
Technical Report TR02-011

Department of Computer Science
Univ. of North Carolina at Chapel Hill

Elemental Design Patterns:
A Link Between Architecture and Object Semantics

Jason McC. Smith and David Stotts

Dept of Computer Science
Univ. of North Carolina at Chapel Hill

Chapel Hill, NC 27599-3175

smithja@cs.unc.edu

March 25, 2002

Elemental Design Patterns - A Link Between Architecture
and Object Semantics

Jason McC. Smith
University of North Carolina at Chapel Hill

Sitterson Hall CB #3175
Chapel Hill, NC 27599-3175

smitha@cs.unc.edu

David Stotts
University of North Carolina at Chapel Hill

Sitterson Hall CB #3175
Chapel Hill, NC 27599-3175

stotts@cs.unc.edu

ABSTRACT
Design patterns are an important concept in the field of
software engineering, providing a language and application
independent method for expressing and conveying lessons
learned by experienced designers. There is a large gap,
however, between the aesthetic and elegance of the patterns
as intended and the reality of working with an ultimately
mathematically expressible system such as code. In this pa-
per we describe a step towards meaningful formal analysis
of code within the language of patterns, and discuss poten-
tial uses. The major contributions include: a compendium
of Elemental Design Patterns (EDPs), a layer of seemingly
simplistic relationships between objects that, on closer in-
spection, provide a critical link between the world of formal
analysis and the realm of pattern design and implementa-
tion without reducing the patterns to merely syntactic con-
structs; an extension to the ς-calculus, termed ρ-calculus, a
formal notation for expressing relationships between the ele-
ments of object oriented languages, and its use in expressing
the EDPs directly. We discuss their use in composition and
decomposition of existing patterns, identification of pattern
use in existing code to aid comprehension, support for refac-
toring of designs, integration with traditional code analysis
techniques, and the education of students of software archi-
tecture.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—design languages, object-oriented languages; D.3.3
[Programming Languages]: Language Constructs and
Features—patterns; F.4.1 [Mathematical Logic]: [lambda
calculus and related systems]; D.2.11 [Software Engineer-
ing]: Software Architecture—patterns; D.2.7 [Software En-
gineering]: Distribution, Maintenance, Enhancement—re-
structuring, reverse engineering, and reengineering ; D.3.1
[Programming Languages]: Formal Definition and The-
ory

OOPSLA’02 Seattle, Washington USA

General Terms
design, languages, measurement, theory

Keywords
design patterns, elemental design patterns, sigma calculus,
rho calculus, pattern decomposition, pattern identification,
refactoring, education

1. INTRODUCTION
The history of programming is an exercise in hierarchical
abstractions. As programming techniques have progressed
in the field, language designers have continued to push the
envelope of producing explicit constructs for those concep-
tual lessons learned in the previous generation of languages,
and software architects have continued to build ever more
complex and powerful abstractions. At the same time that
these abstractions have established methods for producing
well designed systems, they have created problems for the
pure theorist and the accomplished practitioner alike, re-
sisting attempts at the formalizations that are necessary for
many critical analyses.

One of the current successful abstractions in widespread use
is the design pattern, an approach that builds upon the na-
ture of object oriented languages to describe portions of sys-
tems that designers can learn from, modify, apply, and un-
derstand as a single conceptual item[14]. Design patterns
are generally, if informally, defined as common solutions to
common problems which are of significant complexity to re-
quire an explicit discussion of the scope of the problem and
the proposed solution. Much of the popular literature on
design patterns is dedicated to these larger, more complex
patterns, providing the practitioner with increasingly pow-
erful constructs with which to work.

There is a class of problems, however, which is even more
common, yet design patterns have in general ignored. These
problems are usually considered too obvious to provide a de-
scription for, because they are in every good programmer’s
toolkit. The solutions to this class of problems we term
Elemental Design Patterns (EDPs), and are the base con-
cepts on which the more complex design patterns are built.
Since they comprise the constructs which are used repeat-
edly within the more common patterns to solve the same
problems, such as abstraction of interface and delegation of
implementation, they exhibit some interesting properties for
partially bridging the gap between the source code of every-

day practice and the higher level abstractions of the larger
patterns. The higher-level patterns are thus described in
the language of elemental patterns, which fills an apparent
missing link in the abstraction chain.

Design patterns also present an interesting set of problems
for the theorist due to their dual nature[2], with both for-
mally expressible and informally amorphous halves. The
concepts contained in patterns are those that the profes-
sional community has deemed important and noteworthy,
and they are ultimately expressed as source code that is
reducible to a mathematically formal notation. The core
concepts themselves, however, have to date evaded such for-
malization. We show here that such a formalization is pos-
sible, and in addition that it can meet certain critieria we
deem essential.

We assert that such a formal solution should be implemen-
tation language independent, much as the design patterns
are, if it is to truly capture universal concepts of program-
ming methodology. We further assert that a formal deno-
tation for pattern concepts should be a larger part of the
formal semantics literature. Patterns are built on the the-
ory and concepts of object-oriented programming, as surely
as object-oriented approaches are built on procedural the-
ory. A formal representation of patterns should reflect this,
allowing for more detailed analysis of the code body if it
is desired, or allowing an analysis at a very high level of
abstraction.

Sigma (ς) calculus provides the basis for such a system[1].
It is an object-oriented analogue to lambda calculus, and
allows for a rich formal description of source code in a lan-
guage independent manner. It suffers from a general diffi-
culty of use, however, and is refined for our purposes by an
extension we term reliance operators (or rho (ρ) calculus),
which encode various relationships between classes, objects,
methods, and fields in a form required for efficient searching
for simple structural constructs.

We show how the ς + ρ calculus can be used to express our
elemental design patterns directly and precisely, which in
turn are used to express the more common class of design
patterns. In essence, we build a well defined and formal
chain from a basic denotational semantics for object based
languages in general to the language of design patterns, pro-
viding a clear path between them, with well formed transfor-
mations and the opportunity for various interesting analyses
of patterns and their applications within systems.

By allowing the discovery and analysis of design patterns in
source code in a language, tool, and coding-style-independent
way which preserves the semantics of the original patterns
under translation to the various implementation require-
ments, we provide a rich and powerful tool to help engi-
neers understand new systems, and to foresee ramifications
of proposed changes to them. By rooting this system firmly
in the established denotational semantics of object oriented
theory, we produce opportunities for fully formal analysis at
many levels of detail.

2. RELATED WORK

The decomposition and analysis of patterns is an established
idea, and the concept of creating a hierarchy of related pat-
terns has been in the literature almost as long as patterns
themselves[9, 21, 31, 37]. The few researchers who have at-
tempted to provide a truly formal basis for patterns have
most commonly done so from a desire to perform refactor-
ing of existing code, while others have attempted the more
pragmatic approach of identifying core components of exist-
ing patterns in use.

2.1 Refactoring Approaches
Refactoring[13] has been a frequent target of formalization
techniques, with fairly good success to date[10, 24, 27]. The
primary motivation is to facilitate tool support for, and val-
idation of, transformation of code from one form to another
while preserving behaviour. This is an important step in the
maintenance and alteration of existing systems, and pat-
terns are seen as the logical next abstraction upon which
they should operate.

2.1.1 Fragments
Fragments, as developed by Florijm, Meijers, and van Win-
sen[12], provide a practical implementation of pattern analy-
sis and coding support in the Smalltalk language, and demon-
strate the power of application of these concepts. Their frag-
ments are abstractions of a design elements, such as classes,
patterns, methods, or code, and contain roles, or slots, which
are filled by other fragments. In this way they are bound
to each other to produce an architecture in much the same
way that objects, classes, and such are in a working system,
but the single definition of a fragment allows them to work
with all components of the system in a singular way. This
approach, while successful in assisting an engineer in work-
ing with a system, does have some limitations. Detection of
existing patterns in the system was deemed unlikely, due to
the fact that “many conceptual roles did not exist as distinct
program elements, but were cluttered onto a few, more com-
plex ones.” This indicates that there may be a lower level
of conceptual roles to address, below fragments.

