induces the ΔEF/e. Here, 

it has been reported that the electrostatic potential ϕ is much larger than the potential by graphene 

Fermi level shift ΔEF/e [92]. Therefore, we can assume VG≈ϕ. 

 When carriers are accumulated by the gate voltage, the electrostatic potential ϕ is given by 

𝜙 =
𝑄

𝐶
=
𝑛𝑒

𝐶
 (2.10) 

where Q is the number of accumulated carriers, and n is the carrier density. And, the geometric 

capacitance is calculated by 

𝐶 =
𝜅𝜀0
𝑑

 (2.11) 

where κ is the dielectric constant of the insulator, ε0 is the vacuum permittivity, and d is the insulator 

thickness. Using Eqs. (2.9-2.11), we can convert the gate voltage VG to carrier density n. With given 

carrier density n, the graphene Fermi level is calculated by 

|𝐸F| = ℏ𝑣F√𝜋𝑛 (2.12) 

where vF is the Fermi velocity in graphene (vF≈1×108 cm/s). 

  

 
Figure 2.16 | Graphene doping. Gate-dependent graphene Fermi level (EF) and graphene carrier 

density (nh) on SiO2 285 nm/Si substrate in a hole doping regime. The CNP is located at VG=55V, 

and the dielectric constant κ of SiO2 is assumed as 3.9. 
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graphene. In graphene plasmons, higher graphene Fermi level is preferable because stronger 

graphene plasmons can be excited if there are more carriers in graphene. However, the maximum 

graphene Fermi level is limited by the breakdown voltage of the insulator, and the graphene can be 

doped up to about -0.6 eV (nh=2.65×1013 cm-2) in this gating method. To further increase the doping 

level, chemical doping or ionic gel can be used [93, 97, 98]. 
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CHAPTER 3 

ELECTRONICALLY TUNABLE RESONANT PERFECT 

ABSORPTION IN GRAPHENE PLASMONIC 

METASURFACE 

Graphene plasmons have been recently utilized to create a variety of dynamically tunable 

metasurfaces whereby the reflected or transmitted radiation can be controlled by varying the 

graphene carrier density. The efficiencies of these devices, however, have been low and largely 

limited by the poor coupling between free-space photons and graphene plasmons. Here we propose 

and demonstrate electronically tunable resonant absorption in graphene plasmonic metasurfaces 

enhanced by substrate control and noble metal plasmonic effects. Theoretical calculations predict 

that perfect absorption in the proposed metasurface is no longer limited by graphene carrier 

mobility. We present a rigorous analytic model based on effective surface admittance to elucidate 

the origin of the enhanced absorption, which shows that the perfect absorption is achieved when 

the interaction between the graphene plasmonic metasurface and the substrate is carefully 

engineered to induce critical coupling to free-space. Experimental measurements reveal 96.9% 

absorption in the graphene plasmonic metasurface at 1,389 cm-1, corresponding to a modulation 

efficiency of 95.9% in reflection.   
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3.1 Introduction 

Graphene based optical modulators and phase shifters have recently emerged as an area of 

intense research partly due to the ability of confined graphene plasmonic resonances to create a 

strong electrostatic response at THz to mid-IR frequencies. Additionally, the high confinement 

factor of graphene plasmons allow for the creation of highly miniaturize [41-44, 46, 48-50] and 

active optical elements [51, 59, 60, 99-117]. Despite these capabilities, a major obstacle in graphene 

plasmonics is the low coupling rate between free-space photons and graphene plasmons, which 

leads to low device efficiency. This detrimental effect is due to the inherent thinness of graphene, 

as well as the large wavevector mismatch between graphene plasmons and free-space photons [41, 

49, 50]. To circumvent these issues, large chemical doping [104, 105], carefully designed substrates 

[59, 60, 106, 107], and combined subwavelength noble metal plasmonic structures [108-117] have 

been utilized to either increase the oscillator strength of the graphene, or impedance match the 

graphene plasmons to free-space photons. 

In spite of these efforts, even 50% absorption in graphene plasmonic ribbons (GPRs) has 

not yet, to the best of our knowledge, been realized in mid-infrared even as simple theoretical 

schemes have predicted 100% [59, 60]. This discrepancy is due largely to the low carrier mobility 

in processed graphene samples (due to edge roughness in GPRs or PMMA residue from processing 

[35, 89, 90, 118, 119]) in comparison to the large mobilities expected in theoretical work which 

have much higher oscillator strengths. Furthermore, it is still unclear that this high carrier mobility 

can be retained at high frequencies. 

In this chapter, we devise a series of graphene plasmonic metasurfaces that exhibit 

incrementally higher levels of electronically tunable resonant absorption through systematic 

improvements in materials choice and geometrical design. First, we utilize lower permittivity 

substrates to improve resonant absorption in GPRs through better wavevector matching between 

graphene plasmons and free-space photons. Second, by confining the light through noble metal 

plasmonic subwavelength metal slits we can increase the field strength around GPRs to improve 

oscillator strength. And third, by exploiting image GPRs created by the metal slit edges, we can 

further augment the light-matter interactions in GPRs leading to significant enhancement in 

resonant absorption. Unlike other mid-infrared perfect absorbers solely relying on noble metal 

plasmonic effects [111, 120], we create perfect absorption in the graphene itself by utilizing 

graphene plasmon resonance enhanced by noble metal plasmonic light focusing effect, providing 

an ideal platform for tunable strong light matter interactions. 
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In the proposed graphene plasmonic metasurfaces, theoretical calculations predict perfect 

absorption in mid-infrared with graphene carrier mobility as low as 200 cm2V-1s-1 and at a moderate 

doping with the graphene Fermi level position less than -0.6 eV, which are more realistic 

parameters than those previously proposed in devices to experimentally realize the perfect 

absorption. We describe the nature of these improvements by using an effective surface admittance 

inspired theoretical model, which reveals that the perfect absorption is achieved when the 

interaction between the graphene plasmonic metasurface and the substrate is carefully engineered 

to induce critical coupling to free-space. In mid-infrared reflection measurement, we demonstrate 

in a fabricated device that electronically tunable resonant absorption can be increased to 96.9% at 

1,389 cm-1, with a modulation efficiency of 95.9%. 

 

3.2 Device Geometry and Light Modulation Mechanism. 

Figure 3.1 shows the three reflection-type light modulators based on GPRs that we develop 

in this work. All devices are designed on SiO2/SiNx membrane stacks with a back reflector (Ti 3 

nm/Au 100 nm), which create a “Salisbury screen” effect to enhance absorption in the GPRs [59, 

60, 107]. 

Type A device in Fig. 3.1(a) corresponds to a device consisting of bare GPRs on the SiO2 

150 nm/SiNx 1 um/Au substrate with 100 nm/100 nm of ribbon/ gap width. Type B and C devices 

on the SiO2 150 nm/SiNx 500 nm/Au substrate in Figs. 3.1(b) and (c) have GPRs coupled to 

subwavelength metal slits, and the GPRs are patterned inside the slits. The metal strips consist of 

Ti 2 nm/Au 80 nm. In the type B device, the GPR is located at the center of the slit, and the ribbon, 

the metal slit and strip width are 100 nm, 200 nm, and 910 nm, respectively. Compared to the type 

B device, one side of the GPR in the type C device is at the center of the slit, and another end is 

buried beneath the metal strip. The type C device has 50 nm wide ribbons and 100 nm/615 nm of 

metal slit/strip width. The total area for each device is about 75 μm×75 μm, and their SEM images 

are shown in Figs. 3.1(d-i). 

The geometry of all devices were chosen such that they would display maximum 

absorption at 1,356 cm-1 with the graphene Fermi level below -0.6 eV, which were the similar 

conditions of maximum absorption that we reported for a standard GPR device on SiNx/Au 

substrate [60], which we refer to here as type 0 device. Varying the substrate and surface 

environment can yield tangible benefits towards the goal of achieving perfect absorption in 

electrostatically gated graphene structures with lower graphene carrier mobility. 
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Figure 3.1 | Device geometry. Schematic of (a-c) type A, B, and C devices, respectively, and 

(d-i) corresponding SEM images (false color). In a-c, field distributions on the back side 

correspond to electric field distributions, and Re(Ez) distributions are overlapped in graphene 

plasmonic ribbons (GPRs). In the SEM images, the dark strips are the GPRs. In e and f, the left 

sides are the original SEM images, and contrast and color adjusted SEM images are overlapped 

on the right side to display clear GPRs inside the slits. To prevent electrical disconnection, GPRs 

have 150 nm wide bridges, and the length of the GPR strip is 2.5 μm. In g, the bright regions 

correspond to the dead resonators due to electrical disconnections. 
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Table 3.1 overviews the theoretical conditions for perfect absorption for the type 0 to C 

devices with the required effective graphene carrier mobility shown for each geometry. These 

results show that varying the substrate and surface environment can yield tangible benefits towards 

the goal of achieving perfect absorption in electrostatically gated graphene structures. Here, we 

point out that the optimized SiNx thickness for the type B and C devices is thinner than 1 μm due 

to the phase shift of light as passing through the metasurfaces, which will be discussed later in 

terms of admittance matching. 

 

 Type 0 Type A Type B Type C 

μh (cm2V-1s-1) 3,174 2,271 613 315 

EF (eV) -0.484 -0.484 -0.486 -0.482 

Table 3.1 | Conditions for perfect absorption at 1,356 cm-1. Graphene carrier mobility and 

graphene Fermi level are denoted by μh and EF, respectively, and the negative EF indicates hole 

doping. 

 

3.3 Type A: Graphene Plasmons on Low Permittivity 

Substrate 

3.3.1 Electric Field Enhancement by Salisbury Screen 

In order to enhance the absorption in GPRs, we exploited field enhancement at around the 

GPRs by Salisbury screen consisting of a dielectric stack and a back reflector [59-61]. Since the 

field enhancement at the interface between the air and the dielectric stack is a result of the 

interference between the incoming light and the reflected light from the back reflector, the electric 

field intensity at the interface could be larger or smaller than the incoming light depending on the 

wavelength and the dielectric stack thickness. When the thickness of the dielectric stack matches 

to the quarter wavelength condition, the electric field intensity is maximized at the interface because 

the phase shift of the reflected light at the back reflector is π, which leads to constructive 

interference at the air/dielectric stack interface at the quarter wavelength condition. Theoretical 

maximum enhancement is a factor of 4, and the enhancement factor decreases with absorption in 

the dielectric stack and the back reflector. 
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Figure 3.2 | Substrate-dependent field enhancement. (a) Field enhancement as a function of 

frequency on SiNx 1.05 μm/Au and (b) corresponding absorption in the type 0 device at 1,356 

cm-1 as a function of the SiNx thickness (dSiNx). (c) Field enhancement as a function of frequency 

on SiO2 150 nm/SiNx 1 μm/Au and (d) corresponding absorption in the type A device at 1,356 

cm-1 as a function of the SiNx thickness (dSiNx). 

 

 Figures 3.2(a) and (b) show the electric field intensity enhancement on the SiNx/Au and the 

SiO2/SiNx/Au Salisbury screens. Both Salisbury screens are optimized to maximize the electric 

field intensity at 1,356 cm-1 on the air/SiO2 interface, and the maximum electric field intensity 

enhancements on the SiNx on the SiO2 are 3.76 and 3.77 at 1,356 cm-1, respectively. 

Figures 3.2(c) and (d) show the absorption in the GPRs by the field enhancement at 1,356 

cm-1. The electric field at the air/dielectric interface exhibit resonance depending on the SiNx 

thickness, and the maxima and the minima occur at 𝑑sub ≈
𝜆0

4𝑛sub
 and 𝑑sub ≈

𝜆0

2𝑛sub
, respectively 

(λ0: free-space wavelength, dsub: substrate thickness, nsub: effective refractive index of substrate). 
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field enhancement profiles, as shown in Figs. 3.2(c) and (d). Figure 3.3 shows that the near-fields 

around the GPRs also increase or decrease depending on the field enhancement. 

 

 
Figure 3.3 | Substrate-dependent electric field distributions. Electric field distributions (a) at 

the maximum absorption and (b) at the minimum absorption in the type 0 device. Electric field 

distributions (c) at the maximum absorption and (d) at the minimum absorption in the type A 

device. 

 

3.3.2 Graphene Plasmon Dispersion Relation 

The fundamental problem that leads to low absorption in graphene plasmonic devices is 

the large wavevector mismatch with free-space [41, 49, 50]. While this property is useful for strong 

light-matter interactions and light confinement, it leads to low efficiency devices. One way to 

address this problem is to heavily dope the graphene, which blueshifts graphene plasmons at a given 

wavelength. However, chemical doping, such as using ionic gels, could limit the switching speed 

and the applicability of the devices in solid state hardware. A more attractive idea is utilizing a low 

permittivity substrate which naturally blueshifts graphene plasmons. To see this, consider the 

dispersion relation of a transverse magnetic graphene plasmons in the quasi-static regime [45, 56, 

57]: 

𝑘p = 𝜀0(1 + 𝜀sub)
𝑖𝜔

𝜎
 (3.1) 

where εsub is the substrate relative permittivity, and σ is the optical surface conductivity of graphene 

[63, 64]. This dispersion relation implies that graphene plasmons have a relatively small 

wavenumber on a low permittivity substrate, thus reducing the wavevector mismatch between free-

space photons and graphene plasmons, resulting in high coupling efficiency. 
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Figure 3.4 | Graphene plasmons on low permittivity substrate. (a) Permittivities of SiO2 and 

SiNx measured by mid-infrared ellipsometry. (b) Normalized wavenumbers (kp/k0) of graphene 

plasmons at 1,356 cm-1 on SiNx/Au and SiO2/SiNx/Au substrates. (c) Ex profile of graphene 

plasmon waveguide mode on each Salisbury screen substrate. Propagating Ex distribution of 

graphene plasmon along the graphenes on (d) SiNx/Au and (e) SiO2/SiNx/Au substrates. 

