R. D. Field PHY 2049

Electrostatic Force and Electric
Charge

Electrostatic Force (charges at rest):
- Electrostatic for ce can be attractive
Electrostatic for ce can be repulsive 01 a2
Electrostatic force actsthrough empty @)oot @
space r
Electrostatic for ce much stronger than
gravity
Electrostatic for ces are inver se squar e law forces (proportional to
1/r?)
Electrostatic forceis proportiona to the product of the amount of charge
on each interacting object

M agnitude of the Electrostatic Forceis given by Coulomb's
Law:

F =K g10,/r? (Coulomb's Law)
where K depends on the system of units

K =8.99x10° Nm2/C2 (in MK S system)
K =1/(4pey) where ey=8.85x10"12 C%/(Nm?)

Electric Charge:

electron charge = -e e=16x1019¢C
proton charge = e C = Coulomb

Electric chargeis a conserved quantity (net electric charge is never
created or destroyed!)
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units

MKS System (meter s-kilograms-seconds):
also Amperes, Volts, Ohms, Watts

Force: F=ma Nevvtons:kgm/szle
Work: W = Fd Joule=Nm=kgm?/s2=1J
Electric Charge: Q Coulomb=1C

F =K qqqo/r2 K =8.99x10° Nm2/C2 (in MK S system)

CGS System (centimeter -grams-seconds):

Force: F=ma 1dyne=gcm/ s

Work: W = Fd 1 erg=dyne-cm =gcm?/s?
Electric Charge: Q esu (electrostatic unit)

F= q1q2/r2 K=1 (in CGSsystem)

Conversions (MKS- CGYS):

Force: 1 N = 10° dynes
Work: 1J=10" ergs
Electric Charge: 1 C = 2.99x10° esu

Fine Structure Constant (dimensionless):

a =K 2pe?/hc (samein all systems of units)

h = Plank's Constant ¢ = speed of light in vacuum
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Electrostatic Force versus Gravity

Electrostatic Force:

Fe =K 0102/r? (Coulomb's L aw)
K =8.99x10° Nm2/C2 (in MK S system)

Gravitational Force:

Fg=G mymy/r? (Newton's L aw)
G = 6.67x10°1 NmZ/kg?  (in MK S system)

Ratio of forcesfor two electrons:

e=16x1019C m = 9.11x10731 kg
e m em
@ O

Fe/ Fg=K €2/ Gm? =4.16x10%  (Huge number !!!)
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Vector Forces

.—r> --------------------- L )
q Q

The Electrostatic Forceisa vector:
Theforce on q dueto Q pointsalong thedirection r and is given

by
. KgQ
F=—1¢

I

N

F3 O
—> L.
F2 e o,
N Q

F1

[ )
a3

Vector Superposition of Electric Forces:
If several point chargesqq, gz, 3, ... Smultaneously exert electric

forceson acharge Q then

I
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Vectors & VVector Addition

The Components of a vector:

y-axis

Ay:A an

Ax =A cosq X-axis

Vector Addition:

y-axis

To add vectors you add the components of the vector s as follows:

A= AX+AY+A2

B=BX+By+Bz2
C=A+B=(A +B)%+(A +B)y+(A +B,)2
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The Electric Dipole

An electric " dipol€" istwo equal and opposite point charges
separated by adistanced. It isan electrically neutral system.
The" dipole moment" isdefined to bethe chargetimesthe
separ ation (dipole moment = Qd).

Example Problem:

A dipole with charge Q and separation d is located on the y-axis with its
midpoint at the origin. A charge g is on the x-axis a distance x from the
midpoint of the dipole. What is the electric force on g due to the dipole and
how does this force behave in the limit x >>d (dipole approximation)?

Example Problem:

A dipole with charge Q and separation d is located on the x-axis with its
midpoint at the origin. A charge g is on the x-axis a distance x from the
midpoint of the dipole. What is the electric force on g due to the dipole and
how does this force behave in the limit x >>d (dipole approximation)?
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The Electric Field

.—>

E

The charge Q produces an electric field which in turn
producesaforceon thechargeq. Theforceon g is expressed
astwo terms:

F=KqQ/r2=q(KQ/Ifrd)=qE

Theelectric field at the point g dueto Q issimply the for ce per
unit positive charge at the point g:

E=Flg E=KQ/r2
The units of E are Newtons per Coulomb (units= N/C).
Theelectric field isa physical object which can carry both

momentum and energy. It isthe mediator (or carrier) of the
electric force. Theelectricfield is massless.

TheElectric Field isa Vector Figld:

- K
= - KQ

f
2
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Electric Field Lines

N
ZDN

Electric field linedivergefrom (i.e. start) on positive charge
and end on negative charge. Thedirection of thelineisthe
direction of the electric field.

& »
<€ »

The number of lines penetrating a unit areathat is
perpendicular tothelinerepresentsthe strength of the electric

field.

+2
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Electric Field due to a Distribution
of Charge

— N
dE =K dQ/r?r

Theelectric field from a continuous distribution of chargeis
the superposition (i.e. integral) of all the (infinite)
contributions from each infinitessmal dQ asfollows:

. K. .
E=0zfdQ _, Q=0

Charge Distributions:

Linear chargedensity | : | (X) = charge/unit
length
L
I
dQ =1 dx

For astraight linedQ =1 (x) dx and

Q=glR=Q (x)dx
If1(x)=1 isconstant thendQ =1 dxand Q =1L,
whereL isthelength.
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Charge Distributions

Charge Distributions:
Linear chargedensity | : | (q) = charge/unit arc
length

_____ |—dQ=1ds=1 Rdg
R"-.

For acircular arcdQ =1 (qg) ds=1(q) Rdg and

Q=0dQ=( (q)ds=(Q (q)Rdg

If1(g) =1 isconstant then dQ =1 dsand Q =1 s, wheresisthe
arc length.

Surface charge density s: s(x,y) = charge/unit area

Q=0R=C (xy)dA
If s(x,y) =s isconstant then dQ =s dA and Q =sA, where A
isthe area.

- Volumechargedensity r: r(x,y,z) = charge/unit volume

.......... N

. ll ——— dQ=rav

For asurface dQ = ‘ (x,y,2) dvV and

Q=0R=0 (x.y,29aV

Ifr(x,y,z) =r isconstant then dQ =r dV and Q =rV, whereV is
the volume.
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Calculating the Electric Field

Example;

4 >
< »

A total amount of charge Q isuniformily distributed along athin straight rod
of length L. What isthe electric field aa point P on the x-axis a distance x
from the end of the rod?

KQ .

. E=z——x
Answer: X(X+ L)

Example;

A total amount of charge Q is uniformily i '
distributed along athin straight rod of :
length L. What is the electric field aa point 1Y
P on the y-axis adistance y from the
midpoint of the rod?

A
v

Answer:

Example;

A infinitely long straight rod has auniform

charge density | . What isthe electric field a

point P a perpendicular distance r from the

rod? l

Answer: E
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Some Useful Math

Approximations:
(1+e)® » 1+ pe

e<<l

(1- e)® » 1- pe

e<<l

e » 1+e

e<<l

tane » e sine » e

e<<]1 e<<]

| ndefinite Integrals:

N 5 X

ax =
O(xz +812)3/2 U +a2

< X -1

ax =
C)(xz +812)3/2 e +a°

Chapter 23

PHY 2049
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Calculating the Electric Field

Example;

A total amount of charge Q is uniformily
distributed along a thin semicir cle of
radius R. What isthe electric field aa

point P at the center of the circle? I

-~ 2KQ .,
Answer: E = OR? X

Example;

A total amount of charge Q is
uniformily distributed along a

thinring of radius R. What is
theedectricfiddapointPon [ . g
the z-axis a distance z from the )

center of the ring? e

KQz

Z+R)2

Answer: E =

Example;

A total amount of charge Q is
uniformily distributed on the

surface of adisk of radius R.

What is the electric field a TR
point P on the z-axis a distance e
z from the center of the disk? <

Answer:

Chapter 23
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Calculating the Electric Field

Example:

What isthe electric field generated by a
large (infinite) sheet carrying auniform
surface charge density of s coulombs per
meter?

pe

Answer: E
2e,

Example:

What isthe électric field at a point P _
between two large (infinite) sheets :

carrying an equal but opposite uniform
surface charge density of s? :
S P e
=—7 '
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Flux of a VVector Field

Fluid Flow: ) ) X X

 — §—> = B> 0 = ; é —;

—_— _—bﬁ > ;g —_— —_—)

_—

»
»

> — 5 —>
b

v
y
v v

» »
>

Flux = vA Flux=0 Flux = VA cosq

>
>

_— —

Consider the fluid with avector V. which describes the veloci ty of the fluid

at every point in space and a square with area A = L2 and norma N . The
flux isthe volume of fluid passing through the squar e area per unit time.

Generalizeto the Electric Field:

Electric flux through the infinitessmal area E
dA isequal to y
A

dF = E xdA o R

where dF =E dA cosg

dA = AA

Total Electric Flux through a Closed Surface:

- FE:@Ede\

Surface S

Chapter 24 chp24_1.doc
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Electric Flux and Gauss' Law

Theeectric flux through any closed surfaceis
proportional to the net charge enclosed.

—

E ,y
normal Ay )dA — Qencl osed
Closed Q eO

Surface S

For the discrete case the total charge enclosed is the sum over all
the enclosed charges.

N
Qenclosed = a qi
i=1

For the continuous case the total charge enclosed isthe integral of
the charge density over the volume enclosed by the surface S:

Qenclosed = d dV

Simple Case: If the electric field is constant over the surface and
If it always points in the same direction as the normal to the

surface then
— —
Fe = QF dA=EA

The units for the electric flux are Nm?2/C.
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Conductors In Static Equilibrium

Conductor: Inaconductor some — e
electrons are free to move (without o—» Conductor o
restraint) within the volumn of the

material (Examples. copper, silver, aluminum, gold)

Conductor in Static Equilibrium:

Conductor in When the charge distribution on a
static equilibrium . Crer
= conductor reaches static equilibrium
V = constant (i.e. nothing moving), the net electric

field withing the conducting
material isexactly zero (and the électric potential is constant).

Excess Charge: For aconductor
in static equilibrium all the (extra)
electric chargereside on the
surface. Thereisno net electric
charge within the volumn of the
conductor (i.e.r =0).

