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Welcome! We have designed Elementary Linear Algebra, Sixth Edition, for the 
introductory linear algebra course.

Students embarking on a linear algebra course should have a thorough knowledge of
algebra, and familiarity with analytic geometry and trigonometry. We do not assume that
calculus is a prerequisite for this course, but we do include examples and exercises requir-
ing calculus in the text. These exercises are clearly labeled and can be omitted if desired.

Many students will encounter mathematical formalism for the first time in this course.
As a result, our primary goal is to present the major concepts of linear algebra clearly and
concisely. To this end, we have carefully selected the examples and exercises to balance
theory with applications and geometrical intuition.

The order and coverage of topics were chosen for maximum efficiency, effectiveness,
and balance. For example, in Chapter 4 we present the main ideas of vector spaces and
bases, beginning with a brief look leading into the vector space concept as a natural exten-
sion of these familiar examples. This material is often the most difficult for students, but
our approach to linear independence, span, basis, and dimension is carefully explained and
illustrated by examples.  The eigenvalue problem is developed in detail in Chapter 7, but we
lay an intuitive foundation for students earlier in Section 1.2, Section 3.1, and Chapter 4.

Additional online Chapters 8, 9, and 10 cover complex vector spaces, linear program-
ming, and numerical methods. They can be found on the student website for this text at 
college.hmco.com/pic/larsonELA6e.

Please read on to learn more about the features of the Sixth Edition.
We hope you enjoy this new edition of Elementary Linear Algebra.

A Word from the Authors
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Students will gain experience solving proofs
presented in several different ways:

■ Some proofs are presented in outline form, omitting
the need for burdensome calculations.

■ Specialized exercises labeled Guided Proofs lead
students through the initial steps of constructing
proofs and then utilizing the results.

■ The proofs of several theorems are left as exercises,
to give students additional practice. 

Theorems and Proofs

REVISED! Each chapter ends with a section on
real-life applications of linear algebra concepts,
covering interesting topics such as: 

■ Computer graphics

■ Cryptography

■ Population growth and more! 

Real World Applications

A full listing of the applications can be found in the
Index of Applications inside the front cover.

If and are invertible matrices of size then is invertible and

�AB��1 � B�1A�1.

ABn,BATHEOREM 2.9

The Inverse 

of a Product

P R O O F To begin, observe that if is an elementary matrix, then, by Theorem 3.3, the next few state-
ments are true. If is obtained from by interchanging two rows, then If 

is obtained by multiplying a row of by a nonzero constant then If is 
obtained by adding a multiple of one row of to another row of then Additionally,
by Theorem 2.12, if results from performing an elementary row operation on and the
same elementary row operation is performed on then the matrix results. It follows that

This can be generalized to conclude that where
is an elementary matrix. Now consider the matrix If is nonsingular, then, by

Theorem 2.14, it can be written as the product of elementary matrices 
and you can write

� �Ek� .  .  . �E2� �E1� �B� � �Ek
.  .  . E2E1� �B� � �A� �B�.

�AB� � �Ek
.  .  . E2E1B�

A � Ek
.  .  . E2E1

AAB.Ei

�Ek
.  .  . E2E1B� � �Ek� .  .  . �E2� �E1� �B�,

�EB� � �E� �B�.
EBB,

IE
�E� � 1.I,I

E�E� � c.c,IE
�E� � �1.IE

E

56. Guided Proof Prove Theorem 3.9: If is a square matrix, then
det

Getting Started: To prove that the determinants of and 
are equal, you need to show that their cofactor expansions are
equal. Because the cofactors are determinants of smaller
matrices, you need to use mathematical induction.

(i) Initial step for induction: If is of order 1, then 
so

(ii) Assume the inductive hypothesis holds for all matrices
of order Let be a square matrix of order 
Write an expression for the determinant of by 
expanding by the first row.

(iii) Write an expression for the determinant of by 
expanding by the first column.

(iv) Compare the expansions in (i) and (ii). The entries of
the first row of are the same as the entries of the first
column of Compare cofactors (these are the 
determinants of smaller matrices that are transposes of
one another) and use the inductive hypothesis to 
conclude that they are equal as well.

±AT.
A

AT

A
n.An � 1.

det�A� � det�AT � � a11.�a11� � AT,
A �A

±

ATA
�A� � det�AT �.

A

BIOLOGY AND LIFE SCIENCES

Calories burned, 117
Population

of deer, 43
of rabbits, 459

Population growth, 458–461, 472, 476, 477
Reproduction rates of deer, 115
S d f i 112
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Current flow in networks, 33, 36, 37, 40, 44
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INDEX OF APPLICATIONS

Theorems are presented in clear and mathematically
precise language. 

Key theorems are also available via PowerPoint®
Presentation on the instructor website. They can 
be displayed in class using a computer monitor or 
projector, or printed out for use as class handouts. 

Write the uncoded row matrices of size for the message MEET ME MONDAY.

S O L U T I O N Partitioning the message (including blank spaces, but ignoring punctuation) into groups of
three produces the following uncoded row matrices.

Note that a blank space is used to fill out the last uncoded row matrix.

[1
A

25
Y

0]
__

[15
O

14
N

4]
D

[5
E

0
__

13]
M

[20
T

0
__

13]
M

[13
M

5
E

5]
E

1 � 3

E X A M P L E  4 Forming Uncoded Row Matrices



NEW! Chapter Objectives are now listed on each
chapter opener page. These objectives highlight the key
concepts covered in the chapter, to serve as a guide to
student learning. 

The Discovery features are designed 
to help students develop an intuitive
understanding of mathematical 
concepts and relationships. 

Visualization skills are necessary for the understanding of mathematical concepts and
theory. The Sixth Edition includes the following resources to help develop these skills: 

■ Graphs accompany examples, particularly when representing vector spaces and
inner product spaces.

■ Computer-generated illustrations offer geometric interpretations of problems. 

Conceptual Understanding

Graphics and Geometric Emphasis

Proven Pedagogy ■ Integrated Technology ■ Real-World Applications

CHAPTER OBJECTIVES

■ Find the determinants of a matrix and a triangular matrix.

■ Find the minors and cofactors of a matrix and use expansion by cofactors to find the 
determinant of a matrix.

■ Use elementary row or column operations to evaluate the determinant of a matrix.

■ Recognize conditions that yield zero determinants.

■ Find the determinant of an elementary matrix.

■ Use the determinant and properties of the determinant to decide whether a matrix is singular
or nonsingular, and recognize equivalent conditions for a nonsingular matrix.

■ Verify and find an eigenvalue and an eigenvector of a matrix.

2 � 2

True or False? In Exercises 62–65, determine whether each state-
ment is true or false. If a statement is true, give a reason or cite an
appropriate statement from the text. If a statement is false, provide
an example that shows the statement is not true in all cases or cite an
appropriate statement from the text.

62. (a) The nullspace of is also called the solution space of 

(b) The nullspace of is the solution space of the homogeneous
system

63. (a) If an matrix is row-equivalent to an matrix
then the row space of is equivalent to the row space 

of

(b) If is an matrix of rank then the dimension of the
solution space of is m � r.Ax � 0

r,m � nA

B.
AB,

m � nAm � n

Ax � 0.
A

A.A

Let

.

Use a graphing utility or 
computer software program to
find Compare det( )
with det( ). Make a conjecture
about the determinant of the
inverse of a matrix.

A
A�1A�1.

A � �
6
0
1

4
2
1

1
3
2�

Discovery

a

R

o

2 2

6

2

4

x

y

z

4

(6, 2, 4) u

(2, 4, 0)

projvu

v

(1, 2, 0)

Figure 5.13 yz-trace

xy-trace

xz-trace

y

x

z

y

x

z Ellipsoid

Trace Plane

Ellipse Parallel to xy-plane
Ellipse Parallel to xz-plane
Ellipse Parallel to yz-plane

The surface is a sphere if a � b � c � 0.

x2

a2
�

y2

b2
�

z2

c2
� 1

x

True or False? exercises test students’
knowledge of core concepts. Students are
asked to give examples or justifications to
support their conclusions. 



REVISED! Comprehensive section and chapter exercise 
sets give students practice in problem-solving techniques
and test their understanding of mathematical concepts. A
wide variety of exercise types are represented, including:

■ Writing exercises
■ Guided Proof exercises
■ Technology exercises, indicated throughout the text

with .

■ Applications exercises

■ Exercises utilizing electronic data sets, indicated
by and found on the student website at
college.hmco.com/pic/larsonELA6e

Each chapter includes two Chapter
Projects, which offer the opportunity for
group activities or more extensive homework 
assignments.

Chapter Projects are focused on 
theoretical concepts or applications, and
many encourage the use of technology. 

Cumulative Tests follow chapters 3, 5, 
and 7, and help students synthesize the
knowledge they have accumulated 
throughout the text, as well as prepare for
exams and future mathematics courses. 

NEW! Historical Notes are included throughout the text and feature brief biographies
of prominent mathematicians who contributed to linear algebra.

Students are directed to the Web to read the full biographies, which are available via
PowerPoint® Presentation.

Problem Solving and Review

Historical Emphasis

53.

54.

55.

56.

57.

58.

In Exercises 59–62, verify the Cauchy-Schwarz Inequality for the
given vectors.

59.

60.

61.

62.

In Exercises 63–72, find the angle between the vectors.

63.

64.

65.

83.

84.

85.

86.

87.

88.

In Exercises 89–92, use a graphing utility or computer software 
program with vector capabilities to determine whether and are
orthogonal, parallel, or neither.

89.

90.

91.

92.

Writing In Exercises 93 and 94, determine if the vectors are 
orthogonal, parallel, or neither. Then explain your reasoning.

93.

94. v � �sin �, �cos �, 0�u � ��sin �, cos �, 1�,
v � �sin �, �cos �, 0�u � �cos �, sin �, �1�,

v � ��16
3 , �2, 4

3, �
2
3�u � ��4

3, 8
3, �4, �

32
3 �,

v � �3
8, �

3
4, 9

8, 3�u � ��3
4, 3

2, �
9
2, �6�,

v � �0, 6, 21
2 , �

9
2�u � ��21

2 , 43
2 , �12, 3

2�,
v � �3

2, 1, �5
2, 0�u � ��2, 1

2, �1, 3�,

vu

v � ��2, �
3
4, 1

2, �
1
4�u � �4, 3

2, �1, 1
2�,

v � �1
4, �

5
4, 0, 1�u � ��2, 5, 1, 0�,

v � �1, �2, �1�u � �0, 1, 6�,
v � �1, �2, 0�u � �0, 1, 0�,
v � �0, �1�u � �1, �1�,
v � �2, �4�u � ��1

3, 2
3�,

v � 	cos
3�

4
, sin 

3�

4 
u � 	cos
�

6
, sin 

�

6
,

v � �2, 0�u � �2, �1�,
v � ��2, 4�u � �3, 1�,

�

v � �0, 1, �1�u � �1, �1, 0�,
v � �1, �3, �2�u � �1, 1, �2�,

v � �1, 1�u � ��1, 0�,
v � �2, �3�u � �3, 4�,

v � �1, 2, 0, �1, 2, �2, 1, 0�
u � �3, �1, 2, 1, 0, 1, 2, �1�,
v � ��1, 0, 1, 2, �2, 1, 1, �2�
u � ��1, 1, 2, �1, 1, 1, �2, 1�,

v � ��1, 0, 2, 1, 2, �3�u � �1, 2, 3, �2, �1, �3�,
v � �2, 0, 1, 1, 2, �2�u � �0, 2, 2, �1, 1, �2�,

v � ��2, �1, ��2�u � ��1, �3, 2�,
v � ��1, �2, �1�u � �0, 1, �2�,

ProjectsCHAPTER 3

1 Eigenvalues and Stochastic Matrices

In Section 2.5, you studied a consumer preference model for competing cable 
television companies. The matrix representing the transition probabilities was

When provided with the initial state matrix you observed that the number of 
subscribers after 1 year is the product 

PX � �
0.70

0.20

0.10

0.15

0.80

0.05

0.15

0.15

0.70
� �

15,000

20,000

65,000
� � �

23,250

28,750

48,000
�X � �

15,000

20,000

65,000
�

PX.
X,

P � �
0.70

0.20

0.10

0.15

0.80

0.05

0.15

0.15

0.70
�.

Cumulative TestCHAPTERS 4 & 5
Take this test as you would take a test in class. After you are done, check your work against the 
answers in the back of the book.

1. Given the vectors and , find and sketch each vector.

(a) (b) (c)

2. If possible, write as a linear combination of the vectors and 

3. Prove that the set of all singular matrices is not a vector space.2 � 2

v3 � �0, 3, 0�v2 � ��1, 0, 1�,v1 � �1, 2, 0�,

v3.v2,v1,w � �2, 4, 1�

2v � 4w3vv � w

w � �2, �5�v � �1, �2�

H I S T O R I C A L  N O T E

Augustin-Louis Cauchy

(1789–1857)

was encouraged by Pierre Simon
de Laplace, one of France’s lead-
ing mathematicians, to study
mathematics. Cauchy is often
credited with bringing rigor 
to modern mathematics. To 
read about his work, visit 
college.hmco.com/pic/larsonELA6e.

Proven Pedagogy ■ Integrated Technology ■ Real-World Applications
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Computer Algebra Systems and Graphing Calculators

The Technology Note feature in the text indicates
how students can utilize graphing calculators and
computer algebra systems appropriately in the 
problem-solving process. 

NEW! Online Technology Guide provides the coverage 
students need to use computer algebra systems and 
graphing calculators with this text. 

Provided on the accompanying student website, this 
guide includes CAS and graphing calculator keystrokes
for select examples in the text. These examples feature 
an accompanying Technology Note, directing students to
the Guide for instruction on using their CAS/graphing 
calculator to solve the example.

In addition, the Guide provides an Introduction to
MATLAB, Maple, Mathematica, and Graphing
Calculators, as well as a section on Technology Pitfalls.

The Graphing Calculator Keystroke Guide offers
commands and instructions for various calculators 
and includes examples with step-by-step solutions, 
technology tips, and programs.

The Graphing Calculator Keystroke Guide covers 
TI-83/TI-83 PLUS, TI-84 PLUS, TI-86, TI-89, TI-92,
and Voyage 200. 

Also available on the student website:

■ Electronic Data Sets are designed to be used with select exercises in the text and help students reinforce
and broaden their technology skills using graphing calculators and computer algebra systems.

■ MATLAB Exercises enhance students’ understanding of concepts using MATLAB software. These 
optional exercises correlate to chapters in the text. 

You can use a graphing utility or computer software program to find the unit vector for a given 
vector. For example, you can use a graphing utility to find the unit vector for , which
may appear as:

v � ��3, 4�
Technology

Note

p g

Solve the system.

Keystrokes for TI-83
Enter the system into matrix A.
To rewrite the system in row-echelon form, use the following keystrokes.

[A]

Keystrokes for TI-83 Plus
Enter the system into matrix A.
To rewrite the system in row-echelon form, use the following keystrokes.

[MATRX] [A] [MATRX]

Keystrokes for TI-84 Plus
Enter the system into matrix A.
To rewrite the system in row-echelon form, use the following keystrokes.

[MATRIX] [A] [MATRIX]

Keystrokes for TI-86
Enter the system into matrix A.
To rewrite the system in row-echelon form, use the following keystrokes.

[MATRX] [A] ENTERALPHAF4F42nd

ENTERENTER2ndALPHA2nd

ENTERENTER2ndALPHA2nd

ENTERENTERMATRXALPHAMATRX

 2x �  5y �  5z �  17

�x �  3y � �4

x �  2y �  3z �  9

E X A M P L E  7 Using Elimination to Rewrite a System in Row-Echelon Form

→

→

→

You can use a computer software
program or graphing utility with 
a built-in power regression 
program to verify the result of
Example 10. For example, using
the data in Table 5.2 and a 
graphing utility, a power fit
program would result in an
answer of (or very similar to)

Keystrokes
and programming syntax for
these utilities/programs applicable
to Example 10 are provided in the
Online Technology Guide,
available at college.hmco.com/
pic/larsonELA6e.

y � 1.00042x1.49954.

Technology
Note

Part I: Texas Instruments TI-83, TI-83 Plus, TI-84 Plus Graphing Calculator

I.1 Systems of Linear Equations

I.1.1 Basics: Press the ON key to begin using your TI-83 calculator. If you need to adjust the display 
contrast, first press 2nd, then press and hold (the up arrow key) to increase the contrast or (the down
arrow key) to decrease the contrast. As you press and hold or , an integer between 0 (lightest) and 
9 (darkest) appears in the upper right corner of the display. When you have finished with the calculator, turn
it off to conserve battery power by pressing 2nd and then OFF.

Check the TI-83’s settings by pressing MODE. If necessary, use the arrow key to move the blinking cursor
to a setting you want to change. Press ENTER to select a new setting. To start, select the options along the
left side of the MODE menu as illustrated in Figure I.1: normal display, floating display decimals, radian
measure, function graphs, connected lines, sequential plotting, real number system, and full screen display.
Details on alternative options will be given later in this guide. For now, leave the MODE menu by pressing
CLEAR.

Proven Pedagogy ■ Integrated Technology ■ Real-World Applications
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Instructor Website This website offers instructors a 
variety of resources, including:

■ Instructor’s Solutions Manual, featuring complete
solutions to all even-numbered exercises in the text.

■ Digital Art and Figures, featuring key theorems 
from the text. 

NEW! HM Testing™ (Powered by Diploma®) “Testing
the way you want it” HM Testing provides instructors 
with a wide array of new algorithmic exercises along with
improved functionality and ease of use. Instructors can 
create, author/edit algorithmic questions, customize, and
deliver multiple types of tests. 

Student Website This website offers comprehensive study
resources, including: 

■ NEW! Online Multimedia eBook
■ NEW! Online Technology Guide
■ Electronic Simulations
■ MATLAB Exercises
■ Graphing Calculator Keystroke Guide
■ Chapters 8, 9, and 10
■ Electronic Data Sets
■ Historical Note Biographies 

Student Solutions Manual Contains complete solutions to
all odd-numbered exercises in the text. 

HM Math SPACE with Eduspace®: Houghton Mifflin’s Online Learning Tool (powered by Blackboard®)
This web-based learning system provides instructors and students with powerful course management tools and 
text-specific content to support all of their online teaching and learning needs. Eduspace now includes: 

■ NEW! WebAssign® Developed by teachers, for teachers, WebAssign allows instructors to create assignments from an
abundant ready-to-use database of algorithmic questions, or write and customize their own exercises. With WebAssign,
instructors can: create, post, and review assignments 24 hours a day, 7 days a week; deliver, collect, grade, and record
assignments instantly; offer more practice exercises, quizzes and homework; assess student performance to keep
abreast of individual progress; and capture the attention of online or distance-learning students.

■ SMARTHINKING® Live, Online Tutoring SMARTHINKING provides an easy-to-use 
and effective online, text-specific tutoring service. A dynamic Whiteboard and a 
Graphing Calculator function enable students and e-structors to collaborate easily. 

Online Course Content for Blackboard®, WebCT®, and eCollege® Deliver program- or text-specific Houghton
Mifflin content online using your institution’s local course management system. Houghton Mifflin offers homework and
other resources formatted for Blackboard, WebCT, eCollege, and other course management systems. Add to an existing
online course or create a new one by selecting from a wide range of powerful learning and instructional materials. 

Additional Resources ■ Get More from Your Textbook

For more information, visit college.hmco.com/pic/larson/ELA6e or contact your local Houghton Mifflin sales representative. 
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What Is Linear Algebra?

To answer the question “What is linear algebra?,” take a closer look at what you will
study in this course. The most fundamental theme of linear algebra, and the first topic
covered in this textbook, is the theory of systems of linear equations. You have probably
encountered small systems of linear equations in your previous mathematics courses. For
example, suppose you travel on an airplane between two cities that are 5000 kilometers
apart. If the trip one way against a headwind takes hours and the return trip the same
day in the direction of the wind takes only 5 hours, can you find the ground speed of the
plane and the speed of the wind, assuming that both remain constant?

If you let x represent the speed of the plane and y the speed of the wind, then the 
following system models the problem.

This system of two equations and two unknowns simplifies to

and the solution is kilometers per hour and kilometers per hour.
Geometrically, this system represents two lines in the xy-plane. You can see in the figure
that these lines intersect at the point which verifies the answer that was 
obtained.

Solving systems of linear equations is one of the most important applications of linear 
algebra. It has been argued that the majority of all mathematical problems encountered in
scientific and industrial applications involve solving a linear system at some point. Linear
applications arise in such diverse areas as engineering, chemistry, economics, business,
ecology, biology, and psychology.

Of course, the small system presented in the airplane example above is very easy 
to solve. In real-world situations, it is not unusual to have to solve systems of hundreds
or even thousands of equations. One of the early goals of this course is to develop an 
algorithm that helps solve larger systems in an orderly manner and is amenable to 
computer implementation.

�900, 100�,

y � 100x � 900

x � y �  1000,

x � y �  800

 5�x � y� � 5000

 6.25�x � y� � 5000

61
4

Original Flight

Return Flight

x + y

x − y

−200 200 1000

200

600

1000

The lines intersect at (900, 100).

(900, 100)

x − y = 800

x + y = 1000

x

y

xv



The first three chapters of this textbook cover linear systems and two other computa-
tional areas you may have studied before: matrices and determinants. These discussions
prepare the way for the central theoretical topic of linear algebra: the concept of a 
vector space. Vector spaces generalize the familiar properties of vectors in the plane. It is
at this point in the text that you will begin to write proofs and learn to verify theoretical
properties of vector spaces.

The concept of a vector space permits you to develop an entire theory of its properties.
The theorems you prove will apply to all vector spaces. For example, in Chapter 6 you
will study linear transformations, which are special functions between vector spaces. The
applications of linear transformations appear almost everywhere—computer graphics,
differential equations, and satellite data transmission, to name just a few examples.

Another major focus of linear algebra is the so-called eigenvalue –g n–value
problem. Eigenvalues are certain numbers associated with square matrices and are 
fundamental in applications as diverse as population dynamics, electrical networks,
chemical reactions, differential equations, and economics.

Linear algebra strikes a wonderful balance between computation and theory. As you 
proceed, you will become adept at matrix computations and will simultaneously develop 
abstract reasoning skills. Furthermore, you will see immediately that the applications of
linear algebra to other disciplines are plentiful. In fact, you will notice that each chapter
of this textbook closes with a section of applications. You might want to peruse some 
of these sections to see the many diverse areas to which linear algebra can be applied.
(An index of these applications is given on the inside front cover.)

Linear algebra has become a central course for mathematics majors as well as students
of science, business, and engineering. Its balance of computation, theory, and applications
to real life, geometry, and other areas makes linear algebra unique among mathematics
courses. For the many people who make use of pure and applied mathematics in their
professional careers, an understanding and appreciation of linear algebra is indispensable.

�I�

LINEAR ALGEBRA The branch 
of algebra in which one studies
vector (linear) spaces, linear 
operators (linear mappings), and
linear, bilinear, and quadratic 
functions (functionals and forms)
on vector spaces. (Encyclopedia of
Mathematics, Kluwer Academic 
Press, 1990)

Vectors in the Plane

xvi What Is  L inear  A lgebra?
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1 Systems of 
Linear Equations

1.1 Introduction to Systems
of Linear Equations

1.2 Gaussian Elimination
and Gauss-Jordan
Elimination

1.3 Applications of Systems
of Linear Equations

CHAPTER OBJECTIVES

■ Recognize, graph, and solve a system of linear equations in n variables.

■ Use back-substitution to solve a system of linear equations.

■ Determine whether a system of linear equations is consistent or inconsistent.

■ Determine if a matrix is in row-echelon form or reduced row-echelon form.

■ Use elementary row operations with back-substitution to solve a system in row-echelon form.

■ Use elimination to rewrite a system in row-echelon form.

■ Write an augmented or coefficient matrix from a system of linear equations, or translate a
matrix into a system of linear equations.

■ Solve a system of linear equations using Gaussian elimination and Gaussian elimination with
back-substitution.

■ Solve a homogeneous system of linear equations.

■ Set up and solve a system of equations to fit a polynomial function to a set of data points, 
as well as to represent a network.

Introduction to Systems of Linear Equations

Linear algebra is a branch of mathematics rich in theory and applications. This text strikes
a balance between the theoretical and the practical. Because linear algebra arose from the
study of systems of linear equations, you shall begin with linear equations. Although some
material in this first chapter will be familiar to you, it is suggested that you carefully study
the methods presented here. Doing so will cultivate and clarify your intuition for the more
abstract material that follows.

The study of linear algebra demands familiarity with algebra, analytic geometry, and
trigonometry. Occasionally you will find examples and exercises requiring a knowledge of
calculus; these are clearly marked in the text.

Early in your study of linear algebra you will discover that many of the solution 
methods involve dozens of arithmetic steps, so it is essential to strive to avoid careless
errors. A computer or calculator can be very useful in checking your work, as well as in
performing many of the routine computations in linear algebra.

1.1

H I S T O R I C A L  N O T E

Carl Friedrich Gauss

(1777–1855)

is often ranked—along with
Archimedes and Newton—as one
of the greatest mathematicians in
history. To read about his contri-
butions to linear algebra, visit 
college.hmco.com/pic/larsonELA6e.
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Linear Equations in n Variables

Recall from analytic geometry that the equation of a line in two-dimensional space has the form

and are constants.

This is a linear equation in two variables and . Similarly, the equation of a plane in
three-dimensional space has the form

and are constants.

Such an equation is called a linear equation in three variables , , and . In general, a
linear equation in variables is defined as follows.

R E M A R K : Letters that occur early in the alphabet are used to represent constants, and 
letters that occur late in the alphabet are used to represent variables.

Linear equations have no products or roots of variables and no variables involved in
trigonometric, exponential, or logarithmic functions. Variables appear only to the first
power. Example 1 lists some equations that are linear and some that are not linear.

Each equation is linear.

(a) (b)

(c) (d)

Each equation is not linear.

(a) (b)

(c) (d)

A solution of a linear equation in variables is a sequence of real numbers 
arranged so the equation is satisfied when the values

xn � sn.  .  .  ,x3 � s3,x2 � s2,x1 � s1,

s3, .  .  . , sn

s1, s2,nn

1
x

�
1
y

� 4sin x1 � 2x2 � 3x3 � 0

ex � 2y � 4xy � z � 2

	sin
�

2
 x1 � 4x2 � e2x1 � 2x2 � 10x3 � x4 � 0

1
2x � y � �z � �23x � 2y � 7

E X A M P L E  1 Examples of Linear Equations and Nonlinear Equations

n
zyx

ba1, a2, a3,a1x � a2y � a3z � b,

yx

ba1, a2,a1x � a2y � b,

A linear equation in variables has the form

The coefficients are real numbers, and the constant term is a 
real number. The number is the leading coefficient, and is the leading variable.x1a1

ba1, a2, a3, .  .  . , an

a1x1 � a2x2 � a3x3 � .  .  . � anxn � b.

x1, x2, x3, .  .  . , xnnDefinition of a Linear

Equation in n Variables
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are substituted into the equation. For example, the equation

is satisfied when and Some other solutions are and 
and and and 

The set of all solutions of a linear equation is called its solution set, and when this set
is found, the equation is said to have been solved. To describe the entire solution set of a
linear equation, a parametric representation is often used, as illustrated in Examples 2 
and 3.

Solve the linear equation 

S O L U T I O N To find the solution set of an equation involving two variables, solve for one of the variables
in terms of the other variable. If you solve for in terms of you obtain

In this form, the variable is free, which means that it can take on any real value. The
variable is not free because its value depends on the value assigned to To represent
the infinite number of solutions of this equation, it is convenient to introduce a third 
variable called a parameter. By letting you can represent the solution set as

is any real number.

Particular solutions can be obtained by assigning values to the parameter For instance,
yields the solution and and yields the solution and

The solution set of a linear equation can be represented parametrically in more than 
one way. In Example 2 you could have chosen to be the free variable. The parametric
representation of the solution set would then have taken the form

is any real number.

For convenience, choose the variables that occur last in a given equation to be free variables.

Solve the linear equation 

S O L U T I O N Choosing and to be the free variables, begin by solving for to obtain 

Letting and you obtain the parametric representation

z � ty � s,x � 1 �
2
3 s �

1
3 t,

z � t,y � s

x �  1 �
2
3 y �

1
3z.

 3x �  3 �  2y � z

xzy

3x � 2y � z � 3.

E X A M P L E  3 Parametric Representation of a Solution Set

sx2 � 2 �
1
2 s,x1 � s,

x1

x2 � 4.
x1 � �4t � 4x2 � 1,x1 � 2t � 1

t.

tx2 � t,x1 � 4 � 2t,

x2 � t,t

x2.x1

x2

x1 � 4 � 2x2.

x2,x1

x1 � 2x2 � 4.

E X A M P L E  2 Parametric Representation of a Solution Set

x2 � 3.x1 � �2x2 � 2,
x1 � 0x2 � 4,x1 � �4x2 � 1.x1 � 2

x1 � 2x2 � 4
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where and are any real numbers. Two particular solutions are 

and

Systems of Linear Equations

A system of linear equations in variables is a set of equations, each of which is
linear in the same variables:

.

.

.

R E M A R K : The double-subscript notation indicates is the coefficient of in the th
equation.

A solution of a system of linear equations is a sequence of numbers 
that is a solution of each of the linear equations in the system. For example, the system

has and as a solution because both equations are satisfied when 
and On the other hand, and is not a solution of the system because
these values satisfy only the first equation in the system.

x2 � 0x1 � 1x2 � 3.
x1 � �1x2 � 3x1 � �1

�x1 � x2 � 4

 3x1 � 2x2 � 3

s1, s2, s3, .  .  . , sn

ixjai j

am1x1 � am2x2 � am3x3 � .  .  . � amnxn � bm .

a31x1 � a32x2 � a33x3 � .  .  . � a3nxn � b3

a21x1 � a22x2 � a23x3 � .  .  . � a2nxn � b2

a11x1 � a12x2 � a13x3 � .  .  . � a1nxn � b1

n
mnm

x � 1, y � 1, z � 2.x � 1, y � 0, z � 0

ts

Graph the two lines

in the -plane. Where do they intersect? How many solutions does this system of linear equations
have?

Repeat this analysis for the pairs of lines

In general, what basic types of solution sets are possible for a system of two equations in 
two unknowns?

6x � 2y � 2.3x � y � 0

3x � y � 13x � y � 1

xy

2x � y � 0

3x � y � 1

Discovery
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It is possible for a system of linear equations to have exactly one solution, an infinite
number of solutions, or no solution. A system of linear equations is called consistent if it
has at least one solution and inconsistent if it has no solution.

Solve each system of linear equations, and graph each system as a pair of straight lines.

(a) (b) (c)

S O L U T I O N (a) This system has exactly one solution, and The solution can be obtained by
adding the two equations to give which implies and so The graph
of this system is represented by two intersecting lines, as shown in Figure 1.1(a).

(b) This system has an infinite number of solutions because the second equation is the
result of multiplying both sides of the first equation by 2. A parametric representation
of the solution set is shown as

is any real number.

The graph of this system is represented by two coincident lines, as shown in
Figure 1.1(b).

(c) This system has no solution because it is impossible for the sum of two numbers to be
3 and 1 simultaneously. The graph of this system is represented by two parallel lines,
as shown in Figure 1.1(c).

(a) Two intersecting lines: (b) Two coincident lines: (c) Two parallel lines:

Example 4 illustrates the three basic types of solution sets that are possible for a system
of linear equations. This result is stated here without proof. (The proof is provided later in
Theorem 2.5.)

Figure 1.1

x � y � 12x � 2y � 6x � y � �1
x � y � 3x � y � 3x � y �     3

1

2

3

1 2 3
x

y

−1

−1

1

2

3

1 2 3
x

y

1

2

3

4

1 2 3
x

y

−1

ty � t,x � 3 � t,

y � 2.x � 12x � 2,
y � 2.x � 1

x � y � 1 2x �  2y �  6x � y � �1

x � y � 3x � y �  3x � y �  3

E X A M P L E  4 Systems of Two Equations in Two Variables
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Solving a System of Linear Equations

Which system is easier to solve algebraically?

The system on the right is clearly easier to solve. This system is in row-echelon form,
which means that it follows a stair-step pattern and has leading coefficients of 1. To solve
such a system, use a procedure called back-substitution.

Use back-substitution to solve the system.

Equation 1

Equation 2

S O L U T I O N From Equation 2 you know that . By substituting this value of into Equation 1,
you obtain

Substitute

Solve for 

The system has exactly one solution: and 

The term “back-substitution” implies that you work backward. For instance, in Example
5, the second equation gave you the value of Then you substituted that value into the first
equation to solve for Example 6 further demonstrates this procedure.

Solve the system.

Equation 1

Equation 2

Equation 3     z �  2

   y �  3z �  5

x �  2y �  3z �  9

E X A M P L E  6 Using Back-Substitution to Solve a System in Row-Echelon Form

x.
y.

y � �2.x � 1

x.x � 1.

y � �2.x � 2��2� � 5

yy � �2

y � �2

x �  2y �  5

E X A M P L E  5 Using Back-Substitution to Solve a System in Row-Echelon Form

     z �  2 2x �  5y �  5z �  17

   y �  3z �  5�x �  3y � �4

x �  2y �  3z �  9x �  2y �  3z �  9

For a system of linear equations in variables, precisely one of the following is true.

1. The system has exactly one solution (consistent system).
2. The system has an infinite number of solutions (consistent system).
3. The system has no solution (inconsistent system).

nNumber of Solutions 

of a System of 

Linear Equations
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S O L U T I O N From Equation 3 you already know the value of To solve for substitute into
Equation 2 to obtain

Substitute

Solve for 

Finally, substitute and in Equation 1 to obtain

Substitute

Solve for 

The solution is and 

Two systems of linear equations are called equivalent if they have precisely the same 
solution set. To solve a system that is not in row-echelon form, first change it to an 
equivalent system that is in row-echelon form by using the operations listed below.

Rewriting a system of linear equations in row-echelon form usually involves a chain 
of equivalent systems, each of which is obtained by using one of the three basic operations.
This process is called Gaussian elimination, after the German mathematician Carl
Friedrich Gauss (1777–1855). 

Solve the system.

S O L U T I O N Although there are several ways to begin, you want to use a systematic procedure that can be
applied easily to large systems. Work from the upper left corner of the system, saving the 
in the upper left position and eliminating the other ’s from the first column.

   �y � z � �1
   y �  3z �  5
x �  2y �  3z �  9

 2x �  5y �  5z �  17
   y �  3z �  5
x �  2y �  3z �  9

x
x

 2x �  5y �  5z �  17

�x �  3y � �4

x �  2y �  3z �  9

E X A M P L E  7 Using Elimination to Rewrite a System in Row-Echelon Form

z � 2.y � �1,x � 1,

x.x � 1.
z � 2.y � �1,x � 2��1� � 3�2� � 9

z � 2y � �1

y.y � �1.
z � 2.y � 3�2� �  5

z � 2y,z.

Each of the following operations on a system of linear equations produces an equivalent
system.

1. Interchange two equations.
2. Multiply an equation by a nonzero constant.
3. Add a multiple of an equation to another equation.

Operations That Lead to

Equivalent Systems of

Equations

Adding the first equation to 
the second equation produces 
a new second equation.

Adding times the first
equation to the third equation
produces a new third equation.

�2
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Now that everything but the first has been eliminated from the first column, work on the
second column.

This is the same system you solved in Example 6, and, as in that example, the solution is

Each of the three equations in Example 7 is represented in a three-dimensional 
coordinate system by a plane. Because the unique solution of the system is the point

the three planes intersect at the point represented by these coordinates, as shown in Figure 1.2.

Figure 1.2

x

y

z

(1, −1, 2)

�x, y, z� � �1, �1, 2�,

z � 2.y � �1,x � 1,

     z �  2

   y �  3z �  5

x �  2y �  3z �  9

     2z �  4

   y �  3z �  5

x �  2y �  3z �  9

x

Multiplying the third equation
by produces a new third
equation.

1
2

Adding the second equation to
the third equation produces
a new third equation.

Many graphing utilities and computer software programs can solve a system of linear equations 
in variables. Try solving the system in Example 7 using the simultaneous equation solver feature 
of your graphing utility or computer software program. Keystrokes and programming syntax for
these utilities/programs applicable to Example 7 are provided in the Online Technology Guide,
available at college.hmco.com /pic /larsonELA6e.

n
mTechnology

Note
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Because many steps are required to solve a system of linear equations, it is very easy to
make errors in arithmetic. It is suggested that you develop the habit of checking your 
solution by substituting it into each equation in the original system. For instance, in
Example 7, you can check the solution and as follows.

Equation 1:

Equation 2:

Equation 3:

Each of the systems in Examples 5, 6, and 7 has exactly one solution. You will now look
at an inconsistent system—one that has no solution. The key to recognizing an inconsistent
system is reaching a false statement such as at some stage of the elimination process.
This is demonstrated in Example 8.

Solve the system.

S O L U T I O N

(Another way of describing this operation is to say that you subtracted the first equation
from the third equation to produce a new third equation.) Now, continuing the elimination
process, add times the second equation to the third equation to produce a new third
equation.

Because the third “equation” is a false statement, this system has no solution. Moreover,
because this system is equivalent to the original system, you can conclude that the original
system also has no solution.

As in Example 7, the three equations in Example 8 represent planes in a three-
dimensional coordinate system. In this example, however, the system is inconsistent. So, the
planes do not have a point in common, as shown in Figure 1.3 on the next page.

     0 � �2

   5x2 � 4x3 � 0

x1 � 3x2 � x3 � 1

�1

   5x2 � 4x3 � �2

   5x2 � 4x3 � 0

x1 � 3x2 � x3 � 1

x1 � 2x2 � 3x3 � �1

   5x2 � 4x3 � 0

x1 � 3x2 � x3 � 1

x1 � 2x2 � 3x3 � �1

 2x1 � x2 � 2x3 � 2

x1 � 3x2 � x3 � 1

E X A M P L E  8 An Inconsistent System

0 � 7

 2�1� �  5��1� �  5�2� �  17

��1� �  3��1�      � �4

�1� �  2��1� �  3�2� �  9

z � 2y � �1,x � 1,

Substitute solution in
each equation of the
original system.

Adding times the first
equation to the second equation
produces a new second equation.

�2

Adding times the first
equation to the third equation
produces a new third equation.

�1

Adding times the second
equation to the third equation
produces a new third equation.

�1
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This section ends with an example of a system of linear equations that has an infinite
number of solutions. You can represent the solution set for such a system in parametric
form, as you did in Examples 2 and 3.

Solve the system.

S O L U T I O N Begin by rewriting the system in row-echelon form as follows.

Because the third equation is unnecessary, omit it to obtain the system shown below.

To represent the solutions, choose to be the free variable and represent it by the 
parameter Because and you can describe the solution set as

is any real number.tx3 � t,x2 � t,x1 � 3t � 1,

x1 � 3x3 � 1,x2 � x3t.
x3

x2

�

�

3x3

x3

�

�

�1

0

x1

         0 �  0
     x2 � x3 � 0

x1      �  3x3 � �1

     3x2 � 3x3 � 0
     x2 � x3 � 0

x1      �  3x3 � �1

�x1 � 3x2     �  1
     x2 � x3 �  0

x1      �  3x3 � �1

x1

�x1 �

x2

3x2

�

�

x3

3x3

�

�

�

0
�1

1
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x2x1

x3

Figure 1.3

The first two equations
are interchanged.

Adding the first equation to
the third equation produces
a new third equation.

Adding times the second
equation to the third equation
eliminates the third equation.

�3



Exercises

Graph the two lines represented by the system of equations.

You can use Gaussian elimination to solve this system as follows.

Graph the system of equations you obtain at each step of this process. What do you observe about
the lines? You are asked to repeat this graphical analysis for other systems in Exercises 91 and 92.

y � 1y � 1�1y � �1
x � 3x � 2y � 1x � 2y � 1

�2 x � 3y � �3
x � 2y � 1

Discovery

SECTION 1.1

In Exercises 1– 6, determine whether the equation is linear in the
variables and 

1. 2.

3. 4.

5. 6.

In Exercises 7–10, find a parametric representation of the solution
set of the linear equation.

7. 8.

9. 10.

In Exercises 11–16, use back-substitution to solve the system.

11. 12.

13. 14.

15. 16.

In Exercises 17–30, graph each system of equations as a pair of
lines in the -plane. Solve each system and interpret your answer.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

In Exercises 31–36, complete the following set of tasks for each
system of equations.

(a) Use a graphing utility to graph the equations in the system.
(b) Use the graphs to determine whether the system is 

consistent or inconsistent.
(c) If the system is consistent, approximate the solution.
(d) Solve the system algebraically.
(e) Compare the solution in part (d) with the approximation in

part (c). What can you conclude?

31. 32.

33. 34.

35. 36.
 15.9x �  6.3y � �3.75 0.8x �  1.6y �  1.8

�5.3x �  2.1y �  1.25 4x �  8y � 9

1
2x �

1
3 y � 01

2x � y � 0

 9x �  4y � 5 2x �  8y � 3

�8x �  10y �  14 6x �  2y � 1
 4x �  5y �  3�3x � y � 3

4x � y � 4x � y � 3

2
3

x �
1
6

y �
2
3

x
4

�
y
6

� 1

0.3x � 0.4y � 68.70.07x � 0.02y � 0.16

0.2x � 0.5y � �27.80.05x � 0.03y � 0.07

x � 2y � 5 2x � y � 12

x � 1
2

�
y � 2

3
� 4

x � 3
4

�
y � 1

3
� 1

x
6x

�

�

5y
5y

�

�

21
21

2x
5x

�

�

y
y

�

�

5
11

�x
4x

�

�

3y
3y

�

�

17
7

3x
2x

�

�

5y
y

�

�

7
9

�2x �
4
3y � �4�2x �  2y �  5

1
2x �

1
3y �  1x � y �  1

�x �  2y �  3x � y �  2
x �  3y �  2 2x � y �  4

xy

x1 � x2 � x3 � 0
x2 � 0

5x1

2x1

�

�

2x2

x2

� x3 �

�

0
0

x � y
2y � z

3z

� 4
� 6
� 6

�x � y
2y

�

�

z
z

1
2z

� 0
� 3
� 0

     3x2 � 9     x2 � 3
 2x1 � 4x2 � 6x1 � x2 � 2

13x1 � 26x2 � 39x3 � 13x � y � z � 1

3x �
1
2 y � 92x � 4y � 0

�sin 2� x � y � 142 sin x � y � 14

x2 � y2 � 4
3
y

�
2
x

� 1 � 0

3x � 4xy � 02x � 3y � 4

y.x
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The symbol indicates an exercise in which you are instructed to use a graphing utility or
a symbolic computer software program.
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In Exercises 37–56, solve the system of linear equations.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55.

56.

In Exercises 57–64, use a computer software program or graphing
utility to solve the system of linear equations.

57.

58.

59.

60.

61. 62.

63. 64.

In Exercises 65–68, state why each system of equations must have
at least one solution. Then solve the system and determine if it has
exactly one solution or an infinite number of solutions.

65. 66.

67. 68.

True or False? In Exercises 69 and 70, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false,
provide an example that shows the statement is not true in all cases
or cite an appropriate statement from the text.

69. (a) A system of one linear equation in two variables is always 
consistent.

(b) A system of two linear equations in three variables is always
consistent.

(c) If a linear system is consistent, then it has an infinite 
number of solutions.

 5x �  15y �  9z �  0

 12x �  4y � z �  0 10x �  5y �  2z �  0

 12x �  5y � z �  0 5x �  5y � z �  0

 8x �  3y �  3z �  04x � 2y � 19z � 0

 4x �  3y � z �  05x � 4y � 22z � 0

 2x �  3y �  04x � 3y � 17z � 0

1
5x �

1
4y �

1
3z �

1
2w � 11

5x �
1
4 y �

1
3 z �

1
2w �  1

1
6x �

1
5y �

1
4z �

1
3w � 11

6x �
1
5 y �

1
4 z �

1
3w �  1

1
7x �

1
6y �

1
5z �

1
4w � 11

7x �
1
6 y �

1
5 z �

1
4w �  1

1
8x �

1
7y �

1
6z �

1
5w � 11

8x �
1
7 y �

1
6z �

1
5w �  1

3
4x1 �

2
5x2 �

1
5x3 �

81
100

4
5x1 �

1
8x2 �

4
3x3 �

139
150

2
5x1 �

1
4x2 �

5
6x3 � �

331
600

2
3x1 �

4
9x2 �

2
5x3 � �

19
45

1
4x1 �

3
5x2 �

1
3x3 �

43
60

1
2x1 �

3
7x2 �

2
9x3 �

349
630

 88.1x � 72.5y � 28.5z �  225.88

 56.8x � 42.8y � 27.3z � �71.44

 120.2x � 62.4y � 36.5z �  258.64

 42.4x �  89.3y �  12.9z �  33.66

 54.7x �  45.6y �  98.2z �  197.4

 123.5x �  61.3y �  32.4z � �262.74

 1.6x � 1.2y � 3.2z �  0.6w � �143.2

 0.4x � 3.2y � 1.6z �  1.4w �  148.8

 2.4x � 1.5y � 1.8z �  0.25w � �81

 0.1x � 2.5y � 1.2z �  0.75w �  108

 0.25x1 � 0.2x2 � 0.17x3 � 0.14x4 � 1.4

 0.33x1 � 0.25x2 � 0.2x3 � 0.17x4 � 1.3

 0.5x1 � 0.33x2 � 0.25x3 � 0.21x4 � 1.2

x1 � 0.5x2 � 0.33x3 � 0.25x4 � 1.1

x1

2x1 �

2x2

3x2

x2

�

�

x3

4x3

�

�

�

3x4

x4

2x4

�

�

�

�

4
0
1
5

x �

2x �

�3x �

x �

y
3y
4y
2y

� z

� z
� z

�

�

�

�

w
w

2w
w

� 6
� 0
� 4
� 0

 3x1 � 2x2 � x3 � �2 5x �  15y �  10z �  18
x1 � 2x2 � 5x3 � 2x �  3y �  2z �  18

 2x1 � 2x2 � 7x3 � �19�2x1 � 3x2 � 13x3 � �8

 4x1 � 2x2 � x3 � 7 4x1 �  2x3 � 10

x1 �  4x3 � 13 2x1 � x2 � 3x3 � 4

x1 � 11x2 � 4x3 � 3 2x1 � 3x2 � 6x3 � 8

 2x1 � 4x2 � x3 � 7x1 � x2 � 2x3 � 3

 5x1 � 3x2 � 2x3 � 3 3x1 � 2x2 � 4x3 � 1

 4x � y �  4 3x � z �  0

�x �  3y �  2z �  8 2x � y � z �  3

x � y � z �  2x � y � z �  6

 0.07x1 � 0.02x2 � 0.17 0.03x1 � 0.04x2 � 0.52

 0.05x1 � 0.03x2 � 0.21 0.02x1 � 0.05x2 � �0.19

 2x1 � x2 � 12x � 2y � 5

x1 � 3
4

�
x2 � 1

3
�  1

x � 1
2

�
y � 2

3
� 4

 4x1 � x2 � 01
5x �

2
5y � �

1
3

2
3x1 �

1
6x2 � 0 9x �  3y � �1

 6x1 � 2x2 � 0u �  2v �  120
x1 � 2x2 � 0 2u � v �  120

 6x �  4y �  14 3x1 � 2x2 � �1
 3x �  2y �  2x1 � x2 � 0

The symbol indicates that electronic data sets for these exercises are 

available at college.hmco.com/pic/larsonELA6e. These data sets are compatible
with each of the following technologies: MATLAB, Mathematica, Maple,
Derive, TI-83/TI-83 Plus, TI-84/TI-84 Plus, TI-86, TI-89, TI-92, and TI-92 Plus.
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70. (a) A system of linear equations can have exactly two 
solutions.

(b) Two systems of linear equations are equivalent if they have
the same solution set.

(c) A system of three linear equations in two variables is always
inconsistent.

71. Find a system of two equations in two variables, and that
has the solution set given by the parametric representation

and where t is any real number. Then show
that the solutions to your system can also be written as

and

72. Find a system of two equations in three variables, and 
that has the solution set given by the parametric representation

and

where and are any real numbers. Then show that the 
solutions to your system can also be written as 

and

In Exercises 73–76, solve the system of equations by letting
and

73. 74. 0

75. 76.

In Exercises 77 and 78, solve the system of linear equations for 
and

77. 78.

In Exercises 79–84, determine the value(s) of such that the 
system of linear equations has the indicated number of solutions.

79. An infinite number of 80. An infinite number of
solutions solutions

81. Exactly one solution 82. No solution

83. No solution 84. Exactly one solution

85. Determine the values of such that the system of linear 
equations does not have a unique solution.

86. Find values of a, b, and c such that the system of linear 
equations has (a) exactly one solution, (b) an infinite number 
of solutions, and (c) no solution.

87. Writing Consider the system of linear equations in x and y.

Describe the graphs of these three equations in the xy-plane
when the system has (a) exactly one solution, (b) an infinite
number of solutions, and (c) no solution.

88. Writing Explain why the system of linear equations in Exercise
87 must be consistent if the constant terms and are all
zero.

89. Show that if for all x, then 

90. Consider the system of linear equations in x and y.

Under what conditions will the system have exactly one 
solution?

In Exercises 91 and 92, sketch the lines determined by the system
of linear equations. Then use Gaussian elimination to solve the
system. At each step of the elimination process, sketch the 
corresponding lines. What do you observe about these lines?

91. 92.

�4x �  6y � �14 5x �  6y �  13

 2x �  3y �  7x �  4y � �3

cx � dy � f

ax � by � e

a � b � c � 0.ax2 � bx � c � 0

c3c2,c1,

a3x � b3y � c3

a2x � b2y � c2

a1x � b1y � c1

 2x � ay � bz � c

x �  6y � z �  0

x �  5y � z �  0

kx � y � z �  1

x � ky � z �  2

x � y � kz �  3

k

 2x � y � z �  1

x � y � z �  0 3x �  6y �  8z �  4

kx �  2ky �  3kz �  4kx �  2y � kz �  6

kx � y �  4kx � y �  0

x � ky �  2x � ky �  0

 2x �  3y � �12kx � y � �3

kx � y �  4 4x � ky �   6

k

��sin ��x � �cos ��y � 1��sin ��x � �cos ��y � 0

�cos ��x � �sin ��y � 1�cos ��x � �sin ��y � 1

y.x

2
x
3
x
2
x

�

�

�

1
y
4
y
1
y

�

�

2
z

3
z

�

�

�

5

�1

0�

2
x

4
x

2
x

�

�

1
y

3
y

�

�

�

3
z
2
z

13
z

�

�

�

4

10

�8

3
x

�
4
y

� �
25
6

3
x

�
4
y

� 0

2
x

�
3
y

�
12
x

�
12
y

� 7

C � 1z.B � 1y,A � 1x,

x3 � t.x2 � s,x1 � 3 � s � t,

ts

x3 � 3 � s � t,x2 � s,x1 � t,

x3,x2,x1,

x2 � t.x1 �
4
3

�
t
3

x2 � 3t � 4,x1 � t

x2,x1
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Writing In Exercises 93 and 94, the graphs of two equations 
are shown and appear to be parallel. Solve the system of equations 
algebraically. Explain why the graphs are misleading.

93.

94.

−10 10 15 20

−10

−20

5

10

15

20

y

x

21x � 20y �

13x � 12y �

0
120

−1−2−3−4 1 2 3 4

−3

−4

1

3

4

y

x

100y � x �

99y � x �

200
�198

Gaussian Elimination and Gauss-Jordan Elimination

In Section 1.1, Gaussian elimination was introduced as a procedure for solving a system of
linear equations. In this section you will study this procedure more thoroughly, beginning
with some definitions. The first is the definition of a matrix.

R E M A R K : The plural of matrix is matrices. If each entry of a matrix is a real number,
then the matrix is called a real matrix. Unless stated otherwise, all matrices in this text are 
assumed to be real matrices.

The entry is located in the th row and the th column. The index is called the row
subscript because it identifies the row in which the entry lies, and the index is called the
column subscript because it identifies the column in which the entry lies.

A matrix with rows and columns (an matrix) is said to be of size If
the matrix is called square of order For a square matrix, the entries 

are called the main diagonal entries.a33, .  .  .
a22,a11,n.m � n,

m � n.m � nnm

j
ijiaij

1.2

If m and n are positive integers, then an matrix is a rectangular array

m rows

n columns

in which each entry, of the matrix is a number. An matrix (read “m by n”) has
m rows (horizontal lines) and n columns (vertical lines).

m � naij,

�
a11

a21

a31.
.
.

am1

a12

a22

a32.
.
.

am2

a13

a23

a33.
.
.

am3

. . .

. . .

. . .

. . .

a1n

a2n

a3n.
.
.

amn

�
m � nDefinition of a Matrix
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Each matrix has the indicated size.

(a) Size: (b) Size:

(c) Size: (d) Size:

One very common use of matrices is to represent systems of linear equations. The matrix
derived from the coefficients and constant terms of a system of linear equations is called the
augmented matrix of the system. The matrix containing only the coefficients of the system
is called the coefficient matrix of the system. Here is an example.

R E M A R K : Use 0 to indicate coefficients of zero. The coefficient of in the third equation
is zero, so a 0 takes its place in the matrix. Also note the fourth column of constant terms
in the augmented matrix.

When forming either the coefficient matrix or the augmented matrix of a system, you
should begin by aligning the variables in the equations vertically.

Elementary Row Operations

In the previous section you studied three operations that can be used on a system of linear
equations to produce equivalent systems.

1. Interchange two equations.
2. Multiply an equation by a nonzero constant.
3. Add a multiple of an equation to another equation.

y

�
e
2

�7

�
�2

4��1 �3  0 1
2�

3 � 21 � 4

�0

0

0

0��2�

2 � 21 � 1

E X A M P L E  1 Examples of Matrices

Augmented Matrix

�
1

�1
2

�4
3
0

3
�1
�4

5
�3

6�
System

 2x     �  4z �  6
�x �  3y � z � �3

x �  4y �  3z �  5
Coefficient Matrix

�
1

�1
2

�4
3
0

3
�1
�4�

Given System

x1 � 5x3 � 0
�x2 � 4x3 � �2

x1 � 3x2 � 9
Align Variables

x1

x1

� 3x2

�x2

�
� 4x3 �
� 5x3 �

9
�2

0

Augmented Matrix

�
1
0
1

3
�1

0

0
4

�5

9
�2

0�



In matrix terminology these three operations correspond to elementary row operations.
An elementary row operation on an augmented matrix produces a new augmented 
matrix corresponding to a new (but equivalent) system of linear equations. Two matrices are
said to be row-equivalent if one can be obtained from the other by a finite sequence of 
elementary row operations.

Although elementary row operations are simple to perform, they involve a lot of 
arithmetic. Because it is easy to make a mistake, you should get in the habit of noting 
the elementary row operation performed in each step so that it is easier to check your work.

Because solving some systems involves several steps, it is helpful to use a shorthand
method of notation to keep track of each elementary row operation you perform. This 
notation is introduced in the next example.

(a) Interchange the first and second rows.

Original Matrix New Row-Equivalent Matrix Notation

(b) Multiply the first row by to produce a new first row.

Original Matrix New Row-Equivalent Matrix Notation

(c) Add times the first row to the third row to produce a new third row.

Original Matrix New Row-Equivalent Matrix Notation

R E M A R K : Notice in Example 2(c) that adding times row 1 to row 3 does not change
row 1.

�2

�
1

0

0

2

3

�3

�4

�2

13

3

�1

�8
��

1

0

2

2

3

1

�4

�2

5

3

�1

�2
�

�2

�
1

1

5

�2

3

�2

3

�3

1

�1

0

2
��

2

1

5

�4

3

�2

6

�3

1

�2

0

2
�

1
2

�
�1

0

2

2

1

�3

0

3

4

3

4

1
��

0

�1

2

1

2

�3

3

0

4

4

3

1
�

E X A M P L E  2 Elementary Row Operations
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R3 1 ��2�R1 → R3

�1
2�R1 → R1

R2↔R1

1. Interchange two rows.
2. Multiply a row by a nonzero constant.
3. Add a multiple of a row to another row.

Elementary Row Operations
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In Example 7 in Section 1.1, you used Gaussian elimination with back-substitution to
solve a system of linear equations. You will now learn the matrix version of Gaussian 
elimination. The two methods used in the next example are essentially the same. The basic
difference is that with the matrix method there is no need to rewrite the variables over and
over again.

Linear System Associated Augmented Matrix

Add the first equation to the second Add the first row to the second row to
equation. produce a new second row.

Add times the first equation to the Add times the first row to the third
third equation. row to produce a new third row.

Add the second equation to the third Add the second row to the third row to
equation. produce a new third row.

�
1

0

0

�2

1

0

3

3

2

9

5

4
�x � 2y � 3z � 9

y � 3z � 5
2z � 4

     �y � z � �1
     y �  3z �  5 �

1

0

0

�2

1

�1

3

3

�1

9

5

�1
�

x �  2y �  3z �  9

�2�2

 2x �  5y �  5z �  17
     y �  3z �  5 �

1

0

2

�2

1

�5

3

3

5

9

5

17
�

x �  2y �  3z �  9

 2x �  5y �  5z �  17
�x �  3y     � �4 �

1

�1

2

�2

3

�5

3

0

5

9

�4

17
�

x �  2y �  3z �  9

E X A M P L E  3 Using Elementary Row Operations to Solve a System

Many graphing utilities and computer software programs can perform elementary row operations 
on matrices. If you are using a graphing utility, your screens for Example 2(c) may look like those
shown below. Keystrokes and programming syntax for these utilities/programs applicable to Example
2(c) are provided in the Online Technology Guide, available at college.hmco.com/pic/larsonELA6e.

Technology
Note

R2 1 R1 → R2

R3 1 ��2�R1 → R3

R3 1 R2 → R3



Multiply the third equation by  Multiply the third row by to produce
a new third row.

Now you can use back-substitution to find the solution, as in Example 6 in Section 1.1. The
solution is and 

The last matrix in Example 3 is said to be in row-echelon form. The term echelon
refers to the stair-step pattern formed by the nonzero elements of the matrix. To be in 
row-echelon form, a matrix must have the properties listed below.

R E M A R K : A matrix in row-echelon form is in reduced row-echelon form if every
column that has a leading 1 has zeros in every position above and below its leading 1.

The matrices below are in row-echelon form.

(a) (b)

(c) (d)

The matrices shown in parts (b) and (d) are in reduced row-echelon form. The matrices
listed below are not in row-echelon form.

(e) (f) �
1

0

0

2

0

1

�1

0

2

2

0

�4
��

1

0

0

2

2

0

�3

1

1

4

�1

�3
�

�
1

0

0

0

0

1

0

0

0

0

1

0

�1

2

3

0
��

1

0

0

0

�5

0

0

0

2

1

0

0

�1

3

1

0

3

�2

4

1
�

�
0

0

0

1

0

0

0

1

0

5

3

0
��

1

0

0

2

1

0

�1

0

1

4

3

�2
�

E X A M P L E  4 Row-Echelon Form

z � 2.y � �1,x � 1,

�
1

0

0

�2

1

0

3

3

1

9

5

2
�x � 2y � 3z � 9

y � 3z � 5
z � 2

1
2

1
2.
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A matrix in row-echelon form has the following properties.

1. All rows consisting entirely of zeros occur at the bottom of the matrix.
2. For each row that does not consist entirely of zeros, the first nonzero entry is 1 (called

a leading 1).
3. For two successive (nonzero) rows, the leading 1 in the higher row is farther to the left

than the leading 1 in the lower row.

Definition of 

Row-Echelon Form 

of a Matrix

Use a graphing utility or a 
computer software program 
to find the reduced row-echelon
form of the matrix in part (f ) 
of Example 4. Keystrokes and
programming syntax for these
utilities/programs applicable to
Example 4(f) are provided in the
Online Technology Guide,
available at college.hmco.com/pic/
larsonELA6e.

Technology
Note

�1
2�R3 → R3
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It can be shown that every matrix is row-equivalent to a matrix in row-echelon form. 
For instance, in Example 4 you could change the matrix in part (e) to row-echelon form by
multiplying the second row in the matrix by 

The method of using Gaussian elimination with back-substitution to solve a system is as
follows.

R E M A R K : For keystrokes and programming syntax regarding specific graphing utilities
and computer software programs involving Example 4(f), please visit college.hmco.com/
pic/larsonELA6e. Similar exercises and projects are also available on the website.

Gaussian elimination with back-substitution works well as an algorithmic method for
solving systems of linear equations. For this algorithm, the order in which the elementary
row operations are performed is important. Move from left to right by columns, changing
all entries directly below the leading 1’s to zeros.

Solve the system.

S O L U T I O N The augmented matrix for this system is

Obtain a leading 1 in the upper left corner and zeros elsewhere in the first column.

�
1

0

0

1

2

1

0

�4

�1

1

3

�7

0

�2

�3

�1

2

�3

�6

�19
�

�
1

0

2

1

2

1

4

�4

�1

1

1

�7

0

�2

�3

�1

2

�3

�2

�19
�

�
0

1

2

1

1

2

4

�4

1

�1

1

�7

�2

0

�3

�1

�3

2

�2

�19
�.

x1

2x1

x1

�

�

�

x2

2x2

4x2

4x2

�

�

�

�

x3

x3

x3

7x3

�

�

�

2x4

3x4

x4

�

�
�
�

�3
2

�2
�19

E X A M P L E  5 Gaussian Elimination with Back-Substitution

1
2.

1. Write the augmented matrix of the system of linear equations.
2. Use elementary row operations to rewrite the augmented matrix in row-echelon form.
3. Write the system of linear equations corresponding to the matrix in row-echelon form,

and use back-substitution to find the solution.

Gaussian Elimination with

Back-Substitution

The first two rows
are interchanged.

R2↔R1

Adding times the first
row to the third row
produces a new third row.

�2

R3 1 ��2�R1 → R3



Now that the first column is in the desired form, you should change the second column as
shown below.

To write the third column in proper form, multiply the third row by 

Similarly, to write the fourth column in proper form, you should multiply the fourth row 
by

The matrix is now in row-echelon form, and the corresponding system of linear equations
is as shown below.

Using back-substitution, you can determine that the solution is

When solving a system of linear equations, remember that it is possible for the system
to have no solution. If during the elimination process you obtain a row with all zeros except
for the last entry, it is unnecessary to continue the elimination process. You can simply 
conclude that the system is inconsistent and has no solution.

x4 � 3.x3 � 1,x2 � 2,x1 � �1,

                 x4 �  3

           x3 �    x4 � �2

       x2 � x3 �  2 x4 � �3

x1 �  2 x2 � x3        �  2

�
1

0

0

0

2

1

0

0

�1

1

1

0

0

�2

�1

1

2

�3

�2

3
�

�
1
13.

�
1

0

0

0

2

1

0

0

�1

1

1

0

0

�2

�1

�13

2

�3

�2

�39
�

1
3.

�
1

0

0

0

2

1

0

0

�1

1

3

0

0

�2

�3

�13

2

�3

�6

�39
�

�
1

0

0

0

2

1

0

�6

�1

1

3

�6

0

�2

�3

�1

2

�3

�6

�21
�
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Multiplying the third row by 
produces a new third row.

1
3 �1

3�R3 → R3

Multiplying the fourth row by 
produces a new fourth row.

� 1
13

�� 1
13�R4 → R4

Adding times the first
row to the fourth row
produces a new fourth row.

�1

R4 1 ��1�R1 → R4

Adding 6 times the second
row to the fourth row
produces a new fourth row. R4 1 �6�R2 → R4



Solve the system.

S O L U T I O N The augmented matrix for this system is

Apply Gaussian elimination to the augmented matrix.

Note that the third row of this matrix consists of all zeros except for the last entry. This
means that the original system of linear equations is inconsistent. You can see why this is
true by converting back to a system of linear equations.

�
1

0

0

0

�1

1

0

5

2

�1

0

�7

4

2

�2

�11
�

�
1

0

0

0

�1

1

�1

5

2

�1

1

�7

4

2

�4

�11
�

�
1

0

0

3

�1

1

�1

2

2

�1

1

�1

4

2

�4

1
�

�
1

0

2

3

�1

1

�3

2

2

�1

5

�1

4

2

4

1
�

�
1

1

2

3

�1

0

�3

2

2

1

5

�1

4

6

4

1
�.

 3x1 � 2x2 � x3 � 1

 2x1 � 3x2 � 5x3 � 4

x1     � x3 � 6

x1 � x2 � 2x3 � 4

E X A M P L E  6 A System with No Solution
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R4 1 ��3�R1 → R4

R3 1 R2 → R3

R3 1 ��2�R1 → R3

R2 1 ��1�R1 → R2



Because the third “equation” is a false statement, the system has no solution.

Gauss-Jordan Elimination

With Gaussian elimination, you apply elementary row operations to a matrix to obtain a
(row-equivalent) row-echelon form. A second method of elimination, called Gauss-Jordan
elimination after Carl Gauss and Wilhelm Jordan (1842–1899), continues the reduction
process until a reduced row-echelon form is obtained. This procedure is demonstrated in the
next example.

Use Gauss-Jordan elimination to solve the system.

S O L U T I O N In Example 3, Gaussian elimination was used to obtain the row-echelon form

Now, rather than using back-substitution, apply elementary row operations until you obtain
a matrix in reduced row-echelon form. To do this, you must produce zeros above each of
the leading 1’s, as follows.

�
1

0

0

�2

1

0

3

3

1

9

5

2
�.

 2x �  5y �  5z �  17

�x �  3y     � �4

x �  2y �  3z �  9

E X A M P L E  7 Gauss-Jordan Elimination

x1 � x2 �
x2 �

5x2 �

2x3 �
x3 �
0 �

7x3 �

4
2

�2
�11

Consider the system of linear equations.

Without doing any row operations, explain why this system is consistent.
The system below has more variables than equations. Why does it have an infinite number of 

solutions?
2 x1 � 3x2 � 5x3 � 2x4 � 0

�5x1 � 6x2 � 17x3 � 3x4 � 0
7x1 � 4 x2 � 3x3 � 13x4 � 0

2x1 � 3x2 � 5x3 � 0
�5x1 � 6x2 � 17x3 � 0

7x1 � 4x2 � 3x3 � 0

Discovery
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Now, converting back to a system of linear equations, you have

The Gaussian and Gauss-Jordan elimination procedures employ an algorithmic approach
easily adapted to computer use. These elimination procedures, however, make no effort to
avoid fractional coefficients. For instance, if the system in Example 7 had been listed as 

both procedures would have required multiplying the first row by which would have 
introduced fractions in the first row. For hand computations, fractions can sometimes be
avoided by judiciously choosing the order in which elementary row operations are applied. 

R E M A R K : No matter which order you use, the reduced row-echelon form will be the same.

The next example demonstrates how Gauss-Jordan elimination can be used to solve a
system with an infinite number of solutions.

Solve the system of linear equations.

S O L U T I O N The augmented matrix of the system of linear equations is

�2

3

4

5

�2

0

0

1�.

2x1 � 4x2 � 2x3 � 0
3x1 � 5x2 � 1

E X A M P L E  8 A System with an Infinite Number of Solutions

1
2,

�x �  3y     � �4

x �  2y �  3z �  9

 2x �  5y �  5z �  17

         z �  2.

     y     � �1

x         �  1

�
1

0

0

0

1

0

0

0

1

1

�1

2
�

�
1

0

0

0

1

0

9

0

1

19

�1

2
�

�
1

0

0

0

1

0

9

3

1

19

5

2
�
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R1 1 ��9�R3 → R1

R1 1 �2�R2 → R1

R2 1 ��3�R3 → R2
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Using a graphing utility, a computer software program, or Gauss-Jordan elimination, you
can verify that the reduced row-echelon form of the matrix is

The corresponding system of equations is

Now, using the parameter to represent the nonleading variable , you have 

where is any real number.

R E M A R K : Note that in Example 8 an arbitrary parameter was assigned to the nonleading
variable You subsequently solved for the leading variables and as functions of 

You have looked at two elimination methods for solving a system of linear equations.
Which is better? To some degree the answer depends on personal preference. In real-life 
applications of linear algebra, systems of linear equations are usually solved by computer.
Most computer programs use a form of Gaussian elimination, with special emphasis on
ways to reduce rounding errors and minimize storage of data. Because the examples and
exercises in this text are generally much simpler and focus on the underlying concepts, you
will need to know both elimination methods.

Homogeneous Systems of Linear Equations

As the final topic of this section, you will look at systems of linear equations in which 
each of the constant terms is zero. We call such systems homogeneous. For example, a 
homogeneous system of equations in variables has the form

It is easy to see that a homogeneous system must have at least one solution. Specifically,
if all variables in a homogeneous system have the value zero, then each of the equations
must be satisfied. Such a solution is called trivial (or obvious). For instance, a
homogeneous system of three equations in the three variables and must have

and as a trivial solution.x3 � 0x2 � 0,x1 � 0,
x3x2,x1,

a1nxn � 0

a2nxn � 0

a3nxn � 0.
.
.

amnxn � 0.

. . . �

. . . �

. . . �

. . . �

a13x3 �

a23x3 �

a33x3 �

am3x3 �

a12x2 �

a22x2 �

a32x2 �

am2x2 �

a11x1 �

a21x1 �

a31x1 �

am1x1 �

nm

t.x2x1x3.

tx3 � t,x2 � �1 � 3t,x1 � 2 � 5t,

x3t

     x2 � 3x3 � �1.

x1      �  5x3 � 2

�1

0

0

1

5

�3

2

�1�.



Solve the system of linear equations.

S O L U T I O N Applying Gauss-Jordan elimination to the augmented matrix

yields the matrix shown below.

The system of equations corresponding to this matrix is 

Using the parameter the solution set is

is any real number.

This system of equations has an infinite number of solutions, one of which is the trivial 
solution

Example 9 illustrates an important point about homogeneous systems of linear 
equations. You began with two equations in three variables and discovered that the system
has an infinite number of solutions. In general, a homogeneous system with fewer equations
than variables has an infinite number of solutions.

A proof of Theorem 1.1 can be done using the same procedures as those used in
Example 9, but for a general matrix.

�given by t � 0�.

tx3 � t,x2 � t,x1 � �2t,

t � x3,

     x2 � x3 � 0.

x1      �  2x3 � 0

�1

0

0

1

2

�1

0

0�

�1

0

�1

1

3

�1

0

0�

�1

0

�1

3

3

�3

0

0�

�1

2

�1

1

3

3

0

0�

 2x1 � x2 � 3x3 � 0

x1 � x2 � 3x3 � 0

E X A M P L E  9 Solving a Homogeneous System of Linear Equations
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R2 1 ��2�R1 → R2

�1
3�R2 → R2

R1 1 R2 → R1

Every homogeneous system of linear equations is consistent. Moreover, if the system has
fewer equations than variables, then it must have an infinite number of solutions.

THEOREM 1.1

The Number of Solutions of

a Homogeneous System



ExercisesSECTION 1.2

In Exercises 1– 8, determine the size of the matrix.

1. 2.

3. 4.

5. 6.

7. 8.

In Exercises 9–14, determine whether the matrix is in row-echelon
form. If it is, determine whether it is also in reduced row-echelon
form.

9. 10.

11. 12.

13. 14.

In Exercises 15–22, find the solution set of the system of linear 
equations represented by the augmented matrix.

15. 16.

17. 18.

19. 20.

21. 22.

In Exercises 23–36, solve the system using either Gaussian elimina-
tion with back-substitution or Gauss-Jordan elimination.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35.

36.

In Exercises 37–42, use a computer software program or graphing
utility to solve the system of linear equations.

37.

38.

 93.6x �  50.7y �  12.6z �  44.4

 86.4x �  12.3y �  56.9z �  14.5

 23.4x �  45.8y �  43.7z �  87.2

 3x1 � 5x2 � 7x3 � 4x4 � 29.9

x1 � 4x2 � 7x3 � 2x4 � 45.7

x1 � 2x2 � 5x3 � 3x4 � 23.6

 5x �  2y � z � w �  3

x �  5y �  2z �  6w � �3

 3x �  4y � w �  1

 2x � y � z �  2w � �6

�x �  2y �  8z �  4

 2x �  5y �  20z �  10

x � y �  4z �  2

 3x �  3y �  12z �  6

�3x �  6y �  3z � �21 3x �  9y �  5z �  28w �  30

x �  2y � z �  8 4x �  12y �  7z �  20w �  22

 8x1 � 9x2 � 15x3 � 10 2x1 � x2 � x3 � 0

 4x1 � 3x2 � 7x3 � 5x1 �  2x3 � 1

 2x1 �    3x3 � 3x1 � x2 � 5x3 � 3

 7x1 � 5x2 �  6 2x1 � 2x2 � x3 � 4

   2x2 � x3 � 14 3x1 � x2 � 2x3 � 5

 2x1 � x2 � 3x3 � 24x1 �  3x3 � �2

 3x �  2y �  8 4x �  8y �  32

x � y �  6 3x �  4y �  4

x �  2y �  0�3x �  5y � �22

 3x �  2y �  1.6 2x �  4y �  3

 2x � y � �0.1�x �  2y �  1.5

�2x �  6y � �16 2x � y �  8

 2x �  6y �  16x �  2y �  7

�
1
0
0
0

2
1
0
0

0
3
1
0

1
0
2
0

3
1
0
2
��

1
0
0
0

2
1
0
0

0
2
1
0

1
1
2
1

4
3
1
4
�
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�
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0
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0

0
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�
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0
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0
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0
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39.