2.1.2 LePuS
Eden’s work on LePuS[11] is an excellent example of for-
malizing a language for pattern description, based on the
fragments theory. LePuS lacks a tie to the more traditional
formal denotational semantics of language theory, however,
severely limiting its usefulness as a unifying system for code
analysis. Pattern analysis and metrics are but one portion of
the spectrum of tasks associated with system maintenance
and design. An exquisitely elegant architecture may in fact
be a poor choice for a system where performance or some
other criteria is of paramount importance. System archi-
tects must have available all the relevant information for
their system to be able to appropriately design and main-
tain it. Legacy systems, in particular, benefit from more
procedural-based analysis, including cohesion and coupling
metrics, slice analysis, and other data-centric approaches.
One goal of this research is to enhance the tools for refac-
toring, not only of current object-oriented systems, but of
older code that may just now be being converted to an OO
approach. It is therefore critical to incorporate such analysis
systems into any pattern analysis framework. To not do so
is to further the chasm between the abstract concepts and

Client
ref Objectifier

OperationA()
OperationB()

ConcreteObjectifierB

OperationA()
OperationB()

ConcreteObjectifierA

OperationA()
OperationB()

Figure 1: Objectifier class structure

the concrete code, instead of unifying them, as patterns are
designed to do.

2.1.3 Minipatterns
Ó Cinnéide’s work in transformation and refactoring of pat-
terns in code[25] is an example of the application of minipat-
terns, portions of patterns that are used to compose larger
bodies. Ó Cinnéide treats the minipatterns as stepping
stones along a refactoring path, allowing each to be a dis-
crete unit that can be refactored under a minitransforma-
tion, in much the same way that Fowler’s refactorings[13] are
used to incrementally transform code at and below the ob-
ject level. These minipatterns are demonstrated to be highly
useful for many applications, but cannot capture some of the
more dynamic behaviour of patterns, instead relying heavily
on syntactical constructs for evidence of the minipatterns.

2.2 Structural Analyses
An analysis of the ’Gang of Four’ (GoF) patterns from the
Design Pattens text [14] reveals many shared structural and
behavioural elements, such as the similarities between Com-
posite and Visitor, for instance[14]. The relationships be-
tween patterns, such as inclusion or similarity, have been
investigated by various practitioners, and a number of mean-
ingful examples of underlying structures have been described.
[4, 9, 31, 35, 36, 37]

2.2.1 Objectifier
The Objectifier pattern[37] is one such example of a core
piece of structure and behaviour that is shared between
many more complex patterns. Its Intent is to

“Objectify similar behaviour in additional classes,
so that clients can vary such behaviour indepen-
dently from other behaviour, thus supporting var-
iation-oriented design. Instances from those classes
represent behaviour or properties, but not con-
crete objects from the real world (similar to reifi-
cation).”

Zimmer uses the Objectifier as a ‘basic pattern’ in the con-
struction of several other GoF patterns, such as Builder,
Observer, Bridge, Strategy, State, Command and Iterator.
It is a simple yet elegantly powerful structural concept that
is used repeatedly in other patterns.

Initiator

makeRequest()

Handler

handleRequest()

Terminator

handleRequest()

Recurser

handleRequest()
preHandleRequest()
postHandleRequest()

handler

successor

*

this.preHandleRequest();
successor.handleRequest();
this.postHandleRequest();

/* handle the request */

handler.handleRequest()

Figure 2: Object Recursion class structure

2.2.2 Object Recursion
Woolf takes this pattern one step further, adding a be-
havioural component, and naming it Object Recursion[36].
The class diagram in Figure 2 is extremely similar to Objec-
tify, with an important difference, namely the behaviour in
the leaf subclasses of Handler. Exclusive of this method be-
haviour, however, it looks to be an application of Objectify
in a more specific use. Note that Woolf compares Object
Recursion to the relevant GoF patterns and deduces that:
Iterator, Composite and Decorator can, in many instances,
be seen as containing an instance of Object Recursion; Chain
of Responsibility and Interpreter do contain Object Recur-
sion as a primary component.

2.2.3 Relationships
Taken together, the above instances of analyzed pattern
findings seem to comprise two parts of a larger chain: Ob-
ject Recursion contains an instance of Objectify, and both
in turn are used by larger patterns.

This paper will answer the following questions: how far can
we take this decomposition and recomposition of patterns
in a meaningful way? Is it possible to continue to identify
useful solutions to common problems within the patterns
literature? Can these smaller pieces be considered true pat-
terns, and why or why not? How finely can patterns be
deconstructed? Is to do so useful, or merely a theoretical
exercise?

3. EXAMINATION OF DESIGN PATTERNS
Our first task was to examine the existing canon of design
pattern literature, and a natural place to start is the ubiq-
uitous Gang of Four text[14]. Instead of a purely structural
inspection, we chose to attempt to identify common con-
cepts used in the patterns. A first cut of analysis resulted
in eight identified probable core concepts:

AbstractInterface An extremely simple concept - you wish
to enforce polymorphic behaviour by requiring all sub-
classes to implement a method. Equivalent to Woolf’s
Abstract Class pattern[35], but on the method level.
Used in most patterns in the GoF group, with the ex-
ception of Singleton, Facade, and Memento.

DelegatedImplementation Another ubiquitous solution,
moving the implementation of a method to another

object, possibly polymorphic. Used in most patterns,
a method analog to the C++ pimpl idiom[9].

ExtendMethod A subclass overrides the superclass’ im-
plementation of a method, but then explicitly calls the
superclass’ implementation internally. It extends, not
replaces, the parent’s behaviour. Used in Decorator.

Retrieval Retrieves an expected particular type of object
from a method call. Used in Singleton, Builder, Fac-
tory Method.

Iteration A runtime behaviour indicating repeated step-
ping through a data structure. May or may not be
possible to create an appropriate pattern-expressed de-
scription, but it would be highly useful in such patterns
as Iterator and Composite.

Invariance Encapsulate the concept that parts of a hier-
archy or behaviour do not change. Used by Strategy
and Template Method.

AggregateAlgorithm Demonstrate how to build a more
complex algorithm out of parts that do change poly-
morphically. Used in Template Method.

CreateObject Encapsulates creation of an object, extremely
similar to Ó Cinnéide’s Encapsulate Construction mini-
pattern[25]. Used in most Creational Patterns.

Of these, AbstractInterface, DelegatedImplementation and
Retrieval could be considered simplistic, while Iteration and
Invariance are, on the face of things, extremely difficult.

3.1 Method calls
On inspection, five of these possible patterns are centered
around some form of method invocation. This led us to in-
vestigate what the critical forms of method calling truly are,
and whether they could provide insights towards producing
a comprehensive collection of EDPs. We assume, for the
sake of this investigation, a dynamically bound language en-
vironment, and make no assumptions regarding features of
implementation languages. Categorizing the various forms
of method calls in the GoF patterns can be summarized as
in Table 1, grouped according to four criteria:

Assume that an object a of type A has a method f that
the program is currently executing. This method then in-
ternally calls another method, g, on some object, b, of type
B. The columns represent, respectively, how a references b,
the relationship between A and B, if any, the relationship
between the types of f and g, whether or not g is an abstract
method, and the patterns that this calling style is used in.
Note that this is all typing information that is available at
the time of method invocation, since we are only inspecting
the types of the objects a and b and the methods f and g.
Polymorphic behaviour may or may not take part, but we
are not attempting a runtime analysis. This is strictly an
analysis based on the point of view of the calling code.