 

Figure 3.4(a) is the relative permittivities of SiO2 and SiNx measured by mid-infrared 

ellipsometry showing that SiO2 has lower permittivity than SiNx. To verify the low permittivity 

effect at 1,356 cm-1, we designed the Salisbury screens comprised of SiNx 1.05 μm/Au and SiO2 

150 nm/SiNx 1 μm/Au stacks. The dispersion relation of graphene plasmons on each Salisbury 

screen is calculated in Fig. 3.4(b) as a function of graphene Fermi level (EF). Since SiO2 has lower 

permittivity than SiNx, the graphene plasmon on SiO2 exhibits a smaller wavenumber (or longer 

wavelength) than on SiNx, as shown in Fig. 3.4(b). The normalized wavenumber (kp/k0) of graphene 

plasmon on SiO2/SiNx/Au is 24.2+i0.91 with EF=-0.484 eV, and this wavenumber is nearly half of 

the graphene plasmon wavenumber on SiNx/Au, where the normalized wavenumber is 48.1+i1.82 

with the same EF. Here, the graphene plasmon on the SiO2 barely recognizes the bottom SiNx 
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because the skip depth into the substrate (δ2=48.2 nm) is shorter than the SiO2 thickness (150 nm), 

as shown in Fig. 3.4(c). In addition, the graphene plasmon on the SiO2 has a smaller confinement 

factor than on the SiNx. As a result, the graphene plasmon on the SiO2 has smaller decay rate, and 

it can propagate more distance than on the SiNx, as shown in Figs. 3.4(d) and (e). The propagation 

lengths on the SiNx/Au and on the SiO2/SiNx/Au substrates are 323 nm and 647 nm, respectively. 

 

3.3.3 Perfect Absorption in Graphene Plasmonic Ribbons 

 
Figure 3.5 | Graphene plasmonic ribbons. (a) Absorption in graphene plasmonic ribbons 

(GPRs) as a function of the ribbon width and the gap width. (b) Electric field distribution and 

(c) Ex around the 50.2 nm/50.2 nm of ribbon/gap width GPRs on the type 0 device. (d) Electric 

field distribution and (e) Ex around the 100 nm/100 nm of ribbon/gap width GPRs on the type A 

device. 
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compared to the SiNx/Au substrate. Figure 3.5(a) shows absorption at 1,356 cm-1 on each Salisbury 

screen as a function of ribbon width and gap width with EF=-0.484 eV. Along the 1:1 of ribbon:gap 

ratio line ensuring the same graphene coverage for both devices, we chose 50.2 nm/50.2 nm and 

100 nm/100 nm of ribbon/gap width GPRs for the type 0 and A devices, respectively, and their 

electric field and Ex distributions are shown in Figs. 3.5(b-e). Since the wavevector mismatch is 

reduced on a low permittivity substrate, the type A device induces stronger resonance than the type 

0 device. As a result, type A devices exhibits perfect absorption with μh=2,271 cm2V-1s-1, while the 

μh=3,174 cm2V-1s-1 is required in the type 0 device to achieve perfect absorption. 

 

3.4 Type B and C: Coupled Subwavelength Metal Slits 

3.4.1 Field Enhancement in Subwavelength Metal Slits 

The Salisbury screen structure enhances the electric field intensity around GPRs via Fabry-

Perot interference, and thus induces strong resonant absorption in GPRs [59-61]. While the back 

reflector increase the field strength by a factor of 4, larger improvements can be achieved with a 

carefully designed noble metal plasmonic antennas harvesting light efficiently [121, 122], which 

we outline in Figs. 3.6(a) and (b).  

 

 
Figure 3.6 | Subwavelength metal slits. Electric intensity distributions without graphene 

plasmonic ribbons (a) in the type B slit and (b) in the type C slit. 
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subwavelength metal slits, and the details will be discussed in Section 3.5. The electric field and 

the Ex distributions of the type B and C devices with graphene plasmonic resonances are shown in 

Fig. 3.7. 

 

 
Figure 3.7 | Graphene plasmonic ribbons coupled to subwavelength metal slits. (a) Electric 

field and (b) Ex distributions in the type B device with graphene plasmonic resonances (c) 

Electric field and (d) Ex distributions in the type C device with graphene plasmonic resonances. 
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as a function of frequency and graphene Fermi level is shown in Fig. 3.8(c), and absorption maps 

of other devices are shown in Fig. 3.9. 

 

 
Figure 3.8 | Enhanced light-matter interactions in graphene plasmonic ribbons. (a) 

Absorption in each device as a function of graphene carrier mobility (μh). (b) Tunable absorption 

in each device with μh=315 cm2V-1s-1 as a function of graphene Fermi level (EF). (c) Absorption 

map in the type C device with μh=315 cm2V-1s-1 as a function of frequency and graphene Fermi 

level (EF). In these simulations, the SiNx thickness for the type B and C device is 480 nm. 
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Figure 3.9 | Absorption maps. Absorption maps in the type 0 device with (a) μh=315 cm2V-1s-

1 and (b) μh=3,174 cm2V-1s-1. Absorption maps in the type A device with (c) μh=315 cm2V-1s-1 

and (d) μh=2,271 cm2V-1s-1. Absorption maps in the type B device with (e) μh=315 cm2V-1s-1 and 

(f) μh=613 cm2V-1s-1. 
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3.4.3 Image Graphene Plasmonic Ribbons 

 
Figure 3.10 | Image graphene plasmonic ribbons. (a) Schematic of charge distribution and 

induced electric field by graphene plasmons in the type A device, and (b-c) equivalent schematic 

along with mirrors (or perfect electric conductor). (d-e) Schematic of charge distribution and 

induced electric field in the type B and C devices derived from equivalent models.  

 

When GPRs are arrayed periodically, the GPRs interact with the adjacent GPRs, and create 

collective oscillation, as shown in Figs. 3.5(c) and (e). The red regions in Figs. 3.5(c) and (e) are 

due to the electric fields induced by the graphene plasmons, and the interaction between the 

adjacent GPRs corresponds the blue regions. With normally incident light, the electric field in a 

unit cell is symmetric, and the GPRs array is equivalent to a single GPR enclosed by mirror (or 

perfect electric conductor). Therefore, we can consider the adjacent GPRs as image GPRs inside 

the mirror, as shown in Fig. 3.10. In the type B device (Fig. 3.10(d)), the graphene plasmonic 

ribbons (GPRs) are located at the center of the metal slit. Since the metal strips efficiently reflect 

near-fields from the GPRs, we can consider the metal edges as mirrors similar to the perfect electric 

conductor boundary constructing image GPRs. In addition to mimicking the interaction between 

the adjacent GPRs, the metal edges contacting the GPRs in the type C device (Fig. 3.10(e)) reflect 

the near-fields induced in the GPRs, and virtually create twice wider GPRs. As a result, it creates 

an effectively collective oscillation, indicating that the GPRs in all type of devices are equivalent. 
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3.5 Surface Admittance Model 

While the theoretical plots generated by full-wave simulations show large absorption 

enhancement in the proposed devices, it is desirable to develop an analytical model in order to fully 

understand how this enhancement occurs, and that can be utilized as a design guide for future 

devices. 

In electromagnetics, admittance is defined as the ratio of transverse magnetic field over 

transverse electric field, and the admittance has been widely used in analyzing electromagnetic 

responses from multi-layered stacks in response to an incoming wave [61, 123]. The admittance of 

a finite-thickness layer is usually a complex value, and the real and imaginary part of the admittance 

correspond to conductance and susceptance of the layer, respectively. Here, the conductance and 

the susceptance represents the magnitude and the phase relation of the electromagnetic response 

from the layer, respectively. 

 

3.5.1 Surface Admittance of Metasurface 

 Assuming that the metasurface thickness is much thinner than free-space light wavelength, 

the metasurface can be modeled by a thin screen located at z=0 with an effective surface admittance 

Ys as Eq. (3.2) [60, 61, 111]. By solving the boundary conditions in Fig. 3.11(a) with Eq. (3.2), the 

effective surface admittance normalized by free-space admittance (Y0) are derived as Eqs. (3.3) and 

(3.4) with the coefficients of Eqs. (3.5-6). 

𝐻𝑦(0
+) − 𝐻𝑦(0

−) = −𝑌s𝐸𝑥(0) (3.2) 

�̃�s,𝑟 =
𝑌s,𝑟
𝑌0

=
1 − 𝑟0
1 + 𝑟0

−
𝐵1
𝐴1

 (3.3) 

�̃�s,𝑡 =
𝑌s,𝑡
𝑌0

=
 

𝐴1𝑡0
− 1−

𝐵1
𝐴1

 (3.4) 

𝐴1 = cos(𝑛SiO2𝑘0𝑑SiO2) − 𝑖
𝑛SiN𝑥
𝑛SiO2

sin(𝑛SiO2𝑘0𝑑SiO2) (3.5) 

𝐵1 = 𝑛SiN𝑥 cos(𝑛SiO2𝑘0𝑑SiO2) − 𝑖𝑛SiO2 sin(𝑛SiO2𝑘0𝑑SiO2) (3.6) 

Here, �̃�s,𝑟 and �̃�s,𝑡 are normalized surface admittances calculated from reflection coefficient (r0) 

and transmission coefficient (t0), respectively. 
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Figure 3.11 | Schematic of surface admittance. (a) Schematic of the metasurface consisting of 

graphene plasmonic ribbons coupled to subwavelength metal slits, and (b) corresponding a thin 

screen with effective surface admittance. Surface admittance charts of (c) the type B device with 

μh=613 cm2V-1s-1 and (d) the type C device with μh=315 cm2V-1s-1 showing the effect of the finite 

thickness metasurfaces. In c and d, the graphene Fermi level varies from 0 eV to -20 eV, and the 

frequency is 1,356 cm-1. 

 

In the type 0 and A devices, �̃�s,𝑟 and �̃�s,𝑡 are equal because Eq. (3.2) is the exact expression 

for the zero thickness of the metasurface [59, 61]. In the type B and C devices, however, the �̃�s,𝑟 

and the �̃�s,𝑡 are different because light passing through the finite thickness metasurface undergoes 

phase shift [12], as shown in Figs. 3.11(c) and (d). Therefore, we evaluated the normalized effective 

surface admittance �̃�s = 𝑐𝑟�̃�s,𝑡 + 𝑐𝑡�̃�s,𝑡 + 𝑐0 to consider the phase shift through the finite thickness 

metasurface. The fitting parameters cr, ct, and c0 were determined by comparing full-wave 

simulations and results from Eq. (3.8). For the type B device, the fitting parameters were cr=0.923-

i0.148, ct=0.008+i0.053, and c0=0.062-i0.224. For the type C device, the fitting parameters were 
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cr=0.922-i0.142, ct=0.013+i0.051, and c0=0.057-i0.216. We expect that these fitting parameters are 

affected by the weak metal-insulator-metal plasmonic mode induced in the dielectric stack, which 

is not included in Eq. (3.8), when we combine the metasurface and the back reflector. However, 

this deviation is very small, indicating that the graphene plasmonic resonances in the metasurfaces 

are dominant in the devices. 

To illustrate the physical meaning of the surface admittance, we modified a susceptibility 

model for a dispersive material [18], 

�̃�s(𝐸F) = �̃�s,∞ + 𝑖𝜒(𝐸F) = �̃�s,∞ + 𝑖𝜒0
𝐸F,0/ 

(𝐸F,0 − 𝐸F) + 𝑖∆𝐸F/ 
 (3.7) 

where �̃�s  is the surface admittance normalized by free-space admittance (Y0) as a function of 

graphene Fermi level (EF), �̃�s,∞ is the normalized surface admittance at a high graphene Fermi level 

limit similar to permittivity at high frequency in the Debye model [124], 𝜒0 is the difference in the 

normalized surface admittance between at low and at high graphene Fermi levels, EF,0 is the 

graphene Fermi level at a resonance, and ΔEF is the linewidth in graphene Fermi level. In the 

resonant medium model [18], the real and imaginary part of the susceptibility are related to the 

refractive index of a medium and the absorption, respectively. Therefore, the surface admittance is 

multiplied by i to match the real and imaginary part of the resonant medium model with the surface 

conductance and surface susceptance of the metasurface, respectively. We adopted 𝜒(𝐸F) as a 

reduced susceptibility near resonance instead of a full susceptibility expression to account for the 

Lorentzian lineshape in the surface conductance from dipolar plasmonic resonance [18, 125]. To 

include the net susceptance of the metasurface dominated by noble metal plasmonic structure, �̃�s,∞ 

was taken at EF=-20 eV. Figure 3.12 shows the surface admittances of the metasurface in the type 

0, A, B, and C devices calculated by full-wave simulations and the surface admittance model fitted 

to the simulation result. The graphene carrier mobility was chosen to exhibit perfect absorption in 

each device. 
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Figure 3.12 | Surface admittance fitting. (a) The real part and (b) imaginary part of the surface 

admittance of the type 0 metasurface with μh=3,174 cm2V-1s-1. (c) The real part and (d) imaginary 

part of the surface admittance of the type A metasurface with μh=2,271 cm2V-1s-1. (e) The real 

part and (f) imaginary part of the surface admittance of the type B metasurface with μh=613 

cm2V-1s-1. (g) The real part and (h) imaginary part of the surface admittance of the type C 

metasurface with μh=315 cm2V-1s-1. 
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3.5.2 Analytic Model for Calculating Absorption  

 After obtaining the surface admittance from the semi-infinite substrate schematic, we can 

calculate the absorption of the device by considering the interaction between the metasurface and 

the Salisbury screen. By solving the boundary conditions in Fig. 3.11(b), the reflection coefficient 

is derived as Eq. (3.8) with the coefficients of Eqs. (3.9-12), and the absorption is 1-|r|2. 