40.

41.

42.

In Exercises 43–46, solve the homogeneous linear system corre-
sponding to the coefficient matrix provided.

43. 44.

45. 46.

47. Consider the matrix 

(a) If is the augmented matrix of a system of linear 
equations, determine the number of equations and the
number of variables.

(b) If is the augmented matrix of a system of linear 
equations, find the value(s) of such that the system is 
consistent.

(c) If is the coefficient matrix of a homogeneous system of
linear equations, determine the number of equations and the
number of variables.

(d) If is the coefficient matrix of a homogeneous system of
linear equations, find the value(s) of such that the system
is consistent.

48. Consider the matrix 

(a) If is the augmented matrix of a system of linear 
equations, determine the number of equations and the
number of variables.

(b) If is the augmented matrix of a system of linear 
equations, find the value(s) of such that the system is 
consistent.

(c) If is the coefficient matrix of a homogeneous system of
linear equations, determine the number of equations and the
number of variables.

(d) If is the coefficient matrix of a homogeneous system of
linear equations, find the value(s) of such that the system
is consistent.

In Exercises 49 and 50, find values of a, b, and c (if possible) such
that the system of linear equations has (a) a unique solution, (b) no
solution, and (c) an infinite number of solutions.

49. 50.

51. The system below has one solution: and 

Equation 1

Equation 2

Equation 3

Solve the systems provided by (a) Equations 1 and 2,
(b) Equations 1 and 3, and (c) Equations 2 and 3. (d) How many
solutions does each of these systems have?

52. Assume the system below has a unique solution.

Equation 1

Equation 2

Equation 3

Does the system composed of Equations 1 and 2 have a unique
solution, no solution, or an infinite number of solutions?

a31x1 � a32x2 � a33x3 � b3

a21x1 � a22x2 � a23x3 � b2

a11x1 � a12x2 � a13x3 � b1

�x �  3y �  2z �  6

x � y �  0

 4x �  2y �  5z �  16

z � 2.y � �1,x � 1,

ax � by � cz �  0ax � by � cz �  0

x � z �  0x � z �  2

   y � z �  0   y � z �  2

x � y �  0x � y �  2

k
A

A

k
A

A

A � �
2

�4
4

�1
2

�2

3
k
6�.

k
A

A

k
A

A

A � � 1
�3

k
4

2
1�.

�
0

0

0

0

0

0

0

0

0
��

1
0
0

0
0
0

0
1
0

1
0
0�

�1

0

0

1

0

1

0

0��
1

0

0

0

1

0

0

1

0
�

x1 � 3x2 � x3 � 3x4 � 2x5 � x6 � 11
�x1 � 2x2 � x3 � 2x4 � 2x5 � 3x6 � 10
 3x1 � 2x2 � x3 � x4 � 3x5 � 2x6 � �1
x1 � 3x2 � 2x3 � x4 � 2x5 � 3x6 � �5

 2x1 � x2 � 3x3 � x4 � 3x5 � 2x6 � 17
x1 � 2x2 � 2x3 � 2x4 � x5 � 3x6 � 0

 5x1 � 4x2 � x3 � x4 � 4x5 � 5x6 � 9
x1 � 3x2 � x3 � 2x4 � x5 � 2x6 � 9

�2x1 � 3x2 � x3 � x4 � x5 � 2x6 � �7
 2x1 � x2 � 3x3 � x4 � 2x5 � 5x6 � 2

x1 � 2x2 � x3 � 3x4 � x5 � 4x6 � 4
 4x1 � 3x2 � x3 � x4 � 2x5 � x6 � 8

 8x1 � 5x2 � 2x3 � x4 � 2x5 � 3

 4x1 � 4x2 � x3 �  3x5 � 4

 2x1 � 2x2 � x3 � x4 � 2x5 � 1

 3x1 � 3x2 � x3 � x4 � x5 � 5

x1 � x2 � 2x3 � 3x4 � 2x5 � 9
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In Exercises 53 and 54, find the unique reduced row-echelon matrix
that is row-equivalent to the matrix provided.

53. 54.

55. Writing Describe all possible reduced row-echelon
matrices. Support your answer with examples.

56. Writing Describe all possible reduced row-echelon
matrices. Support your answer with examples.

True or False? In Exercises 57 and 58, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false,
provide an example that shows the statement is not true in all cases
or cite an appropriate statement from the text.

57. (a) A matrix has six rows.

(b) Every matrix is row-equivalent to a matrix in row-echelon
form.

(c) If the row-echelon form of the augmented matrix of a 
system of linear equations contains the row 1 0 0 0 0
then the original system is inconsistent.

(d) A homogeneous system of four linear equations in six 
variables has an infinite number of solutions.

58. (a) A matrix has four columns.

(b) Every matrix has a unique reduced row-echelon form.

(c) A homogeneous system of four linear equations in four
variables is always consistent.

(d) Multiplying a row of a matrix by a constant is one of the 
elementary row operations.

In Exercises 59 and 60, determine conditions on and such
that the matrix 

will be row-equivalent to the given matrix.

59. 60.

In Exercises 61 and 62, find all values of (the Greek letter lambda)
such that the homogeneous system of linear equations will have 
nontrivial solutions.

61.

62.

63. Writing Is it possible for a system of linear equations with
fewer equations than variables to have no solution? If so, give an
example.

64. Writing Does a matrix have a unique row-echelon form?
Illustrate your answer with examples. Is the reduced 
row-echelon form unique?

65. Writing Consider the matrix 

Perform the sequence of row operations.

(a) Add times the second row to the first row.

(b) Add 1 times the first row to the second row.

(c) Add times the second row to the first row.

(d) Multiply the first row by 

What happened to the original matrix? Describe, in general,
how to interchange two rows of a matrix using only the second
and third elementary row operations.

66. The augmented matrix represents a system of linear equations
that has been reduced using Gauss-Jordan elimination. Write 
a system of equations with nonzero coefficients that is 
represented by the reduced matrix. 

There are many correct answers.

67. Writing Describe the row-echelon form of an augmented
matrix that corresponds to a system of linear equations that is
inconsistent.

68. Writing Describe the row-echelon form of an augmented
matrix that corresponds to a system of linear equations that has
infinitely many solutions.

69. Writing In your own words, describe the difference between 
a matrix in row-echelon form and a matrix in reduced 
row-echelon form.
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Applications of Systems of Linear Equations

Systems of linear equations arise in a wide variety of applications and are one of the 
central themes in linear algebra. In this section you will look at two such applications, and
you will see many more in subsequent chapters. The first application shows how to fit a
polynomial function to a set of data points in the plane. The second application focuses on 
networks and Kirchhoff’s Laws for electricity.

Polynomial Curve Fitting

Suppose a collection of data is represented by points in the -plane,

and you are asked to find a polynomial function of degree 

whose graph passes through the specified points. This procedure is called polynomial
curve fitting. If all -coordinates of the points are distinct, then there is precisely one 
polynomial function of degree (or less) that fits the points, as shown in Figure 1.4.

To solve for the coefficients of substitute each of the points into the 
polynomial function and obtain linear equations in variables 

This procedure is demonstrated with a second-degree polynomial in Example 1.

Determine the polynomial whose graph passes through the points
and

S O L U T I O N Substituting 2, and 3 into and equating the results to the respective -values 
produces the system of linear equations in the variables and shown below.

The solution of this system is and so the polynomial 
function is

p�x� � 24 � 28x � 8x2.

a2 � 8,a1 � �28,a0 � 24,

p�3� � a0 � a1�3� � a2�3�2 � a0 � 3a1 � 9a2 � 12

p�2� � a0 � a1�2� � a2�2�2 � a0 � 2a1 � 4a2 � 0

p�1� � a0 � a1�1� � a2�1�2 � a0 � a1 � a2 � 4

a2a1,a0,
yp�x�x � 1,

�3, 12�.�2, 0�,�1, 4�,
p�x� � a0 � a1x � a2x2

E X A M P L E  1 Polynomial Curve Fitting

a0 � a1xn � a2xn
2 � . . . � an�1xn

n�1 � yn

.

.

.

a0 � a1x2 � a2x2
2 � . . . � an�1x2

n�1 � y2

a0 � a1x1 � a2x1
2 � . . . � an�1x1

n�1 � y1

an�1.a0, a1, a2, . . . ,nn
np�x�,n

nn � 1
x

p�x� � a0 � a1x � a2x2 � . . . � an�1xn�1

n � 1

�x1, y1�, �x2, y2�, . . . , �xn, yn�

xyn

1.3

Polynomial Curve Fitting

(x1, y1)

(x2, y2)

(x3, y3)

(xn, yn)

y

x

Figure 1.4

Simulation
Explore this concept further with an
electronic simulation available on
the website college.hmco.com/
pic/larsonELA6e.
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The graph of is shown in Figure 1.5.

Figure 1.5 Figure 1.6

Find a polynomial that fits the points and 

S O L U T I O N Because you are provided with five points, choose a fourth-degree polynomial function

Substituting the given points into produces the system of linear equations listed below. 

The solution of these equations is

which means the polynomial function is

The graph of is shown in Figure 1.6.p

�
1

24 �24 � 30x � 101x2 � 18x3 � 17x4�.

p�x� � 1 �
30
24x �

101
24 x2 �

18
24x3 �

17
24x4

a4 � �
17
24a3 �

18
24,a2 �

101
24 ,a1 � �

30
24,a0 � 1,

a0 � 2a1 � 4a2 � 8a3 � 16a4 � 10

a0 � a1 � a2 � a3 � a4 � 4

a0                 �  1

a0 � a1 � a2 � a3 � a4 � 5

a0 � 2a1 � 4a2 � 8a3 � 16a4 � 3

p�x�

p�x� � a0 � a1x � a2x2 � a3x3 � a4x4.

�2, 10�.�1, 4�,�0, 1�,��1, 5�,��2, 3�,

E X A M P L E  2 Polynomial Curve Fitting

p(x) = (24 − 30x + 101x2 + 18x3 −17x4

(2, 10)

(1, 4)

(0, 1)

(−1, 5)

(−2, 3)

1
24

x
−3 −1 1 2

4

8

10

y

)

x

p(x) = 24 − 28x + 8x2

(1, 4)

(2, 0)

(3, 12)
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4
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The system of linear equations in Example 2 is relatively easy to solve because the 
-values are small. With a set of points with large -values, it is usually best to translate the

values before attempting the curve-fitting procedure. This approach is demonstrated in the
next example.

Find a polynomial that fits the points

S O L U T I O N Because the given -values are large, use the translation to obtain

This is the same set of points as in Example 2. So, the polynomial that fits these points is

Letting you have

Find a polynomial that relates the periods of the first three planets to their mean distances
from the sun, as shown in Table 1.1. Then test the accuracy of the fit by using the polyno-
mial to calculate the period of Mars. (Distance is measured in astronomical units, and
period is measured in years.) (Source: CRC Handbook of Chemistry and Physics)

TABLE 1.1

Planet Mercury Venus Earth Mars Jupiter Saturn

Mean Distance 0.387 0.723 1.0 1.523 5.203 9.541

Period 0.241 0.615 1.0 1.881 11.861 29.457

S O L U T I O N Begin by fitting a quadratic polynomial function

to the points and The system of linear equations 
obtained by substituting these points into isp�x�

�1, 1�.�0.723, 0.615�,�0.387, 0.241�,

p�x� � a0 � a1x � a2x2

E X A M P L E  4 An Application of Curve Fitting

p�x� � 1 �
5
4�x � 2008� �

101
24 �x � 2008�2 �

3
4�x � 2008�3 �

17
24�x � 2008�4.

z � x � 2008,

� 1 �
5
4z �

101
24 z2 �

3
4z3 �

17
24z4.

p�z� �
1
24 �24 � 30z � 101z2 � 18z3 � 17z4�

�2, 10�.�1, 4�,�0, 1�,��1, 5�,��2, 3�,

�z5, y5��z4, y4��z3, y3��z2, y2��z1, y1�

z � x � 2008x

�2010, 10�.�2009, 4�,�2008, 1�,�2007, 5�,�2006, 3�,

�x5, y5��x4, y4��x3, y3��x2, y2��x1, y1�

E X A M P L E  3 Translating Large x-Values Before Curve Fitting

xx
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The approximate solution of the system is

which means that the polynomial function can be approximated by

Using to evaluate the period of Mars produces

years.

This estimate is compared graphically with the actual period of Mars in Figure 1.7. Note
that the actual period (from Table 1.1) is 1.881 years.

An important lesson may be learned from the application shown in Example 4: The
polynomial that fits the given data points is not necessarily an accurate model for the 
relationship between and for -values other than those corresponding to the given 
points. Generally, the farther the additional points are from the given points, the worse the
fit. For instance, in Example 4 the mean distance of Jupiter is 5.203. The corresponding
polynomial approximation for the period is 15.343 years—a poor estimate of Jupiter’s
actual period of 11.861 years.

The problem of curve fitting can be difficult. Types of functions other than 
polynomial functions often provide better fits. To see this, look again at the curve-fitting 
problem in Example 4. Taking the natural logarithms of the distances and periods of the
first six planets produces the results shown in Table 1.2 and Figure 1.8.

TABLE 1.2

Planet Mercury Venus Earth Mars Jupiter Saturn

Mean Distance 0.387 0.723 1.0 1.523 5.203 9.541

Natural Log of Mean 0.0 0.421 1.649 2.256

Period 0.241 0.615 1.0 1.881 11.861 29.457

Natural Log of Period 0.0 0.632 2.473 3.383

Now, fitting a polynomial to the logarithms of the distances and periods produces the 
linear relationship between and shown below.

From this equation it follows that or y2 � x3.y � x32,

ln y �
3
2 ln x

ln yln x

�0.486�1.423

�y)

�0.324�0.949

�x�

xyx

p�1.523� � 1.916

p�x�

p�x� � �0.0634 � 0.6119x � 0.4515x2.

a2 � 0.4515a1 � 0.6119,a0 � �0.0634,

a0 � a1 � a2 � 1.

a0 � 0.723a1 � �0.723�2a2 � 0.615

a0 � 0.387a1 � �0.387�2a2 � 0.241

Pe
ri

od

Mean distance from the sun

x

1.5

2.0

1.0

0.5

0.5 1.0 1.5 2.0

Mercury (0.387, 0.241)

Venus
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(1.523, 1.881)

y = p(x)

y

(0.723, 0.615)

(1.0, 1.0)

Figure 1.7
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In other words, the square of the period (in years) of each planet is equal to the cube of its
mean distance (in astronomical units) from the sun. This relationship was first discovered
by Johannes Kepler in 1619.

Network Analysis

Networks composed of branches and junctions are used as models in many diverse fields
such as economics, traffic analysis, and electrical engineering.

In such models it is assumed that the total flow into a junction is equal to the total flow
out of the junction. For example, because the junction shown in Figure 1.9 has 25 units
flowing into it, there must be 25 units flowing out of it. This is represented by the linear
equation

Because each junction in a network gives rise to a linear equation, you can analyze 
the flow through a network composed of several junctions by solving a system of linear
equations. This procedure is illustrated in Example 5.

Figure 1.9

Set up a system of linear equations to represent the network shown in Figure 1.10, and solve
the system.

Figure 1.10

10 10

x1 x4

x3x2

x5

1

3

4

2

5

20

E X A M P L E  5 Analysis of a Network

25

x2

x1

x1 � x2 � 25.
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S O L U T I O N Each of the network’s five junctions gives rise to a linear equation, as shown below.

The augmented matrix for this system is

Gauss-Jordan elimination produces the matrix

From the matrix above, you can see that

and

Letting you have

where is a real number, so this system has an infinite number of solutions.

In Example 5, suppose you could control the amount of flow along the branch 
labeled Using the solution from Example 5, you could then control the flow represented
by each of the other variables. For instance, letting would reduce the flow of  and

to zero, as shown in Figure 1.11. Similarly, letting would produce the network
shown in Figure 1.12.

t � 20x3

x1t � 10
x5.

t

x5 � tx4 � t � 10,x3 � t � 10,x2 � �t � 30,x1 � t � 10,

t � x5,

x4 � x5 � 10.x3 � x5 � �10,x2 � x5 � 30,x1 � x5 � �10,

�
1
0
0
0
0

0
1
0
0
0
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0
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1
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Figure 1.11

Figure 1.12

You can see how the type of network analysis demonstrated in Example 5 could be used
in problems dealing with the flow of traffic through the streets of a city or the flow of water
through an irrigation system.

An electrical network is another type of network where analysis is commonly applied.
An analysis of such a system uses two properties of electrical networks known as
Kirchhoff’s Laws.

1. All the current flowing into a junction must flow out of it.
2. The sum of the products ( is current and is resistance) around a closed path is equal

to the total voltage in the path.

In an electrical network, current is measured in amps, resistance in ohms, and the 
product of current and resistance in volts. Batteries are represented by the symbol .
The larger vertical bar denotes where the current flows out of the terminal. Resistance is 
denoted by the symbol . The direction of the current is indicated by an arrow in 
the branch.

R E M A R K : A closed path is a sequence of branches such that the beginning point of the
first branch coincides with the end point of the last branch.

RIIR
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0 20
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10 10
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Determine the currents and for the electrical network shown in Figure 1.13.

Figure 1.13

S O L U T I O N Applying Kirchhoff’s first law to either junction produces

Junction 1 or Junction 2

and applying Kirchhoff’s second law to the two paths produces

Path 1

Path 2

So, you have the following system of three linear equations in the variables and .

Applying Gauss-Jordan elimination to the augmented matrix

produces the reduced row-echelon form

which means amp, amps, and amp.I3 � 1I2 � 2I1 � 1

�
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0

0

0
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0
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0
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1

2

1
�

�
1

3

0

�1

2

2

1

0

4

0

7

8
�

     2I2 � 4I3 � 8

 3I1 � 2I2     �  7

I1 � I2 � I3 � 0

I3I2,I1,

R2I2 � R3I3 � 2I2 � 4I3 � 8.

R1I1 � R2I2 � 3I1 � 2I2 � 7

I1 � I3 � I2

1 2

Path 1

Path 2

I1

I2

I3

R1 = 3

R2 = 2

R3 = 4
8 volts

7 volts

I3I2,I1,
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Determine the currents and for the electrical network shown in
Figure 1.14.

Figure 1.14

S O L U T I O N Applying Kirchhoff’s first law to the four junctions produces

Junction 1

Junction 2

Junction 3

Junction 4

and applying Kirchhoff’s second law to the three paths produces

Path 1

Path 2

Path 3

You now have the following system of seven linear equations in the variables 
and .
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R5 = 2
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SECTION 1.3

Polynomial Curve Fitting

In Exercises 1–6, (a) determine the polynomial function whose
graph passes through the given points, and (b) sketch the graph of
the polynomial function, showing the given points.

1. 2.

3. 4.

5.

6.

7. Writing Try to fit the graph of a polynomial function to the
values shown in the table. What happens, and why?

1 2 3 3 4

1 1 2 3 4

8. The graph of a function passes through the points 

and Find a quadratic function whose graph passes through
these points.

9. Find a polynomial function of degree 2 or less that passes
through the points and Then sketch the
graph of and compare this graph with the graph of
the polynomial function found in Exercise 8.

10. Calculus The graph of a parabola passes through the points

and and has a horizontal tangent at Find an
equation for the parabola and sketch its graph.

11. Calculus The graph of a cubic polynomial function has 
horizontal tangents at and Find an equation for
the cubic and sketch its graph.

12. Find an equation of the circle passing through the points
and

13. The U.S. census lists the population of the United States as 
227 million in 1980, 249 million in 1990, and 281 million in 2000.
Fit a second-degree polynomial passing through these three points
and use it to predict the population in 2010 and in 2020. (Source:
U.S. Census Bureau)

14. The U.S. population figures for the years 1920, 1930, 1940, and
1950 are shown in the table. (Source: U.S. Census Bureau)

Year 1920 1930 1940 1950

Population
(in millions) 106 123 132 151  

(a) Find a cubic polynomial that fits these data and use it to 
estimate the population in 1960.

(b) The actual population in 1960 was 179 million. How
does your estimate compare?

15. The net profits (in millions of dollars) for Microsoft from 2000
to 2007 are shown in the table. (Source: Microsoft Corporation)

Year 2000 2001 2002 2003

Net Profit 9421 10,003 10,384 10,526

Year 2004 2005 2006 2007

Net Profit 11,330 12,715 12,599 14,410

(a) Set up a system of equations to fit the data for the years
2001, 2003, 2005, and 2007 to a cubic model.

(b) Solve the system. Does the solution produce a reason-
able model for predicting future net profits? Explain.

�4, 2�.�1, 3�, ��2, 6�,

��1, 2�.�1, �2�

�1
2, 1

2�.�1
2, 1

2��0, 1�

y � 1p�x�
�4, 5�.�2, 3�,�0, 1�,

p

�4, 1
5�.

�2, 1
3�,�0, 1�,f

y

x

�z � x � 2005�
�2005, 150�, �2006, 180�, �2007, 240�, �2008, 360�

�z � x � 2007��2006, 5�, �2007, 7�, �2008, 12�
��1, 3�, �0, 0�, �1, 1�, �4, 58��2, 4�, �3, 6�, �5, 10�
�2, 4�, �3, 4�, �4, 4��2, 5�, �3, 2�, �4, 5�

Using Gauss-Jordan elimination, a graphing utility, or a computer software program, you
can solve this system to obtain

and

meaning amp, amps, amp, amp, amps, and amps.I6 � 2I5 � 3I4 � 1I3 � 1I2 � 2I1 � 1

I6 � 2I5 � 3,I4 � 1,I3 � 1,I2 � 2,I1 � 1,
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16. The sales (in billions of dollars) for Wal-Mart stores from 2000
to 2007 are shown in the table. (Source: Wal-Mart)

Year 2000 2001 2002 2003

Sales 191.3 217.8 244.5 256.3

Year 2004 2005 2006 2007

Sales 285.2 312.4 346.5 377.0

(a) Set up a system of equations to fit the data for the years
2001, 2003, 2005, and 2007 to a cubic model.

(b) Solve the system. Does the solution produce a reason-
able model for predicting future sales? Explain.

17. Use and to estimate .

18. Use and to estimate 

19. Guided Proof Prove that if a polynomial function 
is zero for and then

Getting Started: Write a system of linear equations and solve
the system for and 

(i) Substitute and 1 into 
(ii) Set the result equal to 0.

(iii) Solve the resulting system of linear equations in the
variables and 

20. The statement in Exercise 19 can be generalized: If a polynomial
function is zero for more
than x-values, then Use
this result to prove that there is at most one polynomial function
of degree (or less) whose graph passes through n points in
the plane with distinct x-coordinates.

Network Analysis
21. Water is flowing through a network of pipes (in thousands of

cubic meters per hour), as shown in Figure 1.15.

(a) Solve this system for the water flow represented by 

(b) Find the water flow when 
(c) Find the water flow when and 

Figure 1.15

22. The flow of traffic (in vehicles per hour) through a network of
streets is shown in Figure 1.16.

(a) Solve this system for 
(b) Find the traffic flow when and 
(c) Find the traffic flow when and 

Figure 1.16

23. The flow of traffic (in vehicles per hour) through a network of
streets is shown in Figure 1.17.

(a) Solve this system for 
(b) Find the traffic flow when 
(c) Find the traffic flow when 

Figure 1.17

200

100 100

x2x1

x4
x3

200

x4 � 100.
x4 � 0.

i � 1, 2, 3, 4.xi,

300

200

150

350

x2 x3
x4

x5

x1

x3 � 0.x2 � 150
x3 � 50.x2 � 200

i � 1, 2, .  .  . , 5.xi,

600

600

500

500
x7x6

x3 x4 x5

x1 x2

x6 � 0.x5 � 1000
x6 � x7 � 0.

i � 1, 2, .  .  . , 7.
xi,

n � 1

� an�1 � 0.a0 � a1 � .  .  .n � 1
p�x� � a0 � a1x � .  .  . � an�1x

n�1

a2.a0, a1,

p�x�.x � �1, 0,

a2.a1,a0,

a0 � a1 � a2 � 0.
x � 1,x � 0,x � �1,a0 � a1x � a2x

2
p�x� �

log2 3.log2 4 � 2log2 1 � 0, log2 2 � 1,

sin���3�sin � � 0sin���2� � 1,sin 0 � 0,
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24. The flow of traffic (in vehicles per hour) through a network of
streets is shown in Figure 1.18.

(a) Solve this system for 
(b) Find the traffic flow when and 
(c) Find the traffic flow when 

Figure 1.18

25. Determine the currents and for the electrical network
shown in Figure 1.19.

Figure 1.19

26. Determine the currents and for the electrical network
shown in Figure 1.20.

Figure 1.20

27. (a) Determine the currents and for the electrical 
network shown in Figure 1.21.

(b) How is the result affected when is changed to 2 volts and
is changed to 6 volts?

Figure 1.21

28. Determine the currents and for the electrical
network shown in Figure 1.22.

Figure 1.22

In Exercises 29–32, use a system of equations to write the partial
fraction decomposition of the rational expression. Then solve the
system using matrices.

29.

30.

31.
20 � x2

�x � 2��x � 2�2 �
A

x � 2
�

B
x � 2

�
C

�x � 2�2

8x2

�x � 1�2�x � 1� �
A

x � 1
�

B
x � 1

�
C

�x � 1�2

4x2

�x � 1�2�x � 1� �
A

x � 1
�

B
x � 1

�
C

�x � 1�2

25 volts

8 volts

R1 = 3

R2 = 2

R3 = 4

R4 = 2

R5 = 1

R6 = 1

I2

I5

I3

I4

I6

I1 14 volts

I6I5,I4,I3,I2,I1,

I1

I2

I3

R1 = 1

R2 = 2

R3 = 4
B: 8 volts

A: 5 volts

B
A

I3I2,I1,

I1

I2

I3

R1 = 4

R2 = 1

R3 = 4
8 volts

16 volts

I3I2,I1,

I1

I2

I3

R1 = 4

R2 = 3

R3 = 1
4 volts

3 volts

I3I2,I1,

400

300

600

100

x2 x3
x4

x5

x1

x3 � x5 � 100.
x5 � 100.x3 � 0

i � 1, 2, .  .  . , 5.xi,
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32.

In Exercises 33 and 34, find the values of and that satisfy the
system of equations. Such systems arise in certain problems of 
calculus, and is called the Lagrange multiplier.

33. 34.

35. In Super Bowl XLI on February 4, 2007, the Indianapolis Colts
beat the Chicago Bears by a score of 29 to 17. The total points
scored came from 13 scoring plays, which were a combination
of touchdowns, extra-point kicks, and field goals, worth 6, 1,

and 3 points, respectively. The numbers of field goals and 
extra-point kicks were equal. Write a system of equations to 
represent this event. Then determine the number of each type of
scoring play. (Source: National Football League)

36. In the 2007 Fiesta Bowl Championship Series on January 8,
2007, the University of Florida Gators defeated the Ohio State
University Buckeyes by a score of 41 to 14. The total points
scored came from a combination of touchdowns, extra-point
kicks, and field goals, worth 6, 1, and 3 points, respectively. 
The numbers of touchdowns and extra-point kicks were equal.
The number of touchdowns was one more than three times the
number of field goals. Write a system of equations to represent
this event. Then determine the number of each type of scoring
play. (Source: www.fiestabowl.org)

2x
2x �

2y

y

� 2	

	

�

�

�

2
1

100

� 0
� 0
� 0

2x

x �

2y
y

�

�

	

	

� 4

� 0
� 0
� 0

	

	y,x,

3x2 � 7x � 12
�x � 4��x � 4�2 �

A
x � 4

�
B

x � 4
�

C
�x � 4�2

CHAPTER 1

In Exercises 1–8, determine whether the equation is linear in the
variables and 

1. 2.

3. 4.

5. 6.

7. 8.

In Exercises 9 and 10, find a parametric representation of the 
solution set of the linear equation.

9. 10.

In Exercises 11–22, solve the system of linear equations.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

In Exercises 23 and 24, determine the size of the matrix.

23. 24.

In Exercises 25–28, determine whether the matrix is in row-echelon
form. If it is, determine whether it is also in reduced row-echelon form.

25. 26.

27. 28.

In Exercises 29 and 30, find the solution set of the system of linear
equations represented by the augmented matrix.

29. 30.

In Exercises 31–40, solve the system using either Gaussian 
elimination with back-substitution or Gauss-Jordan elimination.

31. 32.

33. 34.

 3x � y �  7z � �11 12x �  9y � z �  2

 3x �  2y �  11z � �16 6x �  6y �  12z �  13

 2x        �   6z � �9 2x �  3y �  3z �  3

 4x �  2y �  3z � �2 5x �  4y �  2z �  4

 2x �  3y �  3z �  22 2x �  3y � z � �2

 2x �  3y � z �  10�x � y �  2z �  1

�
1

0

0

2

0

0

3

0

0

0

1

0
��

1

0

0

2

0

0

0

1

0

0

0

0
�

�
0

0

0

1

0

0

0

1

0

0

2

0
��

�1

0

0

2

1

0

1

0

1
�

�
1

0

0

2

0

0

�3

0

0

0

1

0
��

1

0

0

0

1

0

1

2

0

1

1

1
�

�
2

�4
0

1
�1

5��2
0

3
5

�1
1�

 2x �  3y �  15 3x � 2�y � 5� �  10

1
3x �

4
7y �  31

2x �
1
3y �  0

 0.4x �  0.5y � �0.010.4x1 � 0.5x2 � 0.20

 0.2x �  0.1y �  0.070.2x1 � 0.3x2 � 0.14

 20x1 � 15x2 � �14�x � y �  1

 40x1 � 30x2 � 24x � y �  9

y � x 2x � y �  0

y � �4xy � x �  0

 4x � y �  10y � x � 4

x � y �  3 3y �  2x

 3x �  2y �  0 3x � y � 0

x � y � �1x � y � 2

3x1 � 2x2 � 4x3 � 0�4x � 2y � 6z � 1

3
5x �

7
10 y � 21

2 x �
1
4 y � 0

4
y

� x � 10
2
x

� 4y � 3

e�2x � 5y � 8�sin��x � y � 2

2xy � 6y � 02x � y2 � 4

y.x

www.fiestabowl.org
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35. 36.

37. 38.

39.

40.

In Exercises 41– 46, use the matrix capabilities of a graphing utility
to reduce the augmented matrix corresponding to the system of
equations to solve the system.

41. 42.

43.

44.

45. 46.

In Exercises 47–50, solve the homogeneous system of linear 
equations.

47. 48.

49. 50.

51. Determine the value of k such that the system of linear equations
is inconsistent.

52. Determine the value of k such that the system of linear equations
has exactly one solution.

53. Find conditions on a and b such that the system of linear 
equations has (a) no solution, (b) exactly one solution, and (c) an
infinite number of solutions.

54. Find (if possible) conditions on a, b, and c such that the system
of linear equations has (a) no solution, (b) exactly one solution,
and (c) an infinite number of solutions.

55. Writing Describe a method for showing that two matrices are
row-equivalent. Are the two matrices below row-equivalent?

and

56. Writing Describe all possible reduced row-echelon
matrices. Support your answer with examples.

57. Let Find the reduced row-echelon form of the 
matrix.

58. Find all values of for which the homogeneous system of 
linear equations has nontrivial solutions.

x1 � 2x2 � 	x3 � 0
�2x1 � �	 � 1�x2 � 6x3 � 0

�	 � 2�x1 � 2x2 � 3x3 � 0

	

�
1

n � 1
2n � 1.

.

.
n2 � n � 1

2
n � 2

2n � 2.
.
.

n2 � n � 2

3
n � 3

2n � 3
.
.
.

n2 � n � 3

. . .

. . .

. . .

. . .
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 3.

2 � 3
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�1
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2
�

2x � y � z � a
x � y � 2z � b

3y � 3z � c

ax � by � �9
x �  2y �  3

x � ky � z �  0
�x � y � z �  0

x � y �  2z �  0

x � ky �  1
kx � y �  0

     10x2 � 5x3 � 0

x1 � 4x2 �
1
2 x3 � 0 3x1 � 10x2 � 7x3 � 0

x1 � 3x2 � 5x3 � 0 2x1 � 8x2 � 4x3 � 0

 6x1     �  9x3 � 0�x1 � x2 � 7x3 � 0

x1 � 3x2 � 9x3 � 0 3x1 � 2x2     �  0

 2x1 � 4x2 � 7x3 � 0x1 � 2x2 � 8x3 � 0
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 2x1      � x3         �  0

 2x1 � 4x2          �  2x5 � 0

         3x3 � 8x4 � 6x5 � 16

     4x2 � 2x3 � 5x4     �  3

x1 � 5x2 � 3x3         �  14

 3x1 � 2x2 � 3x3 � 5x4 � 12

�x1 � 3x2 � 2x3 � 2x4 � 1

 5x1 � 2x2 � x3 � 3x4 � 0

 2x1 � x2 � x3 � 2x4 � �1

 2x � y �  6z �  2

 3x1 � 8x2 � 31x3 � 54 2x �  2y     �  5

 2x1 � 5x2 � 19x3 � 34 2x � y �  2z �  4

 3x � y �  3z � �6�x �  3y �  3z �  11

 2x �  5y �  15z �  4 2x �  3y     � �7

x �  2y �  6z �  1x �  2y � z � �6
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True or False? In Exercises 59 and 60, determine whether each
statement is true or false. If a statement is true, give a reason or 
cite an appropriate statement from the text. If a statement is false,
provide an example that shows the statement is not true in all cases
or cite an appropriate statement from the text.

59. (a) The solution set of a linear equation can be parametrically
represented in only one way.

(b) A consistent system of linear equations can have an 
infinite number of solutions.

60. (a) A homogeneous system of linear equations must have at
least one solution.

(b) A system of linear equations with fewer equations than 
variables always has at least one solution.

61. The University of Tennessee Lady Volunteers defeated the
Rutgers University Scarlet Knights 59 to 46. The Lady
Volunteers’ scoring resulted from a combination of three-point
baskets, two-point baskets, and one-point free throws. There
were three times as many two-point baskets as three-point 
baskets. The number of free throws was one less than the 
number of two-point baskets. (Source: National Collegiate
Athletic Association)

(a) Set up a system of linear equations to find the numbers of
three-point baskets, two-point baskets, and one-point free
throws scored by the Lady Volunteers.

(b) Solve your system.

62. In Super Bowl I, on January 15, 1967, the Green Bay Packers
defeated the Kansas City Chiefs by a score of 35 to 10. The 
total points scored came from a combination of touchdowns,
extra-point kicks, and field goals, worth 6, 1, and 3 points,
respectively. The numbers of touchdowns and extra-point kicks
were equal. There were six times as many touchdowns as field
goals. (Source: National Football League)

(a) Set up a system of linear equations to find the numbers of
touchdowns, extra-point kicks, and field goals that were
scored.

(b) Solve your system.

In Exercises 63 and 64, use a system of equations to write the 
partial fraction decomposition of the rational expression. Then solve
the system using matrices.

63.

64.

Polynomial Curve Fitting

In Exercises 65 and 66, (a) determine the polynomial whose graph
passes through the given points, and (b) sketch the graph of the
polynomial, showing the given points.

65.

66.

67. A company has sales (measured in millions) of $50, $60, and
$75 during three consecutive years. Find a quadratic function
that fits these data, and use it to predict the sales during the
fourth year.

68. The polynomial function is
zero when and 4. What are the values of 
and

69. A wildlife management team studied the population of deer in
one small tract of a wildlife preserve. The population and the
number of years since the study began are shown in the table.

Year 0 4 80

Population 80 68 30

(a) Set up a system of equations to fit the data to a quadratic
polynomial function.

(b) Solve your system.

(c) Use a graphing utility to fit a quadratic model to the data.

(d) Compare the quadratic polynomial function in part (b) with
the model in part (c).

(e) Cite the statement from the text that verifies your results.

70. A research team studied the average monthly temperatures of a
small lake over a period of about one year. The temperatures and
the numbers of months since the study began are shown in the
table.

Month 0 6 12

Temperature 40 73 52

(a) Set up a system of equations to fit the data to a quadratic
polynomial function.

(b) Solve your system.

(c) Use a graphing utility to fit a quadratic model to the data.

(d) Compare the quadratic polynomial function in part (b) with
the model in part (c).

(e) Cite the statement from the text that verifies your results.

a3?
a2,a1,a0,x � 1, 2, 3,

p�x� � a0 � a1x � a2x2 � a3x3

��1, �1�, �0, 0�, �1, 1�, �2, 4�
�2, 5�, �3, 0�, �4, 20�

3x2 � 3x � 2
�x � 1�2�x � 1� �

A
x � 1

�
B

x � 1
�

C
�x � 1�2

3x2 � 3x � 2
�x � 2��x � 2�2 �

A
x � 2

�
B

x � 2
�

C
�x � 2�2
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Network Analysis
71. Determine the currents and for the electrical network

shown in Figure 1.23.

Figure 1.23

72. The flow through a network is shown in Figure 1.24.

(a) Solve the system for 

(b) Find the flow when and 

Figure 1.24
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x6 � 50.x5 � 50,x3 � 100,

i � 1, 2, .  .  . , 6.xi,

I1

I2

I3

R1 = 3

R2 = 4

R3 = 2
2 volts

3 volts

I3I2,I1,

CHAPTER 1

1 Graphing Linear Equations

You saw in Section 1.1 that a system of two linear equations in two variables
and can be represented geometrically as two lines in the plane. These lines can

intersect at a point, coincide, or be parallel, as indicated in Figure 1.25.

Figure 1.25
1. Consider the system below, where and are constants. Answer the 

questions that follow. For Questions (a)–(c), if an answer is yes, give an
example. Otherwise, explain why the answer is no.

 ax �  by �  6

 2x �  y �  3

ba

1

2

3

−1−2−3

−1

x

y

x − y = −2

x − y = 0

1

2

−1−2

−1

−2

1 2
x

y x − y = 0

2x − 2y = 0

1

2

3

−1

−1

1 2 3
x

y
x − y = 0

x + y = 2

yx
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(a) Can you find values of a and b for which the resulting system has a
unique solution?

(b) Can you find values of a and b for which the resulting system has 
an infinite number of solutions? 

(c) Can you find values of a and b for which the resulting system has 
no solution?

(d) Graph the resulting lines for each of the systems in parts (a), (b),
and (c).

2. Now consider a system of three linear equations in x, y, and z. Each 
equation represents a plane in the three-dimensional coordinate system.
(a) Find an example of a system represented by three planes intersecting

in a line, as shown in Figure 1.26(a).
(b) Find an example of a system represented by three planes intersecting

at a point, as shown in Figure 1.26(b).
(c) Find an example of a system represented by three planes with no

common intersection, as shown in Figure 1.26(c).
(d) Are there other configurations of three planes not covered by the three

examples in parts (a), (b), and (c)? Explain.

2 Underdetermined and Overdetermined Systems 
of Equations

The next system of linear equations is said to be underdetermined because there
are more variables than equations.

Similarly, the following system is overdetermined because there are more equa-
tions than variables.

You can explore whether the number of variables and the number of equations have
any bearing on the consistency of a system of linear equations. For Exercises 1–4,
if an answer is yes, give an example. Otherwise, explain why the answer is no.

1. Can you find a consistent underdetermined linear system?
2. Can you find a consistent overdetermined linear system?
3. Can you find an inconsistent underdetermined linear system?
4. Can you find an inconsistent overdetermined linear system?
5. Explain why you would expect an overdetermined linear system to be 

inconsistent. Must this always be the case?
6. Explain why you would expect an underdetermined linear system to have

an infinite number of solutions. Must this always be the case?

�x1 � 7x2 � 0

 2x1 � 2x2 � �3

x1 � 3x2 � 5

 2x1 � x2 � 4x3 � �3

x1 � 2x2 � 3x3 � 4Figure 1.26

(a)

(b)

(c)
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2 Matrices

2.1 Operations with
Matrices

2.2 Properties of Matrix
Operations

2.3 The Inverse of a Matrix
2.4 Elementary Matrices
2.5 Applications of Matrix

Operations

CHAPTER OBJECTIVES

■ Write a system of linear equations represented by a matrix, as well as write the matrix form
of a system of linear equations.

■ Write and solve a system of linear equations in the form 

■ Use properties of matrix operations to solve matrix equations.

■ Find the transpose of a matrix, the inverse of a matrix, and the inverse of a matrix product 
(if they exist).

■ Factor a matrix into a product of elementary matrices, and determine when they are 
invertible.

■ Find and use the -factorization of a matrix to solve a system of linear equations.

■ Use a stochastic matrix to measure consumer preference.

■ Use matrix multiplication to encode and decode messages.

■ Use matrix algebra to analyze economic systems (Leontief input-output models).

■ Use the method of least squares to find the least squares regression line for a set of data.

LU

Ax � b.

Operations with Matrices

In Section 1.2 you used matrices to solve systems of linear equations. Matrices, however,
can be used to do much more than that. There is a rich mathematical theory of matrices,
and its applications are numerous. This section and the next introduce some fundamentals
of matrix theory.

It is standard mathematical convention to represent matrices in any one of the following
three ways.

1. A matrix can be denoted by an uppercase letter such as

2. A matrix can be denoted by a representative element enclosed in brackets, such as

�aij�, �bij�, �cij�, .  .  . .

A, B, C, .  .  . .

2.1



Sect ion 2 .1 Operat ions wi th Matr ices 47

3. A matrix can be denoted by a rectangular array of numbers

As mentioned in Chapter 1, the matrices in this text are primarily real matrices. That is,
their entries contain real numbers.

Two matrices are said to be equal if their corresponding entries are equal.

Consider the four matrices

and

Matrices and are not equal because they are of different sizes. Similarly, and are
not equal. Matrices and are equal if and only if 

R E M A R K : The phrase “if and only if” means the statement is true in both directions. For
example, “ if and only if ” means that implies and implies 

A matrix that has only one column, such as matrix in Example 1, is called a column
matrix or column vector. Similarly, a matrix that has only one row, such as matrix in
Example 1, is called a row matrix or row vector. Boldface lowercase letters are often used
to designate column matrices and row matrices. For instance, matrix in Example 1 can be

partitioned into the two column matrices and as follows.

A � �1
3

2
4� � �1

3
�
�

2
4� � �a1 � a2�

a2 � �2
4�,a1 � �1

3�
A

C
B

p.qqpqp

x � 3.DA
CBBA

D � �1

x

2

4�.C � �1 3�,

B � �1

3�,A � �1

3

2

4�,

E X A M P L E  1 Equality of Matrices

�
a11

a21

a31.
.
.

am1

a12

a22

a32.
.
.

am2

a13

a23

a33.
.
.

am3

. . .

. . .

. . .

. . .

a1n

a2n

a3n.
.
.

amn

�.

Two matrices and are equal if they have the same size and

for and 1 � j � n.1 � i � m

aij � bij

�m � n�B � �bij�A � �aij�Definition of 

Equality of Matrices
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Matrix Addition

You can add two matrices (of the same size) by adding their corresponding entries.

(a)

(b)

(c)

(d) The sum of

and

is undefined.

Scalar Multiplication

When working with matrices, real numbers are referred to as scalars. You can multiply a
matrix by a scalar by multiplying each entry in by 

You can use to represent the scalar product If and are of the same size,
represents the sum of and That is,

Subtraction of matricesA � B � A � ��1�B.

��1�B.AA � B
BA��1�A.�A

c.AcA

B � �
0

�1
2

1
3
4�A � �

2
4
3

1
0

�2

0
�1

2�

�
1

�3
�2� � �

�1
3
2� � �

0
0
0�

�0
1

1
2

�2
3� � �0

0
0
0

0
0� � �0

1
1
2

�2
3�

��1
0

2
1� � � 1

�1
3
2� � ��1 � 1

0 � 1
2 � 3
1 � 2� � � 0

�1
5
3�

E X A M P L E  2 Addition of Matrices

If and are matrices of size then their sum is the 
matrix given by

The sum of two matrices of different sizes is undefined.

A � B � �aij � bij�.

m � nm � n,B � �bij�A � �aij�Definition of 

Matrix Addition

If is an matrix and is a scalar, then the scalar multiple of by is the
matrix given by

cA � �caij�.

m � n
cAcm � nA � �aij�Definition of 

Scalar Multiplication
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For the matrices

and

find (a) (b) and (c)

S O L U T I O N (a)

(b)

(c)

Matrix Multiplication

The third basic matrix operation is matrix multiplication. To see the usefulness of this 
operation, consider the following application in which matrices are helpful for organizing
information.

A football stadium has three concession areas, located in the south, north, and west
stands. The top-selling items are peanuts, hot dogs, and soda. Sales for a certain day are
recorded in the first matrix below, and the prices (in dollars) of the three items are given in
the second matrix.

Number of Items Sold

Peanuts Hot Dogs Soda Selling Price

South stand 120 250 305 2.00 Peanuts

North stand 207 140 419 3.00 Hot Dogs

West stand 29 120 190 2.75 Soda

3A � B � �
3

�9
6

6
0
3

12
�3

6� � �
2
1

�1

0
�4

3

0
3
2� � �

1
�10

7

6
4
0

12
�6

4�

�B � ��1��
2
1

�1

0
�4

3

0
3
2� � �

�2
�1

1

0
4

�3

0
�3
�2�

3A � 3�
1

�3
2

2
0
1

4
�1

2� � �
3�1�
3��3�
3�2�

3�2�
3�0�
3�1�

3�4�
3��1�
3�2� � � �

3
�9

6

6
0
3

12
�3

6�
3A � B.�B,3A,

B � �
2

1

�1

0

�4

3

0

3

2
�A � �

1

�3

2

2

0

1

4

�1

2
�

E X A M P L E  3 Scalar Multiplication and Matrix Subtraction

R E M A R K : It is often conven-
ient to rewrite a matrix as 
by factoring out of every entry
in matrix . For instance, the

scalar has been factored out of
the matrix below.

B � cA

�
1
2
5
2

�
3
2
1
2
� �

1
2�1

5
�3

1�

1
2

B
c

cAB
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To calculate the total sales of the three top-selling items at the south stand, you can multi-
ply each entry in the first row of the matrix on the left by the corresponding entry in the
price column matrix on the right and add the results. The south stand sales are

South stand sales

Similarly, you can calculate the sales for the other two stands as follows.

North stand sales

West stand sales

The preceding computations are examples of matrix multiplication. You can write the
product of the matrix indicating the number of items sold and the matrix 
indicating the selling prices as follows.

The product of these matrices is the matrix giving the total sales for each of the 
three stands.

The general definition of the product of two matrices shown below is based on the ideas
just developed. Although at first glance this definition may seem unusual, you will see that
it has many practical applications.

This definition means that the entry in the th row and the th column of the product 
is obtained by multiplying the entries in the th row of by the corresponding entries in
the th column of and then adding the results. The next example illustrates this process.

Find the product where

and B � ��3

�4

2

1�.A � �
�1

4

5

3

�2

0
�

AB,

E X A M P L E  4 Finding the Product of Two Matrices

Bj
Ai

ABji

3 � 1

�
120
207
29

250
140
120

305
419
190� �

2.00
3.00
2.75� � �

1828.75
1986.25
940.50�

3 � 13 � 3

�29��2.00� � �120��3.00� � �190��2.75� � $940.50

�207��2.00� � �140��3.00� � �419��2.75� � $1986.25

�120��2.00� � �250��3.00� � �305��2.75� � $1828.75.

If is an matrix and is an matrix, then the product is
an matrix

where

cij � �
n

k�1
aikbkj � ai1b1j � ai2b2j � ai3b3j � .  .  . � ainbnj.

AB � �cij�

m � p
ABn � pB � �bij�m � nA � �aij�Definition of 

Matrix Multiplication



c11 � ��1���3� � � 3���4� � �9

c12 � ��1��2� � � 3��1� � 1

S O L U T I O N First note that the product is defined because has size and has size 
Moreover, the product has size and will take the form

To find (the entry in the first row and first column of the product), multiply correspon-
ding entries in the first row of and the first column of That is,

Similarly, to find multiply corresponding entries in the first row of and the second
column of to obtain

Continuing this pattern produces the results shown below.

The product is

Be sure you understand that for the product of two matrices to be defined, the number
of columns of the first matrix must equal the number of rows of the second matrix. That is,

equal

size of 

So, the product is not defined for matrices such as and in Example 4.BABA

AB

m � pn � pm � n

AB.�BA

AB � �
�1

4

5

3

�2

0
� ��3

�4

2

1� � �
�9

�4

�15

1

6

10
�.

c32 � �5��2� � �0��1� �  10
c31 � �5���3� � �0���4� � �15
c22 � �4��2� � ��2��1� �  6
c21 � �4���3� � ��2���4� � �4

�
�1

4

5

3

�2

0
� ��3

�4

2

1� � �
�9

c21

c31

1

c22

c32
�.

B
Ac12,

�
�1

4

5

3

�2

0
� ��3

�4

2

1� � �
�9

c21

c31

c12

c22

c32
�.

B.A
c11

�
�1

4

5

3

�2

0
� ��3

�4

2

1� � �
c11

c21

c31

c12

c22

c32
�.

3 � 2AB
2 � 2.B3 � 2AAB
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The general pattern for matrix multiplication is as follows. To obtain the element in the th
row and the th column of the product use the th row of and the th column of 

(a)

(b)

(c)

(d)

1 � 13 � 11 � 3

�1 �2 �3� �
2

�1
1� � �1�

2 � 22 � 22 � 2

�1

1

2

1� �
�1

1

2

�1� � �1

0

0

1�
2 � 22 � 22 � 2

� 3
�2

4
5� �

1
0

0
1� � � 3

�2
4
5�

2 � 33 � 32 � 3

�1

2

0

�1

3

�2� �
�2

1

�1

4

0

1

2

0

�1
� � ��5

�3

7

6

�1

6�

E X A M P L E  5 Matrix Multiplication

�
c11

c21.
.
.

ci1.
.
.

cm1

c12

c22.
.
.

ci2.
.
.

cm2

. . .

. . .

. . .

. . .

c1j

c2j.
.
.

cij.
.
.

cmj

. . .

. . .

. . .

. . .

c1p

c2p.
.
.

cip.
.
.

cmp

��
b11

b21

b31.
.
.

bn1

b12

b22

b32.
.
.

bn2

. . .

. . .

. . .

. . .

b1j

b2j

b3j.
.
.

bnj

. . .

. . .

. . .

. . .

b1p

b2p

b3p.
.
.

bnp

� ��
a11

a21.
.
.

ai1.
.
.

am1

a12

a22.
.
.

ai2.
.
.

am2

a13

a23.
.
.

ai3.
.
.

am3

. . .

. . .

. . .

. . .

a1n

a2n.
.
.

ain.
.
.

amn

�
B.jAiAB,j

i

Let

and

Calculate and 
In general, is the operation of matrix addition commutative? Now calculate and 

Is matrix multiplication commutative?
BA.AB

B � A.A � B

B � �0
1

1
2�.A � �1

3
2
4�

Discovery



(e)

R E M A R K : Note the difference between the two products in parts (d) and (e) of 
Example 5. In general, matrix multiplication is not commutative. It is usually not true that
the product is equal to the product (See Section 2.2 for further discussion of the
noncommutativity of matrix multiplication.)

Systems of Linear Equations

One practical application of matrix multiplication is representing a system of linear 
equations. Note how the system

can be written as the matrix equation where is the coefficient matrix of the
system, and and are column matrices. You can write the system as

b�xA

�
a11

a21

a31

a12

a22

a32

a13

a23

a33
� �

x1

x2

x3
� � �

b1

b2

b3
�.

bx
AAx � b,

a31x1 � a32x2 � a33x3 � b3

a21x1 � a22x2 � a23x3 � b2

a11x1 � a12x2 � a13x3 � b1

BA.AB

3 � 31 � 33 � 1

�
2

�1

1
� �1 �2 �3� � �

2

�1

1

�4

2

�2

�6

3

�3
�
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Most graphing utilities and computer software programs can perform matrix addition, scalar 
multiplication, and matrix multiplication. If you are using a graphing utility, your screens for 
Example 5(c) may look like:

Keystrokes and programming syntax for these utilities/programs applicable to Example 5(c) are 
provided in the Online Technology Guide, available at college.hmco.com/pic/larsonELA6e.

Technology
Note
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Solve the matrix equation where

and

S O L U T I O N As a system of linear equations, looks like

Using Gauss-Jordan elimination on the augmented matrix of this system, you obtain

So, the system has an infinite number of solutions. Here a convenient choice of a 
parameter is and you can write the solution set as

is any real number.

In matrix terminology, you have found that the matrix equation

has an infinite number of solutions represented by

is any scalar.

That is, any scalar multiple of the column matrix on the right is a solution.

Partitioned Matrices

The system can be represented in a more convenient way by partitioning the 
matrices and in the following manner. If

and b � �
b1

b2.
.
.

bm

�x � �
x1

x2.
.
.

xn

�,A � �
a11

a21.
.
.

am1

a12

a22.
.
.

am2

. . .

.  .  .

.  .  .

a1n

a2n.
.
.

amn

�,

xA
Ax � b

tx � �
x1

x2

x3
� � �

t
4t
7t
� � t�

1
4
7�,

�1

2

�2

3

1

�2� �
x1

x2

x3
� � �0

0�

tx3 � 7t,x2 � 4t,x1 � t,

x3 � 7t,

�1

0

0

1

�
1
7

�
4
7

0

0�.

 2x1 � 3x2 � 2x3 � 0.
x1 � 2x2 � x3 � 0

Ax � 0

0 � �0

0�.x � �
x1

x2

x3
�,A � �1

2

�2

3

1

�2�,

Ax � 0,

E X A M P L E  6 Solving a System of Linear Equations
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are the coefficient matrix, the column matrix of unknowns, and the right-hand side, respec-
tively, of the linear system then you can write

In other words,

where are the columns of the matrix The expression

is called a linear combination of the column matrices with coefficients  

In general, the matrix product is a linear combination of the column vectors 
that form the coefficient matrix Furthermore, the system is consistent

if and only if can be expressed as such a linear combination, where the coefficients of the
linear combination are a solution of the system.

The linear system

 7x1 � 8x2 � 9x3 � 6
 4x1 � 5x2 � 6x3 � 3
x1 � 2x2 � 3x3 � 0

E X A M P L E  7 Solving a System of Linear Equations

b
Ax � bA..  .  . , an

a2,a1,Ax
x1, x2, .  .  . , xn.

a2, .  .  . , ana1,

x1�
a11

a21.
.
.

am1

� � x2�
a12

a22.
.
.

am2

� � . . . � xn�
a1n

a2n.
.
.

amn

�
A.a2, .  .  . , ana1,

Ax � x1a1 � x2a2 � .  .  . � xnan � b,

x1�
a11

a21.
.
.

am1

� � x2�
a12

a22.
.
.

am2

� � . . . � xn�
a1n

a2n.
.
.

amn

� � b.

�
a11x1

a21x1

am1x1

�

�

�

a12x2

a22x2

am2x2

�

�.
.
.
�

. . .

. . .

. . .

�

�

�

a1nxn

a2nxn

amnxn

� � b

�
a11

a21.
.
.

am1

a12

a22.
.
.

am2

. . .

. . .

. . .

a1n

a2n.
.
.

amn

� �
x1

x2.
.
.

xn

� � b

Ax � b

Ax � b,m � n
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can be rewritten as a matrix equation as follows.

Using Gaussian elimination, you can show that this system has an infinite number of 
solutions, one of which is 

That is, can be expressed as a linear combination of the columns of This representa-
tion of one column vector in terms of others is a fundamental theme of linear algebra.

Just as you partitioned into columns and into rows, it is often useful to consider an
matrix partitioned into smaller matrices. For example, the matrix on the left below

can be partitioned as shown below at the right.

The matrix could also be partitioned into column matrices

or row matrices

�
1

3

�1

2

4

�2

0

0

2

0

0

1
� � �

r1

r2

r3
�.

�
1

3

�1

2

4

�2

0

0

2

0

0

1
� � �c1 c2 c3 c4�

�
1

3

�1

2

4

�2

0

0

2

0

0

1
��

1

3

�1

2

4

�2

0

0

2

0

0

1
�

m � n
xA

A.b

1�
1
4
7� � 1�

2
5
8� � ��1��

3
6
9� � �

0
3
6�

x3 � �1.x2 � 1,x1 � 1,

x1�
1

4

7
� � x2�

2

5

8
� � x3�

3

6

9
� � �

0

3

6
�
Ax � b,

Many real-life applications of 
linear systems involve enormous
numbers of equations and 
variables. For example, a flight
crew scheduling problem for
American Airlines required the
manipulation of matrices with
837 rows and more than
12,750,000 columns. This 
application of linear program-
ming required that the problem
be partitioned into smaller pieces
and then solved on a CRAY Y-MP
supercomputer.

(Source: Very-Large Scale Linear
Programming, A Case Study in Combining
Interior Point and Simplex Methods,
Bixby, Robert E., et al., Operations
Research, 40, no. 5, 1992.)

Technology
Note

SECTION 2.1

In Exercises 1–6, find (a) (b) (c) (d) 

and (e) 

1.

2.

3.

4.

5.

6. B � �
0
4

�1

6
1
2

2
0
4�A � �

2
0
2

3
1
0

4
�1

1�,

B � �
0
5
2

2
4
1

1
2
0�A � �

3
2
0

2
4
1

�1
5
2�,

B � � 2

�3

�3

1

4

�2�A � � 2

�1

1

�1

1

4�,

B � �
1

�1

1

4

5

10
�A � �

6

2

�3

�1

4

5
�,

B � ��3

4

�2

2�A � �1

2

2

1�,

B � � 2

�1

�1

8�A � �1

2

�1

�1�,

B �
1
2 A.

2A � B,2A,A � B,A � B,
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7. Find (a) and (b) where 

and

8. Find (a) and (b) where 

and

9. Solve for and in the matrix equation

10. Solve for and in the matrix equation

In Exercises 11–18, find (a) and (b) (if they are defined).

11.

12.

13.

14.

15.

16.

17.

18.

In Exercises 19 and 20, find (a) (b) (c) and 
(d) (if they are defined).

19.

20.

In Exercises 21–28, let and be matrices with the 
provided orders.

If defined, determine the size of the matrix. If not defined, provide
an explanation.

21. 22. 23. 24.

25. 26. 27. 28.

In Exercises 29–36, write the system of linear equations in the form
and solve this matrix equation for 

29. 30.

31. 32. �4x1

x1

�

�

9x2

3x2

�

�

�13
12

�2x1

6x1

�

�

3x2

x2

�

�

�4
�36

2x1

x1

�

�

3x2

4x2

�

�

5
10

�x1

�2x1

�

�

x2

x2

� 4
� 0

x.Ax � b

2D � CE � 2ABEAC

�4A1
2DC � EA � B

E:   4 � 3D:   4 � 2C:   4 � 2B:   3 � 4A:   3 � 4

EA, B, C, D,

B � �
5

�4
4

�1
�2

1

2
�2

0
2
1

�2

1
2
1

�3
4
3

3
�1

3
�1

3
4

2
3

�2
2

�2
�2

1
�1

1
3
2

�1

�
A � �

2
3
2

�4
1
2

1
�1

1
0
0

�3

3
0

�3
2

�1
2

2
1
3

�3
2
1

�1
2

�2
1
4

�4

�
B � �

1
2
0
1
2
1

2
�3
�2

2
�1
�2

�3
1

�3
3

�3
4

4
3
0
2
0

�2

1
�1

1
1
4

�4

2
2

�1
�1

2
�1

�
A � �

2
�1

3
2
5
2

�2
4

�3
�1

1
2

4
2
1
3

�2
3

1
�2

2
0

�4
�4

0
�1

3
1
1

�1

3
3

�4
2
3

�2

�
BA

AB,3B � A,2A � B,

B � �1

4

6

2�A � �1

6

0

13

3

8

�2

�17

4

20�,

B � �10 12�A � �
6

�2

1

6
�,

B � �
2

�3

1
�A � �

0

4

8

�1

0

�1

0

2

7
�,

B � �1

0

2

7�A � �
�1

4

0

3

�5

2
�,

B � �
2

3

0
�A � �3 2 1�,

B � �
0

4

8

�1

0

�1

0

2

7
�A � �

2

�3

1

1

4

6
�,

B � �
1

2

1

1

1

�3

2

1

2
�A � �

1

2

3

�1

�1

1

7

8

�1
�,

B � � 2

�1

�1

8�A � �1

4

2

2�,

BAAB

�w
y

x
x� � ��4

2
3

�1� � 2�y
z

w
x�.

wx, y, z,

4�x

z

y

�1� � 2� y

�x

z

1� � 2�4

5

x

�x�.

zx, y,

B � �
1

�4

�6

0

6

4

5

11

9
�.A � �

4

0

�3

11

3

1

�9

2

1
�,

C � 5A � 2B,c32,c23

B � �1

0

2

�5

�7

1�.A � � 5

�3

4

1

4

2�,

C � 2A � 3B,c13,c21



33. 34.

35.

36.

In Exercises 37 and 38, solve the matrix equation for 

37. 38.

In Exercises 39 and 40, solve the matrix equation for and 

39.

40.

41. Find conditions on and such that for the 
matrices below.

and

42. Verify for the following matrices.

and

A square matrix

is called a diagonal matrix if all entries that are not on 
the main diagonal are zero. In Exercises 43 and 44, find the prod-
uct for the diagonal matrix.

43. 44.

In Exercises 45 and 46, find the products and for the 
diagonal matrices.

45.

46.

47. Guided Proof Prove that if and are diagonal matrices 
(of the same size), then 

Getting Started: To prove that the matrices and are
equal, you need to show that their corresponding entries are
equal.

(i) Begin your proof by letting and be
two diagonal matrices.

(ii) The th entry of the product is 

(iii) Evaluate the entries for the two cases and 
(iv) Repeat this analysis for the product 

48. Writing Let and be matrices, where is diagonal.

(a) Describe the product Illustrate your answer with 
examples.

(b) Describe the product Illustrate your answer with 
examples.

(c) How do the results in parts (a) and (b) change if the 
diagonal entries of are all equal?

In Exercises 49–52, find the trace of the matrix. The trace of an
matrix is the sum of the main diagonal entries. That is,

49. 50.

51. 52.

53. Prove that each statement is true if and are square matrices
of order and is a scalar.

(a)
(b)

54. Prove that if and are square matrices of order then
Tr�AB� � Tr�BA�.

n,BA

Tr�cA� � cTr�A�
Tr�A � B� � Tr�A� � Tr�B�

cn
BA

�
1
4
3
2

4
0
6
1

3
6
2
1

2
1
1

�3
��

1
0
4
0

0
1
2
0

2
�1

1
5

1
2
0
1
�

�
1

0

0

0

1

0

0

0

1
��

1

0

3

2

�2

1

3

4

3
�

Tr�A� � a11 � a22 � . . . � ann.
An � n

A

BA.

AB.

A3 � 3BA

BA.
i � j.i � jcij

ci j � �
n

k�1
aikbk j.ABij

n � n
B � �bij�A � �aij�

BAAB

AB � BA.
BA

B � �
�7

0
0

0
4
0

0
0

12�A � �
3
0
0

0
�5

0

0
0
0�,

B � ��5
0

0
4�A � �2

0
0

�3�,

BAAB

A � �
2

0

0

0

�3

0

0

0

0
�A � �

�1

0

0

0

2

0

0

0

3
�

AA

A � �
a11

0
0
.
.
.
0

0
a22

0
.
.
.
0

0
0

a33.
.
.

. . .

. . .

. . .

. . .

0

0
0
0
.
.
.

ann

�
B � �cos �

sin �

�sin �

cos ��A � �cos 

sin 

�sin 

cos �
AB � BA

B � � 1

�1

1

1�A � �w

y

x

z�

AB � BAzw, x, y,

�a
c

b
d� �

2
3

1
1� � �3

4
17

�1�

�1
3

2
4� �

a
c

b
d� � � 6

19
3
2�

d.a, b, c,

�2

3

�1

�2� A � �1

0

0

1��1

3

2

5� A � �1

0

0

1�
A.

x1

x1

�

�

x2

3x2

�6x2

�

�

4x3

5x3

�

�

�

17
�11

40

x1

�3x1

�

�

5x2

x2

�2x2

�

�

�

2x3

x3

5x3

�

�

�

�20
8

�16

x1

�x1

x1

�

�

�

x2

2x2

x2

�

�

3x3

x3

�

�

�

�1
1
2

x1

�x1

2x1

�

�

�

2x2

3x2

5x2

�

�

�

3x3

x3

5x3

�

�

�

9
�6
17
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55. Show that the matrix equation has no solution.

56. Show that no matrices and exist that satisfy the matrix
equation

57. Let and let and 

(a) Find and Identify any similarities among 
and

(b) Find and identify 

58. Guided Proof Prove that if the product is a square matrix,
then the product is defined.

Getting Started: To prove that the product is defined, you
need to show that the number of columns of equals the 
number of rows of 

(i) Begin your proof by noting that the number of
columns of equals the number of rows of 

(ii) You can then assume that has size and has
size

(iii) Use the hypothesis that the product is a square
matrix.

59. Prove that if both products and are defined, then and
are square matrices.

60. Let and be two matrices such that the product is 
defined. Show that if has two identical rows, then the 
corresponding two rows of AB are also identical.

61. Let and be matrices. Show that if the th row of has
all zero entries, then the th row of will have all zero entries.
Give an example using matrices to show that the converse
is not true.

62. The columns of matrix show the coordinates of the vertices of
a triangle. Matrix is a transformation matrix.

(a) Find and Then sketch the original triangle and 
the two transformed triangles. What transformation does

represent?
(b) A triangle is determined by Describe the transfor-

mation process that produces the triangle determined 
by and then the triangle determined by 

63. A corporation has three factories, each of which manufactures
acoustic guitars and electric guitars. The number of guitars of
type produced at factory in one day is represented by in the
matrix

Find the production levels if production is increased by 20%.

64. A corporation has four factories, each of which manufactures
sport utility vehicles and pickup trucks. The number of vehicles
of type produced at factory in one day is represented by in
the matrix

Find the production levels if production is increased by 10%.

65. A fruit grower raises two crops, apples and peaches. Each of
these crops is shipped to three different outlets. The number of
units of crop that are shipped to outlet is represented by in
the matrix

The profit per unit is represented by the matrix

Find the product and state what each entry of the product
represents.

66. A company manufactures tables and chairs at two locations.
Matrix gives the total cost of manufacturing each product at
each location.

Location 1 Location 2

(a) If labor accounts for about of the total cost, determine
the matrix that gives the labor cost for each product at
each location. What matrix operation did you use?

(b) Find the matrix that gives material costs for each
product at each location. (Assume there are only labor
and material costs.)

M

L

2
3

C �
Tables

Chairs �
627

135

681

150 �

C

BA

B � �$3.50   $6.00�.

A � �125
100

100
175

75
125�.

aijji

A � �100
40

90
20

70
60

30
60�.

aijji

A � �70
35

50
100

25
70�.

aijji

T.AT

AAT.
A

AAT.AT

T � �1
1

2
4

3
2�A � �0

1
�1

0�,

A
T

2 � 2
ABi

Ain � nBA

A
ABBA

BA
ABBAAB

AB
n � p.

Bm � nA
B.A

A.
B

BA
BA

AB

B2.
i4.

i3,i2,A4.A3,A2,

B � �0
i

�i
0�.A � � i

0
0
i�i � ��1

AB � BA � �1

0

0

1�.

BA2 � 2

�1

1

1

1� A � �1

0

0

1�
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True or False? In Exercises 67 and 68, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false, provide
an example that shows the statement is not true in all cases or cite an
appropriate statement from the text.

67. (a) For the product of two matrices to be defined, the number of
columns of the first matrix must equal the number of rows
of the second matrix.

(b) The system is consistent if and only if can be
expressed as a linear combination, where the coefficients of
the linear combination are a solution of the system.

68. (a) If is an matrix and is an matrix, then the
product is an matrix.

(b) The matrix equation where is the coefficient
matrix and and are column matrices, can be used to 
represent a system of linear equations.

69. Writing The matrix

To R To D To I

represents the proportions of a voting population that change
from party to party in a given election. That is, 
represents the proportion of the voting population that changes
from party to party , and represents the proportion that
remains loyal to party from one election to the next. Find the
product of with itself. What does this product represent?

70. The matrices show the numbers of people (in thousands) who
lived in various regions of the United States in 2005 and the 
numbers of people (in thousands) projected to live in those
regions in 2015. The regional populations are separated into
three age categories. (Source: U.S. Census Bureau)

2005

0–17 18–64

Northeast 12,607 34,418 6286

Midwest 16,131 41,395 7177

South 26,728 63,911 11,689

Mountain 5306 12,679 2020

Pacific 12,524 30,741 4519

2015

0–17 18–64

Northeast 12,441 35,289 8835

Midwest 16,363 42,250 9955

South 29,373 73,496 17,572

Mountain 5263 14,231 3337

Pacific 12,826 33,292 7086

(a) The total population in 2005 was 288,131,000 and the 
projected total population in 2015 is 321,609,000. Rewrite
the matrices to give the information as percents of the total
population.

(b) Write a matrix that gives the projected changes in the 
percents of the population in the various regions and age
groups from 2005 to 2015.

(c) Based on the result of part (b), which age group(s) is (are)
projected to show relative growth from 2005 to 2015?

In Exercises 71 and 72, perform the indicated block multiplication
of matrices and If matrices and have each been partitioned
into four submatrices

and

then you can block multiply and provided the sizes of the 
submatrices are such that the matrix multiplications and additions
are defined.

71.

72. B � �
1
5
1
5

2
6
2
6

3
7
3
7

4
8
4
8
�A � �

0
0

�1
0

0
0
0

�1

1
0
0
0

0
1
0
0
�,

B � �
1

�1

0

0

2

1

0

0

0

0

1

3
�A � �

1

0

0

2

1

0

0

0

2

0

0

1
�,

� �A11B11 � A12B21

A21B11 � A22B21

A11B12 � A12B22

A21B12 � A22B22
�

AB � �A11

A21

A12

A22
� �B11

B21

B12

B22
�

B,A

B � �B11

B21

B12

B22
�,A � �A11

A21

A12

A22
�

BAB.A

65�

65�

P
i

piiji

pij �i � j�ji

P �

From R

From D

From I
�
0.75

0.20

0.30

0.15

0.60

0.40

0.10

0.20

0.30
�

bx
AAx � b,

m � rAB
n � rBm � nA

bAx � b
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In Exercises 73–76, express the column matrix as a linear combi-
nation of the columns of 

73.

74.

75.

76. b � �
�22

4
32�A � �

�3
3
4

5
4

�8�,

b � �
3
1
0�A � �

1
1
2

1
0

�1

�5
�1
�1�,

b � �
1

3

2
�A � �

1

�1

0

2

0

1

4

2

3
�,

b � ��1

7�A � �1

3

�1

�3

2

1�,

A.
b

Properties of Matrix Operations

In Section 2.1 you concentrated on the mechanics of the three basic matrix operations:
matrix addition, scalar multiplication, and matrix multiplication. This section begins to 
develop the algebra of matrices. You will see that this algebra shares many (but not all) of
the properties of the algebra of real numbers. Several properties of matrix addition and
scalar multiplication are listed below.

P R O O F The proofs of these six properties follow directly from the definitions of matrix addition,
scalar multiplication, and the corresponding properties of real numbers. For example, to
prove the commutative property of matrix addition, let and Then, using
the commutative property of addition of real numbers, write

Similarly, to prove Property 5, use the distributive property (for real numbers) of multipli-
cation over addition to write

The proofs of the remaining four properties are left as exercises. (See Exercises 47–50.)

c�A � B� � �c�aij � bij�� � �caij � cbij� � c A � cB.

A � B � �aij � bij� � �bij � aij� � B � A.

B � �bij�.A � �aij�

2.2

If and are matrices and and are scalars, then the following properties
are true.

1. Commutative property of addition

2. Associative property of addition

3. Associative property of multiplication

4. Multiplicative identity

5. Distributive property

6. Distributive property�c � d�A � cA � dA
c�A � B� � cA � cB
1A � A
�cd�A � c�dA�
A � �B � C� � �A � B� � C
A � B � B � A

dcm � nCA, B,THEOREM 2.1

Properties of Matrix

Addition and Scalar

Multiplication
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In the preceding section, matrix addition was defined as the sum of two matrices, making
it a binary operation. The associative property of matrix addition now allows you to write
expressions such as as or as This same reasoning
applies to sums of four or more matrices.