If we eliminate the ownership attribute, we find that the
table vastly simplifies, as well as reducing the information
to strictly type information. In a dynamic language, the
concept of ownership begins to break down, reducing the

question of access by pointer or access by reference to a
matter of implementation semantics in many cases. By re-
ducing that conceptual baggage in this particular case, we
are free to reintroduce such traits later.1

At this time, we can reorganize Table 1 slightly, removing
the Mediator and Flyweight entry on the last line, as no
typing attributable method invocations occur within those
patterns. The result, shown in Table 2, is a list of eight
method calling styles. Note that four of these are simply
variations on whether the called method is abstract or not.
By identifying this as an instance of the AbstractInterface
component from above, we can simplify this list further to
our final collection of the six primary method invocation
styles in the GoF text, shown in Table 3. We will demon-
strate later how to reincorporate AbstractInterface to re-
build the calling styles used in the original patterns.

A glance at the first column reveals that it can be split into
two larger groups, those which call a method on the same
object instance (a = b) and those which call a method on
another object (a 6= b).

The method calls involved in the GoF patterns now can be
classified by three orthogonal properties:

• The relationship of the target object instance to the
calling object instance.

• The relationship of the target object’s type to the call-
ing object’s type

• The relationship between the method signatures of the
caller and callee

4. METHOD CALL EDP S
The first axis in the above list is simply a dichotomy between
Self and Other.2 The second describes the relationship
between A and B, if any, and the third compares the types
(consisting of a function mapping type, F and G, where
F = X → Y for a method taking an object of type X and
returning an object of type Y) of f and g, simply as another
dichotomy of equivalence.

It is illustrative at this point to attempt creation of a com-
prehensive listing of the various permutations of these axes,
and see where our identified invocation styles fall into place.
For the possible relationships between A and B, we have
started with our list items of ’Parent’, where A <: B,3 ’Sib-
ling’ where A <: C and B <: C for some type C, and ’Un-
related’ as a collective bin for all other type relations at this

1Similarly, other method invocation attributes could be as-
signed, but do not fit within our typing framework for clas-
sification. For instance, the concept of constructing an ob-
ject at some point in the pattern is used in the Creational
Patterns: Prototype, Singleton, Factory Method, Abstract
Factory, and Builder, as well as others such as Iterator and
Flyweight. This reflects our CreateObject component, but
we can place it aside for now to concentrate on the typing
variations of method calls.
2Child is another possibility here, and a call to Same maps
to BETA’s inner, for example.
3The notation is taken from Abadi and Cardelli’s sigma cal-
culus[1]. A <: B reads ’A is a subtype of B’

Ownership Obj Type Method Type Abstract Used In
N/A self diff Y Template Method, Factory Method
N/A super diff Adapter (class)
N/A super same Decorator
held parent same Y Decorator
held parent same Composite, Interpreter,

Chain of Responsibility
ptr sibling same Proxy
ptr/held none none Y Builder, Abstract Factory,

Strategy, Visitor
held none none Y State
held none none Bridge
ptr none none Adapter (object), Observer,

Command, Memento
N/A Mediator, Flyweight

Table 1: Method calling styles in Gang of Four patterns

Obj Type Method Type Abstract Used In
self diff Y Template Method, Factory Method
super diff Adapter (class)
super same Decorator
parent same Y Decorator
parent same Composite, Interpreter,

Chain of Responsibility
sibling same Proxy
none none Y Builder, Abstract Factory,

Strategy, Visitor, State
none none Adapter (object), Observer,

Command, Memento, Bridge

Table 2: Reduced method calling styles in Gang of Four patterns

Obj Type Method Type Used In
1 self diff Template Method, Factory Method
2 super diff Adapter (class)
3 super same Decorator
4 parent same Composite, Interpreter,

Chain of Responsibility,
Decorator

5 sibling same Proxy
6 none none Builder, Abstract Factory,

Strategy, Visitor, State,
Adapter (object), Observer,
Command, Memento, Bridge

Table 3: Final method calling styles in Gang of Four patterns

point. To these we add ’Same’, or A = B, as an obvious
simple type relation between the objects.4

4.1 Initial list
We start by filling in the invocation styles from our final list
from the GoF patterns, mapping them to our six categories
in Table 3:

1. Self (a = b)

(a) Self (A = B, or a = this)

i. Same (F = G). .

ii. Different (F 6= G) Conglomeration[1]

(b) Super (A <: B, or a = super)

i. Same (F = G) ExtendMethod[3]

ii. Different (F 6= G) RevertMethod[2]

2. Other (a 6= b)

(a) Unrelated

i. Same (F = G)Redirect[6]

ii. Different (F 6= G) Delegate[6]

(b) Same (A = B)

i. Same (F = G). .

ii. Different (F 6= G) .

(c) Parent (A <: B)

i. Same (F = G) RedirectInFamily[4]

ii. Different (F 6= G) .

(d) Sibling (A <: C, B <: C, A 6<: B)

i. Same (F = G) . . RedirectInLimitedFamily[5]

ii. Different (F 6= G) .

Each of these captures a concept as much as a syntax, as we
originally intended. Each expresses a direct and explicit way
to solve a common problem, providing a structural guide
as well as a conceptual abstraction. In this way they ful-
fill the requirements of a pattern, as generally defined, and
more importantly, given a broad enough context and min-
imalist constraints, fulfill Alexander’s original definition as
well as any decomposable pattern language can[2]. We will
treat these as meeting the definition of design patterns, and
present them as such.

The nomenclature we have selected is a reflection of the
intended uses of the various constructs, but requires some
defining:

Conglomeration Aggregating behaviour from methods of
Self . Used to encapsulate complex behaviours into
reusable portions within an object.

ExtendMethod A subclass wishes to extend the behaviour
of a superclass’ method instead of strictly replacing it.

4Child is possible here as an addition as well, although we
do not do so at this time.

RevertMethod A subclass wants not to use its own ver-
sion of a method for some reason, such as namespace
clash in the case of Adapter (class).

Redirect A method wishes to redirect some portion of its
functionality to an extremely similar method in an-
other object. We choose the term ’redirect’ due to the
usual use of such a call, such as in the Adapter (object)
pattern.

Delegate A method simply delegates part of its behaviour
to another method in another object.

RedirectInFamily Redirection to a similar method, but
within one’s own inheritance family, including the pos-
sibility of polymorphically messaging an object of one’s
own type.

RedirectInLimitedFamily A special case of the above,
but limiting to a subset of the family tree, excluding
possibly messaging an object of one’s own type.

4.2 The full list
We can now begin to see where the remainder of the method
call EDPs will take us. Again, we will present the listing,
and briefly discuss each in turn.

1. Self (a = b)

(a) Self (a = this)

i. Same (F = G) Recursion

ii. Different (F 6= G)Conglomeration

(b) Super (a = super)

i. Same (F = G) ExtendMethod

ii. Different (F 6= G) RevertMethod

2. Other (a 6= b)

(a) Unrelated

i. Same (F = G) . Redirect

ii. Different (F 6= G)Delegate

(b) Same (A = B)

i. Same (F = G) RedirectedRecursion

ii. Different (F 6= G)DelegatedConglomeration

(c) Parent (A <: B)

i. Same (F = G).RedirectInFamily

ii. Different (F 6= G) DelegateInFamily

(d) Sibling (A <: C, B <: C, A 6<: B)

i. Same (F = G).RedirectInLimitedFamily

ii. Different (F 6= G) . DelegateInLimitedFamily

Recursion Quite obvious on examination, this is a con-
crete link between primitive language features and our
EDPs.

RedirectedRecursion A form of object level iteration.

DelegatedConglomeration Gathers behaviours from ex-
ternal instances of the current class.

DelegateInFamily Gathers related behaviours from the
local class structure.

DelegateInLimitedFamily Limits the behaviours selected
to a particular base definition.

5. OBJECT ELEMENT EDP S
At this point we have a fairly comprehensive array of method/
object invocation relations, and can revisit our original list
of concepts culled from the GoF patterns. Of the origi-
nal eight, three are absorbed within our method invocations
list: DelegatedImplementation, ExtendMethod, and Aggre-
gateAlgorithm. Of the remaining five, two are some of the
more problematic EDPs to consider: Iteration, and Invari-
ance. These can be considered sufficiently difficult concepts
at this stage of the research that they are beyond the scope
of this paper.