𝑟 = −
�̃�s +

𝐶2 + 𝑛Au𝐷2
𝐴2 + 𝑛Au𝐵2

− 1

�̃�s +
𝐶2 + 𝑛Au𝐷2
𝐴2 + 𝑛Au𝐵2

+ 1
= −

�̃�s + �̃�sub − 1

�̃�s + �̃�sub + 1
= −

�̃�L − 1

�̃�L + 1
 (3.8) 

𝐴2 = 1 −
𝑛SiN𝑥
𝑛SiO2

tan(𝑛SiO2𝑘0𝑑SiO2) ∙ tan(𝑛SiN𝑥𝑘0𝑑SiN𝑥) 
(3.9) 

𝐵2 = −
𝑖

𝑛SiO2
tan(𝑛SiO2𝑘0𝑑SiO2) −

𝑖

𝑛SiN𝑥
tan(𝑛SiN𝑥𝑘0𝑑SiN𝑥) 

(3.10) 

𝐶2 = −𝑖𝑛SiO2 tan(𝑛SiO2𝑘0𝑑SiO2) − 𝑖𝑛SiN𝑥tan(𝑛SiN𝑥𝑘0𝑑SiN𝑥) (3.11) 

𝐷2 = 1 −
𝑛SiO2
𝑛SiN𝑥

tan(𝑛SiO2𝑘0𝑑SiO2) ∙ tan(𝑛SiN𝑥𝑘0𝑑SiN𝑥) 
(3.12) 

As shown in Eq. (3.8), we can derive the substrate admittance �̃�sub determined by the 

substrate parameters, and the condition of �̃�s = 1− �̃�sub  achieves perfect absorption. In Figs. 

3.11(c) and (d), the dotted black line is the 1 − �̃�sub, which will be called a critical line, as a function 

of the SiNx thickness (dSiNx). This condition corresponds to the critical coupling induced by the 

interaction between the graphene plasmonic metasurface and the substrate. Or, we can interpret the 

perfect absorption as an admittance matching condition between the air and the load admittance �̃�L, 

as shown in Eq. (3.8). 

 

3.5.3 Critical Coupling 

In the surface admittance charts, the perfect absorption is achieved at a crossing of the 

surface admittance and the critical line, and the magnitude of the surface admittance is strongly 

dependent on graphene carrier mobility, as shown in Fig. 3.13. With critical graphene carrier 

mobility (μh,c), the surface admittance and substrate lines make a single critical coupling point at 

critical substrate thickness, where perfect absorption occurs.  

 



58 

 

 
Figure 3.13 | Surface admittance chart. Surface admittance chart calculated by full-wave 

simulations of (a) the type 0 metasurface with μh=3,174 cm2V-1s-1, (b) the type A metasurface 

with μh=2,271 cm2V-1s-1, (c) the type B metasurface with μh=613 cm2V-1s-1, and (d) the type C 

metasurface with μh=315 cm2V-1s-1. The surface admittances are calculated from 0 eV to -20 eV 

of graphene Fermi level, and the equi-EF lines from -0.4 eV to -0.8 eV with 0.01 eV steps (dotted 

grey lines) and 0.1 eV steps (solid grey lines). The frequency is 1,356 cm-1 for all calculations. 
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If the graphene carrier mobility is lower than the critical graphene carrier mobility, the 

surface admittance line does not cross the critical line, and it corresponds to an undercoupled regime. 

When μh>μh,c, two critical coupling points exist and deviate from the critical substrate thickness 

[60]. In this regime, the resonance at the critical substrate thickness is overcoupled, which explains 

why the absorption declines after the perfect absorption in Fig. 3.8(a). The absorptions versus SiNx 

thickness calculated by Eq. (3) dependent on the coupling conditions are summarized in Fig. 3.14, 

and they show good agreement with full-wave simulations. 

 

 
Figure 3.14 | Dependency on substrate thickness. Absorption in the type C device with 

different graphene carrier mobility (μh) as a function of SiNx thickness calculated by (a) full-

wave simulation and (b) analytic model. 

 

 This critical coupling can be also interpreted in terms of an admittance matching condition. 

Presenting the load admittance �̃�L by �̃�s + �̃�sub, the condition of �̃�s = 1 − �̃�sub corresponds to the 

load admittance matching to air admittance [123], which completely suppresses the reflection from 

the metasurface. Assuming there is no absorption in the dielectric stack with a perfect back reflector, 

the real part of the substrate admittance becomes zero, and only the imaginary part of the substrate 

admittance varies depending on the substrate thickness. Here, the role of the metasurface is to adjust 

the load admittance to have  e(�̃�s) = 1, and the non-zero imaginary part of the �̃�s induced by the 

coupled subwavelength metal slits, or the net susceptance, is compensated by the substrate 

admittance to match the load admittance to air. For weakly scattering metasurfaces with small 

  (�̃�s) in the type 0 and A devices, the admittance matching condition is satisfied when the 

thickness of the substrate is equal to a quarter of the wavelength. On the other hand, in type B and 
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C devices, the   (�̃�s) are fairly large even when the graphene resonators are off-resonant because 

the coupled noble metal slits significantly advance the phase of light passing through the 

metasurfaces. Due to this abrupt phase advance, admittance matching occurs for much thinner 

substrates compared to weakly scattering Salisbury screen.  

As mentioned before, the critical line is defined by 1 − �̃�sub, where �̃�sub is normalized 

substrate admittance, and is a function of substrate layer thickness. If there is zero absorption in a 

substrate layer with a perfectly conducting mirror back reflector, the Salisbury screen becomes 

lossless and the phase term varies depending on the substrate layer thickness. Therefore, the real 

part of �̃�sub  (the substrate conductance) should always be zero independent of the substrate 

thickness, and only the imaginary part of �̃�sub (the substrate susceptance) depends on the substrate 

thickness. This makes the critical line vertical in a surface admittance chart. In practice, there is 

small absorption in the SiO2 and the SiNx layers due to phonon modes, and Au back reflector is not 

a perfect conductor. These small absorptions lead to a small conductance in �̃�sub, resulting in a 

slight bending of the critical line and a shift in the real part of �̃�sub away from zero. 

The surface conductance, or the real part of the surface admittance, can be a measure of the 

oscillator strength in the graphene plasmonic metasurface. As shown in the surface admittance 

charts, the maximum surface conductance strongly depends on the graphene carrier mobility. This 

is mainly due to the fact that the higher graphene carrier mobility leads to inducing stronger 

graphene plasmonic resonances in the graphene plasmonic metasurfaces [117]. However, the 

stronger oscillator strength is not always preferable for achieving higher resonant absorption in the 

graphene plasmonic metasurfaces. As described in the manuscript, the “optimum” oscillator 

strength exist to accomplish the critical coupling between the metasurface and the substrate, or to 

match the load admittance to air. If the oscillator strength exceeds the optimum, the absorption 

becomes lower, and it is referred as over-coupling. 

In a flat graphene sheet, the oscillator strength of graphene plasmonic resonance increases 

with higher graphene Fermi level because of large amount of free carriers interacting with photons. 

However, there is also an optimum graphene Fermi level in the GPRs to achieve stronger resonance 

because we have to consider the Fabry-Perot resonance in the finite size resonators [60]. Therefore, 

the surface conductance is maximized at a certain graphene Fermi level, and it declines above the 

optimum graphene Fermi level, as shown in the surface admittance charts. 

If the graphene carrier mobility is larger than the critical graphene carrier mobility, the 

 e(�̃�s) exceeds one at the maximum resonance, which means the system is over-coupled to the 

free-space as its radiative damping rate is faster than its resistive damping rate [120]. Therefore, 



61 

 

the resonance has to be detuned to lower the optical conductance in the metasurface by adjusting 

the graphene Fermi level in order to satisfy the admittance matching condition. As we increase the 

graphene Fermi level from the resonance condition, the graphene plasmonic metasurface begins to 

advance the phase of light, and similarly phase retardation occurs for lower doping level as shown 

in Fig. 3.12. Consequently, as shown in Fig. 3.13, the device shows perfect absorption under two 

distinct admittance matching conditions: thinner substrate at high EF, and thicker substrate at low 

EF. 

 

 
Figure 3.15 | Subwavelength metal slit effect on surface admittance. Surface admittance chart 

of all devices with μh=315 cm2V-1s-1. 

 

 The surface admittance chart of all devices with μh=315 cm2V-1s-1 is shown in Fig. 3.15, 

and the type C device exhibits the largest surface conductance. In addition, we observe that the type 

B and C devices are more inductive (or negatively larger surface susceptance) than the type 0 and 

A devices because of the strong noble metal plasmonic resonance induced by the subwavelength 

metal slits [126, 127]. 
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3.5.4 Perfect Absorption with Lower Graphene Carrier Mobility 

 
Figure 3.16 | Dependency on structural geometries. Field enhancement inside the 

subwavelength metal slit on SiO2 150 nm/semi-infinite SiNx substrate without intergap GPRs 

and (a) as a function of metal strip width and (b) as a function of metal slit width. Surface 

admittance charts of the type C metasurface calculated by full-wave simulations (c) with 

different metal strip width and (d) with different metal slit width. In c and d, the graphene carrier 

mobility is assumed as 200 cm2V-1s-1 for all calculations. The white, gray, and black dots in each 

surface admittance correspond to EF=-0.4 eV, EF=-0.5 eV, and EF=-0.6 eV, respectively. The 

frequency is 1,356 cm-1 for all calculations. 
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By optimizing the subwavelength metal slit structure, we can achieve perfect absorption in 

the graphene plasmonic metasurface with even lower graphene carrier mobility. Fig. 3.16(a) and 

(b) show the field enhancement factor inside the subwavelength metal slits as a function of metal 

strip width and metal slit width, respectively. In Fig. 3.16(a), it is shown that wider metal strip 

width enhances the field enhancement factor because of the increased cross-section capturing more 

light. The enhanced field enhancement leads to more optically conductive metasurface, as shown 

in Fig. 3.16(c). 

The narrower metal slit also improves the field enhancement factor by squeezing more light, 

as shown in Fig. 16(b). In the 1:2 ratio of the GPR width and the metal slit width, the narrower 

metal slits reduces the GPR width, and it results in weakening the oscillator strength in the GPR. 

As a result, the optical conductivity of the metasurface decreases with the narrower metal slit, as 

shown in Fig. 3.16(d). Although the wider metal slit would be beneficial in terms of the optical 

conductivity of the metasurface, it requires higher graphene Fermi level, which could not be 

achievable by electrostatic gating. 

 

 
Figure 3.17 | Perfect absorption with lower graphene carrier mobility. (a) Tunable 

absorption at 1,356 cm-1 in the optimized type C device as a function of graphene Fermi level 

(EF) exhibiting the perfect absorption at EF=-0.514 eV. (b) Gate-dependent absorption spectra in 

the optimized type C device with different graphene Fermi level (EF). In this optimized type C 

device, The GPR width, the metal slit width, the metal strip width, the SiO2 thickness, and the 

SiNx thickness are 50 nm, 100 nm, 918 nm, 150 nm, and 295 nm, respectively. 
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absorption is shown with EF=-0.514 eV, and this range is achievable in an electrostatic gating 

method. Compared to the other devices, the line shapes in graphene Fermi level and frequency are 

broader, as shown in Figs. 3.17(b) and (c). This broadening originates from the low Q-factor of the 

graphene plasmonic resonance with low graphene carrier mobility [117]. Further improvement 

should be possible by tuning the metal strip width and the SiNx thickness, and it allows for the 

perfect absorption even with lower graphene carrier mobility. 

 

3.6 Experimental Measurements 

To measure the electronically tunable optical responses of the proposed devices, we 

fabricated the type A on SiO2 150 nm/SiNx 1 μm membranes and the type B, and C devices on SiO2 

150 nm/SiNx 500 nm membranes. The top 150 nm layer of SiO2 was deposited by e-beam 

evaporation (115 nm) and atomic layer deposition (35 nm). The Ti 3 nm/Au 100 nm layers were 

deposited on the back side of the membrane by e-beam evaporation, which performed as a back 

gate for doping graphene as well as a back reflector for the Salisbury screen. After transferring 

CVD-grown graphene onto the substrate, the GPRs were patterned by a 100 keV e-beam 

lithography system using a PMMA resist. With the patterned PMMA layer serving as a soft etch 

mask, the GPRs were cut by reactive ion etching with O2 at 80 W for 15 s. The subwavelength 

metal slits were also patterned by e-beam lithography, and the Ti 2 nm/Au 80 nm layers were 

deposited by e-beam evaporation. 

 

3.6.1 Characteristics of Graphene 

The Raman signal of the CVD-grown graphene was measured on thermally grown SiO2 

substrate because of the strong photoluminescence emission of SiNx over the visible range [128]. 

In Fig. 3.18(a), the G-peak and the 2D-peak are located at 1,591 cm-1 and 2,693 cm-1, respectively, 

and their ratio of I2D/IG=2.82. The Raman spectrum shows that the D-peak (1,350 cm-1), which 

corresponds to defects in graphene, is very small, and the ratio of IG/ID=11.3. 

Figure 3.18(b) shows the gate-dependent resistance of the graphene exhibiting a charge 

neutral point at gate voltage Vg=261 V for the type A device (SiO2 150 nm/SiNx 1 μm) and at gate 

voltage Vg=183 V for the type B and C devices (SiO2 150nm / SiNx 500 nm). The graphene Fermi 

levels are calculated based on this charge neutral point using a capacitor model discussed in Section 

2.2.4. In the capacitor model, the dielectric constants of SiO2 and SiNx were assumed as 5 and 10 

[60, 117, 129], respectively. 
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Figures 3.18(c-e) show the graphene plasmon resonance frequencies of the type A, B, and 

C devices obtained by full-wave simulations and mid-infrared measurement results. In the type A 

device, the -0.08 eV of offset gives better agreement between simulation and the measurement 

results although good agreement is shown with less than 5% deviation without the offset. We expect 

that this offset originates from PMMA residue and trapped dopants beneath the graphene which 

induce local background doping in the GPRs of the type A device [89, 90]. 

