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Electrostatic Force and ElectricElectrostatic Force and Electric
ChargeCharge

Electrostatic Force (charges at rest):
• Electrostatic force can be attractive
• Electrostatic force can be repulsive
• Electrostatic force acts through empty

space
• Electrostatic force much stronger than

gravity
• Electrostatic forces are inverse square law forces (proportional to

1/r2)
• Electrostatic force is proportional to the product of the amount of charge

on each interacting object

Magnitude of the Electrostatic Force is given by Coulomb's
Law:

F = K q1q2/r2   (Coulomb's Law)

where K depends on the system of units

K = 8.99x109 Nm2/C2    (in MKS system)
K = 1/(4πεπε0)      where    εε0 = 8.85x10-12 C2/(Nm2)

Electric Charge:
electron charge = -e e = 1.6x10-19 C
proton charge = e C = Coulomb

Electric charge is a conserved quantity (net electric charge is never
created or destroyed!)

q1 q2

r
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UnitsUnits
MKS System (meters-kilograms-seconds):

also Amperes, Volts, Ohms, Watts
Force: F = ma Newtons = kg m / s2 = 1 N
Work: W = Fd Joule = Nm = kg m2 / s2 = 1 J
Electric Charge: Q Coulomb = 1 C

F = K q1q2/r2 K = 8.99x109 Nm2/C2    (in MKS system)

CGS System (centimeter-grams-seconds):
Force: F = ma 1 dyne = g cm / s2

Work: W = Fd 1 erg = dyne-cm = g cm2 / s2

Electric Charge: Q esu (electrostatic unit)

F =  q1q2/r2 K = 1    (in CGS system)

Conversions (MKS - CGS):
Force: 1 N = 105 dynes
Work: 1 J = 107 ergs
Electric Charge: 1 C = 2.99x109 esu

Fine Structure Constant (dimensionless):

α = α = K 2ππe2/hc  (same in all systems of units)

h = Plank's Constant c = speed of light in vacuum
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Electrostatic Force versus GravityElectrostatic Force versus Gravity

Electrostatic Force :

Fe = K q1q2/r2   (Coulomb's Law)

K = 8.99x109 Nm2/C2    (in MKS system)

Gravitational Force :

Fg = G m1m2/r2   (Newton's Law)

G = 6.67x10-11 Nm2/kg2    (in MKS system)

Ratio of forces for two electrons :

  e = 1.6x10-19 C     m = 9.11x10-31 kg

e, m e, m

r

Fe / Fg = K e2 / G m2  = 4.16x1042     (Huge number !!!)
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Vector ForcesVector Forces

q Q

r̂

The Electrostatic Force is a vector:
The force on q due to Q points along the direction r and is given
by

r
F

KqQ

r
r= 2 $

q1

Q
F1

q2

q3

F2

F3

Vector Superposition of Electric Forces:
If several point charges q1, q2, q3, … simultaneously exert electric
forces on a charge Q then

F = F1 + F2 +F3 + …
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Vectors & Vector AdditionVectors & Vector Addition

The Components of a vector:

x-axis

y-axis

θθ

A

Ax =A cos θθ

Ay =A sin θθ

Vector Addition:

x-axis

y-axis

A
C B

To add vectors you add the components of the vectors as follows:r

r

r r r

A A x A y A z

B B x B y B z

C A B A B x A B y A B z

x y z

x y z

x x y y z z

= + +
= + +

= + = + + + + +

$ $ $

$ $ $

( ) $ ( ) $ ( )$
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The Electric DipoleThe Electric Dipole

+Q -Q

d

An electric "dipole" is two equal and opposite point charges
separated by a distance d.  It is an electrically neutral system.
The "dipole moment" is defined to be the charge times the
separation (dipole moment = Qd).

Example Problem:

+Q

-Q

d
qx

A dipole with charge Q and separation d is located on the y-axis with its
midpoint at the origin.  A charge q is on the x-axis a distance x from the
midpoint of the dipole.  What is the electric force on q due to the dipole and
how does this force behave in the limit x >>d (dipole approximation)?

Example Problem:

-Q +Qd

x

A dipole with charge Q and separation d is located on the x-axis with its
midpoint at the origin.  A charge q is on the x-axis a distance x from the
midpoint of the dipole.  What is the electric force on q due to the dipole and
how does this force behave in the limit x >>d (dipole approximation)?
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The Electric FieldThe Electric Field

+Q q

E

The charge Q produces an electric field which in turn
produces a force on the charge q.  The force on q is expressed
as two terms:

F = K qQ/r2 = q (KQ/r2) = q E

The electric field at the point q due to Q is simply the force per
unit positive charge at the point q:

E = F/q     E = KQ/r2

The units of E are Newtons per Coulomb (units = N/C).

The electric field is a physical object which can carry both
momentum and energy.  It is the mediator (or carrier) of the
electric force.  The electric field is massless.

The Electric Field is a Vector Field:

r
E

KQ

r
r= 2 $
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Electric Field LinesElectric Field Lines

+Q -Q

Electric field line diverge from (i.e. start) on positive charge
and end on negative charge.  The direction of the line is the
direction of the electric field.

The number of lines penetrating a unit area that is
perpendicular to the line represents the strength of the electric
field.

+2Q+Q
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Electric Field due to a DistributionElectric Field due to a Distribution
of Chargeof Charge

dQ dE = K dQ/r2 r

r

The electric field from a continuous distribution of charge is
the superposition (i.e. integral) of all the (infinite)
contributions from each infinitesimal dQ as follows:

r
E

K

r
r d Q= ∫ 2 $

        and      
Q dQ= ∫

Charge Distributions:
• • Linear charge density λλ:    λ(λ(x) ) = charge/unit

length
L

dQ = λλ dx

  For a straight line dQ = λ(x) dx and

Q dQ x dx= =∫ ∫λ( )
If λλ(x) = λλ is constant then dQ = λλ dx and Q = λλL,
where L is the length.



R. D. Field PHY 2049

Chapter 23 chp23_4.doc

Charge DistributionsCharge Distributions
Charge Distributions:

• • Linear charge density λλ:              λ(θ) λ(θ) = charge/unit arc
length

R
dQ = λλ ds = λλ R dθθ

  For a circular arc dQ = λ(θ) ds = λ(θ) Rdθ and

Q dQ ds Rd= = =∫ ∫∫ λ θ λ θ θ( ) ( )
If λλ(θθ) = λλ is constant then dQ = λλ ds and Q = λλs,  where s is the
arc length.

• • Surface charge density σσ:                  σ(σ(x,y) ) = charge/unit area

dQ = σσ dA

  For a surface dQ = σ(x,y) dA and

Q dQ x y dA= =∫ ∫σ( , )
If σσ(x,y) = σσ is constant then dQ = σσ dA and Q = σσA,       where A
is the area.

• • Volume charge density ρρ:      ρ(ρ(x,y,z) ) = charge/unit volume

dQ = ρρ dV

  For a surface dQ = ρ(x,y,z) dV and

Q dQ x y z dV= =∫ ∫ ρ( , , )
If ρρ(x,y,z) = ρρ is constant then dQ = ρρ dV and Q = ρρV, where V is
the volume.
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Calculating the Electric FieldCalculating the Electric Field

Example:
P

x

L

A total amount of charge Q is uniformily distributed along a thin straight rod
of length L.  What is the electric field a a point P on the x-axis a distance x
from the end of the rod?

Answer:    
r
E

KQ

x x L
x=

+( )
$

Example:

A total amount of charge Q is uniformily
distributed along a thin straight rod of
length L.  What is the electric field a a point
P on the y-axis a distance y from the
midpoint of the rod?

Answer:    
r
E

KQ

y y L
y=

+2 22( / )
$

Example:

A infinitely long straight rod has a uniform
charge density λλ.  What is the electric field a
point P a perpendicular distance r from the
rod?

Answer:    
r
E

K

r
r=

2 λ
$

P

y

L

P

r

λλ
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Some Useful MathSome Useful Math

Approximations:

( )1 1
1

+ ≈ +
<<

ε ε
ε

p p

( )1 1
1

− ≈ −
<<

ε ε
ε

p
p

eε

ε
ε≈ +

<<1
1

tan sinε ε ε ε
ε ε
≈ ≈
<< <<1 1

Indefinite Integrals:

( )
a

x a
dx

x

x a

2

2 2 3 2 2 2+
=

+∫ /

( )
x

x a
dx

x a2 2 3 2 2 2

1

+
=

−

+∫ /
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Calculating the Electric FieldCalculating the Electric Field

Example:
A total amount of charge Q is uniformily
distributed along a thin semicircle of
radius R.  What is the electric field a a
point P at the center of the circle?

Answer:    
r
E

KQ

R
x=

2
2π
$

Example:
A total amount of charge Q is
uniformily distributed along a
thin ring of radius R. What is
the electric field a point P on
the z-axis a distance z from the
center of the ring?

Answer: ( )
r
E

KQz

z R
z=

+2 2 3 2/ $

Example:
A total amount of charge Q is
uniformily distributed on the
surface of a disk of radius R.
What is the electric field a
point P on the z-axis a distance
z from the center of the disk?

Answer:

r
E

KQ

R

z

z R
z= −

+











2
12 2 2

$

R
P

x-axis

R

P z-axis

z

R

P z-axis

z
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Calculating the Electric FieldCalculating the Electric Field

Example:

What is the electric field generated by a
large (infinite) sheet carrying a uniform
surface charge density of σσ coulombs per
meter?

Answer:    
r
E z=

σ
ε2 0

$

Example:

What is the electric field at a point P
between two large (infinite) sheets
carrying an equal but opposite uniform
surface charge density of σσ?

Answer:    
r
E z=

σ
ε0

$

P

z

σσ

P

-σσ

σσ
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Flux of a Vector FieldFlux of a Vector Field

Fluid Flow:

n̂

Flux = vA

n̂

Flux = 0

n̂

Flux = vA cosθθ

θθ

Consider the fluid with a vector
r
v  which describes the velocity of the fluid

at every point in space and a square with area A = L2 and normal $n .  The
flux is the volume of fluid passing through the square area per unit time.

Generalize to the Electric Field:
Electric flux through the infinitesimal area
dA is equal to

d E dAΦ = ⋅
r r

where

dA An
r

= $

Total Electric Flux through a Closed Surface:

ΦE S
E dA= ⋅∫
r r

dA

E

θθ n̂

dΦΦ =E dA cosθθ

E

normal

Surface S
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Electric Flux and Gauss' LawElectric Flux and Gauss' Law

The electric flux through any closed surface is
proportional to the net charge enclosed.

r r
E dA

Qenclosed

S
⋅ =∫ ε0

For the discrete case the total charge enclosed is the sum over all
the enclosed charges:

Q qenclosed i
i

N

=
=

∑
1

For the continuous case the total charge enclosed is the integral of
the charge density over the volume enclosed by the surface S:

Q dVenclosed = ∫ ρ

Simple Case: If the electric field is constant over the surface and
if it always points in the same direction as the normal to the
surface then

ΦE S
E dA EA= ⋅ =∫
r r

The units for the electric flux are Nm2/C.

E

normal

Closed
Surface S
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Conductors in Static EquilibriumConductors in Static Equilibrium

Conductor:  In a conductor some
electrons are free to move (without
restraint) within the volumn of the
material (Examples: copper, silver, aluminum, gold)

Conductor in Static Equilibrium:
When the charge distribution on a
conductor reaches static equilibrium
(i.e. nothing moving), the net electric
field withing the conducting

material is exactly zero (and the electric potential is constant).

Excess Charge:  For a conductor
in static equilibrium all the (extra)
electric charge reside on the
surface.  There is no net electric
charge within the volumn of the
conductor (i.e. ρ ρ = 0).