Surface Charge Density

Conductor in
static equilibrium

E=0
V = constant
r=0

Electric Field at the Surface:

The electric field at the surface of a
conductor in static equilibrium is
normal to the surface and has a magnitude, E = s/eg, wheres is

the surface charge density (i.e. charge per unit area) and the net
char ge on the conductor is

Q= (QsdA

Surface

Chapter 24 chp24_3.doc
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Gauss' Law Examples

Problem: A solid insulating sphere of radius R
has charge distributed uniformly throughout its
volume. Thetotal charge of the sphereis Q. What

Insulating Sphere

is the magnitude of the eectric field inside and Ro.--7
outside the sphere?
Answer:

E = K Q f Total Charge Q

out r? r = constant
~ KQr
Ein = Q3 rA
R

Problem: A solid conducting sphere of radius R
has a net charge of Q. What is the magnitude of the
electric field inside and outside the sphere? Where
are the charges located?

Answer: Chargesare on the surface and

. KQ

Conducting
Sphere

Net Charge Q

Problem: A solid conducting sphere of radius
b has a spherical holein it of radiusa and has a
net charge of Q. If thereisapoint charge -q
located at the center of the hole, what is the
magnitude of the electric field inside and outside
the conductor? Where are the charges on the
conductor located?

Answer: Chargesareon theinside and outside
surface with Q;n=q and Qg,:=Q-g and

Net Charge Q
on conductor

. K (Q -
Er>b = (?2 q) rA
Ea<r<b = O

- K
Er<a - Zq 3

Chapter 24 chp24_4.doc
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Gravitational Potential Energy

Gravitational Force: F =G mimy/r2

Gravitational Potential Energy GPE:

U=GPE = mgh (near surface of the Earth)

1
Kinetic Energy: KE=5mv’

Total Mechanical Energy: E=KE +U

Work Energy Theorem:
W =Eg-Ea = (KEB-KEA) + (Ug-Ua)

(work done on the system)

Energy Conservation: Eao=Epg

(if no external work done on system)

Example:

® .- A ball is dropped from a height h. What is
the speed of the ball when it hitsthe
ground?

Solution; E; = KE; +U; = mgh  Ef = KEs + Us = mvs2/2

E =E, b v, =,/2gh

Chapter 25 chp25_1.doc
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Electric Potential Energy

Gravitational Force: F =K q102/r?

Electric Potential Energy: EPE =U (Units= Joules)

1
Kinetic Energy: KE=5MV® (Units=Joules)

Total Energy: E=KE +U (Units=Joules)
Work Energy Theorem: (work done on the system)
W =Ep-Ea =(KEp-KEa) + (Ug-Ua)
Ener ay Conservation: EA:EB (if no external work done on system)

Electric Potential Difference DV = DU/Q:
B

Work done (against the electric force)
per unit chargein going from A to B
(without changing the kinetic ener gy).

A
q DV =W apg/q =DU/g =Ug/q - Ua/q

(Units=Volts 1v=1J/1C)
Electric Potential V = U/q: U=qV

Unitsfor the Electric Field (Voltsmeter):
N/C =Nm/(Cm) =J/(Cm) =V/m

Energy Unit (electron-volt): One eectron-volt is the amount
of kinetic energy gained by an electron when it drops through one
Volt potential difference

1eV = (1.6x10°19 C)(1 V) = 1.6x10719 Joules

1MeV =100 ev 1 GeV=1,000 M eV 1 TevV=1,000 GeV

Chapter 25 chp25_2.doc
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Accelerating Charged Particles

Example Problem: A particle with mass M

and charge q starts from rest athe point A. What is .A
its speed at the point B if V=35V and Vg=10V q
— -5 — -5C\9
(M =1.8x107kg, g = 3x10™C)" V= 35 Vg = 10V
Solution: . >

The total energy of the particleat A and B is
E,=KE,+U,=0+qV,

1
EB:KEB+UB:§MV§+qVB.

Setting Ep = Eg (energy conservation) yields
(Note: the particle gains an amount of kKinetic

— |\/|V2 = V.-V energy equal to itscharge, g, timethe changein
2 B q( A B) the electric potential.)

Solving for the particle speed gives
(Note: positive particlesfall from high potential to
V. = \/zq(VA - VB)
B =

low potential V o >V g, while negative particles

M travel from low potential to high potential,
VB >VA')

Plugging in the numbers gives

' :\/2(3’ 10°5C)(25V)

18~ 10 °kg =91m/s

Chapter 24 chp25_3.doc
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Potential Energy & Electric

Potential

Mechanics (last semester!):
Work done by force F in going from A to B:

byF  — AL i@
WA®B _d:>dr
A

Potential Energy Difference DU:

B
W2PSE = py =U, - U, =- OF xf
A
L . U u U,
F-fu=- M W Y
fix ﬂy Mz °

Electrostatlcs(thlssem&cter)

Electrostatic For ce: qE

Electric Potential Energy Difference DU:
(work done against E in moving g from A to B)
B

DU =U,-U, =- (pE>dr
A

Electric Potential Difference DV=DU/q:
(work done against E per unit chargein going from A to B)

DV =V, -V, =- Q>
A
'ITV AN \Y

E=-NV =- - —2
ﬂx ﬂyy 1z

Chapter 25 chp25_4.doc
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The Electric Potential of a Point
Charge

VO NV (r) =KQIr

Potential from a point charge:
V(r) =DV =V(r) - V(infinity) = KQ/r

U =qV =work done against the electric forcein bringing the
charge g from infinity to the point r.

q
B '—:»
E

Potential from a system of N point charges.

Chapter 25 chp25_5.doc
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Electric Potential due to a
Distribution of Charge

dV =K dQ/r

Theelectric potential from a continuous distribution of charge
Isthe superposition (i.e. integral) of all the (infinite)
contributions from each infinitessmal dQ asfollows:

V :(‘)'r(—dQ . Q:(‘)jQ

Example;
A total amount of charge Q is uniformily
distributed along athin circle of radius R.
What is the electric potential at a point P at
the center of the circle?

KQ

. V=——
Answer: R

Example;

A total amount of charge Q is uniformily
distributed along a thin semicir cle of
radius R. What is the electric potentia at a
point P at the center of the circle?

KQ
oV =——
Answer : R

Chapter 25
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Calculating the Electric Potential

Example;

A total amount of charge Q is

uniformily distributed along a

thinring of radius R. What is

the electric potential at apoint | "+, g

P on the z-axis a distance z P

from the center of the ring? T R

___KQ
Answer: V(2) _ﬁ

Example;

A total amount of charge Q is

uniformily distributed on the

surface of adisk of radius R.

What is the electric potential a | . g

apoint P on the z-axis a P
distance z fromthecenter of | iitrirrerirc @it
the disk? z

Answer: V(2= Zng(\/m' Z)

Chapter 25 chp25_7.doc
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Electric Potential Energy

For a system of point charges:
The potential energy U isthe work required to assemble the final charge
configuration starting from an inital condition of infinite separation.

Two Particles: h a2
® oo ;@
r
U _KCI1Q2 _lqaé<q29+lq ad<Q19
r 2 1% r 9 2 2% r 9@
S0 we see that
1
Uu=—-—a qV,
25
where V; isthe electric potential a i due to the other charges.
Three Particles: &
9.9 9.9 9.9 rs.
U = K2 4 s o A28 . 0’}3 231” -
o r_12 3 53 ® @
which isequivalent to r2

1 o
Uu=—-a qVv,
2 o
where V; isthe electric potential a i due to the other charges.

N Particles:

1o
— V.
-5ad

i=1

Chapter 25 chp25_8.doc
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Stored Electric Potential Energy

For a conductor with charge Q:
The potential energy U isthe work required to assemble the final charge
configuration starting from an inital condition of infinite separation.

For a conductor thetotal charge Q resides
on the surface

Q = 0dg = Qs dA
Also, V isconstant on and inside the
conductor and

1 1
du = EdQV = EVS dA

and hence

U—i WVd —iv - dA—iVQ
=5 OVdQ =7V sdA=7

Surface Surface

1
Stored Energy: U conductor = EQV

where Q isthe charge on the conductor and V isthe electric potential of
the conductor.

For a System of N Conductors:

1 J
U=—a QV,
2 o1

where Qj isthe charge on thei-th conductor and Vj isthe electric
potential of thei-th conductor.

Chapter 25 chp25_9.doc
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Capacitors & Capacitance

Capacitor:
Any arrangement of conductor sthat is used to store electric charge (will also
store electric potential energy).

Capacitancee C=Q/V or C=Q/DV
Units; 1farad=1F=1C/1V  1nF=10%F 1pF=10°F

Stored Energy:

2
1 Q 1
- - — - - 2
U conductor 2 QV - 2C - 2 CV
where Q is the charge on the conductor and V is the electric potential of the
conductor and C is the capacitance of the conductor.

Example (I solated Conducting Sphere):
For an isolated conducting spherewith radiusR, V=KQ/R and

hence C=R/K and U=K Q%/(2R).
Example (Parallel Plate Capacitor):

For two parallel conducting
plates of area A and separation d

we know that E = s/eg= Q/(Aep)

d l E=Q/(Aep) and DV = Ed = Qd/(Aep) so that
C = Aep/d. Thestored energy is
v U = Q2/(2C) = Q2d/(2Aey).

-Q Area A

Chapter 26 chp26_1.doc
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Capacitors in Seri

Parallel:
In this case DV 1=DV »=DV and

PHY 2049

es & Parallel

Q=0Q1+Q,. Hence,
Q=0Q1+Q2=CiDV; +CoDVo= —
(C1+C,)DV

so C=Q/DV =Cq + Cy, wherel
used Qq = C41DV1 and
Q2= CoDVa.

Series:

In this case DV=DV 1+DV 5 and Q=0Q1=Q>.
Hence,

DV =DVq1 +DVo= Q1/C1+Qo/Co =
(1/C1+1/Co)Q

so 1/C =DV/Q = 1/Cq + 1/C», where | used
Q1 =C1DV1and Qy =CyDV».

DV

Capacitorsin series add inver ses.

Chapter 26
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Energy Density of the Electric
Field

Energy Density u:
Electric field lines contain energy! The amount of
energy per unit volumeis

u = egE2/2,
where E is the magnitude of the electric field. The
energy density has units of Joules/m?,

Total Stored Energy U:

The total energy strored in the electric field linesin an infinitessimal volume
dVvisdU=udV ad

U= qQudVv
Volume
If uisconstant throughout thevolume, V, thenU =u V.