 

 
Figure 3.18 | Characteristics of experiment sample. (a) Raman spectrum of graphene 

transferred onto thermally grown SiO2 substrate, and (b) gate-dependent resistance measurement 

of graphene on the SiO2 150 nm /SiNx 1 μm/Au substrate for the type A device and the SiO2 150 

nm /SiNx 500 nm/Au substrate for the type B and C devices showing the charge neutral point at 

gating voltage Vg=261 V and Vg=183 V, respectively. Graphene plasmon resonance frequency 

of (c) type A, (d) type B, and (e) type C devices as a function of graphene Fermi level (EF) for 

simulations and mid-infrared measurements. In c, the -0.08 eV of offset gives better agreement 

with simulation and measurement results. 
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In the type C device (Fig. 3.18(e)), the measured graphene plasmonic resonance 

frequencies and the simulations are in good agreement above EF=-0.53 eV. However, the deviation 

between simulation and measurement increases below EF=-0.53 eV, which we attribute to the 

pinning effect between the graphene/metal junctions [130] degrading the effective surface 

conductance at high frequencies, which result in suppression of the resonant absorption. 

 

3.6.2 Mid-Infrared Measurements 

 To demonstrate the enhanced electronically tunable absorption in the GPRs coupled to the 

subwavelength metal slits, we measured the absorptions (A=1-R) for the type A, B, and C devices 

in a Fourier transform infrared (FTIR) microscope with a polarizer, and calculated the modulation 

efficiency in reflection (ηR=1-R/Rmax). Here, R corresponds to the gate-dependent reflectance, and 

Rmax is the reflectance when the absorption is minimized at a certain graphene Fermi level between 

the interband absorption and the graphene plasmonic resonance. 

 

 
Figure 3.19 | Mid-infrared measurements. (a-c) Gate-dependent tunable resonant absorption 

spectra in the type A, B, and C devices, respectively, and (d-f) corresponding modulation 

efficiencies (ηR) calculated based on the first blue lines. 
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 Type A Type B Type C 

Frequency 1,400 cm-1 1,389 cm-1 1,407 cm-1 

Maximum absorption / EF 52.4% / -0.550 eV 96.9% / -0.568 eV 94.8% / -0.560 eV 

Minimum absorption / EF 14.0% / -0.316 eV 24.8% / -0.262 eV 29.6% / -0.262 eV 

Modulation efficiency (ηR) 44.6% 95.9% 92.6% 

Table 3.2 | Summary of measurement results. 

 

Figures 3.19(a-c) show the gate-dependent tunable absorption spectra, and corresponding 

modulation efficiencies are shown in Figs. 3.19(d-f). Table 3.2 summarizes the measurement results 

for the type A, B, and C devices. In the type B device, we also observed the higher-order graphene 

plasmonic resonance mode [51, 131], which is not easily observable in bare GPRs devices with low 

graphene carrier mobility. 

Figure 3.20(a) summarizes the measured absorptions as a function of graphene Fermi level, 

and corresponding modulation efficiencies are presented in Fig. 3.20(b). As shown by the 

measurement results, the coupled subwavelength metal slits significantly enhance the absorption in 

the GPRs, and both the type B and C devices display nearly perfect absorption. In addition, the type 

A device enables higher tunability than previously measured type 0 device [60], which indicates 

the low permittivity substrate improves coupling efficiency between free-space photons and 

graphene plasmons. 

 

 
Figure 3.20 | Measurement summary. (a) Absorption comparison and (b) modulation 

efficiency comparison as a function of graphene Fermi level (EF) at the frequency exhibiting the 

maximum absorption in each device. 
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3.6.3 Numerical Fitting 

 
Figure 3.21 | Numerical fitting. Numerical fitting results of modulation efficiencies in (a) type 

A, (b) type B, and (c) type C devices. The graphene carrier mobilities and scaling factors for 

each device are presented in the figure legends. (d) Absorption as a function of graphene carrier 

mobility (μh) at the frequencies showing the maximum absorption in each device. The required 

graphene carrier mobilities for the type A, B, and C devices at their graphene plasmonic 

resonance frequencies are 1,718 cm2V-1s-1, 521 cm2V-1s-1, and 243 cm2V-1s-1, respectively. 
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measurements. Here, we expect that the estimated graphene carrier mobility includes defects in 

graphene and edge roughness in the ribbons, and the scaling factor considers electrically dead 

resonators in the GPRs and the finite NA effect in the measurement. 

In the type A device, the estimated graphene carrier mobility was 420 cm2V-1s-1, and the 

scaling factor was 0.752 In the type B device, the estimated graphene carrier mobility of 500 cm2V-

1s-1 and the scaling factor of 0.961 show good agreement between the simulation and the 

measurement results. In practice, the width of each GPR could be slightly different due to small 

non-uniformities in pattern fabrication, and the spectra would suffer from inhomogeneous 

broadening, or an ensemble averaging effect. The type A device has more GPRs than the type B 

device per unit area, thus the ensemble averaging effect should be more significant in the type A 

device, broadening the spectral width of the collective graphene plasmonic resonances, which can 

be modeled by lowering effective graphene carrier mobility. In addition, the coupled metal strips 

are expected to lower the chance of electrical disconnections in the GPRs, which increases the 

scaling factor in the type B device. At the resonant frequencies exhibiting the highest absorption in 

each device, the required graphene carrier mobilities for perfect absorption are 1,718 cm2V-1s-1 and 

521 cm2V-1s-1 for the type A and B devices, respectively, as shown in Fig. 3.21(d). This indicates 

the interaction between the substrate and GPRs are in the under-coupled regime in the type A device, 

and the type B device is closely located at the critical coupling, which results in nearly perfect 

absorption in the latter. 

 

3.7 Conclusions 

In summary, we demonstrated the enhanced electronically tunable resonant absorption in 

graphene plasmonic metasurface consisting of GPRs coupled to noble metal plasmonic light 

focusing structures. We showed that the coupled subwavelength metal slits are the key factor for 

perfect absorption in the GPRs to overcome low graphene carrier mobility limits. In addition, we 

formulated a rigorous model based on surface admittance to analyze the tunable resonance in the 

graphene plasmonic metasurface, and elucidated that the perfect absorption is achieved when the 

interaction between the graphene plasmonic metasurface and the substrate induces critical coupling 

to free-space. Using the surface admittance analysis, we account for the roles of the graphene 

plasmonic metasurface and the substrate in an admittance matching condition. In mid-infrared 

measurements, a maximum absorption of 96.9% was achieved at 1,389 cm-1 with a corresponding 

modulation efficiency of 95.9%. These results pave the way for realizing tunable perfect light 

modulation by graphene plasmonic resonances coupled to noble metal plasmonic resonances. 
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CHAPTER 4 

ELECTRONICALLY TUNABLE EXTRAORDINARY 

OPTICAL TRANSMISSION IN GRAPHENE PLASMONIC 

RIBBONS COUPLED TO SUBWAVELENGTH 

METALLIC SLIT ARRAYS 

Subwavelength metallic slits arrays have been shown to exhibit extraordinary optical 

transmission, whereby tunneling surface plasmonic waves constructively interfere to create large 

forward light propagation. The intricate balancing needed for this interference to occur allows for 

resonant transmission to be highly sensitive to changes in the environment. Here we demonstrate 

that extraordinary optical transmission resonance can be coupled to electrostatically tunable 

graphene plasmonic ribbons to create electrostatic modulation of mid-infrared light. Absorption in 

graphene plasmonic ribbons situated inside metallic slits can efficiently block the coupling channel 

for resonant transmission, leading to a suppression of transmission. Full wave simulations predict 

a transmission modulation of 95.7% via this mechanism. Experimental measurements reveal a 

modulation efficiency of 28.6% in transmission at 1,397 cm-1, corresponding to a 2.67 fold 

improvement over transmission without a metallic slit array. This work paves the way for 

enhancing light modulation in graphene plasmonics by employing noble metal plasmonic 

structures.* 

  

                                                             
* This chapter is reproduced with some modifications from the manuscript “S. Kim et al. Electronically 

tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic 

slit arrays. Nat. Commun. 7, 12323 (2016)”. 
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4.1 Introduction 

Significant efforts have been made in the past 5 years to create graphene plasmon-based 

optical modulators that function from THz to mid-infrared frequencies. These devices have 

exploited the unique plasmon dispersion relation of graphene, which exhibits optical modes with 

high confinement factors [41-43, 56, 57, 132], and that are electrostatically tunable [35, 46]. 

Typically, these devices have been based on geometries that employ resonant absorption in 

graphene nanostructures that have been patterned to confine plasmonic modes that can be 

electrostatically tuned to control the intensity and frequency of either optical absorption or emission 

[51, 59, 60, 99-103, 105, 106, 108, 133-135]. However the single layer atomic thickness and low 

free carrier density of graphene have limited the efficiencies of such modulators, especially at mid-

infrared frequencies, where the oscillator strength of the graphene plasmonic modes is low. A 

number of strategies have been adopted to overcome these difficulties, including using ionic gel or 

chemical doping to increase the carrier density of the graphene sheet [92, 99, 105, 107], or carefully 

controlling the substrate to include a metallic back reflector, which creates additional optical 

resonances that enhance field intensities at the graphene plasmonic ribbons (GPRs) [59, 60, 107, 

133], and thus enhance absorption. While those techniques can have theoretical modulation 

efficiencies of 100%, the use of ionic gels places significant restraints on the applicability, 

switching speeds, and durability of such devices, and the use of metallic reflectors forces those 

devices to be used in reflection geometries. In contrast to the reflective type graphene plasmonic 

modulators, a strategy of using electrostatically tunable graphene plasmons to modulate transmitted 

light with near-unity efficiency has not yet been reported, to the best of our knowledge. The creation 

of such a device would have widespread applications in optoelectronic devices such as mid-infrared 

spatial light modulators, or linear signal processing [12, 136, 137]. 

In this chapter, we report an approach to use graphene plasmonic modes for light 

modulation in a transmission geometry that satisfies the above conditions: high modulation 

efficiency at carrier densities accessible with electrostatic gating. Our modulator design is based on 

a triple resonant structure, where the plasmonic resonances in graphene plasmonic ribbon are 

matched to a dielectric substrate Fabry-Perot resonance, and also to the optical resonances in a 

subwavelength metallic slit array which is designed to exhibit extraordinary optical transmission 

(EOT) in the mid-infrared. In full wave simulations, the proposed structure shows 95.7% 

modulation efficiency in transmission. We measured a mid-infrared transmission modulation 

efficiency of 28.6% at 1,397 cm-1, which is 2.67 times higher than that measured for an equivalent 

GPRs only structure on the same supporting dielectric structure. 
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4.2 Device Geometry and Light Modulation Mechanism 

 
Figure 4.1 | Device and working mechanism. (a) Schematic of the GPRs coupled to 

subwavelength metallic slit array. Under normal operation (i.e. no GPRs), transverse magnetic 

(TM) polarized incoming light induces surface plasmons on the top metal surface (①) that 

tunnel through the subwavelength metallic slits (②), exciting surface plasmons (③) on the 

bottom metal surface. The surface plasmons on the bottom metal surface are diffracted by the 

periodic structure and radiate into free space with an enhanced intensity. The role of the GPRs 

inside the subwavelength metal slits is to block the coupling channel (②), and leading to a 

suppression of the EOT effect. In this figure, the overlapping field distribution depicts Re(Ez) for 

the surface plasmons, and the scale is adjusted to fit the schematic. SEM images (false color) of 

(b) the subwavelength metallic slit array and (c) the GPRs inside the subwavelength metallic slit 

fabricated on SiNx membrane.  
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Figure 4.1(a) shows the mechanism of the proposed device. In EOT, incoming light is 

scattered by the periodic structure into surface plasmons on the top metal surface. The surface 

plasmons then tunnel through the subwavelength metallic slits and excite surface plasmons on the 

bottom metal surface. The surface plasmon on the bottom metal surface subsequently re-radiates 

into free space, resulting in a transmitted diffraction peak with a strong intensity at the EOT 

resonance frequency [23-27, 138]. The subwavelength metallic slits play a pivotal role in EOT via 

optical coupling between the surface plasmons on the top and bottom metal surfaces. In our 

modulator, GPRs are placed in the subwavelength metallic slits in order to modulate the EOT 

resonant coupling. This is accomplished by electrostatically tuning the plasmonic resonances in 

GPRs to match the resonant frequency of the EOT. When matched, the electric fields in the 

subwavelength metallic slits give rise to large plasmonic resonance in the GPRs, which leads to 

blocking the coupling channel for the EOT resonance. As a result, a strong suppression of EOT 

occurs. To demonstrate this modulation mechanism, we fabricated subwavelength metallic slit 

array structures with GPRs on SiNx membranes, as shown in Figs. 4.1(b) and (c). In Fig. 4.1(c), the 

dark stripes denote the GPRs, and the bright bar corresponds to the etched region that defines the 

GPRs.  

 

 
Figure 4.2 | Bare graphene plasmonic ribbons. (a) Schematic of a transmission type bare GPR 

modulator. Field distributions on the side walls correspond to Re(Ex) showing the Fabry-Perot 

resonance in the substrate. (b) SEM image of bare GPRs fabricated on SiNx membrane. The 

fabricated GPRs form a mesh to prevent electrical disconnection with 2 μm length and 100 nm 

bridge. The width and the gap of the GPRs are both 50 nm. 
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Figure 4.2(a) shows the schematic of the equivalent GPRs only structure on the same 

supporting dielectric structure as a control sample, and the SEM image of the fabricated device is 

shown in Fig. 4.2(b). 