Electric Field at the Surface:
The electric field at the surface of a
conductor in static equilibrium is
normal to the surface and has a magnitude, E = σσ/εε0, where σσ is
the surface charge density (i.e. charge per unit area) and the net
charge on the conductor is

Q d A
S u r f a c e

= ∫ σ
.

Conductor

Conductor in
static equilibrium

E = 0
V = constant

Conductor in
static equilibrium

E = 0
V = constant

ρρ = 0

Surface Charge Density
σσ

E
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Gauss' Law ExamplesGauss' Law Examples

Problem:  A solid insulating sphere of radius R
has charge distributed uniformly throughout its
volume.  The total charge of the sphere is Q.  What
is the magnitude of the electric field inside and
outside the sphere?
Answer:

Problem:  A solid conducting sphere of radius R
has a net charge of Q.  What is the magnitude of the
electric field inside and outside the sphere?  Where
are the charges located?
Answer:  Charges are on the surface and

 

r

r
E

K Q

r
r

E

o u t

in

=

=
2

0

$

Problem:  A solid conducting sphere of radius
b has a spherical hole in it of radius a and has a
net charge of Q.  If there is a point charge -q
located at the center of the hole, what is the
magnitude of the electric field inside and outside
the conductor?  Where are the charges on the
conductor located?
Answer:  Charges are on the inside and outside
surface with Qin=q and Qout=Q-q and

 

r

r
E

K Q q

r
r

E

E
K q

r
r

r b

a r b

r a

>

< <

<

=
−

=

=
−

( )
$

$

2

2

0

Total Charge Q
ρρ = constant

Insulating Sphere

R

r

r

E
K Q

r
r

E
K Q r

R
r

o u t

in

=

=

2

3

$

$

Net Charge Q

Conducting
Sphere

R

Net Charge Q
on conductor

b

-q

a
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Gravitational Potential EnergyGravitational Potential Energy

Gravitational Force:   F = G m1m2/r2

Gravitational Potential Energy GPE:
U = GPE = mgh  (near surface of the Earth)

Kinetic Energy:   KE = 
1

2
2m v

Total Mechanical Energy:  E = KE +U

Work Energy Theorem:
W = EB-EA = (KEB-KEA) + (UB-UA)
(work done on the system)

Energy Conservation:  EA=EB
(if no external work done on system)

Example:

A ball is dropped from a height h.  What is
the speed of the ball when it hits the
ground?

Solution:  Ei = KEi +Ui = mgh    Ef = KEf + Uf = mvf
2/2

E E v ghi f f= ⇒ = 2

h

vi = 0

vf = ?
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Electric Potential EnergyElectric Potential Energy

Gravitational Force:   F = K q1q2/r2

Electric Potential Energy:   EPE = U  (Units = Joules)

Kinetic Energy:   KE = 
1

2
2m v    (Units = Joules)

Total Energy:  E = KE + U    (Units = Joules)
Work Energy Theorem:  (work done on the system)

W = EB - EA = (KEB - KEA) + (UB - UA)
Energy Conservation:  EA=EB  (if no external work done on system)

Electric Potential Difference ∆∆V = ∆∆U/q:

Work done (against the electric force)
per unit charge in going from A to B
(without changing the kinetic energy).

∆∆V = WAB/q = ∆∆U/q = UB/q - UA/q

(Units = Volts     1V = 1 J / 1 C)

Electric Potential V = U/q:   U = qV

Units for the Electric Field (Volts/meter):
N/C = Nm/(Cm) = J/(Cm) = V/m

Energy Unit (electron-volt):  One electron-volt is the amount
of kinetic energy gained by an electron when it drops through one
Volt potential difference

1 eV = (1.6x10-19 C)(1 V) = 1.6x10-19 Joules

1 MeV = 106 eV 1 GeV=1,000 MeV 1 TeV=1,000 GeV

q

B

A
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Accelerating Charged ParticlesAccelerating Charged Particles

Example Problem:  A particle with mass M
and charge q starts from rest a the point A.  What is
its speed at the point B if VA=35V and VB=10V

(M = 1.8x10-5kg, q = 3x10-5C)?

Solution:
The total energy of the particle at A and B is

E KE U qV

E KE U Mv qV

A A A A

B B B B B

= + = +

= + = +

0
1

2
2 .

Setting EA = EB (energy conservation) yields
 (Note: the particle gains an amount of kinetic
energy equal to its charge, q, time the change in
the electric potential.)

Solving for the particle speed gives
(Note: positive particles fall from high potential to
low potential VA >VB, while negative particles
travel from low potential to high potential,
VB >VA.)

Plugging in the numbers gives

v
C V

kg
m sB =

×
×

=
−

−

2 3 10 25

1 8 10
9 1

5

5

( )( )

.
. / .

VB = 10VVA = 35V

A B

q

+ -E

1

2
2Mv q V VB A B= −( )

v
q V V

MB
A B=

−2 ( )
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Potential Energy & ElectricPotential Energy & Electric
PotentialPotential

Mechanics (last semester!):
Work done by force F in going from A to B:

W F drA B
byF

A

B

→ = ⋅∫
r r

Potential Energy Difference ∆∆U:

W U U U F drA B
againstF

B A
A

B

→ = = − = − ⋅∫∆
r r

r r
F U

U

x
x

U

y
y

U

z
z= −∇ = − − −

∂
∂

∂
∂

∂
∂

$ $ $

Electrostatics (this semester):

Electrostatic Force:                        
r r
F qE=

Electric Potential Energy Difference ∆∆U:
(work done against E in moving q from A to B)

∆U U U qE drB A
A

B

= − = − ⋅∫
r r

Electric Potential Difference ∆∆V=∆∆U/q:
(work done against E per unit charge in going from A to B)

∆V V V E drB A
A

B

= − = − ⋅∫
r r

r r
E V

V

x
x

V

y
y

V

z
z= −∇ = − − −

∂
∂

∂
∂

∂
∂

$ $ $
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The Electric Potential of a PointThe Electric Potential of a Point
ChargeCharge

+Q E

                               
r

V(r) V(r) = KQ/r

Potential from a point charge:

V(r) = ∆∆V = V(r) - V(infinity) = KQ/r

U = qV = work done against the electric force in bringing the
charge q from infinity to the point r.

+Q q

E

Potential from a system of N point charges:

V
Kq

r
i

ii

N

=
=

∑
1
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Electric Potential due to aElectric Potential due to a
Distribution of ChargeDistribution of Charge

dQ dV = K dQ/r

r

The electric potential from a continuous distribution of charge
is the superposition (i.e. integral) of all the (infinite)
contributions from each infinitesimal dQ as follows:

V
K

r
d Q= ∫         and      

Q dQ= ∫
Example:
A total amount of charge Q is uniformily
distributed along a thin circle of radius R.
What is the electric potential at a point P at
the center of the circle?

Answer:    V
KQ

R
=

Example:
A total amount of charge Q is uniformily
distributed along a thin semicircle of
radius R.  What is the electric potential at a
point P at the center of the circle?

Answer:    V
KQ

R
=

R
P

x-axis

R
P

x-axis
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Calculating the Electric PotentialCalculating the Electric Potential

Example:
A total amount of charge Q is
uniformily distributed along a
thin ring of radius R. What is
the electric potential at a point
P on the z-axis a distance z
from the center of the ring?

Answer: V z
KQ

z R
( ) =

+2 2

Example:
A total amount of charge Q is
uniformily distributed on the
surface of a disk of radius R.
What is the electric potential at
a point P on the z-axis a
distance z from the center of
the disk?

Answer:    ( )V z
KQ

R
z R z( ) = + −

2
2

2 2

R

P z-axis

z

R

P z-axis

z
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Electric Potential EnergyElectric Potential Energy
For a system of point charges:
The potential energy U is the work required to assemble the final charge
configuration starting from an inital condition of infinite separation.

Two Particles:

U K
q q

r
q

Kq

r
q

Kq

r
= =





 +







1 2
1

2
2

11

2

1

2
so we see that

U q Vi i
i

=
=

∑1

2 1

2

where Vi is the electric potential at i due to the other charges.

Three Particles:

U K
q q

r
K

q q

r
K

q q

r
= + +1 2

12

1 3

13

2 3

23

which is equivalent to

U q Vi i
i

=
=

∑1

2 1

3

where Vi is the electric potential at i due to the other charges.

N Particles:

U q Vi i
i

N

=
=

∑1

2 1

q1 q2

r

q1
q2

r12

q3

r13 r23
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Stored Electric Potential EnergyStored Electric Potential Energy

For a conductor with charge Q:
The potential energy U is the work required to assemble the final charge
configuration starting from an inital condition of infinite separation.

For a conductor the total charge Q resides
on the surface

Q d q d A= = ∫∫ σ
Also, V is constant on and inside the
conductor and

dU dQV V dA= =
1

2

1

2
σ

and hence

U V d Q V d A V Q
Surface Surface

= = =∫ ∫
1

2

1

2

1

2
σ

Stored Energy:     U Q Vc o n d u c t o r =
1

2
where Q is the charge on the conductor and V is the electric potential of
the conductor.

For a System of N Conductors:

U Q Vi i
i

N

=
=

∑1

2 1
where Qi is the charge on the i-th conductor and Vi is the electric
potential of the i-th conductor.

dQ=σσdA

V = constant

E=0
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Capacitors & CapacitanceCapacitors & Capacitance

Capacitor:
Any arrangement of conductors that is used to store electric charge (will also
store electric potential energy).

Capacitance:      C=Q/V    or    C=Q/∆∆V
Units:  1 farad = 1 F = 1 C/1 V       1 µµF=10-6 F     1 pF=10-9 F

Stored Energy:

U Q V
Q

C
C Vc o n d u c t o r = = =

1

2 2

1

2

2
2

where Q is the charge on the conductor and V is the electric potential of the
conductor and C is the capacitance of the conductor.

Example (Isolated Conducting Sphere):
For an isolated conducting sphere with radius R, V=KQ/R and
hence C=R/K and U=KQ2/(2R).

Example (Parallel Plate Capacitor):
For two parallel conducting
plates of area A and separation d
we know that E = σσ/εε0 = Q/(Aεε0)
and ∆∆V = Ed = Qd/(Aεε0) so that
C = Aεε0/d.  The stored energy is

U = Q2/(2C) = Q2d/(2Aεε0).

E

d

+σσ

−σ−σ

Q Area A

-Q Area A

E=Q/(Aεε0)
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Capacitors in Series & ParallelCapacitors in Series & Parallel

Parallel:
In this case ∆∆V1=∆∆V2=∆∆V and
Q=Q1+Q2.  Hence,

Q = Q1 + Q2 = C1∆V1 + C2∆V2 =

(C1+C2)∆V

so C = Q/∆∆V = C1 + C2, where I

used Q1 = C1∆V1 and

Q2 = C2∆V2.

Capacitors in parallel add.

Series:
In this case ∆∆V=∆∆V1+∆∆V2 and Q=Q1=Q2.
Hence,
∆V = ∆V1 + ∆V2 =  Q1/C1+Q2/C2 =
(1/C1+1/C2)Q

so 1/C = ∆∆V/Q = 1/C1 + 1/C2, where I used

Q1 = C1∆V1 and  Q2 = C2∆V2.

Capacitors in series add inverses.

∆∆VC1 C2

∆∆V

C1

C2
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Energy Density of the ElectricEnergy Density of the Electric
FieldField

Energy Density u:
Electric field lines contain energy!  The amount of
energy per unit volume is

u = e0E2/2,
where E is the magnitude of the electric field.  The

energy density has units of Joules/m3.

Total Stored Energy U:
The total energy strored in the electric field lines in an infinitessimal volume
dV is dU = u dV and

U udV
Volume

= ∫
If u is constant throughout the volume, V,  then U = u V.

Example: Parallel Plate Capacitor
Think of the work done in bringing in the charges
from infinity and placing them on the capacitor as the
work necessary to produce the electric field lines and
that the energy is strored in the electric field!
From before we know that C = Aεε0/d so that the

stored energy in the capacitor is

U = Q2/(2C) = Q2d/(2Aεε0).