Our remaining three EDPs, CreateObject, AbstractInter-
face, and Retrieve, deal with object creation, method im-
plementation, and object referencing, respectively. These
are core concepts of what objects and classes are, and how
they are defined. CreateObject creates instances of classes,
AbstractInterface determines whether or not that instance
contains an implementation of a method, and Retrieve is
the mechanism by which external references to other objects
are placed in data fields. These are the elemental creational
patterns, and provide the construction of objects, methods,
and fields. Since these are the three basic physical elements
of object oriented programming[1], we feel that these are a
complete base core of EDPs for this classification.5

CreateObject Constructs an object of a particular type.

AbstractInterface Indicates that a method has not been
implemented by a class.

Retrieve Fetches objects from outside the current object,
initiating external references.

The method invocation EDPs from the previous section are
descriptions of how these object elements interact, defining
the relationships between them. One further relationship is
missing, however, that between types. Subtyping is a core
relationship in OO languages, usually expressed through an
inheritance relation between classes. However, subclassing
is not equivalent to subtyping[1], and should be noted as a
language construct extension to the core concepts of object-
oriented theory. Because of this, we introduce a typing re-
lation EDP, Inheritance, that creates a structural subtyp-
ing relationship between two classes. Not all languages di-
rectly support inheritance, it may be pointed out, instead
relying on dynamic subtyping analysis to determine appro-
priate typing relations, such as in Emerald[17], or cloning
mechanisms in prototype based languages such as Cecil[7]
or NewtonScript[3].

Inheritance Enforces a structural relationship for subtyp-
ing.

6. THE EDP CATALOG
We believe our list of EDPs is now sufficiently comprehensive
for useful analysis. We do not claim that this list covers all

5Classes, prototypes, traits, selectors and other aspects of
various object oriented languages are expressible using only
the three constructs identified.[1]

the possible permutations of interactions, but that these are
the core catalog of EDPs upon which others will be built.

Object Element EDPs
CreateObject AbstractInterface
Retrieve

Type Relation EDPs
Inheritance

Method Invocation EDPs
Recursion Conglomeration
Redirect Delegate
ExtendMethod RevertMethod
RedirectInFamily DelegateInFamily
RedirectedRecursion RedirectInLimitedFamily
DelegateInLimitedFamily DelegatedConglomeration

6.1 Relationships are critical
At first glance, these EDPs seem highly unlikely to be very
useful, as they appear to be positively primitive... and they
are. These are the core primitives that underlie the con-
struction of patterns in general. Patterns are, to be precise,
descriptions of relationships between objects, according to
Alexander[2], and method invocations and typing are the
process through which objects interact. We believe that we
have captured the elemental components of object oriented
languages, and the salient relationships used in the vast ma-
jority of software engineering. If patterns are the frameworks
on which to create large understandable systems, these are
the nuts and bolts that comprise the frameworks.

And yet, each is unique from the others, each satisfies a dif-
ferent set of constraints, a different set of forces, and solves
a slightly different problem. Each provides a degree of se-
mantic context and a bit of conceptual elegance, in addition
to a purely syntactical construct. In this context these are
still truly patterns, and provide us with an interesting op-
portunity, to begin to build patterns from first principles of
programming, namely formalizable denotation.

7. FORMALIZATION
Software historically has been rooted firmly in formal nota-
tions. Formal descriptions of software most decidedly lend
themselves to a pattern’s formal description using a formal
notation. The entire pattern does not need to be given a for-
mal form, nor would it be improved by doing so. The formal
descriptions, however, should be as formal as possible with-
out losing the generality that makes patterns useful. Source
code is, at its root, a mathematical symbolic language with
well formed reduction rules. We should strive to find an
analogue for the formal side of patterns.

The question then arises as to how formal we can get with
such an approach. A full, rigid formalization of static ob-
jects, methods, and fields would only be another form of
source code, invariant under some transformation from the
actual implementation. This defeats the purpose of pat-
terns. We must find another aspect of patterns to encode as
well, in order to preserve the flexibility of patterns.

7.1 Sigma Calculus

An analysis of desired traits for an intermediate formaliza-
tion language includes that it be mathematically sound, con-
sist of simple reduction rules, have enough expressive power
to directly encode object-oriented concepts, and have the
ability to flexibly encode relationships between code con-
structs.

Given these constraints, there are few options. The most ob-
vious possible solution is lambda calculus or one of its vari-
ants [34], but lambda calculus cannot directly encode object-
oriented constructs. Various extensions which would enable
lambda calculus to do so have been proposed, but they in-
variably produce a highly cumbersome and complex rule set
in an attempt to bypass apparently fundamental problems
with expressing typed objects with a typed functional cal-
culus [1]. One final candidate, sigma calculus, meets this
requirement easily.

ς-calculus and its descendants are a fresh approach to creat-
ing a denotational semantics for object-oriented languages,
and are “the first that does not require explicit reference
to functions or procedures.” [1] Defined and described in
A Theory of Objects by Mart́ın Abadi and Luca Cardelli,
ς-calculus is an analogue to λ-calculus used in procedural
theory. It concentrates on the aspects of object-oriented
programming which are distinct from those of procedural
programming, and makes no attempt to duplicate the ef-
forts of the λ-calculus literature. Instead, it defines a nota-
tion providing a rigorous mathematical foundation for fur-
ther object-oriented language theory. The prime elements
are objects, methods and fields, the last two of which are
treated as equivalent in ς-calculus, leading to some rather
elegant solutions to some of the complex problems raised in
formalizing highly dynamic languages. Classes are treated
as a special case of objects, further simplifying the system.

ς-calculus is not an extension of λ-calculus. Attempts to
produce such a hybrid have been made, but none has been
particularly successful. A prime motivation for working to
graft OO technologies onto λ-calculus is a desire to lever-
age off of the extremely large body of well done literature
in that area. By starting anew, Abadi and Cardelli at first
glance seem to have disposed of that body of work. On
the contrary, they correctly recognize that the entirety of λ-
calculus can be subsumed within the method calls of OOP.
They even provide a mapping from λ-calculus to ς-calculus,
resulting in “a simple and direct reduction semantics, in-
stead of an indirect semantics involving both λ-abstraction
and application.” [1, p. 66]

7.1.1 Inflexibility ofς-calculus
While ς-calculus is a rich and important work in formaliza-
tion of object oriented languages, it does not meet our needs
for formalization of design patterns. As an example, we have
translated the Singleton pattern, a very simple design pat-
tern which is almost completely syntactical in form, to the
ς-calculus, as shown in Figure 3.

As can be seen, this is a highly complex description for such
a simple pattern. Not only is it extremely unwieldly, but
it also suffers from a complete rigidity of form, and does
not offer any room for interpretation of the implementa-
tion description, or any necessary fungibility that may be

required for a specific application. This lack of adaptiveness
means that there would be an explosion of definitions for
just the Singleton pattern, each of which conformed to a sin-
gle particular implementation. This breaks the distinction
that patterns are implementation independent descriptions,
as well as creating an excessively large library of possible
pattern forms to search for in source code.

ς-calculus is not a particularly easy system or notation to
learn. It is highly complex in abstractions, if not in imple-
mentation. The notation is cumbersome, and not intuitive
without much study. To make matters worse, the definitive
text on the subject is inscrutable, ambiguous, and difficult
to read. Consequently, there are few practitioners of the
ς-calculus at this time.

In addition to the practical concerns, ς-calculus fails the
fourth requirement we set forth for our intermediate lan-
guage: relationship encoding. The ς-calculus suite does not
directly support this requirement.

7.2 Rho Calculus
It is fortunate then, that ς-calculus is simple to extend. We
propose a new set of rules and operators within ς-calculus to
support directly relationships and reliances between objects,
methods and fields.