 

4.3 Substrate Geometry Optimization 

To achieve electronically tunable transmission, the substrate must be transparent at the 

operating frequency, yet also allow for electrostatic gating. Additionally, the substrate will support 

Fabry-Perot type resonances, which can lead to constructive or destructive interference effects that 

modify the electric field intensities on the top surface and thus the absorption in the GPRs. In order 

to satisfy these constraints, we use a 2 μm SiNx membrane (Norcada, NX10500N) with a DC 

conducting indium-tin-oxide (ITO, 4 nm) / a-Si (60 nm) contact on the bottom side of the membrane, 

as shown in Fig. 4.1(a). The DC conducting contact was deposited on the bottom side of the SiNx 

membrane by RF sputtering at room temperature. The RF sputtering powers for the ITO and the a-

Si were 48 W and 150 W, respectively.  

 

 
Figure 4.3 | Characteristic of membrane. (a) Refractive index of SiNx measured by mid-

infrared ellipsometry. (b) Transmission spectra for a single SiNx 2 μm membrane and a SiNx 

membrane with transparent back contact (ITO 4 nm / a-Si 60 nm). The solid lines are simulation 

results, and the dotted lines were obtained by a mid-infrared transmission measurement. 
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[140]. Transmission spectra of a single SiNx membrane and the SiNx membrane with the DC 

conducting contact were measured using a Fourier transform infrared (FTIR) microscope, as shown 

in Fig. 4.3(b), and it is shown that the DC conducting layer induces redshift in transmission spectra. 

To optimize the substrate thickness for maximizing absorption in GPRs, we performed full 

wave simulations for an array of bare 50 nm wide GPRs, varying the SiNx thickness. The 

calculations were performed at λ-1=1,340 cm-1, which is the resonant frequency of 50 nm GPRs for 

EF=-0.465 eV, and a graphene carrier mobility (μh) of 15,000 cm2V-1s-1 was assumed for the 

graphene sheet [35]. Here, the negative sign of EF denotes that the graphene is hole doped. 

 

 
Figure 4.4 | Resonance in a substrate. (a) The red line indicates absorption in the bare graphene 

plasmonic ribbons (GPRs) device depending on the SiNx thickness (tSiNx) with the graphene 

Fermi level position EF=-0.465 eV. The blue, yellow, the purple lines correspond to 

transmittance, reflectance, and absorption, respectively, depending on the SiNx thickness through 

the SiNx/ITO/a-Si substrate without the GPRs. Total electric field distributions around the bare 

GPRs at the EF=-0.465 eV with the SiNx thickness of (b) 2.02 μm and (c) 0.87 μm. 

 

As shown in Fig. 4.4(a), the transmission spectrum exhibits a Fabry-Perot resonance that 

depends on the SiNx thickness (tSiNx), and leads to variation in plasmonic absorption by GPRs. In 

contrast to GPR reflection modulators that achieve maximum absorption at tsub=λ/4nsub [59, 60], the 

absorption for transmission modulators has a maximum at tsub=λ/2nsub with tSiNx=2.02 μm, and the 

minimum occurs at tsub=λ/4nsub with tSiNx=0.87 μm (tsub: substrate thickness, tSiNx: SiNx thickness, 

nsub: effective refractive index of substrate). Considering this structure as a Fabry-Perot cavity, the 

maximal absorption point corresponds to transmission resonance in the forward direction, as shown 

Fig. 4.3(b). This effect arises from the zero phase shift for light reflected from the bottom a-Si/air 

interface. These reflected waves constructively interfere with incident light when the reflection path 
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standing wave is formed in the substrate with a maximum on the surface, which leads to enhanced 

absorption in GPRs. We also observe that the near field intensities around GPRs are enhanced at 

resonance, as shown in Figs. 4.4(b) and (c). 

 

 
Figure 4.5 | Graphene plasmonic ribbons. (a) Absorption and (b) transmittance in bare GPRs 

device as a function of frequency and EF with tSiNx=2 μm. 

 

To further characterize the device, we calculate the spectral absorption as a function of 

graphene Fermi level position (EF) for a 2 μm layer of SiNx, as shown in Fig. 4.5(a). In the absence 

of substrate resonances, a higher doping level, by itself, leads to strong oscillator strength in the 

GPRs, and thus enhances plasmonic absorption [51, 101, 105]. However, in this device the 

absorption is strongest at λ-1=1,340 cm-1, which occurs not for maximal doping level, but when the 

plasmonic resonance in GPRs and substrate resonance are matched, as shown Fig. 4.5(a). As a 

result, transmission declines along the plasmonic absorption in GPRs, as shown in Fig. 4.5(b). 

 

4.4 Theoretical Modulation of Coupled Structure 

4.4.1 Light Modulation in Coupled Structure 

In the proposed coupled structure, GPRs are located inside subwavelength metallic slits to 

modulate the coupling between the surface plasmon modes on the top and bottom metal surfaces. 

Four parameters dictate the subwavelength metallic slit array design: the metallic material, metal 

thickness, slit width, and period in transverse direction, as shown in Fig. 4.1(a). We used Au with 

a thickness of 80 nm, and the subwavelength metallic slit width is 800 nm, which can support eight 

GPRs inside each metallic slit. For a given subwavelength metallic slit width, the EOT resonance 
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frequency is determined by the subwavelength metallic slit array period. A period of 5.54 μm is 

used in simulation to match an EOT peak at λ-1=1,340 cm-1. 

 

 
Figure 4.6 | Coupled structure simulations. (a) Transmittance map exhibiting graphene 

plasmon (GP) absorption and EOT as a function of frequency and graphene Fermi level (EF). (b-

e) Total electric field distributions when turning the graphene plasmons off (EF=0 eV) and on 

(EF=-0.465 eV) at λ-1=1,340 cm-1. 
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resonance in GPRs matches the EOT resonance (EF=-0.465 eV), there is a strong dip in the 

transmission spectrum at the crossing between two resonant modes, as shown in Fig. 4.6(a). The 

total electric field distributions on and off the plasmonic resonance in GPRs are shown in Figs. 

4.6(b-e). When the plasmonic resonance in GPRs is detuned from the EOT mode, we observe a 

metallic surface plasmon mode on the bottom metal surface and confined fields inside the 

subwavelength metallic slits, indicating coupling between the two surface plasmon modes (Figs. 

4.6(b) and (d)). In contrast, as the plasmonic resonance in GPRs is tuned to the EOT frequency 

(EF=-0.465 eV), both the metallic surface plasmon modes on the bottom metal surface and inside 

the subwavelength metallic slits are diminished significantly (Fig. 4.6(c)) because the coupling 

channel is blocked through interaction with the intergap GPRs (Fig. 4.6(e)).  

 

4.4.2 Dependency on Graphene Carrier Mobility 

To evaluate the modulation performance, we compare modulation efficiencies of the bare 

GPRs and graphene plasmonic ribbons combined with the subwavelength metallic slit array (GPRs-

EOT). Here, modulation efficiency in transmittance (ηT) is defined by 1-T/Tmax, where T is 

transmittance as a function of EF, and Tmax corresponds to the transmission spectrum for the 

graphene Fermi level position that maximizes the transmitted intensity at the resonant frequency. 

In this simulation for GPRs, the Tmax occurs at EF=-0.310 eV, where there is sufficient doping to 

prevent graphene inter-band absorption, but insufficient carrier density to support plasmonic modes 

in the GPRs. 

Figure 4.7(a) shows that, for high carrier mobility graphene (μh=15,000 cm2V-1s-1), the 

coupled structure shows a moderate improvement over the bare GPRs, with the theoretical 

maximum modulation efficiency increasing from ηT = 74.5% to 95.7%. As the graphene carrier 

mobility is lowered, the overall modulation efficiency decreases in both devices. However, the 

relative benefits of the GPRs-EOT structure are enhanced with lower graphene carrier mobility, as 

shown in Fig. 4.7(a) and (b). For example, at μh=3,000 cm2V-1s-1 the modulation efficiency of the 

bare GPRs is 50.6%, while the GPRs-EOT structure achieves 85.9% efficiency, and for μh=1,000 

cm2V-1s-1 these values change to 27.3% and 65.2%, respectively. Thus the GPRs-EOT structure can 

exhibit large transmission modulation and is more robust against ribbon disorder compared to bare 

GPR based devices. 
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Figure 4.7 | Light modulation in transmission. (a) Comparison of modulation efficiency in 

transmission (ηT) between the bare GPRs device and the coupled structure (GPRs-EOT) device 

as a function of graphene Fermi level (EF) with different graphene carrier mobilities (μh). (b) 

Maximum modulation efficiency in transmission of bare GPRs and GPRs-EOT as a function of 

graphene carrier mobility (μh). The enhancement factor is calculated from the ratio of the 

maximum modulation efficiencies. (c) Anti-crossing behavior (red line) by strong coupling 

between the EOT resonance without GPRs (blue line) and the resonance in bare GPRs (yellow 

line). The “EOT only” indicates the subwavelength metallic slit array without GPRs. 
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GPRs can alter the local dielectric environment experienced by EOT modes when the two 

frequencies approach one another.  

 

 
Figure 4.8 | Anti-crossing behavior in the coupled structure. (a) Absorption map of the 

coupled structure (GPRs-EOT) as a function of frequency and graphene Fermi level (EF) 

exhibiting anti-crossing behavior. (b) Absorption spectra, (c) frequency splitting, and (d) 

transmission spectra as a function of number of graphene plasmonic ribbons (NGPRs) inside the 

subwavelength metallic slit. In b and d, the “EOT only” indicates the subwavelength metallic 

slit array without GPRs. 
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metallic slit array to support two distinct modes, even though its geometry selects for only one 

wave vector. That is, a longer wavelength mode exists which experiences a larger permittivity, and 

a shorter wavelength mode exists which experiences a smaller permittivity. This creates the 

splitting, or anti-crossing behavior between the graphene plasmonic resonant mode and the EOT 

resonant mode, as observed in Fig. 4.7(c), and the coupling strength between the EOT structure and 

the embedded GPRs can be determined from the frequency splitting. 

 

4.5.1 Dependence on Number of Intergap Graphene Plasmonic Ribbons 

 The frequency splitting is larger than the linewidth of each of the two resonant modes, as 

shown in Fig. 4.7(c). This indicates that the energy exchange rate between the two resonant modes 

is faster than the damping rate of each mode, which suggests that the GPRs-EOT device is operating 

in the strong coupling regime [141]. As a result, the coupled structure shows anti-crossing behavior 

at a crossing between the graphene plasmonic resonant mode and EOT resonant mode, as shown in 

Fig. 4.8(a).  

The strong coupling nature of this device is further confirmed by modeling the frequency 

splitting as a function of graphene ribbon density, from which we find a square root relationship 

[142, 143]. To be specific, the frequency splitting depends on the number of GPRs inside the 

subwavelength metallic slit (NGPRs), as shown in Fig. 4.8(b). In this calculation, the pitch of the 

ribbons was determined by 800 nm divided by NGPRs, where the 800 nm corresponds to the 

subwavelength metallic slit width, and the graphene Fermi level for each NGPRs was tuned to 

minimize the transmission. To evaluate this relationship, we used the classical oscillator model 

[143] 

Δ𝛺 ≅
𝛼

𝜆res
−1
√𝑁 PRs − [

𝜆res
−1 (  −   )

 𝛼
]

2

 (4.1) 

where ΔΩ is the frequency splitting, α is the coupling coefficient, 𝜆res
−1  is the resonance frequency, 

NGPRs is the number of GPRs, and γG and γE are the absorption linewidth of bare GPRs and GPRs-

EOT, respectively. 

In this model, we fitted our data of frequency splitting as a function of number of graphene 

ribbons NGPRs to extract the coupling coefficient α. The best fit was obtained with α=2.04×104 cm-

2, and the root mean square error was 2.39 cm-1, as shown in Fig. 4.8(c). We believe that the small 

deviation between the model and the calculated frequency splitting comes from assumptions in the 

classical oscillator model. The model assumes that a single GPR does not interact with adjacent 
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GPRs, and the coupling coefficient is identical for all GPRs. In a real system, the graphene 

plasmons are a collective oscillation, which would affect the linewidth γG. In addition, the coupling 

coefficient α would be altered depending on the position of each GPR. Regardless of discrepancies 

between the assumptions in the model and the real system, this model shows good agreement with 

the calculated frequency splitting. In addition, the coupled system exhibits a strong coupling when 

it contains six or more GPRs, as we can see by considering the frequency splitting and the average 

linewidth of the two resonant modes, as shown in Fig. 4.8(c). As a result of this coupling between 

two resonant modes, the splitting is also exhibited in transmission spectra, as shown Fig. 4.8(d). 

 

4.5.2 Dependency on Graphene Carrier Mobility 

As the graphene carrier mobility is lowered, the Q-factor of the GPRs decreases, and this 

anti-crossing behavior is lost  because the energy exchange rate should be faster than the decay rate 

of each resonant mode  to create strong coupling [141]. Therefore, the anti-crossing behavior 

disappears if the Q-factor of one resonant mode becomes too low, which happens with a low 

graphene carrier mobility. As shown in Figs. 4.9(a) and (b), the Q-factor of the GPRs becomes 

lower as the graphene carrier mobility is decreased. As a result, the anti-crossing behavior in the 

coupled structure is nearly indiscernible at μh=1,000 cm2V-1s-1, and completely disappears at μh=450 

cm2V-1s-1, as shown in Figs. 4.9(c) and (d). At a low graphene carrier mobility, there is no dip in 

the absorption spectra. A clear dip in the absorption spectra begins to emerge at μh=1,500 cm2V-1s-

1, and the frequency splitting is nearly saturated above μh=5,000 cm2V-1s-1. This tendency is also 

observed in the transmission spectra, as shown in Figs. 4.9(e) and (f).  