The energy stored in the electric field is U = uV = e0E2V/2 with

E = σσ/e0 = Q/(e0A) and V = Ad, thus

U=Q2d/(2Aεε0),
which is the same as the energy stored in the capacitor!

Volume

E

+Q

-Q

d

Area A

E-field
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Electric Energy ExamplesElectric Energy Examples

Example:
How much electric energy is stored by a
solid conducting sphere of radius R and
total charge Q?

Answer:    U
KQ

R
=

2

2

Example:
How much electric energy is stored by a two thin
spherical conducting shells one of radius R1 and
charge Q and the other of radius R2 and charge -Q

(spherical capacitor)?

Answer:    U
KQ

R R
= −









2

1 22

1 1

Example:
How much electric energy is stored by a
solid insulating sphere of radius R and
total charge Q uniformly distributed
throughout its volume?

Answer:    U
KQ

R

KQ

R
= +





 =1

1

5 2

3

5

2 2

R

Charge Q

E

R2

Q

E

R1

-Q

R

Charge Q

EE
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Charge Transport and CurrentCharge Transport and Current
DensityDensity

Consider n particles per unit volume
all moving with velocity v and each
carrying a charge q.

The number of particles, ∆∆N, passing through the (directed) area A in a time

∆∆t is ∆ ∆N nv A t= ⋅
r r

and the amount of charge, ∆∆Q, passing through
the (directed) area A in a time ∆∆t is

∆ ∆Q nqv A t= ⋅
r r

.
The current, I(A), is the amount of charge per unit time passing through the
(directed) area A:

I A
Q

t
n q v A J A( )

r r r r r
= = ⋅ = ⋅

∆
∆ ,

where the "current density" is given by  
r r
J nqv drift= .

The current I is measured in Ampere's where 1 Amp is equal to one
Coulomb per second (1A = 1C/s).

For an infinitesimal area (directed) area dA:

dI J dA= ⋅
r r

      and       
r
J n

dI

d A
⋅ =$ .

The "current density" is the amount of current per unit area and has units of

A/m2.  The current passing through the surface S is given by

I J dA
S

= ⋅∫
r v

.

The current, I, is the "flux" associated with the vector J.

q

A

v
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Electrical Conductivity and OhmsElectrical Conductivity and Ohms
LawLaw

Free Charged Particle:
For a free charged particle in an electric field,

r r r
F ma qE= =      and thus     

r r
a

q

m
E= .

The acceleration is proportional to the electric field strength E and the
velocity of the particle increases with time!

Charged Particle in a Conductor:
However, for a charged particle in a
conductor the average velocity is
proportional to the electric field
strength E and since  

r r
J nqvave=

we have

     

r r
J E= σ ,

where σσ is the conductivity of the material and is a property of the
conductor.  The resistivity ρρ = 1/σσ.

Ohm's Law:
r r
J E= σ

I J A E A= = σ

∆ V E L
I

A
L

L

A
I RI= = =





 =

σ σ
∆∆V = IR (Ohm's Law)  R = L/(σσA) = ρρL/A (Resistance)

Units for R are Ohms   1ΩΩ = 1V/1A

q   m E

q E

Conductor

Current Density J
Electric Field E

Conductor σσ

Length   L

Current I

A

V1 V2
Potential Change ∆∆V
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Resistors in Series & ParallelResistors in Series & Parallel

Parallel:
In this case ∆∆V1=∆∆V2=∆∆V
and I=I1+I2.  Hence,

I = I1 + I2 = ∆V1/R1 +

∆V2/R2 = (1/R1+1/R2)∆V

so 1/R = I/∆∆V = 1/R1 + 1/R2,

where I used I1 = ∆V1/R1 and

I2 = ∆V2/R2.  Also,

∆V = I1R1 = I2R2 = IR so

I1 = R2I/(R1+R2) and I2 = R1I/(R1+R2).

Resistors in parallel add inverses.

Series:
In this case ∆∆V=∆∆V1+∆∆V2 and I=I1=I2.
Hence,
∆V = ∆V1 + ∆V2 =  I1R1+I2R2 = (R1+R2)I

so R = ∆∆V/I = R1 + R2, where I used

∆V1 = I1R1 and  ∆V2 = I2R2.

Resistors in series add.

∆∆VR1 R2

I

∆∆V1

I1 I2

∆∆V2

∆∆V

R1

R2

I

∆∆V1

∆∆V2
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Direct Current (DC) CircuitsDirect Current (DC) Circuits

Electromotive Force:
The electromotive force EMF of a source of electric potential energy is
defined as the amount of electric energy per Coulomb of positive charge as
the charge passes through the source from low potential to high potental.

EMF = εε = U/q     (The units for EMF is Volts)

Single Loop Circuits:
ε - IR = 0    and    I = εε /R

(Kirchhoff's Rule)

Power Delivered by EMF (P = εεI):

dW dq P
dW

dt

dq

dt
I= = = =ε ε ε

Power Dissipated in Resistor (P = I2R):

dU V dq P
dU

dt
V

dq

dt
V IR R R= = = =∆ ∆ ∆

∆∆V

+

EMF

-

I

EMF + ∆∆V = 0

V

I

R

+

εε
-

I
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DC Circuit RulesDC Circuit Rules

Loop Rule:
The algebraic sum of the changes in
potential encountered in a complete
traversal of any loop of a circuit must be
zero.

∆V i
loop

=∑ 0  .

Junction Rule:
The sum of the currents entering any junction
must be equal the sum of the currents leaving
that junction.

I Ii
in

i
out

=∑ ∑

Resistor:
If you move across a resistor in the direction
of the current flow then the potential change is

∆∆VR = - IR.

Capacitor:
If you move across a capacitor from minus to plus then
the potential change is

∆∆VC = Q/C,

and the current leaving the capacitor is  I = -dQ/dt.

Inductor (Chapter 31):
If you move across an inductor in the direction of
the current flow then the potential change is

∆∆VL = - L dI/dt.

∆∆V

+

EMF

-

I

EMF + ∆∆V = 0

∆∆V=-IR

I

∆∆V=Q/C

I

Q +

-

∆∆VL=-LdI/dt

I

L
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Charging a CapacitorCharging a Capacitor

After the switch is closed the current is
entering the capacitor so that I = dQ/dt,
where Q is the charge on the capacitor
and  summing all the potential changes in
going around the loop gives

ε − − =IR
Q

C
0  ,

where I(t) and Q(t) are a function of time.  If the switch is closed at t=0 then
Q(0)=0 and

ε − − =R
dQ

dt

Q

C
0  ,

which can be written in the form

( )dQ

dt
Q C= − −

1
τ

ε  ,    where I have define  ττ=RC.

Dividing by (Q-εC) and multipling by dt and integrating gives

  ( )
dQ

Q C
dt

Q
t

−
= −∫ ∫ε τ0

0

1
 , which implies   ln

Q C

C

t−
−





 = −

ε
ε τ  .

Solving for Q(t) gives

( )Q t C e t( ) /= − −ε τ1

.

The curent is given by
I(t)=dQ/dt which yields

I t
C

e
R

et t( ) / /= =− −ε
τ

ετ τ
.  The quantity ττ=RC is call the time

constant and has dimensions of time.

Switch

+
εε

-

R

C

0.00

0.25

0.50

0.75

1.00

1.25

1.50

0 1 2 3 4

Time

Q(t)

Charging a Capacitor
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Discharging a CapacitorDischarging a Capacitor

After the switch is closed the current is
leaving the capacitor so that I = -dQ/dt,
where Q is the charge on the capacitor and
summing all the potential changes in going
around the loop gives

Q

C
IR− = 0  ,

where I(t) and Q(t) are a function of time.  If the switch is closed at t=0 then
Q(0)=Q0 and

Q

C
R

dQ

dt
+ = 0  ,

which can be written in the form
dQ

dt
Q= −

1
τ  ,    where I have defined  ττ=RC.

Dividing by Q and multiplying by dt and integrating gives

  
dQ

Q
dt

Q

Q
t

0

1

0
∫ ∫= −

τ  , which implies   ln
Q

Q

t

0







 = −

τ  .

Solving for Q(t) gives

Q t Q e t( ) /= −
0

τ
.

The current is given by
I(t)=-dQ/dt which yields

I t
Q
RC

e t( ) /= −0 τ
.

The quantity ττ=RC is call the "time constant" and has dimensions of time.

Switch

+

-
R

C

Discharging a Capacitor

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4

Time

Q(t)
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The Electromagnetic ForceThe Electromagnetic Force

The Force Between Two-Charged Particles (at rest):
The force between two charged particles at rest is
the electrostatic force and is given by

r
F

KQq

r
rE = 2 $  (electrostatic force) ,

where K = 8.99x109 Nm2/C2.

The Force Between Two Moving Charged Particles:
The force between two moving charged particles is
the electromagnetic force and is given by

r r r
F

KQq

r
r

KQq

c r
v V rEM = + × ×2 2 2$ $

(electromagnetic force)
where K = 8.99x109 Nm2/C2 and c = 3x108 m/s
(speed of light in a vacuum).  The first term is the

electric force and the second (new) term is the called the magnetic force so

that 
r r r
F F FEM E B= + , with

r r

r r r r r r r

F
KQq

r
r q

KQ

r
r qE

F
KQq

c r
v V r qv

KQ

c r
V r qv B

E

B

= = 



 =

= × × = × ×



 = ×

2 2

2 2 2 2

$ $

$ $

The electric and magnetic fields due to the
particle Q are

r

r r

E
KQ

r
r

B
KQ

c r
V r

=

= ×

2

2 2

$

$

The electromagnetic force on q is given byr r r r
F qE qv BEM = + × (Lorenz Force).

r

r

q

QV=0

v=0

r

r

q

Q

V

v

E

B

Electric and Magnetic Fields of a
Charged Particle Q moving with

Speed V (out of the paper)

Q
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The Magnetic ForceThe Magnetic Force

The Force on Charged Particle in a Magnetic Field:
The magnetic force an a charged particle q in a magnetic field
B is given by r r r

F qv BB = ×  .

The magnitude of the magnetic force is FB = qvB sinθθ and

B = FB/(qv sinθθ)  is the definition of the magnetic field. (The
units for B are Tesla, T, where 1 T = 1 N/(C m/s)).  The magnetic force
an infinitesimal charged particle dq in a magnetic field B is given by

dF dqv BB

r r r
= × .

The Force on Wire Carrying a Current in a Magnetic Field:
A current in a wire corresponds to
moving charged particles with
I = dq/dt.  The magnetic force on
the charge dq is

dF dqv BB

r r r
= × ,

and the speed v=dl/dt. Hence,

dqv dq
dl

dt
Idl

r
r

r
= = ,

and the magnetic force on a

infinitesimal length dl of the wire becomes dF Idl BB

r v r
= × .  The total

magnetic force on the wire is
r r v r
F dF Idl BB B= = ×∫ ∫ ,

which for a straight wire of length L in a uniform magnetic field becomesr r r
F IL BB = × .

q

B

v

θθ

B-out

I

dF

dq

dl
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Vector Multiplication: Dot & CrossVector Multiplication: Dot & Cross

Two Vectors:
Define two vectors according tor

r
A A x A y A z

B B x B y B z
x y z

x y z

= + +
= + +

$ $ $

$ $ $  .

The magnitudes of the vectors is given by
r

r
A A A A A

B B B B B

x y z

x y z

= = + +

= = + +

2 2 2

2 2 2

Dot Product (Scalar Product):
The dot product, S, is a scalar and is given by

S A B A B A B A B A Bx x y y z z= ⋅ = = + +
r r r r

cosθ

Cross Product (Vector Product):
The cross product, 

r
C , is a vector and is given byr r r

C A B A B A B x A B A B y A B A B zy z z y x z z x x y y x= × = − − − + −( ) $ ( ) $ ( )$
The magnitude of the cross product is given byr r r r r

C A B A B= × = sinθ
The direction of the cross product can be determined from the "right hand
rule".