These reliance operators, as we have termed them, (the word
‘relationship’ is already overloaded in the current literature,
and only expresses part of what we are attempting to de-
liver) are direct, quantifiable expressions of whether one el-
ement, (an object, method, or field) in any way relies or
depends on the existance of another for its own definition or
execution, and to what extent it does so.

This approach provides more detail than the formal descrip-
tion provided by UML, for instance. The calculus comprised
of ς-calculus and these reliance operators, or rho calculus,
maps nicely to the concepts of IsA, HasA, HoldsA, UsesA,
and so on that exist within UML, indicating that a simple
mapping between the two should exist. Unlike UML, how-
ever, reliance operators encode entire paths of reliances in
a concise notation. All the reliances and relationships in
the UML graphing system are encoded within the element
that is under scrutiny, reducing the need for extended, and
generally recursive, analysis for each element when needed.

Common concepts such as IsA in UML are directly express-
able in ς-calculus using constructs such as, for instance for
IsA, the transitive subsumption operator B <: A, indicating
a relationship between a superclass (A) and a subclass (B).
Other relationships, however, such as HasA, HoldsA, and
UsesA, have no simple analogues in the base ς-calculus.

It is precisely these conceptual relations that are required
to encode design patterns in such a way that they can be
efficiently searched for by examining a drastically lesser set
of constructs than would be necessary with raw ς-calculus.

We would like to continue the general notation of ς-calculus,
so we adopt the operator used for subsumption, <:, analo-
gous to IsA, and provide a similar sign, �, that indicates a
reliance relationship. If A � B, then A relies on B in some

singleton =
[
new = ς(z)

[
li = ς(s)z.li(s)

i∈1..n
]
,

l1..n = ς(z)λ(s)b i∈1..n
i ,

uniqueInstance = ς(z)λ(s)nil ,

getInstance = ς(z)λ(s)

s.uniqueInstance → s.uniqueInstance;

s.uniqueInstance ↼
↽ s.new]

Singleton
4
= [uniqueInstance : Singleton,

getInstance : Singleton]

Class(Singleton)Ins,Sub
4
=

[
new :

[
li : B i∈1..n

i

]
,

uniqueInstance : Singleton → Singleton,

getInstance : Singleton → Singleton]

class
(
Singleton, a i∈I

i

)
Ins

4
= [new = ς(z : Class(Singleton)Ins,I)[

li := ς(s : Singleton)z.li(s)
i∈I

]
,

uniqueInstance = ς(z)λ(s)nil ,

getInstance = ς(z)λ(s)

s.uniqueInstance → s.uniqueInstance;

s.uniqueInstance ↼
↽ s.new]

Figure 3: Singleton as expressed in ς-calculus

manner. It may be the interface, the implementation, a
data member access, or a particular method call of B which
is relied on by A for proper definition and operation. Dif-
ferentiating between these paths of reliance is a bit more
challenging.

It is important to note that we have developed an extension
to an existing formal notation for object theory, which in
turn is firmly linked to procedural theory. In this manner
we acquire the capabilities of a vast body of knowledge and
analysis techniques. We are not setting patterns up as a
language unto themselves, but rather are showing a definite
chain of abstractions, from the lowest, most concrete levels
of programming, to the highest concepts with which system
designers work.

For the purposes of this paper, however, we need only two
reliance operators: First, �m, indicating a method invo-
cation call reliance. Given the expression a.f �m b.g, it
indicates that within the body of method f in object a, a
call is made to method g of object b. Secondly, <:, the tradi-
tional inheritance (or more properly subsumption of type,)
showing a type reliance.

7.3 RedirectInFamily
Consider the class diagram for the structure of RedirectIn-
Family, in Figure 4. Taken literally, it specifies that a class
wishes to invoke a similar method (where, again, similarity
is evaluated based on the function types of the methods) to
the one currently being executed, and it wishes to do so on
an object of a its parent class’ type. This sort of open-ended
structural recursion is a part of many patterns.

If we take the Participants specification of RedirectInFamily,

FamilyHead

operation()

Redirecter

operation()

target

target.operation();

Figure 4: RedirectInFamily class structure

as described in the pattern in Appendix A, we find that:

• FamilyHead defines the interface, contains a method
to be possibly overridden.

• Redirecter uses interface of FamilyHead through inher-
itance, redirects internal behaviour back to an instance
of FamilyHead to gain polymorphic behaviour over an
amorphous object structure.

We can express each of these requirements in ς-calculus:

FamilyHead ≡ [operation : A] (1)

Redirecter <: FamilyHead (2)

Redirecter ≡ [target : FamilyHead,
operation : A = ς(xi){target.operation}] (3)

r : Redirecter (4)

fh : FamilyHead (5)

r.target = fh (6)

This is a concrete implementation of the RedirectInFamily
structure, but fails to capture the reliance of Redirecter.operation
on FamilyHead.operation’s behaviour. So, we introduce our
reliance operator �m:

r.operation �m r.target.operation (7)

We can reduce one level of indirection...

r.target = fh, r.operation �m r.target.operation

r.operation �m fh.operation
(8)

...and now we can produce a necessary and sufficient set of
clauses at this point to represent RedirectInFamily:

Redirecter <: FamilyHead,
r : Redirecter,

fh : FamilyHead,
r.operation �m fh.operation,

r.operation : A,
fh.operation : A

RedirectInFamily(r, fh, operation)
(9)

7.4 Isotopes
Common wisdom decrees that formalization of patterns in a
mathematical notation will inevitably destroy the flexibility
and elegance of patterns, reducing them to mere recipes and
eliminating much of their usefulness. An interesting side ef-
fect of expressing our EDPs in the ς +ρ-calculus, however, is
an increased flexibility in expression of code while conform-
ing to the core concept of a pattern.

Consider now Figure 5, where we have what, at first glance,
doesn’t look much like our original specification. We have
introduced a new class to the system, our static criteria
that the subclass’ method invoke the method of the super-
class’ instance is gone, and a new calling chain has been put
in place. In fact, this construction looks quite similar to
the transitional state while applying Martin Fowler’s Move
Method refactoring[13].

We claim that this is precisely an example of a variation
of RedirectInFamily, however, when viewed as a series of
formal constructs, as follows, assuming the same class defi-
nitions given in equations 1 and 3:

Redirection <: FamilyHead (10)

FamilyHead

operation()

Redirecter

operation()

mediary

mediary.operation2();

Mediary

operation2()

object

object.operation();

Figure 5: RedirectInFamily Isotope

r : Redirection (11)

fh : FamilyHead (12)

m : Mediary (13)

r.mediary = m (14)

m.object = fh (15)

r.operation �m r.mediary.operation2 (16)

mediary.operation2 �m mediary.object.operation (17)

If we start reducing this equation set, we find that we can
perform a transitive operation on Equations 16 and 17:

r.operation �m r.mediary.operation2,
mediary.operation2 �m mediary.object.operation

r.operation �m r.mediary.object.operation
(18)

We can now reduce this chain by equality substitutions from
Equations 14 and 15:

r.operation �m r.mediary.object.operation,
r.mediary = m

r.operation �m m.object.operation
(19)

r.operation �m m.object.operation, m.object = fh

r.operation �m fh.operation
(20)

If we now take Equations 1, 3, 10, 11, 12, and 20, we find that
we have satisfied the clause requirements set in our defini-
tion of RedirectInFamily, as per Equation 9. This alternate
structure is an example of the RedirectInFamily pattern,
without adhering to a strict class structure. We term this
situation, where a variation on the original elemental design

A

operation()

Figure 6: AbstractInterface

pattern class structure still conforms to the conceptual def-
inition an isotope. The concepts of object relationships and
reliance are the key.

An interesting side effect of this is that there is no ex-
plicit requirement that the relationships between Redirecter
and Mediary or Mediary and FamilyHead be Redirection
EDPs. In fact, they can be Delegation expressions, as we
have shown above, with no change to the meaning of Redi-
rectInFamily. Only the initial and terminus function signa-
tures are important.