In a low graphene carrier mobility regime (μh ≤ 1,000 cm2V-1s-1), the GPRs-EOT modulator 

still displays relative high efficiencies, but the modulation is achieved by absorption in the GPRs, 

where the optical modes decay too rapidly to interact strongly with the EOT structure. Notably, the 

modulation enhancement of the GPRs-EOT device over the bare GPRs device becomes more 

significant in this damping-dominant regime. Therefore we suggest that coupling between the two 

resonant modes is the dominant mechanism for light modulation for high carrier mobility graphene 

(or equivalently a high Q-factor in the graphene plasmonic resonant mode), while the GPRs with 

low carrier mobility graphene simply damp the EOT mode. 
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Figure 4.9 | Anti-crossing behavior dependence on graphene carrier mobility. (a) 

Absorption spectra and (b) absorption map of the bare GPRs device as a function of graphene 

carrier mobility (μh). (c) Absorption spectra and (d) absorption map of the coupled structure 

(GPRs-EOT) device as a function of graphene carrier mobility (μh). (e) Transmission spectra and 

(f) transmission map of the coupled structure (GPRs-EOT) device as a function of graphene 

carrier mobility (μh). In (a), (c), and (e), the “EOT only” indicates the subwavelength metallic 

slit array without GPRs. 
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4.5.3 Absorption-Induced Transparency 

In contrast to the decreased transmission seen here due to plasmonic absorption in the GPRs, 

it has been reported that transmission can increase via absorption, described as absorption-induced 

transparency [144-146]. In Ref. 146, a nanodisk is used to extract photons from a subwavelength 

hole and scatter them into free space, so that light transmission is enhanced. This mechanism is 

possible because the nanodisk’s scattering cross-section is comparable to its absorption-cross 

section. Refs. 147 and 148 report that EOT structures hybridized with dye absorber layers have 

noted an increase in EOT transmission when the dye is placed inside the subwavelength holes. In 

those devices, the absorbing medium fills the subwavelength metallic holes, allowing for an altered 

in-hole propagation constant. While those effects may play some role in the transmission properties 

of the structure we propose here, we note that in this device the transmission is decreased as the 

absorbing plasmonic resonances are activated, rather than increased. In the device we demonstrate 

here, however, the scattering cross-section of GPRs is much smaller than its absorption cross-

section due to its extreme spatial confinement [59]. In addition, the GPRs are located only at the 

bottom the subwavelength metallic slits, making such an effect less likely. While absorption 

induced transparency might be achievable in devices where the array of tunable GPRs completely 

fills the subwavelength metallic slits, it is difficult to experimentally realize such a device. 

 

4.6 Experimental Measurements 

To demonstrate modulator performance, we fabricated bare GPRs and GPRs-EOT on 2 μm 

SiNx membranes. First, a transparent back gate electrode composed of 4 nm of ITO and 60 nm of 

a-Si was sputtered onto the bottom side of the SiNx membrane. Since this back electrode is directly 

connected to the Si frame of the SiNx membrane, we can apply a gating voltage through the Si 

frame. After transferring CVD-grown graphene to the top surface, the GPRs were patterned 

patterned by 100 keV electron beam lithography using a PMMA resist. The graphene plasmonic 

ribbons were then cut using reactive ion etching with oxygen at 80 W for 15 s, with the patterned 

PMMA serving as a soft etch mask. Finally, we defined subwavelength metallic slit arrays by 

electron beam lithography, and the metallic layer was deposited by electron beam evaporation of 

Ti (3 nm) followed by Au (80 nm). The slit width is 800 nm, and the period of the slit array is 5.6 

μm, which puts the EOT peak at λ-1=1,403 cm-1 with undoped graphene in a mid-infrared 

transmission measurement. Transmission measurements were performed using a Fourier transform 
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infrared (FTIR) microscope with a polarizer in order to eliminate the transverse electric component 

from the incoming light. 

 

4.6.1 Characteristics of Graphene 

 
Figure 4.10 | Characteristics of graphene. (a) Gate dependent resistance measurement of 

graphene on the SiNx substrate showing the charge neutral point at gating voltage VG=430 V. (b) 

Graphene plasmon resonance frequency as a function of graphene Fermi level (EF) for 

simulations and mid-infrared transmission measurement. 

 

To calculate the graphene Fermi level on SiNx membrane from the gate voltage (VG) 

between the graphene and the back contact, we used the capacitor model in Section 2.2.4 based on 

the charge neutral point (CNP) measured by a gate dependent resistance measurement of graphene, 

as shown in Fig. 4.10(a). In the calculation, we assumed the dielectric constant of SiNx as 10 [60]. 

As shown in the Fig. 4.10(b), the graphene plasmon resonance frequency depending on graphene 

Fermi level between simulations and mid-infrared transmission measurement shows good 

agreement with this dielectric constant. The slight discrepancy between the simulation and the 

measurement results could come from atmospheric and substrate impurities [147, 148]. Non-

uniform DC electric field along the graphene ribbons, such as the lightning rod effect at the edges, 

could also affect the doping level. 
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4.6.2 Light Modulation in Transmission 

 
Figure 4.11 | Experimental results. (a) Gate-dependent measured transmission spectra and (b) 

modulation efficiency (ηT) of the bare GPRs device. (c) Gate-dependent measured transmission 

spectra and (d) modulation efficiency (ηT) of the coupled structure (GPRs-EOT) device. (e) Gate 

dependent measured modulation efficiency comparison at λ-1=1397 cm-1 between bare GPRs 

device and GPRs-EOT device. 
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Figure 4.11 compares the experimentally measured transmission spectra and modulation 

features of bare GPRs and GPRs-EOT devices. As shown in Figs. 4.11(a) and (c), both devices 

display gate dependent transmission features that become stronger and shift to higher energies with 

increased graphene doping. To calculate and compare the modulation efficiencies, transmission 

spectra are normalized by the transmission spectrum with EF=-0.294 eV for bare GPRs device and 

EF=-0.353 eV for GPRs-EOT device, corresponding to graphene Fermi levels that exhibit 

maximum transmittance at the EOT resonance frequency. The resulting gate dependent modulation 

efficiencies in transmission are shown in Figs. 4.11(b) and (d). Both devices exhibit narrowband 

modulation features that become more intense and blue shift with higher graphene doping. The 

subwavelength metallic slit array exhibits an EOT peak at λ-1=1,403 cm-1 where no plasmons exist 

in the GPRs because of low doping, as shown in Fig. 4.11(c). As doping increases, plasmons are 

excited in the GPRs inside the subwavelength metallic slits, and block the coupling channel for the 

EOT resonance. As a result, we observe the transmittance at the EOT peak decline until EF reaches 

-0.542 eV, which corresponds to the crossing point between the EOT resonance and the plasmonic 

resonance in GPRs. 

Figure 4.11(e) summarizes the modulation efficiencies of bare GPRs and GPRs-EOT 

devices. At λ-1=1,397 cm-1, the GPRs-EOT device shows maximal modulation efficiency of 28.6% 

with EF=-0.542 eV, while the bare GPRs device has a maximum modulation efficiency of only 

10.7% at the same EF. 

 

4.6.3 Broad Angular Distribution Effect 

The experimental measurements shown in Fig. 4.11 differ from simulations in a number of 

important ways. Notably, the experimental modulation is lower than the simulated one, and the 

spectral width of the experimental transmission resonance is significantly broader. These features 

can be attributed to a number of factors that distinguish measurement from simulations. 

The incoming light is illuminated by a Cassegrain-type objective lens with a high numerical 

aperture (NA) of 0.58, which means the light incidence angle ranges from -35° to 35°. Such a broad 

angular distribution of incident light results in a broad transmission spectrum and lower 

transmittance in the EOT structure because the EOT resonance condition strongly depends on 

incident angle as well as the period of the subwavelength metallic slit array. To estimate the effect 

from the broad incidence angular distribution, we calculated transmission characteristics by 

superposing spectra having the incident angle from -35° to 35° with 1° intervals. In these 

simulations, the period of the subwavelength metallic slit array is 5.2 μm, matching the EOT 
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resonance frequency (1,403 cm-1) in our measurements. The resulting calculated transmission 

spectra are shown in Fig. 4.12(a), and the superposed spectrum (solid green line) shows several 

differences relative to the transmission spectrum for normally incident light (dotted blue line). 

Specifically, the superposed spectrum reveals a broader transmission spectrum with an additional 

peak at higher frequency (1,618 cm-1). Moreover, the angular spread of incident light lowers the 

maximum theoretical transmittance of the EOT structure from 42.1% to 9.32%. 

 

 
Figure 4.12 | Broad angular distribution effect. (a) Simulation results demonstrating the effect 

of a broad angular distribution of incoming light. Dotted lines (left axis): transmission spectra of 

the subwavelength metallic slit array with different incident angles (θin). Solid line (right axis): 

weighted sum of transmission spectra at different angles for an objective numerical aperture 

(NA) of 0.58. (b) Calculated modulation efficiencies for coupled structure (GPRs-EOT) device 

varying the incident angle (θin) and the weighed sum. (c) Calculated modulation efficiencies for 

bare GPRs device varying the incident angle (θin) and the weighed sum. 
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The broad angular distribution of incoming light also affects the modulation efficiency in 

the GPRs-EOT, as shown in Fig. 4.12(b). Similar to the EOT spectrum in Fig. 4.12(a), the 

modulation peak also blue-shifts with oblique incident light. As a result, the maximum modulation 

efficiency of the weighted sum spectrum is reduced by 20.3% compared with the modulation 

spectrum using purely normal incoming light. In the case of bare GPRs, the simulation results show 

that the NA effect is not so large, as shown in Fig. 4.12(c). Although the modulation efficiency 

decreases slightly as the incident angle increases, the line shape and the peak position do not change 

significantly. 

 

4.6.4 Numerical Fitting 

 
Figure 4.13 | Numerical fitting. (a) Comparison between the measurement result and the 

simulation result of bare GPRs with a broad angular distribution of incoming light and a scaling 

factor of 0.633 to account for degradation. (b) Comparison between measurement and simulation 

result of GPRs-EOT device with a broad angular distribution of incoming light and a scaling 

factor of 0.734 to account for degradation. 

 

In addition to the broad light incidence angular distribution, some imperfections in 

fabrication could degrade the modulation efficiency, including, PMMA residue on graphene, carrier 

density variation in the graphene created by localized charges, a variation in the width of the GPRs 

resulting from lithography, edge states of the GPRs induced by the etching process, and some 

resonators that are electronically isolated. These imperfections result in broadening of the graphene 

plasmon resonance linewidth and a lower modulation efficiency compared with simulations. To 

account for the broad incident angular distribution and imperfections in fabrication, we tuned 
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graphene carrier mobility and employed a scaling factor as fitting parameters to explain the 

linewidth and modulation efficiency.  

Figure 4.13(a) shows the simulation and experimental data with EF=-0.542 eV, which 

corresponds to the graphene Fermi level showing the maximum modulation efficiency in the 

coupled structure (GPRs-EOT) device. With aforementioned broad angular distribution of 

incoming light, a graphene carrier mobility of 450 cm2V-1s-1 and a scaling factor of 0.633 to account 

for degradation, the simulation result matches the measurement result very well. In Fig. 4.13(b), 

we compared the measurement data with simulation results with a scaling factor of 0.734 to account 

for degradation. This value is slightly higher compared to the scaling factor for bare GPRs. We 

expect that there are less dead resonators in the GPRs inside the subwavelength metal slits than in 

the bare GPRs device because the dimension in transverse direction is much shorter compared with 

the bare GPRs structure, and therefore could reduce the chance of disconnection. With these fitting 

parameters, the expected modulation efficiencies with purely normal incident light are 11.4% for 

bare GPRs device and 36.0% for GPRs-EOT device. 

 

4.7 Conclusions 

In summary, GPRs coupled to subwavelength metallic slit array that exhibit EOT enable 

strong transmission modulation at mid-infrared frequencies. Light absorption in GPRs efficiently 

suppresses the EOT resonance resulting in high modulation efficiency. Simulations indicate a 

transmission modulation efficiency of 95.7%. This modulation occurs with small changes in the 

graphene Fermi level position, within ranges that are accessible with electrostatic gating methods. 

Experimental mid-infrared transmission measurements of a fabricated device demonstrate that the 

proposed device exhibits 2.67 times higher than the modulation efficiency of a bare GPRs device. 