Determinant Method:
The cross product can be constructed by evaluating the following
determinant:

r r r
C A B

x y z

A A A

B B B
x y z

x y z

= × =

$ $ $

B

A

θθ
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Motion of a Charged Particle in aMotion of a Charged Particle in a
Magnetic FieldMagnetic Field

Consider a charged particle q
with velocityr

v v x v yx y= +$ $ ,

and kinetic energy

E mv mv vkin = = ⋅
1

2

1

2
2 r r

,

in a uniform magnetic fieldr
B Bz= − $ .

The magnetic force on the
particle is given byr r r

F qv BB = × .

The magnetic force does not change the speed (kinetic energy)
of the charged particle.  The magnetic force does no work on the
charged particle since the force is always perpendicular to the path of the
particle.  There is no change in the particle's kinetic energy and no change in
its speed.

Proof:  We know that   
r r r r r

r r
F qv B m

dv

dt
m

dv

dt
qv BB = × = = × .  Hence

( )dE

dt
m

dv

dt
m

d v v

dt
mv

dv

dt
qv v Bkin = =

⋅
= ⋅ = ⋅ × =

1

2

1

2
0

2 r r
r

r
r r r

,

and thus Ekin (and v) are constant in time.

 The magnetic force can change the direction a charged particle but not its
speed.  The particle undergoes circular motion
with angular velocity ωω = qB/m.

vd
F

m
dt

qvB

m
dt

d

dt

qB

m

θ

ω
θ

= =

= =

x-axis

v

R

y-axis

B-in

q

v(t+dt)

v(t)

dθθ
Fdt/m
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Circular Motion: Magnetic vsCircular Motion: Magnetic vs
GravitationalGravitational

Planetary Motion:
For circular planetary motion the force on
the orbiting planet is equal the mass times

the centripetal acceleration, a = v2/r, as
follows:

FG = GmM/r2 = mv2/r
Solving for the radius and speed gives,

r = GM/v2 and v = (GM/r)1/2.  The
period of the rotation (time it takes to go around once) is given by

T=2ππr/v=2ππGM/v3 or T
GM

r=
2 3 2π / .  The angular velocity, ω ω = dθθ/dt,

and linear velocity v = ds/dt are related by v = rωω, since s = rθθ.  Thus,
2/3/ rGM=ω .  The angular velocity an period are related by T = 2ππ/ωω

and the linear frequency f and ωω are related by ω ω = 2ππf with T = 1/f.  Planets
further from the sum travel slower and thus have a longer period T.

Magnetism:
For magnetic circular motion the force on
the charged particle is equal its mass
times the centripetal acceleration,

a = v2/r, as follows:

FB = qvB = mv2/r.

Solving for the radius and speed gives,
r = mv/(qB) = p/(qB) ,

and v = qBr/m.   The period of the
rotation is given by T = 2ππr/v =

2ππm/(qB) and is independent of the radius!  The frequency (called the
cyclotron frequency) is given by f = 1/T= qB/(2ππm)  is the same for all
particles with the same charge and mass (ωω = qB/m).

M m

v

r

v

r

B-in

q
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The Magnetic Field Produced by aThe Magnetic Field Produced by a
CurrentCurrent

The Law of Biot-Savart:
The magnetic field at the
point P due to a  charge dQ
moving with speed V within
a wire carrying a current I
is given by

dB
KdQ
c r

V r
r r

= ×2 2 $

where K = 8.99x109 Nm2/C2 and c = 3x108 m/s (speed of light in a vacuum).

However, we know that I = dQ/dt and 
r

r

V
d l

d t
=  so that dQV Idl

r r
=  and,

dB
kI

r
dl r

r r
= ×2 $    (Law of Biot-Savart),

where k = K/c2 = 10-7 Tm/A.  For historical reasons we define µµ0 as

follows:

k
K

c
= =

µ
π
0

24 ,        (µµ0 = 4π π x 10-7 Tm/A).

Example (Infinite Straight Wire):

An infinitely long straight wire carries a steady
current I.  What is the magnetic field at a distance
r from the wire?

Answer:    B r
kI

r
( ) =

2

r

r

P

d Q d l
I

W ire

B

Magnetic Field of an Infinite Wire
Carrying Current I (out of the paper)

I-out

I

r
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Calculating the Magnetic Field (1)Calculating the Magnetic Field (1)

Example (Straight Wire Segment):
An infinitely long straight wire carries a steady current I.  What is the
magnetic field at a distance y from the wire due to the segment 0 <x < L?

Answer:   B r
kI
y

L

y L
( ) =

+2 2

Example (Semi-Circle):
A thin wire carrying a current I is
bent into a semi-circle of radius
R. What is the magnitude of
magnetic field at the center of the
semi-circle?

Answer:   B
kI

R
=

π

Example (Circle):
A thin wire carrying a current I is forms a
circle of radius R. What is the magnitude of
magnetic field at the center of the semi-circle?

Answer:   B
kI

R
=

2π

I

y

L

RI
P

R

I

P
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Calculating the Magnetic Field (2)Calculating the Magnetic Field (2)

Example (Current Loop):
A thin ring of radius R carries a
current I. What is the magnetic
field at a point P on the z-axis a
distance z from the center of the
ring?

Answer:

( )B z
kI R

z R
z ( ) /=

+

2 2

2 2 3 2

π

Example (Magnetic Dipole):
A thin ring of radius R carries a
current I. What is the magnetic field
at a point P on the z-axis a distance
z >> R from the center of the ring?

Answer:   B z
k

z
I R IAz

B
B( ) = = =

2
3

2µ
µ π

The quantity µµB is called the magnetic dipole moment,

µµB = NIA,

where N is the number of loops, I is the current and A is the area.

R

P z-axis

z

I

R P z-axis

z
I



R. D. Field PHY 2049

Chapter 30 chp30_4.doc

Ampere's LawAmpere's Law

Gauss' Law for Magnetism:
The net magnetic flux emanating from a closed surface S is proportional to
the amount of magnetic charge enclosed by the surface as follows:

ΦB
S

enclosed
MagneticB dA Q= ⋅ ∝∫

r r

.

However, there are no magnetic charges (no magnetic monopoles) so the
net magnetic flux emanating from a closed surface S is always zero,

ΦB
S

B dA= ⋅ =∫
r r

0
     (Gauss's Law for Magnetism).

Ampere's Law:
The line integral of the magnetic field around a
closed loop (circle) of radius r around a current
carrying wire is given by

   B dl rB r kI I
Loop

⋅ = = =∫
r

2 4 0π π µ( ) .

This result is true for any closed loop that
encloses the current I.

The line integral of the magnetic field around any closed path C is equal
to µµ0 times the current intercepted by the area spanning the path:

B dl Ienclosed
C

⋅ =∫
r

µ0
  Ampere's Law

The current enclosed by the closed curve C is given by the integral over the
surface S (bounded by the curve C) of the current density J as follows:

I J dAenclosed
S

= ⋅∫
r r

B

Magnetic Field of an Infinite Wire
Carrying Current I (out of the paper)
is B(r) = 2kI/r.

I-out

r

Curve C
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Ampere's Law ExamplesAmpere's Law Examples

Example (Infinite Straight Wire with radius R):
An infinitely long straight wire has a circular cross section of radius R and
carries a uniform current density J along the wire.  The total current carried
by the wire is I.  What is the magnitude of the magnetic field inside and
outside the wire?
Answer:

B r
kI

r

B r
krI

R

out

in

( )

( )

=

=

2

2
2

.

Example (Infinite Solenoid):
An infinitely long thin straight wire carrying current I is tightly wound into
helical coil of wire (solenoid) of radius R and infinite length and with n turns
of wire per unit length.  What is the magnitude and direction of the magnetic
field inside and outside the solenoid
(assume zero pitch)?
Answer:

B r

B r nI
out

in

( )

( )

=
=

0

0µ .

Example (Toroid):
A solenoid bent into the shape of a doughnut is called a toriod. What is the
magnitude and direction of the magnetic field
inside and outside a toriod of inner radius R1 and
outer radius R2 and N turns of wire carrying a
current I (assume zero pitch)?
Answer:

B r

B r
kNI

r

out

in

( )

( )

=

=

0
2

I
R

B
R

Infinite Solenoid

I

R1

R2

Toriod
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Electromagnetic Induction (1)Electromagnetic Induction (1)

Conducting Rod Moving through a Uniform Magnetic Field:

The magnetic force on the charge
q in the rod isr r r

F qv BB = × .

The induced EMF, εε, is equal to
the amount of work done by the
magnetic field in moving a unit
charge across the rod,

ε = ⋅ = × ⋅ =∫ ∫
1

q
F dl v B dl vLBB

r r r r r

.

In Steady State:
In steady state a charge q in the rod
experiences no net force since,r r

F FE B+ = 0 ,
and thus, r r r

E v B= − × .
The induced EMF (change in
electric potential across the rod) is
calculated from the electric field in the
usual way,

ε = ⋅ = − × ⋅ =∫ ∫
r r r r r
E dl v B dl vLB ,

which is the same as the work done per unit charge by the magnetic field.

B-out

vFB

q

Rod

L

B-out

v
FB

q

Rod

L

FE

+ + +

- - -
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Electromagnetic Induction (2)Electromagnetic Induction (2)

Conducting Loop Moving through a Uniform Magnetic Field:
The magnetic force on the charge
q in the loop on side 1 is,r r r

F qv BB 1 1= × ,
and for a charge q on side 2 to it is,r r r

F qv BB 2 2= × .
However, because the magnetic

field is uniform, 
r r
B B1 2= ,

and the induced EMF's on side 1
and side 2 are equal, εε1 = εε2, and the net EMF around the loop
(counterclockwise) is zero,

ε ε ε= ⋅ = − =∫
1

01 2q
F d lB

L o o p

r r
.

Conducting Loop Moving through a Non-Uniform Magnetic
Field:

If we move a conducting loop
through a non-uniform magnetic
field then induced EMF's on side 1
and side 2 are not equal, εε1 = vLB1,

εε2 = vLB2, and the net EMF
around the loop (counterclockwise)
is,

ε ε ε= ⋅ = − = −∫
1

1 2 1 2q
F d l v L B BB

L o o p

r r
( ) .

This induced EMF will cause a current to flow around the loop in a
counterclockwise direction (if B1 > B2)!

B-out

v
FB

q

Loop

1

FE

+ + +

- - -

2

B1

B2

FB1
FB2

1 2

v
L
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Faraday's Law of InductionFaraday's Law of Induction

Magnetic Flux:
The magnetic flux through the surface S is defined by,

Φ B

S

B d A= ⋅∫
r r

.

In the simple case where B is constant and normal to the surface then

ΦΦB = BA.

The units for magnetic flux are webbers (1 Wb = 1 Tm2).

Rate of Change of the Magnetic Flux through Moving Loop:

The change in magnetic flux, dΦΦB,
in a time dt through the moving loop
is,

dΦΦB = B2dA-B1dA,
with dA = vdtL  so that
d

d t
v L B BBΦ

= − − = −( )1 2 ε

where εε is the induced EMF.  Hence,

ε = −
d

d t
BΦ

  (Faraday's Law of Induction).

Substituting in the definition of the induced EMF and the magnetic flux
yields,

ε
∂
∂

= ⋅ = − = − ⋅








 = − ⋅∫ ∫ ∫

r r r r
r

r
E d l

d

d t

d

d t
B d A

B

t
d A

C losed
L o o p

B

Sur face Sur face

Φ

We see that a changing magnetic field (with time) can produce an electric
field!