By adding corresponding entries, you can obtain the sum of four matrices shown below.

One important property of the addition of real numbers is that the number 0 serves as
the additive identity. That is, for any real number For matrices, a similar prop-
erty holds. Specifically, if is an matrix and is the matrix consisting 
entirely of zeros, then The matrix is called a zero matrix, and it serves
as the additive identity for the set of all matrices. For example, the following matrix
serves as the additive identity for the set of all matrices.

When the size of the matrix is understood, you may denote a zero matrix simply by 0.
The following properties of zero matrices are easy to prove, and their proofs are left as

an exercise. (See Exercise 51.)

R E M A R K : Property 2 can be described by saying that matrix is the additive 
inverse of

The algebra of real numbers and the algebra of matrices have many similarities. For 
example, compare the solutions below.

Real Numbers Matrices
(Solve for ) (Solve for )

The process of solving a matrix equation is demonstrated in Example 2.

X � B � Ax � b � a

X � O � B � Ax � 0 � b � a

X � A � ��A� � B � ��A�x � a � ��a� � b � ��a�
X � A � Bx � a � b

X.x.
m � n

A.
�A

O23 � �0

0

0

0

0

0�
2 � 3

m � n
OmnA � Omn � A.

m � nOmnm � nA
c.c � 0 � c

�
1

2

�3
� � �

�1

�1

2
� � �

0

1

4
� � �

2

�3

�2
� � �

2

�1

1
�

E X A M P L E  1 Addition of More than Two Matrices

A � �B � C�.�A � B� � CA � B � C

If is an matrix and is a scalar, then the following properties are true.

1.
2.
3. If then or A � Omn.c � 0cA � Omn,

A � ��A� � Omn

A � Omn � A

cm � nATHEOREM 2.2

Properties of 

Zero Matrices
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Solve for in the equation where

and

S O L U T I O N Begin by solving the equation for to obtain

Now, using the given matrices and you have

Properties of Matrix Multiplication

In the next theorem, the algebra of matrices is extended to include some useful properties
of matrix multiplication. The proof of Property 2 is presented below. The proofs of the 
remaining properties are left as an exercise. (See Exercise 52.)

P R O O F To prove Property 2, show that the matrices and are equal by showing
that their corresponding entries are equal. Assume has size has size and 
has size Using the definition of matrix multiplication, the entry in the th row and th
column of is Moreover, the entry in the 
th row and th column of is

By distributing and regrouping, you can see that these two th entries are equal. So,

The associative property of matrix multiplication permits you to write such matrix 
products as without ambiguity, as demonstrated in Example 3.ABC

A�B � C� � AB � AC.

ij

�ai1b1j � .  .  . � ainbnj� � �ai1c1j � .  .  . � aincnj�.

AB � ACji
ai1�b1j � c1j� � .  .  . � ain�bn j � cn j�.A�B � C�

jin � p.
Cn � p,Bm � n,A

AB � ACA�B � C�

X �
1
3	��3

2
4
1� � �1

0
�2

3�
 �
1
3��4

2
6

�2� � ��4
3
2
3

2

�
2
3
�.

B,A

X �
1
3�B � A�.3X � B � A

X

B � ��3

2

4

1�.A � �1

0

�2

3�
3X � A � B,X

E X A M P L E  2 Solving a Matrix Equation

If and are matrices (with sizes such that the given matrix products are defined)
and is a scalar, then the following properties are true.

1. Associative property of multiplication

2. Distributive property

3. Distributive property

4. c�AB� � �cA�B � A�cB�
�A � B�C � AC � BC
A�B � C� � AB � AC
A�BC� � �AB�C
c

CA, B,THEOREM 2.3

Properties of 

Matrix Multiplication
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Find the matrix product by grouping the factors first as and then as 
Show that the same result is obtained from both processes.

S O L U T I O N Grouping the factors as you have

Grouping the factors as you obtain the same result.

Note that no commutative property for matrix multiplication is listed in Theorem 2.3.
Although the product is defined, it can easily happen that and are not of the proper
sizes to define the product For instance, if is of size and is of size 
then the product is defined but the product is not. The next example shows that even
if both products and are defined, they may not be equal.

Show that and are not equal for the matrices

and

S O L U T I O N

AB � BA

BA � �2
0

�1
2� �

1
2

3
�1� � �0

4
7

�2�

AB � �1
2

3
�1� �

2
0

�1
2� � �2

4
5

�4�

B � �2

0

�1

2�.A � �1

2

3

�1�
BAAB

E X A M P L E  4 Noncommutativity of Matrix Multiplication

BAAB
BAAB

3 � 3,B2 � 3ABA.
BAAB

� �17
13

4
14�� �1

2
�2
�1� �

3
�7

8
2�

A�BC� � �1

2

�2

�1� 	�1

3

0

�2

2

1� �
�1

3

2

0

1

4
�


A�BC�,

� �17

13

4

14�.� ��5

�1

4

2

0

3� �
�1

3

2

0

1

4
�

�AB�C � 	�1

2

�2

�1� �
1

3

0

�2

2

1�
 �
�1

3

2

0

1

4
�

�AB�C,

C � �
�1

3

2

0

1

4
�B � �1

3

0

�2

2

1�,A � �1

2

�2

�1�,

A�BC�.�AB�CABC

E X A M P L E  3 Matrix Multiplication Is Associative
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Do not conclude from Example 4 that the matrix products and are never the
same. Sometimes they are the same. For example, try multiplying the following matrices,
first in the order and then in the order 

and

You will see that the two products are equal. The point is this: Although and are 
sometimes equal, and are usually not equal.

Another important quality of matrix algebra is that it does not have a general cancella-
tion property for matrix multiplication. That is, if it is not necessarily true that

This is demonstrated in Example 5. (In the next section you will see that, for some 
special types of matrices, cancellation is valid.)

Show that .

S O L U T I O N

even though 

You will now look at a special type of square matrix that has 1’s on the main diagonal
and 0’s elsewhere.

For instance, if 2, or 3, we have

When the order of the matrix is understood to be you may denote simply as 
As stated in Theorem 2.4 on the next page, the matrix serves as the identity for matrix

multiplication; it is called the identity matrix of order The proof of this theorem is left
as an exercise. (See Exercise 53.)

n.
In

I.Inn,

3 � 32 � 21 � 1

I3 � �
1

0

0

0

1

0

0

0

1
�.I2 � �1

0

0

1�,I1 � �1�,

n � 1,

In � �
1
0
0.
.
.
0

0
1
0.
.
.
0

0
0
1.
.
.
0

. . .

. . .

. . .

. . .

0
0
0.
.
.
1
�

A � B.AC � BC,

BC � �2

2

4

3� �
1

�1

�2

2� � ��2

�1

4

2�

AC � �1

0

3

1� �
1

�1

�2

2� � ��2

�1

4

2�

C � � 1

�1

�2

2�B � �2

2

4

3�,A � �1

0

3

1�,

AC � BC

E X A M P L E  5 An Example in Which Cancellation Is Not Valid

A � B.
AC � BC,

BAAB
BAAB

B � ��2

2

4

�2�A � �1

1

2

1�
BA.AB

BAAB
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As a special case of this theorem, note that if is a square matrix of order then

(a)

(b)

For repeated multiplication of square matrices, you can use the same exponential nota-
tion used with real numbers. That is, and for a positive integer is

factors

It is convenient also to define (where is a square matrix of order ). These 
definitions allow you to establish the properties

1. and 2.

where and are nonnegative integers.

Find for the matrix 

S O L U T I O N

In Section 1.1 you saw that a system of linear equations must have exactly one solution, an
infinite number of solutions, or no solution. Using the matrix algebra developed so far, you
can now prove that this is true.

A3 � 	�2

3

�1

0� �
2

3

�1

0�
 �
2

3

�1

0� � �1

6

�2

�3� �
2

3

�1

0� � ��4

3

�1

�6�

A � �2

3

�1

0�.A3

E X A M P L E  7 Repeated Multiplication of a Square Matrix

kj

�Aj�k � Aj kAjAk � Aj�k

nAA0 � In

k

Ak � AA .  .  . A.

Akk,A2 � AA,A1 � A,

�
1

0

0

0

1

0

0

0

1
� �

�2

1

4
� � �

�2

1

4
�

�
3

4

�1

�2

0

1
� �1

0

0

1� � �
3

4

�1

�2

0

1
�

E X A M P L E  6 Multiplication by an Identity Matrix

AIn � InA � A.

n,A

If is a matrix of size then the following properties are true.

1.
2. ImA � A

AIn � A

m � n,ATHEOREM 2.4

Properties of the 

Identity Matrix



P R O O F Represent the system by the matrix equation If the system has exactly one solution
or no solution, then there is nothing to prove. So, you can assume that the system has at least
two distinct solutions and The proof will be complete if you can show that this assump-
tion implies that the system has an infinite number of solutions. Because and are 
solutions, you have and This implies that the (nonzero)
column matrix is a solution of the homogeneous system of linear equations

It can now be said that for any scalar 

So is a solution of for any scalar Because there are an infinite number
of possible values of and each value produces a different solution, you can conclude that
the system has an infinite number of solutions.

The Transpose of a Matrix

The transpose of a matrix is formed by writing its columns as rows. For instance, if is
the matrix shown by

Size:

then the transpose, denoted by is the matrix below

Size: n � m

AT � �
a11

a12

a13.
.
.

a1n

a21

a22

a23.
.
.

a2n

a31

a32

a33.
.
.

a3n

. . .

. . .

. . .

. . .

am1

am2

am3.
.
.

amn

�.

n � mAT,

m � n

A � �
a11

a21

a31.
.
.

am1

a12

a22

a32.
.
.

am2

a13

a23

a33.
.
.

am3

. . .

. . .

. . .

. . .

a1n

a2n

a3n.
.
.

amn

�,

m � n
A

c
c.Ax � bx1 � cxh

A�x1 � cxh� � Ax1 � A�cxh� � b � c�Axh� � b � cO � b.

c,Ax � O.
xh � x1 � x2

A�x1 � x2� � O.Ax1 � Ax2 � b
x2x1

x2.x1

Ax � b.
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For a system of linear equations in variables, precisely one of the following is true.

1. The system has exactly one solution.
2. The system has an infinite number of solutions.
3. The system has no solution.

nTHEOREM 2.5

Number of Solutions of a

System of Linear Equations



Find the transpose of each matrix.

(a) (b) (c) (d)

S O L U T I O N (a) (b) (c)

(d)

R E M A R K : Note that the square matrix in part (c) of Example 8 is equal to its transpose.
Such a matrix is called symmetric. A matrix is symmetric if From this defini-
tion it is clear that a symmetric matrix must be square. Also, if is a symmetric
matrix, then for all 

P R O O F Because the transpose operation interchanges rows and columns, Property 1 seems to make
sense. To prove Property 1, let be an matrix. Observe that has size and

has size the same as To show that you must show that the th
entries are the same. Let be the th entry of Then is the th entry of and the 

th entry of This proves Property 1. The proofs of the remaining properties are left as
an exercise. (See Exercise 54.)

�AT �T.ij
AT,jiaijA.ijaij

ij�AT �T � AA.m � n,�AT �T
n � mATm � nA

i � j.aij � aji

A � �aij�
A � AT.A

DT � �0
1

2
4

1
�1�

CT � �
1

2

0

2

1

0

0

0

1
�BT � �

1
2
3

4
5
6

7
8
9�AT � �2 8�

D � �
0

2

1

1

4

�1
�C � �

1

2

0

2

1

0

0

0

1
�B � �

1
4
7

2
5
8

3
6
9�A � �2

8�

E X A M P L E  8 The Transpose of a Matrix
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Let and

Calculate , , and Make a conjecture about the transpose of a product of two square
matrices. Select two other square matrices to check your conjecture.

BTAT.ATBT�AB�T

B � �3
1

5
�1�.A � �1

3
2
4�

Discovery

If and are matrices (with sizes such that the given matrix operations are defined) and
is a scalar, then the following properties are true.

1. Transpose of a transpose

2. Transpose of a sum

3. Transpose of a scalar multiple

4. Transpose of a product�AB�T � BTAT
�cA�T � c�AT�
�A � B�T � AT � BT
�AT �T � A

c
BATHEOREM 2.6

Properties of 

Transposes
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Properties 2 and 4 can be generalized to cover sums or products of any finite number of
matrices. For instance, the transpose of the sum of three matrices is

and the transpose of the product of three matrices is

Show that and are equal.

and

S O L U T I O N

For the matrix

find the product and show that it is symmetric.

S O L U T I O N Because

it follows that so is symmetric.AATAAT � �AAT �T,

AAT � �
1

0

�2

3

�2

�1
� �1

3

0

�2

�2

�1� � �
10

�6

�5

�6

4

2

�5

2

5
�

AAT

A � �
1
0

�2

3
�2
�1�

EXAMPLE 10 The Product of a Matrix and Its Transpose

�AB�T � BTAT

BTAT � �3
1

2
�1

3
0� �

2
1

�2

�1
0
3

0
�2

1� � �2
1

6
�1

�1
2�

�AB�T � �2

1

6

�1

�1

2�

AB � �
2

�1

0

1

0

�2

�2

3

1
� �

3

2

3

1

�1

0
� � �

2

6

�1

1

�1

2
�

B � �
3

2

3

1

�1

0
�A � �

2

�1

0

1

0

�2

�2

3

1
�

BTAT�AB�T

E X A M P L E  9 Finding the Transpose of a Product

�ABC�T � CTBTAT.

�A � B � C�T � AT � BT � CT,

R E M A R K : Remember that 
you reverse the order of
multiplication when forming 
the transpose of a product. 
That is, the transpose of is

and is not usually
equal to ATBT.
�AB�T � BTAT

AB
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R E M A R K : The property demonstrated in Example 10 is true in general. That is, for any
matrix the matrix given by is symmetric. You are asked to prove this result in
Exercise 55.

B � AATA,

SECTION 2.2

In Exercises 1–6, perform the indicated operations when 
and

1. 2. 3.

4. 5. 6.

7. Solve for when

and

(a) (b)

(c) (d)

8. Solve for when

and

(a) (b)

(c) (d)

In Exercises 9–14, perform the indicated operations, provided that
and

9. 10. 11.

12. 13. 14.

In Exercises 15 and 16, demonstrate that if then is not
necessarily equal to for the following matrices.

15.

16.

In Exercises 17 and 18, demonstrate that if then it is not
necessarily true that or for the following matrices.

17. and

18. and

In Exercises 19–22, perform the indicated operations when

and

19. 20.

21. 22.

In Exercises 23–28, find (a) (b) and (c) .

23. 24.

25. 26.

27.

28. A � �
4
2

�1
14
6

�3
0

�2
�2

8

2
11
0

12
�5

0
�1

3
�9

4
�

A � �
0
8

�2
0

�4
4
3
0

3
0
5

�3

2
1
1
2
�

A � �
�7

4

6

11

�3

�1

12

1

3
�A � �

2
1
0

1
4
2

�3
1
1�

A � �
1
3
0

�1
4

�2�A � �4
0

2
2

1
�1�

AATATA,AT,

A � IAA�I � A�
A4A2

I � �1

0

0

1�.A � �1

0

2

�1�

B � � 1
�

1
2

�2
1�A � �2

2
4
4�

B � � 1

�1

�1

1�A � �3

4

3

4�
B � OA � O

AB � O,

C � �
0
0
4

0
0

�2

0
0
3�

B � �
4

5

�1

�6

4

0

3

4

1
�,A � �

1

0

3

2

5

�2

3

4

1
�,

C � �2
2

3
3�B � �1

1
0
0�,A � �0

0
1
1�,

B
AAC � BC,

B�cA��cB��C � C�B�C � O�
�B � C�AC�BC�B�CA�

O � �0

0

0

0�.

C � � 0

�1

1

0�,B � � 1

�1

3

2�,A � �1

0

2

1

3

�1�,

c � �2

2A � 4B � �2X2X � 3A � B

2X � 2A � BX � 3A � 2B

B � �
0
2

�4

3
0

�1�.A � �
�2

1
3

�1
0

�4�
X

6X � 4A � 3B � OX � 3A � 2B � O

2A � 5B � 3X3X � 2A � B

B � �
1

�2
4

2
1
4�.A � �

�4
1

�3

0
�5

2�
X

�ab�O�a � b��A � B��a � b�B
ab�B�A � BaA � bB

O � �0

0

0

0�.B � � 0

�1

1

2�,A � �1

3

2

4�,

b � �4,
a � 3,
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Writing In Exercises 29 and 30, explain why the formula is not
valid for matrices. Illustrate your argument with examples.

29.

30.

In Exercises 31–34, verify that 

31. and

32. and

33. and

34. and

True or False? In Exercises 35 and 36, determine whether each
statement is true or false. If a statement is true, give a reason or 
cite an appropriate statement from the text. If a statement is false,
provide an example that shows the statement is not true in all cases
or cite an appropriate statement from the text.

35. (a) Matrix addition is commutative.

(b) Matrix multiplication is associative.

(c) The transpose of the product of two matrices equals the
product of their transposes; that is,

(d) For any matrix the matrix is symmetric.

36. (a) Matrix multiplication is commutative.

(b) Every matrix has an additive inverse.

(c) If the matrices and satisfy then 

(d) The transpose of the sum of two matrices equals the sum of
their transposes.

37. Consider the matrices shown below.

(a) Find scalars and such that 
(b) Show that there do not exist scalars and such that

(c) Show that if then 
(d) Find scalars and not all equal to zero, such that

38. Consider the matrices shown below.

(a) Find scalars and such that 
(b) Show that there do not exist scalars and such that

(c) Show that if then 
(d) Find scalars and not all equal to zero, such that

In Exercises 39 and 40, compute the power of for the matrix

39. 40.

An th root of a matrix is a matrix such that In Exercises
41 and 42, find the th root of the matrix 

41. 42.

In Exercises 43–46, use the given definition to find If is the
polynomial function,

then for an matrix is defined to be

43.

44.

45.

46. A � �
2
1

�1

1
0
1

�1
2
3�f �x� � x3 � 2x2 � 5x � 10,

A � � 2
�1

1
0�f �x� � x2 � 3x � 2,

A � �5

1

4

2�f �x� � x2 � 7x � 6,

A � �2

4

0

5�f �x� � x2 � 5x � 2,

f �A� � a0 In � a1 A � a2 A2 � . . . � an An.

f �A�A,n � n

f �x� � a0 � a1x � a2x2 � . . . � anxn,

ff �A�:

n � 3B � �
8

0

0

0

�1

0

0

0

27
�,n � 2B � �9

0

0

4�,

B.n
An � B.ABn

A20A19

A � �
1

0

0

0

�1

0

0

0

1
�.

A

aX � bY � cZ � O.
c,a, b,

� 0.a � b � caX � bY � cW � O,
W � aX � bY.

ba
Z � aX � bY.ba

O � �
0
0
0�W � �

0
0
1�,Z � �

1
4
4�,Y � �

1
0
2�,X � �

1
2
3�,

aX � bY � cZ � O.
c,a, b,

� 0.a � b � caX � bY � cW � O,

W � aX � bY.
ba

Z � aX � bY.ba

O � �
0
0
0�W � �

1
1
1�,Z � �

2
�1

3�,Y � �
1
1
0�,X � �

1
0
1�,

B � C.AB � AC,CA, B,

A

CC TC,

�AB�T � ATBT.

B � �
1
2
0

0
1
1

�1
�2

3�A � �
2
0
4

1
1
0

�1
3
2�

B � �2
0

3
4

1
�1�A � �

2
0

�2

1
1
1�

B � ��3

2

�1

1�A � �1

0

2

�2�

B � �
�3

1
1

0
2

�1�A � ��1
2

1
0

�2
1�

�AB�T � BTAT.

�A � B��A � B� � A2 � 2AB � B2

�A � B��A � B� � A2 � B2
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47. Guided Proof Prove the associative property of matrix 
addition:

Getting Started: To prove that and 
are equal, show that their corresponding entries are the same.

(i) Begin your proof by letting and be 
matrices.

(ii) Observe that the th entry of is 
(iii) Furthermore, the th entry of is 

(iv) Determine the th entry of 

48. Prove the associative property of scalar multiplication:

49. Prove that the scalar 1 is the identity for scalar multiplication:

50. Prove the following distributive property:

51. Prove Theorem 2.2.

52. Complete the proof of Theorem 2.3.

(a) Prove the associative property of multiplication:

(b) Prove the distributive property:

(c) Prove the property:

53. Prove Theorem 2.4.

54. Prove Properties 2, 3, and 4 of Theorem 2.6.

55. Guided Proof Prove that if is an matrix, then 
and are symmetric matrices.

Getting Started: To prove that is symmetric, you need
to show that it is equal to its transpose,

(i) Begin your proof with the left-hand matrix expression

(ii) Use the properties of the transpose operation to show
that it can be simplified to equal the right-hand expres-
sion,

(iii) Repeat this analysis for the product 

56. Give an example of two matrices and such that

In Exercises 57–60, determine whether the matrix is symmetric,
skew-symmetric, or neither. A square matrix is called skew-
symmetric if

57. 58.

59. 60.

61. Prove that the main diagonal of a skew-symmetric matrix 
consists entirely of zeros.

62. Prove that if and are skew-symmetric matrices, then 
is skew-symmetric.

63. Let be a square matrix of order 

(a) Show that is symmetric.

(b) Show that is skew-symmetric.

(c) Prove that can be written as the sum of a symmetric
matrix and a skew-symmetric matrix 

(d) Write the matrix

as the sum of a skew-symmetric matrix and a symmet-
ric matrix.

64. Prove that if is an matrix, then is skew-
symmetric.

65. Let and be two symmetric matrices.

(a) Give an example to show that the product is not 
necessarily symmetric.

(b) Prove that is symmetric if and only if 

66. Consider matrices of the form

(a) Write a matrix and a matrix in the form 
of

(b) Use a graphing utility or computer software program to
raise each of the matrices to higher powers. Describe 
the result.

(c) Use the result of part (b) to make a conjecture about
powers of if is a matrix. Use a graphing 
utility to test your conjecture.

(d) Use the results of parts (b) and (c) to make a conjecture
about powers of if is an matrix.n � nAA

4 � 4AA

A.
3 � 32 � 2

A � �
0
0
0

�
0
0

a12

0
0

�
0
0

a13

a23

0

�
0
0

a14

a24

a34

�
0
0

.  .  .

.  .  .

.  .  .

.  .  .

.  .  .

.  .  .

a1n

a2n

a3n

�
a�n�1�n

0
� .

AB � BA.AB

AB

n � nBA

A � ATn � nA

A � �
2

�3
4

5
6
1

3
0
1�

A � B � C.C,B
A

1
2�A � AT �

1
2�A � AT �

n.A

A � B
n � nBA

A � �
0

�2

1

2

0

3

�1

�3

0
�A � �

0

2

1

2

0

3

1

3

0
�

A � �2

1

1

3�A � � 0

�2

2

0�
AT � �A.

�AB�T � ATBT.
BA2 � 2

ATA.
AAT.

�AAT �T.

�AAT �T � AAT.
AAT

ATA
AATm � nA

c�AB� � �cA�B � A�cB�.
AC � BC.�A � B�C �

A�BC� � �AB�C.

�c � d�A � cA � dA.

1A � A.

�cd�A � c�dA�.

�A � B� � C.ij

�bij � cij�.aij �

A � �B � C�ij
bij � cij.B � Cij

m � nCA, B,

�A � B� � CA � �B � C�
A � �B � C� � �A � B� � C.
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The Inverse of a Matrix

Section 2.2 discussed some of the similarities between the algebra of real numbers and the
algebra of matrices. This section further develops the algebra of matrices to include the 
solutions of matrix equations involving matrix multiplication. To begin, consider the real
number equation To solve this equation for multiply both sides of the equation
by

The number is called the multiplicative inverse of because yields 1 (the identity 
element for multiplication). The definition of a multiplicative inverse of a matrix is similar.

Nonsquare matrices do not have inverses. To see this, note that if is of size and
is of size then the products and are of different sizes and

cannot be equal to each other. Indeed, not all square matrices possess inverses. (See
Example 4.) The next theorem, however, tells you that if a matrix does possess an inverse,
then that inverse is unique.

P R O O F Because is invertible, you know it has at least one inverse such that

Suppose has another inverse such that

AC � I � CA.

CA

AB � I � BA.

BA

BAAB�where m � n�,n � mB
m � nA

a�1aaa�1

x � a�1b

�1�x � a�1b

�a�1a�x � a�1b

ax � b

�provided a � 0�.a�1

x,ax � b.

2.3

An matrix is invertible (or nonsingular) if there exists an matrix such that

where is the identity matrix of order The matrix is called the (multiplicative) 
inverse of A matrix that does not have an inverse is called noninvertible (or singular).A.

Bn.In

AB � BA � In

Bn � nAn � nDefinition of the 

Inverse of a Matrix

If is an invertible matrix, then its inverse is unique. The inverse of is denoted by A�1.AA
THEOREM 2.7

Uniqueness of an 

Inverse Matrix
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Then you can show that and are equal, as follows.

Consequently and it follows that the inverse of a matrix is unique.

Because the inverse of an invertible matrix is unique, you can call it the inverse
of and write

Show that is the inverse of where

and

S O L U T I O N Using the definition of an inverse matrix, you can show that is the inverse of by 
showing that as follows.

R E M A R K : Recall that it is not always true that even if both products are de-
fined. If and are both square matrices and however, then it can be shown that

Although the proof of this fact is omitted, it implies that in Example 1 you needed
only to check that 

The next example shows how to use a system of equations to find the inverse of a matrix.

Find the inverse of the matrix

A � � 1

�1

4

�3�.

E X A M P L E  2 Finding the Inverse of a Matrix

AB � I2.
BA � In.

AB � In,BA
AB � BA,

BA � �1
1

�2
�1� �

�1
�1

2
1� � ��1 � 2

�1 � 1
2 � 2
2 � 1� � �1

0
0
1�

AB � ��1
�1

2
1� �

1
1

�2
�1� � ��1 � 2

�1 � 1
2 � 2
2 � 1� � �1

0
0
1�

AB � I � BA,
AB

B � �1

1

�2

�1�.A � ��1
�1

2
1�

A,B

E X A M P L E  1 The Inverse of a Matrix

AA�1 � A�1A � I.

A
AA�1

B � C,

B � C

IB � C

�CA�B � C

C�AB� � CI

AB � I

CB
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S O L U T I O N To find the inverse of try to solve the matrix equation for 

Now, by equating corresponding entries, you obtain the two systems of linear equations
shown below.

Solving the first system, you find that the first column of is and 
Similarly, solving the second system, you find that the second column of is and

The inverse of is

Try using matrix multiplication to check this result.

Generalizing the method used to solve Example 2 provides a convenient method for
finding an inverse. Notice first that the two systems of linear equations

have the same coefficient matrix. Rather than solve the two systems represented by

and

separately, you can solve them simultaneously. You can do this by adjoining the identity
matrix to the coefficient matrix to obtain

By applying Gauss-Jordan elimination to this matrix, you can solve both systems with a
single elimination process, as follows.

Applying Gauss-Jordan elimination to the “doubly augmented” matrix you obtain
the matrix �I � A�1�.

�A � I�,

R1 1 ��4�R2 → R1�1
0

0
1

�
�

�3
1

�4
1�

R2 1 R1 → R2
�1

0
4
1

�
�

1
1

0
1�

� 1
�1

4
�3

�
�

1
0

0
1�.

� 1
�1

4
�3

�
�

0
1�� 1

�1
4

�3
�
�

1
0�

�x12 � 3x22 � 1�x11 � 3x21 � 0

x12 � 4x22 � 0x11 � 4x21 � 1

X � A�1 � ��3

1

�4

1�.

Ax22 � 1.
x12 � �4X

x21 � 1.x11 � �3X

�x12 � 3x22 � 1�x11 � 3x21 � 0

x12 � 4x22 � 0x11 � 4x21 � 1

� x11 � 4x21

�x11 � 3x21

x12 � 4x22

�x12 � 3x22
� � �1

0

0

1�
� 1

�1

4

�3� �
x11

x21

x12

x22
� � �1

0

0

1�
X.AX � IA,
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This procedure (or algorithm) works for an arbitrary matrix. If cannot be row 
reduced to then is noninvertible (or singular). This procedure will be formally justified
in the next section, after the concept of an elementary matrix is introduced. For now the 
algorithm is summarized as follows.

Find the inverse of the matrix.

S O L U T I O N Begin by adjoining the identity matrix to to form the matrix

Now, using elementary row operations, rewrite this matrix in the form as follows.

R3 1 �4�R2 → R3

�
1
0
0

�1
1
0

0
�1
�1

�
�
�

1
�1

2

0
1
4

0
0
1�

R3 1 �6�R1 → R3

�
1
0
0

�1
1

�4

0
�1

3

�
�
�

1
�1

6

0
1
0

0
0
1�

R2 1 ��1�R1 → R2�
1
0

�6

�1
1
2

0
�1

3

�
�
�

1
�1

0

0
1
0

0
0
1�

�I � A�1�,

�A � I� � �
1
1

�6

�1
0
2

0
�1

3

�
�
�

1
0
0

0
1
0

0
0
1�.

A

A � �
1

1

�6

�1

0

2

0

�1

3
�

E X A M P L E  3 Finding the Inverse of a Matrix

AIn,
An � n

A�1IIA

�1
0

0
1

�
�

�3
1

�4
1�� 1

�1
4

�3
�
�

1
0

0
1�

Let be a square matrix of order 

1. Write the matrix that consists of the given matrix on the left and the 
identity matrix on the right to obtain Note that you separate the matrices 
and by a dotted line. This process is called adjoining matrix to matrix 

2. If possible, row reduce to using elementary row operations on the entire matrix
The result will be the matrix If this is not possible, then is 

noninvertible (or singular).
3. Check your work by multiplying and to see that AA�1 � I � A�1A.A�1AAA�1

A�I � A�1�.�A � I�.
IA

A.II
A�A � I�.I

n � nAn � 2n

n.AFinding the Inverse 

of a Matrix by 

Gauss-Jordan Elimination
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The matrix is invertible, and its inverse is

Try confirming this by showing that 

The process shown in Example 3 applies to any matrix and will find the inverse
of matrix if possible. If matrix has no inverse, the process will also tell you that. The
next example applies the process to a singular matrix (one that has no inverse).

Show that the matrix has no inverse.

A � �
1

3

�2

2

�1

3

0

2

�2
�

E X A M P L E  4 A Singular Matrix

AA,
n � n

AA�1 � I � A�1A.

A�1 � �
�2

�3

�2

�3

�3

�4

�1

�1

�1
�.

A

R1 1 R2 → R1�
    1

0
0

0
1
0

0
0
1

�
�
�

�2
�3
�2

�3
�3
�4

�1
�1
�1�

R2 1 R3 → R2�
    1

0
0

�1
1
0

0
0
1

�
�
�

1
�3
�2

0
�3
�4

0
�1
�1�

��1�R3 → R3

�
    1

0
0

�1
1
0

0
�1

1

�
�
�

1
�1
�2

0
1

�4

0
0

�1�

Most graphing utilities and computer software programs can calculate the inverse of a square matrix.
If you are using a graphing utility, your screens for Example 3 may look like the images below.
Keystrokes and programming syntax for these utilities/programs applicable to Example 3 are 
provided in the Online Technology Guide, available at college.hmco.com/pic/larsonELA6e.

Technology
Note
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S O L U T I O N Adjoin the identity matrix to to form

and apply Gauss-Jordan elimination as follows.

Now, notice that adding the second row to the third row produces a row of zeros on the left
side of the matrix.

Because the “ portion” of the matrix has a row of zeros, you can conclude that it is not
possible to rewrite the matrix in the form This means that has no 
inverse, or is noninvertible (or singular).

Using Gauss-Jordan elimination to find the inverse of a matrix works well (even as a 
computer technique) for matrices of size or greater. For matrices, however, you
can use a formula to find the inverse instead of using Gauss-Jordan elimination. This simple
formula is explained as follows. 

If is a matrix represented by

then is invertible if and only if Moreover, if then the inverse
is represented by

Try verifying this inverse by finding the product 

R E M A R K : The denominator is called the determinant of You will study 
determinants in detail in Chapter 3.

A.ad � bc

AA�1.

A�1 �
1

ad � bc�
d

�c
�b

a�.

ad � bc � 0,ad � bc � 0.A

A � �a

c

b

d�,

2 � 2A

2 � 23 � 3

A�I � A�1�.�A � I�
A

R3 1 R2 → R3

�
1
0
0

2
�7

0

0
2
0

�
�
�

1
�3
�1

0
1
1

0
0
1�

R3 1 �2�R1 → R3

�
1
0
0

2
�7

7

0
2

�2

�
�
�

1
�3

2

0
1
0

0
0
1�

R2 1 ��3�R1 → R2�
1
0

�2

2
�7

3

0
2

�2

�
�
�

1
�3

0

0
1
0

0
0
1�

�A � I� � �
1
3

�2

2
�1

3

0
2

�2

�
�
�

1
0
0

0
1
0

0
0
1�

A
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If possible, find the inverse of each matrix.

(a) (b)

S O L U T I O N (a) For the matrix apply the formula for the inverse of a matrix to obtain
Because this quantity is not zero, the inverse is

formed by interchanging the entries on the main diagonal and changing the signs of the
other two entries, as follows.

(b) For the matrix you have which means that is 
noninvertible.

Properties of Inverses

Some important properties of inverse matrices are listed below.

P R O O F The key to the proofs of Properties 1, 3, and 4 is the fact that the inverse of a matrix is unique
(Theorem 2.7). That is, if then is the inverse of 

Property 1 states that the inverse of is itself. To prove this, observe that 
which means that is the inverse of Thus,

Similarly, Property 3 states that is the inverse of To prove this, use

the properties of scalar multiplication given in Theorems 2.1 and 2.3, as follows.

c � 0.�cA�,1
c

A�1

A � �A�1��1.A�1.AAA�1 � I,
A�1A �AA�1

B.CBC � CB � I,

Bad � bc � �3��2� � ��1���6� � 0,B,

A�1 �
1
4�2

2
1
3� � �

1
2
1
2

1
4
3
4
�

ad � bc � �3��2� � ��1���2� � 4.
2 � 2A,

B � � 3

�6

�1

2�A � � 3

�2

�1

2�

E X A M P L E  5 Finding the Inverse of a 2 x 2 Matrix

If is an invertible matrix, is a positive integer, and is a scalar not equal to zero, then
and are invertible and the following are true.

1.

2.

factors

3.

4. �AT ��1 � �A�1�T

c � 0�cA��1 �
1
c

A�1,

k

�Ak��1 � A�1A�1 .  .  . A�1 � �A�1�k

�A�1��1 � A

ATcA,Ak,A�1,
ckATHEOREM 2.8

Properties of 

Inverse Matrices
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and

So is the inverse of , which implies that

Properties 2 and 4 are left for you to prove. (See Exercises 47 and 48.)

For nonsingular matrices, the exponential notation used for repeated multiplication of
square matrices can be extended to include exponents that are negative integers. This may
be done by defining to be

factors

Using this convention you can show that the properties and hold
true for any integers and 

Compute in two different ways and show that the results are equal.

S O L U T I O N One way to find is to find by squaring the matrix to obtain

and using the formula for the inverse of a matrix to obtain

Another way to find  is to find by finding 

� � 2

�1

�
1
2
1
2
�A�1 �

1
2� 4

�2
�1

1�

A�1�A�1�2A�2

� �
9
2

�
5
2

�
5
4
3
4
�.

�A2��1 �
1
4� 18

�10
�5

3�
2 � 2

A2 � � 3
10

5
18�

A�A2��1A�2

A � �1

2

1

4�
A�2

E X A M P L E  6 The Inverse of the Square of a Matrix

k.j
�Aj�k � AjkAjAk � Aj�k

k

A�k � A�1A�1 .  .  . A�1 � �A�1�k.

A�k

1
c

A�1 � �cA��1.

�cA�1
c

A�1

	1
c

A�1
�cA� � 	1
c

c
A�1A � �1�I � I

�cA�	1
c

A�1
 � 	c
1
c
AA�1 � �1�I � I
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and then squaring this matrix to obtain

Note that each method produces the same result.

The next theorem gives a formula for computing the inverse of a product of two matrices.

P R O O F To show that  is the inverse of you need only show that it conforms to the defi-
nition of an inverse matrix. That is,

In a similar way you can show that and conclude that is invertible
and has the indicated inverse.

Theorem 2.9 states that the inverse of a product of two invertible matrices is the product
of their inverses taken in the reverse order. This can be generalized to include the product
of several invertible matrices:

(See Example 4 in Appendix A.)

Find for the matrices

and B � �
1

1

2

2

3

4

3

3

3
�A � �

1

1

1

3

4

3

3

3

4
�

�AB��1

E X A M P L E  7 Finding the Inverse of a Matrix Product

�A1A2A3
.  .  . An��1 � An

�1 .  .  . A3
�1A2

�1 A1
�1.

AB�B�1A�1��AB� � I

�AB��B�1A�1� � A�BB�1�A�1 � A�I�A�1 � �AI�A�1 � AA�1 � I.

AB,B�1A�1

�A�1�2 � �
9
2

�
5
2

�
5
4
3
4
�.

Let and

Calculate , , and Make a conjecture about the inverse of a product of two
nonsingular matrices. Select two other nonsingular matrices and see whether your conjecture
holds.

B�1A�1.A�1B�1�AB��1

B � �2
1

�1
�1�.A � �1

1
2
3�

Discovery

If and are invertible matrices of size then is invertible and

�AB��1 � B�1A�1.

ABn,BATHEOREM 2.9

The Inverse 

of a Product
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using the fact that and are represented by

and

S O L U T I O N Using Theorem 2.9 produces

R E M A R K : Note that you reverse the order of multiplication to find the inverse of 
That is, and the inverse of is usually not equal to 

One important property in the algebra of real numbers is the cancellation property. That
is, if , then . Invertible matrices have similar cancellation properties.

P R O O F To prove Property 1, use the fact that is invertible and write

The second property can be proved in a similar way; this is left to you. (See Exercise 50.)

Be sure to remember that Theorem 2.10 can be applied only if is an invertible matrix.
If is not invertible, then cancellation is not usually valid. For instance, Example 5 in
Section 2.2 gives an example of a matrix equation in which because 
is not invertible in the example.

CA � B,AC � BC
C

C

A � B.

AI � BI

A�CC�1� � B�CC�1�
�AC�C�1 � �BC�C�1

AC � BC

C

a � bac � bc �c � 0�

A�1B�1.AB�AB��1 � B�1A�1,
AB.

�AB��1 � B�1A�1 � �
1

�1
2
3

�2
1
0

1
0

�
1
3
� �

7
�1
�1

�3
1
0

�3
0
1� � �

8
�8

5

�5
4

�2

�2
3

�
7
3
�.

A�1B�1

B�1 � �
1

�1
2
3

�2

1

0

1

0

�
1
3
�.A�1 � �

7

�1

�1

�3

1

0

�3

0

1
�

B�1A�1

If is an invertible matrix, then the following properties hold.

1. If then  Right cancellation property

2. If then  Left cancellation propertyA � B.CA � CB,
A � B.AC � BC,

CTHEOREM 2.10

Cancellation Properties



Sect ion 2 .3 The Inverse of  a Matr ix 83

Systems of Equations

In Theorem 2.5 you were able to prove that a system of linear equations can have exactly
one solution, an infinite number of solutions, or no solution. For square systems (those
having the same number of equations as variables), you can use the theorem below to 
determine whether the system has a unique solution.

P R O O F Because is nonsingular, the steps shown below are valid.

This solution is unique because if and were two solutions, you could apply the 
cancellation property to the equation to conclude that 

Theorem 2.11 is theoretically important, but it is not very practical for solving a system
of linear equations. It would require more work to find and then multiply by than
simply to solve the system using Gaussian elimination with back-substitution. A situation
in which you might consider using Theorem 2.11 as a computational technique would be
one in which you have several systems of linear equations, all of which have the same 
coefficient matrix In such a case, you could find the inverse matrix once and then solve
each system by computing the product This is demonstrated in Example 8.

Use an inverse matrix to solve each system.

(a) (b) (c)

S O L U T I O N First note that the coefficient matrix for each system is

A � �
2

3

2

3

3

4

1

1

1
�.

2x � 4y � z � 02x � 4y � z � 52x � 4y � z � �2
3x � 3y � z � 03x � 3y � z � 83x � 3y � z �  1
2x � 3y � z � 02x � 3y � z � 42x � 3y � z � �1

E X A M P L E  8 Solving a System of Equations Using an Inverse Matrix

A�1b.
A.

bA�1

x1 � x2.Ax1 � b � Ax2

x2x1

x � A�1b

Ix � A�1b

A�1Ax � A�1b

Ax � b

A

If is an invertible matrix, then the system of linear equations has a unique 
solution given by

x � A�1b.

Ax � bATHEOREM 2.11

Systems of Equations 

with Unique Solutions
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Using Gauss-Jordan elimination, you can find to be

To solve each system, use matrix multiplication, as follows.

(a)

The solution is and 

(b)

The solution is and 

(c)

The solution is trivial: and z � 0.y � 0,x � 0,

x � A�1b � �
�1

�1

6

1

0

�2

0

1

�3
� �

0

0

0
� � �

0

0

0
�

z � �7.y � 1,x � 4,

x � A�1b � �
�1

�1

6

1

0

�2

0

1

�3
� �

4

8

5
� � �

4

1

�7
�

z � �2.y � �1,x � 2,

� �
2

�1
�2�x � A�1b � �

�1

�1

6

1

0

�2

0

1

�3
� �

�1

1

�2
�

A�1 � �
�1

�1

6

1

0

�2

0

1

�3
�.

A�1

SECTION 2.3

In Exercises 1–4, show that is the inverse of 

1.

2.

3.

4.

In Exercises 5–24, find the inverse of the matrix (if it exists).

5. 6.

7. 8.

9. 10.

11. 12. �
10

�5

3

5

1

2

�7

4

�2
��

1

3

7

2

7

16

�1

�10

�21
�

�
1

3

�1

2

7

�4

2

9

�7
��

1

3

3

1

5

6

1

4

5
�

��1

3

1

�3���7

4

33

�19�
�1

2

�2

�3��1

3

2

7�

B � �
1
2
3

1
4
6

2
�3
�5�A � �

2
�1

0

�17
11
3

11
�7
�2�,

B �
1
3�

�4

�4

1

�5

�8

2

3

3

0
�A � �

�2

1

0

2

�1

1

3

0

4
�,

B � �
3
5

�
2
5

1
5
1
5
�A � �1

2

�1

3�,

B � ��2
3
2

1

�
1
2
�A � �1

3

2

4�,

A.B



13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

In Exercises 25–28, use an inverse matrix to solve each system of
linear equations.

25. (a) 26. (a)

(b) (b)

(c) (c)

27. (a) 28. (a)

(b) (b)

In Exercises 29–32, use a graphing utility or computer software 
program with matrix capabilities to solve the system of linear 
equations using an inverse matrix.

29.

30.

31.

32.

In Exercises 33–36, use the inverse matrices to find (a) 
(b) (c) and (d) 

33.

34.

35.

36.

In Exercises 37 and 38, find x such that the matrix is equal to its own
inverse.

37. 38.

In Exercises 39 and 40, find x such that the matrix is singular.

39. 40.

In Exercises 41 and 42, find A provided that

41. 42. �4A��1 � � 2
�3

4
2�.�2A��1 � �1

3
2
4�.

A � � x

�3

2

4�A � � 4

�2

x

�3�

A � � 2

�1

x

�2�A � � 3

�2

x

�3�

B�1 � �
6

�2

1

5

4

3

�3

�1

4
�A�1 � �

1

0

4

�4

1

2

2

3

1
�,

B�1 � �
2

�
3
4
1
4

4

2
1
2

5
2
1
4

2
�A�1 � �

1
3
2
1
4

�
1
2
1
2

1

3
4

�2
1
2
�,

B�1 � �
5
11
3

11

2
11

�
1
11
�A�1 � ��

2
7
3
7

1
7
2
7
�,

B�1 � �7

2

�3

0�A�1 � � 2

�7

5

6�,

�2A��1.A�2,�AT ��1,
�AB��1,

�2x1 � 3x2 � 4x3 � 6x4 � x5 � 2x6 � �12
 3x1 � x2 � 5x3 � 2x4 � 3x5 � 5x6 � 1

�x1 � 4x2 � 4x3 � 6x4 � 2x5 � 4x6 � �9
 2x1 � 3x2 � x3 � 3x4 � x5 � 2x6 � 0
 3x1 � 6x2 � 5x3 � 6x4 � 3x5 � 3x6 � �11
 4x1 � 2x2 � 4x3 � 2x4 � 5x5 � x6 � 1

 3x1 � x2 � 2x3 � 3x4 � 2x5 � 6x6 � 25

x1 � x2 � 3x3 � 4x4 � 3x5 � x6 � �15

�5x1 � x2 � 4x3 � 2x4 � 5x5 � 3x6 � �2

 4x1 � x2 � 3x3 � 4x4 � x5 � 2x6 � �12

 3x1 � x2 � 4x3 � x4 � x5 � 2x6 � �16

 2x1 � 3x2 � x3 � 2x4 � x5 � 4x6 � 20

x1

2x1

x1

2x1

3x1

�

�

�

�

�

x2

x2

x2

x2

x2

�

�
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In Exercises 43 and 44, show that the matrix is invertible and find its
inverse.

43. 44.

True or False? In Exercises 45 and 46, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false, provide
an example that shows the statement is not true in all cases or cite an
appropriate statement from the text.

45. (a) The inverse of a nonsingular matrix is unique.

(b) If the matrices and satisfy and is 
invertible, then 

(c) The inverse of the product of two matrices is the product of
their inverses; that is,

(d) If can be row reduced to the identity matrix, then is 
nonsingular.

46. (a) The product of four invertible matrices is invertible.

(b) The transpose of the inverse of a nonsingular matrix is equal
to the inverse of the transpose.

(c) The matrix is invertible if 

(d) If A is a square matrix, then the system of linear equations
Ax b has a unique solution.

47. Prove Property 2 of Theorem 2.8: If is an invertible matrix and
is a positive integer, then

factors

48. Prove Property 4 of Theorem 2.8: If is an invertible matrix,
then

49. Guided Proof Prove that the inverse of a symmetric nonsin-
gular matrix is symmetric.

Getting Started: To prove that the inverse of is symmetric,
you need to show that 

(i) Let be a symmetric, nonsingular matrix.

(ii) This means that and exists.

(iii) Use the properties of the transpose to show that 
is equal to 

50. Prove Property 2 of Theorem 2.10: If is an invertible matrix
such that then 

51. Prove that if then 

52. Prove that if and are square matrices and then
is invertible and 

53. Prove that if is invertible and then 

54. Guided Proof Prove that if then either or is
singular.

Getting Started: You must show that either is singular or 
equals the identity matrix.

(i) Begin your proof by observing that is either singular
or nonsingular.

(ii) If is singular, then you are done.

(iii) If is nonsingular, then use the inverse matrix and
the hypothesis to show that 

55. Writing Is the sum of two invertible matrices invertible?
Explain why or why not. Illustrate your conclusion with appro-
priate examples.

56. Writing Under what conditions will the diagonal matrix

be invertible? If is invertible, find its inverse.

57. Use the result of Exercise 56 to find for each matrix.

(a)

(b)

58. Let

(a) Show that where is the identity
matrix of order 2.

(b) Show that 
(c) Show that, in general, for any square matrix satisfying

the inverse of is given by

A�1 �
1
5 �2I � A�.

AA2 � 2A � 5I � 0,

A�1 �
1
5 �2I � A�.

IA2 � 2A � 5I � O,

A � � 1

�2

2

1�.

A � �
1
2

0
0

0
1
3

0

0
0
1
4
�

A � �
�1

0

0

0

3

0

0

0

2
�

A�1

A

A � �
a11

0
.
.
.
0

0
a22.
.
.
0

0
0
.
.
.
0

. . .

. . .

. . .

0
0
.
.
.

ann

�

A � I.A2 � A
A�1A

A

A

AA

AA � IA2 � A,

B � O.AB � O,A

B�1 � CA.B
ABC � I,CA, B,

I � 2A � �I � 2A��1.A2 � A,

A � B.CA � CB,
C

A�1.
�A�1�T

A�1AT � A

A

�A�1�T � A�1.
A

�AT ��1 � �A�1�T.
A

k

�Ak��1 � A�1A�1 .  .  . A�1 � �A�1�k

k
A

�

ab � dc � 0.�a
c

b
d�

7 � 7

AA

�AB��1 � A�1B�1.

B � C.
ABA � CACA, B,

A � �sec �

tan �

tan �

sec ��A � � sin �

�cos �

cos �

sin ��



Elementary Matrices

In Section 1.2, the three elementary row operations for matrices listed below were introduced.

1. Interchange two rows.
2. Multiply a row by a nonzero constant.
3. Add a multiple of a row to another row.

In this section, you will see how matrix multiplication can be used to perform these 
operations.

R E M A R K : The identity matrix is elementary by this definition because it can be 
obtained from itself by multiplying any one of its rows by 1.

Which of the following matrices are elementary? For those that are, describe the correspon-
ding elementary row operation.

(a) (b) (c)

(d) (e) (f)

S O L U T I O N (a) This matrix is elementary. It can be obtained by multiplying the second row of by 3.
(b) This matrix is not elementary because it is not square.
(c) This matrix is not elementary because it was obtained by multiplying the third row of

by 0 (row multiplication must be by a nonzero constant).I3

I3

�
1

0

0

0

2

0

0

0

�1
��1

2

0

1��
1

0

0

0

0

1

0

1

0
�

�
1

0

0

0

1

0

0

0

0
��1

0

0

1

0

0��
1

0

0

0

3

0

0

0

1
�

E X A M P L E  1 Elementary Matrices and Nonelementary Matrices

In

2.4

An matrix is called an elementary matrix if it can be obtained from the identity
matrix by a single elementary row operation.In

n � nDefinition of an 

Elementary Matrix

59. Let be an column matrix satisfying The 
matrix is called a Householder matrix.

(a) Prove that is symmetric and nonsingular.

(b) Let Show that and calculate the

Householder matrix 

60. Prove that if the matrix is nonsingular, then so is

61. Let and be matrices satisfying If 
is nonsingular, solve this equation for Must it be true that

62. Let and be matrices satisfying Solve
this equation for Must it be true that 

63. Find an example of a singular matrix satisfying A2 � A.2 � 2

A � D?A.
P�1AP � D.n � nPA, D,

A � D?
A.P

AP � PD.n � nPA, D,

I � BA.
I � AB

H.

uTu � 1u � �
�22

�22
0

�.

H

H � In � 2uuT

n � nuTu � 1.n � 1u
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(d) This matrix is elementary. It can be obtained by interchanging the second and third
rows of 

(e) This matrix is elementary. It can be obtained by multiplying the first row of by 2 and
adding the result to the second row.

(f) This matrix is not elementary because two elementary row operations are required to
obtain it from 

Elementary matrices are useful because they enable you to use matrix multiplication to
perform elementary row operations, as demonstrated in Example 2.

(a) In the matrix product below, is the elementary matrix in which the first two rows of
have been interchanged.

Note that the first two rows of have been interchanged by multiplying on the left 
by

(b) In the next matrix product, is the elementary matrix in which the second row of 
has been multiplied by 

Here the size of is could, however, be any matrix and multiplication
on the left by would still result in multiplying the second row of by 

(c) In the product shown below, is the elementary matrix in which 2 times the first row
of has been added to the second row.

Note that in the product 2 times the first row of has been added to the second row.

In each of the three products in Example 2, you were able to perform elementary row 
operations by multiplying on the left by an elementary matrix. This property of elementary
matrices is generalized in the next theorem, which is stated without proof.

AEA,
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R E M A R K : Be sure to remember that in Theorem 2.12, is multiplied on the left by the
elementary matrix Right multiplication by elementary matrices, which involves column
operations, will not be considered in this text.

Most applications of elementary row operations require a sequence of operations. For 
instance, Gaussian elimination usually requires several elementary row operations to row
reduce a matrix For elementary matrices, this sequence translates into multiplication 
(on the left) by several elementary matrices. The order of multiplication is important; the
elementary matrix immediately to the left of corresponds to the row operation performed
first. This process is demonstrated in Example 3.

Find a sequence of elementary matrices that can be used to write the matrix in 
row-echelon form.

S O L U T I O N Elementary Row Elementary

Matrix Operation Matrix

The three elementary matrices and can be used to perform the same elimination.E3E2,E1,

E3 � �
1

0

0

0

1

0

0

0
1
2
��1

2�R3 → R3

�
1

0

0
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1
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�
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1
�
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1
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A � �
0

1

2
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0
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A
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A

A.

E.
A
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Let be the elementary matrix obtained by performing an elementary row operation on
If that same elementary row operation is performed on an matrix then the 

resulting matrix is given by the product EA.
A,m � nIm.

ETHEOREM 2.12

Representing Elementary

Row Operations



R E M A R K : The procedure demonstrated in Example 3 is primarily of theoretical interest.
In other words, this procedure is not suggested as a practical method for performing
Gaussian elimination.

The two matrices in Example 3

and

are row-equivalent because you can obtain by performing a sequence of row operations
on That is,

The definition of row-equivalent matrices can be restated using elementary matrices, as 
follows.

You know from Section 2.3 that not all square matrices are invertible. Every elementary
matrix, however, is invertible. Moreover, the inverse of an elementary matrix is itself an 
elementary matrix.

To find the inverse of an elementary matrix simply reverse the elementary row 
operation used to obtain For instance, you can find the inverse of each of the three 
elementary matrices shown in Example 3 as follows.

E.
E,

B � E3E2E1A.A.
B
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Let and be matrices. Matrix is row-equivalent to if there exists a finite
number of elementary matrices such that

B � EkEk�1
. . . E2E1A.

E1, E2, . . . , Ek

ABm � nBADefinition of 

Row Equivalence

If is an elementary matrix, then exists and is an elementary matrix.E�1E
THEOREM 2.13

Elementary Matrices 

Are Invertible



Elementary Matrix Inverse Matrix

The following theorem states that every invertible matrix can be written as the product
of elementary matrices.

P R O O F The phrase “if and only if ” means that there are actually two parts to the theorem. On the 
one hand, you have to show that if is invertible, then it can be written as the product of 
elementary matrices. Then you have to show that if can be written as the product of 
elementary matrices, then is invertible.

To prove the theorem in one direction, assume is the product of elementary 
matrices. Then, because every elementary matrix is invertible and the product of invertible
matrices is invertible, it follows that is invertible.

To prove the theorem in the other direction, assume is invertible. From Theorem 2.11
you know that the system of linear equations represented by has only the trivial 
solution. But this implies that the augmented matrix can be rewritten in the 
form using elementary row operations corresponding to and We
now have and it follows that can
be written as the product of elementary matrices, and the proof is complete.

The first part of this proof is illustrated in Example 4.

Find a sequence of elementary matrices whose product is

A � ��1
3

�2
8�.

E X A M P L E  4 Writing a Matrix as the Product of Elementary Matrices

AA � E1
�1 E2

�1 E3
�1 .  .  . Ek

�1.Ek
.  .  . E3E2E1A � I

Ek�.E1, E2, .  .  . ,��I � O�
�A � O�

Ax � O
A

A

A
A

A
A
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��1
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0
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2
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R3 1 �2�R1 → R3
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1

0

2

0

1
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0

0

1
�

R3 1 ��2�R1 → R3

E2 � �
1

0

�2

0

1

0

0

0

1
�

R2↔R1

E1
�1 � �

0

1

0

1

0

0

0

0

1
�

R2↔R1

E1 � �
0

1

0

1

0

0

0

0

1
�

A square matrix is invertible if and only if it can be written as the product of elemen-
tary matrices.

A
THEOREM 2.14

A Property of 

Invertible Matrices
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S O L U T I O N Begin by finding a sequence of elementary row operations that can be used to rewrite in
reduced row-echelon form.

Matrix Elementary Row Operation Elementary Matrix

Now, from the matrix product solve for to obtain 
This implies that is a product of elementary matrices.

In Section 2.3 you learned a process for finding the inverse of a nonsingular matrix 
There, you used Gauss-Jordan elimination to reduce the augmented matrix to

You can now use Theorem 2.14 to justify this procedure. Specifically, the proof
of Theorem 2.14 allows you to write the product

Multiplying both sides of this equation (on the right) by we can write

In other words, a sequence of elementary matrices that reduces to the identity also can be
used to reduce the identity to Applying the corresponding sequence of elementary
row operations to the matrices and simultaneously, you have

Of course, if is singular, then no such sequence can be found.
The next theorem ties together some important relationships between matrices and

systems of linear equations. The essential parts of this theorem have already been proved
(see Theorems 2.11 and 2.14); it is left to you to fill in the other parts of the proof.

n � n
A

Ek
. . . E3E2E1�A � I� � �I � A�1�.
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A�1.I
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AE1
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E4 � �1
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0
1�
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0
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��1
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E2 � � 1

�3

0

1�R2 1 ��3�R1 → R2
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E1 � ��1
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��1�R1 → R1�1

3
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8�

A



The LU-Factorization

Solving systems of linear equations is the most important application of linear algebra. At
the heart of the most efficient and modern algorithms for solving linear systems, is
the so-called LU-factorization, in which the square matrix is expressed as a product,

. In this product, the square matrix is lower triangular, which means all the 
entries above the main diagonal are zero. The square matrix is upper triangular, which
means all the entries below the main diagonal are zero.

lower triangular matrix upper triangular matrix

By writing and letting you can solve for in two stages. First solve
for then solve for Each system is easy to solve because the 

coefficient matrices are triangular. In particular, neither system requires any row operations.

(a)

is an LU-factorization of the matrix as the product of the lower

triangular matrix and the upper triangular matrix U � �1
0

2
�2�.L � �1

1

0

1�

A � �1

1

2

0�
�1

1

2

0� � �1

1

0

1� �
1

0

2

�2� � LU

E X A M P L E  5 LU-Factorizations

x.Ux � yy;Ly � b
xUx � y,Ax � LUx

3 � 33 � 3

�
a11

0
0

a12

a22

0

a13

a23

a33
��

a11

a21

a31

0
a22

a32

0
0

a33
�

U
LA � LU

A
Ax � b
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If is an matrix, then the following statements are equivalent.

1. is invertible.
2. has a unique solution for every column matrix 
3. has only the trivial solution.
4. is row-equivalent to 
5. can be written as the product of elementary matrices.A

In.A
Ax � O

b.n � 1Ax � b
A

n � nATHEOREM 2.15

Equivalent Conditions

If the matrix can be written as the product of a lower triangular matrix and an
upper triangular matrix then is an LU-factorization of A.A � LUU,

LAn � nDefinition of 

LU-Factorization
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(b)

is an LU-factorization of the matrix 

If a square matrix can be row reduced to an upper triangular matrix using only the
row operation of adding a multiple of one row to another row below it, then it is easy to
find an LU-factorization of the matrix All you need to do is keep track of the individual
row operations, as indicated in the example below.

Find the LU-factorization of the matrix 

S O L U T I O N Begin by row reducing to upper triangular form while keeping track of the elementary
matrices used for each row operation.

Matrix Elementary Row Operation Elementary Matrix

The matrix on the left is upper triangular, and it follows that or
Because the product of the lower triangular matrices

is again a lower triangular matrix the factorization is complete. Notice that this
is the same LU-factorization that is shown in Example 5(b) at the top of this page.

In general, if can be row reduced to an upper triangular matrix using only the row
operation of adding a multiple of one row to another row, then has an LU-factorization.

A � LU

A � E1
�1 E2

�1 . . . Ek
�1U

Ek
. . . E2E1A � U

A
UA

A � LUL,

E1
�1E2

�1� �
1

0

2

0

1

0

0

0

1
� �

1

0

0

0

1

�4

0

0

1
� � �

1

0

2

0

1

�4

0

0

1
�

A � E1
�1E2

�1U.
E2E1A � U,U

E2 � �
1

0

0

0

1

4

0

0

1
�

R3 1 �4�R2 → R3

�
1

0

0

�3

1

0

0

3

14
�

E1 � �
1

0

�2

0

1

0

0

0

1
�

R3 1 ��2�R1 → R3

�
1

0

0

�3

1

�4

0

3

2
�

A

A � �
1

0

2

�3

1

�10

0

3

2
�.
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A.

UA

A.

A � �
1

0

2

�3

1

�10

0

3

2
� � �

1

0

2

0

1

�4

0

0

1
� �

1
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0

�3

1

0

0
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14
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Here is the product of the inverses of the elementary matrices used in the row reduction.
Note that the multipliers in Example 6 are and 4, which are the negatives of the 

corresponding entries in This is true in general. If can be obtained from using only
the row operation of adding a multiple of one row to another row below, then the matrix 
is lower triangular with 1’s along the diagonal. Furthermore, the negative of each multiplier
is in the same position as that of the corresponding zero in 

Once you have obtained an LU–factorization of a matrix you can then solve the
system of linear equations in variables very efficiently in two steps.

1. Write and solve for 
2. Solve for 

The column matrix is the solution of the original system because

The second step in this algorithm is just back-substitution, because the matrix is upper
triangular. The first step is similar, except that it starts at the top of the matrix, because is
lower triangular. For this reason, the first step is often called forward substitution.

Solve the linear system.

S O L U T I O N You obtained the LU-factorization of the coefficient matrix in Example 6.

First, let and solve the system for 

This system is easy to solve using forward substitution. Starting with the first equation, you
have The second equation gives Finally, from the third equation,

y3 � �14.

y3 � �20 � 2��5� � 4��1�
y3 � �20 � 2y1 � 4y2

 2y1 � 4y2 � y3 � �20

y2 � �1.y1 � �5.

�
1

0

2

0

1

�4

0

0

1
� �

y1

y2

y3
� � �

�5

�1

�20
�

y.Ly � by � Ux

A � �
1

0

2

�3

1

�10

0

3

2
� � �

1

0

2

0

1

�4

0

0

1
� �

1

0

0

�3

1

0

0

3

14
�

A

 2x1 � 10x2 � 2x3 � �20
     x2 � 3x3 � �1

x1 � 3x2     � �5

E X A M P L E  7 Solving a Linear System Using LU-Factorization

L
U

Ax � LUx � Ly � b.

x

x.Ux � y
y.Ly � by � Ux

Ax � bnn
A,

U.

L
AUL.

�2
L
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The solution of is

Now solve the system for using back-substitution.

From the bottom equation, Then, the second equation gives 
or Finally, the first equation is or So, the solution of the
original system of equations is 

x � �
1

2

�1
�.

x1 � 1.x1 � 3(2) � �5,x2 � 2.
x2 � 3��1� � �1,x3 � �1.

�
1

0

0

�3

1

0

0

3

14
� �

x1

x2

x3
� � �

�5

�1

�14
�

xUx � y

y � �
�5

�1

�14
�.

Ly � b

SECTION 2.4

In Exercises 1–8, determine whether the matrix is elementary. If it
is, state the elementary row operation used to produce it.

1. 2.

3. 4.

5. 6.

7. 8.

In Exercises 9–12, let and be

9. Find an elementary matrix such that 

10. Find an elementary matrix such that 

11. Find an elementary matrix such that 

12. Find an elementary matrix such that 

In Exercises 13–20, find the inverse of the elementary matrix.

13. 14.

15. 16.

17. 18.

19. 20. �
1

0

0

0

0

1

0

0

0

k

1
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1
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0
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0
�
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0
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CA, B,
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0

0
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0
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0
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0

0

0
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0

0

0
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0
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In Exercises 21–24, find the inverse of the matrix using elementary
matrices.

21. 22.

23. 24.

In Exercises 25–32, factor the matrix A into a product of elementary
matrices.

25. 26.

27. 28.

29. 30.

31. 32.

True or False? In Exercises 33 and 34, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false, provide
an example that shows the statement is not true in all cases or cite an
appropriate statement from the text.

33. (a) The identity matrix is an elementary matrix.

(b) If is an elementary matrix, then is an elementary
matrix.

(c) The matrix is row-equivalent to the matrix if there exists
a finite number of elementary matrices . . . , such
that

(d) The inverse of an elementary matrix is an elementary matrix.

34. (a) The zero matrix is an elementary matrix.

(b) A square matrix is nonsingular if it can be written as the
product of elementary matrices.

(c) Ax O has only the trivial solution if and only if Ax b
has a unique solution for every column matrix b.

35. Writing is the elementary matrix obtained by interchanging
two rows in is an matrix.

(a) How will compare with ?
(b) Find 

36. Writing is the elementary matrix obtained by multiplying a
row in by a nonzero constant is an matrix.

(a) How will compare with ?
(b) Find 

37. Use elementary matrices to find the inverse of

38. Use elementary matrices to find the inverse of

39. Writing Is the product of two elementary matrices always 
elementary? Explain why or why not and provide appropriate
examples to illustrate your conclusion.

40. Writing Is the sum of two elementary matrices always 
elementary? Explain why or why not and provide appropriate
examples to illustrate your conclusion.

In Exercises 41–44, find the LU-factorization of the matrix.

41. 42.

43. 44.

In Exercises 45 and 46, solve the linear system by
(a) finding the LU-factorization of the coefficient matrix 
(b) solving the lower triangular system and
(c) solving the upper triangular system 

45.

46.

47. Writing Suppose you needed to solve many systems of 
linear equations each having the same coefficient
matrix Explain how you could use the LU-factorization 
technique to make the task easier, rather than solving each 
system individually using Gaussian elimination.

A.
Ax � bi,

           �x4 � �1
 6x1 � 2x2 � x3     �  15

�2x1 � x2 � x3     � �4
 2x1             �  4

�2x � y � z � �2
     y � z �  2

 2x � y     �  1

Ux � y.
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Applications of Matrix Operations

Stochastic Matrices

Many types of applications involve a finite set of states of a given 
population. For instance, residents of a city may live downtown or in the suburbs. Voters
may vote Democrat, Republican, or for a third party. Soft drink consumers may buy 
Coca-Cola, Pepsi Cola, or another brand.

�S1, S2, .  .  . , Sn�

2.5

48. (a) Show that the matrix

does not have an LU-factorization.

(b) Find the LU-factorization of the matrix

that has 1’s along the main diagonal of Are there any
restrictions on the matrix ?

In Exercises 49–54, determine whether the matrix is idempotent. 
A square matrix is idempotent if

49. 50.

51. 52.

53. 54.

55. Determine and such that is idempotent.

56. Determine conditions on and such that is idempotent.

57. Prove that if is an matrix that is idempotent and 
invertible, then 

58. Guided Proof Prove that is idempotent if and only if is 
idempotent.

Getting Started: The phrase “if and only if” means that you
have to prove two statements:

1. If is idempotent, then is idempotent.
2. If is idempotent, then A is idempotent.

(i) Begin your proof of the first statement by assuming
that A is idempotent.

(ii) This means that 
(iii) Use the properties of the transpose to show that 

is idempotent.
(iv) Begin your proof of the second statement by assum-

ing that is idempotent.

59. Prove that if and are idempotent and then is
idempotent.

60. Prove that if is row-equivalent to B, then B is row-equivalent 
to

61. Guided Proof Prove that if is row-equivalent to and is
row-equivalent to then is row-equivalent to 

Getting Started: To prove that is row-equivalent to 
you have to find elementary matrices such that

(i) Begin your proof by observing that is row-equivalent
to

(ii) Meaning, there exist elementary matrices 
such that 

(iii) There exist elementary matrices such that

(iv) Combine the matrix equations from steps (ii) and (iii).

62. Let A be a nonsingular matrix. Prove that if B is row-equivalent
to A, then B is also nonsingular.

B � G1
.  .  . GmC.

G1, .  .  . , Gm

A � Fn
.  .  . F1B.
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The probability that a member of a population will change from the th state to the th
state is represented by a number where A probability of means that
the member is certain not to change from the th state to the th state, whereas a probabil-
ity of means that the member is certain to change from the th state to the th state.

From

.  .  .

To

is called the matrix of transition probabilities because it gives the probabilities of each
possible type of transition (or change) within the population.

At each transition, each member in a given state must either stay in that state or change
to another state. For probabilities, this means that the sum of the entries in any column of

is 1. For instance, in the first column we have

In general, such a matrix is called stochastic (the term “stochastic” means “regarding 
conjecture”). That is, an matrix is called a stochastic matrix if each entry is a
number between 0 and 1 and each column of adds up to 1.

The matrices in parts (a) and (b) are stochastic, but the matrix in part (c) is not.

(a) (b) (c)

Example 2 describes the use of a stochastic matrix to measure consumer preferences.

Two competing companies offer cable television service to a city of 100,000 households.
The changes in cable subscriptions each year are shown in Figure 2.1. Company A now has
15,000 subscribers and Company B has 20,000 subscribers. How many subscribers will
each company have 1 year from now?

E X A M P L E  2 A Consumer Preference Model
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E X A M P L E  1 Examples of Stochastic Matrices and Nonstochastic Matrices

P
Pn � n

p11 � p21 � .  .  . � pn1 � 1.

P
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S1

S2.
.
.
Sn

P � �
p11

p21.
.
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pn2

. . .
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ij

pij � 00 � pij � 1.pij,
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Figure 2.1

S O L U T I O N The matrix representing the given transition probabilities is 
From

A B None

and the state matrix representing the current populations in the three states is 

To find the state matrix representing the populations in the three states after one year,
multiply by to obtain

After one year, Company A will have 23,250 subscribers and Company B will have 28,750
subscribers.

One of the appeals of the matrix solution in Example 2 is that once the model has been
created, it becomes easy to find the state matrices representing future years by repeatedly
multiplying by the matrix This process is demonstrated in Example 3.P.

PX � �
0.70

0.20

0.10

0.15

0.80

0.05

0.15

0.15

0.70
� �

15,000

20,000

65,000
� � �

23,250

28,750

48,000
�.

XP

X � �
15,000

20,000

65,000
�.

A
B

None
� ToP � �

0.70

0.20

0.10

0.15

0.80

0.05

0.15

0.15

0.70
�

Cable
Company A

No Cable
Television

Cable
Company B

80%70%

70%

20%

15%

5%
15%10%

15%

A

B

None
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Assuming the matrix of transition probabilities from Example 2 remains the same year 
after year, find the number of subscribers each cable television company will have after 
(a) 3 years, (b) 5 years, and (c) 10 years. (The answers in this example have been rounded
to the nearest person.)

S O L U T I O N (a) From Example 2 you know that the number of subscribers after 1 year is 

Because the matrix of transition probabilities is the same from the first to the third year,
the number of subscribers after 3 years is

After 3 years, Company A will have 30,283 subscribers and Company B will have
39,042 subscribers.

(b) The number of subscribers after 5 years is

After 5 years, Company A will have 32,411 subscribers and Company B will have
43,812 subscribers.

(c) The number of subscribers after 10 years is

After 10 years, Company A will have 33,287 subscribers and Company B will have
47,147 subscribers.

In Example 3, notice that there is little difference between the numbers of subscribers
after 5 years and after 10 years. If the process shown in this example is continued, the 
numbers of subscribers eventually reach a steady state. That is, as long as the matrix 
doesn’t change, the matrix product approaches a limit In this particular example, the
limit is the steady state matrix

You can check to see that PX � X.

X � �
33,333

47,619

19,048
�.

X.PnX
P

P10X � �
33,287

47,147

19,566
�.

P5X � �
32,411

43,812

23,777
�.

P3X � �
30,283

39,042

30,675
�.

PX � �
23,250

28,750

48,000
�.
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A

B After 10 years

None

A

B Steady state

None

A

B After 1 year

None

A

B After 3 years

None

A

B After 5 years

None
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Cryptography

A cryptogram is a message written according to a secret code (the Greek word kryptos
means “hidden”). This section describes a method of using matrix multiplication to encode
and decode messages.

Begin by assigning a number to each letter in the alphabet (with 0 assigned to a blank
space), as follows.

Then the message is converted to numbers and partitioned into uncoded row matrices,
each having entries, as demonstrated in Example 4.

Write the uncoded row matrices of size for the message MEET ME MONDAY.

S O L U T I O N Partitioning the message (including blank spaces, but ignoring punctuation) into groups of
three produces the following uncoded row matrices.

Note that a blank space is used to fill out the last uncoded row matrix.

To encode a message, choose an invertible matrix and multiply the uncoded row
matrices (on the right) by to obtain coded row matrices. This process is demonstrated in
Example 5.

A
An � n

[1
A

25
Y

0]
__

[15
O

14
N

4]
D

[5
E

0
__

13]
M

[20
T

0
__

13]
M

[13
M

5
E

5]
E

1 � 3

E X A M P L E  4 Forming Uncoded Row Matrices

n

13 � M
26 � Z12 � L
25 � Y11 � K
24 � X10 � J
23 � W9 � I
22 � V8 � H
21 � U7 � G
20 � T6 � F
19 � S5 � E
18 � R4 � D
17 � Q3 � C
16 � P2 � B
15 � O1 � A
14 � N0 � __
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Use the matrix

to encode the message MEET ME MONDAY.