8. RECONSTRUCT KNOWN PATTERNS
We can now adequately demonstrate an example of using
EDPs to express larger and well known design patterns. We
begin with AbstractInterface, a simple EDP, and build our
way up to Decorator, visiting two other established patterns
along the way.

8.1 AbstractInterface
AbstractInterface is, simply put, ensuring that the method
in a base class is truly abstract, forcing subclasses to override
and provide their own implementations. The exceedingly
simple class diagram for this is given in Figure 6. The ρ-
calculus definition can be given by simply using the trait
construct of ς-calculus:

A ≡ [new : [li : A → Bi
i ∈ 1...n], operation : A → B]

AbstractInterface(A, operation)
(21)

8.2 Objectifier
It should be obvious by now that Objectifier is simply a
class structure applying the Inheritance EDP to an instance
of AbstractInterface pattern, where the AbstractInterface
applies to all methods in a class. This is equivalent to what
Woolf calls an Abstract Class pattern. Referring back to
Figure 1 from our earlier discussion in section 2.2.1, we can
see that the core concept is to create a family of subclasses
with a common abstract ancestor. We can express this in
ς + ρ-calculus as:

Objectifier : [li : Bi
i∈1...n],

AbstractInterface(Objectifier, li
i∈1...n),

ConcreteObjectifierj <: Objectiferj∈1...m,
Client : [obj : Objectifier]

Objectifier(Objectifier, ConcreteObjectifierj
j∈1...m, Client)

(22)

Initiator

makeRequest()

Handler

handleRequest()

Terminator

handleRequest()

Recurser

handleRequest()
preHandleRequest()
postHandleRequest()

handler

successor

*

this.preHandleRequest();
successor.handleRequest();
this.postHandleRequest();

/* handle the request */

handler.handleRequest()

Objectifier:ConcreteObjectifierA
Objectifier:ConcreteObjectifierB
RedirectInFamily:Redirecter

Objectifier:Objectifier
RedirectInFamily:FamilyHead

Objectifier:Client

Figure 7: Object Recursion, annotated to show roles

OriginalBehaviour

Operation()

ExtendedBehaviour

Operation() added behaviour...
OriginalBehaviour::Operation();
added behaviour...

Figure 8: ExtendMethod class structure

8.3 Object Recursion
We briefly described Object Recursion in section 2.2.2, and
gave its class structure in Figure 2. We now show that this is
a melding of the Objectifier and RedirectInFamily patterns,
as illustrated in Figure 7. The annotations indicate which
roles of which patterns the various components of Object
Recursion play. A formal EDP representation is:

Objectifier(Handler, Recurseri
i∈1...m, Initiator),

Objectifier(Handler, Terminatorj
j∈1...n, Initiator),

Initiator �m obj.handleRequest,
obj : Handler,

RedirectInFamily(Recurser, Handler, handleRequest),
!RedirectInFamily(Terminator, Handler, handleRequest)

ObjectRecursion(Handler, Recurseri
i∈1...m,

T erminatorj
j∈1...n, Initiator)

(23)

8.4 ExtendMethod
The ExtendMethod EDP is used to extend, not replace, the
functionality of an existing method in a superclass, as de-
scribed in Section 4.1. Figure 8 shows the structure of such
a pattern, illustrating the use of super. A formal definition
can be given by:

Component

operation()

ConcreteDecoratorB

operation()
addedBehaviour()

ConcreteDecoratorA

operation()

ConcreteComponent

operation()

Decorator

operation()

component

component.operation()

Decorator::operation();
addedBehaviour();

Figure 9: Decorator class structure

OriginalBehaviour : [li : Bi
i∈1...m, operation : Bm+1],

ExtendedBehaviour <: OriginalBehaviour,
eb : ExtendedBehaviour,

eb.operation �m super.operation

ExtendMethod(OriginalBehaviour,
ExtendedBehaviour, operation)

(24)

8.5 Decorator
Now we can finally produce a pattern directly from the GoF
text, the Decorator pattern. It is simple enough to be com-
posed from the ground up, illustrating our technique of us-
ing fully formal methods entrenched in ς- and ρ-calculus
coupled with the elemental design patterns catalog to cre-
ate rich and conceptually true formal descriptions of useful
design patterns. It is complex enough, however, to present
a bit of a challenge, adding a bit of behavioural elegance to
a primarily structural pattern.

Figure 9 is the standard class diagram for Decorator. Figure
10 shows the same diagram, but annotated to show how
the ExtendMethod and Object Recursion patterns interact.
Again, we provide a formal definition:

ObjectRecursion(Component, Decoratori
i∈1...m,

ConcreteComponentj
j∈1...n,any),

ExtendMethod(Decorator, ConcreteDecoratorBk
k∈1...o,

operationk∈1...o
k),

!ExtendMethod(Decorator, ConcreteDecoratorAl
l∈1...p,

operationl∈1...p
l)

Decorator(Component, Decoratori
i∈1...m,

ConcreteComponentj
j∈1...n,

ConcreteDecoratorBk
k∈1...o,

ConcreteDecoratorAl
l∈1...p,

operationk∈1...o+p
k)

(25)

The keyword any indicates that any object of any class may
take this role, as long as it conforms to the definition of
Object Recursion.

Consider what we have just done - we have created a for-
mally sound definition, from first principles, of a description
of how to solve a problem of software architecture design.
This definition is now subject to formal analysis, discovery,

Component

operation()

ConcreteDecoratorB

operation()
addedBehaviour()

ConcreteDecoratorA

operation()

ConcreteComponent

operation()

Decorator

operation()

component

component.operation()

Decorator::operation();
addedBehaviour();

ExtendMethod:OriginalBehaviour
ObjectRecursion:Recurser

ExtendMethod:ExtendedBehaviour

Object Recursion:Terminator

Object Recursion:Handler

ExtendMethod:ExtendedBehaviour

Figure 10: Decorator annotated to show EDP roles

and metrics, and, following our example of pattern compo-
sition, can be used as a building block for larger, even more
intricate patterns that are incrementally comprehensible. At
the same time, we believe we have retained the flexibility of
implementation, as demonstrated with the RedirectInFam-
ily isotope, that patterns demand. Also, we believe that we
have retained the conceptual semantics of the pattern, by
intelligently and diligently making precise choices at each
stage of the composition. Furthermore, by building this
approach on an existing denotational semantics for object
oriented programming, ς-calculus, we continue to be able to
process the same system at an extremely low level. Cohe-
sion and coupling analysis[5, 16, 18, 19, 32], slice metrics
production[20, 28, 29], and other traditional code analysis
techniques[8, 10, 30] are still completely possible within the
greater λ+ς+ρ calculus. We have provided the link between
patterns, as conceptual entity descriptions, to the formal
semantics required and used by compilers and other tradi-
tional tools, without losing the flexibility of implementation
required by the patterns. We do not, however, see an ex-
plicit need to always resort to the full λ+ς+ρ calculus for all
analysis. One of the key contributions of this system is that
the practitioner can choose on which level to operate, and
perform the analyses and tasks which are suitable without
losing the flexibility of integrating other layers of analysis at
a later date.

9. FUTURE DIRECTIONS
The future research possibilities now open to the software
engineering community due to this work are many. They
range across the full spectrum from formal analysis through
human comprehension assistance, much as the ς +ρ-calculus
and elemental design patterns do.

9.1 EDPs as language design hints
It is expected that some will see the EDPs as truly primitive,
but we would point out that the development of program-
ming languages has been a reflection of directly supporting
features, concepts, and idioms that practioners of the previ-
ous generation languages found to be useful. Cohesion and
coupling analysis of procedural systems gave rise to many
object oriented concepts, and each common OO language
today has features that make concrete one or more EDPs.
EDPs can therefore be seen as a path for incremental addi-
tions to future languages, providing a clue to which features
programmers will find useful based precisely on what con-

cepts they currently use, but must construct from simpler
forms.