Example: Parallel Plate Capacitor

Think of the work done in bringing in the charges

AreaA
— [ . from infinity and placing them on the capacitor as the
q E-field work necessary to produce the electric field lines and
I l | that the energy is strored in the electric field!

stored energy in the capacitor is
U = Q%/(2C) = Q2d/(2Aep).
The energy stored inthe electric fieldisU = uV = eoEZV/Z with
E =s/eg=Q/(epA) and V = Ad, thus
U=Q?d/(2Aep),
which isthe same asthe energy stored in the capacitor!

‘ o From beforewe know that C = Aep/d so that the

Chapter 26 chp26_3.doc
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Electric Energy Examples

Example;
How much electric energy is stored by a I

solid conducting sphere of radius R and
ChargeQ

total charge Q? N
LS — (.
Answer: 2R R
Example;
Q QT How much electric energy is stored by atwo thin

spherical conducting shells one of radius R1 and
«——/ R, |— charge Q and the other of radius R, and charge -Q
X (spherical capacitor)?
Ry, — 2 .
K l E _KQ"eel 10
Answer: U= 2 gRl' Rzﬂ

How much electric energy is stored by a
solid insulating sphere of radius R and

Example; I

ChargeQ

total charge Q uniformly distributed -
throughout its volume? E
— —_—

_a 16KQ" _3KQ
Answer: U_g[+5g 7R _5 R l

Chapter 26 chp26_4.doc
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Charge Transport and Current

Density
—>
| | | —_—
Consider n particles per unit volume o > @ . A
all moving with velocity v and each ® . @ R 6_'
carrying achargeg. ° > ® R

The number of particles, DN, passing through the (directed) area A in atime

Dtis DN = nV XADt and the amount of charge, DQ, passing through
the (directed) area A inatime Dt is

DQ = ngv XADt
The current, I (A), isthe amount of charge per unit time passing through the
(directed) area A:

I (A) = — J
(A) =5 ,
wherethe " current density” isgiven by J = nq\_idrift.

The current | is measured in Ampere'swhere 1 Amp is equal to one
Coulomb per second (1A = 1C/s).

I
-]
o
<
X
>
I
(-
X
>

For an infinitesmal area (directed) area dA:
> = - dl
= J xqA = —

The" current density" isthe amount of current per unit area and has units of
A/m2. The current passing through the surface Sis given by

| = OJdA
¢ .

Thecurrent, |, isthe" flux" associated with the vector J.

Chapter 27 chp27_1.doc
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Electrical Conductivity and Ohms

Law

Free Charged Particle:
q.m _E’ For afree charged particle in an electric field,
— . . g -
F=md=qgE andthus a:EE'
The acceleration is proportional to the electric field strength E and the
velocity of the particle increases with time!

Charged Particlein a Conductor:

However, for acharged particlein a
conductor the aver age velocity is
proportional to the electric field

strength E and since J = nqv,,,

Conductor

we have

J=sE
where s isthe conductivity of the material and is a property of the
conductor. Theresistivity r = 1/s.

Length L

A
v

Ohm'sLaw:
Conduc_tors - Current |
Electric Field E >, >

Current Density J |

Potential Change DV

sE |
| = JA=SEA v, * .y,

I
DV—EL——L—%——I = RI

DV =IR (Ohm'sLaw) R =L/(sA) =rL/A (Resistance)
Unitsfor RareOhms 1W=1V/1A
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Resistors in Series & Parallel

Parallel:
In this case DV 1=DV ,=DV !

and | =lq+l>. Hence,
K 1

|:|1+|2:DV1/R1+ ~
DVo/R, = (UR1+1/R)DV ovi| ll &, =, | DV
s0 UR =1/DV = IRy + 1Ry,

where | used I1 = DV¢1/R1 and
> = DVo/Ry. Also,

DV =11R; = I,R, = IR S0

l1=Rol/(R1+R2) and | > = R1l/(R1+R>).

Resistorsin parallel add inver ses.

Series: | R
In this case DV=DV 1+DV 5 and | =l 1=I».

Hence, DV1

DV = DVq + DVy = 11R1+15Ry = (R+Ry)! R1

so R =DV/l =Rq + Ry, where | used DV

DV1 = 13R; and DV5 = I5R. DV, IRz

Resistorsin series add. v

DV
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Direct Current (DC) Circuits

L

L

EMF —_ D/' Vv

EMF+DV=0

f+++ 4

++4++ + + +¥

Electromotive Force:

The electromotive force EM F of asource of electric potential energy is
defined as the amount of electric energy per Coulomb of positive charge as
the charge passes through the source from low potential to high potental.

EMF=e= U/q (The units for EMF is Volts)

Single Loop Circuits:

e-IR=0 and |=€/R e — |-
(Kirchhoff's Rule) T

Power Delivered by EMF (P =el):

_ _dwWw _ dq _
dW = edq P—dt—edt—el
Power Dissipated in Resistor (P = I2R):
dUu =DV_d P—d—U—DV d—q—DVI
- R q - dt - Rdt - R
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DC Circuit Rules

> L oop Rule:
The algebraic sum of the changesin
potential encountered in a complete
traversal of any loop of acircuit must be
zero.

— [}
EMF+DV=0 a DVI =0 .

loop

EMF —— Dv

Junction Rule:
The sum of the currents entering any junction
must be equal the sum of the currents leaving

that junction.
[} [}
ali=al
in out T TTTTTTrT
I Y
Resistor: DV=IR
If you move acrossaresistor in the direction I
of the current flow then the potential change is
DVg=-IR. L -
IF S ;- Capacitor:
If you move across a capacitor from minusto plusthen
Ll the potential changeis
"1 ov=arc DVc = Q/C,
____________ and the current leaving the capacitor is | = -dQ/dt.

|nductor (Chapter 31): 'y
If you move across an inductor in the direction of
the current flow then the potential changeis

DV =-L dl/dt.

L :DV_=-Ldl/dt

v
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Charging a Capacitor

S@ — After the switch is closed the current is

R entering the capacitor so that | = dQ/dt,
— where Q isthe charge on the capacitor
e__—___ C and summing all the potential changesin
going around the loop gives

- IR-—J:
e c 0

where | (t) and Q(t) are afunction of time. If the switch is closed at t=0 then

Q(0)=0 and
dQ Q

e Ra ¢

+ —

which can be written in the form

dQ 1
Frk t_(Q - eC) . where |l have define t=RC.

Dividing by (Q-eC) and multipling by dt and integrating gives
Q dQ W1 aQ-eCp
Q (Q } eC) ?t_d ,whichimplies 'N&™ eC o -

Solving for Q(t) gives

Charaing a Capacitor

Q(t) = eC(l_ e-t/t)
Q(t) ors
0.50 /
The curent is given by Time :

| (t)=dQ/dt which yields

| _£ e © i _ . _ _
(t) = t e = Re . The quantity t =R C iscall thetime

constant and has dimensions of time.
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Discharging a Capacitor

S@ After the switch is closed the current is
leaving the capacitor so that | = -dQ/dt,
+ where Q is the charge on the capacitor and
C R summing all the potential changesin going
around the loop gives
Q
C IR=0

where | (t) and Q(t) are afunction of time. If the switch is closed at t=0 then

Q(0)=Qp and

d

2 + R_Q - O
C dt :

which can be written in the form

dQ 1
ot = - t_Q . where | have defined 1=RC.

Dividing by Q and multiplying by dt and integrating gives
<dQ _ |1 eQo6

- _ A .. . lnc—= = -
Q, 0 ?t_dt , which implies ngg t

Solving for Q(t) gives Dischar ging a Capacitor

1.00

t = e- tt . 0.75
Q) = Q o

0.50

0.25

The current is given by
| (t)=-dQ/dt which yields " : . ) .

() = R?—ée'“t _

The quantity t =R C iscall the " time constant” and has dimensions of time.
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The Electromagnetic Force

The For ce Between Two-Charged Particles (at rest):
v=0 The force between two charged particles at rest is
',.q the electrostatic for ce and is given by

S £ - KQ9. .
.,y" E T 2 I' (electrostatic force)
r
where K = 8.99x10° Nm?/C2.

The For ce Between Two Moving Charged Particles:
’\7‘ The force between two moving charged particlesis
2 a the electromagnetic force and is given by

. = KQq A~ KQq R 7 s A
S Fey = 2 r+ Czrzv Vor
L, v (electromagnetic for ce)
where K = 8.99x10° Nm?%/C2 and ¢ = 3x10° m/s

Q : .
(speed of light in avacuum). Thefirst termisthe

electric for ce and the second (new) term is the called the magnetic for ce so

— —

that Fgy, = Fg + Fg, with

= KQq ., a—:K_Q('_jA_ ~

Fe = (2 r—q%rz bl’—qE
= Qq . ., ~_ . a&KQ-, 0 _ _.
B_czrzv V = %CZI’ZV rb—qv B

Electric and Magnetic Fieldsof a  The electric and magnetic fields due to the
Charged Particle Q moving with

Speed V (out of the paper) partide Q are
= _KQ._
E=—7
r
- KQ -
— 7 A
0 E = V
CZrZ
/., The electromagnetic force on q isgiven by
, Fem = dE +QqV "~ B (LorenzForce).
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The Magnetic Force

The Forceon Charged Particlein a Magnetic Field:
- The magnetic for ce an acharged particle g in amagnetic field
B isgiven by
q Fo=qv’ B .
9 i The magnitude of the magnetic forceis Fg = qvB sing and
B = Fg/(qv sinq) isthe definition of the magnetic field. (The
unitsfor BareTeda, T,wherel T =1 N/(C m/s)). The magnetic force
an infinitesimal charged particle dg in amagnetic field B is given by
dF, =dqv”~ B.

The Forceon Wire Carrying a Current in a Magnetic Field:
o o o o o o ® A current in awire corresponds to
B-out moving charged particles with
® ® ® ® ® ® e | =dg/dt. The magnetic force on
the chargedq is
® o o o o o o dF, =dqv” B,
I and the speed v=dI/dt. Hence,
® ® ® ® ® ® ® dr B
dF dqv =dq—-=Idl

® ® ® ® ® ® ® : dt

and the magnetic forceon a

infinitesimal length d! of the wire becomes dFg = 1dl ~ B . Thetotal
magnetic forceonthewireis

Fe=0F; =Qd " B
which for astraight wire of length L inauniform magnetic field becomes

F.=IL" B
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Vector Multiplication: Dot & Cross

Two Vectors:
Define two vectors according to

B
A=AX>A(+Ay§/+A22 /
5 A ~ A q
B=B,X+By+B2" '\
The magnitudes of the vectorsis given by A
Al — — 2 2 2
A= A= A2+ AZ+ A
S| — — 2 2 2
B|=B=,/B2+B2+B:

Dot Product (Scalar Product):

The dot product, S, isascalar and is given by

S= AxB =|A|Blcosg = AB, + AB, +AB,

Cross Product (Vector Product):
The cross product, C , iIsavector and is given by
C=A" B=(AB,- AB)%- (AB,- AB)y+(AB,- AB)?
The magnitude of the cross product is given by

Cl=A" B=|A|gsing
The direction of the cross product can be determined from the " right hand
rule".