The experimental modulation efficiency could be enhanced by use of graphene with higher carrier 

mobility and by transmission measurements using a parallel rather than convergent beam 

illumination configuration since EOT resonances are quite angle-sensitive. The results illustrate the 

potential for coupling graphene plasmon resonances and conventional noble metal plasmon 

resonances to achieve transmission-type light modulation, which may be useful in, e.g., actively 

tunable amplitude modulated infrared metasurfaces and real-time hologram systems. 
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CHAPTER 5 

ELECTRONICALLY TUNABLE GRAPHENE 

PLASMONIC RESONANCE ENERGY TRANSPORT 

We report electronically tunable graphene plasmonic resonance energy transport along 

graphene plasmonic ribbons, and we devise a platform to demonstrate the energy transport in the 

mid-infrared. In this structure, two metal-insulator-metal plasmonic waveguides are connected by 

a subwavelength metal slit, and graphene plasmonic ribbons are located inside this slit. Due to the 

large impedance mismatch between the noble metal plasmonic waveguide and the subwavelength 

metal slit, light coupling efficiency across the junction is poor. If the graphene plasmonic ribbons 

inside the slit are tuned to support strong graphene plasmonic resonances, this generates another 

pathway for transferring light energy across the junction. As a result, the light transmission across 

the subwavelength metal slit is enhanced significantly compared to a bare slit without the graphene 

plasmonic resonance energy transport. In order to electronically modulate the transmission in the 

noble metal plasmonic waveguide using the graphene plasmonic resonance energy transport, we 

also have to actively suppress the light energy transfer across the junction. To achieve this, we 

engineer the junction geometry in order to induce a strong Fano resonance between a non-resonant 

propagation mode across the junction and a resonant transmission mode via the graphene plasmonic 

resonance energy transport. Theoretical calculations predict 100% of light modulation efficiency 

with moderate graphene carrier mobility (1,660 cm2V-1s-1) at a graphene Fermi level easily 

accessible with electrostatic gating. The maximum resonant transmission in the plasmonic 

waveguide across the junction is 43.4%, while the transmission is 14.2% without the graphene 

plasmon resonance energy transfer mode.  
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5.1 Introduction 

Graphene has been recently proposed as a candidate material to create electronically 

tunable light modulation devices controlling the phase and the intensity of light at high data rates 

with little loss. These effects can be created by controlling the graphene interband transitions, as 

well as by tuning the graphene plasmons supported by the free carriers in graphene plasmonic 

ribbons (GPRs). The graphene plasmons are particularly interesting for application purposes 

because the semi-metallic and the two dimensional nature of graphene allows for these modes to 

be highly tunable from THz to mid-infrared and at a deeply subwavelength scale. Furthermore, 

while the interband absorption efficiency in graphene is limited to a quantum of optical conductance 

(~2.3%), the oscillator strength of the graphene plasmonic modes can potentially be much higher, 

allowing for a higher dynamic range of active control. 

These properties have created interests in producing active plasmonic devices based on 

graphene plasmons that have high modulation depth and can be integrated in chips at length scales 

approaching those of electronic transistors. Thus far, it has been shown that the oscillator strength 

in graphene plasmonically-driven optical modulators can be significantly enhanced when they are 

combined with noble metal plasmonic structures, and electronically tunable absorption up to nearly 

70% has been demonstrated in graphene plasmonic metasurface coupled to subwavelength noble 

metal plasmonic slits. While both reflection and transmission have been successfully modulated by 

GPRs, those devices have mostly been based on patterning large scale ribbon arrays into a graphene 

sheet such that it excites collective oscillation in the arrays. Since these devices are based on an 

array of resonators, they have a large footprint and do not offer an opportunity to study graphene 

plasmonic resonances in a local area. 

In this chapter, we report graphene plasmonic resonance energy transport along GPRs, and 

it will be shown that the energy transport along the GPRs via localized graphene plasmons is more 

efficient than the energy transport along a flat graphene sheet via graphene plasmons. In order to 

demonstrate the electronically tunable and efficient graphene plasmonic resonance energy transport 

in the mid-infrared, we devise a platform consisting of two metal-insulator-metal (MIM) plasmonic 

waveguides connected by a subwavelength metal slit, and the GPRs are located inside the slit. If 

the intergap GPRs are tuned to support strong graphene plasmonic resonances, this generates 

another pathway for transporting light energy across the junction. As a result, the light transmission 

across the subwavelength metal slit is enhanced significantly compared to a slit without the 

graphene plasmonic resonance energy transport. 
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In addition to the enhanced light transmission efficiency, we also present complete 

suppression of the transmission across the junction by inducing a strong Fano resonance between 

a non-resonant propagation mode across the junction and a resonant transmission mode via 

graphene plasmonic resonance energy transport. Theoretical calculations predict 100% of light 

modulation efficiency in transmission across the junction with moderate graphene carrier mobility 

(1,660 cm2V-1s-1) at a graphene Fermi level easily accessible with electrostatic gating. The 

maximum resonant transmission in the plasmonic waveguide across the junction is 43.4%, while 

the transmission is 14.2% without the graphene plasmon resonance energy transfer mode. Notably, 

the 100% of light modulation efficiency is achievable within a length scale of λ0/20, where λ0 is the 

free-space wavelength, and the required shift in graphene Fermi level is less than 0.1 eV. 

 

5.2 Graphene Plasmonic Resonance Energy Transport 

 
Figure 5.1 | Plasmonic resonance energy transport. Plasmonic resonance energy transport 

along an Ag nanorod. Electric field distributions (a) in a large field of view and (b) inside the 

dotted region in a. Ex field distributions (c) in a large field of view and (d) inside the dotted 

region in c. 

 

It has been reported and demonstrated that light can be guided along a metallic nanoparticle 

chain [149-153]. In this metal nanoparticle chain, localized surface plasmons are excited in the 

metallic nanoparticles, and the light energy is transferred via plasmonic coupling between the 

adjacent nanoparticles. Similar to a conservative plasmonic waveguide system, the light propagates 

unidirectionally along the nanoparticle chain and exhibits exponential decay as propagating. 
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Therefore, the interaction between the adjacent localized surface plasmons is the key for the 

electromagnetic energy transport along the metallic nanoparticle chain. 

Figure 5.1 shows the plasmonic resonance energy transport along a metal nanorod chain at 

the free-space wavelength of 473 nm. The diameter of each nanorod is 50 nm, and the gap between 

the nanorods is 2.5nm. It is assumed that only the first Ag nanorod is excited in this simulation. 

Figures 5.1(a) and (b) show a spatially confined non-radiative plasmonic mode propagating along 

the Ag nanorod chain, and strong coupling between the adjacent localized surface plasmons in the 

nanorods induces the significantly enhanced near-fields inside the gaps shown in Figs. 5.1(c) and 

(d). 

 

 
Figure 5.2 | Schematic of launching graphene plasmonic resonance energy transport. The 

incoming MIM waveguide mode excites localized graphene plasmons in the first GPR denoted 

by the red arrow, and the graphene plasmonic resonance energy transports along the GPR chain 

by interacting between the adjacent GPRs denoted by the blue arrows. 

 

 Since the graphene plasmons in the GPRs can be considered as localized surface plasmons, 

we can expect an energy transport along the GPRs via plasmonic coupling between the adjacent 

GPRs similar to metal nanoparticle chain. Figure 5.2 shows a schematic to evaluate the graphene 

plasmonic resonance energy transport along GPRs. In this schematic, the insulator layer consists 

of SiO2 100 nm and SiNx 200 nm, and the left side MIM waveguide is for exciting localized 

graphene plasmons in the first GPR. The gap width of all GPRs is 40 nm, the first GPR has 50 nm 

of ribbon width, and other GPRs’ ribbon width is 80 nm. 
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5.2.1 Energy Transfer from MIM Waveguide Mode to Graphene Plasmonic 

Mode 

 In Figure 5.3(a), we calculated the electric field intensity at the center of the second GPR 

(x=130 nm) at 1,354cm-1 as a function of graphene Fermi level. To appraise the energy transport 

performance along the GPRs, we also calculated the electric field intensity with a flat graphene 

sheet at the same position. The graphene carrier mobility in the both calculations was assumed as 

1,660cm2V-1s-1. 

 

 
Figure 5.3 | Energy transfer. (a) Electric field intensity in the second GPR and at the same 

position in the flat graphene sheet as a function of graphene Fermi level (EF). The intensity is 

normalized by the average intensity of the incoming MIM waveguide mode at the junction. (b) 

Reflectance of the MIM waveguide mode at the junction as a function of graphene Fermi level 

(EF) with the GPR chain and the flat graphene sheet and without GPRs. 

 

As shown in Figure 5.3(a), the electric field intensity with GPRs exhibits a strong resonance 

depending on the graphene Fermi level, and the electric field intensity with GPRs is maximized at 

EF=-0.461 eV. Here, the negative sign of EF denote that the graphene is hole doped. Although the 

electric field intensity with a flat graphene sheet also increases at the same graphene Fermi level 

due to the graphene plasmon mode compared to the lower graphene Fermi level, it does not exhibit 

a strong resonance dependent upon the graphene Fermi level. Due to the strong graphene plasmonic 

resonance in the GPRs, Fig. 5.3(a) shows that the energy transport to the second GPRs surpasses 

that at the same position in a flat graphene at the same graphene Fermi level. 

Such a strong graphene plasmonic resonance in GPRs is also displayed in the reflectance 

of the MIM waveguide mode at the junction, as shown in Fig. 5.3(b). In this structure, the incoming 

MIM waveguide mode can be coupled to a radiation mode into free-space, a surface plasmon mode 
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bound to the bottom metal surface, and a graphene plasmon mode at the junction, and an uncoupled 

remaining amount will be reflected backwards. The strong dip in reflectance with the GPRs at EF=-

0.464 eV in Fig. 5.3(b) implies that the energy of the incoming MIM waveguide mode is efficiently 

transferred to one of the three modes. However, the radiation mode and the surface plasmon mode 

rarely depend on the graphene Fermi level because their impedances are not strongly affected by 

the graphene Fermi level, and the reflectance without the GPRs is denoted by a yellow line in Fig. 

5.3(b). Therefore, the strong dip in the reflectance with the GPRs indicates the efficient energy 

transfer from the MIM waveguide mode to the graphene plasmon mode along the GPRs. 

The resonant absorption in the GPRs as a function of graphene Fermi level can be 

considered to estimate the efficient energy transfer from the MIM waveguide mode to the graphene 

plasmonic mode along the GPRs. As shown in 5.3(b), the maximum absorption in the second GPR 

occurs at EF=-0.461 eV, and this graphene Fermi level nearly coincides with the dip in the 

reflectance of the MIM waveguide at EF=-0.464 eV. From this analysis, we can determine that the 

energy transfer from the MIM waveguide mode to the graphene plasmonic mode along the GPRs 

is maximized at the maximum graphene plasmonic resonance in the GPRs. 

 

5.2.2 Energy Propagation along Graphene Plasmonic Ribbons 

 
Figure 5.4 | Energy propagation. (a) Propagation length along the GPR chain and the flat 

graphene sheet as a function of graphene Fermi level (EF). (b) Exponential fitting to estimate the 

propagation length at EF=-0.442 eV. To eliminate the effect of the strong radiation field around 

the junction, the curve is fitted by the intensities at the center of GPRs between the 3rd and the 

8th GPRs. 

 

In order to efficiently transport the light energy a certain distance, we also have to consider 
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input MIM waveguide to the graphene plasmonic waveguides. Figure 5.4(a) shows the propagation 

length along the GPRs and the flat graphene sheet as a function of graphene Fermi level between   

-0.4 eV and -0.5 eV. The propagation length along the flat graphene sheet was calculated by the 

graphene plasmon dispersion relation discussed in Chapter 2, and we evaluated the propagation 

constant along the GPRs by fitting the intensity at the center of GPRs (from the second to the fifth 

GPRs) with an exponential curve, as shown in Fig. 5.4(b). In the flat graphene sheet, the 

propagation length monochromatically increase with doping level because the resistive damping in 

the graphene sheet is reduced with higher graphene carrier density. However, the graphene plasmon 

mode along the GPRs exhibit a resonance depending on the graphene Fermi level, and the 

maximum propagation length, or the minimum decay rate, occurs at EF=-0.442 eV. It indicates that 

the energy transport along the GPRs originates from the interaction between the adjacent GPRs, 

and the optimum resonance condition exists to enhance the energy transport along the GPRs. 

 

 
Figure 5.5 | Energy transport. (a) Graphene Fermi level-dependent maximum electric field 

intensities at the center of each GPR. (b) Graphene Fermi level exhibiting maximum electric 

field intensities at the center of each GPR. 

 

Regarding propagation length, the flat graphene sheet exhibits lower decay rate than the 

GPRs, as shown in Fig. 5.4(a). However, the total amount energy transported a certain distance is 

determined by the energy extracted from the MIM waveguide mode and the decay rate. In Section 

5.2.1, it has been shown that more energy can be transferred to the GPRs than the flat graphene 

sheet from the MIM waveguide mode, and the energy transfer efficiency to the GPRs is large 

enough to compensate for the low propagation length, which leads to higher light energy transport 

along the GPRs than the flat graphene sheet. 
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In the GPRs chain, the optimum graphene Fermi level is also determined by both the energy 

transfer efficiency and the propagation length. In Fig. 5.3, we can estimate that the energy transfer 

efficiency to the first GPR is maximized at EF=-0.461 eV, and the decay rate along the GPR chain 

is minimized at EF=-0.442 eV. As a result of the energy transfer efficiency and the decay rate, the 

energy transport to each GPR is maximized at different graphene Fermi level, as shown in Fig. 5.5. 

 

 
Figure 5.6 | Electric field distribution comparison. (a) Electric field distribution and (b) Ex 

field distribution with the GPR chain at EF=-0.450 eV. (c) Electric field distribution and (d) Ex 

field distribution with the flat graphene sheet at EF=-0.450 eV. 

 

Figure 5.6 compares the electric field distributions with the GPRs and the flat graphene 

sheet at EF=-0.450 eV, where the electric field intensity is maximized at the center of the 4 th GPR. 

In Fig. 5.6, it is shown that the near-field distributions around the GPRs is stronger than that around 

the flat graphene sheet, which indicates efficient graphene plasmon resonance energy transport 

along the GPR chain. In addition, Fig. 5.6(b) shows that the magnitude of interaction between the 

adjacent GPRs (shown in blue), which allows for the energy transport along the GPR chain, is 

comparable to the localized cavity mode in the GPRs (shown in red). 
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5.3 Electronically Tunable Light Modulation in MIM 

Waveguides Connected by a Subwavelength Metal Slit 

 In Section 5.2, we reported graphene plasmonic resonance energy transport along GPRs, 

and it has been theoretically analyzed that the energy transport is more efficient along a GPR chain 

than a flat graphene sheet. Since the graphene plasmonic resonance energy transport depends on 

the graphene Fermi level, we can modulate the transmitted light in the system if energy transport 

can be sufficiently suppressed. In this chapter, we present a platform to enhance and suppress the 

energy transport across two MIM waveguides connected by a subwavelength metal slit to achieve 

electronically tunable light modulation in the MIM waveguide. 