S O L U T I O N The coded row matrices are obtained by multiplying each of the uncoded row matrices found
in Example 4 by the matrix , as follows.

Uncoded Encoding Coded Row
Row Matrix Matrix A Matrix

The sequence of coded row matrices is

Finally, removing the brackets produces the cryptogram below.

13  21  33  18  5  56  23  77

For those who do not know the matrix decoding the cryptogram found in Example 5
is difficult. But for an authorized receiver who knows the matrix decoding is simple. The
receiver need only multiply the coded row matrices by to retrieve the uncoded row 
matrices. In other words, if

X � �x1 x2
.  .  . xn�

A�1
A,

A,

�24�20�42�23�12�53�26

�13 �26 21� �33 �53 �12� �18 �23 �42� �5 �20 56� ��24 23 77�.

�1 25 0� �
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� � ��24 23 77�

�15 14 4� �
1
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1
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2

3

�4
� � �5 �20 56�

�5 0 13� �
1

�1

1

�2

1

�1

2

3

�4
� � �18 �23 �42�

�20 0 13� �
1

�1

1

�2

1

�1

2

3

�4
� � �33 �53 �12�

�13 5 5� �
1

�1

1

�2

1

�1

2

3

�4
� � �13 �26 21�

A

A � �
1

�1

1

�2

1

�1

2

3

�4
�
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is an uncoded matrix, then is the corresponding encoded matrix. The 
receiver of the encoded matrix can decode by multiplying on the right by to obtain

This procedure is demonstrated in Example 6.

Use the inverse of the matrix

to decode the cryptogram

S O L U T I O N Begin by using Gauss-Jordan elimination to find 

Now, to decode the message, partition the message into groups of three to form the coded
row matrices

.

To obtain the decoded row matrices, multiply each coded row matrix by (on the right).

Coded Row Decoding Decoded
Matrix Matrix Row Matrix

�5 �20 56� �
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YA�1 � �XA�A�1 � X.

A�1Y
Y � XA1 � n

Simulation
Explore this concept further with an
electronic simulation available on
the website college.hmco.com/
pic/larsonELA6e.



Coded Row Decoding Decoded
Matrix Matrix Row Matrix

The sequence of decoded row matrices is

and the message is

Leontief Input-Output Models

Matrix algebra has proved effective in analyzing problems concerning the input and output
of an economic system. The model discussed here, developed by the American economist
Wassily W. Leontief (1906–1999), was first published in 1936. In 1973, Leontief was
awarded a Nobel prize for his work in economics.

Suppose that an economic system has different industries .  .  . , each of which
has input needs (raw materials, utilities, etc.) and an output (finished product). In produc-
ing each unit of output, an industry may use the outputs of other industries, including itself.
For example, an electric utility uses outputs from other industries, such as coal and water,
and even uses its own electricity.

Let be the amount of output the th industry needs from the th industry to produce
one unit of output per year. The matrix of these coefficients is called the input-output
matrix.

User (Output)

. .  .

Supplier (Input)

To understand how to use this matrix, imagine This means that 0.4 unit of
Industry 1’s product must be used to produce one unit of Industry 2’s product. If 
then 0.2 unit of Industry 3’s product is needed to produce one unit of its own product. For
this model to work, the values of must satisfy and the sum of the entries in
any column must be less than or equal to 1.

0 � dij � 1dij

d33 � 0.2,
d12 � 0.4.

I1

I2
.
.
.
In

D � �
d11

d21.
.
.

dn1

d12

d22.
.
.

dn2

. . .

. . .

. . .

d1n

d2n.
.
.

dnn

�
InI2I1

ijdij

In,I2,I1,n

13
M

5
E

5
E

20
T

0
__

13
M

5
E

0
__

13
M

15
O

14
N

4
D

1
A

25
Y

0.
__

�13 5 5� �20 0 13� �5 0 13� �15 14 4� �1 25 0�

��24 23 77� �
�1

�1

0

�10

�6

�1

�8

�5

�1
� � �1 25 0�

A�1
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Consider a simple economic system consisting of three industries: electricity, water, and
coal. Production, or output, of one unit of electricity requires 0.5 unit of itself, 0.25 unit of
water, and 0.25 unit of coal. Production, or output, of one unit of water requires 0.1 unit of
electricity, 0.6 unit of itself, and 0 units of coal. Production, or output, of one unit of coal 
requires 0.2 unit of electricity, 0.15 unit of water, and 0.5 unit of itself. Find the input-output
matrix for this system.

S O L U T I O N The column entries show the amounts each industry requires from the others, as well as from
itself, in order to produce one unit of output.

User (Output)

E W C

Supplier (Input)

The row entries show the amounts each industry supplies to the other industries, as well
as to itself, in order for that particular industry to produce one unit of output. For instance,
the electricity industry supplies 0.5 unit to itself, 0.1 unit to water, and 0.2 unit to coal.

To develop the Leontief input-output model further, let the total output of the th indus-
try be denoted by If the economic system is closed (meaning that it sells its products
only to industries within the system, as in the example above), then the total output of the
th industry is given by the linear equation

Closed system

On the other hand, if the industries within the system sell products to nonproducing
groups (such as governments or charitable organizations) outside the system, then the
system is called open and the total output of the th industry is given by

Open system

where represents the external demand for the th industry’s product. The collection 
of total outputs for an open system is represented by the following system of linear 
equations.

The matrix form of this system is

where is called the output matrix and is called the external demand matrix.EX

X � DX � E,

x1

x2

xn

�

�
.
.
.
�

d11x1

d21x1

dn1x1

�

�

�

d12x2

d22x2

dn2x2

� . . . �

� . . . �

� . . . �

d1nxn

d2nxn

dnnxn

�

�

�

e1

e2

en

n
iei

xi � di1x1 � di2x2 � .  .  . � dinxn � ei ,

i

xi � di1x1 � di2x2 � .  .  . � dinxn.

i

xi.
i

E

W

C
�

0.5
0.25
0.25

  0.1
  0.6
  0

0.2
0.15
0.5 �

E X A M P L E  7 Forming an Input-Output Matrix
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An economic system composed of three industries has the input-output matrix shown below.

User (Output)

A B C

Supplier (Input)

Find the output matrix if the external demands are

(The answers in this example have been rounded to the nearest unit.)

S O L U T I O N Letting be the identity matrix, write the equation as which
means

Using the matrix above produces

Finally, applying Gauss-Jordan elimination to the system of linear equations represented by
produces

So, the output matrix is

To produce the given external demands, the outputs of the three industries must be as 
follows.

Output for Industry A: 46,616 units

Output for Industry B: 51,058 units

Output for Industry C: 38,014 units

X � �
46,616
51,058
38,014�.

�
1
0
0

0
1
0

0
0
1

46,616
51,058
38,014�.�

0.9
�0.15
�0.23

�0.43
1

�0.03

0
�0.37

0.98

20,000
30,000
25,000�

�I � D�X � E

I � D � �
0.9

�0.15
�0.23

�0.43
1

�0.03

0
�0.37

0.98�.

D

�I � D�X � E.

IX � DX � E,X � DX � EI

E � �
20,000
30,000
25,000�.

X

A
B
C

D � �
0.1
0.15
0.23

0.43
0
0.03

0
0.37
0.02 �

E X A M P L E  8 Solving for the Output Matrix of an Open System

A

B

C
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The economic systems described in Examples 7 and 8 are, of course, simple ones. In the
real world, an economic system would include many industries or industrial groups. For 
example, an economic analysis of some of the producing groups in the United States would
include the products listed below (taken from the Statistical Abstract of the United States).

1. Farm products (grains, livestock, poultry, bulk milk)
2. Processed foods and feeds (beverages, dairy products)
3. Textile products and apparel (yarns, threads, clothing)
4. Hides, skins, and leather (shoes, upholstery)
5. Fuels and power (coal, gasoline, electricity)
6. Chemicals and allied products (drugs, plastic resins)
7. Rubber and plastic products (tires, plastic containers)
8. Lumber and wood products (plywood, pencils)
9. Pulp, paper, and allied products (cardboard, newsprint)

10. Metals and metal products (plumbing fixtures, cans)
11. Machinery and equipment (tractors, drills, computers)
12. Furniture and household durables (carpets, appliances)
13. Nonmetallic mineral products (glass, concrete, bricks)
14. Transportation equipment (automobiles, trucks, planes)
15. Miscellaneous products (toys, cameras, linear algebra texts)

A matrix of order would be required to represent even these broad industrial
groupings using the Leontief input-output model. A more detailed analysis could easily 
require an input-output matrix of order greater than Clearly, this type of analy-
sis could be done only with the aid of a computer.

Least Squares Regression Analysis

You will now look at a procedure that is used in statistics to develop linear models. The next
example demonstrates a visual method for approximating a line of best fit for a given set of
data points.

Determine the straight line that best fits the points.

and

S O L U T I O N Plot the points, as shown in Figure 2.2. It appears that a good choice would be the line whose
slope is 1 and whose -intercept is 0.5. The equation of this line is

An examination of the line shown in Figure 2.2 reveals that you can improve the fit 
by rotating the line counterclockwise slightly, as shown in Figure 2.3. It seems clear that 
this new line, the equation of which is fits the given points better than the 
original line.

y � 1.2x,

y � 0.5 � x.

y

�5, 6��1, 1�, �2, 2�, �3, 4�, �4, 4�,

E X A M P L E  9 A Visual Straight-Line Approximation
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15 � 15



Figure 2.2 Figure 2.3

One way of measuring how well a function fits a set of points

is to compute the differences between the values from the function and the actual
values , as shown in Figure 2.4. By squaring these differences and summing the results,
you obtain a measure of error that is called the sum of squared error. The sums of squared
errors for our two linear models are shown in Table 2.1 below.

TABLE 2.1

Model 1: Model 2:

1 1 1.5 1 1 1.2

2 2 2.5 2 2 2.4

3 4 3.5 3 4 3.6

4 4 4.5 4 4 4.8

5 6 5.5 5 6 6.0

Total 1.25 Total 1.00

The sums of squared errors confirm that the second model fits the given points better than
the first.

Of all possible linear models for a given set of points, the model that has the best fit is
defined to be the one that minimizes the sum of squared error. This model is called the least
squares regression line, and the procedure for finding it is called the method of least
squares.

��0.0�2��0.5�2

��0.8�2��0.5�2

��0.4�2��0.5�2

��0.4�2��0.5�2

��0.2�2��0.5�2

[yi � f (xi )]
2f (xi )yixi[yi � f (xi )]

2f (xi )yixi

f (x) � 1.2xf (x) � 0.5 � x

yi

f�xi�

�x1, y1�, �x2, y2�, .  .  . , �xn, yn�

y � f (x)

x
1

1

2

3

4

5

6

2 3 4 5 6

(1, 1)

(2, 2)

(3, 4) (4, 4)

(5, 6)

y = 0.5 + x

y = 1.2x

yy

x
1

1

2

3

4

5

6

2 3 4 5 6

(1, 1)

(2, 2)

(3, 4) (4, 4)

(5, 6)

y = 0.5 + x
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x
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2

3

4

5

6

2 3 4 5 6

(1, 1)

(2, 2)

(3, 4) (4, 4)

(5, 6)

y = 0.5 + x

Model 1

y

Figure 2.4

x
1

1

2

3

4

5

6

2 3 4 5 6

(1, 1)

(2, 2)

(3, 4) (4, 4)

(5, 6)

y = 1.2x

Model 2

y
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To find the least squares regression line for a set of points, begin by forming the system
of linear equations

where the right-hand term, of each equation is thought of as the error in the
approximation of by Then write this error as

so that the system of equations takes the form

Now, if you define and as

the linear equations may be replaced by the matrix equation

Note that the matrix has two columns, a column of 1’s (corresponding to ) and a
column containing the ’s. This matrix equation can be used to determine the coefficients
of the least squares regression line, as follows.

xi

a0X

Y � XA � E.

n

E � �
e1

e2.
.
.

en

�A � �a0

a1
�,X � �

1
1.
.
.
1

x1

x2.
.
.
xn

�,Y � �
y1

y2.
.
.

yn

�,

EY, X, A,

yn � �a0 � a1xn� � en.

.

.

.

y2 � �a0 � a1x2� � e2

y1 � �a0 � a1x1� � e1

ei � yi � f�xi�

f�xi�.yi

�yi � f �xi��,

yn � f�xn� � �yn � f�xn��

.

.

.

y2 � f �x2� � �y2 � f �x2��
y1 � f �x1� � �y1 � f �x1��

For a set of points the least squares regression line is
given by the linear function

that minimizes the sum of squared error

�y1 � f �x1��2 � �y2 � f �x2��2 � .  .  . � �yn � f �xn��2.

f �x� � a0 � a1x

�x1, y1�, �x2, y2�, .  .  . , �xn, yn�,Definition of Least 

Squares Regression Line



Figure 2.5

x
1

1

2

3

4

5

6

2 3 4 5 6

(1, 1)

(2, 2)

(3, 4) (4, 4)

(5, 6)

y = − 0.2 + 1.2x

Least Squares Regression Line

y
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R E M A R K : You will learn more about this procedure in Section 5.4.

Example 10 demonstrates the use of this procedure to find the least squares regression
line for the set of points from Example 9.

Find the least squares regression line for the points and 
(see Figure 2.5). Then find the sum of squared error for this regression line.

S O L U T I O N Using the five points below, the matrices and are 

and

This means that

and

XTY � �1
1

1
2

1
3

1
4

1
5� �

1
2
4
4
6
� � �17

63�.

XTX � �1
1

1
2

1
3

1
4

1
5� �

1
1
1
1
1

1
2
3
4
5
� � � 5

15
15
55�

Y � �
1
2
4
4
6
�.X � �

1
1
1
1
1

1
2
3
4
5
�

YX

�5, 6��1, 1�, �2, 2�, �3, 4�, �4, 4�,

EXAMPLE 10 Finding the Least Squares Regression Line

For the regression model the coefficients of the least squares regression line
are given by the matrix equation

and the sum of squared error is

ETE.

A � �XTX��1XTY

Y � XA � E,Matrix Form for 

Linear Regression
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Now, using to find the coefficient matrix you have

The least squares regression line is

(See Figure 2.5.) The sum of squared error for this line can be shown to be 0.8, which
means that this line fits the data better than either of the two experimental linear models 
determined earlier.

y � �0.2 � 1.2x.

A � �XTX��1XTY �
1
50� 55

�15
�15

5� �
17
63� � ��0.2

1.2�.

A,�XTX��1

SECTION 2.5

Stochastic Matrices

In Exercises 1–6, determine whether the matrix is stochastic.

1. 2.

3. 4.

5. 6.

7. The market research department at a manufacturing plant 
determines that 20% of the people who purchase the plant’s
product during any month will not purchase it the next month.
On the other hand, 30% of the people who do not purchase the
product during any month will purchase it the next month. In a
population of 1000 people, 100 people purchased the product
this month. How many will purchase the product next month? In
2 months?

8. A medical researcher is studying the spread of a virus in a 
population of 1000 laboratory mice. During any week there is an
80% probability that an infected mouse will overcome the virus,
and during the same week there is a 10% probability that a 
noninfected mouse will become infected. One hundred mice are
currently infected with the virus. How many will be infected next
week? In 2 weeks?

9. A population of 10,000 is grouped as follows: 5000 nonsmokers,
2500 smokers of one pack or less per day, and 2500 smokers of
more than one pack per day. During any month there is a 5%
probability that a nonsmoker will begin smoking a pack or 
less per day, and a 2% probability that a nonsmoker will begin 
smoking more than a pack per day. For smokers who smoke a
pack or less per day, there is a 10% probability of quitting and a
10% probability of increasing to more than a pack per day. For
smokers who smoke more than a pack per day, there is a 5%
probability of quitting and a 10% probability of dropping to a
pack or less per day. How many people will be in each of the 
3 groups in 1 month? In 2 months?

10. A population of 100,000 consumers is grouped as follows:
20,000 users of Brand A, 30,000 users of Brand B, and 50,000
who use neither brand. During any month a Brand A user has a
20% probability of switching to Brand B and a 5% probability
of not using either brand. A Brand B user has a 15% proba-
bility of switching to Brand A and a 10% probability of not
using either brand. A nonuser has a 10% probability of purchas-
ing Brand A and a 15% probability of purchasing Brand B. How
many people will be in each group in 1 month? In 2 months? In
3 months?

11. A college dormitory houses 200 students. Those who watch an
hour or more of television on any day always watch for less than
an hour the next day. One-fourth of those who watch television
for less than an hour one day will watch an hour or more the next
day. Half of the students watched television for an hour or more
today. How many will watch television for an hour or more
tomorrow? In 2 days? In 30 days?
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0
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0
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2
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�
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12. For the matrix of transition probabilities

find and for the state matrix

Then find the steady state matrix for 

13. Prove that the product of two stochastic matrices is 
stochastic.

14. Let be a stochastic matrix. Prove that there exists a
state matrix with nonnegative entries such that 

Cryptography

In Exercises 15–18, find the uncoded row matrices of the indicated 
size for the given messages. Then encode the message using the
matrix

15. Message: SELL CONSOLIDATED

Row Matrix Size:

Encoding Matrix:

16. Message: PLEASE SEND MONEY

Row Matrix Size:

Encoding Matrix:

17. Message: COME HOME SOON

Row Matrix Size:

Encoding Matrix:

18. Message: HELP IS COMING

Row Matrix Size:

Encoding Matrix:

In Exercises 19–22, find and use it to decode the cryptogram.

19.

11  21  64  112  25  50  29  53  23  46  40  75  55  92

20.

85  120  6  8  10  15  84  117  42  56  90  125  60  80  30
45  19  26

21.

13  19  10  3  4  1  
4  1

22.

112  83  19  13  72  61  95  71  20  21
38  35  36  42  32

23. The cryptogram below was encoded with a matrix.

8  21  5  10  5  25  5  19  6  20  40
1  16

The last word of the message is __RON. What is the message?

24. The cryptogram below was encoded with a matrix.

5  2  25  11  32  14  38  19 
37  16

The last word of the message is __SUE. What is the message?

25. Use a graphing utility or computer software program with
matrix capabilities to find Then decode the cryptogram.

38  29  56  62  17  3  38  18  20  76  18  21  29
32  32  9  77  36  48  33  51  41  3  79  12  1  26

58  49  63  69  28  8  67  31  27  41  28�18�11�19�22
�5�8�7

�5�15�14

A � �
1
2
0

0
�1

1

2
1
2�

A�1.

�19
�19�13�8�15�15�7�2
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�4
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�5
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1

3
�,

�9�47
�25�5�9�14�2�77�33�1
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1
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2

7
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2

9

�7
�,
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3

3

4�,

A � �1

3

2

5�,

A�1

A � �
�2

�1

�1

3

3

1

�1

1

�1

1

1

�2

�1

1

2

�4
�

1 � 4
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3

2
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1 � 2
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4
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3

2
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1
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1
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1 � 3
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1

1
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1 � 3
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PX � X.X2 � 1
2 � 2P

2 � 2
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100
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P3XP2X

P � �
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26. A code breaker intercepted the encoded message below.

45 38 18 35 81 42 75
2 22 15

Let

(a) You know that and

where is the inverse of
the encoding matrix Write and solve two systems of
equations to find and 

(b) Decode the message.

Leontief Input-Output Models

27. A system composed of two industries, coal and steel, has the
following input requirements.

(a) To produce $1.00 worth of output, the coal industry 
requires $0.10 of its own product and $0.80 of steel.

(b) To produce $1.00 worth of output, the steel industry 
requires $0.10 of its own product and $0.20 of coal.

Find the input-output matrix for this system. Then solve for
the output matrix in the equation where the
external demand is

28. An industrial system has two industries with the following input
requirements.

(a) To produce $1.00 worth of output, Industry A requires
$0.30 of its own product and $0.40 of Industry B’s
product.

(b) To produce $1.00 worth of output, Industry B requires
$0.20 of its own product and $0.40 of Industry A’s
product.

Find the input-output matrix for this system. Then solve for
the output matrix in the equation where the
external demand is

29. A small community includes a farmer, a baker, and a grocer and
has the input-output matrix and external demand matrix 
shown below.

Farmer Baker Grocer

and

Solve for the output matrix in the equation 

30. An industrial system has three industries and the input-output
matrix and external demand matrix shown below.

and

Solve for the output matrix in the equation 

Least Squares Regression Analysis

In Exercises 31–34, (a) sketch the line that appears to be the best fit
for the given points, (b) use the method of least squares to find the
least squares regression line, and (c) calculate the sum of the
squared error.

31. 32.

33. 34.

In Exercises 35–42, find the least squares regression line.

35.

36.

37.

38.

39.

40.

41.

42. �0, 6�, �4, 3�, �5, 0�, �8, �4�, �10, �5�
��5, 10�, ��1, 8�, �3, 6�, �7, 4�, �5, 5�
��3, 4�, ��1, 2�, �1, 1�, �3, 0�
��5, 1�, �1, 3�, �2, 3�, �2, 5�
��4, �1�, ��2, 0�, �2, 4�, �4, 5�
��2, 0�, ��1, 1�, �0, 1�, �1, 2�
�1, 0�, �3, 3�, �5, 6�
�0, 0�, �1, 1�, �2, 4�

5 6
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x
1 2

1

−1

2
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4
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2

2 31−1
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3

4

x
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(1, 1)
(−1, 1)

(−3, 0)

y

21−1−2

2

1

3

4

x
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y
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43. A fuel refiner wants to know the demand for a certain grade of
gasoline as a function of the price. The daily sales (in gallons)
for three different prices of the product are shown in the table.

Price (x) $3.00 $3.25 $3.50

Demand (y) 4500 3750 3300

(a) Find the least squares regression line for these data.
(b) Estimate the demand when the price is $3.40.

44. A hardware retailer wants to know the demand for a recharge-
able power drill as a function of the price. The monthly sales for
four different prices of the drill are shown in the table.

Price (x) $25 $30 $35 $40

Demand (y) 82 75 67 55

(a) Find the least squares regression line for these data.
(b) Estimate the demand when the price is $32.95.

45. The table shows the numbers of motor vehicle registrations 
(in millions) in the United States for the years 2000 through
2004. (Source: U.S. Federal Highway Administration)

Year 2000 2001 2002 2003 2004

Number (y) 221.5 230.4 229.6 231.4 237.2

(a) Use the method of least squares to find the least squares 
regression line for the data. Let represent the year,
with corresponding to 2000.

(b) Use the linear regression capabilities of a graphing 
utility to find a linear model for the data. Let represent
the year, with corresponding to 2000.

46. A wildlife management team studied the reproduction rates of
deer in 3 tracts of a wildlife preserve. Each tract contained 
5 acres. In each tract the number of females and the percent of
females that had offspring the following year were recorded.
The results are shown in the table.

Number (x) 100 120 140

Percent (y) 75 68 55

(a) Use the method of least squares to find the least squares 
regression line that models the data.

(b) Use a graphing utility to graph the model and the data
in the same viewing window.

(c) Use the model to create a table of estimated values of 
Compare the estimated values with the actual data.

(d) Use the model to estimate the percent of females that
had offspring when there were 170 females.

(e) Use the model to estimate the number of females when
40% of the females had offspring.

y.

y
x

t � 0
t

t � 0
t

y

y

In Exercises 1–6, perform the indicated matrix operations.

1.

2.

3.

4.

5.

6.

In Exercises 7–10, write out the system of linear equations 
represented by the matrix equation.

7.
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9.

10.

In Exercises 11–14, write the system of linear equations in matrix
form.

11. 12.

13. 14.

In Exercises 15–18, find and .

15. 16.

17. 18.

In Exercises 19–22, find the inverse of the matrix (if it exists).

19. 20.

21. 22.

In Exercises 23– 26, write the system of linear equations in the form
Then find and use it to solve for 

23. 24.

25. 26.

In Exercises 27 and 28, find 

27. 28.

In Exercises 29 and 30, find such that the matrix is nonsingular.

29. 30.

In Exercises 31 and 32, find the inverse of the elementary matrix.

31. 32.

In Exercises 33–36, factor into a product of elementary matrices.

33. 34.

35. 36.

37. Find two matrices such that 

38. Find two matrices such that 

39. Find three matrices such that 

40. Find matrices and such that but 

In Exercises 41 and 42, let the matrices and be

41. (a) Find scalars and such that 
(b) Show that there do not exist scalars and such that

42. Show that if then 

43. Let and be nonsingular matrices. Prove that
is nonsingular by showing that

44. Writing Let and be matrices and let be non-
singular. If is it true that If so, prove it. 
If not, explain why and find an example for which the 
hypothesis is false.

In Exercises 45 and 46, find the LU-factorization of the matrix.
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In Exercises 47 and 48, use the LU-factorization of the coefficient
matrix to solve the linear system.

47.

48.

True or False? In Exercises 49–52, determine whether each state-
ment is true or false. If a statement is true, give a reason or cite an
appropriate statement from the text. If a statement is false, provide
an example that shows the statement is not true in all cases or cite
an appropriate statement from the text.

49. (a) Addition of matrices is not commutative.

(b) The transpose of the sum of matrices is equal to the sum of
the transposes of the matrices.

50. (a) The product of a matrix and a matrix is a matrix
that is 

(b) The transpose of a product is equal to the product of trans-
poses in reverse order.

51. (a) All matrices are invertible.

(b) If an matrix is not symmetric, then is not 
symmetric.

52. (a) If and are matrices and is invertible, then

(b) If and are nonsingular matrices, then is a
nonsingular matrix.

53. At a convenience store, the numbers of gallons of 87 octane,
89 octane, and 93 octane gasoline sold on Friday, Saturday, and
Sunday of a particular holiday weekend are shown by the
matrix.

87 89 93

A second matrix gives the selling prices per gallon and the 
profits per gallon for the three grades of gasoline sold by the 
convenience store.

Selling Price Profit
(per gallon) (per gallon)

(a) Find What is the meaning of in the context of the 
situation?

(b) Find the convenience store’s total gasoline sales profit
for Friday through Sunday.

54. At a certain dairy mart, the numbers of gallons of skim, 2%, and
whole milk that are sold on Friday, Saturday, and Sunday of a
particular week are shown by the matrix.

Skim 2% Whole

A second matrix gives the selling prices per gallon and the prof-
its per gallon for the three types of milk sold by the dairy mart.

Selling Price Profit
(per gallon) (per gallon)

(a) Find What is the meaning of in the context of the 
situation?

(b) Find the dairy mart’s total profit for Friday through
Sunday.

55. The numbers of calories burned by individuals of different body
weights performing different types of aerobic exercises for a 
20-minute time period are shown in the matrix.

120-lb Person 150-lb Person

A 120-pound person and a 150-pound person bicycled for 
40 minutes, jogged for 10 minutes, and walked for 60 minutes.

(a) Organize the amounts of time spent exercising in a
matrix

(b) Find the product 

(c) Explain the meaning of the matrix product as it 
applies to this situation.
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56. The final grades in a particular linear algebra course at a 
liberal arts college are determined by grades on two midterms
and a final exam. The grades for six students and two possible
grading systems are shown in the matrices below.

Midterm Midterm Final
1 2 Exam

Grading Grading
System 1 System 2

(a) Describe each grading system in matrix and how it is
to be applied.

(b) Compute the numerical grades for the six students using
the two grading systems.

(c) Assign each student a letter grade for each grading 
system using the letter grade scale shown in the table
below.

Numerical Grade Range Letter Grade

90 –100 A

80 –89 B

70 –79 C

60–69 D

0–59 F

Note: If necessary, round up to the nearest integer.

Stochastic Matrices

In Exercises 57 and 58, determine whether the matrix is stochastic.

57. 58.

In Exercises 59 and 60, use the given matrix of transition 
probabilities and state matrix to find the state matrices PX,
and

59.

60.

61. A country is divided into 3 regions. Each year, 10% of the 
residents of Region 1 move to Region 2 and 5% move to Region
3; 15% of the residents of Region 2 move to Region 1 and 5%
move to Region 3; and 10% of the residents of Region 3 move
to Region 1 and 10% move to Region 2. This year each region
has a population of 100,000. Find the population of each region
(a) in 1 year and (b) in 3 years.

62. Find the steady state matrix for the populations described in
Exercise 61.

Cryptography

In Exercises 63 and 64, find the uncoded row matrices of the 
indicated size for the given message. Then encode the message
using the matrix 

63. Message: ONE IF BY LAND

Row Matrix Size:

Encoding Matrix:

64. Message: BEAM ME UP SCOTTY

Row Matrix Size:

Encoding Matrix:

In Exercises 65–68, find to decode the cryptogram. Then
decode the message.

65.

34 36  37  22  29 57 31

66.

11 52  5 20 12 56 5 20  7 9 41 25 100�2�39�13�9�8
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67.

58  28 19 13 13 39 39 118  
28

68.

23 20 132 54 128 102 32 21 203 6 10 23 21 15 129 36 46 173
29 72 45

In Exercises 69 and 70, use a graphing utility or computer software
program with matrix capabilities to find then decode the 
cryptogram.

69.

2 5 39 93 4 27 31 19
99

70.

66 27 37 5 61 46 46 9 94 21 32 12
66 31 47 33 

Leontief Input-Output Models

71. An industrial system has two industries with the input require-
ments shown below.

(a) To produce $1.00 worth of output, Industry A requires
$0.20 of its own product and $0.30 of Industry B’s
product.

(b) To produce $1.00 worth of output, Industry B requires
$0.10 of its own product and $0.50 of Industry A’s
product.

Find the input-output matrix for this system. Then solve for
the output matrix in the equation where the
external demand is 

72. An industrial system with three industries has the input-output
matrix and the external demand matrix shown below.

and

Solve for the output matrix in the equation 

Least Squares Regression Analysis

In Exercises 73–76, find the least squares regression line for the
points.

73.

74.

75.

76.

77. A farmer used four test plots to determine the relationship 
between wheat yield (in kilograms) per square kilometer and 
the amount of fertilizer (in hundreds of kilograms) per square
kilometer. The results are shown in the table.

Fertilizer, x 1.0 1.5 2.0 2.5

Yield, y 32 41 48 53

(a) Find the least squares regression line for these data.
(b) Estimate the yield for a fertilizer application of 160

kilograms per square kilometer.

78. The Consumer Price Index (CPI) for all items for the years 2001
to 2005 is shown in the table. (Source: Bureau of Labor
Statistics)

Year 2001 2002 2003 2004 2005

CPI, y 177.1 179.9 184.0 188.9 195.3

(a) Find the least squares regression line for these data. Let
represent the year, with corresponding to 2000.

(b) Estimate the CPI for the years 2010 and 2015.

79. The table shows the average monthly cable television rates in
the United States (in dollars) for the years 2000 through 2005.
(Source: Broadband Cable Databook)

Year 2000 2001 2002 2003 2004 2005

Rate, y 30.37 32.87 34.71 36.59 38.14 39.63

y

x � 0x

�1, 1�, �1, 3�, �1, 2�, �1, 4�, �2, 5�
��2, 4�, ��1, 2�, �0, 1�, �1, �2�, �2, �3�
�2, 1�, �3, 3�, �4, 2�, �5, 4�, �6, 4�
�1, 5�, �2, 4�, �3, 2�

X � DX � E.X

E � �
3000

3500

8500
�D � �

0.1

0.0

0.4

0.3

0.2

0.1

0.2

0.3

0.1
�

ED

E � �40,000

80,000�.

X � DX � E,X
D,

�67�53
�4�49�14�73�9�31

�
2

2

1

0

�1

2

1

0

�4
�
�7�8�46�24

�16�49�12�9�6�72�53�2

�
1

�1

1

�2

1

�1

2

3

�4
�

A�1,

A � �
1
2
1

2
5
0

3
3
8�,

�14�14
�48�25�98�40�48�25�3

A � �
2

�5

5

�1

2

�1

�1

2

�2
�,

Chapter  2 Rev iew E xerc ises 119



Projects

120 Chapter  2 Matr ices

(a) Use the method of least squares to find the least squares 
regression line for the data. Let represent the year,
with corresponding to 2000.

(b) Use the linear regression capabilities of a graphing 
utility to find a linear model for the data. How does this
model compare with the model obtained in part (a)?

(c) Use the linear model to create a table of estimated
values for Compare the estimated values with the
actual data.

(d) Use the linear model to predict the average monthly
rate in 2010.

(e) Use the linear model to predict when the average
monthly rate will be $51.00.

80. The table shows the numbers of cellular phone subscribers (in
millions) in the United States for the years 2000 through 2005.
(Source: Cellular Telecommunications and Internet Association)

Year 2000 2001 2002 2003 2004 2005
Sub-
scribers, y 109.5 128.3 140.8 158.7 182.1 207.9

(a) Use the method of least squares to find the least squares
regression line for the data. Let represent the year,
with corresponding to 2000.

(b) Use the linear regression capabilities of a graphing 
utility to find a linear model for the data. How does this
model compare with the model obtained in part (a)?

(c) Use the linear model to create a table of estimated
values for Compare the estimated values with the
actual data.

(d) Use the linear model to predict the number of sub-
scribers in 2010.

(e) Use the linear model to predict when the number of 
subscribers will be 260 million.

81. The table shows the average salaries (in millions of dollars) of
Major League baseball players in the United States for the years
2000 through 2005. (Source: Major League Baseball)

Year 2000 2001 2002 2003 2004 2005

Salary, y 1.8 2.1 2.3 2.4 2.3 2.5

(a) Use the method of least squares to find the least squares 
regression line for the data. Let represent the year,
with corresponding to 2000.

(b) Use the linear regression capabilities of a graphing 
utility or computer software program to find a linear
model for the data. How does this model compare with
the model obtained in part (a)?

(c) Use the linear model to create a table of estimated
values for Compare the estimated values with the
actual data.

(d) Use the linear model to predict the average salary in
2010.

(e) Use the linear model to predict when the average salary
will be 3.7 million.

y.

x � 0
x

y

y.

x � 0
x

y

y.

x � 0
x

CHAPTER 2

1 Exploring Matrix Multiplication

The first two test scores for Anna, Bruce, Chris, and David are shown in the table.
Use the table to create a matrix to represent the data. Input matrix into a
graphing utility or computer software program and use it to answer the following
questions.

Test 1 Test 2

Anna 84 96

Bruce 56 72

Chris 78 83

David 82 91

MM



1. Which test was more difficult? Which was easier? Explain.
2. How would you rank the performances of the four students?

3. Describe the meanings of the matrix products and 

4. Describe the meanings of the matrix products and

5. Describe the meanings of the matrix products and 

6. Describe the meanings of the matrix products and

7. Describe the meaning of the matrix product 

8. Use matrix multiplication to express the combined overall average score
on both tests.

9. How could you use matrix multiplication to scale the scores on test 1 by
a factor of 1.1?

2 Nilpotent Matrices
Let be a nonzero square matrix. Is it possible that a positive integer exists
such that For example, find for the matrix

A square matrix is said to be nilpotent of index k if
but In this project you will explore the world of nilpotent matrices.

1. What is the index of the nilpotent matrix ?
2. Use a graphing utility or computer software program to determine which

of the matrices below are nilpotent and to find their indices.

(a) (b) (c)

(d) (e) (f)

3. Find nilpotent matrices of indices 2 and 3.
4. Find nilpotent matrices of indices 2, 3, and 4.
5. Find a nilpotent matrix of index 5.
6. Are nilpotent matrices invertible? Prove your answer.
7. If is nilpotent, what can you say about Prove your answer.
8. If is nilpotent, show that is invertible.I � AA
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3 Determinants

3.1 The Determinant of 
a Matrix

3.2 Evaluation of a
Determinant Using
Elementary Operations

3.3 Properties of
Determinants

3.4 Introduction to
Eigenvalues

3.5 Applications of
Determinants

CHAPTER OBJECTIVES

■ Find the determinants of a matrix and a triangular matrix.

■ Find the minors and cofactors of a matrix and use expansion by cofactors to find the 
determinant of a matrix.

■ Use elementary row or column operations to evaluate the determinant of a matrix.

■ Recognize conditions that yield zero determinants.

■ Find the determinant of an elementary matrix.

■ Use the determinant and properties of the determinant to decide whether a matrix is singular
or nonsingular, and recognize equivalent conditions for a nonsingular matrix.

■ Verify and find an eigenvalue and an eigenvector of a matrix.

■ Find and use the adjoint of a matrix to find its inverse.

■ Use Cramer’s Rule to solve a system of linear equations.

■ Use determinants to find the area of a triangle defined by three distinct points, to find an
equation of a line passing through two distinct points, to find the volume of a tetrahedron
defined by four distinct points, and to find an equation of a plane passing through three 
distinct points.

2 � 2
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The Determinant of a Matrix

Every square matrix can be associated with a real number called its determinant.
Determinants have many uses, several of which will be explored in this chapter. The first
two sections of this chapter concentrate on procedures for evaluating the determinant of a
matrix.

Historically, the use of determinants arose from the recognition of special patterns that
occur in the solutions of systems of linear equations. For instance, the general solution of
the system

can be shown to be

a21x1 � a22x2 � b2

a11x1 � a12x2 � b1

3.1



and

provided that Note that both fractions have the same denominator,
This quantity is called the determinant of the coefficient matrix 

R E M A R K : In this text, and are used interchangeably to represent the determi-
nant of a matrix. Vertical bars are also used to denote the absolute value of a real number;
the context will show which use is intended. Furthermore, it is common practice to delete
the matrix brackets and write

instead of

A convenient method for remembering the formula for the determinant of a matrix
is shown in the diagram below.

The determinant is the difference of the products of the two diagonals of the matrix. Note
that the order is important, as demonstrated above.

Find the determinant of each matrix.

(a) (b) (c)

S O L U T I O N (a)

(b)

(c) �C� � �02 3
4� � 0�4� � 2�3� � 0 � 6 � �6

�B� � �24 1
2� � 2�2� � 4�1� � 4 � 4 � 0

�A� � �21 �3
2� � 2�2� � 1��3� � 4 � 3 � 7

C � �0

2

3

4�B � �2

4

1

2�A � �2

1

�3

2�
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�A� � �a11

a21

a12

a22� � a11a22 � a21a12

2 � 2

��a11

a21

a12

a22
��.�a11

a21

a12

a22�

�A�det�A�

A.a11a22 � a21a12.
a11a22 � a21a12 � 0.

x2 �
b2a11 � b1a21

a11a22 � a21a12

,x1 �
b1a22 � b2a12

a11a22 � a21a12
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The determinant of the matrix

is given by

det�A� � �A� � a11a22 � a21a12.

A � �a11

a21

a12

a22
�

Definition of the

Determinant of a 

Matrix2 � 2



R E M A R K : The determinant of a matrix can be positive, zero, or negative.

The determinant of a matrix of order 1 is defined simply as the entry of the matrix. For
instance, if then

det

To define the determinant of a matrix of order higher than 2, it is convenient to use the 
notions of minors and cofactors.

For example, if is a matrix, then the minors and cofactors of and are as
shown in the diagram below.

Minor of Minor of 

Cofactor of Cofactor of 

As you can see, the minors and cofactors of a matrix can differ only in sign. To obtain the 
cofactors of a matrix, first find the minors and then apply the checkerboard pattern of ’s
and ’s shown below.

Sign Pattern for Cofactors

Note that odd positions (where is odd) have negative signs, and even positions (where
is even) have positive signs.i � j

i � j

�
�

�

�

�

�.
.
.

�

�

�

�

�.
.
.

�

�

�

�

�.
.
.

�

�

�

�

�.
.
.

�

�

�

�

�.
.
.

. . .

. . .

. . .

. . .

. . .��
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
��

�

�

�

�

�

�

�

�

�
�

�
�

� M22� �M21

C22 � ��1�2�2M22C21 � ��1�2�1M21

a22a21

M22 � � a11

a31

a13

a33��
a11

a21

a31

a12

a22

a32

a13

a23

a33
�,M21 � � a12

a32

a13

a33��
a11

a21

a31

a12

a22

a32

a13

a23

a33
�,

a22a21

a22a213 � 3A

�A� � �2.

A � ��2�,
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If is a square matrix, then the minor of the element is the determinant of the
matrix obtained by deleting the th row and th column of The cofactor is given by

Cij � ��1�i� jMij.

CijA.ji
aijMijADefinitions of Minors and

Cofactors of a Matrix

Delete row 2 and column 1. Delete row 2 and column 2.

matrix4 � 4
matrix3 � 3

matrixn � n



Find all the minors and cofactors of

S O L U T I O N To find the minor delete the first row and first column of and evaluate the determi-
nant of the resulting matrix.

Similarly, to find delete the first row and second column.

Continuing this pattern, you obtain 

.

Now, to find the cofactors, combine the checkerboard pattern of signs with these minors to
obtain

Now that the minors and cofactors of a matrix have been defined, you are ready for a
general definition of the determinant of a matrix. The next definition is called inductive
because it uses determinants of matrices of order to define the determinant of a
matrix of order 

R E M A R K : Try checking that, for matrices, this definition yields 
as previously defined.a21a12,

�A� � a11a22 �2 � 2

n.
n � 1

C33 � �6.C32 � 3C31 � 5

C23 � 8C22 � �4C21 � �2

C13 � 4C12 � 5C11 � �1

M33 � �6M32 � �3M31 � 5

M23 � �8M22 � �4M21 � 2

M13 � 4M12 � �5M11 � �1

M12 � �34 2
1� � 3�1� � 4�2� � �5�

0

3

4

2

�1

0

1

2

1
�,

M12,

M11 � � �1

0

2

1� � �1�1� � 0�2� � �1�
0

3

4

2

�1

0

1

2

1
�,

AM11,

A � �
0

3

4

2

�1

0

1

2

1
�.
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If is a square matrix (of order 2 or greater), then the determinant of is the sum of the
entries in the first row of multiplied by their cofactors. That is,

det�A� � �A� � �
n

j�1

a1jC1j � a11C11 � a12C12 � .  .  . � a1nC1n.

A
AADefinition of the

Determinant of a Matrix
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When you use this definition to evaluate a determinant, you are expanding by cofactors
in the first row. This procedure is demonstrated in Example 3.

Find the determinant of

S O L U T I O N This matrix is the same as the one in Example 2. There you found the cofactors of the entries
in the first row to be

By the definition of a determinant, you have

First row expansion

Although the determinant is defined as an expansion by the cofactors in the first row, it
can be shown that the determinant can be evaluated by expanding by any row or column.
For instance, you could expand the matrix in Example 3 by the second row to obtain

Second row expansion

or by the first column to obtain

First column expansion

Try other possibilities to confirm that the determinant of can be evaluated by expanding
by any row or column. This is stated in the theorem below, Laplace’s Expansion of a
Determinant, named after the French mathematician Pierre Simon de Laplace (1749–1827).

A

� 0��1� � 3��2� � 4�5� � 14.
�A� � a11C11 � a21C21 � a31C31

� 3��2� � ��1���4� � 2�8� � 14
�A� � a21C21 � a22C22 � a23C23

3 � 3

� 0��1� � 2�5� � 1�4� � 14.
�A� � a11C11 � a12C12 � a13C13

C13 � 4.C12 � 5,C11 � �1,

A � �
0

3

4

2

�1

0

1

2

1
�.
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Let be a square matrix of order Then the determinant of is given by

or

det�A� � �A� � �
n

i�1

aijCij � a1jC1j � a2jC2j � .  .  . � anjCnj.

det�A� � �A� � �
n

j�1

aijCij � ai1Ci1 � ai2Ci2 � .  .  . � ainCin

An.ATHEOREM 3.1

Expansion by Cofactors
ith row
expansion

jth column
expansion



Add these three products.

When expanding by cofactors, you do not need to evaluate the cofactors of zero entries,
because a zero entry times its cofactor is zero.

The row (or column) containing the most zeros is usually the best choice for expansion by
cofactors. This is demonstrated in the next example.

Find the determinant of

S O L U T I O N By inspecting this matrix, you can see that three of the entries in the third column are zeros.
You can eliminate some of the work in the expansion by using the third column.

Because and have zero coefficients, you need only find the cofactor To
do this, delete the first row and third column of and evaluate the determinant of the 
resulting matrix.

Expanding by cofactors in the second row yields

You obtain 

There is an alternative method commonly used for evaluating the determinant of a 
matrix To apply this method, copy the first and second columns of to form fourth and
fifth columns. The determinant of is then obtained by adding (or subtracting) the 
products of the six diagonals, as shown in the following diagram.

a11

a21

a31

a12

a22

a32

a13

a23

a33

a11

a21

a31

a12

a22

a32

A
AA.

3 � 3

�A� � 3�13� � 39.

� 0 � 2�1���4� � 3��1���7� � 13.

C13 � �0���1�2�1�14 2

�2� � �2���1�2�2��1

3

2

�2� � �3���1�2�3��1

3

1

4�

� ��1
0
3

1
2
4

2
3

�2�C13 � ��1�1�3��1
0
3

1
2
4

2
3

�2�
A

C13.C43C33,C23,

�A� � 3�C13� � 0�C23� � 0�C33� � 0�C43�

A � �
1

�1

0

3

�2

1

2

4

3

0

0

0

0

2

3

�2
�.
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aijCij � �0�Cij � 0

Subtract these three products.
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Most graphing utilities and 
computer software programs have
the capability of calculating the 
determinant of a square matrix. 
If you use the determinant 
command of a graphing utility to 
verify that the determinant of the
matrix in Example 4 is 39, your
screen may look like the one below.
Keystrokes and programming syntax
for these utilities/programs applica-
ble to Example 4 are provided in
the Online Technology Guide,
available at college.hmco.com/pic/
larsonELA6e.

A

Technology
Note



Try confirming that the determinant of is

Find the determinant of

S O L U T I O N Begin by recopying the first two columns and then computing the six diagonal products as
follows.

0 6 Subtract these products.

0 16 Add these products.

Now, by adding the lower three products and subtracting the upper three products, you can
find the determinant of to be 

Triangular Matrices

Evaluating determinants of matrices of order 4 or higher can be tedious. There is, however,
an important exception: the determinant of a triangular matrix. Recall from Section 2.4 that
a square matrix is called upper triangular if it has all zero entries below its main diagonal,
and lower triangular if it has all zero entries above its main diagonal. A matrix that is both
upper and lower triangular is called diagonal. That is, a diagonal matrix is one in which all
entries above and below the main diagonal are zero.

Upper Triangular Matrix Lower Triangular Matrix

To find the determinant of a triangular matrix, simply form the product of the entries on
the main diagonal. It is easy to see that this procedure is valid for triangular matrices of
order 2 or 3. For instance, the determinant of 

�
a11

a21

a31.
.
.

an1

0
a22

a32.
.
.

an2

0
0

a33.
.
.

an3

. . .

. . .

. . .

.  .  .

0
0

0.
.
.

ann

��
a11

0

0.
.
.
0

a12

a22

0.
.
.
0

a13

a23

a33.
.
.
0

. . .

. . .

. . .

. . .

a1n

a2n

a3n.
.
.

ann

�

�A� � 0 � 16 � ��12� � ��4� � 0 � 6 � 2.A

�12

0

3

4

2

�1

�4

1

2

1

0

3

4

2

�1

�4

�4

A � �
0

3

4

2

�1

�4

1

2

1
�.

E X A M P L E  5 The Determinant of a Matrix of Order 3

�A� � a11a22a33 � a12a23a31 � a13a21a32 � a31a22a13 � a32a23a11 � a33a21a12.

A
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R E M A R K : The diagonal
process illustrated in Example 5
is valid only for matrices of
order 3. For matrices of higher
orders, another method must 
be used.

Simulation
To explore this concept further with 
an electronic simulation, and for
keystrokes and programming syntax
regarding specific graphing utilities
and computer software programs 
involving Example 5, please visit 
college.hmco.com/pic/larsonELA6e.
Similar exercises and projects are
also available on this website.



can be found by expanding by the third row to obtain

which is the product of the entries on the main diagonal.

P R O O F You can use mathematical induction* to prove this theorem for the case in which is an
upper triangular matrix. The case in which is lower triangular can be proven similarly. If

has order 1, then and the determinant is Assuming the theorem is true
for any upper triangular matrix of order consider an upper triangular matrix of order

Expanding by the th row, you obtain

Now, note that where is the determinant of the upper trian-
gular matrix formed by deleting the th row and th column of Because this matrix is
of order you can apply the induction assumption to write

Find the determinant of each matrix.

(a) (b)

*A discussion of mathematical induction can be found in Appendix A.

B � �
�1

0

0

0

0

0

3

0

0

0

0

0

2

0

0

0

0

0

4

0

0

0

0

0

�2
�A � �

2

4

�5

1

0

�2

6

5

0

0

1

3

0

0

0

3
�
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� a11a22a33
 .  .  . akk.�A� � akkMkk � akk�a11a22a33

.  .  . ak�1 k�1�

k � 1,
A.kk

MkkCkk � ��1�2kMkk � Mkk,

�A� � 0Ck1 � 0Ck2 � .  .  . � 0Ck�k�1� � akkCkk � akkCkk.

kk.
Ak � 1,

�A� � a11.A � �a11�A
A

A

� 3�1���2� � �6,

�A� � 0��1�3�1� 3

�1

�1

2� � 0��1�3�2�20 �1

2� � 3��1�3�3�20 3

�1�

A � �
2

0

0

3

�1

0

�1

2

3
�
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If is a triangular matrix of order then its determinant is the product of the entries on
the main diagonal. That is,

det�A� � �A� � a11a22a33
.  .  . ann.

n,ATHEOREM 3.2

Determinant of a 

Triangular Matrix
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Exercises

S O L U T I O N (a) The determinant of this lower triangular matrix is given by

(b) The determinant of this diagonal matrix is given by

� 48.��2��2��4���1��3��B� �

�A� � �2���2��1��3� � �12.

SECTION 3.1

In Exercises 1–12, find the determinant of the matrix.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

In Exercises 13–16, find (a) the minors and (b) the cofactors of the
matrix.

13. 14.

15. 16.

17. Find the determinant of the matrix in Exercise 15 using the
method of expansion by cofactors. Use (a) the second row and
(b) the second column.

18. Find the determinant of the matrix in Exercise 16 using the
method of expansion by cofactors. Use (a) the third row and (b)
the first column.

In Exercises 19–34, use expansion by cofactors to find the determi-
nant of the matrix.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32. �
w

10
�30

30

x
15
20
35

y
�25
�15
�25

z
30

�10
�40

��
w

21
�10
�40

x
�15

24
22

y
24

�32
32

z
30
18

�35
�

�
3

2

4

1

0

6

1

5

7

11

�1

2

0

12

2

10
��

5

4

0

0

3

6

2

1

0

4

�3

�2

6

12

4

2
�

�
1

�5

0

3

4

6

0

�2

3

2

0

1

2

1

0

5
��

2

2

1

3

6

7

5

7

6

3

0

0

2

6

1

7
�

�
x

�2

1

y

�2

5

1

1

1
��

x

2

0

y

3

�1

1

1

1
�

�
�0.4

0.2

0.3

0.4

0.2

0.2

0.3

0.2

0.2
��

0.1

�0.3

0.5

0.2

0.2

0.4

0.3

0.2

0.4
�

�
�3

7

1

0

11

2

0

0

2
��

2

0

0

4

3

0

6

1

�5
�

�
2

1

1

�1

4

0

3

4

2
��

1

3

�1

4

2

4

�2

0

3
�

�
�3

6

4

4

3

�7

2

1

�8
��

�3

4

2

2

5

�3

1

6

1
�

��1

2

0

1��1

3

2

4�

�	 � 2

4

0

	 � 4��	 � 3

4

2

	 � 1�

� 2

�6

�3

9��2

0

6

3�

�
1
3

4

5

�9���7
1
2

6

3�
�2

4

�2

3�� 5

�6

2

3�

��3

5

1

2��2

3

1

4�
��3��1�
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33. 34.

In Exercises 35–40, use a graphing utility or computer software
program with matrix capabilities to find the determinant of the
matrix.

35. 36.

37. 38.

39.

40.

In Exercises 41–46, find the determinant of the triangular matrix.

41. 42.

43. 44.

45.

46.

True or False? In Exercises 47 and 48, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false,
provide an example that shows the statement is not true in all cases
or cite an appropriate statement from the text.

47. (a) The determinant of the 2 2 matrix is 

(b) The determinant of a matrix of order 1 is the entry of the
matrix.

(c) The -cofactor of a square matrix is the matrix defined by
deleting the th row and the th column of 

48. (a) To find the determinant of a triangular matrix, add the 
entries on the main diagonal.

(b) The determinant of a matrix can be evaluated using 
expansion by cofactors in any row or column.

(c) When expanding by cofactors, you need not evaluate the
cofactors of zero entries.

In Exercises 49–54, solve for 

49. 50.

51. 52.

53. 54.

In Exercises 55–58, find the values of for which the determinant
is zero.

55. 56.

57. 58. �	02 0
	

2

1
3

	 � 2��	  

0
0

2
	 � 1

1

0
2
	 �

�	 � 1
4

1
	 � 3��	 � 2

1
2
	 �

	

�x � 2
�3

�1
x � � 0�x � 1

3
2

x � 2� � 0

�x � 3
�4

1
x � 1� � 0�x � 1

1
�2

x � 2� � 0

�x � 2
�3

�1
x � � 0�x � 3

1
2

x � 2� � 0

x.

A.ji
Aij

a21a12 � a11a22.A�

�
7

�8

4

3

1

0
1
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5

�3

13

0

0
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1
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4
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3
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1
3
7
1
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�
1
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0
1
1
2

2
1
3
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0
3
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�4
�2�

�
4

0

1

6

1

3

0

2

�2

4

�2

0
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0
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0

0
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0
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In Exercises 59–64, evaluate the determinant, in which the entries
are functions. Determinants of this type occur when changes of
variables are made in calculus.

59. 60.

61. 62.

63. 64.

65. The determinant of a matrix involves two products. The
determinant of a matrix involves six triple products. Show
that the determinant of a matrix involves 24 quadruple
products. (In general, the determinant of an matrix
involves n-fold products.)

66. Show that the system of linear equations

has a unique solution if and only if the determinant of the 
coefficient matrix is nonzero.

In Exercises 67–74, evaluate the determinants to verify the 
equation.

67. 68.

69. 70.

71.

72.

73.

74.

75. You are given the equation

(a) Verify the equation.

(b) Use the equation as a model to find a determinant that
is equal to 

76. Writing Explain why it is easy to calculate the determinant of
a matrix that has an entire row of zeros.

ax3 � bx2 � cx � d.

� x

�1

0

0

x

�1

c

b

a �� ax2 � bx � c.

� 1

a

a3

1

b

b3

1

c

c3 �� �a � b��b � c��c � a��a � b � c�

� 1

a

a2

1

b

b2

1

c

c2 �� �a � b��b � c��c � a�

�a � b
a
a

a
a � b

a

a
a

a � b �� b2�3a � b�

�111 x
y
z

x2

y2

z2 �� �y � x��z � x��z � y�

� w
cw

x
cx �� 0�wy x

z � � �wy x � cw
z � cy�

�wy cx
cz� � c�wy x

z��wy x
z � � �� y

w
z
x�

cx � dy � f
ax � by � e

n!
n � n

4 � 4
3 � 3

2 � 2

�x
1

x ln x
1 � ln x ��x

1
ln x
1x �

� e�x

�e�x

xe�x

�1 � x�e�x �� e2x

2e2x

e3x

3e3x�
�3x2

1
�3y2

1�� 4u
�1

�1
2v �

Evaluation of a Determinant Using Elementary
Operations

Which of the two determinants shown below is easier to evaluate?

or �B� � �1000 �2

2

0

0

3

�9

�3

0

1

�2

�1

�1��A� � � 1

4

�2

3

�2

�6

4

�6

3

3

�9

9

1

2

�3

2�
3.2
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Given what you now know about the determinant of a triangular matrix, it is clear that the
second determinant is much easier to evaluate. Its determinant is simply the product of the 
entries on the main diagonal. That is, On the other hand, using
expansion by cofactors (the only technique discussed so far) to evaluate the first determi-
nant is messy. For instance, if you expand by cofactors across the first row, you have

Evaluating the determinants of these four matrices produces

It is not coincidental that these two determinants have the same value. In fact, you can
obtain the matrix by performing elementary row operations on matrix (Try verifying
this.) In this section, you will see the effects of elementary row (and column) operations on
the value of a determinant.

(a) The matrix was obtained from by interchanging the rows of 

and

(b) The matrix was obtained from by adding 2 times the first row of to the second
row of 

and

(c) The matrix was obtained from by multiplying the first row of by 

and

In Example 1, you can see that interchanging two rows of a matrix changed the sign of
its determinant. Adding a multiple of one row to another did not change the determinant.
Finally, multiplying a row by a nonzero constant multiplied the determinant by that same
constant. The next theorem generalizes these observations. The proof of Property 1 follows
the theorem, and the proofs of the other two properties are left as exercises. (See Exercises
54 and 55.)

�B� � � 1

�2

�4

9� � 1�A� � � 2

�2

�8

9� � 2

1
2.AAB

�B� � �10 �3

2� � 2�A� � �12 �3

�4� � 2

A.
A�AB

�B� � �12 4

�3� � �11�A� � �21 �3

4� � 11

A.AB

E X A M P L E  1 The Effects of Elementary Row Operations on a Determinant

A.B

�A� � �1���60� � �2��39� � �3���10� � �1���18� � 6.

3 � 3

�A� � 1��6

4

�6

3

�9

9

2

�3

2� � 2� 4

�2

3

3

�9

9

2

�3

2� � 3� 4

�2

3

�6

4

�6

2

�3

2� � 1� 4

�2

3

�6

4

�6

3

�9

9�.
�B� � �1��2���3���1� � 6.
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P R O O F To prove Property 1, use mathematical induction, as follows. Assume that and are 
2 2 matrices such that

and

Then, you have and So Now
assume the property is true for matrices of order Let be an matrix such
that is obtained from by interchanging two rows of Then, to find and expand
along a row other than the two interchanged rows. By the induction assumption, the 
cofactors of will be the negatives of the cofactors of because the corresponding

matrices have two rows interchanged. Finally, and the
proof is complete.

R E M A R K : Note that the third property of Theorem 3.3 enables you to divide a row by the
common factor. For instance,

Factor 2 out of first row.

Theorem 3.3 provides a practical way to evaluate determinants. (This method works 
particularly well with computers.) To find the determinant of a matrix use elementary
row operations to obtain a triangular matrix that is row-equivalent to For each step in 
the elimination process, use Theorem 3.3 to determine the effect of the elementary row 
operation on the determinant. Finally, find the determinant of by multiplying the entries
on its main diagonal. This process is demonstrated in the next example.

Find the determinant of

A � �
2

1

0

�3

2

1

10

�2

�3
�.

E X A M P L E  2 Evaluating a Determinant Using Elementary Row Operations

B

A.B
A,

�21 4

3� � 2�11 2

3�.

�B� � ��A��n � 1� � �n � 1�
AB

�B�,�A�A.AB
n � nA�n � 1�.
�B� � ��A�.�B� � a21a12 � a11a22.�A� � a11a22 � a21a12

B � �a21

a11

a22

a12
�.A � �a11

a21

a12

a22
�

�

BA

Let and be square matrices.

1. If is obtained from by interchanging two rows of then

2. If is obtained from by adding a multiple of a row of to another row of then

3. If is obtained from by multiplying a row of by a nonzero constant then

det�B� � c det�A�.

c,AAB

det�B� � det�A�.

A,AAB

det�B� � �det�A�.

A,AB

BATHEOREM 3.3

Elementary Row Operations

and Determinants

H I S T O R I C A L  N O T E

Augustin-Louis Cauchy

(1789–1857)

was encouraged by Pierre Simon
de Laplace, one of France’s lead-
ing mathematicians, to study
mathematics. Cauchy is often
credited with bringing rigor 
to modern mathematics. To 
read about his work, visit 
college.hmco.com/pic/larsonELA6e.
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S O L U T I O N Using elementary row operations, rewrite in triangular form as follows.

Now, because the final matrix is triangular, you can conclude that the determinant is

Determinants and Elementary Column Operations

Although Theorem 3.3 is stated in terms of elementary row operations, the theorem 
remains valid if the word “column” replaces the word “row.” Operations performed on the
columns (rather than the rows) of a matrix are called elementary column operations, and
two matrices are called column-equivalent if one can be obtained from the other by 
elementary column operations. The column version of Theorem 3.3 is illustrated as follows.

In evaluating a determinant by hand, it is occasionally convenient to use elementary column
operations, as shown in Example 3.

� 2

4

�2

3

1

4

�5

0

�3� � 2� 1

2

�1

3

1

4

�5

0

�3��240 1

0

0

�3

1

2� � ��100 2

4

0

�3

1

2�

�A� � 7�1��1���1� � �7.

� 7�100 2

1

0

�2

�2

�1�
� 7�100 2

1

1

�2

�2

�3�
� ��100 2

�7

1

�2

14

�3�
�210 �3

2

1

10

�2

�3� � ��120 2

�3

1

�2

10

�3�
A

Add times the first row to the second
row to produce a new second row.

�2

Interchange the first two rows.

Factor out of the second row.�7

Add times the second row to the third
row to produce a new third row.

�1

Interchange the first two columns. Factor 2 out of the first column.
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Find the determinant of

S O L U T I O N Because the first two columns of are multiples of each other, you can obtain a column of
zeros by adding 2 times the first column to the second column, as follows.

At this point you do not need to continue to rewrite the matrix in triangular form. Because
there is an entire column of zeros, simply conclude that the determinant is zero. The valid-
ity of this conclusion follows from Theorem 3.1. Specifically, by expanding by cofactors
along the second column, you have

Example 3 shows that if one column of a matrix is a scalar multiple of another column,
you can immediately conclude that the determinant of the matrix is zero. This is one of
three conditions, listed next, that yield a determinant of zero.

P R O O F Each part of this theorem is easily verified by using elementary row operations and expan-
sion by cofactors. For example, if an entire row or column is zero, then each cofactor in the
expansion is multiplied by zero. If condition 2 or 3 is true, you can use elementary row or
column operations to create an entire row or column of zeros.

�A� � �0�C12 � �0�C22 � �0�C32 � 0.

��1

3

5

2

�6

�10

2

4

�3� � ��1

3

5

0

0

0

2

4

�3�
A

A � �
�1

3

5

2

�6

�10

2

4

�3
�.
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If is a square matrix and any one of the following conditions is true, then 

1. An entire row (or an entire column) consists of zeros.
2. Two rows (or columns) are equal.
3. One row (or column) is a multiple of another row (or column).

det�A� � 0.ATHEOREM 3.4

Conditions That Yield 

a Zero Determinant



Recognizing the conditions listed in Theorem 3.4 can make evaluating a determinant
much easier. For instance,

Do not conclude, however, that Theorem 3.4 gives the only conditions that produce a 
determinant of zero. This theorem is often used indirectly. That is, you can begin with a
matrix that does not satisfy any of the conditions of Theorem 3.4 and, through elementary
row or column operations, obtain a matrix that does satisfy one of the conditions. Then 
you can conclude that the original matrix has a determinant of zero. This process is demon-
strated in Example 4.

Find the determinant of

S O L U T I O N Adding times the first row to the second row produces

Now, because the second and third rows are multiples of each other, you can conclude that
the determinant is zero.

In Example 4 you could have obtained a matrix with a row of all zeros by performing
an additional elementary row operation (adding 2 times the second row to the third row).
This is true in general. That is, a square matrix has a determinant of zero if and only if it is
row- (or column-) equivalent to a matrix that has at least one row (or column) consisting
entirely of zeros. This will be proved in the next section.

You have now surveyed two general methods for evaluating determinants. Of these, the
method of using elementary row operations to reduce the matrix to triangular form is 
usually faster than cofactor expansion along a row or column. If the matrix is large, then
the number of arithmetic operations needed for cofactor expansion can become extremely
large. For this reason, most computer and calculator algorithms use the method involving
elementary row operations. Table 3.1 (on page 138) shows the numbers of additions (plus 
subtractions) and multiplications (plus divisions) needed for each of these two methods for 
matrices of orders 3, 5, and 10.

�A� � �120 4

�1

18

1

0

4� � �100 4

�9

18

1

�2

4�.
�2

A � �
1

2

0

4

�1

18

1

0

4
�.

E X A M P L E  4 A Matrix with a Zero Determinant

� 1

2

�2

2

�1

0

�3

�6

6� � 0.�101 �2

1

�2

4

2

4� � 0,�023 0

4

�5

0

�5

2� � 0,

The third column is a
multiple of the first column.

The first and third
rows are the same.

The first row 
has all zeros.
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TABLE 3.1

Cofactor Expansion Row Reduction
Order n Additions Multiplications Additions Multiplications

3 5 9 5 10

5 119 205 30 45

10 3,628,799 6,235,300 285 339

In fact, the number of operations for the cofactor expansion of an matrix grows
like !. Because , even a relatively small matrix would require
more than operations. If a computer could do one trillion operations per second, it
would still take more than one trillion years to compute the determinant of this matrix using
cofactor expansion. Yet, row reduction would take only a few seconds.

When evaluating a determinant by hand, you can sometimes save steps by using elemen-
tary row (or column) operations to create a row (or column) having zeros in all but one 
position and then using cofactor expansion to reduce the order of the matrix by 1. This 
approach is illustrated in the next two examples.

Find the determinant of

S O L U T I O N Notice that the matrix already has one zero in the third row. You can create another zero in
the third row by adding 2 times the first column to the third column, as follows.

Expanding by cofactors along the third row produces

� 3.� �3�1���1�

� �3��1�4� 5
�4

�4
3�

�A� � ��3

2

�3

5

�4

0

�4

3

0�
�A� � ��3

2

�3

5

�4

0

2

�1

6� � ��3

2

�3

5

�4

0

�4

3

0�
A

A � �
�3

2

�3

5

�4

0

2

�1

6
�.
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1032

30 � 3030! � 2.65 � 1032n
n � n



Evaluate the determinant of

S O L U T I O N Because the second column of this matrix already has two zeros, choose it for cofactor 
expansion. Two additional zeros can be created in the second column by adding the second
row to the fourth row, and then adding times the second row to the fifth row.

(You have now reduced the problem of finding the determinant of a matrix to find-
ing the determinant of a matrix.) Because you already have two zeros in the fourth
row, it is chosen for the next cofactor expansion. Add times the fourth column to the
first column to produce the following.

� �1���1�8� 8
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Add the second row to the first row and then expand by cofactors along the first row.

� 5�1���27� � �135� 5��1�4��8

13

�1

5�
�A� � � 8

�8

13

1

�1

5

3

2

6� � � 0

�8

13

0

�1

5

5

2

6�
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ExercisesSECTION 3.2

In Exercises 1–20, which property of determinants is illustrated by
the equation?

1. 2.

3. 4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19. � 2
1
3
0

�1
�2

1
0
6
4
8
0

�1
1
1
0
5
2

0
3

�3
2
3
6

3
5
2
4
4
4

4
2
6
0

�2
�4� � 0

�205 1

1

3

�1

4
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15�
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20.

In Exercises 21–24, use either elementary row or column opera-
tions, or cofactor expansion, to evaluate the determinant by hand.
Then use a graphing utility or computer software program to verify
the value of the determinant.

21. 22.

23. 24.

In Exercises 25–38, use elementary row or column operations to
evaluate the determinant.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37.

38.

True or False? In Exercises 39 and 40, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false,
provide an example that shows the statement is not true in all cases
or cite an appropriate statement from the text.

39. (a) Interchanging two rows of a given matrix changes the sign
of its determinant.

(b) Multiplying a row of a matrix by a nonzero constant 
results in the determinant being multiplied by the same
nonzero constant.

(c) If two rows of a square matrix are equal, then its determinant
is 0.

40. (a) Adding a multiple of one row of a matrix to another row
changes only the sign of the determinant.

(b) Two matrices are column-equivalent if one matrix can be
obtained by performing elementary column operations on
the other.

(c) If one row of a square matrix is a multiple of another row,
then the determinant is 0.

In Exercises 41–46, find the determinant of the elementary matrix.
(Assume )

41. 42. 43.

44. 45. 46. �
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47. Prove the property.

48. Prove the property.

In Exercises 49–52, evaluate the determinant.

49. 50.

51. 52.

53. Writing Solve the equation for x, if possible. Explain your
result.

54. Guided Proof Prove Property 2 of Theorem 3.3: If is
obtained from by adding a multiple of a row of to 
another row of then 

Getting Started: To prove that the determinant of is equal
to the determinant of you need to show that their respective
cofactor expansions are equal.

(i) Begin your proof by letting be the matrix obtained by
adding times the th row of to the th row of 

(ii) Find the determinant of by expanding along this th
row.

(iii) Distribute and then group the terms containing a coef-
ficient of and those not containing a coefficient of 

(iv) Show that the sum of the terms not containing a coef-
ficient of is the determinant of and the sum of the
terms containing a coefficient of is equal to 0.

55. Guided Proof Prove Property 3 of Theorem 3.3: If is
obtained from by multiplying a row of by a nonzero 
constant then 

Getting Started: To prove that the determinant of is equal
to times the determinant of you need to show that the 
determinant of is equal to times the cofactor expansion of the 
determinant of 

(i) Begin your proof by letting be the matrix obtained by
multiplying times the th row of 

(ii) Find the determinant of by expanding along this th
row.

(iii) Factor out the common factor 
(iv) Show that the result is times the determinant of 

56. Writing A computer operator charges $0.001 (one tenth of a
cent) for each addition and subtraction, and $0.003 for each
multiplication and division. Compare and contrast the costs of 
calculating the determinant of a matrix by cofactor
expansion and then by row reduction. Which method would you
prefer to use for calculating determinants?

10 � 10

A.c
c.

iB
A.ic

B

A.
cB

A,c
B

det�B� � c det�A�.c,
AA

B

c
Ac

c.c

iB
A.iAjc

B

A,
B

det�B� � det�A�.A,
AA
B

� cos x
sin x

sin x � cos x

0
0
1

sin x
�cos x

sin x � cos x� � 0

�sec �

1
1

sec ���sin �

1
1

sin ��
�sec �

tan �

tan �

sec ��� cos �

�sin �

sin �

cos ��
a � 0,  b � 0,  c � 0
�1 � a

1

1

1

1 � b

1

1

1

1 � c � � abc	1 �
1

a
�

1

b
�

1

c
,

�a11

a21

a31

a12

a22

a32

a13

a23

a33� � �b11

b21

b31

a12

a22

a32

a13

a23

a33� � ��a11 � b11�
�a21 � b21�
�a31 � b31�

a12

a22

a32

a13

a23

a33�

Properties of Determinants

In this section you will learn several important properties of determinants. You will begin
by considering the determinant of the product of two matrices.

Find and for the matrices

and B � �
2

0

3

0

�1

1

1

�2

�2
�.A � �

1

0

1

�2

3

0

2

2

1
�

�AB��A�, �B�,
E X A M P L E  1 The Determinant of a Matrix Product

3.3
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S O L U T I O N Using the techniques described in the preceding sections, you can show that and have
the values

and

The matrix product is

Using the same techniques, you can show that has the value

In Example 1, note that the determinant of the matrix product is equal to the product of
the determinants. That is,

This is true in general, as indicated in the next theorem.

P R O O F To begin, observe that if is an elementary matrix, then, by Theorem 3.3, the next few state-
ments are true. If is obtained from by interchanging two rows, then If 

is obtained by multiplying a row of by a nonzero constant then If is 
obtained by adding a multiple of one row of to another row of then Additionally,
by Theorem 2.12, if results from performing an elementary row operation on and the
same elementary row operation is performed on then the matrix results. It follows that

This can be generalized to conclude that where
is an elementary matrix. Now consider the matrix If is nonsingular, then, by

Theorem 2.14, it can be written as the product of elementary matrices 
and you can write

� �Ek� .  .  . �E2� �E1� �B� � �Ek
.  .  . E2E1� �B� � �A� �B�.

�AB� � �Ek
.  .  . E2E1B�

A � Ek
.  .  . E2E1

AAB.Ei

�Ek
.  .  . E2E1B� � �Ek� .  .  . �E2� �E1� �B�,

�EB� � �E� �B�.
EBB,

IE
�E� � 1.I,I

E�E� � c.c,IE
�E� � �1.IE

E

�77 � ��7��11�.
�AB� � �A��B�

�AB� � �865 4

�1

1

1

�10

�1� � �77.

�AB�

AB � �
1

0

1

�2

3

0

2

2

1
� �

2

0

3

0

�1

1

1

�2

�2
� � �

8

6

5

4

�1

1

1

�10

�1
�.

AB

�B� � �203 0

�1

1

1

�2

�2� � 11.�A� � �101 �2

3

0

2

2

1� � �7

�B��A�

If and are square matrices of order then

det�AB� � det�A� det�B�.
n,BATHEOREM 3.5

Determinant of a 

Matrix Product



144 Chapter  3 Determinants

If is singular, then is row-equivalent to a matrix with an entire row of zeros. From
Theorem 3.4, you can conclude that Moreover, because is singular, it follows
that is also singular. If were nonsingular, then would imply that 
is nonsingular. So, and you can conclude that 

R E M A R K : Theorem 3.5 can be extended to include the product of any finite number of
matrices. That is,

The relationship between and is shown in the next theorem.