B1

B2

vdt vdt

v

L
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Lenz's LawLenz's Law

Example (Loop of Wire in a Changing Magnetic Field):
A wire loop with a radius, r, of 1
meter is placed in a uniform
magnetic field.  Suppose that the
electromagnetic is suddenly
switched off and the strength of the
magnetic field decreases at a rate
of 20 Tesla per second.  What is
the induced EMF in the loop (in
Volts)? If the resistance of the
loop, R, is 5 Ohms, what is the

induced current in the loop (in Amps)?  What is the direction of the
induced current?  What is the magnitude and direction of the magnetic
field produced by the induced current (the induced magnetic field) at the
center of the circle?
Answers:  If I choose my orientation to be counterclockwise then
ΦΦB = BA and

εε = -dΦΦB/dt = -A dB/dt = -(πr2)(-20T/s) = 62.8 V.

The induced current is I = εε/R = (62.8 V)/(5 Ω) = 12.6 A.  Since εε is positive
the current is flowing in the direction of my chosen orientation
(counterclockwise).  The induced magnetic field at the center of the circle is

given by Bind = 2ππkI/r = (2π x 10-7 Tm/A)(12.6 A)/(1 m) = 7.9 µµT and
points out of the paper.

Lenz's Law:  It is a physical fact not a law or not a consequence of
sign conventions that an electromagnetic system tends to resist change.
Traditionally this is referred to as Lenz's Law:

Induced EMF's are always in such a direction as to oppose the
change that generated them.

B-out
 changing with time

r

Loop
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Induction ExamplesInduction Examples
Example (simple generator):

A conducting rod of length L is pulled
along horizontal, frictionless, conducting
rails at a constant speed v.  A uniform
magnetic field (out of the paper) fills the
region in which the rod moves.  The
rails and the rod have negligible
resistance but are connected by a
resistor R. What is the induced EMF
in the loop? What is the induced

current in the loop?  At what rate is thermal energy being generated in
the resistor?  What force must be applied to the rod by an external agent
to keep it in uniform motion?  At what rate does this external agent do
work on the system?

Example (terminal velocity):
A long rectangular loop of wire of width L,
mass M, and resistance R, falls vertically due
to gravity out of a uniform magnetic field.
Instead of falling with an acceleration, g, the
loop falls a constant velocity (called the
terminal velocity).  What is the terminal
velocity of the loop?

Example (non-uniform magnetic field):
A rectangular loop of wire with
length a, width b, and resistance R
is moved with velocity v away from
an infinitely long wire carrying a
current I.  What is the induced
current in the loop when it is a
distance c from the wire?

B-out

v

Rod

R

B-out

Mg

L

a

b

v

c I



R. D. Field PHY 2049

Chapter 31 chp31_6.doc

Mutual & Self InductanceMutual & Self Inductance
Mutual Inductance (M):
Consider two fixed coils with a varying
current I1 in coil 1 producing a magnetic
field B1.  The induced EMF in coil 2 due to
B1 is proportional to the magnetic flux

through coil 2, Φ 2 1 2
2

2 2= ⋅ =∫
r r
B dA N

coil

φ ,

where N2 is the number of loops in coil 2 and φφ2 is the flux through a single
loop in coil 2.  However, we know that B1 is proportional to I1 which means

that ΦΦ2 is proportional to I1.  The mutual inductance M is defined to be the

constant of proportionality between ΦΦ2 and I1 and depends on the

geometry of the situation,

M
I

N

I
N MI= = = =

Φ
Φ2

1

2 2

1
2 2 2 1

φ
φ . The induced EMF in coil 2 due

to the varying current in coil 1 is given by,
 The units for inductance is a Henry

(1 H = Tm2/A = Vs/A).

Self Inductance (L):
When the current I1 in coil 1 is varying there is a

changing magnetic flux due to B1 in coil 1 itself!

The self inductance L is defined to be the constant of
proportionality between ΦΦ1 and I1 and depends on the

geometry of the situation,

L
I

N

I
N LI= = = =

Φ
Φ1

1

1 1

1
1 1 1 1

φ
φ ,

where N1 is the number of loops in coil 1 and φφ1 is the flux through a single
loop in coil 1.  The induced EMF in coil 2 due to the varying current in coil
1 is given by,

B1

I1

Coil 1 Coil 2

I2

ε2
2 1= − = −

d

dt
M

dI

dt

Φ

B1

I1

Coil 1

ε1
1 1= − = −

d

dt
L

dI

dt

Φ
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Energy Stored in a Magnetic FieldEnergy Stored in a Magnetic Field
When an external source of EMF is connected to an
inductor and current begins to flow, the induced EMF
(called back EMF) will oppose the increasing current
and the external EMF must do work in order to
overcome this opposition.  This work is stored in the
magnetic field and can be recovered by removing the
external EMF.
Energy Stored in an Inductor L:
The rate at which work is done  by the back EMF (power) is

P I LI
dI

dtback = = −ε ,

since εε = -LdI/dt.  The power supplied by the external EMF (rate at which
work is done against the back EMF) is

P
d W

dt
LI

dI

dt
= = ,

and the energy stored in the magnetic field of the inductor is

U Pdt LI
dI

dt
dt LIdI LI

t I

= = = =∫∫ ∫
0 0

21
2 .

Energy Density of the Magnetic Field u:
Magnetic field line contain energy!  The amount of
energy per unit volume is

u BB =
1

2 0

2

µ

where B is the magnitude of the magnetic field.  The
magnetic energy density has units of Joules/m3.  The
total amount of energy in an infinitesimal volume dV is
dU = uBdV and

U u dVB
Volume

= ∫ .

If B is constant through the volume, V, then U = uB V.

B

I

Coil

B
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RL CircuitsRL Circuits
"Building-Up" Phase:
Connecting the switch to position A
corresponds to the "building up" phase of an
RL circuit.  Summing all the potential
changes in going around the loop gives

ε − − =IR L
dI

dt
0  ,

where I(t) is a function of time.  If the switch is closed (position A) at t=0
and I(0)=0 (assuming the current is zero at t=0) then

d I

d t
I

R
= − −







1

τ
ε

 ,    where I have define  ττ=L/R.

Dividing by (I-ε/R) and multiplying by dt and integrating gives

  ( )
dI

I R
dt

I
t

−
= −∫ ∫ε τ/0

0

1
 , which implies   ln

/
/

I R

R

t−
−





 = −

ε
ε τ .

Solving for I(t) gives

( )I t
R

e t( ) /= − −ε τ1 .

The potential change
across the inductor is given
by ∆∆VL(t)=-LdI/dt which
yields

∆V t eL
t( ) /= − −ε τ

.

The quantity ττ=L/R is call the time constant and has dimensions of time.

"Collapsing" Phase:
Connecting the switch to position B corresponds to the "collapsing" phase
of an RL circuit.  Summing all the potential changes in going around the

loop gives  − − =I R L
d I

d t
0  , where I(t) is a function of time.  If the

switch is closed (position B) at t=0 then I(0)=I0 and

 
d I

d t
I= −

1
τ  and I t I e t( ) /= −

0
τ

.

Switch

+

εε

-

R

L

A

B

0.00

0.25

0.50

0.75

1.00

1.25

1.50

0 1 2 3 4

Time

I(t)

"Building-Up" Phase of an RL Circuit
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Electrons and MagnetismElectrons and Magnetism
Magnetic Dipole:
The magnetic field on the z-axis of a current loop with area

A=ππR2 and current I is given by Bz(z) = 2kµµ/z3,
when z >> R, where the magnetic dipole moment
µµ = IA.
Orbital Magnetic Moment:

Consider a single particle with charge q and mass m undergoing
uniform circular motion with radius R about the z-axis.  The
period of the orbit is given by T = 2ππR/v, where v is the
particles speed.  The magnetic moment (called the orbital
magnetic moment) is

µ πorb IA
q

T
R

q
vR= = =2

2 ,

since I = q/T.  The orbital magnetic moment can be written in terms of the

orbital angular momentum, 
r r r
L r p= × , as follows

µorb orb

q

m
L=

2 ,

where Lorb = Rmv.  For an electron,

µorb
e

orb

e

m
L= −

2 .

"Spin" Magnetic Moment (Quantum Mechanics):
Certain elementary parrticles (such as electrons) carry intrensic
angular momentum (called "spin" angular momentum) and
an intrensic magnetic moment (called "spin" magnetic
moment),

µspin
e e

e

m
gS

eh

m
= − = −

/
2 2 ,    (electron)

where S h= / / 2  is the spin angular momentum of the electron and g = 2 is the
gyromagnetic ratio. ( / =h h / 2π  and h is Plank's Constant.).  Here the units

are Bohr Magnitons, µBohr
e

eh

m
=

/
2

, with µµBohr = 9.27x10-24 J/T.

B

I

Loop

q

B

S



R. D. Field PHY 2049

Chapter 32 chp32_2.doc

Maxwell's EquationsMaxwell's Equations

I. (Gauss' Law):

Φ E
enclosed

Surface Volume

E dA
Q

dV= ⋅ = =∫ ∫
r r

ε ε
ρ

0 0

1

           Volume Enclosed by Surface

II. (Gauss' Law for Magnetism):

Φ B
Surface

B dA= ⋅ =∫
r r

0
    No Magnetic Charges!

III. (Faraday's Law of Induction):

ε
∂
∂

= ⋅ = − = − ⋅∫ ∫
r r

r
r

E dl
d

dt

B

t
dAB

Curve Surface

Φ

Surface Bounded by Curve

IV. (Ampere's Law):

r r r r
B dl I J dAenclosed

Curve Surface

⋅ = = ⋅∫ ∫µ µ0 0

       Surface Bounded by Curve

E

Charge Q

E

Changing
Magnetic

Field

B

Current
Density J

Two Sources of Electric Fields

One Source of Magnetic Fields
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Finding the Missing TermFinding the Missing Term

We are looking for a new term in
Ampere's Law of the form,

r r
B dl I

d

dtC

E⋅ = +∫
1

0µ δ
Φ

,

where δδ is an unknown constant and

I J d A E d A
S

E
S

= ⋅ = ⋅∫ ∫
r r r r

Φ ,

where S is any surface bounded by
the curve C1.

Case I (use surface S1):
If we use the surface S1 which is bounded by the curve C1 then

r r r
r

r
B dl I

d

dt
J

E

t
dA I

C

E

S

⋅ = + = +








 ⋅ =∫ ∫

1
0 0

1
0µ δ µ δ

∂
∂

µ
Φ

 ,

since E = 0 through the surface S1.

Case II (use surface S2):
If we use the surface S2 which is bounded by the curve C1 then

r r r
r

r
B dl I

d

dt
J

E

t
dA

I

C

E

S

⋅ = + = +








 ⋅ =∫ ∫

1
0 0

1 0

µ δ µ δ
∂
∂

δ
ε

Φ
 ,

since J = 0 through the surface S2 and

E
Q

A

E

t A

dQ

dt

I

A
= = = =

σ
ε ε

∂
∂ ε ε0 0 0 0

1
.

Ampere's Law (complete):

( )r r r
r

r
B d l I

d

dt
J

E

t
d A I I

Curve

E

Surface
d⋅ = + = +









 ⋅ = +∫ ∫µ µ ε µ ε

∂
∂

µ0 0 0 0 0 0

Φ
,

I J d A J
E
td d

S
d= ⋅ =∫

r r r
r

ε
∂
∂0 .

S1
+

εε

-

R

C

Q

S2

II

C1

E

Must be equal,
hence δδ=µµ0εε0.