Determinant Method:
The cross product can be constructed by evaluating the following
determinant:

@]
1
>
(g )
1

Ry 2
A A A
B, B, B,
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Motion of a Charged Particle in a
Magnetic Field

X XK X Consider acharged particle g
’,-'5"-~\ with velocity
,,' g 1. V=V X+V Yy,
/X X x|V x andkinetic energy
' : ' 1 1
' & . E,, ==Mmv’==mvx
\ D il 2 2
'X B x X s ¥ inauniform magnetic field
v "' B=-BzZ.
B-in Ts . PR The magnetic force on the

particleis given by
X = o
Fe=qv" B.
The magnetic for ce does not change the speed (kinetic energy)
of the charged particle. The magnetic force does no work on the
charged particle since the force is always perpendicular to the path of the

particle. Thereisno change in the particle's kinetic energy and no change in
its speed.

X X X

- ~ dv dv. _, -

7

Proof: Weknowthat Fg=QV~ B= ma ma =QV B Hence
dE;, 1 dv® _1 d(v=v)

— =—m—= = mvV x—
dt 2 dt 2 dt dt
and thus E;, (and v) are constant in time.

v .
Ux—=qux¥’ B=0

The magnetic force can change the direction a charged particle but not its
speed. The particle undergoes circular motion

N
v(t+dt Pet/m  Withangular velocnyéw = qB/T/B
o~ _dg vdg = —dt = = gt
v(t) Tdq o

\Y
, -da _aB
dt m
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Circular Motion: Magnetic vs

Gravitational
Planetary Motion: LT TN
For circular planetary motion the forceon ¢ . . 3
the orbiting planet is equal the masstimes e Q\ \
4

the centripetal acceleration, a=vér,as ' VLI .
follows: \ ' L

!

FG = GmM/r2=mv2/r I SR

Solving for the radius and speed gives, ‘e o
r =GMN2andv = (GM/r)Y2. The ~S---C

period of therotation (timeit takesto go around once) is given by
= = 3 — 2p 3/2 ; —
T=2pr/iv=2pGM/Vv°or T o The angular velocity, w = dg/dt,

and linear velocity v = ds/dt arerelated by v =rw, sinces=rq. Thus,

w =+/GM /r¥?, Theangular velocity an period are related by T = 2p/w
and the linear frequency f and w are related by w = 2pf with T = 1/f. Planets
further from the sum travel ower and thus have alonger period T.

X X X x Magnetism:
LT T~ For magnetic circular motion the force on
o AN the charged particleis equal its mass
X X X|V  x timesthecentripetal acceleration,
,' ‘ a=v2/r, asfollows:
Lo ) Fg = qvB = mv2rr.
X X >'<,' X" solving for the radius and speed gives,
Bin e ot r=mv/(qB) = p/(qB) ,

x andVv =qBr/m. Theperiod of the

rotation isgivenby T = 2pr/v =
2pm/(gB) and isindependent of theradius! The frequency (called the
cyclotron frequency) isgivenby f = 1/T= gB/(2pm) isthe samefor all
particles with the same charge and mass (w = qB/m).
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The Magnetic Field Produced by a

Current
The Law of Biot-Savart:
P The magnetic field at the
’ point P dueto a charge dQ
moving with speed V within

r awirecarryingacurrent |
~ IS given by
*— s _ KdQ. . .
dQ i ! dB = c2r 2 Vor
where K = 8.99x10° Nm?2/C2 and ¢ = 3x108 m/s (speed of light in a vacuum).

- dl 7 T
However, we know that | = dQ/dt and V' = - so that dQV = Idl and,

dB = r_zdl o f (Law of Biot-Savart),
wherek = K/c2= 1077 Tm/A. For historical reasons we define ny as
follows:

k= b=— = 4p x 107 Tm/A
4p 2 (mp=4p x m/A).

Magnetic Field of an Infinite Wire
Carrying Current | (out of the paper)

Example (I nfinite Straight Wire):

4@

S —— >

Aninfinitely long straight wire carries a steady
current |. What is the magnetic field at a distance
r from the wire?

Answer: B(r) = "
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Calculating the Magnetic Field (1)

Example (Straight Wire Segment):
Aninfinitely long straight wire carries a steady current |. What is the
magnetic field at a distance y from the wire due to the segment 0 <x < L?

B(r) = K L
Answer: - y y2+ | 2

Example (Semi-Circle):

A thinwire carrying acurrent | is .
bent into a semi-circle of radius R
R. What is the magnitude of ‘

[ ]
o P

magnetic field at the center of the
semi-circle?

pki

. B=——

Answer: R
Example (Circle): g
A thin wire carrying acurrent | isformsa R
circle of radius R. What is the magnitude of ‘ b

magnetic field at the center of the semi-circle?
B = 2pki
Answer: " R
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Calculating the Magnetic Field (2)

Example (Current Loop):

A thinring of radiusR carriesa

current |. What is the magnetic LR

field at apoint P on the z-axisa =) S-axis

distance z from the center of the « >
rng?

Answer:
2kIpR?
(22 + R2)3/2

B.(2 =

Example (M agnetic Dipole):

A thinring of radiusR carriesa R P z-axis
current |. What is the magnetic field ¢ >

at apoint P on the z-axis a distance

z >> R from the center of the ring?

2k
Answer: B,(2) = ZTB m, = IpR* = IA

The quantity g is called the magnetic dipole moment,
ng = NIA,
where N is the number of loops, | isthe current and A isthe area.
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Ampere's Law

Gauss Law for Magnetism:
The net magnetic flux emanating from a closed surface Sis proportional to
the amount of magnetic char ge enclosed by the surface as follows:

Feo = QBdAN Qi
S

However, there are no magnetic charges (no magnetic monopoles) so the
net magnetic flux emanating from a closed surface Sis always zero,

F,=¢B>dA=
B ?3 0 (Gauss'sLaw for Magnetism).

Ampere'sLaw:
Magnetic Field of an Infinite Wire The lineintegral of the magnetic field around a
Carrying Current | (out of the paper) ¢l osed loop (circle) of radiusr around a current
carrying wireis given by
OB xdl = 2prB(r) = 4pkl = myl
Loop

Thisresult istrue for any closed loop that
encloses the current I.

Thelineintegral of the magnetic field around any closed path C isequal
to my timesthe current intercepted by the area spanning the path:

@ﬁ Xdr = %I enclosed
C

The current enclosed by the closed curve C isgiven by the integral over the
surface S (bounded by the curve C) of the current density J asfollows;

= 57 dA
S

Ampere'sLaw

I enclosed

Chapter 30 chp30_4.doc



R. D. Field PHY 2049

Ampere's Law Examples

Example (Infinite Straight Wirewith radius R):

Aninfinitely long straight wire has a circular cross section of radius R and
carries auniform current density J along the wire. The total current carried
by thewireis|. What is the magnitude of the magnetic field inside and
outside the wire?

Answer:
2Kkl )
Bou () = = 0 — |

2krl .
R2

Bin(r) =

Example (I nfinite Solenoid):

Aninfinitely long thin straight wire carrying current | istightly wound into
helical coil of wire (solenoid) of radius R and infinite length and with n turns
of wire per unit length. What is the magnitude and direction of the magnetic

field inside and outside the solenoid I nfinite Solenoid
(assume zero pitch)? fl
Answer:

Bin(r) = rnonl .

Example (Toroid):

A solenoid bent into the shape of a doughnut iscalled atoriod. What is the
magnitude and direction of the magnetic field

inside and outside atoriod of inner radius R4 and Toriod

outer radius R, and N turns of wire carrying a

current | (assume zero pitch)?

Answer:
Bout(r) = O
2kNI
Bin(r) - r—
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Electromagnetic Induction (1)

Conducting Rod Moving through a Uniform Magnetic Field:
o o o o o o o

B-out The magnetic for ce on the charge
°® °® @ qintherodis
Fo =qv’  B.

® ® ®

Theinduced EMF, e, isequal to
° ® ® the amount of work done by the

magnetic field in moving a unit
[ [ ® chargeacrosstherod,

=" Bxdl =vLB

2
S

In Steady State:
In steady state acharge q in the rod

experiences no net force since, B-out
F.+F =0 ® ® ® ®
and thus, B L ° ° ° °
E=-v B. L v
Theinduced EMF (changein ° ° ° ° °
electric potential acrosstherod) is il

calculated from the eectric field in the

® ® ® ® ®
usual way,

e=QE>d =- (¥ Bxdl =B

which isthe same as the work done per unit charge by the magnetic field.
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Electromagnetic Induction (2)

Conducting Loop Moving through a Uniform Magnetic Field:

® o LO o ® ® ® The magnetic force on the charge
00|

B-out ginthelooponsidelis,
¢ ¢ ¢ ¢ IfBl =qv ’ él,
and for achargeqonside2toitis,
¢ s \Y ° ° IEBZ = q\_i ’ B>2 .
., ,® ° ° However, becaus:ithe mi';\gnetic

field isuniform, B, = B, ,

® ® ® ® Y P e andtheinduced EMF'sonsidel
and side 2 are equal, e1 = ey, and the net EMF around the loop
(counterclockwise) is zero,

e==— OF,xdl =e,-e,=0

Conducting Loop Moving through a Non-Uniform Magnetic
Field:

If we move a conducting loop
through a non-uniform magnetic
field then induced EMFson side 1
and side 2 are not equal, e; = vL By,
e = VLB, and thenet EMF
around the loop (counterclockwise)

Thisinduced EMF will cause a current to flow around theloop in a
counter clockwise direction (if B1 > B»)!
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Faraday's Law of Induction

M agnetic Flux:
The magnetic flux through the surface Sis defined by,

Fe=0OBxdA
In the ssimple case where B is constant and normal to the surface then
F g = BA.
The unitsfor magnetic flux are webbers (1Wb =1 Tm2).