9.1.1 Delegation
A recent, and highly touted, example of such a language
construct is the delegate feature found in C#[23]. This is an
explicit support for delegating calls directly as a language
feature. It is in many ways equivalent to the decades old
Smalltalk and Objective-C’s selectors, but has a more def-
inite syntax which restricts its functionality, but enhances
ease of use. It is, as one would expect, an example of the
Delegation EDP realized as a specific language construct,
and demonstrates how the EDPs may help guide future lan-
guage designers. Patterns are explicitly those solutions that
have been found to be useful, common, and necessary in
many cases, and are therefore a natural set of behaviours
and structures for which languages to provide support.

9.1.2 ExtendMethod
Most languages have some support for this EDP, through
the use of either static dispatch, as in C++, or an explicit
keyword, such as Java and Smalltalk’s super. Others, such
as BETA[22], offer an alternative approach, deferring por-
tions of their implementation to their children through the
inner construct. Explicitly stating ’extension’ as a charac-
teristic of a method, as with Java’s concept of extends for
inheritance, however, seems to be absent. This could prove
to be useful to the implementers of a future generation of
code analysis tools and compilers.

9.1.3 AbstractInterface
The Abstract Interface EDP is, admittedly, one of the sim-
plest in the collection. Every OO language supports this
in some form, whether it is an explicit programmer cre-
ated construct, such as C++’s pure virtual methods, or
an implicit dynamic behaviour such as Smalltalk’s excep-
tion throwing for an unimplemented method. It should be
noted though that the above are either composite constructs
(virtual foo() = 0; in C++) or a non construct runtime be-
haviour (Smalltalk), and as such are learned through inter-
action with the relationships between language features. In
each of the cases, the functionality is not directly obvious in
the language description, nor is it necessarily obvious to the
student learning OO programming, and more importantly,
OO design. Future languages may benefit from a more ex-
plicit construct.

9.2 Educational uses of EDPs
We believe the EDPs can provide a path for educators to
guide students to learning OO design from first principles,
demonstrating best practices for even the smallest of prob-
lems. Note that the core EDPs require only the concepts
of classes, objects, methods (and method invocation), and
data fields. Everything else is built off of these most ba-
sic OO constructs, which map directly to the core of UML
class diagrams. The new student needs only to understand
these extremely basic ideas to begin using the EDPs as a
well formed approach to learning the larger and more com-
plex design patterns. As an added benefit, the student will
be exposed to concepts that may not be directly obvious in
the language in which they are currently working. These

concepts are language independent, however, and should be
transportable throughout the nascent engineer’s career.

This transmission of best practices is one of the core mo-
tivations behind design patterns, but even the simplest of
the usual canon requires some non-trivial amount of design
understanding to be truly useful to the implementer. By re-
ducing the scope of the design pattern being studied, one can
reduce the background necessary by the reader, and there-
fore make the reduced pattern more accessible to a wider au-
dience, increasing the distribution of the information. This
parallels the suggestions put forth by Goldberg in 1994[15].
We are putting this into practice, incorporating the EDPs
into the 2002-03 curriculum for software engineering at the
University of North Carolina at Chapel Hill, to investigate
the effectiveness of such an approach.

9.3 Semi-automated support for refactoring
Refactoring is not likely to ever be, in our opinion, a fully au-
tomatable process. At some point the human engineer must
make decisions about the architecture in question, and guide
the transformation of code from one design to another. Sev-
eral key pieces, however, may benefit from the work outlined
in this paper. Our isotope example in Section 7.4 indicates
that it may be possible to support verification of Fowler’s
refactoring transforms through use of the combined λ+ς+ρ-
calculus, as well as various other approaches currently in
use[13, 27, 24]. Ó Cinnéide’s minitransformations likewise
could be formally verified and applied to not only existing
patterns, but perhaps to code that is not yet considered
pattern ready, as key relationships are deduced from a for-
mal analysis[25, 26]. Furthermore, we believe the fragments-
based systems such as LePuS can now be integrated back
into the larger domain of denotational semantics.

9.4 Comprehension of code
Finally, we revisit the original motivation for this research,
to reduce the time and effort required for an engineer to
comprehend a system’s architecture well enough to guide the
maintenance and modification thereof. We believe that the
approach outlined in the paper, along with the full catalog
of EDPs and rho calculus, can form a formal basis for some
very powerful source code analysis tools such as Choices[33],
or KT[6], that operate on a higher level of abstraction than
just “class, object and method interactions”[33]. Discovery
of patterns in an architecture should be become much more
possible than it is today, and we expect that the discov-
ery of unintended pattern uses should prove enlightening to
engineers. In addition, the flexibility inherent in the ς + ρ-
calculus will provide some interesting possibilities for the
identification of new variations of existing patterns.

10. CONCLUSION
We have presented here a suite of simple design patterns,
the elemental design patterns and matching formalizations
in the ρ-calculus for composition into larger, more useful
and abstract design patterns as usually found in software
architecture. These EDPs were identified initially through
inspection of the existing literature on design patterns, es-
tablishing which solutions appeared repeatedly within the
same contexts, mirroring the development of the more tradi-
tional design patterns. Their final state, however, is directly

analgous to the formal specifications of object oriented lan-
guages. We establish that these EDPs do conform to the def-
inition of design patterns, and form the core building blocks
to establish and describe the relationships between objects,
methods and fields in object-oriented systems. Further, they
are formally describable in the ρ-calculus, a notation that
builds upon the ς-calculus, but adds the key concept of re-
liance to the base notation. These extensions, the reliance
operators provide a large degree of flexibility to formally
stating the relationships embodied in design patterns, with-
out locking them into any one particular implementation.

These contributions will allow for new approaches to ana-
lyzing software systems, education of design patterns and
best practices in object-oriented architecture, and may help
guide future language design by indicating which design el-
ements are most commonly used by software architects.

11. ACKNOWLEDGMENTS
The authors would like to acknowledge the contributions of
our readers, and the financial support of EPA Project #
R82 - 795901 - 3.

12. REFERENCES
[1] M. Abadi and L. Cardelli. A Theory of Objects.

Springer-Verlag New York, Inc., 1996.

[2] C. W. Alexander. Notes on the Synthesis of Form.
Oxford Univ Press, 1964. Fifteenth printing, 1999.

[3] Apple. The NewtonScript programming language.
Apple Computer, Inc., 1993.

[4] J. Bosch. Design patterns as language constructs.
Journal of Object Oriented Programming, 1(2):18–52,
May 1998.

[5] L. Briand and J. Daly. A unified framework for
cohesion measurement in object-oriented systems. In
Proc. of the Fourth Conf. on METRICS’97, pages
43–53, Nov. 1997. Albequerque.

[6] K. Brown. Design reverse-engineering and automated
design pattern detection in smalltalk. Master’s thesis,
North Carolina State University, 2000.

[7] C. Chambers. The cecil language: Specification and
rationale. Technical Report TR-93-03-05, University of
Washington, 1993.

[8] S. R. Chidamber and C. F. Kemerer. A metrics suite
for object oriented design. IEEE Transactions on
Software Engineering, 20(6):476–493, June 1994.
cohesion/LCOM.

[9] J. Coplien. C++ idioms. In Proceedings of the Third
European Conference on Pattern Languages of
Programming and Computing, July 1998.

[10] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding
refactorings via change metrics. In Proceedings of the
conference on Object-oriented programming, systems,
languages, and applications, pages 166–177. ACM
Press, 2000.

[11] A. H. Eden. Precise Specification of Design Patterns
and Tool Support in their Application. PhD thesis, Tel
Aviv University, Tel Aviv, Israel, 1999. Dissertation
Draft.

[12] G. Florijn, M. Meijers, and P. van Winsen. Tool
support for object-oriented patterns. In M. Askit and
S. Matsuoka, editors, Proc. of the 11th European
Conf. on Object Oriented Programming - ECOOP’97.
Springer-Verlag, Berlin, 1997.

[13] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison Wesley, 1995.

[15] A. Goldberg. What should we teach? In Addendum to
the proceedings of the 10th annual conference on
Object-oriented programming systems, languages, and
applications (Addendum), pages 30–37. ACM Press,
1995.