"Displacement Current" "Displacement Current" Density

0

0
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Complete Maxwell's EquationsComplete Maxwell's Equations

I. (Gauss' Law):

Φ E
enclosed

Surface Volume

E dA
Q

dV= ⋅ = =∫ ∫
r r

ε ε
ρ

0 0

1

II. (Gauss' Law for Magnetism):

Φ B
Surface

B dA= ⋅ =∫
r r

0
    No Magnetic Charges!

III. (Faraday's Law of Induction):

ε
∂
∂

= ⋅ = − = − ⋅∫ ∫
r r

r
r

E dl
d

dt

B

t
dAB

Curve Surface

Φ

Surface Bounded by Curve

IV. (Ampere's Law):

r r r
r

r
B dl I

d

dt
J

E

t
dAenc

Curve

E

Surface

⋅ = + = +








 ⋅∫ ∫µ µ ε µ ε

∂
∂0 0 0 0 0

Φ

               Surface Bounded by Curve

E

Charge Q

E

Changing
Magnetic

Field

B

Current
Density J

B

Changing
Electric

Field

Two Sources of Magnetic Fields

Volume Enclosed by Surface

Two Sources of Electric Fields
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Electric & Magnetic Fields thatElectric & Magnetic Fields that
Change with TimeChange with Time

Changing Magnetic Field Produces an Electric Field:

A uniform magnetic field is confined to a
circular region of radius, r, and is increasing
with time.  What is the direction and
magnitude of the induced electric field at the
radius r?
Answer:  If I choose my orientation to be
counterclockwise then ΦΦB = B(t)A with

A = ππr2.  Faraday's Law of Induction tells us that
r r
E dl rE r

d

dt
r

dB

dt
B

Circle

⋅ = = − = −∫ 2 2π π( )
Φ

,

and hence E(r) = -(r/2) dB/dt.  Since dB/dt > 0 (increasing with time), E is
negative which means that it points opposite my chosen orientation.

Changing Electric Field Produces a Magnetic Field:

A uniform electric field is confined to a
circular region of radius, r, and is increasing
with time.  What is the direction and
magnitude of the induced magnetic field at
the radius r?
Answer:  If I choose my orientation to be
counterclockwise then ΦΦE = E(t)A with

A = ππr2.  Ampere's Law (with J = 0) tells us that
r r
B dl rB r

d

dt

r

c

dE

dt
E

Circle

⋅ = = =∫ 2 0 0

2

2π ε µ
π

( )
Φ

,

and hence B(r) = (r/2c2) dE/dt.  Since dE/dt > 0 (increasing with time), B is
positive which means that it points in the direction of my chosen orientation.

B-out increasing with time

r

E

E-out increasing with time

r B
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Simple Harmonic MotionSimple Harmonic Motion
Hooke's Law Spring:
For a Hooke's Law spring the restoring force is linearly proportional to the
distance from equilibrium, Fx = -kx, where k is the spring constant.  Since,
Fx = max we have

− =kx m
d x

dt

2

2     or    
d x

dt

k

m
x

2

2 0+ = ,  where x = x(t).

General Form of SHM Differential Equation:
The general for of the simple harmonic motion (SHM) differential equation
is

d x t

dt
Cx t

2

2 0
( )

( )+ = ,

where C is a positive constant (for the Hooke's Law spring C=k/m).  The

most general solution of this 2nd order differential equation can be written
in the following four ways:

x t Ae Be

x t A t B t

x t A t

x t A t

i t i t( )

( ) cos( ) sin( )

( ) sin( )

( ) cos( )

= +
= +

= +
= +

−ω ω

ω ω
ω φ
ω φ

where A, B, and φφ are
arbitrary constants and

ω = C .  In the chart, A is
the amplitude of the
oscillations and T is the
period.  The linear frequency
f = 1/T is measured in cycles
per second (1 Hz = 1/sec).
The angular frequency ωω =
2ππf and is measured in
radians/second.  For the

Hooke's Law Spring C = k/m and thus ω = =C k m/ .

x(t) = Acos(ωωt+φφ)

-1.0

-0.5

0.0

0.5

1.0

0 1 2 3 4 5 6 7 8

ωωt+φφ  (radians)

T

A
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SHM Differential EquationSHM Differential Equation

The general for of the simple harmonic motion (SHM) differential equation
is

d x t

dt
Cx t

2

2 0
( )

( )+ = ,

where C is a constant.  One way to solve this equation is to turn it into an
algebraic equation by looking for a solution of the form

x t Aeat( ) = .
Substituting this into the differential equation yields,

a Ae CAeat at2 0+ =    or   a C2 = − .

Case I (C > 0, oscillatory solution):
For positive C, a i C i= ± = ± ω , where ω = C .  In this case

the most general solution of this 2nd order differential equation can be
written in the following four ways:

x t Ae Be

x t A t B t

x t A t

x t A t

i t i t( )

( ) cos( ) sin( )

( ) sin( )

( ) cos( )

= +
= +

= +
= +

−ω ω

ω ω
ω φ
ω φ

where A, B, and φφ are arbitrary constants (two arbitrary constants for a 2nd

order differential equation).  Remember that e ii± = ±θ θ θcos sin

where i = − 1 .

Case II (C < 0, exponential solution):
For negative C, a C= ± − = ±γ , where γ = − C .  In this case,

the most general solution of this 2nd order differential equation can be
written as follows:

x t Ae Bet t( ) = + −γ γ
,

where A and B arbitrary constants.
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Capacitors and InductorsCapacitors and Inductors

Capacitors Store Electric Potential Energy:

U
Q

CE =
2

2

Q C VC= ∆       ∆V Q CC = /

u EE =
1

2 0
2ε   (E-field energy density)

Inductors Store Magnetic Potential Energy:

U LIB =
1

2
2

Φ B LI=         L IB= Φ /

ε L L
dI

dt
= −

u BB =
1

2 0

2

µ   (B-field energy density)

Q

C E

B
I

L
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An LC CircuitAn LC Circuit

At t = 0 the switch is closed and a
capacitor with initial charge Q0 is
connected in series across a inductor
(assume there is no resistance).  The
initial conditions are Q(0) = Q0 and I(0)
= 0.  Moving around the circuit in the
direction of the current flow yields

Q

C
L

dI

dt
− = 0 .

Since I is flowing out of the capacitor, I dQ dt= − / , so that

d Q

dt LC
Q

2

2

1
0+ = .

This differential equation for Q(t) is the SHM differential equation we

studied earlier with ω = 1 / LC and solution
Q t A t B t( ) cos sin= +ω ω .

The current is thus,

I t
dQ

dt
A t B t( ) sin cos= − = −ω ω ω ω .

Applying the initial conditions yields
Q t Q t

I t Q t

( ) cos

( ) sin

=
=

0

0

ω
ω ω

Thus, Q(t) and I(t) oscillate with SHM with angular frequency
ω = 1 / LC .  The stored energy oscillates between electric and magnetic
according to

U t
Q t

C

Q

C
t

U t LI t L Q t

E

B

( )
( )

cos

( ) ( ) sin

= =

= =

2
0
2

2

2
0
2 2 2

2 2
1
2

1
2

ω

ω ω

Energy is conserved since Utot(t) = UE(t) + UB(t) = Q0
2/2C is constant.

Q

C L
+ + +    + + +

- - -    - - -

Switch
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LC OscillationsLC Oscillations

Q t Q t

I t Q t

( ) cos

( ) sin

=
=

0

0

ω
ω ω

U t
Q

C
t

U t
Q

C
t

E

B

( ) cos

( ) sin

=

=

0
2

2

0
2

2

2

2

ω

ω

Q

C L
+ + +    + + +

- - -    - - -

t = 0

E

I

C L

t = T/4

I

B

-1.0

-0.5

0.0

0.5

1.0

0 1 2 3 4 5 6 7 8

ωωt  (radians)

Q(t)

I(t)

0.0
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1.0
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ωωt  (radians)

UE(t) UB(t)

Utot = UE + UB
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Mechanical AnalogyMechanical Analogy

At t = 0: At t = 0:

E kx

v

=

=

1
2

0
0
2 U

C
Q

I

=

=

1

2
0

0
2

At Later t: At Later t:

v
dx

dt
x t x t

k

m

E mv kx

=

=

=

= +

( ) cos0

2 21

2

1

2

ω

ω

I
dQ

dt
Q t Q t

LC

E LI
C

Q

= −

=

=

= +

( ) cos0

2 2

1

1

2

1

2

ω

ω

Correspondence:
x t Q t

v t I t

m L

k C

( ) ( )

( ) ( )

/

↔
↔
↔

↔ 1

k

t = 0

x0

m
x-axis

Q

C L
+ + +    + + +

- - -    - - -

t = 0

E

I

Constant
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Another Differential EquationAnother Differential Equation

Consider the 2nd order differential equation

d x t

dt
D

dx t

dt
Cx t

2

2 0
( ) ( )

( )+ + = ,

where C and D are constants.  We solve this equation by turning it into an

algebraic equation by looking for a solution of the form x t Aeat( ) = .
Substituting this into the differential equation yields,

a Da C2 0+ + =      or        a
D D

C= − ±




 −

2 2

2

.

Case I (C > (D/2)2, damped oscillations):

For C > (D/2)2, a D i C D D i= − ± − = − ± ′/ ( / ) /2 2 22 ω , where

′ = −ω C D( / )2 2
, and the most general solution has the form:

( )
( )

x t e Ae Be

x t e A t B t

x t Ae t

x t Ae t

Dt i t i t

Dt

Dt

Dt

( )

( ) cos( ) sin( )

( ) sin( )

( ) cos( )

/

/

/

/

= +
= ′ + ′

= ′ +
= ′ +

− ′ − ′

−

−

−

2

2

2

2

ω ω

ω ω
ω φ
ω φ

where A, B, and φφ are arbitrary constants.

Case II (C < (D/2)2, over damped):

For  C < (D/2)2, a D D C D= − ± − = − ±/ ( / ) /2 2 22 γ , where

γ = −( / )D C2 2
.  In this case,

( )x t e A e B eD t t t( ) /= +− −2 γ γ
.

Case III (C = (D/2)2, critically damped):
For  C = (D/2)2, a D= − / 2 , and

x t A e D t( ) /= − 2
.
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An LRC CircuitAn LRC Circuit

At t = 0 the switch is closed and a
capacitor with initial charge Q0 is
connected in series across an inductor
and a resistor.  The initial conditions are
Q(0) = Q0 and I(0) = 0.  Moving around
the circuit in the direction of the current
flow yields

Q

C
L

dI

dt
IR− − = 0 .

Since I is flowing out of the capacitor, I dQ dt= − / , so that

d Q

dt

R

L

dQ

dt LC
Q

2

2

1
0+ + = .

This differential equation for Q(t) is the differential equation we studied

earlier.  If we take the case where R2 < 4L/C (damped oscillations) then

Q t Q e tRt L( ) cos/= ′−
0

2 ω ,

 with ′ = −ω ω 2 22( / )R L  and   ω = 1 / LC .

Q

C L
+ + +    + + +

- - -    - - -

Switch

R

-1.0

-0.5

0.0

0.5

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Time

Q(t)

Damped Oscillations
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Traveling WavesTraveling Waves
A "wave" is a traveling disturbance that transports energy
but not matter.

Constructing Traveling Waves:
To construct a wave with shape y = f(x) at time t = 0 traveling to the right
with speed v simply make the replacement x x vt→ −  .

Traveling Harmonic Waves:
Harmonic waves have the form
y = A sin(kx)  or
y = Acos(kx) at time t = 0,
where k is the "wave number"
(k = 2ππ/λλ where λλ is the "wave
length") and A is the
"amplitude".  To construct an
harmonic wave traveling to the
right with speed v, replace x by
x-vt as follows:
y = Asin(k(x-vt) = Asin(kx-ωωt) where ω ω = kv (v = ωω/k).  The period of the
oscillation, T = 2ππ/ωω = 1/f, where f is the linear frequency (measured in
Hertz where 1Hz = 1/sec) and ωω is the angular frequency (ωω = 2ππf).  The
speed of propagation is given by v = ωω/k = λλf .

   y = y(x,t) = Asin(kx-ωωt)   right moving harmonic wave
y = y(x,t) = Asin(kx+ωωt)  left moving harmonic wave

y = f(x-vt)

x = vt

v

y = f(x) at time t=0

x = 0

y=Asin(kx)

-1.0

-0.5

0.0

0.5

1.0

kx  (radians)

λλ

A



R. D. Field PHY 2049

Chapter 34 chp34_2.doc

The Wave EquationThe Wave Equation

∂
∂

∂
∂

2

2 2

2

2

1
0

y x t

x v

y x t

t

( , ) ( , )
− =

Whenever analysis of a system results in an equation of the
form given above then we know that the system supports
traveling waves propagating at speed v.