Rate of Change of the Magnetic Flux through M oving L oop:

The change in magnetic flux, dF g,

in atime dt through the moving loop
IS,

L/, dF g = BodA-B4dA,

i with dA = vdtL so that

bl dF

vdt vdt dtB :'VI—(Bl' Bz):'e

where e isthe induced EMF. Hence,

dF

dt (Faraday's Law of Induction).

Substituting in the definition of the induced EM F and the magnetic flux
yields,

. dF d & _0 . 1B
e= @Exdl = - = —é ()B><d = - ()ﬂ—di
Elosed t dt Surface ﬂ Surface ﬂt
oop

We seethat a changing magnetic field (with time) can produce an electric
field!
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Lenz's Law

Example (L oop of Wirein a Changing Magnetic Field):
o o o o ® o ® A wireloop witharadius, r, of 1
B-out meter is placed in a uniform
Qnggowitgtime o agnetic field. Suppose that the
electromagnetic is suddenly
PY PY ° e Switched off and the strength of the
magnetic field decreases at arate
of 20 Tesla per second. What is
theinduced EMF in theloop (in
L oop Volts)? If the resistance of the
¢ ¢ ¢ ¢ ¢ ¢ ¢ loop, R, is5 Ohms, what isthe
induced current in theloop (in Amps)? What isthedirection of the
induced current? What isthe magnitude and direction of the magnetic
field produced by theinduced current (theinduced magnetic field) at the
center of thecircle?
Answers: If | choose my orientation to be counter clockwise then
F g = BA and
e = -dF g/dt = -A dB/dt = -(pr?)(-20T/s) = 62.8 V.
Theinduced currentis| = e/R = (62.8 V)/(5W) = 12.6 A. Since eis positive
the current is flowing in the direction of my chosen orientation
(counterclockwise). The induced magnetic field at the center of the circleis

given by Bijng = 2pkl/r = (2p x 107 Tm/A)(12.6 A)/(1 m) = 7.9 nil and
points out of the paper.

Lenz'sLaw: Itisaphysical fact not alaw or not a consequence of
sign conventionsthat an electromagnetic system tendsto resist change.
Traditionally thisisreferred toasLenz'sLaw:

Induced EMF'sare alwaysin such a direction asto oppose the

change that generated them.
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Induction Examples

Example (smple generator):
e o A conducting rod of length L is pulled
along horizontal, frictionless, conducting

rails at a constant speed v. A uniform

o o
(0]
magnetic field (out of the paper) fills the
oQgRe o ¢ o region in which the rod moves. The
\" . ..
rails and the rod have negligible
°f ¢ ° ® ® ®° ° resstancebut are connected by a

resistor R. What isthe induced EMF
in the loop? What isthe induced
current in theloop? At what rateisthermal energy being generated in
theresistor? What force must be applied to therod by an external agent
to keep it in uniform motion? At what rate doesthis external agent do
work on the system?

B-out

oev o

Example (terminal velocity): c o o o o o o
A long rectangular loop of wire of width L, PR L. >

mass M, and resistance R, falls vertically due
to gravity out of a uniform magnetic field.
Instead of falling with an acceleration, g, the
loop falls a constant velocity (called the e ole o ol o o
terminal velocity). What isthe terminal
velocity of the loop?

Example (non-uniform magnetic field): i Mg
— A rectangular loop Of wire with
c: a length a, width b, and resistance R
Y p— - is moved with velocity v away from
: b an infinitely long wire carrying a
i current |. What istheinduced

current in theloop when it isa
distance c from the wire?
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Mutual & Self Inductance

Mutual Inductance (M):
Consider two fixed coils with avarying
current | 1 in coil 1 producing a magnetic

field B1. Theinduced EMF in coil 2 dueto
B4 is proportional to the magnetic flux
through coil 2, F, = OB, >dA, = N,f,,

coil 2

where N2 is the number of loopsin coil 2 and f 2 isthe flux through asingle
loop in coil 2. However, we know that B1 is proportiona to | 1 which means
that F 2 isproportional to 11. The mutual inductance M is defined to be the
constant of proportionality between F 2 and | 1 and depends on the

geometry of the situation,
F 2 _ N2f 2

M =

F, = N,f, =Ml Theinduced EMF incoil 2 due

Il Il
to the varying current in coil 1 is given by,
dF dl,

a - Ma

The unitsfor inductanceisa Henry
(1H = Tm2Z/A = VS/A).

e, =

Self Inductance (L):
When the current | 1 in coil 1isvaryingthereisa

changing magnetic flux due to B1 in coil 1 itself!
The self inductance L is defined to be the constant of
proportionality between F 1 and |1 and depends on the

geometry of the situation,

L:L: N,f,

Il Il
where N1 isthe number of loopsin coil 1 and f 1 isthe flux through asingle
loop in coil 1. Theinduced EMF in coil 2 due to the varying current in coil
lisgiven by,

F1: lellels
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Energy Stored in a Magnetic Field

When an external source of EMF is connected to an
inductor and current begins to flow, theinduced EMF
(called back EMF) will oppose the increasing current

and the external EMF must do work in order to
overcome this opposition. Thiswork isstored in the
magnetic field and can be recovered by removing the
external EMF.

Energy Stored in an Inductor L:

The rate at which work isdone by the back EMF (power) is
dl
P..« =€ =-LI dr
since e = -Ldl/dt. The power supplied by the external EMF (rate at which
work is done against the back EMF) is
dw dl
P=—=LI—
dt dt -
and the energy stored in the magnetic field of the inductor is
. L, dl . 1,
U = gPdt = QLI dt = QLIdl = LI
o dt 0 2 -

Energy Density of the Magnetic Field u:
Magnetic field line contain energy! The amount of
energy per unit volumeis

u -1 B?
B_Zrno

where B is the magnitude of the magnetic field. The

magnetic ener gy density has units of Joulesm3. The
total amount of energy in an infinitesmal volume dV is
dU = ugdV and

U= QugdV
Volume

If B is constant through the volume, V, then U =ug V.
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RL Circuits
" Building-Up" Phase; gt
Connecting the switch to position A
corresponds to the " building up" phase of an -
RL circuit. Summing al the potential — L%
changes in going around the loop gives -
dl -
e- IR- L3-=0,
where | (t) isafunction of time. If the switch is closed (position A) at t=0
and | (0)=0 (assuming the current is zero at t=0) then

dl 1 eo
a t_gﬁ " Rp » Wherel have define t=L/R.
Dividing by (I-e/R) and multiplying by dt and integrating gives
J o dl o o - el Rp t
Q(| “e/R) =" ?t_dt , which implies Ing _e/RO 1t
Solvi ng for I(t) gives . " Building-Up" Phase of an RL Circuit
e
1(t) = =(1- e
( ) R( ) ) 1.00
The potential change () o7s
across the inductor is given //
by DV (t)=-LdlI/dt which /
yle|dS ‘”’00“““‘“;““HHHZHHHHJ;H:H:::H
DVL (t) = - ee_t/t . Time

The quantity t =L /R is call the time constant and has dimensions of time.

" Collapsing" Phase:
Connecting the switch to position B correspondsto the " collapsing” phase
of an RL circuit. Summing al the potential changes in going around the

loopgives - IR - L (;—It = 0 ,wherel(t) isafunction of time. If the
switch is closed (position B) at t=0 then | (0)=Ig and

dl 1

I, — — -t/t

T " and | (t) Ioe )
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Electrons and Magnetism

Magnetic Dipole; B

The magnetic field on the z-axis of a current loop with area

A=pR2 and current | is given by B,(z) = 2kmz3, |

when z >> R, where the magnetic dipole moment .

m=[A.
Orbital M agnetic M oment:

Consider asingle particle with charge q and mass m undergoing
uniform circular motion with radius R about the z-axis. The

_________

period of the orbitisgiven by T = 2pR/v, where v isthe

RO ._._.&” particles speed. The magnetic moment (called the orbital
: magnetic moment) is

g g

m,, = IA:?pRZ =- VR,

2

sincel = q/T. The orbital magnetic moment can be written in terms of the

—

orbital angular momentum, L=r" p, asfollows

_ 9
n])rb ~ .~ —orb
2m
where L o, = Rmv. For an electron,
_ e
My, = - Lorb_
2m,

" Spin" Magnetic Moment (Quantum Mechanics):
Certain elementary parrticles (such as electrons) carry intrensic
angular momentum (called " spin” angular momentum) and
an intrensic magnetic moment (called " spin" magnetic

moment),
e

"lpm:-ﬁ

et

) ﬁ (electron)

where S=1/2 isthe spin angular momentum of the electron and g = 2 isthe
gyromagnetic ratio. (h=h/2p and hisPlank's Constant.). Herethe units

eh

are Bohr Magnitons, My, =ﬁ’ with mgonr = 9.27x1024 J/T.
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Maxwell's Equations

|. (Gauss Law): )
—5
1 E
F E j— @ E )dA j— Qenclosed j— G’ dV EhargeQ g
Surface e0 e0 Volume 1
¢ 4
Volume Enclosed by Surface T

Two Sour ces of Electric Fields

|l. (Gauss Law for Magnetism):

F.= ©B>xdA=0

Surface

No Magnetic Char ges!

|11, (Faraday's Law of Induction):

. - -~ dF . 1B .
e= Ed =-—"=- (O ——dA
Curve dt Surface ﬂt

¢ 4

Surface Bounded by Curve

V. (Ampere'sLaw):

@éﬂjr = rr!)Ienclosed = rr!) c\)j>>d'5‘

Curve Surface

¢ 4

Surface Bounded by Curve | One Source of Maanetic Fields |
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Finding the Missing Term

We are looking for anew term in

|+

ok = | Amper€e's Law of the form,
» . > - dF
c = OBxdl =ml +d —=
vt dt

—

where d is an unknown constant and
| = QJ xdA F . = OE xdA,
S S

—lll— wheesis any surface bounded by

R the curve C1.

Casel (usesurface $9):
If we use the surface S which is bounded by the curve C4 then

@I§Xdr—nbl+dC”:—E—(‘)genbj+d QXdA—m)I

o dt S Tto y
since E = 0 through the surface S;. 0 Must be equal,
Casell (usesurface Sp): hence d=npep.

If we use the surface Sy which is bounded by the curve C4 then l
s e dF 2\ - EO . dI
OBxdl =ml +d ——==¢mJ +dﬂ—+><dA:—
o1 dt o€ t

since J = 0 through the surface S, and

Q JE 1 dQ |

S
E = =
e, €A Mt eAdt eA"

Ampere'sLaw (complete):

- F . EO .
OB Xl = ml + me, " E=m & J +essdh = m(l +1,),
Curve dt Surface ﬂ 9
N T e q T[E
/ld :(S_)Jd xdA J, :eoﬂ—t.