P R O O F This formula can be proven by repeated applications of Property 3 of Theorem 3.3. Factor
the scalar out of each of the rows of to obtain

Find the determinant of the matrix.

S O L U T I O N Because

and

you can apply Theorem 3.6 to conclude that

�A� � 103� 1

3

�2

�2

0

�3

4

5

1� � 1000�5� � 5000.

� 1

3

�2

�2

0

�3

4

5

1� � 5,A � 10�
1

3

�2

�2

0

�3

4

5

1
�

A � �
10

30

�20

�20

0

�30

40

50

10
�

E X A M P L E  2 The Determinant of a Scalar Multiple of a Matrix

�cA� � cn�A�.
�cA�nc

�cA��A�
�A1A2A3

.  .  . Ak� � �A1��A2��A3� .  .  . �Ak�.

�AB� � �A��B�.�AB� � 0,�
AA�B�AB��1� � IAB�AB

A�A� � 0.
AA

If is an matrix and is a scalar, then the determinant of is given by

det�cA� � cn det�A�.
cAcn � nATHEOREM 3.6

Determinant of a 

Scalar Multiple of a Matrix



Theorems 3.5 and 3.6 provide formulas for evaluating the determinants of the product of
two matrices and a scalar multiple of a matrix. These theorems do not, however, list a 
formula for the determinant of the sum of two matrices. It is important to note that the sum
of the determinants of two matrices usually does not equal the determinant of their sum.
That is, in general, For instance, if

and

then and but and 

Determinants and the Inverse of a Matrix

You saw in Chapter 2 that some square matrices are not invertible. It can also be difficult
to tell simply by inspection whether or not a matrix has an inverse. Can you tell which of
the two matrices shown below is invertible?

or

The next theorem shows that determinants are useful for classifying square matrices as 
invertible or noninvertible.

P R O O F To prove the theorem in one direction, assume is invertible. Then and by
Theorem 3.5 you can write Now, because you know that neither
determinant on the left is zero. Specifically,

To prove the theorem in the other direction, assume the determinant of is nonzero.
Then, using Gauss-Jordan elimination, find a matrix in reduced row-echelon form, that
is row-equivalent to Because is in reduced row-echelon form, it must be the identity
matrix or it must have at least one row that consists entirely of zeros. But if has a row
of all zeros, then by Theorem 3.4 you know that which would imply that 
Because you assumed that is nonzero, you can conclude that is, therefore,
row-equivalent to the identity matrix, and by Theorem 2.15 you know that is invertible.A

AB � I.�A�
�A� � 0.�B� � 0,

BI
BA.

B,
A

�A� � 0.
�I� � 1,�A��A�1� � �I�.

AA�1 � I,A

B � �
0

3

3

2

�2

2

�1

1

1
�A � �

0

3

3

2

�2

2

�1

1

�1
�

�A � B� � �18.A � B � �9
2

9
0��B� � �3,�A� � 2

B � �3

0

7

�1�,A � �6

2

2

1�
�A� � �B� � �A � B�.

Let

.

Use a graphing utility or 
computer software program to
find Compare det( )
with det( ). Make a conjecture
about the determinant of the
inverse of a matrix.

A
A�1A�1.

A � �
6
0
1

4
2
1

1
3
2�
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A square matrix is invertible (nonsingular) if and only if

det�A� � 0.

ATHEOREM 3.7

Determinant of an

Invertible Matrix

Discovery
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If is invertible, then

det�A�1� �
1

det�A�
.

ATHEOREM 3.8

Determinant of an 

Inverse Matrix

Which of the matrices has an inverse?

(a) (b)

S O L U T I O N (a) Because

you can conclude that this matrix has no inverse (it is singular).

(b) Because

you can conclude that this matrix has an inverse (it is nonsingular).

The next theorem provides a convenient way to find the determinant of the inverse of a
matrix.

P R O O F Because is invertible, and you can apply Theorem 3.5 to conclude that
Because is invertible, you also know that and you can divide

each side by to obtain

�A�1� �
1

�A�.
�A�

�A� � 0,A�A��A�1� � �I� � 1.
AA�1 � I,A

�033 2

�2

2

�1

1

1� � �12 � 0,

�033 2

�2

2

�1

1

�1� � 0,

�
0

3

3

2

�2

2

�1

1

1
��

0

3

3

2

�2

2

�1

1

�1
�

E X A M P L E  3 Classifying Square Matrices as Singular or Nonsingular



Sect ion 3 .3 Proper t ies  of  Determinants 147

Find for the matrix

S O L U T I O N One way to solve this problem is to find and then evaluate its determinant. It is easier,
however, to apply Theorem 3.8, as follows. Find the determinant of 

and then use the formula to conclude that 

R E M A R K : In Example 4, the inverse of is

Try evaluating the determinant of this matrix directly. Then compare your answer with that
obtained in Example 4.

Note that Theorem 3.7 (a matrix is invertible if and only if its determinant is nonzero)
provides another equivalent condition that can be added to the list in Theorem 2.15. All six
conditions are summarized below.

R E M A R K : In Section 3.2 you saw that a square matrix can have a determinant of zero
if is row-equivalent to a matrix that has at least one row consisting entirely of zeros. The
validity of this statement follows from the equivalence of Properties 4 and 6.

A
A

A�1 � �
�1

2

1
1
2

3
4

�
3
2

�
1
4

3
4

�
1
2

�
1
4

�.

A

�A�1� �
1
4.�A�1� � 1�A�

�A� � �102 0

�1

1

3

2

0� � 4,

A,
A�1

A � �
1

0

2

0

�1

1

3

2

0
�.

�A�1�
E X A M P L E  4 The Determinant of the Inverse of a Matrix

If is an matrix, then the following statements are equivalent.

1. is invertible.
2. has a unique solution for every column matrix 
3. has only the trivial solution.
4. is row-equivalent to 
5. can be written as the product of elementary matrices.
6. det�A� � 0

A
In.A

Ax � O
b.n � 1Ax � b

A

n � nAEquivalent

Conditions for a

Nonsingular Matrix



Which of the systems has a unique solution?

(a) (b)

S O L U T I O N From Example 3 you know that the coefficient matrices for these two systems have the 
determinants below.

(a) (b)

Using the preceding list of equivalent conditions, you can conclude that only the second
system has a unique solution.

Determinants and the Transpose of a Matrix

The next theorem tells you that the determinant of the transpose of a square matrix is
equal to the determinant of the original matrix. This theorem can be proven using math-
ematical induction and Theorem 3.1, which states that a determinant can be evaluated
using cofactor expansion along a row or a column. The details of the proof are left to you.
(See Exercise 56.)

Show that for the matrix below.

S O L U T I O N To find the determinant of expand by cofactors along the second row to obtain

�A� � 2��1�3� 1

�1

�2

5� � �2���1��3� � �6.

A,

A � �
3

2

�4

1

0

�1

�2

0

5
�

�A� � �AT�
E X A M P L E  6 The Determinant of a Transpose

�033 2

�2

2

�1

1

1� � �12�033 2

�2

2

�1

1

�1� � 0

 3x1 � 2x2 � x3 � �4 3x1 � 2x2 � x3 � �4

 3x1 � 2x2 � x3 � 4 3x1 � 2x2 � x3 � 4

     2x2 � x3 � �1     2x2 � x3 � �1

E X A M P L E  5 Systems of Linear Equations
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If is a square matrix, then

det�A� � det�AT �.
ATHEOREM 3.9

Determinant of a 

Transpose
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Exercises

To find the determinant of

expand by cofactors down the second column to obtain

So, �A� � �AT�.�AT� � 2��1�3� 1

�2

�1

5� � �2���1��3� � �6.

AT � �
3

1

�2

2

0

0

�4

�1

5
�,

SECTION 3.3

In Exercises 1–6, find (a) (b) (c) and (d) Then
verify that 

1.

2.

3.

4.

5.

6.

In Exercises 7–10, use the fact that to evaluate the 
determinant of the matrix.

7. 8.

9. 10.

In Exercises 11–14, find (a) (b) and (c) Then
verify that 

11.

12.

13.

14.

In Exercises 15–18, find (a) (b) (c) (d) and
(e)

15. 16.

17. 18.

In Exercises 19–22, use a graphing utility or computer software 
program with matrix capabilities to find (a) (b) (c) 
(d) and (e) 

19. 20. A � ��2
6

4
8�A � � 4

�1
2
5�

�A�1�.�2A�,
�A2�,�AT�,�A�,

A � �
1

0

0

5

�6

0

4

2

�3
�A � �

2

4

3

0

�1

2

5

6

1
�

A � ��4

5

10

6�A � �6

4

�11

�5�
�A�1�.

�2A�,�AAT�,�A2�,�AT�,

B � �
0
2
0

1
1
1

�1
1
1�A � �

0
1
2

1
�1

1

2
0
1�,

B � �
�1

0
1

0
1
1

2
2
1�A � �

1
�1

0

0
2
1

1
1
1�,

B � �3

0

�2

0�A � �1

1

�2

0�,

B � � 1

�2

�1

0�A � ��1

2

1

0�,

�A� � �B� � �A � B�.
�A � B�.�B�,�A�,

A � �
4

12

16

16

�8

20

0

8

�4
�A � �

�3

6

9

6

9

12

9

12

15
�

A � � 5

10

15

�20�A � �4

6

2

�8�
n � n

�cA� � cn�A�

B � �
4
1
0

�1

2
1
0
0

�1
2
2
0

0
�1

1
0
�A � �

3
1
0

�1

2
�1

0
1

4
2
3
1

0
1
1
0
�,

B � �
1
2
1
3

0
1
1
2

�1
0

�1
1

1
2
0
0
�A � �

2
1
2
1

0
�1

3
2

1
0
1
3

1
1
0
0
�,

B � �
2

0

3

�1

1

�2

4

3

1
�A � �

2

1

3

0

�1

1

1

2

0
�,

B � �
�1

0

0

0

2

0

0

0

3
�A � �

�1

1

0

2

0

1

1

1

0
�,

B � ��1

3

2

0�A � �1

2

2

4�,

B � �1

0

1

�1�A � ��2

4

1

�2�,

�A��B� � �AB�.
�AB�.AB,�B�,�A�,



21.

22.

23. Let and be square matrices of order 4 such that 
and Find (a) (b) (c) (d) and
(e)

24. Let and be square matrices of order 3 such that 
and Find (a) (b) (c) (d) and
(e)

25. Let and be square matrices of order 4 such that and
Find (a) (b) (c) (d) and (e)

26. Let and be square matrices of order 3 such that 
and Find (a) (b) (c) (d) and
(e)

In Exercises 27–34, use a determinant to decide whether the matrix
is singular or nonsingular.

27. 28.

29. 30.

31. 32.

33. 34.

In Exercises 35–40, find Begin by finding and then
evaluate its determinant. Verify your result by finding and

then applying the formula from Theorem 3.8,

35. 36.

37. 38.

39.

40.

In Exercises 41–44, use the determinant of the coefficient matrix 
to determine whether the system of linear equations has a unique
solution.

41. 42.

43.

44.

In Exercises 45–48, find the value(s) of k such that A is singular.

45. 46.

47. 48.

49. Let and be matrices such that Prove that
and

50. Let and be matrices such that is singular. Prove
that either or is singular.

51. Find two matrices such that 

52. Verify the equation.

�a � b

a

a

a

a � b

a

a

a

a � b� � b2�3a � b�

�A� � �B� � �A � B�.2 � 2

BA
ABn � nBA

�B� � 0.�A� � 0
AB � I.n � nBA

A � �
1

�2
3

k
0
1

2
�k
�4�A � �

1

2

4

0

�1

2

3

0

k
�

A � �k � 1
2

2
k � 2�A � �k � 1

2
3

k � 2�

x1 � x2 � x3 � x4 � 6
x1 � x2 � x3 � x4 � 0
x1 � x2 � x3 � x4 � 0
x1 � x2 � x3 � x4 � 0

x1 � 5x2 � 6x3 �  3
 2x1 � 2x2 � 2x3 � 3x4 � 2

x1 � x2 � 3x3 � 4x4 � �1
 2x1 � x2 � 5x3 � x4 � 5

 3x1 � 2x2 � 2x3 � 0 3x1 � 2x2 � 2x3 � 0
 2x1 � x2 � x3 � 6 2x1 � x2 � x3 � 6

x1 � x2 � x3 � 4x1 � x2 � x3 � 4

A � �
0
1
0
1

1
�2

0
�2

0
�3

2
�4

3
1

�2
1
�

A � �
1

1

2

1

0

0

0

�3

�1

3

2

1

3

�2

�1

2
�

A � �
1

2

1

0

�1

�2

1

2

3
�A � �

1

2

1

0

�1

�2

2

3

2
�

A � �1

2

�2

2�A � �2

1

3

4�
�A�1� �

1

�A�.
�A�

A�1,�A�1�.

�
0.8

�1.2

0.7

0.2

0.2

0.6

�0.3

�0.3

�0.6

0.6

0.1

0.6

  0.1

0

0

0
��

1

0

0

0

0

8

0

0

�8

�1

0

0

2

10

1

2
�

�
2

1

�
5
2

�
1
2

�
1
4
3
2

8

4

8
��

1
2

2
3

1

3
2

�
1
3

1

2

0

1
�

�
1

0

2

0

6

�1

4

3

4
��

14

�2

1

5

0

�5

7

3

�10
�

�3

4

�6

2�� 5

10

4

8�

�B�1�.
��AB�T�,�2A�,�B4�,�BA�,�B� � 5.

�A�� �2BA
�B�1�.

��AB�T�,�2A�,�B2�,�BA�,�B� � 2.
�A� � 4BA

�A�1�.
��AB�T�,�2B�,�A4�,�AB�,�B� � 12.

�A� � 10BA
�A�1�.

��AB�T�,�3B�,�A3�,�AB�,�B� � 3.
� �5�A�BA

A � �
6

�2
6
2

5
4
1
2

1
3

�4
1

�1
5

�2
3
�

A � �
4
3
6
2

�2
8
8
3

1
2
9

�1

5
�1

2
0
�
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53. Let be an matrix in which the entries of each row add
up to zero. Find 

54. Illustrate the result of Exercise 53 with the matrix

55. Guided Proof Prove that the determinant of an invertible
matrix is equal to if all of the entries of and are 
integers.

Getting Started: Denote as and as Note
that and are real numbers. To prove that is equal to

you must show that both and are integers such that their
product is equal to 1.

(i) Use the property for the determinant of a matrix 
product to show that 

(ii) Use the definition of a determinant and the fact that the
entries of and are integers to show that both

and are integers.
(iii) Conclude that must be either 1 or 

because these are the only integer solutions to the
equation

56. Guided Proof Prove Theorem 3.9: If is a square matrix, then
det

Getting Started: To prove that the determinants of and 
are equal, you need to show that their cofactor expansions are
equal. Because the cofactors are determinants of smaller
matrices, you need to use mathematical induction.

(i) Initial step for induction: If is of order 1, then 
so

(ii) Assume the inductive hypothesis holds for all matrices
of order Let be a square matrix of order 
Write an expression for the determinant of by 
expanding by the first row.

(iii) Write an expression for the determinant of by 
expanding by the first column.

(iv) Compare the expansions in (i) and (ii). The entries of
the first row of are the same as the entries of the first
column of Compare cofactors (these are the 
determinants of smaller matrices that are transposes of
one another) and use the inductive hypothesis to 
conclude that they are equal as well.

57. Writing Let and be matrices, where is 
invertible. Does Illustrate your conclusion with
appropriate examples. What can you say about the two 
determinants and 

58. Writing Let be an nonzero matrix satisfying
Explain why must be singular. What properties of

determinants are you using in your argument?

True or False? In Exercises 59 and 60, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false,
provide an example that shows that the statement is not true in all
cases or cite an appropriate statement from the text.

59. (a) If is an matrix and is a nonzero scalar, then the
determinant of the matrix is given by det

(b) If is an invertible matrix, then the determinant of is
equal to the reciprocal of the determinant of 

(c) If is an invertible matrix, then has a
unique solution for every 

60. (a) In general, the determinant of the sum of two matrices
equals the sum of the determinants of the matrices.

(b) If is a square matrix, then the determinant of is equal
to the determinant of the transpose of 

(c) If the determinant of an matrix is nonzero, then
has only the trivial solution.

61. A square matrix is called skew-symmetric if Prove
that if is an skew-symmetric matrix, then 

62. Let be a skew-symmetric matrix of odd order. Use the result
of Exercise 61 to prove that 

In Exercises 63–68, determine whether the matrix is orthogonal. An
invertible square matrix is called orthogonal if

63. 64.

65. 66.

67. 68.

69. Prove that if is an orthogonal matrix, then �A� � ±1.A

�1�2

0

1�2

0

1

0

�1�2

0

1�2
��

1

0

0

0

0

1

0

1

0
�

� 1�2

�1�2

�1�2

�1�2 �� 1

�1

�1

�1�

�0

1

0

0��0

1

1

0�
A�1 � AT.A

�A� � 0.
A

��1�n�A�.
�A� �n � nA

AT � �A.

Ax � 0
An � n

A.
AA

b.
Ax � bn � nA
A.

A�1A
�A�.�nccA

cn � nA

AA10 � O.
n � nA

�A�?�P�1AP�

P�1AP � A?
Pn � nPA

±AT.
A

AT

A
n.An � 1.

det�A� � det�AT � � a11.�a11� � AT,
A �A

±

ATA
�A� � det�AT �.

A

xy � 1.

�1x � det�A�
y � det�A�1�x � det�A�

A�1A

xy � 1.

xy
yx±1,

det�A�yx
y.det�A�1�xdet�A�

A�1A±1A

A � �
2

�3
0

�1
1

�2

�1
2
2�.

�A�.
n � nA
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In Exercises 70 and 71, use a graphing utility with matrix capabilities
to determine whether is orthogonal. To test for orthogonality, find 
(a) (b) and (c) and verify that and 

70. 71.

72. If is an idempotent matrix then prove that the 
determinant of is either 0 or 1.

73. Let be an singular matrix. Prove that for any 
matrix the matrix is also singular.

74. Let and be matrices. Find the determinant of
the partitioned matrix

in terms of the determinants of and A22.A11, A12,

�A11

0
A12

A22
�

n � nA22A12,A11,

SBB,
n � nn � nS

A
�A2 � A�,A

A � �
2
3
2
3
1
3

�
2
3
1
3
2
3

1
3

�
2
3
2
3
�A � �

3
5

0
4
5

0

1

0

�
4
5

0
3
5
�

�A� � ±1.A�1 � AT�A�,AT,A�1,
A

Introduction to Eigenvalues

This chapter continues with a look ahead to one of the most important topics of linear 
algebra—eigenvalues. One application of eigenvalues involves the study of population
growth. For example, suppose that half of a population of rabbits raised in a laboratory 
survive their first year. Of those, half survive their second year. Their maximum life span is
3 years. Furthermore, during the first year the rabbits produce no offspring, whereas the 
average number of offspring is 6 during the second year and 8 during the third year. If there
are 24 rabbits in each age class now, what will the distribution be in 1 year? In 20 years?

As you will find in Chapter 7, the solution of this application depends on the concept of
eigenvalues. You will see later that eigenvalues are used in a wide variety of real-life appli-
cations of linear algebra. Aside from population growth, eigenvalues are used in solving
systems of differential equations, in quadratic forms, and in engineering and science.

The central question of the eigenvalue problem can be stated as follows. If is an 
matrix, do there exist nonzero matrices such that is a scalar multiple of The
scalar is usually denoted by (the Greek letter lambda) and is called an eigenvalue of
and the nonzero column matrix is called an eigenvector of corresponding to The 
fundamental equation for the eigenvalue problem is

Let and

Verify that is an eigenvalue of corresponding to and that is an eigen-
value of corresponding to 

S O L U T I O N To verify that is an eigenvalue of corresponding to multiply the matrices and
, as follows.

Ax1 � �1

2

4

3� �
1

1� � �5

5� � 5�1

1� � 	1x1

x1

Ax1,A	1 � 5

x2.A
	2 � �1x1A	1 � 5

x2 � � 2

�1�.x1 � �1

1�,A � �1

2

4

3�,

E X A M P L E  1 Verifying Eigenvalues and Eigenvectors

Ax � 	x.

	.Ax
A,	

x?Axxn � 1
n � nA

3.4
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Similarly, to verify that is an eigenvalue of corresponding to multiply 
and

From this example, you can see that it is easy to verify whether a scalar and an 
matrix satisfy the equation Notice also that if is an eigenvector corresponding
to then so is any nonzero multiple of For instance, the column matrices

and

are also eigenvectors of corresponding to 
Provided with an matrix how can you find the eigenvalues and corresponding 

eigenvectors? The key is to write the equation in the equivalent form 

where is the identity matrix. This homogeneous system of equations has nonzero
solutions if and only if the coefficient matrix is singular; that is, if and only if 
the determinant of is zero. The equation is called the character-
istic equation of and is a polynomial equation of degree in the variable Once you
have found the eigenvalues of you can use Gaussian elimination to find the correspon-
ding eigenvectors, as shown in the next two examples.

Find the eigenvalues and corresponding eigenvectors of the matrix 

S O L U T I O N The characteristic equation of is

This yields two eigenvalues, and 
To find the corresponding eigenvectors, solve the homogeneous linear system 

For the coefficient matrix is 

5I � A � �5

0

0

5� � �1

2

4

3� � �5 � 1

�2

�4

5 � 3� � � 4

�2

�4

2�,

	1 � 5,� 0.�	I � A�x

	2 � �1.	1 � 5

� �	 � 5��	 � 1� � 0.

� 	2 � 4	 � 5

� 	2 � 4	 � 3 � 8

� �	 � 1

�2

�4

	 � 3 �
�	I � A� � ��	

0

0

	� � �1

2

4

3��
A

A � �1

2

4

3�.

E X A M P L E  2 Finding Eigenvalues and Eigenvectors

A,
	.nA,

det�	I � A� � 0�	I � A�
�	I � A�

n � nI

�	I � A�x � 0,

Ax � 	x
A,n � n

	1 � 5.A

��7

�7��2

2�
x.	,

xAx � 	x.x
n � 1	

Ax2 � �1

2

4

3� �
2

�1� � ��2

1� � �1� 2

�1� � 	2x2.

x2.
Ax2,A	2 � �1



which row reduces to 

The solutions of the homogeneous system having this coefficient matrix are all of the form 

where is a real number. So, the eigenvectors corresponding to the eigenvalue are
the nonzero scalar multiples of 

Similarly, for the corresponding coefficient matrix is

which row reduces to 

The solutions of the homogeneous system having this coefficient matrix are all of the form

where is a real number. So, the eigenvectors corresponding to the eigenvalue are
the nonzero scalar multiples of 

Find the eigenvalues and corresponding eigenvectors of the matrix 

A � �
1
1

�1

2
2

�1

�2
1
0�.

E X A M P L E  3 Finding Eigenvalues and Eigenvectors

� 2

�1�.

	2 � �1t

� 2t

�t�,

�1

0

2

0�.

�I � A � ��1

0

0

�1� � �1

2

4

3� � ��1 � 1

�2

�4

�1 � 3� � ��2

�2

�4

�4�,

	2 � �1,

�1

1�.

	1 � 5t

�t

t�,

�1

0

�1

0�.
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Most graphing utilities and 
computer software programs have
the capability of calculating the 
eigenvalues of a square matrix.
Using a graphing utility to verify
Example 2, your screen may look
like the one below. Keystrokes and
programming syntax for these 
utilities/programs applicable to
Example 2 are provided in the
Online Technology Guide,
available at college.hmco.com/
pic/larsonELA6e.

Technology
Note
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S O L U T I O N The characteristic equation of is

This yields three eigenvalues, and 
To find the corresponding eigenvectors, solve the homogeneous linear system

For the coefficient matrix is

which row reduces to

The solutions of the homogenous system having this coefficient matrix are all of the form

where is a real number. So, the eigenvectors corresponding to the eigenvalue are
the nonzero scalar multiples of

For the coefficient matrix is

� �
�1 � 1

�1
1

�2
�1 � 2

1

2
�1
�1� � �

�2
�1

1

�2
�3

1

2
�1
�1�,

�I � A � �
�1

0
0

0
�1

0

0
0

�1 � � �
1
1

�1

2
2

�1

�2
1
0�

	2 � �1,

�
�2

1
1�.

	1 � 1t

�
�2t

t
t�,

�
1
0
0

0
1
0

2
�1

0�.

� �
1 � 1

�1
1

�2
1 � 2

1

2
�1

1� � �
0

�1
1

�2
�1

1

2
�1

1�,

I � A � �
1
0
0

0
1
0

0
0
1� � �

1
1

�1

2
2

�1

�2
1
0�

	1 � 1,�	I � A�x � 0.

	3 � 3.	2 � �1,	1 � 1,

� �	2 � 1��	 � 3� � 0.� 	3 � 3	2 � 	 � 3

� �	 � 1��	2 � 2	 � 1� � 2��	 � 1� � 2��1 � 	 � 2�

� �	 � 1��	 � 2
1

�1
	� � ��2���1

1
�1

	� � 2��1
1

	 � 2
1�

� �	 � 1
�1

1

�2
	 � 2

   1

2
�1

	 ��	I � A� � ��	

0
0

0
	

0

0
0
	
� � �

1
1

�1

2
2

�1

�2
1
0��

A
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which row reduces to

The solutions of the homogeneous system having this coefficient matrix are all of the form

where is a real number. So, the eigenvectors corresponding to the eigenvalue are
the nonzero scalar multiples of

For the coefficient matrix is

which row reduces to

The solutions of the homogeneous system having this coefficient matrix are all of the form

where is a real number. So, the eigenvectors corresponding to the eigenvalue are
the nonzero scalar multiples of

Eigenvalues and eigenvectors have ample applications in mathematics, engineering,
biology, and other sciences. You will see one such application to stochastic processes at the
end of this chapter. In Chapter 7 you will study eigenvalues and their applications in more
detail and learn how to solve the rabbit population problem presented earlier.

�
�2
�1

1�.

	3 � 3t

�
�2t

�t
t�,

�
1
0
0

0
1
0

2
1
0�.

� �
3 � 1

�1
1

�2
3 � 2

1

2
�1

3� � �
2

�1
1

�2
1
1

2
�1

3�,

3I � A � �
3
0
0

0
3
0

0
0
3� � �

1
1

�1

2
2

�1

�2
1
0�

	3 � 3,

�
2

�1
1�.

	2 � �1t

�
2t

�t
t�,

�
1
0
0

0
1
0

�2
1
0�.
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ExercisesSECTION 3.4

Eigenvalues and Eigenvectors

In Exercises 1–4, verify that is an eigenvalue of and that is
a corresponding eigenvector.

1.

2.

3.

4.

In Exercises 5–14, find (a) the characteristic equation, (b) the 
eigenvalues, and (c) the corresponding eigenvectors of the matrix.

5. 6.

7. 8.

9. 10.

11. 12. 

13. 14.

In Exercises 15–24, use a graphing utility or computer software 
program with matrix capabilities to find the eigenvalues of the
matrix. Then find the corresponding eigenvectors.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

True or False? In Exercises 25 and 26, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false,
provide an example that shows the statement is not true in all cases
or cite an appropriate statement from the text.

25. (a) If is an eigenvector corresponding to a given eigenvalue 
then any multiple of is also an eigenvector corresponding
to that same 

(b) If is an eigenvalue of the matrix then is a
solution of the characteristic equation 

26. (a) The characteristic equation of the matrix 

yields eigenvalues 

(b) The matrix has irrational eigenvalues

and 	2 � 2 � �6.	1 � 2 � �6

A � � 4
�1

�2
0�

	1 � 	2 � 1.

A � �2
1

�1
0�

	I � A � 0.
	 � aA,	 � a

	.
x

	,x

�
2
0
0
0

0
2

�1
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�1
1
0
2

�1
0
0
0
��

1
0
0
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0
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0
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1
0
2
3

0
0
1
0
�

�
1
0
0
0

0
2
0

�1

2
0
1
3

3
0
3
1
��

3
0
0
0

0
�1

0
0

0
0
2
3

0
0
5
0
�

�
1
0
0

1
�2
�2

0
1
2��

1
0
0

0
�2
�2

�1
0

�2�
�
4
0
0

0
0

�2

0
�3

1��
4
0
1

�2
1
0

�2
0
1�

� 4
�3

3
�2�� 2

�1
5

�4�

�
1
0
2

0
�1

1

1
0

�1��
1
0
4

2
1
0

1
0
1�

�
2
0
0

0
3
0

1
4
1��

1
1

�3

�1
3
1

�1
1

�1�
�3

5
�1
�3���2

2
4
5�

�2
4

5
3��2

3
1
0�

�2
2

2
2��4

2
�5
�3�

x2 � �
�7

4

1
�	2 � 2,

x1 � �
1

0

0
�;	1 � 1,A � �

1

0

0

�2

1

0

1

4

2
�;

x3 � �
�1

1

�1
�	3 � 1,x2 � �

�1

0

1
�;	2 � 0,

x1 � �
1

0

1
�;	1 � 2,A � �

1

0

1

1

1

1

1

0

1
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x2 � ��1

1�	2 � 1,

x1 � �3

1�;	1 � 5,A � �4

1

3

2�;

x2 � ��1

2�	2 � �3,

x1 � �1

0�;	1 � 1,A � �1

0

2

�3�;

xiA	i
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Applications of Determinants

So far in this chapter, you have examined procedures for evaluating determinants, studied
properties of determinants, and learned how determinants are used to find eigenvalues. In
this section, you will study an explicit formula for the inverse of a nonsingular matrix and
then use this formula to derive a theorem known as Cramer’s Rule. You will then solve 
several applications of determinants using Cramer’s Rule.

The Adjoint of a Matrix

Recall from Section 3.1 that the cofactor of a matrix is defined as times the
determinant of the matrix obtained by deleting the th row and the th column of If is
a square matrix, then the matrix of cofactors of has the form

The transpose of this matrix is called the adjoint of and is denoted by adj That is,

Find the adjoint of

S O L U T I O N The cofactor is given by

Continuing this process produces the following matrix of cofactors of A.

C11 � ��1�2��2

0

1

�2� � 4.�
�1

0

1

3

�2

0

2

1

�2
�

C11

A � �
�1

0
1

3
�2

0

2
1

�2�.

E X A M P L E  1 Finding the Adjoint of a Square Matrix

adj�A� � �
C11

C12.
.
.

C1n

C21

C22.
.
.

C2n

. . .

. . .

. . .

Cn1

Cn2.
.
.

Cnn

�.

�A�.A

�
C11

C21.
.
.

Cn1

C12

C22.
.
.

Cn2

. . .

. . .

. . .

C1n

C2n.
.
.

Cnn

�.

A
AA.ji

��1�i� jACi j

3.5



The transpose of this matrix is the adjoint of That is,

The adjoint of a matrix can be used to find the inverse of as indicated in the 
next theorem.

P R O O F Begin by proving that the product of and its adjoint is equal to the product of the determi-
nant of and 

Consider the product

The entry in the th row and th column of this product is

If then this sum is simply the cofactor expansion of along its th row, which means
that the sum is the determinant of On the other hand, if then the sum is zero. 

A�adj�A�� � �
det�A�

0.
.
.
0

0
det�A�.

.

.
0

. . .

. . .

. . .

0
0.
.
.

det�A�
� � det�A�I

i � j,A.
iAi � j,

ai1Cj1 � ai2Cj2 � .  .  . � ainCjn.

ji

�
C11

C12.
.
.

C1n

C21

C22.
.
.

C2n

. . .

. . .

. . .

Cj1

Cj2.
.
.

Cjn

. . .

. . .

. . .

Cn1

Cn2.
.
.

Cnn

�.A�adj�A�� � �
a11

a21
.
.
.

ai1.
.
.

an1

a12

a22
.
.
.

ai2.
.
.

an2

. . .

. . .

. . .

. . .

a1n

a2n
.
.
.

ain.
.
.

ann

�
In.A

A

A,A

adj�A� � �
4
1
2

6
0
3

7
1
2�.

A.

� 3
�2

2
1� ���1

0
2
1�      ��1

0
3

�2�
��30 2

�2�      ��1
1

2
�2� ���1

1
3
0� � �

4
6
7

1
0
1

2
3
2�

��2
0

1
�2�      ��01 1

�2�      �01 �2
0�
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If is an invertible matrix, then

A�1 �
1

det�A�adj�A�.

n � nATHEOREM 3.10

The Inverse of a Matrix

Given by Its Adjoint



Because is invertible, det and you can write

or

Multiplying both sides of the equation by results in the equation

which yields 

If is a matrix then the adjoint of is simply

Moreover, if is invertible, then from Theorem 3.10 you have

which agrees with the result in Section 2.3.

Use the adjoint of

to find 

S O L U T I O N The determinant of this matrix is 3. Using the adjoint of (found in Example 1), you can
find the inverse of to be

You can check to see that this matrix is the inverse of by multiplying to obtain

AA�1 � �
�1

0
1

3
�2

0

2
1

�2� �
4
3
1
3
2
3

2

0

1

7
3
1
3
2
3

� � �
1
0
0

0
1
0

0
0
1�.

A

A�1 �
1

�A�adj�A� �
1
3�

4
1
2

6
0
3

7
1
2� � �

4
3
1
3
2
3

2

0

1

7
3
1
3
2
3

�.

A
A

A�1.

A � �
�1

0

1

3

�2

0

2

1

�2
�

E X A M P L E  2 Using the Adjoint of a Matrix to Find Its Inverse

A�1 �
1

�A� adj�A� �
1

ad � bc �
d

�c

�b

a�,

A

adj�A� � � d

�c

�b

a�.

AA � �a

c

b

d�,2 � 2A

1
det�A� adj�A� � A�1.A�1A� 1

det�A� adj�A�� � A�1I,

A�1

A� 1
det�A� adj�A�� � I.

1
det�A� A�adj�A�� � I

�A� � 0A
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R E M A R K : Theorem 3.10 is not particularly efficient for calculating inverses. The Gauss-
Jordan elimination method discussed in Section 2.3 is much better. Theorem 3.10 is theo-
retically useful, however, because it provides a concise formula for the inverse of a matrix.

Cramer’s Rule

Cramer’s Rule, named after Gabriel Cramer (1704–1752), is a formula that uses determi-
nants to solve a system of linear equations in variables. This rule can be applied only
to systems of linear equations that have unique solutions.

To see how Cramer’s Rule arises, look at the solution of a general system involving two
linear equations in two variables.

Multiplying the first equation by and the second by and adding the results produces

Solving for (provided that produces

In a similar way, you can solve for to obtain

Finally, recognizing that the numerators and denominators of both and can be 
represented as determinants, you have

The denominator for both and is simply the determinant of the coefficient matrix 
The determinant forming the numerator of can be obtained from by replacing its first
column by the column representing the constants of the system. The determinant forming
the numerator of can be obtained in a similar way. These two determinants are denoted
by and as follows.

and �A2� � �a11

a21

b1

b2��A1� � �b1

b2

a12

a22�
�A2�,�A1�

x2

Ax1

A.x2x1

a11a22 � a21a12 � 0.x2 �
�a11

a21

b1

b2�
�a11

a21

a12

a22�
,x1 �

�b1

b2

a12

a22�
�a11

a21

a12

a22�
,

x2x1

x1 �
a22b1 � a12b2

a11a22 � a21a12
.

x1

x2 �
a11b2 � a21b1

a11a22 � a21a12

.

a11a22 � a21a12 � 0)x2

�a11a22 � a21a12�x2 � a11b2 � a21b1.

    a11a21x1 � a11a22x2 � a11b2

�a21a11x1 � a21a12x2 � �a21b1

a11�a21

a21x1 � a22x2 � b2

a11x1 � a12x2 � b1

nn



You have and This determinant form of the solution is called

Cramer’s Rule.

Use Cramer’s Rule to solve the system of linear equations.

S O L U T I O N First find the determinant of the coefficient matrix.

Because you know the system has a unique solution, and applying Cramer’s Rule
produces

The solution is and 

Cramer’s Rule generalizes easily to systems of linear equations in variables. The
value of each variable is the quotient of two determinants. The denominator is the determi-
nant of the coefficient matrix, and the numerator is the determinant of the matrix formed by
replacing the column corresponding to the variable being solved for with the column 
representing the constants. For example, the solution for in the system

is

x3 � �A3�
�A� �

�a11

a21

a31

a12

a22

a32

b1

b2

b3�
�a11

a21

a31

a12

a22

a32

a13

a23

a33�
.

a31x1 � a32x2 � a33x3 � b3

a21x1 � a22x2 � a23x3 � b2

a11x1 � a12x2 � a13x3 � b1

x3

nn

x2 � �1.x1 � 2

x2 � �A2�
�A� �

�43 10

11�
�14

�
14

�14
� �1.

x1 � �A1�
�A� �

�10

11

�2

�5�
�14

�
�28

�14
� 2

�A� � 0,

� �14�A� � �43 �2

�5�

3x1 � 5x2 � 11

4x1 � 2x2 � 10

E X A M P L E  3 Using Cramer’s Rule

x2 � �A2�
�A� .x1 � �A1�

�A�
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P R O O F Let the system be represented by Because is nonzero, you can write 

If the entries of are then is

but the sum (in parentheses) is precisely the cofactor expansion of which means that
and the proof is complete.

Use Cramer’s Rule to solve the system of linear equations for 

S O L U T I O N The determinant of the coefficient matrix is

Because you know the solution is unique, and Cramer’s Rule can be applied to
solve for as follows.

x �
�102 2

0

�4

�3

1

4�
10

�

�1���1�5�12 2

�4�
10

�
�1���1���8�

10
�

4

5

x,
�A� � 0,

�A� � ��1

2

3

2

0

�4

�3

1

4� � 10.

 3x �  4y �  4z �  2

 2x      � z �  0

�x �  2y �  3z �  1

x.

E X A M P L E  4 Using Cramer’s Rule

xi � �Ai��A�,
Ai,

xi �
1

�A��b1C1i � b2C2i � .  .  . � bnCni�,

xib1, b2, .  .  . , bn,B

X � A�1B �
1

�A� adj�A�B � �
x1

x2.
.
.

xn

�.

�A�AX � B.
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If a system of linear equations in variables has a coefficient matrix with a nonzero 
determinant then the solution of the system is given by

. . . ,

where the th column of is the column of constants in the system of equations.Aii

xn �
det�An�
det�A�

,x2 �
det�A2�
det�A�

,x1 �
det�A1�
det�A�

,

�A�,
nnTHEOREM 3.11

Cramer’s Rule



Figure 3.1

x

(x3, y3)

(x1, y1)

(x1, 0) (x3, 0) (x2, 0)

(x2, y2)

y

R E M A R K : Try applying Cramer’s Rule in Example 4 to solve for and You will see

that the solution is and 

Area, Volume, and Equations of Lines and Planes

Determinants have many applications in analytic geometry. Several are presented here. The
first application is finding the area of a triangle in the -plane.

P R O O F Prove the case for Assume and that lies above the line segment
connecting and as shown in Figure 3.1. Consider the three trapezoids whose
vertices are

The area of the triangle is equal to the sum of the areas of the first two trapezoids less the
area of the third. So

If the vertices do not occur in the order or if the vertex is not above
the line segment connecting the other two vertices, then the formula may yield the negative
value of the area.

�x3, y3�x1 � x3 � x2

�
1
2�x1

x2

x3

y1

y2

y3

1

1

1�.
�

1
2�x1y2 � x2y3 � x3y1 � x1y3 � x2y1 � x3y2�

Area �
1
2�y1 � y3��x3 � x1� �

1
2�y3 � y2��x2 � x3� �

1
2�y1 � y2��x2 � x1�

Trapezoid 3: �x1, 0�, �x1, y1�, �x2, y2�, �x2, 0�.
Trapezoid 2: �x3, 0�, �x3, y3�, �x2, y2�, �x2, 0�
Trapezoid 1: �x1, 0�, �x1, y1�, �x3, y3�, �x3, 0�

�x2, y2�,�x1, y1�
�x3, y3�x1 � x3 � x2yi > 0.

xy

z � �
8
5.y � �

3
2

z.y

164 Chapter  3 Determinants

The area of the triangle whose vertices are and is given by

where the sign is chosen to yield a positive area.�±�

Area � ±1
2 det�

x1

x2

x3

y1

y2

y3

1

1

1
�,

�x3, y3��x1, y1�, �x2, y2�,Area of a Triangle 

in the xy-Plane
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Find the area of the triangle whose vertices are and 

S O L U T I O N It is not necessary to know the relative positions of the three vertices. Simply evaluate the
determinant

and conclude that the area of the triangle is 

Suppose the three points in Example 5 had been on the same line. What would have 
happened had you applied the area formula to three such points? The answer is that the 
determinant would have been zero. Consider, for instance, the collinear points 
and shown in Figure 3.2. The determinant that yields the area of the “triangle” having
these three points as vertices is

If three points in the -plane lie on the same line, then the determinant in the formula for
the area of a triangle turns out to be zero. This result is generalized in the test below.

The next determinant form, for an equation of the line passing through two points in the 
-plane, is derived from the test for collinear points.xy

xy

1
2�024 1

2

3

1

1

1� � 0.

�4, 3�,
�2, 2�,�0, 1�,

3
2.

1
2�124 0

2

3

1

1

1� � �
3
2

�4, 3�.�1, 0�, �2, 2�,

E X A M P L E  5 Finding the Area of a Triangle

Figure 3.2

x
1 2 3 4

2

3

(2, 2)

(4, 3)

(0, 1)

y

Three points and are collinear if and only if

det�
x1

x2

x3

y1

y2

y3

1

1

1
� � 0.

�x3, y3��x2, y2�,�x1, y1�,Test for Collinear Points 

in the xy-Plane

An equation of the line passing through the distinct points and is given by

det�
x

x1

x2

y

y1

y2

1

1� � 0.

1

�x2, y2��x1, y1�Two-Point Form of the

Equation of a Line
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Find an equation of the line passing through the points and 

S O L U T I O N Applying the determinant formula for the equation of a line passing through two points 
produces

To evaluate this determinant, expand by cofactors along the top row to obtain 

An equation of the line is 

The formula for the area of a triangle in the plane has a straightforward generalization
to three-dimensional space, which is presented without proof as follows.

Find the volume of the tetrahedron whose vertices are and
as shown in Figure 3.3 (on page 167).�2, 2, 5�,

�3, 5, 2�,�4, 0, 0�,�0, 4, 1�,

E X A M P L E  7 Finding the Volume of a Tetrahedron

x � 3y � �10.

x � 3y � 10 � 0.

x�43 1

1� � y� 2

�1

1

1� � 1� 2

�1

4

3� � 0

� x

2

�1

y

4

3

1

1

1� � 0.

��1, 3�.�2, 4�

E X A M P L E  6 Finding an Equation of the Line Passing Through Two Points

The volume of the tetrahedron whose vertices are and
is given by

where the sign is chosen to yield a positive volume.�±�

Volume � ±1
6 det�

x1

x2

x3

x4

y1

y2

y3

y4

z1

z2

z3

z4

1

1

1

1
�,

�x4, y4, z4�
�x3, y3, z3�,�x2, y2, z2�,�x1, y1, z1�,Volume of a 

Tetrahedron
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Figure 3.3

S O L U T I O N Using the determinant formula for volume produces

The volume of the tetrahedron is 12.

If four points in three-dimensional space happen to lie in the same plane, then the 
determinant in the formula for volume turns out to be zero. So, you have the test below.

This test now provides the determinant form for an equation of a plane passing through
three points in space, as shown below.

1
6�0432 4

0

5

2

1

0

2

5

1

1

1

1� �
1
6��72� � �12.

yx

(4, 0, 0)

(2, 2, 5)

(3, 5, 2)

(0, 4, 1)

5

55

z

Four points and are coplanar if and only if

det�
x1

x2

x3

x4

y1

y2

y3

y4

z1

z2

z3

z4

1

1

1

1
� � 0.

�x4, y4, z4��x3, y3, z3�,�x2, y2, z2�,�x1, y1, z1�,Test for Coplanar Points 

in Space

An equation of the plane passing through the distinct points and
is given by

det�
x
x1

x2

x3

y
y1

y2

y3

z
z1

z2

z3

1
1
1
1
� � 0.

�x3, y3, z3�
�x2, y2, z2�,�x1, y1, z1�,Three-Point Form of the

Equation of a Plane
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ExercisesSECTION 3.5

The Adjoint of a Matrix

In Exercises 1–8, find the adjoint of the matrix Then use the 
adjoint to find the inverse of if possible.

1. 2.

3. 4.

5. 6.

7. 8.

9. Prove that if and all entries of are integers, then all
entries of must also be integers.

10. Prove that if an matrix is not invertible, then
is the zero matrix.

In Exercises 11 and 12, prove the formula for a nonsingular 
matrix Assume 

11. 12.

13. Illustrate the formula provided in Exercise 11 for the matrix

14. Illustrate the formula provided in Exercise 12 for the matrix

15. Prove that if is an invertible matrix, then 
�adj�A���1.

adj�A�1� �n � nA

A � ��1

1

3

2�.

A � �1

1

0

�2�.

adj�adj�A�� � �A�n�2A�adj�A�� � �A�n�1

n 
 3.A.
n � n

A�adj�A��
An � n

�A�1�
A�A� � 1

A � �
1

1

1

0

1

1

0

1

1

0

1

1

0

1

1

1
�A � �

�1

3

0

�1

2

�1

0

1

0

4

1

1

1

1

2

2
�

A � �
0

1

�1

1

2

�1

1

3

�2
�A � �

�3

2

0

�5

4

1

�7

3

�1
�

A � �
1

0

2

2

1

2

3

�1

2
�A � �

1

0

0

0

2

�4

0

6

�12
�

A � ��1

0

0

4�A � �1

3

2

4�
A,

A.

Find an equation of the plane passing through the points and 

S O L U T I O N Using the determinant form of the equation of a plane passing through three points produces

To evaluate this determinant, subtract the fourth column from the second column to obtain

Now, expanding by cofactors along the second row yields

which produces the equation 4x � 3y � 5z � �3.

x� 2
�1

2
1� � �y � 1���1

�2
2
1� � z��1

�2
2

�1�,
� x

0

�1

�2

y � 1

0

2

�1

z

0

2

1

1

1

1

1� � 0.

� x

0

�1

�2

y

1

3

0

z

0

2

1

1

1

1

1� � 0.

��2, 0, 1�.��1, 3, 2�,�0, 1, 0�,

E X A M P L E  8 Finding an Equation of the Plane Passing Through Three Points



16. Illustrate the formula provided in Exercise 15 for the matrix

Cramer’s Rule

In Exercises 17–32, use Cramer’s Rule to solve the system of linear
equations, if possible.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

In Exercises 33–42, use a graphing utility or a computer software
program with matrix capabilities and Cramer’s Rule to solve for 
if possible.

33. 34.

35. 36.

37. 38.

39.

40.

41.

42.

43. Use Cramer’s Rule to solve the system of linear equations for
and

For what value(s) of will the system be inconsistent?

44. Verify the following system of linear equations in 
and for the triangle shown in Figure 3.4.

Then use Cramer’s Rule to solve for and use the result
to verify the Law of Cosines,

Figure 3.4

Area, Volume, and Equations of Lines and Planes

In Exercises 45–48, find the area of the triangle having the given
vertices.

45. 46.

47. 48.

In Exercises 49–52, determine whether the points are collinear.

49. 50.

51.

52. ��1, �3�, ��4, 7�, �2, �13�
��2, 5�, �0, �1�, �3, �9�

��1, 0�, �1, 1�, �3, 3��1, 2�, �3, 4�, �5, 6�

�1, 1�, ��1, 1�, �0, �2���1, 2�, �2, 2�, ��2, 4�
�1, 1�, �2, 4�, �4, 2��0, 0�, �2, 0�, �0, 3�

A B

ab

c

C

c2 � a2 � b2 � 2ab cos C.
cos C,

b cos A � a cos B      � c

c cos A      � a cos C � b

     c cos B � b cos C � a

cos Ccos B,
cos A,

k

�1 � k�x � ky � 3

kx � �1 � k�y � 1

y.x

�x1

3x1

�2x1

�

�

�

x2

5x2

3x2

�

�

5x3

2x3

3x3

�

�

x4

x4

�

�

�

�

�8

24

�6

�15

3x1

�x1

2x1

�

�

2x2

2x2

�

�

9x3

9x3

3x3

�

�

�

�

4x4

6x4

x4

8x4

�

�

�

�

35

�17

5

�4

�8x1

12x1

15x1

�

�

�

7x2

3x2

9x2

�

�

�

10x3

5x3

2x3

�

�

�

�151

86

187

3x1

�4x1

x1

�

�

�

2x2

x2

5x2

�

�

�

x3

3x3

x3

�

�

�

�29

37

�24

5x1

2x1

x1

�

�

�

3x2

2x2

7x2

�

�

�

2x3

3x3

8x3

�

�

�

2

3

�4

4x1

2x1

5x1

�

�

�

x2

2x2

2x2

�

�

�

x3

3x3

6x3

�

�

�

�5

10

1

5
6x1
4
3x1

�

�

x2
7
2x2

�

�

�20

�51
�

1
4x1
3
2x1

�

�

3
8x2
3
4x2

�

�

�2

�12

0.2x1

�x1

�

�

0.6x2

1.4x2

�

�

2.4

�8.8
�0.4x1

2x1

�

�

0.8x2

4x2

�

�

1.6

5

x1,

 5x1 � 9x2 � 17x3 � 13 5x1 � 9x2 � 17x3 � 4
 3x1 � 5x2 � 9x3 � 7 3x1 � 5x2 � 9x3 � 2
 2x1 � 3x2 � 5x3 � 4 3x1 � 3x2 � 5x3 � 1

 56x1 � 21x2 � 7x3 � 7 6x1 � 6x2      � 3
�4x1 � 2x2 � 2x3 � 2 4x1 � 4x2 � 6x3 � 11
 14x1 � 21x2 � 7x3 � �21 3x1 � 4x2 � 4x3 � 11

 8x1 � 5x2 � 2x3 � 4 5x1 � 2x2 � 2x3 � �1
 2x1 � 2x2 � 5x3 � 16 2x1 � 2x2 � 3x3 � 10
 4x1 � 2x2 � 3x3 � �2 4x1 � x2 � x3 � 1

 2x1 � 10x2 � 6 6x1 � 12x2 � 10
 3x1 � 2x2 � 1 3x1 � 6x2 � 5

0.2x1 � 0.3x2 � 0.6 2x1 � 4x2 � 5.0
�0.4x1 � 0.8x2 � 1.6�0.4x1 �  0.8x2 � 1.6

 26x1 � 12x2 � 8 12x1 � 24x2 � 21
 13x1 � 6x2 � 17 20x1 � 8x2 � 11

 30x1 � 24x2 �  23 5x1 � 3x2 � 4
 18x1 � 12x2 � 13 3x1 � 4x2 � �2

 3x1 � 2x2 � �1�x1 � x2 � 1
 2x1 � x2 � �10x1 � 2x2 � 5

A � �1

1

3

2�.
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In Exercises 53–56, find an equation of the line passing through the
given points.

53. 54.

55. 56.

In Exercises 57–60, find the volume of the tetrahedron having the
given vertices.

57.

58.

59.

60.

In Exercises 61–64, determine whether the points are coplanar.

61.

62.

63.

64.

In Exercises 65–68, find an equation of the plane passing through
the three points.

65.

66.

67.

68.

In Exercises 69–71, Cramer’s Rule has been used to solve for one
of the variables in a system of equations. Determine whether
Cramer’s Rule was used correctly to solve for the variable. If not,
identify the mistake.

69. System of Equations Solve for y

70. System of Equations Solve for z

71. System of Equations Solve for x

72. The table below shows the numbers of subscribers 
(in millions) of a cellular communications company in the
United States for the years 2003 to 2005. (Source: U.S. Census
Bureau)

Year Subscribers

2003 158.7

2004 182.1

2005 207.9

(a) Create a system of linear equations for the data to fit the
curve where is the year and 
corresponds to 2003, and is the number of subscribers.

(b) Use Cramer’s Rule to solve your system.
(c) Use a graphing utility to plot the data and graph your 

regression polynomial function.
(d) Briefly describe how well the polynomial function fits

the data.
73. The table below shows the projected values (in millions of 

dollars) of hardback college textbooks sold in the United States
for the years 2007 to 2009. (Source: U.S. Census Bureau)

Year Value

2007 4380

2008 4439

2009 4524

(a) Create a system of linear equations for the data to fit the
curve where is the year and 
corresponds to 2007, and is the value of the textbooks.

(b) Use Cramer’s Rule to solve your system.
(c) Use a graphing utility to plot the data and graph your 

regression polynomial function.
(d) Briefly describe how well the polynomial function fits

the data.

y
t � 7ty � at2 � bt � c,

y
t � 3ty � at2 � bt � c,

y

x �
� 15
�7
�3

�2
�3
�1

1
�1
�7�

�532 �2
�3
�1

1
�1
�7�

5x �

3x �

2x �

2y �

3y �

y �

z �

z �

7z �

15
�7
�3

z �
��1

6
1

�4
�3

1

�1
1

�4�
�121 �4

�3
1

�1
1

�4�
x �

2x �

x �

4y �

3y �

y �

z �

z �

4z �

�1
6
1

y �
� 1
�1

4

2
3
1

1
�2
�1�

� 1
�1

4

2
4
6

1
�2
�1�

x �

�x �

4x �

2y �

3y �

y �

z � 2
2z � 4
z � 6

�1, 2, 7�, �4, 4, 2�, �3, 3, 4�
�0, 0, 0�, �1, �1, 0�, �0, 1, �1�
�0, �1, 0�, �1, 1, 0�, �2, 1, 2�
�1, �2, 1�, ��1, �1, 7�, �2, �1, 3�

�1, 2, 7�, ��3, 6, 6�, �4, 4, 2�, �3, 3, 4�
�0, 0, �1�, �0, �1, 0�, �1, 1, 0�, �2, 1, 2�
�1, 2, 3�, ��1, 0, 1�, �0, �2, �5�, �2, 6, 11�
��4, 1, 0�, �0, 1, 2�, �4, 3, �1�, �0, 0, 1�

�0, 0, 0�, �0, 2, 0�, �3, 0, 0�, �1, 1, 4�
�3, �1, 1�, �4, �4, 4�, �1, 1, 1�, �0, 0, 1�
�1, 1, 1�, �0, 0, 0�, �2, 1, �1�, ��1, 1, 2�
�1, 0, 0�, �0, 1, 0�, �0, 0, 1�, �1, 1, 1�

�1, 4�, �3, 4���2, 3�, ��2, �4�
��4, 7�, �2, 4��0, 0�, �3, 4�
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In Exercises 1–18, find the determinant of the matrix.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15.

16.

17.

18.

In Exercises 19–22, determine which property of determinants is 
illustrated by the equation.

19.

20.

21.

22.

In Exercises 23 and 24, find (a) (b) (c) and (d) 
Then verify that 

23.

24.

In Exercises 25 and 26, find (a) (b) (c) and 
(d)

25. 26.

In Exercises 27 and 28, find (a) and (b) 

27. 28. A � �
2
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0
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1
2
1� � �121 3
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1
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4
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6
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1
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�1
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1
2
3

�2

2
1
0
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0

�1
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�
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0
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�
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�
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0
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In Exercises 29–32, find Begin by finding and then

evaluate its determinant. Verify your result by finding and then

applying the formula from Theorem 3.8,

29. 30.

31. 32.

In Exercises 33–36, solve the system of linear equations by each of
the methods shown.

(a) Gaussian elimination with back-substitution
(b) Gauss-Jordan elimination
(c) Cramer’s Rule

33. 34.

35. 36.

In Exercises 37–42, use the determinant of the coefficient matrix 
to determine whether the system of linear equations has a unique 
solution.

37. 38.

39. 40.

41.

42.

True or False? In Exercises 43 and 44, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false,
provide an example that shows the statement is not true in all cases
or cite an appropriate statement from the text.

43. (a) The cofactor of a given matrix is always a positive
number.

(b) If a square matrix is obtained from by interchanging
two rows, then 

(c) If is a square matrix of order then 

44. (a) If and are square matrices of order such that
then both and are nonsingular.

(b) If is a matrix with then 
(c) If and are square matrices of order then

45. If is a matrix such that then what is the value
of

46. If is a matrix such that then what is the
value of 

47. Prove the property below.

48. Illustrate the property shown in Exercise 47 for the following.

49. Find the determinant of the matrix.

50. Show that

In Exercises 51–54, find the eigenvalues and corresponding 
eigenvectors of the matrix.

51. 52.

53. 54. �
�3

2
�1

0
1
0

4
1
1��

1

�2

0

0

3

0

0

0

4
�

�5
4

2
1���3

5
10
2�

�a111 1
a
1
1

1
1
a
1

1
1
1
a� � �a � 3��a � 1�3.

�
1 � n

1.
.
.
1

1
1 � n.

.

.
1

1
1.
.
.
1

. . .

. . .

. . .

1
1.
.
.

1 � n
�

n � n

c33 � 1c32 � 0,c31 � 3,A � �
1

1
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0
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�1
�,

�a11

a21

a31

a12

a22

a32

a13

a23

a33� � �a11

a21

c31

a12

a22
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a13

a23
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� a11

a21

a31 � c31

a12

a22

a32 � c32

a13

a23

a33 � c33� �

�2A�?
�A� � �1,4 � 4A

�4A�?
�A� � 2,3 � 3A

det�A� � det�B�.det�A � B� �
n,BA

det�2A� � 10.det�A� � 5,3 � 3A

BAdet�AB� � �1,
nBA

�det�AT �.det�A� �n,A
det�B� � det�A�.

AB

C22

 2x1      � x3          � 0
 2x1 � 4x2          � 2x5 � 0

         3x3 � 8x4 � 6x5 � 16
 4x1 � 2x2 � 5x3          � 3

x1 � 5x2 � 3x3          � 14
 3x1 � x2 � 3x3 � �6
 2x1 � 5x2 � 15x3 � 4

x1 � 2x2 � 6x3 � 1
 8x �  6y      � �2 5x �  4y �  2z �  4
 2x �  3y �  3z �  22 2x �  3y � z � �2
 2x �  3y � z �  10�x � y �  2z �  1
 3x �  7y �  1�x � y � �22
 2x �  5y �  2 5x �  4y �  2
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�
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�
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�
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�
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�
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�
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Calculus In Exercises 55–58, find the Jacobians of the functions.
If and are continuous functions of and with continu-
ous first partial derivatives, the Jacobians and are
defined as

and

55.

56.

57.

58.

59. Writing Compare the various methods for calculating the
determinant of a matrix. Which method requires the least
amount of computation? Which method do you prefer if the
matrix has very few zeros?

60. Prove that if and and are of the same size,
then there exists a matrix such that and 

The Adjoint of a Matrix

In Exercises 61 and 62, find the adjoint of the matrix.

61. 62.

Cramer’s Rule

In Exercises 63–66, use the determinant of the coefficient matrix 
to determine whether the system of linear equations has a unique 
solution. If it does, use Cramer’s Rule to find the solution.

63. 64.

65. 66.

67. The table shows the projected populations (in millions) of the
United States for the years 2010, 2020, and 2030. (Source:
U.S. Census Bureau)

Year Population

2010 308.9

2020 335.8

2030 363.6

(a) Create a system of linear equations for the data to fit the
curve where is the year and 
corresponds to 2010, and is the population.

(b) Use Cramer’s Rule to solve your system.
(c) Use a graphing utility to plot the data and graph your 

regression polynomial function.
(d) Briefly describe how well the polynomial function fits

the data.

68. The table shows the projected amounts (in dollars) spent per
person per year on basic cable and satellite television in the
United States for the years 2007 through 2009. (Source: U.S.
Census Bureau)

Year Amount

2007 296

2008 308

2009 321

(a) Create a system of linear equations for the data to fit the
curve where is the year and 
corresponds to 2007, and is the number of subscribers.

(b) Use Cramer’s Rule to solve your system.
(c) Use a graphing utility to plot the data and graph your 

regression polynomial function.
(d) Briefly describe how well the polynomial function fits

the data.

Area, Volume, and Equations of Lines and Planes

In Exercises 69 and 70, use a determinant to find the area of the 
triangle with the given vertices.

69. 70. ��4, 0�, �4, 0�, �0, 6��1, 0�, �5, 0�, �5, 8�

y
t � 7ty � at2 � bt � c,

y
t � 10ty � at2 � bt � c,

 8x1 � 2x2 � 4x3 � 6 12x1 � 9x2 � x3 � 2
 4x1 � 2x2 � 8x3 � 1 6x1 � 6x2 � 12x3 � 13
 4x1 � 4x2 � 4x3 � 5 2x1 � 3x2 � 3x3 � 3
 3x � y � �1.3 0.4x �  0.5y � �0.01
 2x � y �  0.3 0.2x �  0.1y �  0.07

�
1

0

0

�1

1

0

1

2

�1
�� 0

�2

1

1�

A � CB.�C� � 1C
BA�A� � �B� � 0

z � u � v � wy � 2uv,x � u � v � w,

z � 2uvwy �
1
2 �u � v�,x �

1
2 �u � v�,

y � cu � dvx � au � bv,

y �
1
2 �v � u�x �

1
2�v � u�,

J�u, v, w� � ��x
�u

�y
�u

�z
�u

�x
�v

�y
�v

�z
�v

�x
�w

�y
�w

�z
�w�.J�u, v� � ��x

�u

�y
�u

�x
�v

�y
�v �

J�u, v, w�J�u, v�
wu, v,zx, y,
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In Exercises 71 and 72, use the determinant to find an equation of
the line passing through the given points.

71. 72.

In Exercises 73 and 74, find an equation of the plane passing
through the given points.

73.

74.

True or False? In Exercises 75 and 76, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false,
provide an example that shows the statement is not true in all cases
or cite an appropriate statement from the text.

75. (a) In Cramer’s Rule, the value of is the quotient of two 
determinants, where the numerator is the determinant of
the coefficient matrix.

(b) Three points and are collinear if
the determinant of the matrix that has the coordinates as
entries in the first two columns and 1’s as entries in the
third column is nonzero.

76. (a) If is a square matrix, then the matrix of cofactors of is
called the adjoint of 

(b) In Cramer’s Rule, the denominator is the determinant of
the matrix formed by replacing the column corresponding
to the variable being solved for with the column represent-
ing the constants.

A.
AA

�x3, y3��x2, y2�,�x1, y1�,

xi

�0, 0, 0�, �2, �1, 1�, ��3, 2, 5�
�0, 0, 0�, �1, 0, 3�, �0, 3, 4�

�2, 5�, �6, �1���4, 0�, �4, 4�

1 Eigenvalues and Stochastic Matrices

In Section 2.5, you studied a consumer preference model for competing cable 
television companies. The matrix representing the transition probabilities was

When provided with the initial state matrix you observed that the number of 
subscribers after 1 year is the product 

After 10 years, the number of subscribers had nearly reached a steady state.

That is, for large values of the product approaches a limit 

From your knowledge of eigenvalues, this means that 1 is an eigenvalue of with
corresponding eigenvector 

1. Use a computer or calculator to show that the eigenvalues and eigenvectors
of are as follows.P

X.
P

PX � X.X,PnXn,

P10X � �
33,287

47,147

19,566
�X � �

15,000

20,000

65,000
�

PX � �
0.70

0.20

0.10

0.15

0.80

0.05

0.15

0.15

0.70
� �

15,000

20,000

65,000
� � �

23,250

28,750

48,000
�X � �

15,000

20,000

65,000
�

PX.
X,

P � �
0.70

0.20

0.10

0.15

0.80

0.05

0.15

0.15

0.70
�.



Eigenvalues:

Eigenvectors:

2. Let be the matrix whose columns are the eigenvectors of Show that
is a diagonal matrix What are the entries along the diagonal of 

3. Show that Use this result to calculate and
verify the result from Section 2.5.

2 The Cayley-Hamilton Theorem
The characteristic polynomial of a square matrix is given by the determinant

If the order of is then the characteristic polynomial is an 
th-degree polynomial in the variable 

The Cayley-Hamilton Theorem asserts that every square matrix satisfies its 
characteristic polynomial. That is, for the matrix 

Note that this is a matrix equation. The zero on the right is the zero matrix,
and the coefficient has been multiplied by the identity matrix 

1. Verify the Cayley-Hamilton Theorem for the matrix

2. Verify the Cayley-Hamilton Theorem for the matrix

3. Prove the Cayley-Hamilton Theorem for an arbitrary matrix A,

4. If is nonsingular and 
show that

A�1 �
1

c0

��An�1 � cn�1A
n�2 � .  .  . � c2A � c1I�.

p�A� � An � cn�1A
n�1 � .  .  . � c1A � c0I � O,A

A � �a

c

b

d�.

2 � 2

�
6

�2

2

0

1

0

4

3

4
�.

� 2

�2

�2

�1�.

I.n � nc0

n � n

p�A� � An � cn�1A
n�1 � . . . � c2A2 � c1A � c0 I � O.

A,n � n

p�	� � det�	I � A� � 	n � cn�1	
n�1 � . . . � c2	

2 � c1	 � c0

	.n
p�	�n,A�	I � A�.

A

P10XPn � �SDS�1�n � SDnS�1.
D?D.S�1PS

P.S

x3 � �
�2

1

1
�x2 � �

0

�1

1
�,x1 � �

7

10

4
�,

	3 � 0.55	2 � 0.65,	1 � 1,
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Use this result to find the inverse of the matrix

5. The Cayley-Hamilton Theorem can be used to calculate powers of the
square matrix For example, the characteristic polynomial of the matrix

is

The Cayley-Hamilton Theorem implies that

or

So, is shown in terms of lower powers of 

Similarly, multiplying both sides of the equation by gives
in terms of lower powers of Moreover, you can write in terms of

just and after replacing with as follows.

(a) Use this method to find and (First write as a linear combina-
tion of and —that is, as a sum of scalar multiples of and )

(b) Find for the matrix

(Hint: Find the characteristic polynomial of then use the Cayley-
Hamilton Theorem to express as a linear combination of and

Inductively express as a linear combination of and )I.A,A2,A5I.
A,A2,A3

A,

�
0
2
1

0
2
0

1
�1

2�.

A5
I.AIA

A4A4.A3

A3 � 2A2 � A � 2�2A � I� � A � 5A � 2I

2A � I,A2IA
A3A.A3

AA2 � 2A � I

A2 � 2A � I � 2�3

2

�1

�1� � �1

0

0

1� � �7

4

�2

�1�
A.A2

A2 � 2A � I.A2 � 2A � I � O

p�	� � 	2 � 2	 � 1.

A � �3

2

�1

�1�
A.

An

A � �1

3

2

5�.



Cumulative TestCHAPTERS 1–3
Take this test as you would take a test in class. When you are finished, check your work against the 
answers provided in the back of the book.

1. Solve the system of linear equations.

2. Find the solution set of the system of linear equations represented by the augmented
matrix.

3. Solve the homogeneous linear system corresponding to the coefficient matrix below.

4. Find conditions on such that the system is consistent.

5. A manufacturer produces three different models of a product that are shipped to two 
different warehouses. The number of units of model that are shipped to warehouse 
is represented by in the matrix

The prices of the three models in dollars per unit are represented by the matrix

Find the product and state what the entries of the product represent.

6. Solve for and in the matrix equation if

and

7. Find for the matrix

8. Find the inverses (if they exist) of the matrices.

(a) (b)

9. Find the inverse of the matrix

�
1

�3

0

1

6

1

0

5

0
�.

��2

3

3

6���2

4

3

6�

A � �1

4

2

5

3

6�.

ATA

B � �x

y

2

5�.A � ��1

2

1

3�
2A � B � Iyx

BA

B � �12.50 9.00 21.50�.

A � �
200

600

250

300

350

400
�.

aij

ji

�x � y � z � k
�x � y � z �  2

x �  2y � z �  3
k

�
1

0

�2

2

0

�4

1

2

1

�2

�4

�2
�

�
0

1

1

1

0

2

�1

2

0

0

�1

�1

2

0

4
�

x1 � x2 � x3 � �3
 2x1 � 3x2 � 2x3 � 9
 4x1 � x2 � 3x3 � 11
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10. Factor the matrix

into a product of elementary matrices.

11. Find the determinant of the matrix

12. Find each determinant if

and

(a) (b) (c) (d)
13. If and is of order 4, then find each determinant.

(a) (b) (c) (d)

14. Use the adjoint of 

to find 

15. Let and be the column matrices below.

Find constants and such that 

16. Use linear equations to find the parabola that passes through the
points and Sketch the points and the parabola.

17. Use a determinant to find an equation of the line passing through the points and

18. Use a determinant to find the area of the triangle with vertices and 

19. Find the eigenvalues and corresponding eigenvectors of the matrix below.

20. Let and be three nonzero matrices such that Does it follow
that Prove your answer.

21. For any matrix prove that the matrix is symmetric.

22. Prove that if the matrix has an inverse, then the inverse is unique.

23. (a) Define row equivalence of matrices.

(b) Prove that if is row-equivalent to and is row-equivalent to then is 
row-equivalent to C.

AC,BBA

A

BTBB,

A � B?
AC � BC.n � nCA, B,

�
1
1

�1

4
2

�2

6
2

�4�
�7, 9�.�3, 1�, �7, 1�,

�5, �2�.
�1, 4�

�2, 6�.�0, 1�,��1, 2�,
y � ax2 � bx � c

ax1 � bx2 � cx3 � b.ca, b,

b � �
1

2

3
�x3 � �

0

1

1
�x2 � �

1

1

0
�x1 � �

1

0

1
�

bx3,x2,x1,

A�1.

A � �
1
0
1

�5
�2

0

�1
1
2�

�A3��A�1��AT��3A�
A�A� � 7

�A�1��AB��B��A�
B � ��2

0

1

5�.A � �1

4

�3

2�

�
5
1
1
1

1
0
1
0

2
�2

6
0

4
�3

1
�4

�.

A � �2

1

�4

0�
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4 Vector Spaces

4.1 Vectors in Rn

4.2 Vector Spaces
4.3 Subspaces of Vector

Spaces
4.4 Spanning Sets and

Linear Independence
4.5 Basis and Dimension
4.6 Rank of a Matrix and

Systems of Linear
Equations

4.7 Coordinates and Change
of Basis

4.8 Applications of Vector
Spaces

CHAPTER OBJECTIVES

■ Perform, recognize, and utilize vector operations on vectors in 

■ Determine whether a set of vectors with two operations is a vector space and recognize 
standard examples of vector spaces, such as: 

■ Determine whether a subset of a vector space is a subspace.

■ Write a linear combination of a finite set of vectors in 

■ Determine whether a set of vectors in a vector space is a spanning set of .

■ Determine whether a finite set of vectors in a vector space is linearly independent.

■ Recognize standard bases in the vector spaces and 

■ Determine if a vector space is finite dimensional or infinite dimensional.

■ Find the dimension of a subspace of and 

■ Find a basis and dimension for the column or row space and a basis for the nullspace (nullity)
of a matrix.

■ Find a general solution of a consistent system in the form 

■ Find in and 

■ Find the transition matrix from the basis to the basis in 

■ Find for a vector in 

■ Determine whether a function is a solution of a differential equation and find the general
solution of a given differential equation.

■ Find the Wronskian for a set of functions and test a set of solutions for linear independence.

■ Identify and sketch the graph of a conic or degenerate conic section and perform a rotation 
of axes.

Rn.x�x�B�

Rn.B�B

Pn.Rn, Mm,n,�x�B

xp � xh.Ax � b

Pn.Rn, Mm,n,

Pn.Rn, Mm,n,

V

VVS

V.

VW

Mm,n, Pn, P, C���,��, C �a, b�.Rn,

Rn.

Vectors in Rn

In physics and engineering, a vector is characterized by two quantities (length and 
direction) and is represented by a directed line segment. In this chapter you will see that
these are only two special types of vectors. Their geometric representations can help you
understand the more general definition of a vector.

This section begins with a short review of vectors in the plane, which is the way 
vectors were developed historically.

4.1
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Vectors in the Plane

A vector in the plane is represented geometrically by a directed line segment whose
initial point is the origin and whose terminal point is the point as shown in Figure
4.1. This vector is represented by the same ordered pair used to represent its terminal
point. That is,

The coordinates and are called the components of the vector Two vectors in the
plane and are equal if and only if and 

R E M A R K : The term vector derives from the Latin word vectus, meaning “to carry.” The
idea is that if you were to carry something from the origin to the point the trip could
be represented by the directed line segment from to Vectors are represented
by lowercase letters set in boldface type (such as and ).

Use a directed line segment to represent each vector in the plane.
(a) (b)

S O L U T I O N To represent each vector, draw a directed line segment from the origin to the indicated 
terminal point, as shown in Figure 4.2.

(a) (b)
Figure 4.2

The first basic vector operation is vector addition. To add two vectors in the plane, add
their corresponding components. That is, the sum of and is the vector

Geometrically, the sum of two vectors in the plane is represented as the diagonal of a 
parallelogram having and as its adjacent sides, as shown in Figure 4.3.