 

5.3.1 Light Transmission across the Subwavelength Metal Slit 

 Figure 5.7 shows the schematic of the proposed devices to modulate transmission across 

MIM waveguides connected by a subwavelength metal slit. The width of the metal slit is 380nm, 

and four GPRs are located inside the metal slit, equally spaced with a 40 nm gap width. The first 

and the fourth GPRs have 50nm of ribbon width, and the second and the third GPRs’ ribbon width 

is 80 nm. The top and bottom Au layers’ thickness is both 80nm. The insulator consists of SiO2 and 

SiNx, and their thicknesses are 100 nm, and 200 nm, respectively. 

 

 
Figure 5.7 | Schematic of device. Incoming light from the left side MIM waveguide can be 

transmitted across the subwavelength metal slit via three pathways: unbound eigenmodes, a 

surface plasmon (SP) mode bound to the bottom metal surface, and graphene plasmonic 

resonance energy transport (GPRET). 
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 There are three light transmission pathways from the left MIM waveguide to the right MIM 

waveguide across the subwavelength metal slit, as shown in Fig. 5.7. First, light can be transmitted 

via a surface plasmon mode bound to the bottom metal surface. Second, incoming light in the left 

MIM waveguide will be scattered at the junction, and the scattered unbound eigenmodes, or 

hopping modes, can be directly coupled to the right MIM waveguide. Third, the incoming MIM 

waveguide mode launches the graphene plasmons in the first GPR, and the graphene plasmons can 

be propagate along the GPRs via interaction between the adjacent GPRs, corresponding to the 

graphene plasmon resonance energy transport. 

 

 
Figure 5.8 | Light modulation by intergap graphene plasmonic ribbons. (a) Transmittance, 

reflectance, and absorption across the subwavelength metal slit with the intergap GPRs as a 

function of graphene Fermi level (EF). The black dotted line corresponds to transmittance without 

the intergap GPRs. (b) Transmittance comparison between full-wave simulation and the Fano 

resonance model in Eq. (5.1).  

 

 Figure 5.8(a) shows the transmittance and the reflectance across the subwavelength metal 

slit, and the absorption in the GPRs as a function of graphene Fermi level. In this simulation, the 

frequency and the graphene carrier mobility are assumed to be 1,354 cm-1 and 1,660 cm2V-1s-1, 

respectively. The black dotted line corresponds to the transmittance without the GPRs. At around 

the maximum absorption in the GPRs (EF=-0.429 eV), the transmittance changes abruptly, and a 

maximum and a minimum occurs at EF=-0.512 eV and EF=-0.421 eV, respectively. Notably, the 

maximum transmittance (43.4%) is three times larger than the transmittance without the GPRs 

(14.2%), and the reflectance becomes zero at the minimum. Moreover, a 100% modulation 

efficiency is achievable in a deeply subwavelength length scale active region. Considering the free-
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space wavelength λ0 is 7.39μm, the required length of the active region, or the subwavelength metal 

slit, is only λ0/20. In addition, the required change in the graphene Fermi level for 100% modulation 

efficiency is less than 0.1 eV, as shown in Fig. 5.8. 

The electric field distribution and the time-averaged power flow along x-axis at the 

graphene Fermi level exhibiting the minimum and the maximum transmittance are shown in Fig. 

5.9. The near-fields around the GPRs at both graphene Fermi levels are strongly enhanced due to 

graphene plasmons in the GPRs. However, it is shown that light cannot propagate across the 

subwavelength metal slit at EF=-0.421 eV due to destructive interference with the non-resonant 

mode and the resonant mode, while smooth propagation is observed at EF=-0.512 eV. 

 

 
Figure 5.9 | Electric field and power flow distributions. (a) Electric field distribution and (b) 

Sx distribution exhibiting the minimum transmittance at EF=-0.421 eV. (c) Electric field 

distribution and (d) Sx distribution exhibiting the maximum transmittance at EF=-0.512 eV. 

 

 In contrast to the reflection and the absorption lineshapes exhibiting symmetric resonances 

depending on graphene Fermi level, the transmission displays an asymmetric resonance. 

Considering that the unbound eigenmodes and the surface plasmon mode across the subwavelength 

metal slit are not strongly dependent on the graphene Fermi level, we could expect that they will 

show a broad lineshape as a function of graphene Fermi level, so that these two modes correspond 

to a broad non-resonant propagation mode across the subwavelength metal slit. Compared to these 
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two modes, the strong resonant shape in absorption indicates that the graphene plasmon mode 

propagating along the GPRs is strongly determined by the graphene Fermi level, corresponding to 

a narrow resonant propagation mode across the subwavelength metal slit. Since the non-resonant 

and the resonant propagation modes coexist inside the subwavelength metal slit, we can expect the 

overall transmission across the subwavelength metal slit will exhibit a Fano resonance lineshape. 

 

5.3.2 Fano Resonance within the Subwavelength Metal Slit 

 To induce Fano resonance, we need two interfering modes: a broad non-resonant mode, or 

continuum, and a sharp resonant mode, or discrete state [154, 155]. As these two modes interfere 

destructively or constructively depending on their phase difference, the interference results in the 

asymmetric lineshape. Within the subwavelength metal slit, there are two pathways for light 

transmission: a non-resonant propagation (unbound eigenmodes and a surface plasmon mode) and 

a resonant propagation via the graphene plasmonic resonance energy transfer. Therefore, the 

asymmetric lineshape in the transmittance arise from the Fano resonance between the two 

propagation modes. 

 The Fano resonance in the transmittance can be modeled by [154, 155] 

𝑇 = 𝐶𝑇
[(𝐸F − 𝐸F,0) + (∆𝐸F/ )𝑞]

2

(𝐸F − 𝐸F,𝑜)
2
+ (∆𝐸F/ )

2
 (5.1) 

where CT is the coefficient to fit the maximum transmittance, EF is the graphene Fermi level, EF,0 

is the graphene Fermi level at a resonance, ΔEF is the linewidth in graphene Fermi level, and q is 

the asymmetric parameter describing the energy balance between the non-resonant mode and the 

resonant mode. When q is on the order of unity, the amount of non-resonant and resonant modes 

are comparable, which leads to a well-balanced interference exhibiting the asymmetric Fano 

lineshape [154-157]. Figure 5.8(b) shows the Fano resonance fitting curve with CT=0.187, 

EF,0=0.470 eV, ΔEF=0.079 eV, and q=1.156. Here, q of nearly one confirms that both the non-

resonant mode and the resonant mode contribute to the transmission across the subwavelength 

metal slit, and the asymmetric lineshape in the transmittance originates from the Fano resonance 

between the two modes. 

 To account for the interference caused by the phase difference between the two modes, we 

decomposed the non-resonant mode and the resonant mode in Fig. 5.10. In this calculation, we 

assumed that the non-resonant mode consisting of the unbound eigenmodes and the surface 

plasmon mode are independent of the graphene Fermi level such that the transmission coefficient 
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of the non-resonant mode (tnon-res) is equal to the transmission coefficient across the subwavelength 

metal slit without the GPRs. Then, the transmission coefficient of the resonant mode (tres) via the 

graphene plasmonic resonance energy transport is calculated by ttotal-tnon-res, where ttotal is the total 

transmission coefficient across the subwavelength metal slit as a function of graphene Fermi level. 

 

 
Figure 5.10 | Transmission coefficients. (a) Transmission coefficients as a function of graphene 

Fermi level (EF). (b) Phase difference between the non-resonant mode and the resonant mode as 

a function of graphene Fermi level. The yellow dotted line and the green dashed line are located 

at EF=-0.421 eV and EF=-0.512 eV where the transmission is minimum and maximum, 

respectively. 

 

 Assuming that the tnon-res is a constant independent of graphene Fermi level and the 

magnitude of tres displays a Lorentzian-like resonant shape, the interference of the two modes results 

in the asymmetric lineshape in ttotal, as shown in Fig. 5.10(a). The graphene Fermi level exhibiting 

the maximum |tres| is -0.468 eV, and the full-width half-maximum of |tres|
2 is calculated by 0.105 eV. 

These values show good agreement with the Fano resonance fitting in Fig. 5.8(b), and this result 

confirms the validation of the assumption. 

At EF=-0.421 eV where the ttotal becomes minimum, the magnitudes of the tnon-res and the 

tres are identical, and the phase difference (Δϕ) is equal to π, as shown in Fig. 5.10(b). This 

relationship indicates the total destructive interference, and it leads to complete suppression of the 

transmission across the subwavelength metal slit. After EF=-0.421 eV, the phase difference is 

abruptly deviates from π toward zero. This phase relationship allows for constructive interference, 

resulting in the maximum transmission at EF=-0.512 eV. 
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Figure 5.11 | Light modulation by an intergap graphene sheet. (a) Transmittance, reflectance, 

and absorption across the subwavelength metal slit with an intergap graphene sheet as a function 

of graphene Fermi level (EF). The black dotted line corresponds to transmittance without the 

intergap GPRs. (b) Electric field distribution and (c) Sx distribution at EF=-0.539 eV exhibiting 

the minimum transmittance. (d) Electric field distribution and (e) Sx distribution at EF=-0.610 eV 

exhibiting the maximum transmittance. 

 

Similar light modulation effects across the subwavelength metal slit are also observed with 

a flat graphene sheet, as shown in Fig. 5.11. However, the light modulation strength is not 

comparable to that with the intergap GPRs because the graphene plasmonic resonance energy 

transport is more efficient along the GPRs than the flat graphene sheet. In Fig. 5.11(a), the 
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fluctuation in the transmittance arises from the interference between the non-resonant propagation 

mode and the higher-order graphene plasmon mode in the flat graphene sheet. 

 

5.3.3 Light Modulation Efficiency Dependent on Graphene Carrier Mobility 

 The oscillator strength of graphene plasmons in the GPRs is strongly dependent on the 

graphene carrier mobility because the graphene carrier mobility determines the resistive damping 

rate of the oscillation. To be specific, higher graphene carrier mobility results in higher Q-factor in 

the resonance and a more optically conductive graphene plasmonic metasurface, as discussed in 

Chapters 3 and 4. Such a dependency on the graphene carrier mobility is also observed in the 

graphene plasmonic resonance energy transport. 

 Figure 5.12(a) shows the transmittance characteristics depending on the graphene carrier 

mobility. The maximum transmittance (Tmax) monochromatically increases with graphene carrier 

mobility because the higher graphene carrier mobility reduces the decay rate along the GPRs, which 

results in more efficient graphene plasmonic resonance energy transport along the GPR chain. 

However, the modulation efficiency (ηT=1-Tmin/Tmax) is maximized at μh=1,660 cm2V-1s-1, then 

decreases with higher graphene carrier mobility because of the minimum transmittance (Tmin) 

dependent on the graphene carrier mobility. Figure 5.12(b) shows the transmittance as a function 

of graphene Fermi level with different graphene carrier mobilities. 

This tendency can be understood when we examine the transmission coefficients shown in 

Figs. 5.12(c) and (d). To achieve 100% of modulation efficiency, we need to totally suppress the 

transmission, and the total suppression in the transmission requires completely destructive 

interference between the non-resonant mode and the resonant mode. It indicates that the 

transmission strength of two mode should be equal when their phase difference is π. This condition 

is satisfied with μh=1,660 cm2V-1s-1, as shown in Fig. 5.10. If μh=1,000 cm2V-1s-1, the transmission 

strength of the resonant mode is smaller than that of the non-resonant mode when their phase 

difference is π at EF=-0.403 eV. If the graphene carrier mobility becomes even lower (μh=500 cm2V-

1s-1), the phase difference cannot reach π because of the weak oscillator strength in the GPRs. On 

the other hand, the transmission strength of the resonant mode with μh=4,000 cm2V-1s-1 at Δϕ=π 

(EF=-0.428 eV) is larger than that of the non-resonant mode. As a result, those two modes cannot 

achieve complete destructive interference, and the minimum transmittance becomes a non-zero 

value. 
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Figure 5.12 | Dependency on graphene carrier mobility. (a) Transmittance and modulation 

efficiency as a function of graphene carrier mobility (μh). (b) Transmittance with different 

graphene carrier mobilities as a function of graphene Fermi level (EF). (c) Transmission 

coefficients and (d) phase difference between the non-resonant mode and the resonant mode as 

a function of graphene Fermi level with different graphene carrier mobilities. In c and d, the red 

dashed line and the purple double dashed line are located at EF=-0.403 eV and EF=-0.428 eV, 

respectively. 

 

5.4 Conclusions 

 In summary, we report electronically tunable graphene plasmonic resonance energy 

transport along GPR chain. Because of the efficient energy transfer from incoming light to the GPR, 

it is shown that the energy transport efficiency is higher along the GPR chain than a flat graphene 

sheet. Using this energy transport effect, we devise an active light modulator integrated in a 

plasmonic waveguide with a 100% light modulation efficiency achieved by a Fano resonance 

induced by a non-resonant propagation mode and a resonant propagation mode via the graphene 

plasmonic resonance energy transport. In this device, the transmittance is enhanced by a factor of 
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3 compared to a device without GPRs, and the required length scale of the active region for 100% 

of light modulation efficiency is no more than 1/20 of free-space wavelength. In addition, less than 

0.1 eV shift in graphene Fermi level is necessary to tune the transmittance from the minimum and 

the maximum. We believe that this device can be utilized to realize integrated ultrafast and high 

efficiency plasmonic circuits. 
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