General Proof:
If y = y(x,t) = f(x-vt) then

∂
∂

∂
∂

∂
∂

∂
∂

y

x
f

y

x
f

y

t
vf

y

t
v f

= ′ = ′′

= − ′ = ′′

2

2

2

2
2

and

∂
∂

∂
∂

2

2 2

2

2

1
0

y x t

x v

y x t

t
f f

( , ) ( , )
− = ′′ − ′′ = .

Proof for Harmonic Wave:
If y = y(x,t) = Asin(kx-ωωt) then

∂
∂

ω
∂
∂

ω ω
2

2
2

2

2
2y

x
k A kx t

y

t
A kx t= − − = − −sin( ) sin( )

and

∂
∂

∂
∂

ω
ω

2

2 2

2

2
2

2

2

1
0

y x t

x v

y x t

t
k

v
A kx t

( , ) ( , )
sin( )− = − +







 − = ,

since ωω = kv.
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Light Propagating in Empty SpaceLight Propagating in Empty Space
Since there are no charges and no
current in empty space, Faraday's
Law and Ampere's Law take the form

r r r r
E dl

d

dt
B dl

d

dt
B E⋅ = − ⋅ =∫ ∫

Φ Φµ ε0 0 .

Look for a solution of the form
r

r
E x t E x t y

B x t B x t z
y

z

( , ) ( , ) $

( , ) ( , ) $

=
=

Faraday's Law:
Computing the left and right hand side of
Faraday's Law using a rectangle (in the
xy-plane) with width dx and height h
(counterclockwise) gives

E x dx t h E x t h
B

t
hdxy y

z( , ) ( , )+ − = −
∂
∂

or

∂
∂

∂
∂

E

x

B

t
y z= −

Ampere's Law:
Computing the left and right hand side of
Ampere's Law using a rectangle (in the
xz-plane) with width dx and height h
(counterclockwise) gives

B x t h B x dx t h
E

t
hdxz z

y
( , ) ( , )− + = µ ε

∂
∂0 0

or

− =
∂
∂

µ ε
∂
∂

B

x

E

t
z y

0 0

x-axis

y-axis

z-axis

E

B

x-axis

y-axis

z-axis

E(x,t)

B

h

dx

E(x+dx,t)

x-axis

y-axis

z-axis

E

B(x,t)

h

dx

B(x+dx,t)
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Electromagnetic Plane Waves (1)Electromagnetic Plane Waves (1)

We have the following two differential
equations for Ey(x,t) and Bz(x,t):

∂
∂

∂
∂

B

t

E

x
z y= −    (1)

and
∂
∂ µ ε

∂
∂

E

t

B

x
y z= −

1

0 0
   (2)

Taking the time derivative of (2) and using (1) gives

∂
∂ µ ε

∂
∂

∂
∂ µ ε

∂
∂

∂
∂ µ ε

∂
∂

2

2
0 0 0 0 0 0

2

2

1 1 1E

t t

B

x x

B

t

E

x
y z z y= −





 = −





 =

which implies

∂
∂

µ ε
∂
∂

2

2 0 0

2

2 0
E

x

E

t
y y− = .

Thus Ey(x,t) satisfies the wave equation with speed v = 1 0 0/ ε µ  and has a
solution in the form of traveling waves as follows:

Ey(x,t) = E0sin(kx-ωωt),
where E0 is the amplitude of the electric field oscillations and where the
wave has a unique speed

v c
k

f m s= = = = = ×
ω

λ
ε µ
1

2 99792 10
0 0

8. /  (speed of light).

From (1) we see that

∂
∂

∂
∂

ω
B

t

E

x
E k kx tz y= − = − −0 cos( ) ,

which has a solution given by

B x t E
k

kx t
E
c

kx tz ( , ) sin( ) sin( )= − = −0
0

ω
ω ω ,

so that

Bz(x,t) = B0sin(kx-ωωt),
where B0 = E0/c is the amplitude of the magnetic field oscillations.

x-axis

y-axis

z-axis

E

B
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Electromagnetic Plane Waves (2)Electromagnetic Plane Waves (2)

The plane harmonic wave solution
for light with frequency f and
wavelength λλ and speed c = fλλ is
given by

r

r
E x t E kx t y

B x t B kx t z

( , ) sin( ) $

( , ) sin( ) $

= −
= −

0

0

ω
ω

where k = 2ππ/λλ, ωω = 2ππf, and
E0 = cB0.

Properties of the Electromagnetic Plane Wave:

• Wave travels at speed c ( c =1 0 0/ µ ε ).

• E and B are perpendicular (
r r
E B⋅ =0).

• The wave travels in the direction of 
r r
E B× .

• At any point and time E = cB.

Electromagnetic Radiation:

x-axis

y-axis

z-axis

E

B

Direction  of Propagation
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Energy Transport - Poynting VectorEnergy Transport - Poynting Vector
Electric and Magnetic Energy Density:
For an electromagnetic plane wave

Ey(x,t) = E0sin(kx-ωωt),
Bz(x,t) = B0sin(kx-ωωt),

where B0 = E0/c.  The electric energy density
is given by

u E E kx tE = = −
1

2

1

20
2

0 0
2 2ε ε ωsin ( )  and the magnetic energy density is

u B
c

E E uB E= = = =
1

2
1

2
1
20

2

0
2

2
0

2

µ µ
ε ,

where I used E = cB.  Thus, for light the electric and magnetic field
energy densities are equal and the total energy density is

u u u E B E kx ttot E B= + = = = −ε
µ

ε ω0
2

0

2
0 0

2 21
sin ( ) .

Poynting Vector (
r r r
S E B= ×

1

0µ ):

The direction of the Poynting
Vector is the direction of energy
flow and the magnitude

S EB
E

c A

dU

dt
= = =

1 1

0

2

0µ µ
is the energy per unit time per
unit area (units of Watts/m2).
Proof:

dU u V E Acdttot tot= = ε0
2

 so

S
A

dU

dt
cE

E

c

E

c
kx t= = = = −

1
0

2
2

0

0
2

0

2ε
µ µ

ωsin ( ) .

Intensity of the Radiation (Watts/m2):
The intensity, I,  is the average of S as follows:

I S
A

dU

dt

E

c
kx t

E

c
= = = − =

1

2
0
2

0

2 0
2

0µ
ω

µ
sin ( ) .

x-axis

y-axis

z-axis

E

B

x-axis

y-axis

z-axis

E

B

Energy Flow

A

cdt
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Momentum Transport - RadiationMomentum Transport - Radiation
PressurePressure

Relativistic Energy and Momentum:

E2 = (cp)2 + (m0c2)2

energy    momentum   rest mass
For light m0 =0 and

E = cp   (for light)

For light the average momentum per unit time per unit area is equal to the
intensity of the light, I,  divided by speed of light, c, as follows:

1 1 1 1
A

dp

dt c A

dU

dt c
I= = .

Total Absorption:

F
dp

dt c

dU

dt c
IA= = =

1 1

P
F

A c
I= =

1
(radiation pressure)

Total Reflection:

F
dp

dt c

dU

dt c
IA= = =

2 2
.

P
F

A c
I= =

2
(radiation pressure)

Light

Total Absorption

Light

Total Reflection
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The Radiation Power of the SunThe Radiation Power of the Sun

Problem:
The radiation power of the

sun is 3.9x1026 W and the
distance from the Earth to

the sun is 1.5x1011 m.
(a) What is the intensity of
the electromagnetic radiation from the sun at the surface of the Earth (outside

the atmosphere)? (answer: 1.4 kW/m2)
(b) What is the maximum value of the electric field in the light coming from
the sun? (answer: 1,020 V/m)
(c) What is the maximum energy density of the electric field in the light

coming from the sun? (answer: 4.6x10-6 J/m3)
(d) What is the maximum value of the magnetic field in the light coming
from the sun? (answer: 3.4 µµT)
(e) What is the maximum energy density of the magnetic field in the light

coming from the sun? (answer: 4.6x10-6 J/m3)
(f) Assuming complete absorption what is the radiation pressure on the
Earth from the light coming from the sun? (answer: 4.7x10-6 N/m2)
(g) Assuming complete absorption what is the radiation force on the Earth
from the light coming from the sun? The radius of the Earth is about 6.4x106

m. (answer: 6x108 N)
(h) What is the gravitational force on the Earth due to the sun. The mass of

the Earth and the sun are 5.98x1024 kg and 1.99x1030 kg, respectively, and

G = 6.67x10-11 Nm2/kg2. (answer: 3.5x1022 N)

P = 3.9 x 1026 W

d = 1.5 x 1011 m

Sun

Earth
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Geometric OpticsGeometric Optics
Fermat's Principle:
In traveling from one point to another, light follows the path that
requires minimal time compared to the times from the other possible
paths.

Theory of Reflection:
Let tAB be the time for light to go
from the point A to the point B
reflecting off the point P.  Thus,

t
c

L
c

LAB = +
1 1

1 2 ,

where

L x a

L d x b
1

2 2

2
2 2

= +
= − +( ) .

To find the path of minimal time we set the derivative of tAB equal to zero
as follows:

dt

dx c

dL

dx c

dL

dx
AB = + =

1 1
01 2

,

which implies
dL

dx

dL

dx
1 2= − ,

but
dL

dx

x

L
dL

dx

d x

L

i

r

1

1

2

2

= =

=
− −

= −

sin

( )
sin

θ

θ

so that the condition for minimal time
becomes

sin sinθ θ θ θi r i r= =
.

θθi θθr

P

A

a

B

b

x d-x

d

L1
L2

θθi θθr

P

A

a

B

b

x d-x

d

L1
L2
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Law of RefractionLaw of Refraction
Index of Refraction:
Light travels at speed c in a vacuum.  It travels at a speed v < c in a medium.
The index for refraction, n, is the ratio of the speed of light in a vacuum to
its speed in the medium,

n = c/v,
where n is greater than or equal to
one.

Theory of Refraction:
Let tAB be the time for light to go
from the point A to the point B
refracting at the point P.  Thus,

t
v

L
v

LAB = +
1 1

1
1

2
2 ,

where

L x a

L d x b
1

2 2

2
2 2

= +
= − +( ) .

To find the path of minimal time we set the derivative of tAB equal to zero
as follows:
dt

dx v

dL

dx v

dL

dx
AB = + =

1 1
0

1

1

2

2
, which implies 

1 1

1

1

2

2

v

dL

dx v

dL

dx
= − , but

 

dL

dx

x

L
dL

dx

d x

L

1

1
1

2

2
2

= =

=
− −

= −

sin

( )
sin

θ

θ

so that the condition for minimal time becomes

1 1

1
1

2
2 1 1 2 2v v

n nsin sin sin sinθ θ θ θ= =
.

θθ1

θθ2

P

A

a

B

b

x d-x

d

L1

L2

n1

n2

Snell's Law
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Total Internal ReflectionTotal Internal Reflection

Total internal refection
occurs when light travels
from medium n1 to medium

n2 (n1 > n2) if θθ1 is greater
than or equal to the critical
angle, θθc, where

sinθc

n

n
= 2

1
.