In the next example, one of the vectors you will add is the vector called the zero
vector. The zero vector is denoted by 0.

�0, 0�,
vu

u � v � �u1, u2� � �v1, v2� � �u1 � v1, u2 � v2�.

vu

x

1

1−1−2

2

3

v = (−1, 2)

y

x

1

1 2 3

2

3

u = (2, 3)

y

v � ��1, 2�u � �2, 3�

E X A M P L E  1 Vectors in the Plane

xu, v, w,
�x1, x2�.�0, 0�

�x1, x2�,

u2 � v2.u1 � v1v � �v1, v2�u � �u1, u2�
x.x2x1

x � �x1, x2�.

�x1, x2�,

Figure 4.1

x

x

Terminal
point

Initial point

(x1, x2)

y

Figure 4.3

Vector Addition

x

u2

v2

v1 u1

u
u + v

v

(u1 + v1, u2 + v2)

(v1, v2)

(u1, u2)

y
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Find the sum of the vectors.
(a) (b) (c)

S O L U T I O N (a)
(b)
(c)
Figure 4.4 gives the graphical representation of each sum.
(a) (b) (c)

Figure 4.4

The second basic vector operation is called scalar multiplication. To multiply a vector
by a scalar multiply each of the components of by That is,

Recall from Chapter 2 that the word scalar is used to mean a real number. Historically, this
usage arose from the fact that multiplying a vector by a real number changes the “scale” of
the vector. For instance, if a vector is multiplied by 2, the resulting vector is a vector
having the same direction as and twice the length. In general, for a scalar the vector 
will be times as long as If is positive, then and have the same direction, and
if is negative, then and have opposite directions. This is shown in Figure 4.5.

The product of a vector and the scalar is denoted by

The vector is called the negative of The difference of and is defined as

and you can say is subtracted from

Provided with and find each vector.

(a) (b) (c) 1
2v � uu � v1

2v

u � �3, 4�,v � ��2, 5�

E X A M P L E  3 Operations with Vectors in the Plane

u.v

u � v � u � ��v�,

vuv.�v

�v � ��1�v.

�1v
vcvc

vcvcv.�c�
cvc,v

2vv

cv � c�v1, v2� � �cv1, cv2�.

c.vc,v

−1−2−3 2 3 4

−2

−3

−4

1

2

3

4

x

y

u + v = u

v = (0, 0)

(2, 1)

−1−2−3 2 3 4

−2

−3

−4

1

2

3

4

x

y

u

u + v = (0, 0)v
(−3, 2)

(3, −2)

−1−2−3 2 3 4

−2

−3
−4

1

2

3

4

x

y

u

u + v

v

(1, 4)

(3, 2)

(2, −2)

u � v � �2, 1� � �0, 0� � �2, 1�
u � v � �3, �2� � ��3, 2� � �0, 0�
u � v � �1, 4� � �2, �2� � �3, 2�

v � �0, 0�u � �2, 1�,v � ��3, 2�u � �3, �2�,v � �2, �2�u � �1, 4�,

E X A M P L E  2 Adding Two Vectors in the Plane

Simulation
Explore this concept further with an
electronic simulation available on
the website college.hmco.com/
pic/larsonELA6e. Please visit this
website for keystrokes and program-
ming syntax for specific graphing
utilities and computer software 
programs applicable to Example 2.
Similar exercises and projects are
also available on this website.

Figure 4.5

x

v

cv

c > 0

y

x

v

cv

c < 0

y



S O L U T I O N (a) Because you have

(b) By the definition of vector subtraction, you have

(c) Using the result of part(a), you have

Figure 4.6 gives a graphical representation of these vector operations.

Vector addition and scalar multiplication share many properties with matrix addition and
scalar multiplication. The ten properties listed in the next theorem play a fundamental role
in linear algebra. In fact, in the next section you will see that it is precisely these ten prop-
erties that have been abstracted from vectors in the plane to help define the general notion
of a vector space.

P R O O F The proof of each property is a straightforward application of the definition of vector 
addition and scalar multiplication combined with the corresponding properties of addition
and multiplication of real numbers. For instance, to prove the associative property of vector 
addition, you can write

� u � �v � w�.
� �u1, u2� � ��v1, v2� � �w1, w2��
� �u1, u2� � �v1 � w1, v2 � w2�
� �u1 � �v1 � w1�, u2 � �v2 � w2��
� ��u1 � v1� � w1, �u2 � v2� � w2�
� �u1 � v1, u2 � v2� � �w1, w2�

�u � v� � w � ��u1, u2� � �v1, v2�� � �w1, w2�

1
2v � u � ��1, 5

2� � �3, 4� � ��1 � 3, 5
2 � 4� � �2, 13

2 �.

u � v � �3 � ��2�, 4 � 5� � �5, �1�.

1
2v � �1

2��2�, 1
2�5�� � ��1, 5

2�.
v � ��2, 5�,
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Let and be vectors in the plane, and let and be scalars.

1. is a vector in the plane. Closure under addition

2. Commutative property of addition

3. Associative property of addition

4. Additive identity property

5. Additive inverse property

6. is a vector in the plane. Closure under scalar multiplication

7. Distributive property

8. Distributive property

9. Associative property of multiplication

10. Multiplicative identity property1�u� � u
c�du� � �cd�u
�c � d�u � cu � du
c�u � v� � cu � cv
cu
u � ��u� � 0
u � 0 � u
�u � v� � w � u � �v � w�
u � v � v � u
u � v

dcwu, v,THEOREM 4.1

Properties of Vector

Addition and Scalar

Multiplication in 

the Plane

Figure 4.6

v
(−2, 5)

−2−3 1 6

−2

−1

4

5

6

7

(5, −1)

u

v (3, 4)

2, 13
2( (

−1, )) 5
2

v1
2

u�v

u+
1
2

x

y
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Similarly, to prove the right distributive property of scalar multiplication over addition, 

The proofs of the other eight properties are left as an exercise. (See Exercise 61.)

Vectors in Rn

The discussion of vectors in the plane can now be extended to a discussion of vectors in 
-space. A vector in -space is represented by an ordered -tuple. For instance, an ordered

triple has the form an ordered quadruple has the form and a 
general ordered -tuple has the form The set of all -tuples is called 

-space and is denoted by 

The practice of using an ordered pair to represent either a point or a vector in 
continues in That is, an -tuple can be viewed as a point in with
the ’s as its coordinates or as a vector

Vector in 

with the ’s as its components. As with vectors in the plane, two vectors in are equal if
and only if corresponding components are equal. [In the case of or the 
familiar or notation is used occasionally.]

The sum of two vectors in and the scalar multiple of a vector in are called the 
standard operations in and are defined as follows.Rn

RnRn
�x, y, z��x, y�

n � 3,n � 2
Rnxi

Rnx � �x1, x2, x3, .  .  . , xn�

xi

Rn�x1, x2, x3, .  .  . , xn�nRn.
R2

Rn � n-space � set of all ordered n-tuples of real numbers

.

.

.

R4 � 4-space � set of all ordered quadruples of real numbers

R3 � 3-space � set of all ordered triples of real numbers

R2 � 2-space � set of all ordered pairs of real numbers

R1 � 1-space � set of all real numbers

Rn.n
n�x1, x2, x3, .  .  . , xn�.n

�x1, x2, x3, x4�,�x1, x2, x3�,
nnn

� cu � du.

� c�u1, u2� � d�u1, u2�� �cu1, cu2� � �du1, du2�
� �cu1 � du1, cu2 � du2�� ��c � d�u1, �c � d�u2�

�c � d�u � �c � d��u1, u2�

H I S T O R I C A L  N O T E

William Rowan Hamilton

(1805–1865)

is considered to be Ireland’s most
famous mathematician. His work
led to the development of 
modern vector notation. We still
use his i, j, and k notation today. 
To read about his work, visit 
college.hmco.com/pic/larsonELA6e.

R E M A R K : Note that the 
associative property of vector
addition allows you to write
such expressions as 
without ambiguity, because you
obtain the same vector sum 
regardless of which addition is
performed first.

u � v � w

Let and be vectors in and let be
a real number. Then the sum of and is defined as the vector

and the scalar multiple of by is defined as the vector

cu � �cu1, cu2, cu3, .  .  . , cun�.

cu

u � v � �u1 � v1, u2 � v2, u3 � v3, .  .  . , un � vn�,

vu
cRnv � �v1, v2, v3, .  .  . , vn�u � �u1, u2, u3, .  .  . , un�Definitions of Vector

Addition and Scalar

Multiplication in Rn



Figure 4.7

2 2

4 4

4

6
u + v

v
2u

(−2, 0, 2)

(1, −1, 6)

(2, −1, 5)

(4, −1, 3)
u

x y

z

v −2u
(−1, 0, 1)

As with 2-space, the negative of a vector in is defined as

and the difference of two vectors in is defined as

The zero vector in is denoted by 

Provided that and in find each vector.

(a) (b) (c)

S O L U T I O N (a) To add two vectors, add their corresponding components, as follows.

(b) To multiply a vector by a scalar, multiply each component by the scalar, as follows.

(c) Using the result of part (b), you have

Figure 4.7 gives a graphical representation of these vector operations in R3.

v � 2u � �2, �1, 5� � ��2, 0, 2� � �4, �1, 3�.

2u � 2��1, 0, 1� � ��2, 0, 2�

u � v � ��1, 0, 1� � �2, �1, 5� � �1, �1, 6�

v � 2u2uu � v

R3,v � �2, �1, 5�u � ��1, 0, 1�

E X A M P L E  4 Vector Operations in R3

0 � �0, 0, .  .  . , 0�.Rn

u � v � �u1 � v1, u2 � v2, u3 � v3, .  .  . , un � vn�.

Rn

�u � ��u1, �u2, �u3, .  .  . , �un�

Rn

184 Chapter  4 Vector  Spaces

Some graphing utilities and computer software programs will perform vector addition and scalar
multiplication. Using a graphing utility, you may verify Example 4 as follows. Keystrokes and 
programming syntax for these utilities/programs applicable to Example 4 are provided in the 
Online Technology Guide, available at college.hmco.com/pic/larsonELA6e.

Technology
Note



Sect ion 4 .1 Vectors  in  185R n

The following properties of vector addition and scalar multiplication for vectors in are
the same as those listed in Theorem 4.1 for vectors in the plane. Their proofs, based on the
definitions of vector addition and scalar multiplication in are left as an exercise. (See
Exercise 62.)

Using the ten properties from Theorem 4.2, you can perform algebraic manipulations with
vectors in in much the same way as you do with real numbers, as demonstrated in the
next example.

Let and be vectors in Solve 
for
(a) (b)

S O L U T I O N (a) Using the properties listed in Theorem 4.2, you have

(b) Begin by solving for as follows.

x �
1
2�2u � v � 3w�

 2x � 2u � v � 3w

 3x � x � 2u � v � 3w

 3x � 3w � 2u � v � x

 3�x � w� � 2u � v � x

x

� �18, �11, 9, �8�.
� �4 � 4 � 18, �2 � 3 � 6, 10 � 1 � 0, 0 � 1 � 9�
� �4, �2, 10, 0� � �4, 3, 1, �1� � ��18, 6, 0, 9�
� 2u � v � 3w

x � 2u � �v � 3w�

3�x � w� � 2u � v � xx � 2u � �v � 3w�
x.

R4.w � ��6, 2, 0, 3�v � �4, 3, 1, �1�,u � �2, �1, 5, 0�,

E X A M P L E  5 Vector Operations in R 4

Rn

Rn,

Rn

Let and be vectors in and let and be scalars.

1. is a vector in  Closure under addition

2. Commutative property of addition

3. Associative property addition

4. Additive identity property

5. Additive inverse property

6. is a vector in  Closure under scalar multiplication

7. Distributive property

8. Distributive property

9. Associative property of multiplication

10. Multiplicative identity property1�u� � u
c�du� � �cd�u
�c � d�u � cu � du
c�u � v� � cu � cv

Rn.cu
u � ��u� � 0
u � 0 � u
�u � v� � w � u � �v � w�
u � v � v � u

Rn.u � v

dcRn,wu, v,THEOREM 4.2

Properties of Vector

Addition and Scalar

Multiplication in Rn
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Using the result of part (a) produces

The zero vector 0 in is called the additive identity in Similarly, the vector is
called the additive inverse of The theorem below summarizes several important proper-
ties of the additive identity and additive inverse in 

P R O O F To prove the first property, assume Then the steps below are justified by
Theorem 4.2.

Given

Add to both sides.

Additive inverse

Associative property

Commutative property

Associative property

Additive inverse

Commutative property

Additive identity

As you gain experience in reading and writing proofs involving vector algebra, you will not
need to list this many steps. For now, however, it’s a good idea. The proofs of the other five
properties are left as exercises. (See Exercises 63–67.)

R E M A R K : In Properties 3 and 5 of Theorem 4.3, note that two different zeros are used,
the scalar 0 and the vector 0.

The next example illustrates an important type of problem in linear algebra—writing one
vector as the sum of scalar multiples of other vectors and That is,

The vector is called a linear combination of the vectors and vn.v1, v2, .  .  . ,x

x � c1v1 � c2v2 � .  .  . � cnvn.

vn.v1, v2, .  .  . ,x

u � 0
u � 0 � 0
0 � u � 0

�v � ��v�� � u � 0
v � ���v� � u� � 0
v � �u � ��v�� � 0
�v � u� � ��v� � 0

�v�v � u� � ��v� � v � ��v�
v � u � v

v � u � v.

Rn.
v.

�vRn.Rn

� �9, �
11
2 , 9

2, �4�.
x �

1
2�18, �11, 9, �8�

Let be a vector in and let be a scalar. Then the following properties are true.

1. The additive identity is unique. That is, if then 
2. The additive inverse of is unique. That is, if then 
3.
4.
5. If then or 
6. ���v� � v

v � 0.c � 0cv � 0,
c0 � 0
0v � 0

u � �v.v � u � 0,v
u � 0.v � u � v,

cRn,vTHEOREM 4.3

Properties of 

Additive Identity and

Additive Inverse
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Provided that and in 
find scalars and such that

S O L U T I O N By writing
x u v w

you can equate corresponding components so that they form the system of three linear
equations in and shown below.

Equation from first component

Equation from second component

Equation from third component

Using the techniques of Chapter 1, solve for and to get

and

can be written as a linear combination of and 

Try using vector addition and scalar multiplication to check this result.

You will often find it useful to represent a vector in as either a
row matrix (row vector),

or an column matrix (column vector),

u � �
u1

u2.
.
.

un

�.

n � 1

u � �u1 u2
. . . un�,

1 � n
Rnu � �u1, u2, .  .  . , un�

x � u � 2v � w

w.u, v,x

c � �1.b � �2,a � 1,

ca, b,

 4a �  2b �  2c � �2

a � b � c � �2

   �b �  3c � �1

ca, b,

� ��b � 3c, a � b � c, 4a � 2b � 2c�,
��1, �2, �2� � a�0, 1, 4� � b��1, 1, 2� � c�3, 1, 2�

x � au � bv � cw.

ca, b,
R3,w � �3, 1, 2�v � ��1, 1, 2�,u � �0, 1, 4�,x � ��1, �2, �2�,

E X A M P L E  6 Writing a Vector as a Linear Combination of Other Vectors

Is the vector a linear combination of the vectors and ( )? Graph these vectors
in the plane and explain your answer geometrically. Similarly, determine whether the vector 
is a linear combination of the vectors and What is the geometric significance of these 
two questions? Is every vector in a linear combination of the vectors and Give a
geometric explanation for your answer.

�2, 1�?�1, 2�R2
�2, 1�.�1, 2�

�1, 1�
�2, �4�1, 2��1, 1�Discovery
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This approach is valid because the matrix operations of addition and scalar multiplication
give the same results as the corresponding vector operations. That is, the matrix sums

and

yield the same results as the vector operation of addition,

The same argument applies to scalar multiplication. The only difference in the three notations
for vectors is how the components are displayed; the underlying operations are the same.

u � v � �u1, u2, .  .  . , un� � �v1, v2, .  .  . , vn� � �u1 � v1, u2 � v2, .  .  . , un � vn�.

u � v � �
u1

u2.
.
.

un

� � �
v1

v2.
.
.

vn

� � �
u1 � v1

u2 � v2.
.
.

un � vn

�
� �u1 � v1 u2 � v2

.  .  . un � vn�
u � v � �u1 u2

.  .  . un� � �v1 v2
.  .  . vn�

SECTION 4.1

In Exercises 1 and 2, find the component form of the vector shown.

1.

2.

In Exercises 3–6, use a directed line segment to represent the vector.

3. 4.

5. 6.

In Exercises 7–10, find the sum of the vectors and illustrate the 
indicated vector operations geometrically.

7. 8.

9.

10.

In Exercises 11–16, find the vector and illustrate the indicated vector
operations geometrically, where and 

11. 12. 13.

14. 15. 16.

17. Given the vector sketch (a) (b) and (c) 

18. Given the vector sketch (a) (b) and (c)

In Exercises 19–24, let and 

19. Find and 20. Find

21. Find 22. Find

23. Find z, where 

24. Find z, where 2u � v � w � 3z � 0.

2z � 3u � w.

5u � 3v �
1
2w.2u � 4v � w.

u � v � 2w.v � u.u � v

w � �4, 0, �4�.
v � �2, 2, �1�,u � �1, 2, 3�,

0v.�
1
2v,4v,v � �3, �2�,

1
2v.�3v,2v,v � �2, 1�,

v � u � 2wv �
1
2�3u � w�v � �u � w

v � u � 2wv � u � wv �
3
2u

w � ��3, �2�.u � ��2, 3�
v

u � �4, �2�, v � ��2, �3�
u � �2, �3�, v � ��3, �1�

u � ��1, 4�, v � �4, �3�u � �1, 3), v � �2, �2�

v � ��2, �5�u � � �3, �4�

v � ��2, 3�u � �2, �4�

x

v

y

−4 −2−6

2

4

x

v

y

2 4

2

4
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25. Given the vector sketch (a) (b) and (c) 

26. Given the vector sketch (a) (b) and (c) 

27. Which of the vectors below are scalar multiples of

(a)

(b)

(c)

28. Which of the vectors below are scalar multiples of 

(a)

(b)

(c)

In Exercises 29–32, find (a) (b) and (c) 

29.

30.

31.

32.

In Exercises 33 and 34, use a graphing utility with matrix capabili-
ties to find the following, where 

and

33. (a) 34. (a)

(b) (b)

(c) (c)

(d) (d)

In Exercises 35–38, solve for provided that and

35. 36.
37. 38.

In Exercises 39–44, write as a linear combination of and if
possible, where and 

39. 40.

41. 42.

43. 44.

In Exercises 45 and 46, find such that 

45.

46.

In Exercises 47–50, write as a linear combination of and
if possible.

47.

48.

49.

50.

In Exercises 51–54, use a graphing utility or computer software 
program with matrix capabilities to write as a linear combination of

and or of and Then verify your
solution.

51. 52.

53.

54.

True or False? In Exercises 55 and 56, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false, provide
an example that shows the statement is not true in all cases or cite an
appropriate statement from the text.

55. (a) Two vectors in are equal if and only if their correspon-
ding components are equal.

(b) For a nonzero scalar c, the vector cv is c times as long as 
v and has the same direction as v if and the opposite
direction if c < 0.

c > 0

Rn

v � �8, 17, �16, 26, 0, �4�
u6 � �4, 2, �1, 3, �1, 1�
u5 � �1, �2, 1, 5, �3, 4�
u4 � �3, �1, 3,�4, 2, 3�
u3 � �1, 1, 1, �1, 4, �1�
u2 � �3,�2, 4, �3, �2, 1�
u1 � �1, �3, 4, �5, 2, �1�
v � �10, 30, �13, 14, �7, 27�

u6 � �3, 2, 1, �2, 3, 0�
u5 � �1, �2, 1, �1, 2, �3�
u4 � �1, 0, 3, �4, 1, 2�
u3 � �0, 2, �1, 2, �1, �1�
u2 � �1, �2, 1, �1, 2, 1�
u1 � �1, 2, �3, 4, �1, 2�

v � �5, 8, 7, �2, 4�v � �5, 3, �11, 11, 9�
u5 � �1, 1, 2, �1, 2�u5 � �0, 2, 2, �1, �1�
u4 � �0, 2, 0, 1, �4�u4 � �2, 1, �1, 2, 1�
u3 � �1, 2, 0, 1, 2�u3 � �0, 1, 1, 1, �4�
u2 � �2, 1, 2, �1, 1�u2 � �1, 2, 0, 2, 1�
u1 � �1, 1, �1, 2, 1�u1 � �1, 2, �3, 4, �1�

u6.u5,u4,u3,u2,u1,u5,u4,u3,u2,u1,
v

v � �2, 5, �4, 0�
u3 � �2, �1, 3, 6�,u2 � �2, �2, �5, 4�,u1 � �1, 3, 2, 1�,

v � �0, 5, 3, 0�
u3 � ��3, 1, �4, 2�,u2 � �2, 3, 5, 6�,u1 � �1, 1, 2, 2�,

v � ��1, 7, 2�
u3 � ��3, 2, �4�,u2 � �2, �1, 3�,u1 � �1, 3, 5�,

v � �10, 1, 4�
u3 � ��2, 2, 3�,u2 � �1, 2, 4�,u1 � �2, 3, 5�,

u3,u2,u1,v

v � �1, �8, 0, 7�u � �0, 0, �8, 1�,
v � ��3, 1, 4, �8�u � �0, 2, 7, 5�,

2u � v � 3w � 0.w

v � �1, �4�v � ��1, �2�
v � �1, �1�v � �3, 0�
v � �0, 3�v � �2, 1�

w � �1, �1�.u � �1, 2�
w,uv

w � 3v � �2u1
2w � 2u � 3v

w � u � �v2w � u � 3v

v � �0, 2, 3, �1�.
u � �1, �1, 0, 1�w

1
2�4v � 3u � w�1

4�3u � 2v � w�

2u � w � 3v4v �
1
2u � w

2w �
1
2uw � 3u

v � 3wu � 2v

w � �2, �2, 1, 3�.v � �0, 2, �1, �2�,
u � �1, 2, �3, 1�,

v � ��2, 5
3, �

4
3, �1�u � �6, �5, 4, 3�,

v � �2, �3, �2, 3, 3�u � ��7, 0, 0, 0, 9�,
v � �6, 8, �3, 3, �5�u � �0, 4, 3, 4, 4�,
v � �0, 2, 5, 4�u � �4, 0, �3, 5�,

2v � u.2�u � 3v�,u � v,

w � �12, 0, 9�
v � ��1, 4

3, �
3
2�

u � �6, �4, 9�
z � �1

2, �
2
3, 3

4�?

w � �6, 4, 10�
v � �2, 4

3, �
10
3 �

u � ��6, �4, 10�
z � �3, 2, �5�?

1
2v.2v,�v,v � �2, 0, 1�,

1
2v.�v,2v,v � �1, 2, 2�,
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56. (a) To add two vectors in add their corresponding 
components.

(b) The zero vector 0 in is defined as the additive inverse of
a vector.

In Exercises 57 and 58, the zero vector can be 
written as a linear combination of the vectors and as

This is called the trivial solution. Can you
find a nontrivial way of writing 0 as a linear combination of the three
vectors?

57.

58.

59. Illustrate properties 1–10 of Theorem 4.2 for 
and

60. Illustrate properties 1–10 of Theorem 4.2 for 
and

61. Complete the proof of Theorem 4.1.

62. Prove each property of vector addition and scalar multiplication
from Theorem 4.2.

(a) Property 1: is a vector in 
(b) Property 2:
(c) Property 3:
(d) Property 4:
(e) Property 5:
(f) Property 6: cu is a vector in 
(g) Property 7:
(h) Property 8:
(i) Property 9:
( j) Property 10:

In Exercises 63–67, complete the proofs of the remaining proper-
ties of Theorem 4.3 by supplying the justification for each step.
Use the properties of vector addition and scalar multiplication from
Theorem 4.2.

63. Property 2: The additive inverse of is unique. That is, if
then

Given
a. ____________
b. ____________
c. ____________
d. ____________
e. ____________

64.

a. ____________
b. ____________
c. ____________
d. ____________
e. ____________
f. ____________

65.

a. ____________
b. ____________
c. ____________
d. ____________
e. ____________
f. ____________

66. Property 5: If then or If you are
done. If then exists, and you have

a. ____________
b. ____________
c. ____________
d. ____________

67.
and  a. ____________

b. ____________
c. ____________
d. ____________
e. ____________
f. ____________

In Exercises 68 and 69, determine if the third column can be 
written as a linear combination of the first two columns.

68. 69.

70. Writing Let be a system of linear equations in 
variables. Designate the columns of as If is a
linear combination of these column vectors, explain why this
implies that the linear system is consistent. Illustrate your
answer with appropriate examples. What can you conclude
about the linear system if is not a linear combination of the
columns of 

71. Writing How could you describe vector subtraction geomet-
rically? What is the relationship between vector subtraction and
the basic vector operations of addition and scalar multiplication?

A?
b

n
ba1, a2, . . . , an.A

nmAx � b

�
1

7

4

2

8

5

3

9

7
��

1

7

4

2

8

5

3

9

6
�

���v� � v
���v� � 0 � v � 0

���v� � ���v� � v� � v � ���v� � v�
���v� � ��v� � v � v � ��v� � v

���v� � ��v� � v � ��v�
v � ��v� � 0���v� � ��v� � 0

Property 6: ���v� � v
v � 0.

 1v � 0
�c�1c�v � 0
c�1�cv� � c�10

c�1c � 0,
c � 0,v � 0.c � 0cv � 0,

0 � c0
0 � c0 � 0
0 � c0 � �c0 � ��c0��

c0 � ��c0� � �c0 � c0� � ��c0�
c0 � c0 � c0
c0 � c�0 � 0�

 Property 4: c0 � 0

0 � 0v
0 � 0v � 0
0 � 0v � �0v � ��0v��

 0v � ��0v� � �0v � 0v� � ��0v�
 0v � 0v � 0v
 0v � �0 � 0�v

 Property 3: 0v � 0

u � �v
u � 0 � �v
0 � u � �v

���v� � v� � u � �v
��v� � �v � u� � ��v� � 0

v � u � 0

u � �v.v � u � 0,
v

1�u� � u
c�du� � �cd�u
�c � d�u � cu � du
c�u � v� � cu � cv

Rn.
u � ��u� � 0
u � 0 � u
�u � v� � w � u � �v � w�
u � v � v � u

Rn.u � v

d � �1.c � 2,w � �7, 8, �4�,v � �3, 4, 0�,
u � �2, �1, 3�,

d � �2.c � 5,w � �3, 0, 2, 0�,v � �1, 4, 0, 1�,
u � �2, �1, 3, 6�,

v3 � �0, 1, 3�v2 � ��1, 1, 2�,v1 � �1, 0, 1�,
v3 � �0, 1, 4�v2 � ��1, 1, 2�,v1 � �1, 0, 1�,

0 � 0v1 � 0v2 � 0v3.
v3v2,v1,

0 � �0, 0, 0�

Rn

Rn,
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Vector Spaces

In Theorem 4.2, ten special properties of vector addition and scalar multiplication in 
were listed. Suitable definitions of addition and scalar multiplication reveal that many other
mathematical quantities (such as matrices, polynomials, and functions) also share these ten
properties. Any set that satisfies these properties (or axioms) is called a vector space, and
the objects in the set are called vectors.

It is important to realize that the next definition of vector space is precisely that—a 
definition. You do not need to prove anything because you are simply listing the axioms 
required of vector spaces. This type of definition is called an abstraction because you are
abstracting a collection of properties from a particular setting to form the axioms for a
more general setting.

It is important to realize that a vector space consists of four entities: a set of vectors, a
set of scalars, and two operations. When you refer to a vector space be sure all four 
entities are clearly stated or understood. Unless stated otherwise, assume that the set of
scalars is the set of real numbers.

The first two examples of vector spaces on the next page are not surprising. They are, in
fact, the models used to form the ten vector space axioms.

V,

Rn

Rn

4.2

Let be a set on which two operations (vector addition and scalar multiplication) are
defined. If the listed axioms are satisfied for every and in and every scalar (real
number) and then is called a vector space.

Addition:

1. is in Closure under addition

2. Commutative property

3. Associative property

4. has a zero vector 0 such that for Additive identity

every in 
5. For every in there is a vector Additive inverse

in denoted by such that 

Scalar Multiplication:

6. is in Closure under scalar multiplication

7. Distributive property

8. Distributive property

9. Associative property

10. Scalar identity1�u� � u
c�du� � �cd�u
�c � d�u � cu � du
c�u � v� � cu � cv

V.cu

u � ��u� � 0.
�uV

V,u
u � 0 � u.V,u

V
u � �v � w� � �u � v� � w
u � v � v � u

V.u � v

Vd,c
Vwu, v,

VDefinition of 

Vector Space
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The set of all ordered pairs of real numbers with the standard operations is a vector
space. To verify this, look back at Theorem 4.1. Vectors in this space have the form

The set of all ordered -tuples of real numbers with the standard operations is a vector
space. This is verified by Theorem 4.2. Vectors in this space are of the form

R E M A R K : From Example 2 you can conclude that the set of real numbers (with the
usual operations of addition and multiplication), is a vector space.

The next three examples describe vector spaces in which the basic set does not 
consist of ordered -tuples. Each example describes the set and defines the two vector 
operations. To show that the set is a vector space, you must verify all ten axioms.

Show that the set of all matrices with the operations of matrix addition and scalar
multiplication is a vector space.

S O L U T I O N If and are matrices and is a scalar, then and are also matrices.
The set is, therefore, closed under matrix addition and scalar multiplication. Moreover, the
other eight vector space axioms follow directly from Theorems 2.1 and 2.2 (see Section 2.2).
You can conclude that the set is a vector space. Vectors in this space have the form

.

R E M A R K : In the same way you are able to show that the set of all matrices 
is a vector space, you can show that the set of all matrices, denoted by is a
vector space.

Let be the set of all polynomials of the form

p�x� � a2x
2 � a1x � a0,

P2

E X A M P L E  4 The Vector Space of All Polynomials of Degree 2 or Less

Mm,n,m � n
2 � 3

a � A � �a11

a21

a12

a22

a13

a23
�

2 � 3cAA � Bc2 � 3BA

2 � 3

E X A M P L E  3 The Vector Space of All 2 � 3 Matrices

Vn
V

R1,

v � �v1, v2, v3, .  .  . , vn�.

Rnn

E X A M P L E  2 Rn with the Standard Operations Is a Vector Space

v � �v1, v2�.

R2

E X A M P L E  1 R2 with the Standard Operations Is a Vector Space
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where and are real numbers. The sum of two polynomials 
and is defined in the usual way by

and the scalar multiple of by the scalar is defined by

Show that is a vector space.

S O L U T I O N Verification of each of the ten vector space axioms is a straightforward application of the
properties of real numbers. For instance, because the set of real numbers is closed under 
addition, it follows that and are real numbers, and 

is in the set because it is a polynomial of degree 2 or less. is closed under 
addition. Similarly, you can use the fact that the set of real numbers is closed under multi-
plication to show that is closed under scalar multiplication. To verify the commutative
axiom of addition, write

Can you see where the commutative property of addition of real numbers was used? The
zero vector in this space is the zero polynomial given by for all 
Try verifying the other vector space axioms. You may then conclude that is a vector
space.

R E M A R K : Even though the zero polynomial has no degree, is often 
described as the set of all polynomials of degree 2 or less.

is defined as the set of all polynomials of degree or less (together with the zero
polynomial). The procedure used to verify that is a vector space can be extended to show
that with the usual operations of polynomial addition and scalar multiplication, is a
vector space.

Let be the set of all real-valued continuous functions defined on the entire real
line. This set consists of all polynomial functions and all other continuous functions on the
entire real line. For instance, and are members of this set.g�x� � exf�x� � sin x

C���, ��

E X A M P L E  5 The Vector Space of Continuous Functions (Calculus)

Pn,
P2

nPn

P20�x� � 0

P2

x.0�x� � 0x2 � 0x � 0,

� q�x� � p�x�.
� �b2x

2 � b1x � b0� � �a2x
2 � a1x � a0�

� �b2 � a2�x2 � �b1 � a1�x � �b0 � a0�
� �a2 � b2�x2 � �a1 � b1�x � �a0 � b0�

p�x� � q�x� � �a2x
2 � a1x � a0� � �b2x

2 � b1x � b0�

P2

P2P2

p�x� � q�x� � �a2 � b2�x2 � �a1 � b1�x � �a0 � b0�

a0 � b0a1 � b1,a2 � b2,

P2

cp�x� � ca2x
2 � ca1x � ca0.

cp�x�

p�x� � q�x� � �a2 � b2�x2 � �a1 � b1�x � �a0 � b0�,

q�x� � b2x
2 � b1x � b0� a0a1x

p�x� � a2x
2 �a2a0, a1,



Figure 4.8

x
x

f x g x( ) + ( )

f x( )

g x( )

f g+

g

f

y

Addition is defined by

as shown in Figure 4.8. Scalar multiplication is defined by

Show that is a vector space.

S O L U T I O N To verify that the set is closed under addition and scalar multiplication, you can
use a result from calculus—the sum of two continuous functions is continuous and the prod-
uct of a scalar and a continuous function is continuous. To verify that the set has
an additive identity, consider the function that has a value of zero for all meaning that

where is any real number.

This function is continuous on the entire real line (its graph is simply the line ), which
means that it is in the set Moreover, if is any other function that is continu-
ous on the entire real line, then

This shows that is the additive identity in The verification of the other
vector space axioms is left to you.

For convenience, the summary below lists some important vector spaces frequently 
referenced in the remainder of this text. The operations are the standard operations in each
case.

You have seen the versatility of the concept of a vector space. For instance, a vector can
be a real number, an -tuple, a matrix, a polynomial, a continuous function, and so on. But
what is the purpose of this abstraction, and why bother to define it? There are several 
reasons, but the most important reason applies to efficiency. This abstraction turns out to be
mathematically efficient because general results that apply to all vector spaces can now be 
derived. Once a theorem has been proved for an abstract vector space, you need not give
separate proofs for -tuples, matrices, and polynomials. You can simply point out that the n

n

C���, ��.f0

� f � f0��x� � f�x� � f0�x� � f�x� � 0 � f �x�.

fC���, ��.
y � 0

xf0�x� � 0,

x,f0

C���, ��

C���, ��

C���, ��

�cf��x� � c� f �x��.

� f � g��x� � f�x� � g�x�,
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set of all real numbers
set of all ordered pairs
set of all ordered triples
set of all -tuples
set of all continuous functions defined on the real number line
set of all continuous functions defined on a closed interval 
set of all polynomials
set of all polynomials of degree
set of all matrices
set of all square matricesn � nMn,n �

m � nMm,n �
� nPn �

P �
�a, b�C�a, b� �

C���, �� �
nRn �

R3 �
R2 �
R �Summary of Important

Vector Spaces
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theorem is true for any vector space, regardless of the particular form the vectors happen to
take. This process is illustrated in Theorem 4.4.

P R O O F To prove these properties, you are restricted to using the ten vector space axioms. For 
instance, to prove the second property, note from axiom 4 that This allows you
to write the steps below.

Additive identity

Left distributive property

Add to both sides.

Associative property

Additive inverse

Additive identity

To prove the third property, suppose that To show that this implies either or
assume that (If you have nothing more to prove.) Now, because
you can use the reciprocal to show that , as follows.

Note that the last step uses Property 2 (the one you just proved). The proofs of the first and
fourth properties are left as exercises. (See Exercises 38 and 39.)

The remaining examples in this section describe some sets (with operations) that do
not form vector spaces. To show that a set is not a vector space, you need only find one
axiom that is not satisfied. For example, if you can find two members of that do not 
commute then regardless of how many other members of do commute
and how many of the other ten axioms are satisfied, you can still conclude that is not a
vector space.

The set of all integers (with the standard operations) does not form a vector space because
it is not closed under scalar multiplication. For example,

Scalar Integer Noninteger

1
2�1� �

1
2.

E X A M P L E  6 The Set of Integers Is Not a Vector Space

V
V�u � v � v � u�,
V

v � 1v � 	1

c
�c�v �
1

c
�cv� �

1

c
�0� � 0

v � 01cc � 0,
c � 0,c � 0.v � 0,

c � 0cv � 0.

0 � c0

0 � c0 � 0

c0 � ��c0� � c0 � �c0 � ��c0��
�c0c0 � ��c0� � �c0 � c0� � ��c0�

c0 � c0 � c0

c0 � c�0 � 0�

0 � 0 � 0.

Let be any element of a vector space and let be any scalar. Then the following prop-
erties are true.
1. 2.
3. If then  or   4. ��1�v � �vv � 0.c � 0cv � 0,

c0 � 00v � 0

cV,vTHEOREM 4.4

Properties of 

Scalar Multiplication
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R E M A R K : In Example 6, notice that a single failure of one of the ten vector space axioms
suffices to show that a set is not a vector space.

In Example 4 it was shown that the set of all polynomials of degree 2 or less forms a
vector space. You will now see that the set of all polynomials whose degree is exactly 
2 does not form a vector space.

The set of all second-degree polynomials is not a vector space because it is not closed under
addition. To see this, consider the second-degree polynomials

and

whose sum is the first-degree polynomial

The sets in Examples 6 and 7 are not vector spaces because they fail one or both closure
axioms. In the next example you will look at a set that passes both tests for closure but still
fails to be a vector space.

Let the set of all ordered pairs of real numbers, with the standard operation of 
addition and the nonstandard definition of scalar multiplication listed below.

Show that is not a vector space.

S O L U T I O N In this example, the operation of scalar multiplication is not the standard one. For instance,
the product of the scalar 2 and the ordered pair does not equal Instead, the 
second component of the product is 0,

This example is interesting because it actually satisfies the first nine axioms of the defini-
tion of a vector space (try showing this). The tenth axiom is where you get into trouble. 
In attempting to verify that axiom, the nonstandard definition of scalar multiplication 
gives you

The tenth axiom is not verified and the set (together with the two operations) is not a vector
space.

1�1, 1� � �1, 0� � �1, 1�.

2�3, 4� � �2 � 3, 0� � �6, 0�.

�6, 8�.�3, 4�

V

c�x1, x2� � �cx1, 0�

V � R2,

E X A M P L E  8 A Set That Is Not a Vector Space

p�x� � q�x� � x � 1.

q�x� � �x2 � x � 1,p�x� � x2

E X A M P L E  7 The Set of Second-Degree Polynomials Is Not a Vector Space
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Do not be confused by the notation used for scalar multiplication in Example 8. In writing

the scalar multiple of by is defined to be As it turns out, this nonstandard
definition fails to satisfy the tenth vector space axiom.

�cx1, 0�.c�x1, x2�

c�x1, x2� � �cx1, 0�,

SECTION 4.2

In Exercises 1–6, describe the zero vector (the additive identity) of
the vector space.

1. 2. 3.

4. 5. 6.

In Exercises 7–12, describe the additive inverse of a vector in the
vector space.

7. 8. 9.

10. 11. 12.

In Exercises 13–28, determine whether the set, together with the 
indicated operations, is a vector space. If it is not, identify at least
one of the ten vector space axioms that fails.

13. with the standard operations

14. with the standard operations

15. The set of all third-degree polynomials with the standard 
operations

16. The set of all fifth-degree polynomials with the standard 
operations

17. The set of all first-degree polynomial functions 
whose graphs pass through the origin with the standard 

operations

18. The set of all quadratic functions whose graphs pass through
the origin with the standard operations

19. The set is a real number with the standard 
operations in 

20. The set with the standard operations 
in

21. The set is a real number with the standard operations

22. The set is a real number with the standard 
operations

23. The set of all matrices of the form

with the standard operations

24. The set of all matrices of the form

with the standard operations

25. The set of all singular matrices with the standard 
operations

26. The set of all nonsingular matrices with the standard 
operations

27. The set of all diagonal matrices with the standard 
operations

28. the set of all continuous functions defined on the 
interval with the standard operations

29. Rather than use the standard definitions of addition and scalar
multiplication in suppose these two operations are defined
as follows.

(a)

(b)

(c)

With these new definitions, is a vector space? Justify your 
answers.

30. Rather than use the standard definitions of addition and scalar
multiplication in suppose these two operations are defined
as follows.

(a)

(b)

(c)

c�x, y, z� � �cx, cy, cz�
� �x1 � x2 � 1, y1 � y2 � 1, z1 � z2 � 1�

�x1, y1, z1� � �x2, y2, z2�
c�x, y, z� � �cx, cy, cz�

�x1, y1, z1� � �x2, y2, z2� � �0, 0, 0�
c�x, y, z� � �cx, cy, 0�

�x1, y1, z1� � �x2, y2, z2� � �x1 � x2, y1 � y2, z1 � z2�

R3,

R2

c�x, y� � ��c x, �c y�
�x1, y1� � �x2, y2� � �x1 � x2, y1 � y2�

c�x, y� � �cx, cy�
�x1, y1� � �x2, y2� � �x1, 0�

c�x, y� � �cx, y�
�x1, y1� � �x2, y2� � �x1 � x2, y1 � y2�

R2,

�0, 1�,
C �0, 1�,

2 � 2

2 � 2

2 � 2

�a

c

b

1�
2 � 2

�a

c

b

0�
2 � 2

�x��x, 1
2x�:

���x, x�: x

R2

��x, y�: x 
 0, y 
 0�
R2

�y��x, y�: x 
 0,

a � 0,
ax � b,

M1,1

M4,6

M2,2P3M1,4

M2,3C���, ��R4

M2,2P3M1,4

M2,3C���, ��R4
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(d)

With these new definitions, is a vector space? Justify your 
answers.

31. Prove in full detail that with the standard operations, is a
vector space.

32. Prove in full detail, with the standard operations in that the
set is a real number is a vector space.

33. Determine whether the set with the operations

and

is a vector space. If it is, verify each vector space axiom; if not,
state all vector space axioms that fail.

34. Let be the set of all positive real numbers. Determine whether
is a vector space with the operations below.

Addition

Scalar multiplication

If it is, verify each vector space axiom; if not, state all vector
space axioms that fail.

True or False? In Exercises 35 and 36, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false,
provide an example that shows the statement is not true in all cases
or cite an appropriate statement from the text.

35. (a) A vector space consists of four entities: a set of vectors, a set
of scalars, and two operations.

(b) The set of all integers with the standard operations is a 
vector space.

(c) The set of all pairs of real numbers of the form where
with the standard operations on is a vector space.

36. (a) To show that a set is not a vector space, it is sufficient to
show that just one axiom is not satisfied.

(b) The set of all first-degree polynomials with the standard 
operations is a vector space.

(c) The set of all pairs of real numbers of the form with
the standard operations on is a vector space.

37. Complete the proof of the cancellation property of vector 
addition by supplying the justification for each step.

Prove that if u, v, and w are vectors in a vector space V such
that then 

Given
a. ____________
b. ____________
c. ____________
d. ____________

38. Prove Property 1 of Theorem 4.4.

39. Prove Property 4 of Theorem 4.4.

40. Prove that in a given vector space the zero vector is unique.

41. Prove that in a given vector space the additive inverse of a
vector is unique.

V,

V,

u � v
u � 0 � v � 0

u � �w � ��w�� � v � �w � ��w��
�u � w� � ��w� � �v � w� � ��w�

u � w � v � w

u � v.u � w � v � w,

R2,
�0, y�,

R2y 
 0,
�x, y�,

cx � xc

x � y � xy

V
V

c�x1, y1� � �cx1, cy1�,

�x1, y1� � �x2, y2� � �x1x2, y1y2�
R2,

���x, 2x�: x
R 2,

M2,2,

R3

c�x, y, z� � �cx � c � 1, cy � c � 1, cz � c � 1�
� �x1 � x2 � 1, y1 � y2 � 1, z1 � z2 � 1�

�x1, y1, z1� � �x2, y2, z2�

Subspaces of Vector Spaces

In most important applications in linear algebra, vector spaces occur as subspaces of larger
spaces. For instance, you will see that the solution set of a homogeneous system of linear
equations in variables is a subspace of (See Theorem 4.16.)

A subset of a vector space is a subspace if it is a vector space (with the same operations),
as stated in the next definition.

R E M A R K : Note that if is a subspace of it must be closed under the operations 
inherited from V.

V,W

Rn.n

4.3

A nonempty subset of a vector space is called a subspace of if is a vector space
under the operations of addition and scalar multiplication defined in V.

WVVWDefinition of Subspace 

of a Vector Space
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Show that the set and are real numbers is a subspace of with the 
standard operations.

S O L U T I O N The set is nonempty because it contains the zero vector 
Graphically, the set can be interpreted as simply the -plane, as shown in Figure 4.9.

The set is closed under addition because the sum of any two vectors in the -plane must
also lie in the -plane. That is, if and are in then their sum

is also in (because the second component is zero). Similarly, to see
that is closed under scalar multiplication, let be in and let be a scalar. Then

has zero as its second component and must be in The other
eight vector space axioms can be verified as well, and these verifications are left to you.

To establish that a set is a vector space, you must verify all ten vector space proper-
ties. If is a subset of a larger vector space (and the operations defined on are the
same as those defined on ), however, then most of the ten properties are inherited from
the larger space and need no verification. The next theorem tells us it is sufficient to test for
closure in order to establish that a nonempty subset of a vector space is a subspace.

P R O O F The proof of this theorem in one direction is straightforward. That is, if is a subspace of
then is a vector space and must be closed under addition and scalar multiplication.
To prove the theorem in the other direction, assume that is closed under addition and

scalar multiplication. Note that if and are in then they are also in 
Consequently, vector space axioms 2, 3, 7, 8, 9, and 10 are satisfied automatically. Because

is closed under addition and scalar multiplication, it follows that for any in and
scalar

and

both lie in which satisfies axioms 4 and 5.

R E M A R K : Note that if is a subspace of a vector space then both and must have
the same zero vector (See Exercise 43.)0.

VWV,W

W,

��1�v � �v

cv � 0

c � 0,
WvW

V.W,wu, v,
W

WV,
W

V
WVW

W

W.c�x1, 0, x3� � �cx1, 0, cx3�
cW�x1, 0, x3�W

W�x1 � y1, 0, x3 � y3�
W,�y1, 0, y3��x1, 0, x3�xz

xzW
xzW
�0, 0, 0�.W

R3�x3W � ��x1, 0, x3�: x1

E X A M P L E  1 A Subspace of R3

If is a nonempty subset of a vector space then is a subspace of if and only if
the following closure conditions hold.

1. If and are in then is in 
2. If is in and is any scalar, then is in W.cucWu

W.u � vW,vu

VWV,WTHEOREM 4.5

Test for a Subspace

Figure 4.9

x y

(x1, 0, x3)

z
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Because a subspace of a vector space is a vector space, it must contain the zero vector.
In fact, the simplest subspace of a vector space is the one consisting of only the zero vector,

This subspace is called the zero subspace. Another obvious subspace of is itself. Every
vector space contains these two trivial subspaces, and subspaces other than these two are
called proper (or nontrivial) subspaces.

Let be the set of all symmetric matrices. Show that is a subspace of the vector
space with the standard operations of matrix addition and scalar multiplication.

S O L U T I O N Recall that a matrix is called symmetric if it is equal to its own transpose. Because is a
vector space, you only need to show that (a subset of ) satisfies the conditions of
Theorem 4.5. Begin by observing that is nonempty. is closed under addition because

and , which implies that

So, if and are symmetric matrices of order 2, then so is Similarly, is
closed under scalar multiplication because implies that If is
a symmetric matrix of order 2, then so is 

The result of Example 2 can be generalized. That is, for any positive integer the set
of symmetric matrices of order is a subspace of the vector space with the standard 
operations. The next example describes a subset of that is not a subspace.

Let be the set of singular matrices of order 2. Show that is not a subspace of with
the standard operations.

S O L U T I O N By Theorem 4.5, you can show that a subset is not a subspace by showing that is empty,
is not closed under addition, or is not closed under scalar multiplication. For this 

particular set, is nonempty and closed under scalar multiplication, but it is not closed under
addition. To see this, let and be

and

Then and are both singular (noninvertible), but their sum

is nonsingular (invertible). So is not closed under addition, and by Theorem 4.5 you can
conclude that it is not a subspace of M2,2.

W

A � B � �1

0

0

1�
BA

B � �0

0

0

1�.A � �1

0

0

0�
BA

W
WW

WW

M2,2WW

E X A M P L E  3 The Set of Singular Matrices Is Not a Subspace of Mn,n

Mn,n

Mn,nn
n,

cA.
A�cA�T � cAT � cA.A � AT

WA1 � A2.A2A1

�A1 � A2�T � A1
T � A2

T � A1 � A2.

A2 � A2
TA1 � A1

T

WW
M2,2W

M2,2

M2,2,
W2 � 2W

E X A M P L E  2 The Subspace of M2,2

VV

W � �0�.
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Show that with the standard operations, is not a 
subspace of 

S O L U T I O N This set is nonempty and closed under addition. It is not, however, closed under scalar 
multiplication. To see this, note that is in but the scalar multiple

is not in So is not a subspace of 

You will often encounter sequences of subspaces nested within each other. For instance,
consider the vector spaces

and

where is the set of all polynomials of degree less than or equal to with the standard
operations. It is easy to show that if then is a subspace of You can write

Another nesting of subspaces is described in Example 5.

Let be the vector space of all functions defined on and let and 
be defined as follows.

set of all polynomial functions defined on the interval 

set of all functions that are differentiable on 

set of all functions that are continuous on 

set of all functions that are integrable on 

Show that and that is a subspace of for 

S O L U T I O N From calculus you know that every polynomial function is differentiable on So,
Moreover, because every differentiable function is continuous,

because every continuous function is integrable, and because every integrable
function is a function. Resulting from the previous remarks, you have 

as shown in Figure 4.10. The verification that is a subspace of for is
left to you.

Figure 4.10

Polynomial
functions

Differentiable
functions

Continuous
functions

Integrable
functions

Functions

W1 W2 W3 W4 W5

i � jWjWiW4 � W5,
W1 � W2 � W3 �

W4 � W5

W3 � W4W2 � W3W1 � W2.
�0, 1�.

i � j.WjWiW1 � W2 � W3 � W4 � W5

�0, 1�W4 �

�0, 1�W3 �

�0, 1�W2 �

�0, 1�W1 �

W4W3,W2,W1,�0, 1�,W5

E X A M P L E  5 Subspaces of Functions (Calculus)

P0 � P1 � P2 � P3 � .  .  . � Pn.
Pk.Pjj � k,

k,Pk

Pn,P0, P1, P2, P3, .  .  . ,

R2.WW.

��1��1, 1� � ��1, �1�

W,�1, 1�

R2.
W � ��x1, x2�: x1 
 0 and x2 
 0�,

E X A M P L E  4 The Set of First Quadrant Vectors Is Not a Subspace of R2
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Note in Example 5 that if and are vector spaces such that is a subspace of 
and is a subspace of then is also a subspace of This special case of the next 
theorem tells us that the intersection of two subspaces is a subspace, as shown in Figure
4.11.

Figure 4.11 The intersection of two subspaces is a subspace.

P R O O F Because and are both subspaces of you know that both contain the zero vector, which
means that is nonempty. To show that is closed under addition, let and 
be any two vectors in Then, because and are both subspaces of you know that
both are closed under addition. Because and are both in their sum must be
in Similarly, is in because and are both in But this implies that 
is in and it follows that is closed under addition. It is left to you to show (by
a similar argument) that is closed under scalar multiplication. (See Exercise 48.)

R E M A R K : Theorem 4.6 states that the intersection of two subspaces is a subspace. In
Exercise 44 you are asked to show that the union of two subspaces is not (in general) a 
subspace.

Subspace of Rn

is a convenient source for examples of vector spaces, and the remainder of this section
is devoted to looking at subspaces of 

Which of these two subsets is a subspace of 
(a) The set of points on the line 
(b) The set of points on the line 

S O L U T I O N (a) Solving for you can see that a point in is on the line if and only if it
has the form where is any real number. (See Figure 4.12.)t��2t, t�,

x � 2y � 0R2x,

x � 2y � 1
x � 2y � 0

R2?

E X A M P L E  6 Determining Subspaces of R2

Rn.
Rn

V � W
V � WV � W,

v1 � v2W.v2v1Wv1 � v2V.
v1 � v2V,v2v1

U,WVV � W.
v2v1V � WV � W

U,WV

U

V V ∩ W W

U.WU,V
VWWU, V,

If and are both subspaces of a vector space then the intersection of and 
(denoted by ) is also a subspace of U.V � W

WVU,WV
THEOREM 4.6

The Intersection of Two

Subspaces Is a Subspace
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To show that this set is closed under addition, let

and

be any two points on the line. Then you have

where lies on the line, and the set is closed under addition. In a
similar way, you can show that the set is closed under scalar multiplication. So, this set
is a subspace of 

(b) This subset of is not a subspace of because every subspace must contain the zero
vector, and the zero vector is not on the line. (See Figure 4.12.)

Of the two lines in Example 6, the one that is a subspace of is the one that passes
through the origin. This is characteristic of subspaces of That is, if is a subset of 
then it is a subspace if and only if one of the three possibilities listed below is true.
1. consists of the single point

2. consists of all points on a line that pass through the origin.

3. consists of all of 

These three possibilities are shown graphically in Figure 4.13.

Figure 4.13

Show that the subset of consisting of all points on the unit circle is not a 
subspace.

S O L U T I O N This subset of is not a subspace because the points and are in the subset, but
their sum is not. (See Figure 4.14.) So, this subset is not closed under addition.�1, 1�

�0, 1��1, 0�R2

x2 � y2 � 1R2

E X A M P L E  7 A Subset of R2 That Is Not a Subspace

W = R2

−2 −1 2

−2

−1

1

2

x

y

1−2 −1 2

−2

−1

1

2

x

y

1

W = all points on a line
passing through the origin

W = {(0, 0)}

−2 −1 2

−2

−1

1

2

x

y

1

R2.W

W

�0, 0�.W

R2,WR2.
R2

�0, 0�
R2R2

R2.

v1 � v2t3 � t1 � t2.

� ��2t3, t3�,
� ��2�t1 � t2�, t1 � t2�

v1 � v2 � ��2t1, t1� � ��2t2, t2�

v2 � ��2t2, t2�v1 � ��2t1, t1�

Figure 4.12

x

y

−1−2 2

−1

−2

1

2

x + 2y = 1

x + 2y = 0
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Figure 4.14

R E M A R K : Another way you can tell that the subset shown in Figure 4.14 is not a 
subspace of is by noting that it does not contain the zero vector (the origin).

Which of the subsets below is a subspace of 
(a) and are real numbers
(b) and are real numbers

S O L U T I O N (a) Because is not in you know that is not a subspace of 
(b) This set is nonempty because it contains the zero vector Let

and be two vectors in and let be any
real number. Show that is closed under addition, as follows.

where and is in because it is of the proper form.
Similarly, is closed under scalar multiplication because

where and which means that is in Finally, because is closed
under addition and scalar multiplication, you can conclude that it is a subspace of 

In Example 8, note that the graph of each subset is a plane in But the only subset
that is a subspace is the one represented by a plane that passes through the origin. (See
Figure 4.15.)

R3.

R3.
WW.cvx3 � cv3,x1 � cv1

� �x1, x1 � x3, x3�,
� �cv1, cv1 � cv3, cv3�

cv � �cv1, c�v1 � v3�, cv3�

W
Wv � ux3 � v3 � u3.x1 � v1 � u1

� �x1, x1 � x3, x3�
� �v1 � u1, �v1 � u1� � �v3 � u3�, v3 � u3�

v � u � �v1 � u1, v1 � v3 � u1 � u3, v3 � u3�

W
cW,u � �u1, u1 � u3, u3�v � �v1, v1 � v3, v3�

�0, 0, 0�.
R3.WW,0 � �0, 0, 0�

�x3W � ��x1, x1 � x3, x3�: x1

�x2W � ��x1, x2, 1�: x1

R3?

E X A M P L E  8 Determining Subspaces of R3

R2

x

(1, 1)

(1, 0)

(0, 1)

(−1, 0)

(0, −1)

y

The unit circle is
not a subspace

of R2.
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Figure 4.15

In general, you can show that a subset of is a subspace of (with the standard 
operations) if and only if it has one of the forms listed below.

1. consists of the single point
2. consists of all points on a line that pass through the origin.
3. consists of all points in a plane that pass through the origin.
4. consists of all of R3.W

W
W

�0, 0, 0�.W

R3R3W

x y

(0, 0, 0)

z

The origin lies
in the plane.

x y

z

The origin does
not lie in the

plane.

SECTION 4.3

In Exercises 1–6, verify that is a subspace of In each case,
assume that has the standard operations.

1. and are real numbers

2. and are real numbers

3. is the set of all matrices of the form 

4. is the set of all matrices of the form

5. Calculus is the set of all functions that are continuous on
is the set of all functions that are integrable on 

6. Calculus W is the set of all functions that are differentiable on
V is the set of all functions that are continuous on 

In Exercises 7–18, is not a subspace of the vector space. Verify
this by giving a specific example that violates the test for a vector
subspace (Theorem 4.5).

7. is the set of all vectors in whose third component is 

8. is the set of all vectors in whose second component is 1.

9. is the set of all vectors in whose components are
rational numbers.

10. is the set of all vectors in whose components are integers.

11. is the set of all nonnegative functions in 

12. is the set of all linear functions in

13. is the set of all vectors in whose components are
nonnegative.

14. is the set of all vectors in whose components are
Pythagorean triples.

15. is the set of all matrices in with zero determinants.

16. is the set of all matrices in such that 

17. is the set of all vectors in whose second component is the
cube of the first.

R 2W

A2 � A.Mn,nW

Mn,nW

R 3W

R3W

C���, ��.
a � 0,ax � b,W

C���, ��.W

R2W

R2W

R 2W

�1.R3W

W

�0, 1�.�0, 1�.

�0, 1�.V�0, 1�.
W

V � M3,2

�
a

a � b
0

b
0
c�.

3 � 2W

V � M2,2

�0

b

a

0�.

2 � 2W

V � R3

�yW � ��x, y, 2x � 3y�: x

V � R4

�x3W � ��x1, x2, x3, 0�: x1, x2,

V
V.W
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18. is the set of all vectors in whose second component is the
square of the first.

In Exercises 19–24, determine if the subset of is a sub-
space of 

19. The set of all nonnegative functions:

20. The set of all even functions:

21. The set of all odd functions:

22. The set of all constant functions:

23. The set of all functions such that 

24. The set of all functions such that 

In Exercises 25–30, determine if the subset of is a subspace of
with the standard operations.

25. The set of all upper triangular matrices

26. The set of all matrices with integer entries

27. The set of all matrices that commute with a given
matrix

28. The set of all singular matrices

29. The set of all invertible matrices

30. The set of all matrices whose entries add up to zero

In Exercises 31–36, determine whether the set is a subspace of
with the standard operations. Justify your answer.

31. and are real numbers

32. and are real numbers

33. and b are real numbers

34. and t are real numbers

35. and are real numbers

36. and are real numbers,

True or False? In Exercises 37 and 38, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false, pro-
vide an example that shows the statement is not true in all cases or
cite an appropriate statement from the text.

37. (a) Every vector space contains at least one subspace that is
the zero subspace.

(b) If and are both subspaces of a vector space then the
intersection of and is also a subspace.

(c) If and are vector spaces such that is a subspace
of and is a subspace of then 

38. (a) Every vector space contains two proper subspaces that
are the zero subspace and itself.

(b) If is a subspace of then must contain the vector 

(c) If and are subspaces of a vector space then the
union of and is a subspace of 

39. Guided Proof Prove that a nonempty set is a subspace of a
vector space if and only if is an element of for all
scalars and and all vectors and in 

Getting Started: In one direction, assume is a subspace,
and show by using closure axioms that lies in In the
other direction, assume is an element of for all real
numbers and and elements and in and verify that 
is closed under addition and scalar multiplication.

(i) If is a subspace of then use scalar multiplication 
closure to show that and are in Now use 
additive closure to get the desired result.

(ii) Conversely, assume is in By cleverly 
assigning specific values to and show that is
closed under addition and scalar multiplication.

40. Let and be vectors in a vector space Show that the set
of all linear combinations of and 

and are scalars

is a subspace of This subspace is called the span of

41. Let A be a fixed matrix. Prove that the set

is not a subspace of 

42. Let be a fixed matrix. Prove that the set

is a subspace of 

43. Let be a subspace of the vector space Prove that the zero 
vector in is also the zero vector in 

44. Give an example showing that the union of two subspaces of a 
vector space is not necessarily a subspace of 

45. Let be a fixed matrix. Prove that the set

is a subspace of 

46. Calculus Determine whether the set

is a subspace of Prove your answer.C �0, 1�.

S � �f 	 C �0, 1�: �1

0

f �x� dx � 0�

M2,2.

W � �X : XA � AX�
2 � 2A

V.V

W.V
V.W

Rn.

W � �x 	 Rn : Ax � 0�

m � nA

R3.

W � �x 	 R3: Ax � �1

2��
2 � 3

�x, y, z�.V.

�cW � �ax � by � cz: a, b,

zy,x,
V.zy,x,

Wb,a
W.ax � by

W.byax
V,W

WW,yxba
Wax � by

W.ax � by
W

W.yxba
Wax � byV

W

V.UW
V,UW

�0, 0�.
WR2,W

V

W � U.V,UV
WWU, V,

WV
U,WV

V

x1 � 0�x3W � ��x1, 1x1, x3�: x1

�x2W � ��x1, x2, x1x2�: x1

�W � ��s, s � t, t�: s

�W � ��a, b, a � 2b�: a

�x2W � ��x1, x2, 4�: x1

�x3W � ��x1, 0, x3�: x1

R3
W

n � n

n � n

n � n

B
An � n

n � n

n � n

Mn,n

Mn,n

f �0� � 1

f �0� � 0

f �x� � c

f ��x� � �f �x�
f ��x� � f �x�

f �x� 
 0

C���, ��.
C���, ��

R2W



Sect ion 4 .4 Spanning Sets  and L inear  Independence 207

47. Let and be two subspaces of a vector space Prove that
the set 

where and 

is a subspace of Describe if and are the 
subspaces of 

is a real number and is a real
number

48. Complete the proof of Theorem 4.6 by showing that the inter-
section of two subspaces of a vector space is closed under scalar
multiplication.

�.
W � ��0, y� : y�V � ��x, 0� : x

U � R2:
WVV � WU.

w 	 W�v 	 VV � W � �u : u � v � w,

U.WV

Spanning Sets and Linear Independence

This section begins to develop procedures for representing each vector in a vector space as
a linear combination of a select number of vectors in the space.

Often, one or more of the vectors in a set can be written as linear combinations of other
vectors in the set. Examples 1, 2, and 3 illustrate this possibility.

(a) For the set of vectors in 

is a linear combination of and because

(b) For the set of vectors in 

S � ��0

2

8

1�, �0

1

2

0�, ��1

1

3

2�, ��2

1

0

3��,

v4v3v2v1

M2,2,

� �1, 3, 1�.
v1 � 3v2 � v3 � 3�0, 1, 2� � �1, 0, �5�

v3v2v1

S � ��1, 3, 1�, �0, 1, 2�, �1, 0, �5��,
v3v2v1

R3,

E X A M P L E  1 Examples of Linear Combinations

4.4

A vector in a vector space is called a linear combination of the vectors
in if can be written in the form

where are scalars.c1, c2, .  .  . , ck

v � c1u1 � c2u2 � .  .  . � ckuk,

vVu1, u2, .  .  . , uk

VvDefinition of Linear

Combination of Vectors
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is a linear combination of and because

In Example 1 it was easy to verify that one of the vectors in the set was a linear com-
bination of the other vectors because you were provided with the appropriate coefficients to
form the linear combination. In the next example, a procedure for finding the coefficients
is demonstrated.

Write the vector as a linear combination of vectors in the set 

S O L U T I O N You need to find scalars and such that

.

Equating corresponding components yields the system of linear equations below.

Using Gauss-Jordan elimination, you can show that this system has an infinite number of
solutions, each of the form

To obtain one solution, you could let Then and and you
have

Other choices for would yield other ways to write as a linear combination of 
and v3.

v2,v1,wt

w � 2v1 � 3v2 � v3.

c1 � 2,c2 � �3,c3 � 1,t � 1.

c3 � t.c2 � �1 � 2t,c1 � 1 � t,

c1

2c1

3c1

�

�

c2

2c2

�

�

c3

c3

�

�

�

1
1
1

� �c1 � c3, 2c1 � c2, 3c1 � 2c2 � c3�
�1, 1, 1� � c1�1, 2, 3� � c2�0, 1, 2� � c3��1, 0, 1�

c3c2,c1,

S � ��1, 2, 3�, �0, 1, 2�, ��1, 0, 1��
v3v2v1

S.w � �1, 1, 1�

E X A M P L E  2 Finding a Linear Combination

S

� �0

2

8

1�.

� �0

1

2

0� � 2��1

1

3

2� � ��2

1

0

3�
v1 � v2 � 2v3 � v4

v4v3,v2,v1
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If possible, write the vector as a linear combination of vectors in the set 
from Example 2.

S O L U T I O N Following the procedure from Example 2 results in the system

The augmented matrix of this system row reduces to

From the third row you can conclude that the system of equations is inconsistent, and that
means that there is no solution. Consequently, cannot be written as a linear combination
of and 

Spanning Sets

If every vector in a vector space can be written as a linear combination of vectors in a set
then is called a spanning set of the vector space.

(a) The set spans because any vector 
in can be written as

(b) The set spans because any polynomial function 
in can be written as

� a � bx � cx2.

p�x� � a�1� � b�x� � c�x2�

P2

p�x� � a � bx � cx2P2S � �1, x, x2�

u � u1�1, 0, 0� � u2�0, 1, 0� � u3�0, 0, 1� � �u1, u2, u3�.

R3
u � �u1, u2, u3�R3S � ��1, 0, 0�, �0, 1, 0�, �0, 0, 1��

E X A M P L E  4 Examples of Spanning Sets

SS,

v3.v2,v1,
w

�
1

0

0

0

1

0

�1

2

0

0

0

1
�.

c1

2c1

3c1

�

�

c2

2c2

�

�

c3

c3

�

�

�

1
�2

2.

Sw � �1, �2, 2�

E X A M P L E  3 Finding a Linear Combination

Let be a subset of a vector space The set is called a spanning
set of if every vector in can be written as a linear combination of vectors in 
In such cases it is said that spans V.S

S.VV
SV.S � �v1, v2, .  .  . , vk�Definition of Spanning Set

of a Vector Space
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The spanning sets in Example 4 are called the standard spanning sets of and 
respectively. (You will learn more about standard spanning sets in the next section.) In the
next example you will look at a nonstandard spanning set of 

Show that the set spans 

S O L U T I O N Let be any vector in You need to find scalars and such that

This vector equation produces the system

The coefficient matrix for this system has a nonzero determinant, and it follows from the
list of equivalent conditions given in Section 3.3 that the system has a unique solution. So,
any vector in can be written as a linear combination of the vectors in and you can 
conclude that the set spans 

From Example 3 you know that the set

does not span because is in and cannot be expressed as a linear com-
bination of the vectors in 

Comparing the sets of vectors in Examples 5 and 6, note that the sets are the same except
for a seemingly insignificant difference in the third vector.

Example 5

Example 6

The difference, however, is significant, because the set spans whereas the set does
not. The reason for this difference can be seen in Figure 4.16. The vectors in lie in a
common plane; the vectors in do not.S1

S2

S2R3S1

S2 � ��1, 2, 3�, �0, 1, 2�, ��1, 0, 1��
S1 � ��1, 2, 3�, �0, 1, 2�, ��2, 0, 1��

S.
R3w � �1, �2, 2�R3

S � ��1, 2, 3�, �0, 1, 2�, ��1, 0, 1��

E X A M P L E  6 A Set That Does Not Span R3

R3.S
S,R3

c1

2c1

3c1

�

�

c2

2c2

�

�

2c3

c3

�

�

�

u1

u2

u3.

� �c1 � 2c3, 2c1 � c2, 3c1 � 2c2 � c3�.
�u1, u2, u3� � c1�1, 2, 3� � c2�0, 1, 2� � c3��2, 0, 1�

c3c2,c1,R3.u � �u1, u2, u3�

R3.S � ��1, 2, 3�, �0, 1, 2�, ��2, 0, 1��

E X A M P L E  5 A Spanning Set of R3

R3.

P2,R3



Sect ion 4 .4 Spanning Sets  and L inear  Independence 211

Figure 4.16

Although the set does not span all of it does span a subspace of —namely, the
plane in which the three vectors of lie. This subspace is called the span of as
indicated in the next definition.

The theorem below tells you that the span of any finite nonempty subset of a vector space
is a subspace of 

P R O O F To show that the set of all linear combinations of is a subspace of
show that it is closed under addition and scalar multiplication. Consider any two vectors

and in 

v � d1v1 � d2v2 � .  .  . � dkvk,

u � c1v1 � c2v2 � .  .  . � ckvk

span�S�,vu
V,

v1, v2, .  .  . , vk,span�S�,

V.V

S2,S2

R3R3,S2

x

y

−2
−1

−1
−2

1

1

2

2

3

z

S2 = {(1, 2, 3), (0, 1, 2), (−1, 0, 1)}
The vectors in S2 lie in a

common plane.

x

y

−2
−1

−1
−2

1

1

1

2

2

3

z

S1 = {(1, 2, 3), (0, 1, 2), (−2, 0, 1)}
The vectors in S1 do not lie

in a common plane.

If is a set of vectors in a vector space then the span of is the
set of all linear combinations of the vectors in 

span are real numbers .

The span of is denoted by or If it is said
that is spanned by or that spans V.S�v1, v2, .  .  . , vk�,V

span�S� � V,span�v1, v2, .  .  . , vk�.span�S�S

��S� � �c1v1 � c2v2 � .  .  . � ckvk : c1, c2, .  .  . , ck

S,
SV,S � �v1, v2, .  .  . , vk�Definition of the 

Span of a Set

If is a set of vectors in a vector space then is a subspace
of Moreover, is the smallest subspace of that contains in the sense that
every other subspace of that contains must contain span�S�.SV

S,Vspan�S�V.
span�S�V,S � �v1, v2, .  .  . , vk�THEOREM 4.7

Span(S) Is a Subspace of V
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where and are scalars. Then

and

which means that and are also in because they can be written as linear 
combinations of vectors in So, is a subspace of It is left to you to prove that

is the smallest subspace of that contains (See Exercise 50.)

Linear Dependence and Linear Independence

For a given set of vectors in a vector space the vector equation

always has the trivial solution

Often, however, there are also nontrivial solutions. For instance, in Example 1(a) you saw
that in the set

the vector can be written as a linear combination of the other two as follows.

The vector equation

has a nontrivial solution in which the coefficients are not all zero:

This characteristic is described by saying that the set is linearly dependent. Had the only
solution been the trivial one then the set would have been linearly
independent. This notion is essential to the study of linear algebra, and is formally stated
in the next definition.

S�c1 � c2 � c3 � 0�,
S

c3 � �1.c2 � �3,c1 � 1,

c1v1 � c2v2 � c3v3 � 0

v1 � 3v2 � v3

v1

S � ��1, 3, 1�, �0, 1, 2�, �1, 0, �5��,

v3v2v1

c1 � 0, c2 � 0, .  .  . , ck � 0.

c1v1 � c2v2 � .  .  . � ckvk � 0

V,S � �v1, v2, .  .  . , vk�

S.Vspan�S�
V.span�S�S.

span�S�cuu � v

cu � �cc1�v1 � �cc2�v2 � .  .  . � �cck�vk,

u � v � �c1 � d1�v1 � �c2 � d2�v2 � .  .  . � �ck � dk�vk

d1, d2, .  .  . , dkc1, c2, .  .  . , ck
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(a) The set in is linearly dependent because

(b) The set in is linearly dependent because

(c) The set in is linearly dependent because

The next example demonstrates a testing procedure for determining whether a set of 
vectors is linearly independent or linearly dependent.

Determine whether the set of vectors in is linearly independent or linearly dependent.

S O L U T I O N To test for linear independence or linear dependence, form the vector equation

If the only solution of this equation is

then the set is linearly independent. Otherwise, is linearly dependent. Expanding this
equation, you have

which yields the homogeneous system of linear equations in and shown below.

c1

2c1

3c1

�

�

c2

2c2

�

�

2c3

c3

�

�

�

0
0
0

c3c2,c1,

�c1 � 2c3, 2c1 � c2, 3c1 � 2c2 � c3� � �0, 0, 0�,
c1�1, 2, 3� � c2�0, 1, 2� � c3��2, 0, 1� � �0, 0, 0�

SS

c1 � c2 � c3 � 0,

c1v1 � c2v2 � c3v3 � 0.