[16] M. Hitz and B. Montazeri. Measuring coupling and
cohesion in object-oriented systems. In Proceedings of
ISACC’95, pages 10–21, Insitut für Angewandte
Informatik und Informationssysteme, Uni versity of
Vienna, Rathaustraße 1914, A-1010 Vienna, Austria,
1995. Monterrey, Mexico.

[17] E. Jul, R. K. Raj, E. D. Tempero, H. M. Levy, A. P.
Black, and N. M. Hutchinson. Emerald: A
general-purpose programming language. Software
Practice and Experience, 21(1):91–118, Jan. 1991.

[18] B.-K. Kang and J. M. Bieman. Design-level cohesion
measures: Derivation, comparison, and applications.
In Proc. 20th Intl. Computer Software and
Applications Conf. (COMPSAC’96), pages 92–97,
Aug. 1996.

[19] B.-K. Kang and J. M. Bieman. Using design cohesion
to visualize, quantify and restructure software. In
Eighth Int’l Conf. Software Eng. and Knowledge Eng.,
SEKE ’96, June 1996.

[20] S. Karstu. An examination of the behavior of
slice-based cohesion measures. Master’s thesis,
Minnesota Technological University, 2999.

[21] B. B. Kristensen. Complex associations: abstractions
in object-oriented modeling. In Proceedings of the
ninth annual conference on Object-oriented
programming systems, language, and applications,
pages 272–286. ACM Press, 1994.

[22] O. L. Madsen, B. Møller-Pederson, and K. Nygaard.
Object-oriented Programming in the BETA language.
Addison-Wesley, 1993.

[23] Microsoft Corporation, editor. Microsoft Visual C#
.NET Language Reference. Microsoft Press, 2002.

[24] I. Moore. Automatic inheritance hierarchy
restructuring and method refactoring. In Proceedings
of the eleventh annual conference on Object-oriented
programming systems, languages, and applications,
pages 235–250. ACM Press, 1996.

[25] M. Ó Cinnéide. Automated Application of Design
Patterns: A Refactoring Approach. Ph.D. dissertation,
University of Dublin, Trinity College, 2001.

[26] M. Ó Cinnéide and P. Nixon. Program restructuring
to introduce design patterns. In Proceedings of the
Workshop on Experiences in Object-Oriented
Re-Engineering, European Conference on
Object-Oriented Programming, Brussels, July 1998.

[27] W. F. Opdyke and R. E. Johnson. Creating abstract
superclasses by refactoring. In Proc. of the Conf. on
1993 ACM Computer Science, page 66, 1993. Feb
16-18, 1993, Indianapolis, IN.

[28] L. M. Ott. Using slice profiles and metrics during
software maintenance. In Proceedings of the 10th
Annual Software Reliability Symposium, Denver, June
25-26, 1992, June 1992.

[29] L. M. Ott and J. J. Thuss. The relationship between
slices and module cohesion. In Proceedings of the 11th
International Conference on Software Engineering,
May 15-18, 1989, May 1989.

[30] L. M. Ott and J. J. Thuss. Slice based metrics for
estimating cohesion. In Proceedings of the IEEE-CS
International Software Metrics Symposium, Baltimore,
May 21-22 1993, May 1993.

[31] D. Riehle. Composite design patterns. In Proceedings
of the 1997 ACM SIGPLAN conference on
Object-oriented programming systems, languages and
applications, pages 218–228. ACM Press, 1997.

[32] M. H. Samadzadeh and S. J. Khan. Stability, coupling
and cohesion of object-oriented software systems. In
Proc. 22nd Ann. ACM Computer Science Conf. on
Scaling Up, pages 312–319, Mar. 1994. Mar 8-10, 1994,
Phoenix, AZ.

[33] M. Sefika, A. Sane, and R. H. Campbell.
Architecture-oriented visualization. In Proceedings of
the eleventh annual conference on Object-oriented
programming systems, languages, and applications,
pages 389–405. ACM Press, 1996.

[34] R. Stansifer. The Study of Programming Languages.
Prentice Hall, 1995.

[35] B. Woolf. The abstract class pattern. In N. Harrison,
B. Foote, and H. Rohnert, editors, Pattern Languages
of Program Design 4 (Software Patterns Series).
Addison-Wesley, 1998.

[36] B. Woolf. The object recursion pattern. In
N. Harrison, B. Foote, and H. Rohnert, editors,
Pattern Languages of Program Design 4 (Software
Patterns Series). Addison-Wesley, 1998.

[37] W. Zimmer. Relationships between design patterns. In
J. O. Coplien and D. C. Schmidt, editors, Pattern
Languages of Program Design, pages 345–364.
Addison-Wesley, 1995.

APPENDIX
A. REDIRECTINFAMILY

RedirectInFamily Class Behavioral

Intent

Redirect some portion of a method’s implementa-
tion to a possible cluster of classes, of which the
current class is a member.

Motivation

Frequently a hierarchical object structure of related
objects will be built at runtime, and behaviour
needs to be distributed among levels.

Applicability

Use RedirectInFamily when:

• An aggregate structure of related objects is ex-
pected to be composed at compile or runtime.

• Behaviour should be decomposed to the vari-
ous member objects.

• The structure of the aggregate objects is not
known ahead of time.

• Polymorphic behaviour is expected, but not
enforced.

Structure

FamilyHead

operation()

Redirecter

operation()

target

target.operation();

Participants
FamilyHead
Defines interface, contains a method to be pos-
sibly overridden.

Redirecter
Uses interface of FamilyHead, redirects inter-
nal behaviour back to an instance of Family-
Head to gain polymorphic behaviour over an
amorphous object structure.

Collaborations

Redirecter relies on the class FamilyHead for an
interface, and an instance of same for an object
recursive implementation.

Consequences

Redirecter is reliant on FamilyHead for portions of
its functionality.

Implementation

In C++:

class FamilyHead {

public:

virtual void operation();

};

class Redirecter : public FamilyHead {

public:

void operation();

FamilyHead* target;

};

void

Redirecter::operation() {

// preconditional behaviour

target->operation();

// postconditional behaviour

}

B. EXTENDMETHOD

Extend Method Object Behavioral

Intent

Add to, not replace, behaviour in a method while
reusing existing code.

Motivation

Often a behaviour should be augmented or extended
in code. It is preferable to re-use code that pre-
serves the original behaviour, instead of having to
re-implement it. (Often the original code is un-
available, and we with to use existing methods as
our base.)

Applicability

Use Extend Method when:

• Existing behaviour of a method needs to be
extended but not replaced.

• Reuse of code is preferred or necessitated by
lack of source code.

• Polymorphic behaviour is required.

Structure

OriginalBehaviour

Operation()

ExtendedBehaviour

Operation() added behaviour...
OriginalBehaviour::Operation();
added behaviour...

Participants
OriginalBehaviour
Defines interface, contains a method with de-
sired core functionality.

ExtendedBehaviour
Uses interface of OriginalBehaviour, re-implements
method as call to base class code with added
code and/or behaviour.

Collaborations

ExtendedBehaviour relies on OriginalBehaviour for
both interface and core implementation.

Consequences

Code reuse is optimized, but the method Opera-
tion in OriginalBehaviour becomes fragile - its be-
haviour is now relied upon by ExtendedBehaviour::Operation
to be invariant over time.

Behaviour is extended polymorphically and trans-
parently to clients of OriginalBehaviour.

Implementation

In C++:

class OriginalBehaviour {

public:

virtual void operation();

};

class ExtendedBehaviour : public OriginalBehaviour {

public:

void operation();

};

void

OriginalBehaviour::operation() {

// do core behaviour

}

void

ExtendedBehaviour::operation() {

this->OriginalBehaviour::operation();

// do extended behaviour

}

This pattern should translate very easily to most
any object-oriented language that supports inher-
itance and invocation of a superclass’ version of a
method.