" Displacement Current” | \ " Displacement Current" Density
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Complete Maxwell's Equations

N

& [

|. (Gauss Law):
F E = @ E )dA: Qenclosed j— 1 G’dv EhargeQ g
Surface e0 e0 Volume
4

Volume Enclosed by Surface

|l. (Gauss Law for Magnetism):

F.= ©B>xdA=0

Surface

|11, (Faraday's Law of Induction):

Two Sour ces of Electric Fields

No Magnetic Char ges!

C - . dF . B
e= Ex =-—==- ) —>dA
Curve dt Surface ﬂt

¢ 4

Surface Bounded by Curve

—’ | Two Sources of Magnetic Fields | —>

V. (Ampere'sLaw): ‘

@B >d| = rT1-)Iel'1C

Curve

T dt

4 4
Surface Bounded by Curve
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Electric & Magnetic Fields that
Change with Time

Changing Magnetic Field Produces an Electric Field:

B-out increasing with time

- & =

7" e o ° A uniform magnetic field is confined to a
A circular region of radius, r, and isincreasing
Jo o e.Tey with time. What isthe direction and
' oo — magnitude of theinduced electric field at the
\\' ® ¢ °®lE radiusr?
e e )’/ Answer: If | choose my orientation to be
S-=7 counter clockwise then F g = B(t)A with
A= pr2. Faraday's Law of Induction tells us that
- dF dB
P) E xdl = 2prE(r) = - == _pr2—
© Pre(r) a ~ PToar

Circle

and hence E(r) = -(r/2) dB/dt. Since dB/dt > O (increasing with time), E is
negative which means that it points opposite my chosen orientation.

Changing Electric Field Produces a M agnetic Field:

E-out increa§ing with time
s T TS A uniform electric field is confined to a
% " circular region of radius, r, and isincreasing
¢’ e —> . . . . .
I S {B with time. What isthe direction and

magnitude of the induced magnetic field at

. p theradiusr?
e o )’ Answer: If | choose my orientation to be
S--7 counter clockwise then F g = E(t)A with
A =pr2. Ampere'sLaw (with J = 0) tells us that

N 5 _ dF . _pr°dE
CigeBXdI = 2prB(r) = e,m, i - &2 di

and hence B(r) = (r/2c?) dE/dt. Since dE/dt > O (increasing with time), B is
positive which means that it points in the direction of my chosen orientation.
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Simple Harmonic Motion

Hooke's Law Spring:
For aHooke's Law spring the restoring force is linearly proportional to the
distance from equilibrium, Fy = -kx, where k is the spring constant. Since,
Fy = may we have

d®x d’x Kk

a2 o gi? +Exzo,wherex=X(t).

- kx=m

General Form of SHM Differential Equation:
The genera for of the ssimple harmonic motion (SHM) differential equation
IS

d?x(t)
dt?

where C isapositive constant (for the Hooke's Law spring C=k/m). The

most general solution of this 2"d order differential equation can be written
in the following four ways:

x(t) = Ae™ + Be ™
X(t) = Acos(wt) + Bsin(wt)
X(t) = Asin(wt +f)
X(t) = Acos(wt +f)

+Cx(t) =0

where A, B, and f are
arbitrary constants and X(t) = Acos(wt+f )
WZ«/E. In the chart, A is <
the amplitude of the - T
oscillationsand T isthe 05
period. Thelinear frequency ool
f = 1T ismeasured in cycles D 1 2 3 4 5 6 7 8
per second (1 Hz = 1/sec). 05 \

The angular frequency w = 10

2pf and is measured in wt+  (radians)

radians/second. For the
Hooke's Law Spring C = k/m and thus W = JC=Jk/m,
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SHM Differential Equation
The genera for of the ssimple harmonic motion (SHM) differential equation

IS
d?x(t)
dt?

where C isaconstant. One way to solve this equation isto turn it into an
algebraic equation by looking for a solution of the form

x(t) = Ae* |
Substituting thisinto the differential equation yields,

a’Ae™ +CAe™ =0 o |2°=-C|

+Cx(t) =0

Casel (C >0, oscillatory solution):

For positiveC, a = +i+/C = iw , where W = JC . Inthiscase

the most general solution of this 2"d order differential equation can be
written in the following four ways:

x(t) = Ae™ + Be ™
X(t) = Acos(wt) + Bsin(wt)

X(t) = Asin(wt +f )

X(t) = Acos(wt +f)
where A, B, and f are arbitrary constants (two ar bitrary constants for a2nd
order differential equation). Remember that €% = cosq i sing
where i =+/- 1.
Casell (C <0, exponential solution):
For negative C, & = ++/- C = g ,where g = J-C. In this case,

the most general solution of this 2"d order differential equation can be
written as follows:

x(t) = Ae” + Be ¥

where A and B arbitrary constants.
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Capacitors and Inductors

Capacitors Store Electric Potential Energy:

2
u. =<
Q 2C
© : Q=CDV, DV.=Q/C

— 2
Ug = EeoE (E-field energy density)

Inductor s Store Magnetic Potential Energy:

1 2
UB - ELI
Fo=LI L=F,/|
o = A
- dt
u -1 B?
B — ZFTb (B-field energy density)
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An LC Circulit

\ Att = 0the switch isclosed and a
capacitor with initial charge Qg is
connected in series across a inductor

Q % (assume there is no resistance). The
et
L

Switch

initial conditions are Q(0) = Qg and 1 (0)
= 0. Moving around the circuit in the
direction of the current flow yields

Q dl
—-L—=0
C dt
Since | isflowing out of the capacitor, | = - dQ/ dt , so that
d?Q 1
+ =0
a? T1c® -

This differential equation for Q(t) isthe SHM differential equation we
studied earlier with w = +4/1/ LC and solution

Q(t) = Acoswt + Bsinwt .
The current isthus,

d :
| (t) = - d—?: Aw sinwt - Bw coswt

Applying theinitial conditions yields
Q(t) = Q, coswt
| (t) = Q,w sinwt
Thus, Q(t) and I (t) oscillate with SHM with angular frequency

w = +/1/ LC . The stored energy oscillates between electric and magnetic
according to

Q*(t) _ Qo

2C 2C
1 1

Ug(t) = S LI (1) = ELQOzwzsinzwt

cos®wt

Ue(t) =

Energy is conserved since Uiqt(t) = Ug(t) + Ug(t) = Q02/2C is constant.
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LC Oscillations

+
+
+
+

PHY 2049

Q(t) = Q, coswt

| (t) = Q,w sinwt

10

05

0.0 +

wt (radians)

yUa =Ue +Us )

1 Q
\ V\/V\/ Ue(®) =5 costwt

_ Q5 2
j j i i j UB(t)—ZCsm wt
1 2 3 4 5 6 7 8
wt (radiang)
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Mechanical Analogy

t=0 1
: ol t=0
K ! Bl c %L
o
Att=0: Att=0:
— l 2 — i 2
E = 5 kX0 U = 2C Qs
v=20 | =0
At Later t: At Later t:
dx dQ
V=— | = - —
dt dt
X(t) = x, coswt Q(t) = Q, coswt
we K we | L
~Vm “VLC
1 1 1 1
E = —mv? + —kx? E==LI?+—Q?
—2™ "2 TR
Constant /
Correspondence:
X(t) « Q(t)
v(t) « 1(t)
m« L
k« 1/C
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Another Differential Equation

Consider the 2"9 order differential equation

d2x(t dx(t
d)t(g)+D );(t)+Cx(t):O,

where C and D are constants. We solve this equation by turning it into an

algebraic equation by looking for a solution of the form X(t) = Ae™
Substituting thisinto the differential equation yields,

D .2
a’?+Da+C=0 a=-5+4% ?Q'C
or 2 29 .

Casel (C > (D/2)2, damped oscillations):
ForC>(D/22 a=-D/2+i,C- (D/2)? =-D/2+iw¢ where

we= \/C - (D/2)* , and the most general solution has the form:

x(t) = e DtIZ(AeiW¢ + Be’ iw¢)

x(t) = e ®"2( Acos(w ¢) + Bsin(w ¢))

x(t) = Ae’"?sin(w¢ +f)

X(t) = Ae ®"?cos(w ¢ +f)
where A, B, and f are arbitrary constants.
Casell (C < (D/2)2, over damped):
For C<(D/22 a=-D/2%/(D/2)?- C=-D/2+g  where
g = \/(D/Z)2 - C . Inthiscase,

x(t) = e Dt’Z(Ae@’t + Be'gt)_
Caselll (C = (D/2)?, critically damped):
For C=(D/2)% a=-D/2,and
x(t) = Ae °'?

Chapter 33 chp33_7.doc
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An LRC Circuit

Att = 0theswitchisclosed and a
AN capacitor with initial charge Qg is
Switeh connected in series across an inductor
i__l__ﬁ and aresistor. Theinitial conditions are
C % L Q(0)=QpandI(0) =0. Moving around
—_— the circuit in the direction of the current
R flow yields
—— Q 9 r=0
C dt '
Since | isflowing out of the capacitor, | = - dQ/ dt , so that

d? Rd 1
CR.RAV ., 2 q=0
dt L dt LC '
This differential equation for Q(t) is the differential equation we studied
earlier. If we take the case where R? < 4L /C (damped oscillations) then

Q(t) = Qe /> coswe
with W¢=\w?- (R/2L)% and w =+/1/LC .

1.0

0.5 -~

-0.5

-1.0

Time
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Traveling Waves

A "wave" isatraveling disturbancethat transports energy

but not matter.

Constructing Traveling Waves:
To construct awave with shapey = f(x) at timet = O traveling to the right
with speed v simply make the replacement X ® X - Vvt .

y =f(X) at timet=0

x=0

Traveling Harmonic Waves:

Har monic waves have the form
y = A sin(kx) or

y = Acos(kx) at timet =0,
where k isthe " wave number"
(k =2p/l wherel isthe"wave
length") and A isthe
“amplitude". To construct an
harmonic wave traveling to the
right with speed v, replace x by
x-vt asfollows:

1.0

0.5

0.0 T

-0.5

-1.0

y =f(x-vt)
W %«W\/
X=wut
y=Asin(kx)

U

kx (radians)

y = Asin(k(x-vt) = Asin(kx-wt) wherew = kv (v = w/k). The period of the
oscillation, T = 2p/w = 1/f, where f isthe linear frequency (measured in
Hertz where 1Hz = 1/sec) and w isthe angular frequency (w = 2pf). The

speed of propagationisgivenby v=w/k =11 .

y = y(x,t) = Asin(kx-wt) right moving harmonic wave
y = y(x,t) = Asin(kx+wt) left moving harmonic wave

Chapter 34
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The Wave Equation

Ty(t) 1 Ty(xt) _
x* ve o qit?