Problem:
A point source of light is
located 10 meters below the
surface of a large lake
(n=1.3).  What is the area (in
m2) of the largest circle on
the pool's surface through
which light coming directly
from the source can emerge?
(answer:  455)

θθc

θθ2=90o

n1

n2

θθc

R

n1=1.3

n2=1
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Refraction ExamplesRefraction Examples

Problem:
A scuba diver 20 meters
beneath the smooth surface
of a clear lake looks
upward and judges the sun

to be 40o from directly
overhead.  At the same
time, a fisherman is in a
boat directly above the
diver.
(a) At what angle from the
vertical would the
fisherman measure the sun?

(answer: 59o)
(b) If the fisherman looks
downward, at what depth below the surface would he judge the diver to be?
(answer: 15 meters)

θθ1

θθ2

20 m

n1=4/3

n2=1
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Spherical MirrorsSpherical Mirrors
Vertex and Center of Curvature:
The vertex, V, is the point where
the principal axis crosses the
mirror and the center of
curvature is the center of the
spherical mirror with radius of
curvature R.

Real and Virtual Sides:
The "R" or real side of a
spherical mirror is the side of the mirror that the light exits and the other side
is the "V" or virtual side.  If the center of curvature lies on the R-side then
the radius of curvature, R, is taken to be positive and if the center of
curvature lies on the V-side then the radius of curvature, R, is taken to be
negative.

Focal Point:
A light ray parallel to the
principal axis will pass
through the focal point, F,
where F lies a distance f
(focal length) from the vertex
of the mirror.  For spherical
mirrors a good approximation

is    f = R/2.
Concave and Convex Mirrors:
A concave mirror is one where the center of curvature lies on the R-side so
the R > 0 and f  > 0 and a convex mirror is one where the center of
curvature lies on the V-side so that R < 0 and f < 0.

concave f > 0
convex f < 0

Flat Mirror:
A flat mirror is the limiting case where the radius R (and thus the local length
f) become infinite.

Principal Axis

C F

Light Ray Enters

R = Radius of Curvature
C = Center of Curvature
F = Focal Point
V = Vertex

Concave Mirror

R-side V-sideV

Light Ray Exits

R

Principal Axis

CF

Light Ray Enters

Convex Mirror

R-side V-side

R = Radius of Curvature
C = Center of Curvature
F = Focal Point
V = Vertex

Light Ray Exits

R

V
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Mirror EquationMirror Equation

Object and Image Position:
For spherical mirrors,

1 1 1

p i f
+ = ,

where p is the distance from the
vertex to the object, i is the
distance from the vertex to the
image, and f is the focal length.

Focal Length:
For spherical mirrors the focal
length, f, is one-half of the radius
of curvature, R, as follows:

f = R/2.
Magnification:
The magnification is

m
i

p
= − ,   (magnification equation)

where the magnitude of the magnification is the ratio of the height of the
image, hi, to the height of the object, hp, as follows:

m
h

h
i

p

= .

Sign Conventions:
Variable Assigned a Positive Value Assigned a Negative Value

p  (object distance) always positive
i  (image distance) if image is on R-side (real image) if image is on V-side (virtual image)
R  (radius of curvature) if C is on R-side (concave) if C is on V-side (convex)
f  (focal length) if C is on R-side (concave) if C is on V-side (convex)
m  (magnification) if the image is not inverted if the image is inverted

C

 C = Center of Curvature
 F = Focal Point
 p = Object Position
 i = Image Position

R-side V-side

p

i
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Mirror Examples (Mirror Examples (11))

Mirror Equations:

f
R

p i f
m

i

p
= + = = −

2

1 1 1

Example:

R = 2, p = 3

 f = 1, i = 3/2, m = -1/2

Example:

R = 2, p = 3/2

 f = 1, i = 3, m = -2

C
R-side V-side

p
i

F

Concave Mirror

Reduced Inverted Real Image

R-side V-side

p
i

F

Concave Mirror

Magnified Inverted Real Image

C
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Mirror Examples (Mirror Examples (22))

Mirror Equations:

f
R

p i f
m

i

p
= + = = −

2

1 1 1

Example:

R = 2, p = 1/2

 f = 1, i = -1, m = 2

Example:

R = -2, p = 3

 f = -1, i = -3/4, m =
1/4

C
R-side V-side

p iF

Concave Mirror

Magnified Non-inverted Virtual Image

R-side

V-side

p i F

Convex Mirror

Reduced Non-inverted Virtual Image

C
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Thin Lense FormulaThin Lense Formula

Lensemakers Equation:
The lensemakers formula is

1
1

1 1

1 2f
n

R R
= − −







( ) ,

where f is the focal length, n is the index of refraction, R1 is the radius of
curvature of side 1 (side that light enters the lense), and R2 is the radius of
curvature of side 2 (side that light exits the lense).

Lense Equation:
1 1 1
p i f

+ =

Magnification:

m
i

p
= −

Sign Conventions:
Variable Assigned a Positive Value Assigned a Negative Value

p  (object distance) always positive
i  (image distance) if image is on R-side (real image) if image is on V-side (virtual image)
R1  (radius of curvature) if C1 is on R-side if C1 is on V-side

R2  (radius of curvature) if C2 is on R-side if C2 is on V-side

f  (focal length) if  f > 0 then converging lense if  f < 0 then diverging lense
m  (magnification) if the image is not inverted if the image is inverted

Example (converging lense): R R R R f
R

n1 2 2 1
0= = − =

−
>

( )

Example (diverging lense): R R R R f
R

n1 2 2 1
0= − = =

−
−

<
( )

C2 R-sideV-side F C1F

Side 1 Side 2

Converging Lense

n
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Thin Lenses (Thin Lenses (ConvergingConverging))

Example:

f = 1, p = 2

i = 2, m = -1

Example:

f = 1, p = 1/2

i = -1, m = 2

i

R-sideV-side Fp F

1 2

Converging Lense

n

Inverted Real Image

i

R-sideV-side F p F

1 2

Converging Lense

n

Magnified Non-inverted Virtual Image
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Thin Lenses (Thin Lenses (DivergingDiverging))

Example:

f = -1, p = 2

i = -2/3, m = 1/3

Example:

f = -1, p = 1/2

i = -1/3, m = 2/3

i R-sideV-side F

p

F

1 2

Diverging Lense

n

Reduced Non-inverted Virtual Image

i R-sideV-side F p F

1 2

Diverging Lense

n

Reduced Non-inverted Virtual Image
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InterferenceInterference

Wave Superposition:
Consider the addition (superposition) of two waves with the same amplitude
and wavelength:

y A kx

y A k x

y y ysum

1

2

1 2

=
= +

= +

sin( )

sin( ( ))∆

The quantity ∆∆ is the "phase shift" between the two waves and k=2ππ/λλ is
the wave number.

Maximal Constructive Interference:
The condition for maximal constructive interference is

∆ = = ± ±m mλ 0 1 2, , ,K      (max constructive)

Maximal Destructive Interference:
The condition for maximal destructive interference is

∆ = +



 = ± ±m m

1
2

0 1 2λ , , ,K      (max destructive)

Wave Superposition

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5 6 7 8

kx  (radians)

ysum = y1 +y2

y2=Asin(k(x+∆)∆))

y2=Asin(kx)

∆∆
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Interference ExamplesInterference Examples
Wave Superposition (∆∆ = λλ; max constructive):

Wave Superposition (∆∆ = λ/2λ/2;  max destructive):

Wave Superposition (∆∆ = λλ/2):

Wave Superposition

-2.0
-1.5

-1.0
-0.5
0.0
0.5
1.0

1.5
2.0

0 1 2 3 4 5 6 7 8

kx  (radians)ysum = y1 + y2

Wave Superposition

-1.0

-0.5

0.0

0.5

1.0

0 1 2 3 4 5 6 7 8

kx  (radians)ysum = y1 + y2

Wave Superposit ion

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0 1 2 3 4 5 6 7 8

kx  (radians)ysum  =  y1  +  y2
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Double Slit InterferenceDouble Slit Interference
The simplest way to produce a
phase shift a difference in the
path length between the two
wave sources, S1 and S2 is with

a double slit.  The point P is
located on a screen that is a
distance L away from the slits
and the slits are separated by a
distance d.

If L >> d then to a good approximation the
path length difference is,

∆L L L d= − =2 1 sinθ ,
and thus

Maximal Constructive Interference:
The condition for maximal
constructive interference is

sin , , ,θ
λ

= =m
d

m 01 2 K

(Bright Fringes - max constructive)

Maximal Destructive
Interference:
The condition for maximal
destructive interference is

sin , , ,θ
λ

= +




 =m

d
m

1
2

0 12 K

(Dark Fringes - max destructive)

S1 L2

P

S2

L1

d

L

y

Double Slit

S1

L2
S2

L1

d
θθ

Double Slit

θθ

d sinθθ

S1
θθ

P

S2

d

L

y

Double Slit

y = L tanθθ

Order of the Bright Fringe
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Thin Film InterferenceThin Film Interference
Thin film
interference
occurs when a
thin layer of
material
(thickness T)
with index of
refraction n2 (the
"film" layer) is
sandwiched
between two
other mediums
n1 and n2.

The overall phase shift between
the reflected waves 1 and 2 is
given by,
∆ ∆ ∆overall T= + +2 1 2 ,
where it is assumed that the
incident light ray is nearly
perpendicular to the surface and the phase shifts ∆∆1 and ∆∆2 are given the
table.

Maximal Constructive Interference:
The condition for maximal constructive interference is

∆ ∆ ∆overall filmT m m= + + = = ± ±2 0 1 21 2 λ , , ,K (max constructive)

where λλfilm = λλ0/n2, with λλ0 the vacuum wavelength.

Maximal Destructive Interference:
The condition for maximal destructive interference is

∆ ∆ ∆overall filmT m m= + + = +




 = ± ±2

1
2

0 1 21 2 λ , , ,K(max destructive)

Incident Light  1
2

n1

n2

n3

"film"
T∆∆1

∆∆2

Phase Shift Condition Value
∆∆1 n1 > n2 0

∆∆1 n1 < n2 λλfilm/2

∆∆2 n2 > n3 0

∆∆2 n2 < n3 λλfilm/2
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Interference ProblemsInterference Problems

Double Slit Example:
Red light (λλ = 664 nm) is used with slits separated by d = 1.2x10-4 m.  The
screen is located a distance from the slits given by L = 2.75 m.  Find the
distance y on the screen between the central bright fringe and the third-order
bright fringe.

Answer:  y = 0.0456 m

Thin Film Example:
A thin film of gasoline floats on a puddle of water.  Sunlight falls almost
perpendicularly on the film and reflects into your eyes.  Although the sunlight
is white, since it contains all colors, the film has a yellow hue, because
destructive interference has occurred eliminating the color of blue (λλ0 = 469
nm) from the reflected light.  If ngas = 1.4 and nwater = 1.33, determine the
minimum thickness of the film.

Answer:  Tmin = 168 nm
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Diffraction SummaryDiffraction Summary

Single Slit-Diffraction:
Angular position of the dark fringes:

K,2,1sin == m
W

m
λθ

(Dark Fringes - max destructive)

Round Hole-Diffraction:
Angular position of the first dark ring:

D

λθ 22.1sin =

(Dark Ring - max destructive)

Diffraction Grating:
Angular position of the bright
fringes:

K,2,1,0sin == m
d

m
λθ

(Bright Fringes - max constructive)

θθ

P

W

L

y

Single Slit

y = L tanθθ

θθ

P

d

L

y

Diffraction
Grating

y = L tanθθ

Diameter of the Hole

Width of the Slit

Slit
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Diffraction ProblemsDiffraction Problems

Single Slit Example:
Light passes through a slit and shines on a flat screen that is located L = 0.4
m away.  The width of the slit is W = 4x10-6 m.  The distance between the
middle of the central bright spot and the first dark fringe is y. Determine the
width 2y of the central bright spot when the wavelength of light is λλ = 690
nm.

Answer:  2y = 0.14 m