S � ��1, 2, 3�, �0, 1, 2�, ��2, 0, 1��
v3v2v1

R3

E X A M P L E  8 Testing for Linear Independence

1�0, 0� � 0�1, 2� � �0, 0�.

R2S � ��0, 0�, �1, 2��

2�1, 0� � 5�0, 1� � ��2, 5� � �0, 0�.

R2S � ��1, 0�, �0, 1�, ��2, 5��

�2�1, 2� � �2, 4� � �0, 0�.

R2S � ��1, 2�, �2, 4��

E X A M P L E  7 Examples of Linearly Dependent Sets

A set of vectors in a vector space is called linearly independ-
ent if the vector equation

has only the trivial solution, If there are also nontrivial 
solutions, then is called linearly dependent.S

c1 � 0, c2 � 0, .  .  . , ck � 0.

c1v1 � c2v2 � .  .  . � ckvk � 0

VS � �v1, v2, .  .  . , vk�Definition of 

Linear Dependence and

Linear Independence
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The augmented matrix of this system reduces by Gauss-Jordan elimination as follows.

This implies that the only solution is the trivial solution

So, is linearly independent.

The steps shown in Example 8 are summarized as follows.

Determine whether the set of vectors in is linearly independent or linearly dependent.

S O L U T I O N Expanding the equation produces

Equating corresponding coefficients of equal powers of produces the homogeneous
system of linear equations in , , and shown below.

The augmented matrix of this system reduces by Gaussian elimination as follows.

�
1

0

0

2

1

0

0
1
3

0

0

0

0
��

1

1

�2

2

5

�1

0

1

1

0

0

0
�

c1

c1

�2c1

�

�

�

2c2

5c2

c2

�

�

c3

c3

�

�

�

0
0
0

c3c2c1

x

�c1 � 2c2� � �c1 � 5c2 � c3�x � ��2c1 � c2 � c3�x2 � 0 � 0x � 0x2.

c1�1 � x � 2x2� � c2�2 � 5x � x2� � c3�x � x2� � 0 � 0x � 0x2

c1v1 � c2v2 � c3v3 � 0

S � �1 � x � 2x2, 2 � 5x � x2, x � x2�
v3v2v1

P2

E X A M P L E  9 Testing for Linear Independence

S

c1 � c2 � c3 � 0.

�
1

0

0

0

1

0

0

0

1

0

0

0
��

1

2

3

0

1

2

�2

0

1

0

0

0
�

Let be a set of vectors in a vector space To determine whether 
is linearly independent or linearly dependent, perform the following steps.

1. From the vector equation write a homogeneous
system of linear equations in the variables and 

2. Use Gaussian elimination to determine whether the system has a unique solution.
3. If the system has only the trivial solution, then the set 

is linearly independent. If the system also has nontrivial solutions, then is linearly 
dependent.

S
Sc1 � 0, c2 � 0, .  .  . , ck � 0,

ck.c1, c2, . .  . ,
c1v1 � c2v2 � .  .  . � ckvk � 0,

SV.S � �v1, v2, .  .  . , vk�Testing for Linear

Independence and 

Linear Dependence
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This implies that the system has an infinite number of solutions. So, the system must have
nontrivial solutions, and you can conclude that the set is linearly dependent.

One nontrivial solution is

and

which yields the nontrivial linear combination

Determine whether the set of vectors in is linearly independent or linearly dependent.

S O L U T I O N From the equation

you have

which produces the system of linear equations in and shown below.

Using Gaussian elimination, the augmented matrix of this system reduces as follows.

The system has only the trivial solution and you can conclude that the set is linearly 
independent.

S

�
1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
0
��

2
1
0
1

3
0
2
1

1
0
2
0

0
0
0
0
�

2c1

c1

c1

�

�

3c2

2c2

c2

�

�

c3

2c3

� 0
� 0
� 0
� 0

c3c1, c2,

c1�2
0

1
1� � c2�3

2
0
1� � c3�1

2
0
0� � �0

0
0
0�,

c1v1 � c2v2 � c3v3 � 0,

S � ��2
0

1
1�, �3

2
0
1�, �1

2
0
0��

v3v2v1

M2,2

E X A M P L E  1 0 Testing for Linear Independence

�2��1 � x � 2x2� � ��1��2 � 5x � x2� � �3��x � x2� � 0.

c3 � 3,c2 � �1,c1 � 2,

S
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Determine whether the set of vectors in is linearly independent or linearly dependent.

S O L U T I O N From the equation

you obtain

This equation produces the system of linear equations in and shown below.

Using Gaussian elimination, you can row reduce the augmented matrix of this system as
follows.

The system has only the trivial solution, and you can conclude that the set is linearly 
independent.

If a set of vectors is linearly dependent, then by definition the equation

has a nontrivial solution (a solution for which not all the ’s are zero). For instance,
if then you can solve this equation for and write as a linear combination of
the other vectors and In other words, the vector depends on the other
vectors in the set. This property is characteristic of a linearly dependent set.

v1vk.v2, v3, .  .  . ,
v1v1c1 � 0,
ci

c1v1 � c2v2 � .  .  . � ckvk � 0

S

�
1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0
��

1

0

�1

0

1

1

0

2

0

3

1

�2

0

1

�1

2

0

0

0

0
�

c1

�c1

� c2

c2

2c2

�

�

�

3c3

c3

2c3

�

�

�

c4

c4

2c4

�

�

�

�

0
0
0
0

c4c1, c2, c3,

c1�
1

0

�1

0
� � c2�

1

1

0

2
� � c3�

0

3

1

�2
� � c4�

0

1

�1

2
� � �

0

0

0

0
�.

c1v1 � c2v2 � c3v3 � c4v4 � 0,

S � ��
1
0

�1
0
�, �

1
1
0
2
�, �

0
3
1

�2
�, �

0
1

�1
2
��

v4v3v2v1

M4,1

E X A M P L E  1 1 Testing for Linear Independence
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P R O O F To prove the theorem in one direction, assume is a linearly dependent set. Then there exist
scalars (not all zero) such that

Because one of the coefficients must be nonzero, no generality is lost by assuming 
Then solving for as a linear combination of the other vectors produces

Conversely, suppose the vector in is a linear combination of the other vectors. That is,

Then the equation has at least one coefficient,
that is nonzero, and you can conclude that is linearly dependent.

In Example 9, you determined that the set

is linearly dependent. Show that one of the vectors in this set can be written as a linear 
combination of the other two.

S O L U T I O N In Example 9, the equation produced the system

This system has an infinite number of solutions represented by and
Letting results in the equation So, can be written

as a linear combination of and as follows.

v2 � 2v1 � 3v3

v3v1

v22v1 � v2 � 3v3 � 0.t � 1c1 � 2t.
c2 � �t,c3 � 3t,

c1

c1

�2c1

�

�

�

2c2

5c2

c2

�

�

c3

c3

�

�

�

0
0
0.

c1v1 � c2v2 � c3v3 � 0

S � �1 � x � 2x2, 2 � 5x � x2, x � x2�
v3v2v1

E X A M P L E  1 2 Writing a Vector as a Linear Combination of Other Vectors

S
�1,�v1 � c2v2 � c3v3 � .  .  . � ckvk � 0

v1 � c2v2 � c3v3 � .  .  . � ckvk.

Sv1

v1 � �
c2

c1

v2 �
c3

c1

v3 � .  .  . �
ck

c1

vk.

c1v1 � �c2v2 � c3v3 � .  .  . � ckvk

v1

c1 � 0.

c1v1 � c2v2 � c3v3 � .  .  . � ckvk � 0.

c1, c2, c3, .  .  . , ck

S

A set is linearly dependent if and only if at least one of the
vectors can be written as a linear combination of the other vectors in S.vj

k 
 2,S � �v1, v2, .  .  . , vk�,THEOREM 4.8

A Property of Linearly

Dependent Sets
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A check yields

Theorem 4.8 has a practical corollary that provides a simple test for determining whether
two vectors are linearly dependent. In Exercise 69 you are asked to prove this corollary.

R E M A R K : The zero vector is always a scalar multiple of another vector in a vector space.

(a) The set

is linearly independent because and are not scalar multiples of each other, as
shown in Figure 4.17(a).

(b) The set

is linearly dependent because as shown in Figure 4.17(b).
(a) (b)

Figure 4.17

yx

−2

−2 44

4

2

6

−4

z

v2

v1

S = {(4, −4, −2), (−2, 2, 1)}
The set S is linearly

dependent because v1 = −2v2.

yx

−2
−1

−1 22

2

3

v2

v1

z

S = {(1, 2, 0), (−2, 2, 1)}
The set S is linearly

independent.

v1 � �2v2,

S � ��4, �4, �2�, ��2, 2, 1��
v2v1

v2v1

S � ��1, 2, 0�, ��2, 2, 1��
v2v1

E X A M P L E  1 3 Testing for Linear Dependence of Two Vectors

� 2 � 5x � x2.

� 2 � 2x � 4x2 � 3x � 3x2

 2 � 5x � x2 � 2�1 � x � 2x2� � 3�x � x2�

Two vectors and in a vector space are linearly dependent if and only if one is a
scalar multiple of the other.

VvuTHEOREM 4.8

Corollary 
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SECTION 4.4

In Exercises 1–4, determine whether each vector can be written as
a linear combination of the vectors in 

1.

(a) (b)

(c) (d)

2.

(a) (b)

(c) (d)

3.

(a) (b)

(c) (d)

4.

(a)

(b)

(c)

(d)

In Exercises 5–16, determine whether the set spans If the set
does not span give a geometric description of the subspace that
it does span.

5. 6.

7. 8.

9. 10.

11.

12.

13.

14.

15.

16.

In Exercises 17–22, determine whether the set spans If the set
does not span give a geometric description of the subspace that
it does span.

17.

18.

19.

20.

21.

22.

In Exercises 23–34, determine whether the set is linearly 
independent or linearly dependent.

23. 24.

25. 26.

27.

28.

29.

30.

31.

32.

33.

34.

In Exercises 35–38, show that the set is linearly dependent by 
finding a nontrivial linear combination (of vectors in the set) whose
sum is the zero vector. Then express one of the vectors in the set as
a linear combination of the other vectors in the set.

35.

36.

37.

38.

39. For which values of t is each set linearly independent?

(a)

(b)

40. For which values of t is each set linearly independent?

(a)

(b)

41. Given the matrices

and

in determine which of the matrices listed below are linear
combinations of and 

(a) (b)

(c) (d) �0

0

0

0���2

1

28

�11�
�6

9

2

11�� 6

10

�19

7�
B.A

M2,2,

B � �0

1

5

�2�A � �2

4

�3

1�

S � ��t, t, t�, �t, 1, 0�, �t, 0, 1��
S � ��t, 0, 0�, �0, 1, 0�, �0, 0, 1��

S � ��t, 1, 1�, �1, 0, 1�, �1, 1, 3t��
S � ��t, 1, 1�, �1, t, 1�, �1, 1, t��

S � ��1, 2, 3, 4�, �1, 0, 1, 2�, �1, 4, 5, 6��
S � ��1, 1, 1�, �1, 1, 0�, �0, 1, 1�, �0, 0, 1��
S � ��2, 4�, ��1, �2�, �0, 6��
S � ��3, 4�, ��1, 1�, �2, 0��

S � ��0, 0, 0, 1�, �0, 0, 1, 1�, �0, 1, 1, 1�, �1, 1, 1, 1��
S � ��4, �3, 6, 2�, �1, 8, 3, 1�, �3, �2, �1, 0��
S � ��1, 0, 0�, �0, 4, 0�, �0, 0, �6�, �1, 5, �3��
S � ���4, �3, 4�, �1, �2, 3�, �6, 0, 0��
S � ��3

4, 5
2, 3

2�, �3, 4, 72�, ��3
2, 6, 2��

S � ��1, 1, 1�, �2, 2, 2�, �3, 3, 3��
S � ��6, 2, 1�, ��1, 3, 2��
S � ��1, �4, 1�, �6, 3, 2��

S � ��1, 0�, �1, 1�, �2, �1��S � ��0, 0�, �1, �1��
S � ���2, 4�, �1, �2��S � ���2, 2�, �3, 5��

S

S � ��1, 0, 3�, �2, 0, �1�, �4, 0, 5�, �2, 0, 6��

S � ��1, �2, 0�, �0, 0, 1�, ��1, 2, 0��
S � ��1, 0, 1�, �1, 1, 0�, �0, 1, 1��
S � ���2, 5, 0�, �4, 6, 3��
S � ��6, 7, 6�, �3, 2, �4�, �1, �3, 2��
S � ��4, 7, 3�, ��1, 2, 6�, �2, �3, 5��

R3,
R3.S

S � ���1, 2�, �2, �1�, �1, 1��
S � ���1, 4�, �4, �1�, �1, 1��
S � ��0, 2�, �1, 4��
S � ���1, 2�, �2, �4��
S � ��1, 2�, ��2, �4�,�1

2, 1��
S � ��1, 3�, ��2, �6�, �4, 12��

S � ��1, 1��S � ���3, 5��
S � ��2, 0�, �0, 1��S � ��5, 0�, �5, �4��
S � ��1, �1�, �2, 1��S � ��2, 1�, ��1, 2��

R2,
R2.S

z � �8, 4, �1, 17
4 �

w � ��4, �14, 27
2 , 53

8 �
v � �49

2 , 99
4 , �14, 19

2 �
u � ��42, 113, �112, �60�

S � ��6, �7, 8, 6�, �4, 6, �4, 1��
z � �2, 20, �3�w � �1

3, 4
3, 1

2�
v � ��3, 15, 18�u � ��1, 5, �6�

S � ��2, 0, 7�, �2, 4, 5�, �2, �12, 13��
z � ��4, �3, 3�w � ��1, �22, 22�
v � ��2, �6, 6�u � �1, �5, �5�

S � ��1, 2, �2�, �2, �1, 1��
z � ��1, �2, 2�w � �1, �8, 12�
v � �8, �

1
4, 27

4 �u � �1, 1, �1�
S � ��2, �1, 3�, �5, 0, 4��

S.
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42. Determine whether the following matrices from form a 
linearly independent set.

In Exercises 43–46, determine whether each set in is linearly 
independent.

43.

44.

45.

46.

47. Determine whether the set spans 

48. Determine whether the set 
spans

49. By inspection, determine why each of the sets is linearly 
dependent.

(a)

(b)

(c)

50. Complete the proof of Theorem 4.7.

In Exercises 51 and 52, determine whether the sets and span
the same subspace of 

51.

52.

True or False? In Exercises 53 and 54, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false, provide
an example that shows the statement is not true in all cases or cite an
appropriate statement from the text.

53. (a) A set of vectors in a vector space is
called linearly dependent if the vector equation 

has only the trivial solution.
(b) Two vectors and in a vector space are linearly 

dependent if and only if one is a scalar multiple of the other.

54. (a) A set is linearly independent
if and only if at least one of the vectors can be written as
a linear combination of the other vectors.

(b) If a subset spans a vector space then every vector 
in can be written as a linear combination of the vectors 
in

In Exercises 55 and 56, prove that the set of vectors is linearly 
independent and spans 

55.

56.

57. Guided Proof Prove that a nonempty subset of a finite set of 
linearly independent vectors is linearly independent.

Getting Started: You need to show that a subset of a linearly 
independent set of vectors cannot be linearly dependent.

(i) Suppose is a set of linearly independent vectors. Let
be a subset of 

(ii) If is linearly dependent, then there exist constants
not all zero satisfying the vector equation 

(iii) Use this fact to derive a contradiction and conclude
that is linearly independent.

58. Prove that if is a nonempty subset of the finite set and 
is linearly dependent, then so is 

59. Prove that any set of vectors containing the zero vector is 
linearly dependent.

60. Provided that is a linearly independent set 
of vectors and that the set is linearly 
dependent, prove that is a linear combination of the ’s.

61. Let be a linearly independent set of vectors in
a vector space Delete the vector from this set and prove that
the set cannot span 

62. If is spanned by and one of these vectors
can be written as a linear combination of the other 
vectors, prove that the span of these vectors is also 

63. Writing The set is linearly
dependent, but cannot be written as a linear combina-
tion of and Why does this statement not
contradict Theorem 4.8?

64. Writing Under what conditions will a set consisting of a 
single vector be linearly independent?

65. Let be a linearly independent set. Prove that the set
is linearly independent.

66. Let and w be any three vectors from a vector space 
Determine whether the set of vectors 
is linearly independent or linearly dependent.

67. Let and . Graph both functions on the
interval Show that these functions are linearly
dependent in the vector space but linearly independent
in C ��1, 1�.

C �0, 1� ,
�2 ≤ x ≤ 2.

f2�x� � �x�f1�x� � 3x

�v � u, w � v, u � w�
V.u, v,

�u � v, u � v�
S � �u, v�

��1, 0, 2�.�1, 0, �2�
�1, 2, 3�

��1, 2, 3�, �1, 0, �2�, ��1, 0, 2��
V.k � 1
k � 1

�v1, v2, .  .  . , vk�V

V.�v1, v2, .  .  . , vk�1�
vkV.

�v1, v2, .  .  . , vk�
uiv

�u1, u2, .  .  . , un, v�
�u1, u2, .  .  . , un�

S2.
S1S2,S1

T

ckvk � 0..  .  . �c2v2 �
c1v1 �

T

S.T
S

B � ��1, 2, 3�, �3, 2, 1�, �0, 0, 1��
B � ��1, 1, 1�, �1, 1, 0�, �1, 0, 0��

R3.

S.
V

V,S

vj

k 
 2,S � �v1, v2, .  .  . , vk�,

Vvu
� ckvk � 0c2v2 � .  .  .

c1v1 �
S � �v1, v2, .  .  . , vk�

S2 � ��1, 1, 1�, �1, 1, 2�, �2, 1, 1��
S1 � ��0, 0, 1�, �0, 1, 1�, �2, 1, 1��
S2 � ���2, �6, 0�, �1, 1, �2��
S1 � ��1, 2, �1�, �0, 1, 1�, �2, 5, �1��

R3.
S2S1

S � ��0, 0�, �1, 0��
S � ��1, �6, 2�, �2, �12, 4��
S � ��1, �2�, �2, 3�, ��2, 4��

P3.x2 � 4�
S � �x2 � 2x, x3 � 8, x3 � x2,

P2.S � �1, x2, x2 � 2�
S � �x2, x2 � 1�
S � �x2 � 3x � 1, 2x2 � x � 1, 4x�
S � �x2 � 1, 2x � 5�
S � �2 � x, 2x � x2, 6 � 5x � x2�

P2

C � � 1

22

�8

23�B � � 4

�2

3

3�,A � �1

4

�1

5�,

M2,2



Figure 4.18

x y

z

(0, 1, 0)(1, 0, 0)

(0, 0, 1)

Basis and Dimension

In this section you will continue your study of spanning sets. In particular, you will look at
spanning sets (in a vector space) that both are linearly independent and span the entire
space. Such a set forms a basis for the vector space. (The plural of basis is bases.)

R E M A R K : This definition tells you that a basis has two features. A basis must have
enough vectors to span but not so many vectors that one of them could be written as a
linear combination of the other vectors in 

This definition does not imply that every vector space has a basis consisting of a finite
number of vectors. In this text, however, the discussion of bases is restricted to those con-
sisting of a finite number of vectors. Moreover, if a vector space has a basis consisting of
a finite number of vectors, then is finite dimensional. Otherwise, is called infinite 
dimensional. [The vector space of all polynomials is infinite dimensional, as is the vector
space of all continuous functions defined on the real line.] The vector space

consisting of the zero vector alone, is finite dimensional.

Show that the following set is a basis for 

S O L U T I O N Example 4(a) in Section 4.4 showed that spans Furthermore, is linearly independent 
because the vector equation 

has only the trivial solution (Try verifying this.) So, is a basis for 
(See Figure 4.18.)

R3.Sc1 � c2 � c3 � 0.

c1�1, 0, 0� � c2�0, 1, 0� � c3�0, 0, 1� � �0, 0, 0�

SR3.S

S � ��1, 0, 0�, �0, 1, 0�, �0, 0, 1��

R3.

E X A M P L E  1 The Standard Basis for R3

V � �0�,
C���, ��

P
VV

V

S.
V,

S

4.5
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68. Writing Let be a nonsingular matrix of order 3. Prove that
if is a linearly independent set in then the set

is also linearly independent. Explain, by means
of an example, why this is not true if is singular.

69. Prove the corollary to Theorem 4.8: Two vectors and are 
linearly dependent if and only if one is a scalar multiple of 
the other.

vu

A
�Av1, Av2, Av3�

M3,1,�v1, v2, v3�
A

A set of vectors in a vector space is called a basis for if the
following conditions are true.

1. spans . 2. is linearly independent.SVS

VVS � �v1, v2, .  .  . , vn�Definition of Basis
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The basis is called the standard basis for This result
can be generalized to -space. That is, the vectors

form a basis for called the standard basis for
The next two examples describe nonstandard bases for and 

Show that the set

is a basis for 

S O L U T I O N According to the definition of a basis for a vector space, you must show that spans and
is linearly independent.
To verify that spans let

represent an arbitrary vector in To show that can be written as a linear combination
of and consider the equation

Equating corresponding components yields the system of linear equations shown below.

Because the coefficient matrix of this system has a nonzero determinant, you know that the
system has a unique solution. You can now conclude that spans 

To show that is linearly independent, consider the linear combination

Equating corresponding components yields the homogeneous system

c1 � c2 � 0.

c1 � c2 � 0

�c1 � c2, c1 � c2� � �0, 0�.
c1�1, 1� � c2�1, �1� � �0, 0�

c1v1 � c2v2 � 0

S
R2.S

c1 � c2 � x2

c1 � c2 � x1

�c1 � c2, c1 � c2� � �x1, x2�.
c1�1, 1� � c2�1, �1� � �x1, x2�

c1v1 � c2v2 � x

v2,v1

xR2.

x � �x1, x2�

R2,S
S

R2S

R2.

S � ��1, 1�, �1, �1��
v2v1

E X A M P L E  2 The Nonstandard Basis for R2

R3.R2
Rn.Rn

en � �0, 0, .  .  . , 1�

.

.

.

e2 � �0, 1, .  .  . , 0�
e1 � �1, 0, .  .  . , 0�

n
R3.S � ��1, 0, 0�, �0, 1, 0�, �0, 0, 1��
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Because the coefficient matrix of this system has a nonzero determinant, you know that the
system has only the trivial solution

So, you can conclude that is linearly independent.
You can conclude that is a basis for because it is a linearly independent spanning

set for 

From Examples 5 and 8 in the preceding section, you know that

spans and is linearly independent. So, is a basis for 

Show that the vector space has the basis

S O L U T I O N It is clear that spans because the span of consists of all polynomials of the form

, , and are real,

which is precisely the form of all polynomials in 
To verify the linear independence of recall that the zero vector in is the polyno-

mial for all The test for linear independence yields the equation 

for all 

This third-degree polynomial is said to be identically equal to zero. From algebra you know
that for a polynomial to be identically equal to zero, all of its coefficients must be zero; 
that is,

So, is linearly independent and is a basis for 

R E M A R K : The basis is called the standard basis for Similarly, the
standard basis for is

S � �1, x, x2, .  .  . , xn�.

Pn

P3.S � �1, x, x2, x3�

P3.S

a0 � a1 � a2 � a3 � 0.

x.a0 � a1x � a2x
2 � a3x

3 � 0�x� � 0,

x.0�x� � 0
P30S,

P3.

a3a0, a1, a2a0 � a1x � a2x
2 � a3x

3

SP3S

S � �1, x, x2, x3�.

P3

E X A M P L E  4 A Basis for Polynomials

R3.SR3

S � ��1, 2, 3�, �0, 1, 2�, ��2, 0, 1��

E X A M P L E  3 A Nonstandard Basis for R3

R2.
R2S

S

c1 � c2 � 0.
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The set

is a basis for This set is called the standard basis for In a similar manner, the
standard basis for the vector space consists of the distinct matrices having
a single 1 and all the other entries equal to zero.

P R O O F The existence portion of the proof is straightforward. That is, because spans you know
that an arbitrary vector in can be expressed as 

To prove uniqueness (that a vector can be represented in only one way), suppose has
another representation Subtracting the second represen-
tation from the first produces

Because is linearly independent, however, the only solution to this equation is the trivial 
solution

which means that for all So, has only one representation for the
basis

Let be any vector in Show that the equation 
has a unique solution for the basis 

S O L U T I O N From the equation

the following system of linear equations is obtained.

� �c1 � 2c3, 2c1 � c2, 3c1 � 2c2 � c3�,
�u1, u2, u3� � c1�1, 2, 3� � c2�0, 1, 2� � c3��2, 0, 1�

S � �v1, v2, v3� � ��1, 2, 3�, �0, 1, 2�, ��2, 0, 1��.
u � c1v1 � c2v2 � c3v3R3.u � �u1, u2, u3�

E X A M P L E  6 Uniqueness of Basis Representation

S.
ui � 1, 2, .  .  . , n.ci � bi

cn � bn � 0,.  .  . ,c2 � b2 � 0,c1 � b1 � 0,

S

u � u � �c1 � b1�v1 � �c2 � b2�v2 � .  .  . � �cn � bn�vn � 0.

u � b1v1 � b2v2 � .  .  . � bnvn.
u

u � c1v1 � c2v2 � .  .  . � cnvn.Vu
V,S

m � nmnMm,n

M2,2.M2,2.

S � ��1

0

0

0�, �0

0

1

0�, �0

1

0

0�, �0

0

0

1��

E X A M P L E  5 A Basis for M2,2

If is a basis for a vector space then every vector in can be
written in one and only one way as a linear combination of vectors in S.

VV,S � �v1, v2, .  .  . , vn�
THEOREM 4.9

Uniqueness of 

Basis Representation
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A c u

Because the matrix is invertible, you know this system has a unique solution 
Solving for yields

which implies

For instance, the vector can be represented uniquely as a linear combination
of and as follows.

You will now study two important theorems concerning bases.

P R O O F Let be any set of vectors in where To show that is 
linearly dependent, you need to find scalars (not all zero) such that

Equation 1

Because is a basis for it follows that each is a linear combination of vectors in 
and you can write

Substituting each of these representations of into Equation 1 and regrouping terms produces

d1v1 � d2v2 � .  .  . � dnvn � 0,

ui

u1

u2.
.
.

um

�

�

�

c11v1

c12v1.
.
.

c1mv1

�

�

�

c21v2

c22v2.
.
.

c2mv2

�

�

�

. . .

. . .

. . .

�

�

�

cn1vn

cn2vn.
.
.

cnmvn.

S,uiV,S

k1u1 � k2u2 � .  .  . � kmum � 0.

k1, k2, .  .  . , km

S1m > n.V,mS1 � �u1, u2, .  .  . , um�

�1, 0, 0� � �v1 � 2v2 � v3

v3v2,v1,
u � �1, 0, 0�

c1

c2

c3

�

�

�

�u1

2u1

�u1

�

�

�

4u2

7u2

2u2

�

�

�

2u3

4u3

u3.

A�1 � �
�1

2

�1

4

�7

2

�2

4

�1
�,

A�1

c � A�1u.A

�
1

2

3

0

1

2

�2

0

1
� �

c1

c2

c3
� � �

u1

u2

u3
�

c1

2c1

3c1

�

�

c2

2c2

�

�

2c3

c3

�

�

�

u1

u2

u3

If is a basis for a vector space then every set containing more
than vectors in is linearly dependent.Vn

V,S � �v1, v2, .  .  . , vn�
THEOREM 4.10

Bases and 

Linear Dependence
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where Because the ’s form a linearly independent 
set, you can conclude that each So, the system of equations shown below is 
obtained.

But this homogeneous system has fewer equations than variables and from
Theorem 1.1 you know it must have nontrivial solutions. Consequently, is linearly 
dependent.

(a) Because has a basis consisting of three vectors, the set

must be linearly dependent.

(b) Because has a basis consisting of four vectors, the set

must be linearly dependent.

Because has the standard basis consisting of vectors, it follows from Theorem 4.10
that every set of vectors in containing more than vectors must be linearly dependent.
Another significant consequence of Theorem 4.10 is shown in the next theorem.

P R O O F Let

be the basis for and let

be any other basis for Because is a basis and is linearly independent, Theorem 4.10
implies that Similarly, because is linearly independent and is a basis.
Consequently, n � m.

S2S1n � mm � n.
S2S1V.

S2 � �u1, u2, .  .  . , um�

V,

S1 � �v1, v2, .  .  . , vn�

nRn
nRn

S � �1, 1 � x, 1 � x, 1 � x � x2, 1 � x � x2�

P3

S � ��1, 2, �1�, �1, 1, 0�, �2, 3, 0�, �5, 9, �1��

R3

E X A M P L E  7 Linearly Dependent Sets in R3 and P3

S1

k1, k2, .  .  . , km,

c11k1

c21k1.
.
.

cn1k1

�

�

�

c12k2

c22k2.
.
.

cn2k2

�

�

�

. . .

. . .

. . .

�

�

�

c1mkm

c2mkm.
.
.

cnmkm

�

�

�

0
0
.
.
.
0

di � 0.
vidi � ci1k1 � ci2k2 � .  .  . � cimkm.

If a vector space has one basis with vectors, then every basis for has vectors.nVnV
THEOREM 4.11

Number of Vectors 

in a Basis
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Use Theorem 4.11 to explain why each of the statements below is true.

(a) The set is not a basis for 
(b) The set

is not a basis for 

S O L U T I O N (a) The standard basis for has three vectors, and has only two. By Theorem 4.11,
cannot be a basis for 

(b) The standard basis for has four elements. By Theorem 4.11, the
set has too many elements to be a basis for 

The Dimension of a Vector Space

The discussion of spanning sets, linear independence, and bases leads to an important
notion in the study of vector spaces. By Theorem 4.11, you know that if a vector space 
has a basis consisting of vectors, then every other basis for the space also has vectors.
The number is called the dimension of

This definition allows you to observe the characteristics of the dimensions of the 
familiar vector spaces listed below. In each case, the dimension is determined by simply
counting the number of vectors in the standard basis.

1. The dimension of with the standard operations is 
2. The dimension of with the standard operations is 
3. The dimension of with the standard operations is 

If is a subspace of an -dimensional vector space, then it can be shown that is finite
dimensional and the dimension of is less than or equal to (See Exercise 81.) In the
next three examples, you will look at a technique for determining the dimension of a 
subspace. Basically, you determine the dimension by finding a set of linearly independent
vectors that spans the subspace. This set is a basis for the subspace, and the dimension of
the subspace is the number of vectors in the basis.

n.W
WnW

mn.Mm,n

n � 1.Pn

n.Rn

V.n
nn

V

P3.S2

S � �1, x, x2, x3�,P3,
R3.

S1S1R3

P3.

S2 � �x � 2, x2, x3 � 1, 3x � 1, x2 � 2x � 3�

R3.S1 � ��3, 2, 1�, �7, �1, 4��

E X A M P L E  8 Spanning Sets and Bases

If a vector space has a basis consisting of vectors, then the number is called the 
dimension of denoted by If consists of the zero vector alone, the 
dimension of is defined as zero.V

Vdim�V� � n.V,
nnVDefinition of Dimension 

of a Vector Space
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Determine the dimension of each subspace of 

(a) and are real numbers
(b) is a real number

S O L U T I O N The goal in each example is to find a set of linearly independent vectors that spans the 
subspace.
(a) By writing the representative vector as

you can see that is spanned by the set

Using the techniques described in the preceding section, you can show that this set 
is linearly independent. So, it is a basis for and you can conclude that is a two-
dimensional subspace of 

(b) By writing the representative vector as

you can see that is spanned by the set So, is a one-dimensional 
subspace of 

R E M A R K : In Example 9(a), the subspace is a two-dimensional plane in determined by
the vectors and In Example 9(b), the subspace is a one-dimensional line.

Find the dimension of the subspace of spanned by

S O L U T I O N Although is spanned by the set is not a basis for because is a linearly dependent
set. Specifically, can be written as a linear combination of and as follows.

This means that is spanned by the set Moreover, is linearly independ-
ent because neither vector is a scalar multiple of the other, and you can conclude that the 
dimension of is 2.W

S1S1 � �v1, v2�.W

v3 � 2v1 � v2

v2v1v3

SWSS,W

S � ���1, 2, 5, 0�, �3, 0, 1, �2�, ��5, 4, 9, 2��.

v3v2v1

R4W

E X A M P L E  1 0 Finding the Dimension of a Subspace

�1, �1, 0�.�0, 1, 1�
R3W

R3.
WS � ��2, 1, 0��.W

�2b, b, 0� � b�2, 1, 0�,

�2b, b, 0�

R3.
WW,

S � ��0, 1, 1�, �1, �1, 0��.

W

� c�0, 1, 1� � d�1, �1, 0�,
�d, c � d, c� � �0, c, c� � �d, �d, 0�

�d, c � d, c�

�W � ��2b, b, 0�: b
�dW � ��d, c � d, c�: c

R3.

E X A M P L E  9 Finding the Dimension of a Subspace
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Let be the subspace of all symmetric matrices in What is the dimension of 

S O L U T I O N Every symmetric matrix has the form listed below.

So, the set

spans Moreover, can be shown to be linearly independent, and you can conclude that
the dimension of is 3.

Usually, to conclude that a set

is a basis for a vector space you must show that satisfies two conditions: spans and
is linearly independent. If is known to have a dimension of however, then the next 
theorem tells you that you do not need to check both conditions: either one will suffice. The
proof is left as an exercise. (See Exercise 82.)

Show that the set of vectors is a basis for 

S � ��
1

2

�1

3

4
�, �

0

1

3

�2

3
�, �

0

0

2

�1

5
�, �

0

0

0

2

�3
�, �

0

0

0

0

�2
��

v5v4v3v2v1

M5,1.

E X A M P L E  1 2 Testing for a Basis in an n-Dimensional Space

n,V
VSSV,

S � �v1, v2, .  .  . , vn�

W
SW.

S � ��1

0

0

0�, �0

1

1

0�, �0

0

0

1��

� a�1

0

0

0� � b�0

1

1

0� � c�0

0

0

1�

A � �a

b

b

c� � �a

0

0

0� � �0

b

b

0� � �0

0

0

c�
2 � 2

W?M2,2.W

E X A M P L E  1 1 Finding the Dimension of a Subspace

Let be a vector space of dimension 

1. If is a linearly independent set of vectors in then is a basis
for

2. If spans then is a basis for V.SV,S � �v1, v2, .  .  . , vn�
V.

SV,S � �v1, v2, .  .  . , vn�
n.VTHEOREM 4.12

Basis Tests in an 

n-Dimensional Space
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S O L U T I O N Because has five vectors and the dimension of is five, you can apply Theorem 4.12 to
verify that is a basis by showing either that is linearly independent or that spans 
To show the first of these, form the vector equation

which yields the homogeneous system of linear equations shown below.

Because this system has only the trivial solution, must be linearly independent. So, by
Theorem 4.12, is a basis for M5,1.S

S

c1

2c1

�c1

3c1

4c1

�

�

�

�

c2

3c2

2c2

3c2

�

�

�

2c3

c3

5c3

�

�

2c4

3c4 � 2c5

�

�

�

�

�

0
0
0
0
0

c1v1 � c2v2 � c3v3 � c4v4 � c5v5 � 0,

M5,1.SSS
M5,1S

SECTION 4.5

In Exercises 1–6, write the standard basis for the vector space.

1. 2. 3.

4. 5. 6.

Writing In Exercises 7–14, explain why is not a basis for 

7.

8.

9.

10.

11.

12.

13.

14.

Writing In Exercises 15–20, explain why is not a basis for 

15.

16.

17.

18.

19.

20.

Writing In Exercises 21–24, explain why is not a basis for 

21.

22.

23.

24.

Writing In Exercises 25–28, explain why is not a basis for 

25.

26.

27.

28. S � ��1

0

0

1�, �0

1

1

0�, �1

0

1

0��

S � ��1

0

0

0�, �0

1

1

0�, �1

0

0

1�, � 8

�4

�4

3��

S � ��1

0

1

0�, �0

1

1

0��

S � ��1

0

0

1�, �0

1

1

0��
M2,2.S

S � �6x � 3, 3x2, 1 � 2x � x2�
S � �1 � x, 1 � x2, 3x2 � 2x � 1�
S � �2, x, x � 3, 3x2�
S � �1, 2x, x2 � 4, 5x�

P2.S

S � ��6, 4, 1�, �3, �5, 1�, �8, 13, 6�, �0, 6, 9��
S � ��0, 0, 0�, �1, 0, 0�, �0, 1, 0��

S � ��1, 1, 2�, �0, 2, 1��
S � ��7, 0, 3�, �8, �4, 1��
S � ��2, 1, �2�, ��2, �1, 2�, �4, 2, �4��
S � ��1, 3, 0�, �4, 1, 2�, ��2, 5, �2��

R3.S

S � ���1, 2��
S � ���3, 2��
S � ��4, �3�, �8, �6��
S � ��6, �5�, �12, �10��
S � ��2, 3�, �6, 9��
S � ���4, 5�, �0, 0��
S � ���1, 2�, �1, �2�, �2, 4��
S � ��1, 2�, �1, 0�, �0, 1��

R2.S

P2P4M4,1

M2,4R4R6
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In Exercises 29–34, determine whether the set is a basis 
for

29. 30.

31. 32.

33. 34.

In Exercises 35–42, determine whether is a basis for the indicated
vector space.

35. for

36. for

37. for

38. for

39. for

40. for

41. for

42. for

In Exercises 43 and 44, determine whether is a basis for 

43.

44.

In Exercises 45–48, determine whether is a basis for 

45.

46.

47.

48.

In Exercises 49–54, determine whether is a basis for If it is,
write as a linear combination of the vectors in 

49.

50.

51.

52.

53.

54.

In Exercises 55–62, determine the dimension of the vector space.

55. 56. 57. 58.

59. 60. 61. 62.

63. Find a basis for (the vector space of all diagonal
matrices). What is the dimension of this vector space?

64. Find a basis for the vector space of all symmetric 
matrices. What is the dimension of this vector space?

65. Find all subsets of the set that forms a basis for 

66. Find all subsets of the set that forms a basis for 

67. Find a basis for that includes the vector 

68. Find a basis for that includes the set 

In Exercises 69 and 70, (a) give a geometric description of, (b) find
a basis for, and (c) determine the dimension of the subspace 
of

69.

70.

In Exercises 71 and 72, (a) give a geometric description of, (b) find
a basis for, and (c) determine the dimension of the subspace W of

71.

72. W � ��2t � t, s, t �: s and t are real numbers�
W � ��2t, t, �t�: t is a real number�

R3.

W � ��0, t): t is a real number�
W � ��2t, t�: t is a real number�

R2.
W

S � ��1, 0, 2�, (0, 1, 1��.R3

�1, 1�.R2

S � ��1, 3, �2�, ��4, 1, 1�, ��2, 7, �3�, �2, 1, 1��
R3.

S � ��1, 0�, �0, 1�, �1, 1��
R2.

3 � 3

3 � 3D3,3

M3,2M2,3P4P7

R3RR4R6

S � ��1, 4, 7�, �3, 0, 1�, �2, 1, 2��

S � ��2
3, 5

2, 1�, �1, 3
2, 0�, �2, 12, 6��

S � ��1, 0, 1�, �0, 0, 0�, �0, 1, 0��
S � ��0, 0, 0�, �1, 3, 4�, �6, 1, �2��
S � ��1, 0, 0�, �1, 1, 0�, �1, 1, 1��
S � ��4, 3, 2�, �0, 3, 2�, �0, 0, 2��

S.u � �8, 3, 8�
R3.S

S � �t3 � 1, 2t2, t � 3, 5 � 2t � 2t2 � t3�
S � �4 � t, t3, 6t2, t3 � 3t, 4t � 1�
S � �4t � t2, 5 � t3, 3t � 5, 2t3 � 3t2�
S � �t3 � 2t2 � 1, t2 � 4, t3 � 2t, 5t�

P3.S

S � �� 1

�5

2

4�, �2

6

�7

2�, � 4

11

�9

12�, �12

17

�16

42��

S � ��2

0

0

3�, �1

0

4

1�, �0

3

1

2�, �0

2

1

0��
M2,2.S

R4S � ��1, 0, 0, 1�, �0, 2, 0, 2�, �1, 0, 1, 0�, �0, 2, 2, 0��
R4S � ���1, 2, 0, 0�, �2, 0, �1, 0�, �3, 0, 0, 4�, �0, 0, 5, 0��

R3S � ��0, 0, 0�, �1, 5, 6�, �6, 2, 1��
R3S � ��0, 3, �2�, �4, 0, 3�, ��8, 15, �16��

R3S � ��2, 1, 0�, �0, �1, 1��
R3S � ��1, 5, 3�, �0, 1, 2�, �0, 0, 6��

R2S � ��1, 2�, �1, �1��
R2S � ��3, �2�, �4, 5��

S

−1 1

−1

1

x

y

v1 v2

1

2

x

y

1 2

v1

v2

−1 1

−1

1

x

v1v2

y

−1 1

−1

1

x

y

v1

v2

−1 1

−1

1

xv1
v2

y

−1 1

−1

1

x

y

v1

v2

R2.
�v1, v2�
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In Exercises 73–76, find (a) a basis for and (b) the dimension of the
subspace W of

73.

74.

75.

76.

True or False? In Exercises 77 and 78, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false, pro-
vide an example that shows the statement is not true in all cases or
cite an appropriate statement from the text.

77. (a) If then there exists a set of vectors in 
that will span 

(b) If then there exists a set of vectors in 
that will span 

78. (a) If then any set of vectors in must be
linearly dependent.

(b) If then any set of vectors in must be
linearly independent.

79. Prove that if is a basis for a vector
space and is a nonzero scalar, then the set 

is also a basis for 

80. Prove that the vector space of all polynomials is infinite
dimensional.

81. Prove that if is a subspace of a finite-dimensional vector space
then

82. Prove Theorem 4.12.

83. Writing

(a) Let and 
be subspaces of Find a basis for and the 

dimension of each of the subspaces and
(See Exercise 47 in Section 4.3)

(b) Let and be two-dimensional subspaces of Is it 
possible that Explain. 

84. Guided Proof Let be a spanning set for the finite 
dimensional vector space Prove that there exists a subset 
of that forms a basis for 

Getting Started: is a spanning set, but it may not be a basis
because it may be linearly dependent. You need to remove extra
vectors so that a subset is a spanning set and is also linearly
independent.

(i) If is a linearly independent set, you are done. If not,
remove some vector from that is a linear combina-
tion of the other vectors in 

(ii) Call this set If is a linearly independent set, you
are done. If not, continue to remove dependent vectors
until you produce a linearly independent subset 

(iii) Conclude that this subset is the minimal spanning 
set

85. Let be a linearly independent set of vectors from the finite
dimensional vector space Prove that there exists a basis for 
containing

86. Let be a vector space of dimension Prove that any set of less
than vectors cannot span V.n

n.V

S.
VV.

S

S�.

S�.

S1S1.

S.
Sv

S

S�

S

V.S
S�V.

S

S1 � S2 � ��0, 0, 0��?
R3.S2S1

S1 � S2.
S1, S2, S1 � S2,

R3.�0, 1, 0��
S2 � span��0, 0, 1�,S1 � span��1, 0, 0�, �1, 1, 0��

�dimension of W� � �dimension of V�.V,
W

P

V.cvn��cv1, cv2, .  .  . ,
S1 �cV

S � �v1, v2 , .  .  . , vn�

Vn � 1dim�V � � n,

Vn � 1dim�V � � n,

V.
Vn � 1dim�V � � n,

V.
Vn � 1dim�V � � n,

W � ��s � 4t, t, s, 2s � t�: s and t are real numbers�
W � ��0, 6t, t, �t�: t is a real number�
W � ��5t,�3t, t, t�: t is a real number�
W � ��2s � t, s, t, s�: s and t are real numbers�

R4.

Rank of a Matrix and Systems of Linear Equations

In this section you will investigate the vector space spanned by the row vectors (or column
vectors) of a matrix. Then you will see how such spaces relate to solutions of systems of
linear equations.

To begin, you need to know some terminology. For an matrix the -tuples 
corresponding to the rows of are called the row vectors of 

Row Vectors of A
�a11, a12, .  .  . , a1n�  
�a21, a22, .  .  . , a2n�  .

.

.
�am1, am2, .  .  . , amn�

A � �
a11

a21.
.
.

am1

a12

a22.
.
.

am2

. . .

. . .

. . .

a1n

a2n.
.
.

amn

�
A.A

nA,m � n

4.6



Similarly, the columns of are called the column vectors of You will find it useful
to preserve the column notation for these column vectors.

Column Vectors of A

For the matrix

the row vectors are and and the column vectors are

and

In Example 1, note that for an matrix the row vectors are vectors in and the
column vectors are vectors in This leads to the two definitions of the row space and
column space of a matrix listed below.

As it turns out, the row and column spaces of share many properties. Because of your
familiarity with elementary row operations, however, you will begin by looking at the row
space of a matrix. Recall that two matrices are row-equivalent if one can be obtained from
the other by elementary row operations. The next theorem tells you that row-equivalent 
matrices have the same row space.

P R O O F Because the rows of can be obtained from the rows of by elementary row operations
(scalar multiplication and addition), it follows that the row vectors of can be written as 
linear combinations of the row vectors of The row vectors of lie in the row space of A,BA.

B
AB

A

Rm.
RnA,m � n

��1

4�.�1

3�,� 0

�2�,

��2, 3, 4��0, 1, �1�

A � � 0

�2

1

3

�1

4�,

E X A M P L E  1 Row Vectors and Column Vectors

�
a11

a21.
.
.

am1

� �
a12

a22.
.
.

am2

� . . . �
a1n

a2n.
.
.

amn

�A � �
a11

a21.
.
.

am1

a12

a22.
.
.

am2

. . .

. . .

. . .

a1n

a2n.
.
.

amn

�

A.A
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Let be an matrix.

1. The row space of is the subspace of spanned by the row vectors of 
2. The column space of is the subspace of spanned by the column vectors of A.RmA

A.RnA

m � nADefinitions of Row Space

and Column Space 

of a Matrix

If an matrix is row-equivalent to an matrix then the row space of is
equal to the row space of B.

AB,m � nAm � n
THEOREM 4.13

Row-Equivalent Matrices

Have the Same Row Space



234 Chapter  4 Vector  Spaces

and the subspace spanned by the row vectors of is contained in the row space of But it
is also true that the rows of can be obtained from the rows of by elementary row 
operations. So, you can conclude that the two row spaces are subspaces of each other,
making them equal.

R E M A R K : Note that Theorem 4.13 says that the row space of a matrix is not changed by 
elementary row operations. Elementary row operations can, however, change the column
space.

If a matrix is in row-echelon form, then its nonzero row vectors form a linearly 
independent set. (Try verifying this.) Consequently, they form a basis for the row space of

and by Theorem 4.13 they also form a basis for the row space of This important result
is stated in the next theorem.

Find a basis for the row space of

S O L U T I O N Using elementary row operations, rewrite in row-echelon form as follows.

By Theorem 4.14, you can conclude that the nonzero row vectors of 

and

form a basis for the row space of A.

w3 � �0, 0, 0, 1�,w2 � �0, 1, 1, 0�,w1 � �1, 3, 1, 3�,

B,

B � �
1

0

0

0

0

3

1

0

0

0

1

1

0

0

0

3

0

1

0

0
�

A

A � �
1

0

�3

3

2

3

1

0

4

0

1

1

6

�2

�4

3

0

�1

1

�2
�.

E X A M P L E  2 Finding a Basis for a Row Space

A.B,

B

BA
A.B

If a matrix is row-equivalent to a matrix in row-echelon form, then the nonzero row
vectors of form a basis for the row space of A.B

BA
THEOREM 4.14

Basis for the Row Space 

of a Matrix

w3

w2

w1
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The technique used in Example 2 to find the row space of a matrix can be used to solve
the next type of problem. Suppose you are asked to find a basis for the subspace spanned
by the set in By using the vectors in to form the rows of a
matrix you can use elementary row operations to rewrite in row-echelon form. The
nonzero rows of this matrix will then form a basis for the subspace spanned by This is
demonstrated in Example 3.

Find a basis for the subspace of spanned by

S O L U T I O N Use and to form the rows of a matrix Then write in row-echelon form.

So, the nonzero row vectors of 

and

form a basis for the row space of That is, they form a basis for the subspace spanned by

To find a basis for the column space of a matrix you have two options. On the one
hand, you could use the fact that the column space of is equal to the row space of and
apply the technique of Example 2 to the matrix On the other hand, observe that although
row operations can change the column space of a matrix, they do not change the depend-
ency relationships between columns. You are asked to prove this fact in Exercise 71.

For example, consider the row-equivalent matrices and from Example 2.

Notice that columns 1, 2, and 3 of matrix satisfy the equation and so
do the corresponding columns of matrix that is,

Similarly, the column vectors and of matrix are linearly independent, and so
are the corresponding columns of matrix A.

Bb4b2,b1,

a3 � �2a1 � a2.

A;
b3 � �2b1 � b2,B

b4b3b2b1a4a3a2a1

B � �
1
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�
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ATA

A,

S � �v1, v2, v3�.
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w2 � �0, 1, 3�,w1 � �1, �2, �5�

B,

B � �
1

0

0

�2

1

0

�5

3

0
�A � �

�1

3

5

2

0

1

5

3

8
�

AA.v3v1, v2,

S � ���1, 2, 5�, �3, 0, 3�, �5, 1, 8��.

v3v2v1

R3
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S.
AA,

SRn.S � �v1, v2, .  .  . , vk�

v3

v2

v1

w2

w1
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The next example shows how to find a basis for the column space of a matrix using both
of these methods.

Find a basis for the column space of matrix from Example 2.

S O L U T I O N 1 Take the transpose of and use elementary row operations to write in row-echelon form.

So, and form a
basis for the row space of This is equivalent to saying that the column vectors

and

form a basis for the column space of 

S O L U T I O N 2 In Example 2, row operations were used on the original matrix to obtain its row-echelon
form It is easy to see that in matrix the first, second, and fourth column vectors are 
linearly independent (these columns have the leading 1’s). The corresponding columns of
matrix are linearly independent, and a basis for the column space consists of the vectors

and

Notice that this is a different basis for the column space than that obtained in the first 
solution. Verify that these bases span the same subspace of R5.
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0
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R E M A R K : Notice that in the second solution, the row-echelon form indicates which
columns of form the basis of the column space. You do not use the column vectors of 
to form the basis.

Notice in Examples 2 and 4 that both the row space and the column space of have a
dimension of 3 (because there are three vectors in both bases). This is generalized in the
next theorem.

P R O O F Let and be the row vectors and and be the column vectors
of the matrix

Suppose the row space of has dimension and basis where
Using this basis, you can write the row vectors of as

Rewrite this system of vector equations as follows.

Now, take only entries corresponding to the first column of matrix to obtain the system
of scalar equations shown below.

c13b31

c23b31

c33b31

cm3b31

� . . . �

� . . . �

� . . . �

� . . . �

c1rbr1

c2rbr1

c3rbr1

cmrbr1

�

�

�

�

c12b21

c22b21

c32b21

cm2b21

�

�

�

�

a11

a21

a31

am1

�

�

�
.
.
.
�

c11b11

c21b11

c31b11

cm1b11

A

v1

v2
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�

�
.
.
.
�

c11b1

c21b1

cm1b1

�

�

�

c12b2

c22b2

cm2b2

� . . . �

� . . . �

� . . . �

c1rbr

c2rbr

cmrbr.

Abi � �bi1, bi2, .  .  . , bin�.
S � �b1, b2, .  .  . , br�,rA

A � �
a11

a21.
.
.

am1

a12

a22.
.
.

am2

. . .

. . .

. . .

a1n

a2n.
.
.

amn

�.

unu1, u2, .  .  . ,vmv1, v2, .  .  . ,

A

BA
B

If is an matrix, then the row space and column space of have the same 
dimension.

Am � nA
THEOREM 4.15

Row and Column Spaces

Have Equal Dimensions

c12�b21b22
. . . b2n�

c22�b21b22
. . . b2n�

cm2�b21b22
. . . b2n�

� . . . �

� . . . �

� . . . �

c1r �br1br2
. . . br n�
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�am1am2
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c11�b11b12
. . . b1n�

c21�b11b12
. . . b1n�

cm1�b11b12
. . . b1n�
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Similarly, for the entries of the th column you can obtain the system below. 

Now, let the vectors Then the system for the th column can be
rewritten in a vector form as

Put all column vectors together to obtain

Because each column vector of is a linear combination of vectors, you know that the 
dimension of the column space of is less than or equal to (the dimension of the row
space of ). That is,

Repeating this procedure for , you can conclude that the dimension of the column space
of is less than or equal to the dimension of the row space of But this implies that the 
dimension of the row space of is less than or equal to the dimension of the column space
of That is,

So, the two dimensions must be equal.

The dimension of the row (or column) space of a matrix has the special name provided
in the next definition.

R E M A R K : Some texts distinguish between the row rank and the column rank of a matrix.
But because these ranks are equal (Theorem 4.15), this text will not distinguish between
them.

dim�row space of A� � dim�column space of A�.

A.
A

AT.AT
AT

dim�column space of A� � dim�row space of A�.

A
rA
rA
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�a1n a2n
. . . amn�T

uj � b1 j c1 � b2 jc2 � .  .  . � brj cr.

jci � �c1i c2i
.  .  . cmi�T.
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�
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�

�

�
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a1j

a2 j

a3 j
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�

�

�
...
�

c11b1j

c21b1j

c31b1j
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j

The dimension of the row (or column) space of a matrix is called the rank of and is
denoted by .rank�A�

AADefinition of the 

Rank of a Matrix
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Find the rank of the matrix

S O L U T I O N Convert to row-echelon form as follows.

Because has three nonzero rows, the rank of is 3.

The Nullspace of a Matrix

The notions of row and column spaces and rank have some important applications to 
systems of linear equations. Consider first the homogeneous linear system 

where is an matrix, is the column vector of unknowns, and
is the zero vector in 

The next theorem tells you that the set of all solutions of this homogeneous system is a 
subspace of Rn.

�
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Rm.0 � �0   0   .  .  .   0�T
x � �x1 x2   .  .  . xn�Tm � nA

Ax � 0

AB

B � �
1

0

0

�2

1

0

0

1

1

1

�1

3
�A � �

1

2

0

�2

1

1

0

5

3

1

�3

5
�

A � �
1

2

0

�2

1

1

0

5

3

1

�3

5
�.

E X A M P L E  5 Finding the Rank of a Matrix

If is an matrix, then the set of all solutions of the homogeneous system of linear
equations

is a subspace of called the nullspace of and is denoted by . So,

The dimension of the nullspace of is called the nullity of A.A

N�A� � �x 	 Rn : Ax � 0�.

N�A�ARn

Ax � 0

m � nATHEOREM 4.16

Solutions of a 

Homogeneous System
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P R O O F Because is an matrix, you know that has size So, the set of all solutions of
the system is a subset of This set is clearly nonempty, because You can verify
that it is a subspace by showing that it is closed under the operations of addition and scalar
multiplication. Let and be two solution vectors of the system and let be a
scalar. Because and you know that

Addition

and

Scalar multiplication

So, both and are solutions of and you can conclude that the set of
all solutions forms a subspace of 

R E M A R K : The nullspace of is also called the solution space of the system 

Find the nullspace of the matrix.

S O L U T I O N The nullspace of is the solution space of the homogeneous system 
To solve this system, you need to write the augmented matrix in reduced 

row-echelon form. Because the system of equations is homogeneous, the right-hand column
of the augmented matrix consists entirely of zeros and will not change as you do row 
operations. It is sufficient to find the reduced row-echelon form of 

The system of equations corresponding to the reduced row-echelon form is

Choose and as free variables to represent the solutions in this parametric form.

x4 � tx3 � �t,x2 � s,x1 � �2s � 3t,

x4x2

x1 � 2x2

x3

�
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3x4
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0
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0
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E X A M P L E  6 Finding the Solution Space of a Homogeneous System

Ax � 0.A

Rn.
Ax � 0,cx1�x1 � x2�

A�cx1� � c�Ax1� � c�0� � 0.

A�x1 � x2� � Ax1 � Ax2 � 0 � 0 � 0

Ax2 � 0,Ax1 � 0
cAx � 0,x2x1

A0 � 0.Rn.
n � 1.xm � nA
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This means that the solution space of consists of all solution vectors of the form
shown below.

A basis for the nullspace of consists of the vectors

and

In other words, these two vectors are solutions of and all solutions of this 
homogeneous system are linear combinations of these two vectors.

R E M A R K : Although the basis in Example 6 proved that the vectors spanned the solution
set, it did not prove that they were linearly independent. When homogeneous systems are
solved from the reduced row-echelon form, the spanning set is always independent.

In Example 6, matrix has four columns. Furthermore, the rank of the matrix is 2, and
the dimension of the nullspace is 2. So, you can see that

One way to see this is to look at the reduced row-echelon form of 

The columns with the leading 1’s (columns 1 and 3) determine the rank of the matrix. The
other columns (2 and 4) determine the nullity of the matrix because they correspond to the
free variables. This relationship is generalized in the next theorem.

�
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Number of columns � rank � nullity.
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Ax � 0,
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x1
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�2s � 3t
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�t

�t
� � s�
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1

0

0
� � t�
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0

�1

1
�

xAx � 0

If is an matrix of rank then the dimension of the solution space of is
That is,

n � rank�A� � nullity�A�.

n � r.
Ax � 0r,m � nATHEOREM 4.17

Dimension of the 

Solution Space
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P R O O F Because has rank you know it is row-equivalent to a reduced row-echelon matrix with
nonzero rows. No generality is lost by assuming that the upper left corner of has the form

of the identity matrix Moreover, because the zero rows of contribute nothing to
the solution, you can discard them to form the matrix where The
matrix has columns corresponding to the variables So, the
solution space of can be represented by the system

Solving for the first variables in terms of the last variables produces vectors
in the basis of the solution space. Consequently, the solution space has dimension 

Example 7 illustrates this theorem and further explores the column space of a matrix.

Let the column vectors of the matrix be denoted by and 

a1 a2 a3 a4 a5

(a) Find the rank and nullity of 
(b) Find a subset of the column vectors of that forms a basis for the column space of 
(c) If possible, write the third column of as a linear combination of the first two columns.

S O L U T I O N Let be the reduced row-echelon form of 

a1 a2 a3 a4 a5 b1 b2 b3 b4 b5

(a) Because has three nonzero rows, the rank of is 3. Also, the number of columns of
is which implies that the nullity of is n � rank � 5 � 3 � 2.An � 5,A
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n � r.
n � rn � rr

c1, n�r xn

c2, n�r xn.
.
.
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(b) Because the first, second, and fourth column vectors of are linearly independent, the
corresponding column vectors of 

, and

form a basis for the column space of 
(c) The third column of is a linear combination of the first two columns:

The same dependency relationship holds for the corresponding columns of matrix 

Solutions of Systems of Linear Equations

You now know that the set of all solution vectors of the homogeneous linear system 
is a subspace. Is this true also of the set of all solution vectors of the nonhomogeneous
system where The answer is “no,” because the zero vector is never a 
solution of a nonhomogeneous system. There is a relationship, however, between the sets
of solutions of the two systems and Specifically, if is a particular
solution of the nonhomogeneous system then every solution of this system can be
written in the form

where is a solution of the corresponding homogeneous system The next 
theorem states this important concept.

Ax � 0.xh
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Solution
of Ax � 0

Solution
of Ax � b

If is a particular solution of the nonhomogeneous system then every solution
of this system can be written in the form where is a solution of the 
corresponding homogeneous system Ax � 0.

xhx � xp � xh,
Ax � b,xp

THEOREM 4.18

Solutions of a

Nonhomogeneous

Linear System
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P R O O F Let be any solution of Then is a solution of the homogeneous system
because

Letting you have 

Find the set of all solution vectors of the system of linear equations.

S O L U T I O N The augmented matrix for the system reduces as follows.

The system of linear equations corresponding to the reduced row-echelon matrix is

Letting and you can write a representative solution vector of as follows.

You can see that is a particular solution vector of and repre-
sents an arbitrary vector in the solution space of 

The final theorem in this section describes how the column space of a matrix can be used
to determine whether a system of linear equations is consistent.

Ax � 0.
xh � su1 � tu2Ax � b,xp

� su1 � tu2 � xp

x � �
x1

x2

x3

x4

� � �
2s

�s

s

0s

�

�

�

�

t � 5

3t � 7

0t � 0

t � 0
� � s�

2

�1

1

0
� � t�

�1

3

0

1
� � �

5

�7

0

0
�

Ax � bx4 � t,x3 � s

x1

x2

�

�

2x3

x3

�

�

x4

3x4

�

�

5
�7.

�
1

0

0

0

1

0

�2

1

0

1

�3

0

5

�7

0
��

1

3

1

0

1

2

�2

�5

0

1

0

�5

5

8

�9
�

Ax � b

x1

3x1

x1

�

�

x2

2x2

�

�

2x3

5x3

�

�

x4

5x4

�

�

�

5
8

�9

E X A M P L E  8 Finding the Solution Set of a Nonhomogeneous System

x � xp � xh.xh � x � xp,

A�x � xp� � Ax � Axp � b � b � 0.

Ax � 0,
�x � xp�Ax � b.x

The system of linear equations is consistent if and only if is in the column space
of A.

bAx � b
THEOREM 4.19

Solutions of a System of

Linear Equations
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P R O O F Let

and

be the coefficient matrix, the column matrix of unknowns, and the right-hand side,
respectively, of the system Then

So, if and only if is a linear combination of the columns of That is, the system
is consistent if and only if is in the subspace of spanned by the columns of 

Consider the system of linear equations

The rank of the coefficient matrix is equal to the rank of the augmented matrix.

As shown above, is in the column space of and the system of linear equations is 
consistent.
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Systems of Linear Equations with 
Square Coefficient Matrices

The final summary in this section presents several major results involving systems of linear
equations, matrices, determinants, and vector spaces.

If is an matrix, then the following conditions are equivalent.

1. is invertible.
2. has a unique solution for any matrix 
3. has only the trivial solution.
4. is row-equivalent to 
5.
6. Rank
7. The row vectors of are linearly independent.
8. The column vectors of are linearly independent.An

An
�A� � n

�A� � 0
In.A

Ax � 0
b.n � 1Ax � b

A

n � nASummary of Equivalent

Conditions for 

Square Matrices

In Exercises 1–12, find (a) the rank of the matrix, (b) a basis for the
row space, and (c) a basis for the column space.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11.

12.

In Exercises 13–16, find a basis for the subspace of spanned by 

13.

14.

15.

16.

In Exercises 17–20, find a basis for the subspace of spanned by 

17.

18.

19.

20.

��1, �5, 3, 5��
S � ��2, 5, �3, �2�, ��2, �3, 2, �5�, �1, 3, �2, 2�,

�0, 5, 12, 50��
S � ���3, 2, 5, 28�, ��6, 1, �8, �1�, �14, �10, 12, �10�,

��2, 0, 6, �5��
S � ��6, �3, 6, 34�, �3, �2, 3, 19�, �8, 3, �9, 6�,

�0, �3, 0, 15��
S � ��2, 9, �2, 53�, ��3, 2, 3, �2�, �8, �3, �8, 17�,

S.R4

S � ��1, 2, 2�, ��1, 0, 0�, �1, 1, 1��
S � ��4, 4, 8�, �1, 1, 2�, �1, 1, 1��
S � ��4, 2, �1�, �1, 2, �8�, �0, 1, 2��
S � ��1, 2, 4�, ��1, 3, 4�, �2, 3, 1��

S.R3

�
4
2
5
4
2

0
�1

2
0

�2

2
2
2
2
0

3
0
1
2
0

1
1

�1
1
1
�

�
2
2
4
2
0

4
5
3

�4
1

�2
4
1
2
4

1
�2

1
�1

2

1
2
2
1

�1
�

�
2

7

�2

2

4

14

�4

4

�3

�6

1

�2

�6

�3

�2

�2
��

�2

3

�2

�4

6

�4

4

�6

4

5

�4

9
�

�
2

5

8

�3

10

�7

1

6

5
��

4

6

2

20

�5

�11

31

�6

�16
�

� 1

�1

2

2

4

1��1

4

�3

2

2

1�
�0 1 �2��1 2 3�

�2

1

4

6��1

0

0

2�

ExercisesSECTION 4.6
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In Exercises 21–32, find a basis for, and the dimension of, the 
solution space of 

21. 22.

23. 24.

25. 26.

27. 28.

29.

30.

31. 32.

In Exercises 33–40, find (a) a basis for and (b) the dimension of the
solution space of the homogeneous system of linear equations.

33. 34.

35. 36.

37.

38.

39.

40.

In Exercises 41–46, (a) determine whether the nonhomogeneous
system is consistent, and (b) if the system is consistent,
write the solution in the form where is a solution
of and is a particular solution of 

41. 42.

43.

44.

45.

46.

In Exercises 47–50, determine whether is in the column space of 
If it is, write as a linear combination of the column vectors of 

47.

48.

49.

50. b � �
1

1

0
�A � �

1

�1

0

3

1

1

2

2

1
�,

b � �
1

2

�3
�A � �

1

�1

2

3

1

0

0

0

1
�,

b � �2

4�A � ��1

2

2

�4�,

b � �3

4�A � ��1

4

2

0�,

A.b
A.b

 2x1 � x2 �  6x3 �  12x4 �  8x5 � �1

�2x1 � x2 � 6x3 �  12x4 �  8x5 �  1

 5x1 �  4x2 �  12x3 �  33x4 �  14x5 � �4

�x1 �  2x2 � x3 � x4 �  15x5 � �2

x1 �  2x2 �  2x3 �  3x4 �  5x5 �  14

�5x1 �  10x2 �  3x3 �  3x4 �  55x5 � �8

x1 �  2x2 � x3 � x4 �  5x5 �  0

 3x �  6y � z �  12

�7x �  14y �  4z � �28

 2x �  4y �  5z �  8

 3w � x �  14y �  2z �  1

�w �  5x �  14y �  18z �  29

 3w �  2x �  16y �  2z � �7

x �  2y �  2z      �  8x � y �  2z �  8

 5x      �  22z � w �  29�x �  3y �  14z �  12

   �  6y �  2z �  4w �  5�2x �  7y �  32z �  29

 3x �  8y �  4z      �  19x �  3y �  10z �  18

Ax � b.xpAx � 0
xhx � xh � xp,

Ax � b

 3x1 �  6x2 �  5x3 �  42x4 �  27x5 � 0

x1      � x3 �  2x4 � x5 � 0

x1 �  3x2 �  2x3 �  22x4 �  13x5 � 0

 3x1 �  2x2 � x3 �  8x4 � 0

 3x1 �  2x2      �  7x4 � 0

 12x1 �  6x2 �  4x3 �  29x4 � 0

 9x1 �  4x2 �  2x3 �  20x4 � 0

�x1 � x2 �  4x3 � 2x4 � 0

x1 �  2x2 � x3 � 2x4 � 0

 2x1 �  2x2 � 4x3 � 2x4 � 0

 2x1 �  3x2 �  11x3 �  8x4 � 0

x1 �  3x2 � x3 � x4 � 0

 3x1 �  3x2 �  15x3 �  11x4 � 0

�3x �  6y �  12z � 0�3x �  6y �  9z � 0

x �  2y �    4z � 0x �  2y �  3z � 0

 3x � y � z � 0 2x �  4y �  5z � 0

 2x �  3y � z � 0 3x � y      � 0

 4x � y �  2z � 0�x � y � z � 0

A � �
1
2
4
0

4
�1

2
4

2
1
1
2

1
1
1
0
�A � �

2
2
3
0

6
1

�2
6

3
0
1
2

1
�2

1
0
�

A � �
1
0

�2

4
1

�8

2
1

�4

1
�1
�2�

A � �
1
0

�2

3
1

�6

�2
�1

4

4
2

�8�

A � �
3

�2

1

�6

4

�2

21

�14

7
�A � �

1

2

4

2

�1

3

�3

4

�2
�

A � �1

0

4

0

2

1�A � �1

0

2

1

3

0�
A � �1 4 2�A � �1 2 3�

A � � 2

�6

�1

3�A � �2

1

�1

3�
Ax � 0.
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51. Writing Explain why the row vectors of a matrix form
a linearly dependent set. (Assume all matrix entries are distinct.)

52. Writing Explain why the column vectors of a matrix
form a linearly dependent set. (Assume all matrix entries are
distinct.)

53. Prove that if is not square, then either the row vectors of or
the column vectors of form a linearly dependent set.

54. Give an example showing that the rank of the product of two 
matrices can be less than the rank of either matrix.

55. Give examples of matrices and of the same size such that

(a) and 
(b) and 
(c) and 

56. Prove that the nonzero row vectors of a matrix in row-echelon
form are linearly independent.

57. Let be an matrix (where ) whose rank is 

(a) What is the largest value can be?
(b) How many vectors are in a basis for the row space of 
(c) How many vectors are in a basis for the column space 

of
(d) Which vector space has the row space as a subspace?
(e) Which vector space has the column space as a 

subspace?

58. Show that the three points and in a
plane are collinear if and only if the matrix

has rank less than 3.

59. Given matrices and show that the row vectors of are in
the row space of and the column vectors of are in the
column space of 

60. Find the ranks of the matrix

for and 4. Can you find a pattern in these ranks?

61. Prove each property of the system of linear equations in 
variables 

(a) If then the system has a
unique solution.

(b) If then the system has
an infinite number of solutions.

(c) If then the system is 
inconsistent.

True or False? In Exercises 62–65, determine whether each state-
ment is true or false. If a statement is true, give a reason or cite an
appropriate statement from the text. If a statement is false, provide
an example that shows the statement is not true in all cases or cite an
appropriate statement from the text.

62. (a) The nullspace of is also called the solution space of 

(b) The nullspace of is the solution space of the homogeneous
system

63. (a) If an matrix is row-equivalent to an matrix
then the row space of is equivalent to the row space 

of

(b) If is an matrix of rank then the dimension of the
solution space of is 

64. (a) If an matrix can be obtained from elementary row
operations on an matrix then the column space of

is equal to the column space of 

(b) The system of linear equations is inconsistent if and
only if is in the column space of 

65. (a) The column space of a matrix is equal to the row space of 

(b) Row operations on a matrix may change the dependency
relationships among the columns of 

In Exercises 66 and 67, use the fact that matrices and are 
row-equivalent.

(a) Find the rank and nullity of 
(b) Find a basis for the nullspace of 
(c) Find a basis for the row space of 
(d) Find a basis for the column space of 
(e) Determine whether or not the rows of are linearly 

independent.
(f ) Let the columns of be denoted by and 

Which of the following sets is (are) linearly independent?

(i) (ii) (iii)

66.

B � �
1
0
0
0

0
1
0
0

3
�1

0
0

0
0
1
0

�4
2

�2
0
�

A � �
1
2
3
4

2
5
7
9

1
1
2
3

0
1
2

�1

0
0

�2
4
�

�a1, a3, a5��a1, a2, a3��a1, a2, a4�

a5.a1, a2, a3, a4,A

A
A.

A.
A.

A.

BA

A.
A

AT.A

A.b
Ax � b

A.B
A,m � n

Bm � n

m � r.Ax � 0
r,m � nA

B.
AB,

m � nAm � n

Ax � 0.
A

A.A

rank�A� < rank��A : b��,

rank�A� � rank��A : b�� < n,

rank�A� � rank��A : b�� � n,

Ax � b.
n

n � 2, 3,

�
1

n � 1
2n � 1

.

.

.
n2 � n � 1

2
n � 2

2n � 2
.
.
.

n2 � n � 2

3
n � 3

2n � 3
.
.
.

n2 � n � 3

. . .

. . .

. . .

. . .

n
2n
3n
.
.
.

n2

�
A.

ABB
ABB,A

�
x1

x2

x3

y1

y2

y3

1

1

1
�

�x3, y3��x2, y2�,�x1, y1�,

Rk

Rk

A?

A?
r

r.m < nm � nA

rank�A � B� > rank�B�.rank�A � B� > rank�A�
rank�A � B� � rank�B�rank�A � B� � rank�A�
rank�A � B� < rank�B�rank�A � B� < rank�A�

BA

A
AA

3 � 4

4 � 3
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67.

68. Let be an matrix.

(a) Prove that the system of linear equations is 
consistent for all column vectors if and only if the
rank of is 

(b) Prove that the homogeneous system of linear equations
has only the trivial solution if and only if the

columns of are linearly independent.

69. Let and be square matrices of order satisfying 
for all 

(a) Find the rank and nullity of 
(b) Show that and must be identical.