0

Whenever analysis of a system resultsin an equation of the
form given above then we know that the system supports
traveling waves propagating at speed v.

General Proof:
Ify = y(x,t) = f(x-vt) then

Ty 1%y
ﬂy__ 7y
Tt vf ¢ ﬂtz—vf@
and
T°y(x,t 1 2y(x,t
) LIV0 g fgng

Proof for Harmonic Wave:
If y = y(x,t) = Asin(kx-wt) then

2 2
1111XZ:-k2Asin(kx-vvt) %:-szgn(lo(-\m)
and
T°y(x,t) 1 97°%(xt) & , w?0 _ _
o v S K +V2éAS|n(kx-wt)—O,
sincew = Kkv.
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Light Propagating in Empty Space

Sincethere are no chargesand no y-axis -
current in empty space, Faraday's
Law and Ampere's Law take theform

>

. - dF - dF x-axis
PEd =- —& @fxdl =me,—F / /
ot rn“’dt' >

L ook for a solution of the form
E(x,t) = E, (x,t)¥
B(x,t) = B,(x,t)2

Faraday's Law:
Computing the left and right hand side of y-axis =

—

. : : E(x,t) E(x+dx,t)
Faraday's Law using arectangle (in the
xy-plane) with width dx and height h dx
(counter clockwise) gives T
1B, : n >
E,(x+dx,t)h- E (x,t)h = - ‘ﬂt hdx v ‘l B
or - :
axi B
ﬂEy _ ﬂBz z-axis
X it
Ampere'sLaw: y-axis —
Computing the left and right hand side of E

Ampere'sLaw using arectangle (in the
xz-plane) with width dx and height h
(counter clockwise) gives

E
B,(x,t)h- B,(x +dx,t)h = mg, ﬂﬂty hdx / - /
B(x,t y

or .
7S B(x+dx.t)

TIBz_ e 1-[Ey
x = M& qt
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Electromagnetic Plane Waves (1)

We have the following two differential y-axis >
equations for Ey(x,t) and B(x,t): E
1., 1E,
qt al ﬂ—X (1) s
and / Z
TE, 1 1B, s 5

qt :'@ﬂ_x (2)
Taking the time derivative of (2) and using (1) gives
1°E, _ 1 Ta&B6_ 1 TaBe_ 1 TE,

MW  me TtETX8  me IXET B me K

which implies

12E, 12E, 0
ﬂX2 - ME ﬂtz - Y,

Thus Ey(xt) satisfies the wave equation with speed v =1/ Je,m andhasa
solution in the form of traveling waves as follows:

Ey(x,t) = Egsin(kx-wt),
where Ej isthe amplitude of the electric field oscillations and where the
wave has a unique speed

_ W _;_ . 8 .
v=e= =|f = m—2.99792 10°m/'s (speed of light).
From (1) we see that
1B, _ IE,
Z = . = - E,k cos(kx - wt
m x 0 ( ),

which has a solution given by
k . E, .
B,(x,t) = Eowsm(kx - wt) = Tosm(kx - wt)

o that
B,(x,t) = Bosin(kx-wt),
where Bg = Eg/c isthe amplitude of the magnetic field oscillations.
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Electromagnetic Plane Waves (2)

The plane har monic wave solution y-axis > Direction of Propagation
for light with frequency f and

wavelength | and speed c =fl is

given by // [

B(x,t) = B, sin(kx - wt)2 (T N

z-axis B

E(x,t) = E,sin(kx- wt)y "!// ‘ | uu s

where k = 2p/l , w = 2pf, and
Eq = cBo.

Properties of the Electromagnetic Plane Wave:
Wavetravels at speed ¢ (C=1/,/me)).

E and B are perpendicular (E>X8=0).

Thewavetravelsin thedirection of E” B.
At any point and time E = cB.

Electromagnetic Radiation:

Wavelength (nm )
00 600 500 400

Visible spectrum

=— Wavelength (m)
wf 107 1% w1t w1 1 et et 10 et 1ot 1% 10 10 10 1o 1o 1o 1o 10 101

w10 W' 1t 1wt 1f 1t 10* 10* 10 10" 10" 10" 10™ 10" 10" 10'7 10 10" 10* 10* 10%* 10% 0™
Frequency (Hz) —=

FM radio -,
TVl 1
Maritime, \ = 2 Maritime, aeronantical,
Maritime and AM aeronautical, o o I citizens hand,
aeronautical uses radio and mobile radio o | o o — and mobile radio =
r T T - T T T T
1o 10° 10* 1 1t w* 10 '
Frequency (Hz)
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Energy Transport - Poynting VVector

Electric and Magnetic Energy Density:

y-axis >

For an electromagnetic plane wave E

Ey(x,t) = Egsin(kx-wt),

B(x,t) = Bosin(kx-wt), / / ot
where Bg = Eg/c. Thee€lectric energy density _ -
is given by o

1 1 :
Ug = EeOEZ = EeoEg sin®(kx- Wt) and the magnetic ener gy density is
1 1 1
U, =——B° = E*’=-eE’=u
°2m 2mc’ 2% ok

where | used E = cB. Thus, for light the electric and magnetic field
ener gy densities are equal and the total energy density is

1 :
Uy = Ug +Us = E° =EBZ = g,E; sin” (k<- wt)

Poynting Vector (S= m E’ B):

The direction of the Poynting
Vector isthe direction of energy
flow and the magnitude

2
oo log_ E_1du

m mc A dt
isthe energy per unit time per

unit area (units of Watts'm?).
Proof:

dUy, = UyV = eOEZACdt SO
L S T R Y
S= T = e,CE”° = WBC_ m)Csm (kx - wt) .
Intensity of the Radiation (Wattsm?):
Theintensity, |, isthe average of S asfollows:

1£_ ES ES

- - — — =0 /qin2 ) —
l=S=—— m)c<sm (kx - wt)) 2me
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Momentum Transport - Radiation
Pressure

Relativistic Energy and Momentum:

E2 = (cp)? + (Moc?)?
energy momentum rest mass
For light mg =0 and \
E =cp (for lignt)

For light the aver age momentum per unit time per unit areaisequal to the
intensity of thelight, |, divided by speed of light, ¢, as follows:

1dp_11dU _1

Adt cAdt c

Total Absor ption:

~_dp_1d0 _1
I:_dt ¢ dt _CIA

F 1
P =R =g (cadimion presaro

Total Reflection:

Light

_ dp 2du 2
F :—dFt) :E—dt :EIA Light
o F_2,
A ¢c (radiation pressure) ol Reflection
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The Radiation Power of the Sun

Problem: P=39x10%°wW
Theradiation power of the

sun is 3.9x10%6 W and the

distance from the Earth to . < >

_ 11
the sun is 1.5x1011 m. Earth  9=15x107m

(@) What isthe intensity of

the electromagnetic radiation from the sun at the surface of the Earth (outside
the atmosphere)? (answer : 1.4 k\W/m?)

(b) What is the maximum value of the electric field in the light coming from
the sun? (answer: 1,020 V/m)

(c) What is the maximum ener gy density of the electric field in the light

coming from the sun? (answer : 4.6x10°6 J/m3)

(d) What is the maximum value of the magnetic field in the light coming
from the sun? (answer: 3.4 )

(e) What is the maximum ener gy density of the magnetic field in the light

coming from the sun? (answer : 4.6x10°6 J/m3)
(f) Assuming complete absorption what is the radiation pressure on the

Earth from the light coming from the sun? (answer : 4.7x10°° N/m2)
(g) Assuming complete absorption what is the radiation force on the Earth

from the light coming from the sun? The radius of the Earth is about 6.4x10°

m. (answer': 6x108 N)
(h) What is the gravitational for ce on the Earth due to the sun. The mass of

the Earth and the sun are 5.98x10%4 kg and 1.99x1030 kg, respectively, and
G = 6.67x10"1 Nm?/kg?. (answer: 3.5x10%2 N)
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Geometric Optics

Fermat's Principle:

In traveling from one point to another, light follows the path that
requires minimal time compar ed to the times from the other possible

paths.

Theory of Reflection:
Let tppg bethetimefor light to go

from the point A to the point B
reflecting off the point P. Thus,

_l 1
tAB_ELl'l'ELz,

where
L, =+vx* +a’

L, =(d- x)* +b*

To find the path of minimal time we set the derivative of tpg equal to zero

cdx

as follows:
dtys _1dL,  1dl, _
dx ¢ dx
which implies
da, _ d.,
dx  dx
but
dy _x
ax L, G
d, -(d-x)
dxk = L S

s0 that the condition for minimal time
becomes

A
[0
v

sing, = sing,

qi :qr
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Law of Refraction

Index of Refraction:
Light travels at speed c in avacuum. It travels at a speed v < ¢ in amedium.
Theindex for refraction, n, istheratio of the speed of light in a vacuum to
its speed in the medium, : :

n=clv,
where n is greater than or equal to
one.

Theory of Refraction:
Let tppg bethetimefor light to go

from the point A to the point B
refracting at the point P. Thus,
1 1

Uas _V_1L1+V_2L2’

where
L, =X +a?

L, =+/(d- x)2 +b?"
To find the path of minimal time we set the derivative of tpg equal to zero
asfollows:
dt,, 1dL, 1dL,
— — o 4w o =0 whichimplies

ld, 1d, ot
u

dx v, dx v, dx v, dx v, dx
dx L, %
d, -(d-x)
dxk = L SN%
50 that the condition for minimal time becomes
1 . 1 . . .
—smql - —S|nq2 nl smql - n2 S|nq2
Vi Vy Snell's L aw
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Total Internal Reflection

Total internal refection
occurs when light travels
from medium nq to medium
no (N1 > no) if qq isgreater
than or equal to the critical
angle, qc, Where

n,

Sinqc=n—
I

Chapter 34

— [0}
q2=90 n»

Problem:

A point source of light is
located 10 meter s below the
surface of alarge lake
(n=1.3). What isthe area (in
m?) of the largest circle on
the pool's surface through
which light coming directly
from the source can emerge?
(answer: 455)
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Refraction Examples

Problem: .
A scubadiver 20 meters : .
beneath the smooth surface '
of aclear |ake looks

upward and judges the sun

to be 40° from directly
overhead. At the same
time, afishermanisina
boat directly above the
diver.

(a) At what angle from the
vertical would the
fisherman measure the sun?
(answer : 59°)

(b) If the fisherman looks
downward, at what depth below the surface would he judge the diver to be?
(answer: 15 meters)
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Spherical Mirrors

Vertex and Center of Curvature:

Thevertex, V, isthe point where c Mi .

the principal axis crosses the oncave virror E - (F;ad'us of Curvature
k ) = Center of Curvature

mirror and the center of Light Ray E,”te'fs F = Focal Point

curvatureisthe center of the */ \V=Vertex

spherical mirror with radius of e—Principal Axis
curvature R. R-side \% V-side
Real and Virtual Sides: Light Ray Exits

The" R" orreal side of a

spherical mirror isthe side of the mirror that the light exits and the other side
iIsthe" V" or virtual side. If the center of curvature lies on the R-side then
the radius of curvature, R, is taken to be positive and if the center of
curvature lies on the V-side then the radius of curvature, R, istaken to be
negative.

Light Ray Exits
R = Radiusof Curvature  Focal Point:

C = Center of Curvature A light ray paralléel to the

F = Focal Point
Light Ray Enters V = Vertex principal axiswill pass
> L through the focal point, F,
Principal Axis ) .R. where F lies adistance f
R-sde Vi E ¢ vsde (focal length)from the vertex
of the mirror. For spherical
Convex Mirror mirrors a good approximation
is f=R/2

Concave and Convex Mirrors:
A concave mirror isone where the center of curvature lies on the R-side so
theR>0andf >0 andaconvex mirror isone where the center of
curvatureliesontheV-sidesothat R <0 and f < 0.

concave f>0

convex f<O

Flat Mirror:
A flat mirror isthe limiting case where the radius R (and thus the local length
f) become infinite.
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Mirror Equation

Object and Image Position:
For spherical mirrors,
1 1 1

p i f S
where p is the distance from the
vertex to the object, i isthe

distance from the vertex tothe =~ — == ¥ .
image, and f isthe focal length. R-side V-side
C = Center of Curvatur
FOC&' Len th F = Focal Point
) 9 o p = Object Position
For spherical mirrors the focal i = Image Position
length, f, is one-half of the radius
of curvature, R, asfollows:
f=R/2
M agnification:
The magnification is
i
=" B , (magnification equation)
where the magnitude of the magnification is the ratio of the height of the
image, h;, to the height of the object, hy, asfollows:
im = h
hp

Sign Conventions:

Variable Assigned a Positive Value Assigned a Negative Value
p (object distance) always positive
i (image distance) if imageison R-side (real image) if imageison V-side (virtual image)
R (radiusof curvature) | if Cison R-side (concave) if Cison V-side (convex)
f (focal length) if Cison R-side (concave) if Cison V-side (convex)
m (magnification) if theimageisnot inverted if theimageisinverted
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Mirror Examples (1)

Mirror Equations:

R
Y

Example;
R=2,p=3

f=11=32,m=-1/2

Example;
R=2,p=3/2

f=1,i=3m=-2

Chapter 35

R-side V-side
Reduced Inverted Real Image
Concave Mirror

R-side V-side

Magnified Inverted Real Image
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Mirror Examples (2)

Mirror Equations:

(SR 111 T
R T

Example;

R:2,p:1/2 <

f=1i=-1,m=2 /m
o -

Magnified Non-inverted Virtual Image

Example;
\ Convex Mirror
R=-2,p=3 >

V-side

f=-1,i=-3/4, m=
1/4

Reduced Non-inverted Virtual Image
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Thin Lense Formula

L ensemakers Equation:
The lensemakers formulais
10

1 n 1)881
f &R, R o
wheref isthefocal length, nistheindex of refraction, Rq isthe radius of

curvature of side 1 (sidethat light entersthe lense), and R is the radius of
curvature of side 2 (sidethat light exitsthe lense).

L ense Equation: Converging Lense
1 1 1 '
p 1 f
o o v
Magnification: V-side C, F ; R-side
o = :
m=- D Side1”
Sign Conventions:
Variable Assigned a Positive Value Assigned a Negative Value
p (object distance) always positive
i (image distance) if imageison R-side (real image) if imageison V-side (virtual image)
R, (radiusof curvature) || if C; ison R-side if C{ison V-side
R, (radiusof curvature) || if Cison R-side if Coison V-side
f (focal length) if f>0then converginglense if f<Othen diverginglense
m (magnification) if theimageisnot inverted if theimageisinverted
i =R =-R f= R >0
Example (converging lense): R=R R, =- = 2n- 1)
Example (diverging lense): R=-R R =R f= 20- ) <0
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Thin Lenses (Converging)

Example;
f=1,p=2
=2, m=-1

Example;

f=1,p=12
l=-1,m=2

Chapter 35

Converging Lense

Inverted Real Image

Converging Lense

V-side R-side

Magnified Non-inverted Virtual | mage
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Thin
Example;
f=-1,p=2
| =-2/3, m=1/3
Example;
f=-1,p=12
| =-1/3, m=2/3

Chapter 35
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Lenses (Diverging)

Diverging Lense /
> :

R-side

Reduced Non-inverted Virtual Image

Diverging Lense /

V-side F

Reduced Non-inverted Virtual Image
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Interference

W ave Super position
Ysum = Y1 tY2

/U YomASn(k(x+D)  NF /~\

2.0
15

L5 N “ymAsnkx) NS

-2.0

kx (radians)

Wave Super position:
Consider the addition (super position) of two waves with the same amplitude
and wavelength:

y; = Asin(kx)
Y, = Asin(k(x+D))
ysum = yl + y2

The quantity D isthe " phase shift" between the two waves and k=2p/| is
the wave number.

Maximal Constructive I nterference:
The condition for maximal constructive interferenceis

D=m m=0+1+2,... (max constructive)

Maximal Destructive Interference;
The condition for maximal destructive interferenceis

& 10
D= gm+ EB' m=02122,...  (max destructive)
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Interference Examples

Wave Superposition (D =1 ; max constructive):

Wave Super position
22T /N 7/~ \ /" \

1.5
10 T7 N\ T Y\ T NS\
0.5 7% A\ / < \
0.0 " !
-0.5 1

\—/ \—/
e

-2.0
Ysum = Y1+ Y2 kx_(radians)
Wave Super position (D =1 /2; max destructive):

Wave Super position
10 T77 /7N 7T /AN TN AN T AN
[VX-TN Y AN Y AR WY A WY A WY A W
(070 I VL YLy
D 1 2 4 5 6 7
05 TN NN\ N\
ey

Ysum =Y1FY2  kx (radians)
Wave Superposition (D =1 /2):

Wave Superposition

1.5

1.0 ¢

0.5 T

0.0

-0.5 1

-1.0 T

-1.5

Ysum = yY1 + Y2 kx (radians)
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Double Slit Interference

The simplest way to produce a Double Slit
phase shift adifferencein the
path length between the two
wave sources, S1 and Sp iswith
adouble dlit. Thepoint Pis
located on a screen that isa
distance L away from the dlits
and the dlits are separated by a
distance d. -

A&
\4

Double Slit

If L >> d then to a good approximation the
path length differenceis,

DL =L, - L|=dsing,

\ . and thus

Maximal Constructive I nterference:
The condition for maximal
constructive interferenceis Double Slit

I
ang = ma m=012,...

(Bright Fringes i max constructive) .
Order of the Bright Fringe o qu ____________________________________

Maximal Destructive S- Y- L

I nterference:

The condition for maximal y=L tang

destructive interferenceis

- - T o] _
an—gm+ 25 m=0.12,...
(Dark Fringes - max destructive)
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Thin Film Interference

Thin film
Interference
occurs when a
thin layer of
materid
(thickness T)
with index of
refraction n, (the ~ “film”

“film" layer) is N,

sandwiched

between two

other mediums

n1 and ny.

The overall phase shift between [ phase Shift Condition Value

the reflected waves 1 and 2 is D, ny > n 0

given by, D N <n | ciimf2
1 1 2 film

Doverall _2T+D1+D2, D, Ny > N3 0

where it is assumed that the D, Ny <ng | fitm/2

incident light ray is nearly
perpendicular to the surface and the phase shifts D; and D are given the
table.

Maximal Constructive I nterference:
The condition for maximal constructive interferenceis
D =2T+D,+D,=m ;. m=0x1%2,... (max constructive)

overall

wherel jjm = | o/no, with |  the vacuum wavelength.

Maximal Destructive Interference;
The condition for maximal destructive interferenceis

D

overall

_ _e 10 _
=2T+D,+D, = gm+ EEI am  M=0x1+2 ... (max destructive)
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Interference Problems

Double Slit Example:
Red light (I = 664 nm) is used with slits separated by d = 1.2x10% m. The
screen islocated a distance from the ditsgiven by L = 2.75m. Find the
distance y on the screen between the central bright fringe and the third-or der
bright fringe.

Answer: y =0.0456 m

Thin Film Example:

A thin film of gasoline floats on a puddle of water. Sunlight falls almost
perpendicularly on the film and reflects into your eyes. Although the sunlight
Iswhite, since it contains al colors, the film has a yellow hue, because
destructive interference has occurred eliminating the color of blue (I o = 469
nm) from the reflected light. If ngas = 1.4 and Nyyger = 1.33, determine the

minimum thickness of the film.
Answer: Tmin = 168 nm
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Diffraction Summary

Single Slit

Single Slit-Diffraction. (. oP
Angular position of thedark fringes: | T

_ N I y
S|nq :mw m:lzy--- W‘: ‘ """"""""""" q -

Width of the Slit ]
(Dark Fringes - max destructive) y=himna
Round Hole-Diffraction:
Angular position of thefirst dark ring: Diameter of the Hole
sing =1.22—
a D
(Dark Ring - max destructive)
Diffraction Grating: | Sittraction
Angular position of the bright I Grating 1.
fringes: e
sin —ml— m=0212 B D ly
q - - Y oo _d_t_J ““““““““““““““““““ q .
Slit I -
I
(Bright Fringes - max constructive) I y=Ltanq
I
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Diffraction Problems

Single Slit Example:

Light passes through a slit and shines on aflat screen that islocated L = 0.4
m away. Thewidth of the dlitisW = 4x10® m. The distance between the
middle of the central bright spot and the first dark fringe isy. Determine the

width 2y of the central bright spot when the wavelength of light is| = 690
nm.

Answer: 2y =0.14m
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