70. Let be an matrix. Prove that 

71. Prove that row operations do not change the dependency 
relationships among the columns of an matrix.m � n

N�A� � N�ATA�.m � nA

BA
A � B.

x 	 Rn.
Ax � BxnBA

A
Ax � 0

m.A
b

Ax � b

m � nA

B � �
1
0
0
0

0
1
0
0

1
�2

0
0

0
0
1
0

1
3

�5
0
�

A � �
�2

1
3
1

�5
3

11
7

8
�5

�19
�13

0
1
7
5

�17
5
1

�3
�

Coordinates and Change of Basis

In Theorem 4.9, you saw that if is a basis for a vector space then every vector in 
can be expressed in one and only one way as a linear combination of vectors in The 
coefficients in the linear combination are the coordinates of relative to In the context
of coordinates, the order of the vectors in this basis is important, and this will sometimes
be emphasized by referring to the basis as an ordered basis.

Coordinate Representation in Rn

In the notation for coordinate matrices conforms to the usual component notation,
except that column notation is used for the coordinate matrix. In other words, writing a

Rn,

B

B.x
B.

VxV,B

4.7

Let be an ordered basis for a vector space and let be a vector
in such that

The scalars are called the coordinates of relative to the basis The
coordinate matrix (or coordinate vector) of relative to is the column matrix in 
whose components are the coordinates of 

�x�B � �
c1

c2.
.
.

cn

�
x.

RnBx
B.xc1, c2, .  .  . , cn

x � c1v1 � c2v2 � .  .  . � cnvn.

V
xVB � �v1, v2, .  .  . , vn�Coordinate Representation

Relative to a Basis
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vector in as means that the ’s are the coordinates of relative to
the standard basis in So, you have

Find the coordinate matrix of in relative to the standard basis 

S O L U T I O N Because can be written as

you can see that the coordinate matrix of relative to the standard basis is simply

So, the components of are the same as its coordinates relative to the standard basis.

The coordinate matrix of in relative to the (nonstandard) ordered basis 
is

Find the coordinates of relative to the standard basis 

S O L U T I O N Because you can write

Moreover, because it follows that the coordinates of relative
to are

Figure 4.19 compares these two coordinate representations.

�x�B� � �5

4�.

B�
x�5, 4� � 5�1, 0� � 4�0, 1�,

x � 3v1 � 2v2 � 3�1, 0� � 2�1, 2� � �5, 4�.

�x�B � �3

2�,

B� � �u1, u2� � ��1, 0�, �0, 1��.x

�x�B � �3

2�.

��1, 0�, �1, 2��
B � �v1, v2� �R2x

E X A M P L E  2 Finding a Coordinate Matrix Relative to a Standard Basis

x

�x�S � �
�2

1

3
�.

x

x � ��2, 1, 3� � �2�1, 0, 0� � 1�0, 1, 0� � 3�0, 0, 1�,

x

S � ��1, 0, 0�, �0, 1, 0�, �0, 0, 1��.

R3x � ��2, 1, 3�

E X A M P L E  1 Coordinates and Components in Rn

�x�S � �
x1

x2.
.
.

xn

�.

Rn.S
xxix � �x1, x2, .  .  . , xn�Rn
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Figure 4.19

Example 2 shows that the procedure for finding the coordinate matrix relative to a 
standard basis is straightforward. The problem becomes a bit tougher, however, when you
must find the coordinate matrix relative to a nonstandard basis. Here is an example.

Find the coordinate matrix of in relative to the (nonstandard) basis

S O L U T I O N Begin by writing as a linear combination of and 

Equating corresponding components produces the following system of linear equations.

The solution of this system is and So,

x � 5�1, 0, 1� � ��8��0, �1, 2� � ��2��2, 3, �5�,

c3 � �2.c2 � �8,c1 � 5,

�
1

0

1

0

�1

2

2

3

�5
� �

c1

c2

c3
� � �

1

2

�1
�

c1

c1 �

�c2

2c2

�

�

�

2c3

3c3

5c3

�

�

�

1
2

�1

�1, 2, �1� � c1�1, 0, 1� � c2�0, �1, 2� � c3�2, 3, �5�
x � c1u1 � c2u2 � c3u3

u3.u1, u2,x

B� � �u1, u2, u3� � ��1, 0, 1�, �0, �1, 2�, �2, 3, �5��.

R3x � �1, 2, �1�

E X A M P L E  3 Finding a Coordinate Matrix Relative to a Nonstandard Basis

Standard basis:
B' = {(1, 0), (0, 1)}

x

(5, 4)
4u2

5u1

u2

u1

[x]B' =
5
4[ [

x = 5(1, 0) + 4(0, 1)y

x'

y'

Nonstandard basis:
B = {(1, 0), (1, 2)}

[x]B = 3
2[ [

x = 3(1, 0) + 2(1, 2)

(3, 2)

2v2

3v1

v2

v1
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and the coordinate matrix of relative to is

R E M A R K : Note that the solution in Example 3 is written as

It would be incorrect to write the solution as 

Do you see why?

Change of Basis in Rn

The procedure demonstrated in Examples 2 and 3 is called a change of basis. That is, you
were provided with the coordinates of a vector relative to one basis and were asked to
find the coordinates relative to another basis 

For instance, if in Example 3 you let be the standard basis, then the problem of find-
ing the coordinate matrix of relative to the basis becomes one of solving
for and in the matrix equation

The matrix is called the transition matrix from to where is the coordinate
matrix of relative to and is the coordinate matrix of relative to Multiplication
by the transition matrix changes a coordinate matrix relative to into a coordinate
matrix relative to That is,

Change of basis from to 

To perform a change of basis from to use the matrix (the transition matrix from
to ) and write

Change of basis from to B
B�x�B� � P�1�x�B.

B�B
P�1B�,B

BB
P�x�B� � �x�B.

B.
B�P

B.x�x�BB�,x
�x�B�B,B�P

�x�B�x�B�P

�
1

0

1

0

�1

2

2

3

�5
� �

c1

c2

c3
� � �

1

2

�1
�.

c3c1, c2,
B�x � �1, 2, �1�

B
B�.

B

x � �
5

�8

�2
�.

�x�B� � �
5

�8

�2
�.

�x�B� � �
5

�8

�2
�.

B�x
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This means that the change of basis problem in Example 3 can be represented by the matrix
equation

This discussion generalizes as follows. Suppose that

and

are two ordered bases for If is a vector in and

and

are the coordinate matrices of relative to and then the transition matrix from
to is the matrix such that

The next theorem tells you that the transition matrix is invertible and its inverse is the
transition matrix from to That is,

Before proving Theorem 4.20, you will prove a preliminary lemma.

Coordinate 
matrix of x
relative to B

Transition
matrix

from B to B�

Coordinate 
matrix of x

relative to B�

�x�B� � P�1�x�B.

B�.B
P

�x�B � P�x�B�.

PB
B�PB�,Bx

�x�B� � �
d1

d2.
.
.

dn

��x�B � �
c1

c2
.
.
.

cn

�
RnxRn.

B� � �u1, u2, .  .  . , un�B � �v1, v2, .  .  . , vn�

�x�B��x�BP�1

�
c1

c2

c3
� � �

�1

3

1

4

�7

�2

2

�3

�1
� �

1

2

�1
� � �

5

�8

�2
�.

If is the transition matrix from a basis to a basis in then is invertible and the
transition matrix from to is given by P�1.B�B

PRn,BB�PTHEOREM 4.20

The Inverse of a 

Transition Matrix
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P R O O F ( O F L E M M A ) Let

be an arbitrary vector in The coordinate matrix of with respect to the basis is 

Then you have

On the other hand, you can write

which implies

So, and you can conclude that is the transition matrix from to B�.BQQ�v�B � �v�B�

�v�B� � �
c11d1 � c12d2 � .  .  . � c1ndn

c21d1 � c22d2 � .  .  . � c2ndn.
.
.            

.

.

.                        
.
.
.

cn1d1 � cn2d2 � .  .  . � cnndn

�.

� �d1c11 � .  .  . � dnc1n�u1 � .  .  . � �d1cn1 � .  .  . � dncnn�un,

� d1�c11u1 � .  .  . � cn1un� � .  .  . � dn�c1nu1 � .  .  . � cnnun�
v � d1v1 � d2v2 � .  .  . � dnvn

� �
c11d1

c21d1
.
.
.

cn1d1

�

�

�

c12d2

c22d2
.
.
.

cn2d2

�

�

�

. . .

. . .

. . .

�

�

�

c1ndn

c2ndn.
.
.

cnndn

�.Q�v�B � �
c11

c21.
.
.

cn1

c12

c22.
.
.

cn2

. . .

. . .

. . .

c1n

c2n.
.
.

cnn

� �
d1

d2.
.
.

dn

�

�v�B � �
d1

d2.
.
.

dn

�.

BvV.

v � d1v1 � d2v2 � .  .  . � dnvn

Let and be two bases for a vector 
space If

then the transition matrix from to is

Q � �
c11

c21.
.
.

cn1

c12

c22.
.
.

cn2

. . .

. . .

. . .

c1n

c2n.
.
.

cnn

�.

B�B

vn � c1nu1 � c2nu2 � .  .  . � cnnun,

.

.

.

v2 � c12u1 � c22u2 � .  .  . � cn2un

v1 � c11u1 � c21u2 � .  .  . � cn1un

V.
B� � �u1, u2,  .  .  .  , un�B � �v1, v2,  .  .  . , vn�LEMMA
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P R O O F ( O F T H E O R E M 4 . 2 0 ) From the preceding lemma, let be the transition matrix from to Then

and

which implies that for every vector in From this it follows that
So, is invertible and is equal to the transition matrix from to 

There is a nice way to use Gauss-Jordan elimination to find the transition matrix 
First define two matrices and whose columns correspond to the vectors in and 
That is,

and

Then, by reducing the matrix so that the identity matrix occurs in place
of you obtain the matrix This procedure is stated formally in the next
theorem.

P R O O F To begin, let

which implies that

for From these vector equations you can write the systems of linear
equations

ni � 1, 2, .  .  . , n.

c1i�
u11

u12.
.
.

u1n

� � c2i�
u21

u22.
.
.

u2n

� � . . . � cni�
un1

un2.
.
.

unn

� � �
vi1

vi 2.
.
.

vin

�

vn � c1nu1 � c2nu2 � .  .  . � cnnun,

.

.

.

v2 � c12u1 � c22u2 � .  .  . � cn2un

v1 � c11u1 � c21u2 � .  .  . � cn1un

�In � P�1�.B�,
In�B� � B�n � 2n

unu2u1vnv2v1

B� � �
u11

u21
.
.
.

un1

u12

u22
.
.
.

un2

. . .

. . .

. . .

u1n

u2n
.
.
.

unn

�.B � �
v11

v21.
.
.

vn1

v12

v22.
.
.

vn2

. . .

. . .

.  .  .

v1n

v2n.
.
.

vnn

�
B�.BB�B

P�1.

B�.BQ,P�1PPQ � I.
Rn.v�v�B � PQ�v�B

�v�B� � Q�v�B ,�v�B � P�v�B�

B�.BQ

Let and be two bases for Then the
transition matrix from to can be found by using Gauss-Jordan elimination on the

matrix , as follows.

�In � P�1��B� � B�

�B� � B�n � 2n
B�BP�1

Rn.B� � �u1, u2, .  .  . , un�B � �v1, v2, .  .  . , vn�THEOREM 4.21

Transition Matrix 

from to B�B



for Because each of the systems has the same coefficient matrix, you
can reduce all systems simultaneously using the augmented matrix below.

Applying Gauss-Jordan elimination to this matrix produces

By the lemma following Theorem 4.20, however, the right-hand side of this matrix is
which implies that the matrix has the form

which proves the theorem.

In the next example, you will apply this procedure to the change of basis problem from
Example 3.

Find the transition matrix from to for the following bases in .

and

S O L U T I O N First use the vectors in the two bases to form the matrices and 

and

Then form the matrix and use Gauss-Jordan elimination to rewrite as

�
1
0
0

0
1
0

0
0
1

...

...

...

�1
3
1

4
�7
�2

2
�3
�1��

1
0
1

0
�1

2

2
3

�5

...

...

...

1
0
0

0
1
0

0
0
1�

�I3 � P�1�.
�B� � B��B� � B�

B� � �
1

0

1

0

�1

2

2

3

�5
�B � �

1

0

0

0

1

0

0

0

1
�

B�.B

B� � ��1, 0, 1�, �0, �1, 2�, �2, 3, �5��B � ��1, 0, 0�, �0, 1, 0�, �0, 0, 1��

R3B�B

E X A M P L E  4 Finding a Transition Matrix

�I � P�1�,

Q � P�1,

�
1
0
.
.
.
0

0
1
.
.
.
0

.  .  .

. . .

. . .

0
0
.
.
.
1

...

...

...

...

c11

c21.
.
.

cn1

c12

c22.
.
.

cn2

.  .  .

. . .

. . .

c1n

c2n.
.
.

cnn

�.

BB�

�
u11

u12.
.
.

u1n

u21

u22.
.
.

u2n

. . .

. . .

. . .

un1

un2.
.
.

unn

...

...

...

...

v11

v12.
.
.

v1n

v21

v22.
.
.

v2n

. . .

. . .

. . .

vn1

vn2.
.
.

vnn

�
n

ni � 1, 2, .  .  . , n.

u1nc1i � u2nc2i � .  .  . � unncni � vin

.

.

.

u12c1i � u22c2i � .  .  . � un2cni � vi2

u11c1i � u21c2i � .  .  . � un1cni � vi1
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From this you can conclude that the transition matrix from to is

Try multiplying by the coordinate matrix of 

to see that the result is the same as the one obtained in Example 3.

Note that when is the standard basis, as in Example 4, the process of changing
to becomes

But this is the same process that was used to find inverse matrices in Section 2.3. In other
words, if is the standard basis in then the transition matrix from to is

Standard basis to nonstandard basis

The process is even simpler if is the standard basis, because the matrix is 
already in the form

In this case, the transition matrix is simply

Nonstandard basis to standard basis

For instance, the transition matrix in Example 2 from to 
is

Find the transition matrix from to for the following bases for .

and B� � ���1, 2�, �2, �2��B � ���3, 2�, �4, �2��

R2B�B

E X A M P L E  5 Finding a Transition Matrix

P�1 � B � �1

0

1

2�.

�0, 1��
B� � ��1, 0�,B � ��1, 0�, �1, 2��

P�1 � B.

�In � B� � �In � P�1�.

�B� � B�B�

P�1 � �B� ��1.

B�BRn,B

�In � P�1�.�B� � In�

�In � P�1��B� � B�
B

x � �
1

2

�1
�
P�1

P�1 � �
�1

3

1

4

�7

�2

2

�3

�1
�.

B�B

Let and Form the matrix Make a conjecture
about the necessity of using Gauss-Jordan elimination to obtain the transition matrix if the
change of basis is from a nonstandard basis to a standard basis.

P�1
�B�� B�.B� � ��1, 0�, �0, 1��.B � ��1, 0�, �1, 2��Discovery
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S O L U T I O N Begin by forming the matrix

and use Gauss-Jordan elimination to obtain the transition matrix from to 

So, you have

In Example 5, if you had found the transition matrix from to (rather than from 
to ), you would have obtained

�B .
.. B�� � ��3

2
4

�2

.

..

.

..
�1

2
2

�2�,

B�B
BB�

P�1 � ��1

�2

2

3�.

�I2
... P�1� � �1

0
0
1

...

...

�1
�2

2
3�.

B�:BP�1

�B�
... B� � ��1

2
2

�2

...

...

�3
2

4
�2�

Most graphing utilities and computer software programs have the capability to augment two 
matrices. After this has been done, you can use the reduced row-echelon form command to find 
the transition matrix from to For example, to find the transition matrix from to in
Example 5 using a graphing utility, your screen may look like:

Use a graphing utility or a computer software program with matrix capabilities to find the transition
matrix from to Keystrokes and programming syntax for these utilities/programs applicable to
Example 5 are provided in the Online Technology Guide, available at college.hmco.com/pic/
larsonELA6e.

B.B�P

B�BP�1B�.BP�1

Technology
Note
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which reduces to

The transition matrix from to is

You can verify that this is the inverse of the transition matrix found in Example 5 by
multiplication:

Coordinate Representation in General n-Dimensional Spaces

One benefit of coordinate representation is that it enables you to represent vectors in an 
arbitrary -dimensional space using the same notation used in For instance, in Example
6, note that the coordinate matrix of a vector in is a vector in 

Find the coordinate matrix of relative to the standard basis in 

S O L U T I O N First write as a linear combination of the basis vectors (in the order provided).

This tells you that the coordinate matrix of relative to is

In the preceding section, you saw that it is sometimes convenient to represent 
matrices as -tuples. The next example presents some justification for this practice.

Find the coordinate matrix of

X � �
�1

4

3
�

E X A M P L E  7 Coordinate Representation in M3,1

n
n � 1

� p�S � �
4

0

�2

3
�.

Sp

p � 4�1� � 0�x� � ��2��x2� � 3�x3�

p

S � �1, x, x2, x3�.

P3,p � 3x3 � 2x2 � 4

E X A M P L E  6 Coordinate Representation in P3

R4.P3

Rn.n

PP�1 � �3

2

�2

�1� �
�1

�2

2

3� � �1

0

0

1� � I2.

P � �3

2

�2

�1�.

BB�

�I2
.
.. P� � �1

0
0
1

.

..

.

..
3
2

�2
�1�.
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relative to the standard basis in 

S O L U T I O N Because can be written as

the coordinate matrix of relative to is

Theorems 4.20 and 4.21 can be generalized to cover arbitrary -dimensional spaces. This
text, however, does not cover this.

n

�X�S � �
�1

4

3
�.

SX

� ��1��
1

0

0
� � 4�

0

1

0
� � 3�

0

0

1
�,X � �

�1

4

3
�

X

S � ��
1

0

0
�, �

0

1

0
�, �

0

0

1
��.

M3,1,

ExercisesSECTION 4.7

In Exercises 1–6, you are provided with the coordinate matrix of 
relative to a (nonstandard) basis Find the coordinate vector of 
relative to the standard basis in 

1.

2.

3.

4.

5.

6.

In Exercises 7–12, find the coordinate matrix of in relative to
the basis 

7.

8.

9.

10.

11.

12.

In Exercises 13–18, find the transition matrix from to by hand.

13.

14.

15.

16.

17.

18.

In Exercises 19–28, use a graphing utility or computer software 
program with matrix capabilities to find the transition matrix from

to

19.

20. B� � ��1, 2�, ��1, 0��B � ���2, 1�, �3, 2��,

B� � ��2, 1�, ��1, 2��B � ��2, 5�, �1, 2��,

B�.B

B� � ��1, 3, �1�, �2, 7, �4�, �2, 9, �7��
B � ��1, 0, 0�, �0, 1, 0�, �0, 0, 1��,

B� � ��1, 0, 0�, �0, 2, 8�, �6, 0, 12��
B � ��1, 0, 0�, �0, 1, 0�, �0, 0, 1��,

B� � ��1, 0�, �0, 1��B � ��1, 1�, �1, 0��,

B� � ��1, 0�, �0, 1��B � ��2, 4�, ��1, 3��,

B� � ��1, 1�, �5, 6��B � ��1, 0�, �0, 1��,

B� � ��2, 4�, �1, 3��B � ��1, 0�, �0, 1��,

B�B

x � �0, �20, 7, 15�
�3, �4, 2, �3��,B � ��9, �3, 15, 4�, �3, 0, 0, 1�, �0, �5, 6, 8�,

x � �11, 18, �7�B � ��4, 3, 3�, ��11, 0, 11�, �0, 9, 2��,

x � �3, �
1
2, 8�B � ��3

2, 4, 1�, �3
4, 5

2, 0�, �1, 1
2, 2��,

x � �3, 19, 2�B � ��8, 11, 0�, �7, 0, 10�, �1, 4, 6��,

x � ��26, 32�B � ���6, 7�, �4, �3��,

x � �12, 6�B � ��4, 0�, �0, 3��,

B.
Rnx

�x�B � ��2, 3, 4, 1�T

B � ��4, 0, 7, 3�, �0, 5, �1, �1�, ��3, 4, 2, 1�, �0, 1, 5, 0��,

�x�B � �1, �2, 3, �1�T

B � ��0, 0, 0, 1�, �0, 0, 1, 1�, �0, 1, 1, 1�, �1, 1, 1, 1��,

�x�B � �2, 0, 4�TB � ��3
4, 5

2, 3
2�, �3, 4, 72�, ��3

2, 6, 2��,
�x�B � �2, 3, 1� TB � ��1, 0, 1�, �1, 1, 0�, �0, 1, 1��,

�x�B � ��2, 3�TB � ���1, 4�, �4, �1��,

�x�B � �4, 1�TB � ��2, �1�, �0, 1��,

Rn.
xB.
x

R E M A R K : In Section 6.2 you
will learn more about the use 
of to represent an arbitrary 
-dimensional vector space.n

Rn
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21.

22.

23.

24.

25.

26.

27.

28.

In Exercises 29–32, use Theorem 4.21 to (a) find the transition
matrix from to (b) find the transition matrix from to 
(c) verify that the two transition matrices are inverses of each other,
and (d) find when provided with 

29.

30.

31.

32.

In Exercises 33 and 34, use a graphing utility with matrix capabili-
ties to (a) find the transition matrix from B to (b) find the 
transition matrix from to (c) verify that the two transition 
matrices are inverses of one another, and (d) find when 
provided with .

33.

34.

In Exercises 35–38, find the coordinate matrix of relative to the
standard basis in 

35. 36.

37. 38.

In Exercises 39–42, find the coordinate matrix of relative to the
standard basis in 

39. 40.

41. 42.

True or False? In Exercises 43 and 44, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false,
provide an example that shows the statement is not true in all cases
or cite an appropriate statement from the text.

43. (a) If is the transition matrix from a basis to then the
equation represents the change of basis from

to B�.B
P�x�B� � �x��

B�,BP

X � �
1

0

�4
�X � �

1

2

�1
�

X � �
2

�1

4
�X � �

0

3

2
�

M3,1.
X

p � 4x2 � 3x � 2p � �2x2 � 5x � 1

p � 3x2 � 114x � 13p � x2 � 11x � 4

P2.
p

�x�B� � �
�1

0
2�

B� � ��1, 2, �2�, �4, 1, �4�, ��2, 5, 8��,

B � ��1, 3, 4�, �2, �5, 2�, ��4, 2, �6��,

�x�B� � �
1

�1
2�

B� � ��1, 0, 4�, �4, 2, 8�, �2, 5, �2��,

B � ��4, 2, �4�, �6, �5, �6�, �2, �1, 8��,

�x�B�

�x�B

B,B�
B�,

�x�B� � �
2

3

1
�

B� � ��2, 2, 0�, �0, 1, 1�, �1, 0, 1��,

B � ��1, 1, 1�, �1, �1, 1�, �0, 0, 1��,

�x�B� � �
1

2

�1
�

B� � ��2, 1, 1�, �1, 0, 0�, �0, 2, 1��,

B � ��1, 0, 2�, �0, 1, 3�, �1, 1, 1��,

�x�B� � � 2

�1�
B� � ��1, 1�, �32, 31��,B � ��2, �2�, �6, 3��,

�x�B� � ��1

3�
B� � ���12, 0�, ��4, 4��,B � ��1, 3�, ��2, �2��,

�x�B� .�x�B

B,B�B�,B

�2, �1, 2, 1, 1�, �0, 1, 2, �3, 1��
B� � ��2, 4, �2, 1, 0�, �3, �1, 0, 1, 2�, �0, 0, �2, 4, 5�,

�0, 0, 0, 1, 0�, �0, 0, 0, 0, 1��,

B � ��1, 0, 0, 0, 0�, �0, 1, 0, 0, 0�, �0, 0, 1, 0, 0�,
�0, 1, 2, 2, 1�, �1, �1, 0, 1, 2��

B� � ��1, 2, 4, �1, 2�, ��2, �3, 4, 2, 1�, �0, 1, 2, �2, 1�,
�0, 0, 0, 1, 0�, �0, 0, 0, 0, 1��,

B � ��1, 0, 0, 0, 0�, �0, 1, 0, 0, 0�, �0, 0, 1, 0, 0�,
B� � ��1, 0, 0, 0�, �0, 1, 0, 0�, �0, 0, 1, 0�, �0, 0, 0, 1��
B � ��1, 1, 1, 1�, �0, 1, 1, 1�, �0, 0, 1, 1�, �0, 0, 0, 1��,

��2, �3, �5, 11��
B� � ��1, 3, 2, �1�, ��2, �5, �5, 4�, ��1, �2, �2, 4�,
B � ��1, 0, 0, 0�, �0, 1, 0, 0�, �0, 0, 1, 0�, �0, 0, 0, 1��,

B� � ��1, 1, �1�, �0, 1, 2�, ��1, 4, 0��
B � ��3, 2, 1�, �1, 1, 2�, �1, 2, 0��,

B� � ��0, 2, 1�, ��2, 1, 0�, �1, 1, 1��
B � ��1, 2, 4�, ��1, 2, 0�, �2, 4, 0��,

B� � ��1, 0, 0�, �0, 1, 0�, �0, 0, 1��
B � ��2, �1, 4�, �0, 2, 1�, ��3, 2, 1��,

B� � ��1, 0, 0�, �0, 1, 0�, �0, 0, 1��
B � ��1, 3, 3�, �1, 5, 6�, �1, 4, 5��,
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(b) If is the standard basis in then the transition matrix
from to is 

44. (a) If is the transition matrix used to perform a change of
basis from to then is the transition matrix from 
to

(b) To perform the change of basis from a nonstandard basis 
to the standard basis the transition matrix is 

simply

45. Let be the transition matrix from to and let be the
transition matrix from to What is the transition matrix
from to 

46. Let be the transition matrix from to and let be the
transition matrix from to What is the transition matrix
from to 

47. Writing Let and be two bases for the vector space 
Discuss the nature of the transition matrix from to if one
of the bases is the standard basis.

48. Writing Is it possible for a transition matrix to equal the iden-
tity matrix? Illustrate your answer with appropriate examples.

B�B
Rn.B�B

B�?B
B.B�

QB�,B�P

B?B�
B.B�

QB�,B�P

B.
P�1B,B�

B�.
BP�1B,B�

P

P�1 � �B���1.B�B
Rn,B

Applications of Vector Spaces

Linear Differential Equations (Calculus)

A linear differential equation of order is of the form

where and are functions of with a common domain. If the
equation is homogeneous. Otherwise it is nonhomogeneous. A function is called a 
solution of the linear differential equation if the equation is satisfied when and its first 

derivatives are substituted into the equation.

Show that both and are solutions of the second-order linear differential
equation

S O L U T I O N For the function you have and So,

and is a solution of the differential equation. Similarly, for you have

and

This implies that

So, is also a solution of the linear differential equation.

There are two important observations you can make about Example 1. The first is that
in the vector space of all twice differentiable functions defined on the entireC� ���, ��

y2 � e�x

y2� � y2 � e�x � e�x � 0.

y2� � e�x.y2� � �e�x

y2 � e�x,y1 � ex

y1� � y1 � ex � ex � 0,

y1� � ex.y1� � exy1 � ex,

y� � y � 0.
y2 � e�xy1 � ex

E X A M P L E  1 A Second-Order Linear Differential Equation

n
y
y
f �x� � 0,xfg0, g1, .  .  . , gn�1,

y�n� � gn�1�x�y�n�1� � .  .  . � g1�x�y� � g0�x�y � f�x�,

n

4.8
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real line, the two solutions and are linearly independent. This means that
the only solution of

that is valid for all is The second observation is that every linear combina-
tion of and is also a solution of the linear differential equation. To see this, let

Then

Substituting into the differential equation produces

So, is a solution.
These two observations are generalized in the next theorem, which is stated without

proof.

In light of the preceding theorem, you can see the importance of being able to determine
whether a set of solutions is linearly independent. Before describing a way of testing for
linear independence, you are provided with a preliminary definition.

y � C1e
x � C2e

�x

y� � y � �C1e
x � C2e

�x� � �C1e
x � C2e

�x� � 0.

y� � y � 0

y� � C1e
x � C2e

�x.

y� � C1e
x � C2e

�x

y � C1e
x � C2e

�x

y � C1y1 � C2y2.
y2y1

C1 � C2 � 0.x

C1y1 � C2y2 � 0

y2 � e�xy1 � ex

Every th-order linear homogeneous differential equation

has linearly independent solutions. Moreover, if is a set of linearly 
independent solutions, then every solution is of the form

where and are real numbers.CnC1, C2, .  .  . ,

y � C1y1 � C2y2 � .  .  . � Cnyn,

�y1, y2, .  .  . , yn�n

y �n� � gn�1�x�y �n�1� � .  .  . � g1�x�y� � g0�x�y � 0

nSolutions of a Linear

Homogeneous Differential

Equation

Let be a set of functions, each of which has derivatives on an 
interval The determinant

is called the Wronskian of the given set of functions.

W� y1, y2, .  .  . , yn� � � y1

y1�.
.
.

y1
�n�1�

y2

y2�.
.
.

y2
�n�1�

. . .

. . .

. . .

yn

yn�.
.
.

yn
�n�1��

I.
n � 1�y1, y2, .  .  . , yn�Definition of the 

Wronskian of a Set 

of Functions

R E M A R K : The solution 
is

called the general solution of
the given differential equation.

C1y1 � C2y2 � .  .  . � Cnyn

y �
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R E M A R K : The Wronskian of a set of functions is named after the Polish mathematician
Josef Maria Wronski (1778–1853).

(a) The Wronskian of the set is

(b) The Wronskian of the set is

The Wronskian in part (a) of Example 2 is said to be identically equal to zero, because
it is zero for any value of The Wronskian in part (b) is not identically equal to zero 
because values of exist for which this Wronskian is nonzero.

The next theorem shows how the Wronskian of a set of functions can be used to test for
linear independence.

R E M A R K : This test does not apply to an arbitrary set of functions. Each of the functions
and must be a solution of the same linear homogeneous differential equa-

tion of order 

Determine whether is a set of linearly independent solutions of the linear
homogeneous differential equation

S O L U T I O N Begin by observing that each of the functions is a solution of (Try checking
this.) Next, testing for linear independence produces the Wronskian of the three functions, as
follows.

y��� � y� � 0.

y��� � y� � 0.

�1, cos x, sin x�

E X A M P L E  3 Testing a Set of Solutions for Linear Independence

n.
yny1, y2, .  .  . ,

x
x.

W � �x
1
0

x2

2x
2

x3

3x2

6x� � 2x3.

�x, x2, x3�

W � �1 � x
�1

0

1 � x
1
0

2 � x
�1

0� � 0.

�1 � x, 1 � x, 2 � x�

E X A M P L E  2 Finding the Wronskian of a Set of Functions

Let be a set of solutions of an th-order linear homogeneous 
differential equation. This set is linearly independent if and only if the Wronskian is not
identically equal to zero.

nn�y1, y2, .  .  . , yn�Wronskian Test for 

Linear Independence
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Because is not identically equal to zero, you can conclude that the set is 
linearly independent. Moreover, because this set consists of three linearly independent 
solutions of a third-order linear homogeneous differential equation, you can conclude that
the general solution is 

Determine whether is a set of linearly independent solutions of the
linear homogeneous differential equation

S O L U T I O N As in Example 3, begin by verifying that each of the functions is actually a solution of
(This verification is left to you.) Testing for linear independence

produces the Wronskian of the three functions as follows.

So, the set is linearly dependent.

In Example 4, the Wronskian was used to determine that the set

is linearly dependent. Another way to determine the linear dependence of this set is to 
observe that the third function is a linear combination of the first two. That is,

Try showing that the different set forms a linearly independent set of solu-
tions of the differential equation

Conic Sections and Rotation

Every conic section in the -plane has an equation of the form

ax2 � bxy � cy2 � dx � ey � f � 0.

xy

y��� � 3y� � 3y� � y � 0.

�ex, xex, x2ex�

�x � 1�ex � ex � xex.

�ex, xex, �x � 1�ex�

�ex, xex, �x � 1�ex�

� 0W � �ex

ex

ex

xex

�x � 1�ex

�x � 2�ex

�x � 1�ex

�x � 2�ex

�x � 3�ex�
y��� � 3y� � 3y� � y � 0.

y��� � 3y� � 3y� � y � 0.

�ex, xex, �x � 1�ex�

E X A M P L E  4 Testing a Set of Solutions for Linear Independence

y � C1 � C2 cos x � C3 sin x.

�1, cos x, sin x�W

� 1� sin2 x � cos2 x

W � �100 cos x

�sin x

�cos x

sin x

cos x

�sin x�



266 Chapter  4 Vector  Spaces

Identifying the graph of this equation is fairly simple as long as the coefficient of the 
-term, is zero. In such cases the conic axes are parallel to the coordinate axes, and the 

identification is accomplished by writing the equation in standard (completed square) form.
The standard forms of the equations of the four basic conics are provided in the next sum-
mary. For circles, ellipses, and hyperbolas, the point is the center. For parabolas, the
point is the vertex.�h, k�

�h, k�

xy
b,

Circle

Ellipse

Hyperbola

(y − k)2 (x − h)2

− = 1

x

y

2

2

(h, k)

2α 2β

α

β

(x − h)2 (y − k)2

− = 1

x

y

2

2

2

(h, k)

α

β

α 2β

�2 � transverse axis length, 2� � minor axis length�:

(x − h)2 (y − k)2

+ = 1

x

y

2

(h, k)
2

2

β 2α

β

α

x

(x − h)2 (y − k)2

2 2+ = 1
α β

y

(h, k)

2

2

α

β

�2 � major axis length, 2� � minor axis length�:
�x � h�2 � �y � k�2 � r2�r � radius�:Standard Forms of

Equations of Conics
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(a) The standard form of is The graph
of this equation is a parabola with the vertex at The axis of the parabola
is vertical. Because the focus is the point Finally, because the focus lies
below the vertex, the parabola opens downward, as shown in Figure 4.20(a).

(b) The standard form of is

The graph of this equation is an ellipse with its center at The major
axis is horizontal, and its length is The length of the minor axis is The
vertices of this ellipse occur at and and the endpoints of the minor axis
occur at and as shown in Figure 4.20(b).

(a) (b)

Figure 4.20

−5 −4 −3 −2 −1

1

2

3

x

(−3, 2)

(−3, 1)
(−1, 1)(−5, 1)

(−3, 0)

y

(x + 3)2

4
(y − 1)2

1
+ = 1

−2 2 3 4

−3

−2

−1

1

x

(1, 1)

(1, 0)

Focus

(x − 1)2 = 4(−1)(y − 1)

y

��3, 0�,��3, 2�
��1, 1�,��5, 1�

2� � 2.2 � 4.
�h, k� � ��3, 1�.

�x � 3�2

4
�

�y � 1�2

1
� 1.

x2 � 4y2 � 6x � 8y � 9 � 0

�1, 0�.p � �1,
�h, k� � �1, 1�.

�x � 1�2 � 4��1��y � 1�.x2 � 2x � 4y � 3 � 0

E X A M P L E  5 Identifying Conic Sections

Parabola

x

Focus
( + )h p, k

Vertex
( , )h  k

p > 0

( ) = 4 ( )y k p x h− 2

y

−

Focus
(h, k + p)

Vertex
(h, k)

p > 0

(x − h)2 = 4p(y − k)
x

y

�p � directed distance from vertex to focus):Standard Forms of

Equations of Conics (cont.)
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The equations of the conics in Example 5 have no -term. Consequently, the axes of the
corresponding conics are parallel to the coordinate axes. For second-degree polynomial
equations that have an -term, the axes of the corresponding conics are not parallel 
to the coordinate axes. In such cases it is helpful to rotate the standard axes to form a 
new -axis and -axis. The required rotation angle (measured counterclockwise) is

With this rotation, the standard basis in the plane

is rotated to form the new basis

as shown in Figure 4.21.
To find the coordinates of a point relative to this new basis, you can use a transi-

tion matrix, as demonstrated in Example 6.

Find the coordinates of a point in relative to the basis

S O L U T I O N By Theorem 4.21 you have

Because is the standard basis in is represented by You can use Theorem
3.10 to find This results in 

By letting be the coordinates of relative to you can use the transition
matrix as follows.

The - and -coordinates are 

The last two equations in Example 6 give the -coordinates in terms of the 
-coordinates. To perform a rotation of axes for a second-degree polynomial equation, it is

helpful to express the -coordinates in terms of the -coordinates. To do this, solve the
last two equations in Example 6 for and to obtain

and y � x� sin � � y� cos �.x � x� cos � � y� sin �

yx
x�y�xy

xy
x�y�

y� � �x   sin � �  y  cos �.

x� � �x  cos � �  y   sin �

y�x�

� cos �

�sin �

sin �

cos �� �x

y� � �x�

y��
P�1

B�,�x, y��x�, y��T

�I .
.. P�1� � �1

0
0
1

.

..

.

..
cos �

�sin �

sin �

cos ��.

�B���1.
�B���1.P�1R2,B

�B�
.
.. B� � �cos �

sin �

�sin �

cos �

.

..

.

..
1
0

0
1�.

B� � ��cos �, sin ��, ��sin �, cos ���.

R2�x, y�

E X A M P L E  6 A Transition Matrix for Rotation in the Plane

�x, y�

B� � ��cos �, sin ��, ��sin �, cos ���,

B � ��1, 0�, �0, 1��

cot 2� � �a � c�b.
�y�x�

xy

xy

Figure 4.21

y'

x

x'

(cos   , sin   )

(−sin   , cos   )
(0, 1)

(1, 0)

θ

θ

θ

θ

θ

y



Substituting these expressions for and into the given second-degree equation produces
a second-degree polynomial equation in and that has no -term.

R E M A R K : When you solve for and the trigonometric identity 

is often useful.

Example 7 demonstrates how to identify the graph of a second-degree polynomial by 
rotating the coordinate axes.

Perform a rotation of axes to eliminate the -term in

and sketch the graph of the resulting equation in the -plane.

S O L U T I O N The angle of rotation is represented by

This implies that So,

and

By substituting

and

y � x� sin � � y� cos � �
1
�2

�x� � y��

x � x� cos � � y� sin � �
1
�2

�x� � y��

cos � �
1
�2

.sin � �
1
�2

� � �4.

cot 2� �
a � c

b
�

5 � 5

�6
� 0.

x�y�

5x2 � 6xy � 5y2 � 14�2x � 2�2y � 18 � 0,

xy

E X A M P L E  7 Rotation of a Conic Section

cot2 � � 1

2 cot �
cot 2� �

cos �,sin �

x�y�y�x�
yx
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The second-degree equation can be written in the
form

by rotating the coordinate axes counterclockwise through the angle where is defined by

The coefficients of the new equation are obtained from the substitutions

y � x�   sin � �  y�  cos �.

x � x�  cos � �  y�   sin �

cot 2� �
a � c

b
.

��,

a��x��2 � c��y��2 � d�x� � e�y� � f� � 0

ax2 � bxy � cy2 � dx � ey � f � 0Rotation of Axes



Figure 4.22

−5 −4

−4

−3

−2

1

2
y'

x'

x
( 2, 0)−

(−3 2, −2 2)

θ = 45°

y
(x' + 3)2

4
(y' − 1)2

1
+ = 1
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into the original equation and simplifying, you obtain

Finally, by completing the square, you find the standard form of this equation to be

which is the equation of an ellipse, as shown in Figure 4.22.

In Example 7 the new (rotated) basis for is

and the coordinates of the vertices of the ellipse relative to are and 
To find the coordinates of the vertices relative to the standard basis 

use the equations

and

to obtain and as shown in Figure 4.22.���2, 0�,��3�2, �2�2�

y �
1
�2

�x� � y� �

x �
1
�2

�x� � y� �

B � ��1, 0�, �0, 1��,
��1, 1�T.��5, 1�TB�

B� � �	 1
�2

,
1
�2
, 	�

1
�2

,
1
�2
�,

R2

�x� � 3�2

22
�

�y� � 1�2

12
�

�x� � 3�2

4
�

�y� � 1�2

1
� 1,

�x� �2 � 4�y� �2 � 6x� � 8y� � 9 � 0.

Linear Differential Equations (Calculus)

In Exercises 1–8, determine which functions are solutions of the
linear differential equation.

1.

(a) (b) (c) (d)

2.

(a) x (b) (c) (d)

3.

(a) (b) (c) (d)

4.

(a) 1 (b) x (c) (d)

5.

(a) (b) (c) (d)

6.

(a) (b) (c) (d)

7.

(a) (b) (c) (d)

8.

(a) (b) (c) (d) y � xe�xy � x2exy � xex2y � 3ex2

y� � 2xy � 0

y � xe�xy � 2e�2xy � 2e2xy � xe2x

y� � y� � 2y � 0

y � xe�xy � xexy �
1
x

y � x

xy� � 2y� � 0

y � e�x2y � ex2y � x2y �
1
x2

x2 y� � 2y � 0

e xx2

y�� � 2y��� � y� � 0

�x � 2�e�2xx2e�2xxe�2xe�2x

y� � 4y� � 4y � 0

xe�xe�xe x

y��� � 3y� � 3y� � y � 0

sin x � cos xcos xsin xe x

y� � y � 0

ExercisesSECTION 4.8



Sect ion 4 .8 Appl icat ions of  Vector  Spaces 271

In Exercises 9–16, find the Wronskian for the set of functions.

9. 10.
11. 12.
13. 14.

15. 16.

In Exercises 17–24, test the given set of solutions for linear 
independence.

Differential Equation Solutions
17.

18.

19.

20.

21.

22.

23.

24.

25. Find the general solution of the differential equation from
Exercise 17.

26. Find the general solution of the differential equation from
Exercise 18.

27. Find the general solution of the differential equation from
Exercise 20.

28. Find the general solution of the differential equation from
Exercise 24.

29. Prove that is the general solution of

30. Prove that the set is linearly independent if and only if

31. Prove that the set is linearly independent.

32. Prove that the set where is 
linearly independent.

33. Writing Is the sum of two solutions of a nonhomogeneous lin-
ear differential equation also a solution? Explain your answer.

34. Writing Is the scalar multiple of a solution of a nonhomoge-
neous linear differential equation also a solution? Explain your
answer.

Conic Sections and Rotation

In Exercises 35–52, identify and sketch the graph.

35. 36.

37. 38.

39. 40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

In Exercises 53–62, perform a rotation of axes to eliminate the 
-term, and sketch the graph of the conic.

53. 54.

55.

56.

57.

58.

59.

60.

61.

62.

In Exercises 63–66, perform a rotation of axes to eliminate the 
-term, and sketch the graph of the “degenerate” conic.

63. 64.

65. 66. x2 � 10xy � y2 � 0x2 � 2xy � y2 � 1 � 0

5x2 � 2xy � 5y2 � 0x2 � 2xy � y2 � 0

xy

7x2 � 2�3xy � 5y2 � 16

x2 � 2�3xy � 3y2 � 2�3x � 2y � 16 � 0

3x2 � 2�3xy � y2 � 2x � 2�3 y � 0

13x2 � 6�3xy � 7y2 � 16 � 0

5x2 � 6xy � 5y2 � 12 � 0

5x2 � 2xy � 5y2 � 24 � 0

x2 � 2xy � y2 � 8x � 8y � 0

4x2 � 2xy � 4y2 � 15 � 0

xy � 2 � 0xy � 1 � 0

xy

y2 � 8x � 6y � 25 � 0

x2 � 4x � 6y � 2 � 0

4x2 � y2 � 4x � 2y � 1 � 0

2x2 � y2 � 4x � 10y � 22 � 0

4y2 � 4x2 � 24x � 35 � 0

x2 � 4y2 � 4x � 32y � 64 � 0

4y2 � 2x2 � 4y � 8x � 15 � 0

9x2 � y2 � 54x � 10y � 55 � 0

4x2 � y2 � 8x � 3 � 0

9x2 � 25y2 � 36x � 50y � 61 � 0

y2 � 6y � 4x � 21 � 0

x2 � 2x � 8y � 17 � 0

x2

16
�

y2

25
� 1

x2

9
�

y2

16
� 1 � 0

5x2 � 3y2 � 15 � 0x2 � 4y2 � 16 � 0

y2 � 8x � 0y2 � x � 0

b � 0,�eax cos bx, eax sin bx�,

�eax, xeax�
a � b.

�eax, ebx�
a � 0.y� � a2y � 0,

y � C1 cos ax � C2 sin ax

�1, x, e x, xe x�y�� � 2y��� � y� � 0

�e�x, xe�x, e�x � xe�x�y��� � 3y� � 3y� � y � 0

�e�x, xe�x, x2e�x�y��� � 3y� � 3y� � y � 0

�2, �1 � 2 sin x, 1 � sin x�y��� � y� � 0

�1, sin x, cos x�y��� � y� � 0

�e�2x, xe�2x, �2x � 1�e�2x�y��� � 4y� � 4y� � 0

�e�2x, xe�2x�y� � 4y� � 4y � 0

�sin x, cos x�y� � y � 0

�x2, ex2, x2ex��1, e x, e2x�
�x, e�x, ex��e�x, xe�x, �x � 3�e�x�
�x, �sin x, cos x��x, sin x, cos x�
�ex2, e�x2��e x, e�x�
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67. Prove that a rotation of will eliminate the xy-term from
the equation

68. Prove that a rotation of where will elim-
inate the xy-term from the equation

69. For the equation define the matrix as

Prove that if then the graph of is
two intersecting lines.

70. For the equation in Exercise 69, define the matrix as 
and describe the graph of ax2 � bxy � cy2 � 0.�A� � 0,

A

ax2 � bxy � cy2 � 0�A� � 0,

A � � a
b2

b2
c �.

Aax2 � bxy � cy2 � 0,

ax2 � bxy � cy2 � dx � ey � f � 0.

cot 2� � �a � c�b,�,

ax2 � bxy � ay2 � dx � ey � f � 0.

� � �4

Review ExercisesCHAPTER 4

In Exercises 1–4, find (a) (b) (c) and (d) 

1.

2.

3.

4.

In Exercises 5–8, solve for provided that 
and

5. 6.

7. 8.

In Exercises 9–12, write as a linear combination of and 
if possible.

9.

10.

11.

12.

In Exercises 13–16, describe the zero vector and the additive inverse
of a vector in the vector space.

13. 14. 15. 16.

In Exercises 17–24, determine whether is a subspace of the
vector space.

17.

18.

19. is an integer

20.

21. is a real number
22.

23.

24.

25. Which of the subsets of is a subspace of 

(a)

(b)

26. Which of the subsets of is a subspace of 

(a)

(b)

In Exercises 27–32, determine whether S (a) spans (b) is linearly
independent, and (c) is a basis for 

27.

28.

29.

30.

31.

32.

33. Determine whether is a
basis for 

34. Determine whether is a basis for 

In Exercises 35 and 36, determine whether the set is a basis for

35.

36. S � ��1

0

0

1�, ��1

1

0

1�, �2

1

1

0�, �1

0

1

1��

S � ��1

2

0

3�, ��2

�1

1

0�, �3

2

4

3�, ��3

1

�3

3��
M2,2.

P2.S � �1, t, 1 � t2�

P3.
S � �1 � t, 2t � 3t2, t2 � 2t3, 2 � t3�

S � ��1, 0, 0�, �0, 1, 0�, �0, 0, 1�, �2, �1, 0��
S � ��1, 0, 0�, �0, 1, 0�, �0, 0, 1�, ��1, 2, �3��
S � ��2, 0, 1�, �2, �1, 1�, �4, 2, 0��

S � ���1
2, 3

4, �1�, �5, 2, 3�, ��4, 6, �8��
S � ��4, 0, 1�, �0, �3, 2�, �5, 10, 0��
S � ��1, �5, 4�, �11, 6, �1�, �2, 3, 5��

R3.
R3,

W � ��x1, x2, x3�: x1 � x2 � x3 � 1�
W � ��x1, x2, x3�: x1 � x2 � x3 � 0�

R3?R3

W � ��x1, x2, x3�: x1
2 � x2

2 � x3
2 � 1�

W � ��x1, x2, x3�: x1
2 � x2

2 � x3
2 � 0�

R3?R3

V � C ��1, 1�W � � f : f ��1� � 0�,

V � C ��1, 1�W � � f : f �0� � �1�,

V � R3W � ��x, y, z�: x 
 0�,
V � R3�,W � ��x, 2x, 3x�: x

V � R2W � ��x, y�: y � ax2�,

V � R2�,W � ��x, y�: y � ax, a

V � R2W � ��x, y�: x � y � 1�,

V � R2W � ��x, y�: x � 2y�,

W

M2,3R3P8M3,4

u3 � �0, �1, �1, �1�u2 � ��1, 2, 3, 2�,
u1 � �1, �2, 1, 1�,v � �4, �13, �5, �4�,

u3 � �0, 0, 1, 1�
u2 � ��1, �2, �3, 4�,u1 � �1, 2, 3, 4�,v � �1, 2, 3, 5�,

u3 � �1, 0, 0�
u2 � ��2, 0, 1�,u1 � �1, 2, 3�,v � �4, 4, 5�,

u3 � �1, 2, �4�
u2 � �2, 4, �2�,u1 � �1, �1, 2�,v � �3, 0, �6�,

u3,u1, u2,v

2u � 3x � 2v � w5u � 2x � 3v � w

3x � 2u � v � 2w � 02x � u � 3v � w � 0

w � �0, 1, 1�.v � �0, 2, 3�,
u � �1, �1, 2�,x

v � �1, 0, 0, 2�u � �0, 1, �1, 2�,
v � �0, 2, 2, 1�u � �3, �1, 2, 3�,

v � �0, 1, 1�u � ��1, 2, 1�,
v � �1, 0, 2�u � ��1, 2, 3�,

3u � 2v.u � v,2v,u � v,



Chapter  4 Rev iew E xerc ises 273

In Exercises 37–40, find (a) a basis for and (b) the dimension of the
solution space of the homogeneous system of equations.

37.

38.

39.

40.

In Exercises 41–46, find a basis for the solution space of 
Then verify that 

41.

42.

43.

44.

45.

46.

In Exercises 47–52, find (a) the rank and (b) a basis for the row
space of the matrix.

47. 48.

49. 50.

51. 52.

In Exercises 53–58, find the coordinate matrix of relative to the
standard basis.

53.

54.

55. ,

56.

57.

58.

In Exercises 59–64, find the coordinate matrix of relative to the
(nonstandard) basis for 

59.

60.

61.

62.

63.

64.

In Exercises 65–68, find the coordinate matrix of relative to the
basis

65.

66.

67.

68.

�x�B � �2, 2, �1�TB� � ��1, �1, 2�, �2, 2, �1�, �2, 2, 2��,

B � ��1, 1, �1�, �1, 1, 0�, �1, �1, 0��,

�x�B � ��1, 2, �3�TB� � ��0, 0, 1�, �0, 1, 1�, �1, 1, 1��,

B � ��1, 0, 0�, �1, 1, 0�, �1, 1, 1��,

�x�B � �2, �2�T

B� � ��1, 1�, �1, �1��,B � ��1, 0�, �1, �1��,

�x�B � �3, �3�T

B� � ��0, 1�, �1, 2��,B � ��1, 1�, ��1, 1��,

B�.
x

x � �5, 3, �6, 2��1, 2, �2, 0��,

B� � ��1, �1, 2, 1�, �1, 1, �4, 3�, �1, 2, 0, 3�,
x � �21, �5, 43, 14���3, 4, �2, 3��,

B� � ��9, �3, 15, 4�, ��3, 0, 0, �1�, �0, �5, 6, 8�,
x � �4, �2, 9�B� � ��1, 0, 0�, �0, 1, 0�, �1, 1, 1��,

x � �3, �3, 0�B� � ��1, 2, 3�, �1, 2, 0�, �0, �6, 2��,

x � �2, �1�B� � ��1, 1�, �0, �2��,

x � �2, 2�B� � ��5, 0�, �0, �8��,

Rn.
x

�x�B � �4, 0, 2�TB � ��1, 0, 1�, �0, 1, 0�, �0, 1, 1��,

�x�B � �2, 0, �1�TB � ��1, 0, 0�, �1, 1, 0�, �0, 1, 1��,

�x�B � �2, 1�TB � ��4, 2�, �1, �1��,

�x�B � �1
2, 1

2�T
B � ��1

2, 1
2�, �1, 0��

�x�B � �1, 1�TB � ��2, 0�, �3, 3��,

�x�B � �3, 5�TB � ��1, 1�, ��1, 1��,

x

�
1

�1
0

2
4
1

0
1
3��

7

4

�1

0

1

16

2

6

14
�

�1 2 �1��1 �4 0 4�

�
2

1

1

�1

5

16

4

6

14
��

1

�4

6

2

3

1
�

A � �
1

1

�2

1

2

4

3

2

1

0

0

6

2

3

2

1
�

A � �
1

4

�1

1

3

�1

3

2

2

�18

10

0
�

A � �
1

4

�2

0

�2

0

�2

4

1

0

�2

3
�

A � �
2

1

2

�3

5

7

�6

�3

�6

�4

11

16
�

A � �1

3

4

2�

A � � 5

�10

�8

16�
rank�A� � nullity�A� � n.

Ax � 0.

�3x1 � 8x2 � 5x3 � 17x4 � 0

 3x1 � 2x2 � 2x3 � 5x4 � 0

�2x1 � 2x2 � x3 � 4x4 � 0

�x1 � 2x2 � x3 � 2x4 � 0

 5x1 � 8x2 � 2x3 � 5x4 � 0

x1 � 4x2 � 2x3 � x4 � 0

 2x1 � x2 � x3 � 2x4 � 0

x1 � 3x2 � x3 � x4 � 0

 3x1 � 4x2 � x3 � 3x4 � 0

 4x1 � 6x2 � 2x3 � x4 � 0

 3x1 � 8x2 � 2x3 � 3x4 � 0

 3x1 � 6x2 � 5x3 � 11x4 � 0

x1 � 2x2 � 2x3 � 5x4 � 0

 2x1 � 4x2 � 3x3 � 6x4 � 0
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In Exercises 69–72, find the transition matrix from to 

69.

70.

71.

72.

73. Let be the subspace of (all third-degree polynomials) such
that and let U be the subspace of all polynomials such
that Find a basis for W, a basis for and a basis for
their intersection 

74. Calculus Let the vector space of all contin-
uously differentiable functions on the real line.

(a) Prove that is a subspace of 
(b) Prove that is not a subspace of 

75. Writing Let be a
basis for Must contain a polynomial of each degree

Explain your reasoning.

76. Let and be matrices with and . Prove
that if is symmetric and is skew-symmetric 
then is a linearly independent set.

77. Let and consider the set of all polynomials of the
form where is in Is a subspace of 
Prove your answer.

78. Let and be three linearly independent vectors in a 
vector space Is the set linearly
dependent or linearly independent?

79. Let be an square matrix. Prove that the row vectors of
are linearly dependent if and only if the column vectors of 

are linearly dependent.

80. Let be an square matrix, and let be a scalar. Prove that 
the set 

is a subspace of Determine the dimension of if and

81. Let and 

(a) Show that and are linearly independent in 
(b) Show that and are linearly dependent in 

82. Given a set of functions, describe how its domain can influence
whether the set is linearly independent or dependent.

True or False? In Exercises 83–86, determine whether each 
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false, provide
an example that shows the statement is not true in all cases or cite an 
appropriate statement from the text.

83. (a) The standard operations in are vector addition and scalar
multiplication.

(b) The additive inverse of a vector is not unique.

(c) A vector space consists of four entities: a set of vectors, a set
of scalars, and two operations.

84. (a) The set and are real numbers is a
subspace of 

(b) A linearly independent spanning set is called a basis of a
vector space 

(c) If is an invertible matrix, then the row vectors of
are linearly dependent.

85. (a) The set of all -tuples is called -space and is denoted 
by

(b) The additive identity of a vector is not unique.

(c) Once a theorem has been proved for an abstract vector
space, you need not give separate proofs for -tuples,
matrices, and polynomials.

86. (a) The set of points on the line represented by is a 
subspace of 

(b) A set of vectors in a vector space 
is linearly independent if the vector equation 

has only the trivial solution.

(c) Elementary row operations preserve the column space of the
matrix

Linear Differential Equations (Calculus)

In Exercises 87–90, determine whether each function is a solution
of the linear differential equation.

87.

(a) (b) (c) (d)

88.

(a) (b) (c) (d) sin xcos xe�xe x

y�� � y � 0

e�2xe�3xe2xe3x

y� � y� � 6y � 0

A.

c2v2 � .  .  . � cnvn � 0
c1v1 �

VS � �v1, v2, .  .  . , vn�
R2.

x � y � 0

n

Rn.
nn

A
nn � nA

V.
S

R3.
�x3x2W � ��0, x2, x3�:

Rn

C �0, 1�.gf
C ��1, 1�.gf

g�x� � �x�.f �x� � x

A � �
3

0

0

1

3

0

0

0

1
�.

	 � 3SRn.

S � �x: Ax � 	x�

	n � nA

AA
n � nA

�v1 � v2, v2 � v3, v3 � v1�V.
v3v2,v1,

V?WP2.p�x��x3 � x�p�x�,
WV � P5

�A, B�
�BT � �B�,BA

B � OA � On � nBA

0, 1, 2, .  .  . , n?
BPn.

B � �p1�x�, p2�x�, .  .  . , pn�x�, pn�1�x��

V.U � � f : f � � f � 1�
V.W � � f : f � � 3f �

V � C� ���, ��,

W � U.
U,p�1� � 0.

p�0� � 0,
P3W

B� � ��1, 2, 3�, �0, 1, 0�, �1, 0, 1��
B � ��1, 1, 1�, �1, 1, 0�, �1, 0, 0��,

B� � ��0, 0, 1�, �0, 1, 0�, �1, 0, 0��
B � ��1, 0, 0�, �0, 1, 0�, �0, 0, 1��,

B� � ��1, 2�, ��1, 0��B � ��1, �1�, �3, 1��,

B� � ��1, 0�, �0, 1��B � ��1, �1�, �3, 1��,

B�.B
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89.

(a) (b) (c) (d)

90.

(a) (b)

(c) (d)

In Exercises 91–94, find the Wronskian for the set of functions.

91. 92.

93. 94.

In Exercises 95–98, test the set of solutions for linear independence.

Differential Equation Solutions

95.

96.

97.

98.

Conic Sections and Rotation

In Exercises 99–106, identify and sketch the graph of the equation.

99.

100.

101.

102.

103.

104.

105.

106.

In Exercises 107–110, perform a rotation of axes to eliminate the 
-term, and sketch the graph of the conic.

107. 108.

109.

110. 7x2 � 6�3xy � 13y2 � 16 � 0

16x2 � 24xy � 9y2 � 60x � 80y � 100 � 0

9x2 � 4xy � 9y2 � 20 � 0xy � 3

xy

16x2 � 25y2 � 32x � 50y � 16 � 0

4x2 � y2 � 32x � 4y � 63 � 0

y2 � 4x � 4 � 0

2x2 � 20x � y � 46 � 0

4x2 � y2 � 8x � 6y � 4 � 0

x2 � y2 � 2x � 3 � 0

9x2 � 9y2 � 18x � 18y � 14 � 0

x2 � y2 � 4x � 2y � 4 � 0

�sin 2x, cos 2x�y� � 4y � 0

�e x, e2x, e x � e2x�y��� � 6y� � 11y� � 6y � 0

�e�3x, 3e�3x�y� � 6y� � 9y � 0

�e�3x, xe�3x�y� � 6y� � 9y � 0

�x, sin2 x, cos2 x��1, sin 2x, cos 2x�
�1, x, 2 � x��1, x, e x�

cos 3xsin 3x

3 sin x � 3 cos xsin 3x � cos 3x

y� � 9y � 0

2xe�2xx2e�xxe�2xe�2x

y� � 2y � 0

ProjectsCHAPTER 4

1 Solutions of Linear Systems

Write a short paragraph to answer each of the following questions about solutions of
systems of linear equations. You should not perform any calculations, but instead base
your explanations on the appropriate properties from the text.

1. One solution of the homogeneous linear system

is and Explain why 
and must also be a solution. Do not perform any row 

operations.
2. The vectors and are solutions of the homogeneous linear system

Explain why the vector must also be a solution.
3. Consider the two systems represented by the augmented matrices.

If the first system is known to be consistent, explain why the second system
is also consistent. Do not perform any row operations.

�
1

1

2

1

0

�1

�5

�2

�1

�9

�3

0
��

1

1

2

1

0

�1

�5

�2

�1

3

1

0
�

2x1 � 3x2Ax � 0.
x2x1

w � �2z � �2,
y � 2,x � 4,w � 1.z � 1,y � �1,x � �2,

x
x

�

�

2y
y
y

�

�

z

z

�

�

�

3w
w

2w

�

�

�

0
0
0
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4. The vectors and are solutions of the linear system Is the 
vector also a solution? Why or why not?

5. The linear systems and are consistent. Is the system
necessarily consistent? Why or why not?

6. Consider the linear system If the rank of equals the rank of the
augmented matrix for the system, explain why the system must be consistent.
Contrast this to the case in which the rank of is less than the rank of the
augmented matrix.

2 Direct Sum
Let and be subspaces of the vector space You learned in Section 4.3 that the
intersection is also a subspace of whereas the union is, in general,
not a subspace. In this project you will explore the sum and direct sum of subspaces,
focusing especially on their geometric interpretation in 

1. Define the sum of the subspaces and as follows.

Prove that is a subspace of 
2. Consider the subspaces of listed below.

Find and 
3. If and are subspaces of such that and 

prove that every vector in has a unique representation of the form 
where is in and is in In this case, we say that is the direct sum
of and and write

Direct sum

Which of the sums in part (2) of this project are direct sums?
4. Let and suppose that is a basis for the 

subspace and is a basis for the subspace Prove that
the set is a basis for 

5. Consider the subspaces of listed below.

Show that Is the direct sum of and What are the 
dimensions of , and In general, formulate a conjecture
that relates the dimensions of and 

6. Can you find two 2-dimensional subspaces of whose intersection is just
the zero vector? Why or why not?

R3
U � W.U � W,U, W,

U � W?U � WU, W,
W?UR3R3 � U � W.

W � ��0, x, y� : x, y 	 R�
U � ��x, 0, y� : x, y 	 R�

V � R3
V.�u1, .  .  . , uk, w1, .  .  . , wm�

W.�w1, w2, .  .  . , wm�U
�u1, u2, .  .  . , uk�V � U � W

V � U � W.

W,U
VW.wUu

u � w,V
U � W � �0�,V � U � WVWU

W � Z.U � Z,U � W,

Z � ��x, x, x� : x 	 R�
W � ��x, 0, x� : x 	 R�
U � ��x, y, x � y� : x, y 	 R�

V � R3
V.U � W

U � W � �u � w : u 	 U, w 	 W�

WU

Rn.

U � WV,U � W
V.WU

A

AAx � b.
Ax � b1 � b2

Ax � b2Ax � b1

2x1 � 3x2

Ax � b.x2x1
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5 Inner Product Spaces

5.1 Length and Dot Product
in Rn

5.2 Inner Product Spaces
5.3 Orthonormal Bases:

Gram-Schmidt Process
5.4 Mathematical Models

and Least Squares
Analysis

5.5 Applications of Inner
Product Spaces

CHAPTER OBJECTIVES

■ Find the length of , a vector with the same length in the same direction as , and a unit
vector in the same or opposite direction as 

■ Find the distance between two vectors, the dot product, and the angle between and 

■ Verify the Cauchy-Schwarz Inequality, the Triangle Inequality, and the Pythagorean Theorem.

■ Determine whether two vectors are orthogonal, parallel, or neither.

■ Determine whether a function defines an inner product on or , and find the inner
product as defined for two vectors in and 

■ Find the projection of a vector onto a vector or subspace.

■ Determine whether a set of vectors in is orthogonal, orthonormal, or neither.

■ Find the coordinates of relative to the orthonormal basis 

■ Use the Gram-Schmidt orthonormalization process.

■ Find an orthonormal basis for the solution space of a homogeneous system.

■ Determine whether subspaces are orthogonal and, if so, find the orthogonal complement of a
subspace.

■ Find the least squares solution of a system 

■ Find the cross product of two vectors and 

■ Find the linear or quadratic least squares approximating function for a known function.

■ Find the th-order Fourier approximation for a known function.n

v.u

Ax � b.

Rn.x

Rn

Pn.Rn, Mm,n,�u, v�
PnRn, Mm,n,

v.u�

v.
vuv

Length and Dot Product in Rn

Section 4.1 mentioned that vectors in the plane can be characterized as directed line 
segments having a certain length and direction. In this section, will be used as a model
for defining these and other geometric properties (such as distance and angle) of vectors in

In the next section, these ideas will be extended to general vector spaces.
You will begin by reviewing the definition of the length of a vector in If 

is a vector in the plane, then the length, or magnitude, of denoted by is defined as 

�v � � �v1
2 � v2

2.

�v �,v,
v � �v1, v2�R2.

Rn.

R2

5.1
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This definition corresponds to the usual notion of length in Euclidean geometry. That is, the
vector is thought of as the hypotenuse of a right triangle whose sides have lengths of 
and as shown in Figure 5.1. Applying the Pythagorean Theorem produces

Figure 5.1

Using as a model, the length of a vector in is defined as follows.

R E M A R K : The length of a vector is also called its norm. If then the vector is
called a unit vector.

This definition shows that the length of a vector cannot be negative. That is,
Moreover, if and only if is the zero vector 0.v�v � � 0

�v � ≥ 0.

v�v � � 1,

RnR2

⎥⎪v2⎥⎪

⎥⎪v1⎥⎪

⎥⎪v⎥⎪

⎥⎪v⎥⎪ = v1
2 + v2

2

(v1, v2)

�v �2 � �v1�2 � �v2�2 � v1
2 � v2

2.

�v2�,
�v1�v

The length, or magnitude, of a vector in is given by

�v � � �v1
2 � v2

2 � .  .  . � vn
2.

Rnv � �v1, v2, .  .  . , vn�Definition of Length 

of a Vector in Rn

You can use a graphing utility or computer software program to find the length, or norm, of a vector.
For example, using a graphing utility, the length of the vector can be found and
may appear as follows.

Verify the length of in Example 1(a) on the next page.v

v � �2, �1, �2�
Technology

Note
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(a) In the length of is

(b) In the length of is

Because its length is 1, is a unit vector, as shown in Figure 5.2.

Each vector in the standard basis for has length 1 and is called a standard unit
vector in In physics and engineering it is common to denote the standard unit vectors
in and as follows.

and

Two nonzero vectors and in are parallel if one is a scalar multiple of the other—
that is, Moreover, if then and have the same direction, and if 

and have opposite directions. The next theorem gives a formula for finding the length
of a scalar multiple of a vector.

P R O O F Because it follows that 

� �c� �v �.
� �c��v1

2 � v2
2 � .  .  . � vn

2

� �c2�v1
2 � v2

2 � .  .  . � vn
2�

� ��cv1�2 � �cv2�2 � .  .  . � �cvn�2

�cv � � ��cv1, cv2, .  .  . , cvn��

cv � �cv1, cv2, .  .  . , cvn�,

vu
c < 0,vuc > 0,u � cv.

Rnvu

�i, j , k� � ��1, 0, 0�, �0, 1, 0�, �0, 0, 1��

�i, j� � ��1, 0�, �0, 1��

R3R2
Rn.

Rn

v

�v � ��	 2
�17


2

� 	�
2

�17

2

� 	 3
�17


2

��17
17

� 1.

v � �2�17, �2�17, 3�17 �R3,

�v � � �02 � ��2�2 � 12 � 42 � ��2�2 � �25 � 5.

v � �0, �2, 1, 4, �2�R5,

E X A M P L E  1 The Length of a Vector in Rn

Let be a vector in and let be a scalar. Then

where is the absolute value of c.�c�
�cv � � �c� �v �,

cRnvTHEOREM 5.1

Length of a 

Scalar Multiple

Figure 5.2

v

v = , − ,
17 17 17( )2 2 3



One important use of Theorem 5.1 is in finding a unit vector having the same direction
as a given vector. The theorem below provides a procedure for doing this.

P R O O F Because is nonzero, you know is positive, and you can write as a 
positive scalar multiple of 

So, it follows that has the same direction as Finally, has length 1 because

The process of finding the unit vector in the direction of is called normalizing the
vector This procedure is demonstrated in the next example.

Find the unit vector in the direction of and verify that this vector has length 1.

S O L U T I O N The unit vector in the direction of is

which is a unit vector because

(See Figure 5.3.)

�	 3
�14


2

� 	�
1

�14

2

� 	 2
�14


2

��14
14

� 1.

� 	 3
�14

, �
1

�14
,

2
�14
,

�
1

�14
�3, �1, 2�

v
�v �

�
�3, �1, 2�

�32 � ��1�2 � 22

v

v � �3, �1, 2�,

E X A M P L E  2 Finding a Unit Vector

v.
v

�u � � � v
�v � � �

1
�v �

�v � � 1.

uv.u

u � 	 1
�v �
v

v.
u1�v ��v � � 0.v
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If is a nonzero vector in then the vector

has length 1 and has the same direction as . This vector is called the unit vector in the
direction of .v

uv

u �
v

�v �

Rn,vTHEOREM 5.2

Unit Vector in the 

Direction of v

Figure 5.3

z

2

−4

4

4

2

x

y

(3, −1, 2)

, , 213
14 14 14( )

v
v

−

v
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Distance Between Two Vectors in Rn

To define the distance between two vectors in will be used as the model. The
Distance Formula from analytic geometry tells you that the distance between two points
in the plane, and is

In vector terminology, this distance can be viewed as the length of where 
and as shown in Figure 5.4. That is,

which leads to the next definition.

Figure 5.4

v u

(v1, v2)
(u1, u2)d(u, v)

d(u, v) =⎟⎟  u − v⎟⎟ = (u1 − v1)2 + (u2 − v2)2

�u � v � � ��u1 � v1�2 � �u2 � v2�2,

v � �v1, v2�,�u1, u2�
u �u � v,

d � ��u1 � v1�2 � �u2 � v2�2.

�v1, v2�,�u1, u2�
d

R2Rn,

You can use a graphing utility or computer software program to find the unit vector for a given 
vector. For example, you can use a graphing utility to find the unit vector for , which
may appear as:

v � ��3, 4�
Technology

Note

H I S T O R I C A L  N O T E

Olga Taussky-Todd

(1906–1995)

became interested in mathemat-
ics at an early age. She heavily
studied algebraic number theory
and wrote a paper on the sum 
of squares, which earned her 
the Ford Prize from the
Mathematical Association of
America. To read about her work,
visit college.hmco.com/pic/
larsonELA6e.
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You can easily verify the three properties of distance listed below.

1.
2. if and only if 
3.

The distance between and is

Dot Product and the Angle Between Two Vectors

To find the angle between two nonzero vectors and 
in the Law of Cosines can be applied to the triangle shown in Figure 5.5 to obtain

Expanding and solving for yields

The numerator of the quotient above is defined as the dot product of and and is 
denoted by

.

This definition is generalized to as follows.

R E M A R K : Notice that the dot product of two vectors is a scalar, not another vector.

Rn

u � v � u1v1 � u2v2

vu

cos � �
u1v1 � u2v2

�u � �v �
.

cos �

�v � u �2 � �u �2 � �v �2 � 2�u � �v � cos �.

R2,
v � �v1, v2�u � �u1, u2��  �0 � � � ��

� ���2�2 � 22 � 12 � 3.

d�u, v� � �u � v � � ��0 � 2, 2 � 0, 2 � 1��

v � �2, 0, 1�u � �0, 2, 2�

E X A M P L E  3 Finding the Distance Between Two Vectors

d�u, v� � d�v, u�
u � v.d�u, v� � 0

d�u, v� 
 0

The distance between two vectors and in is

d�u, v� � �u � v �.

RnvuDefinition of Distance

Between Two Vectors

Figure 5.5

||u||

||v||

||v − u||

θ

Angle Between Two Vectors

The dot product of and is the scalar quantity

u � v � u1v1 � u2v2 � .  .  . � unvn.

v � �v1, v2 , .  .  . , vn�u � �u1, u2, .  .  . , un�Definition of 

Dot Product in Rn
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The dot product of and is

P R O O F The proofs of these properties follow easily from the definition of dot product. For example,
to prove the first property, you can write

In Section 4.1, was defined as the set of all ordered -tuples of real numbers. When
is combined with the standard operations of vector addition, scalar multiplication, vector

length, and the dot product, the resulting vector space is called Euclidean -space. In the
remainder of this text, unless stated otherwise, you may assume to have the standard
Euclidean operations.

Rn
n

Rn
nRn

� v � u.

� v1u1 � v2u2 � .  .  . � vnun

u � v � u1v1 � u2v2 � .  .  . � unvn

u � v � �1��3� � �2���2� � �0��4� � ��3��2� � �7.

v � �3, �2, 4, 2�u � �1, 2, 0, �3�

E X A M P L E  4 Finding the Dot Product of Two Vectors

You can use a graphing utility or computer software program to find the dot product of two vectors. Using
a graphing utility, you can verify Example 4, and it may appear as follows.

Keystrokes and programming syntax for these utilities/programs applicable to Example 4 are provided in
the Online Technology Guide, available at college.hmco.com/pic/larsonELA6e.

Technology
Note

If , and are vectors in and is a scalar, then the following properties are true.

1.
2.
3.
4.
5. and if and only if v � 0.v � v � 0v � v 
 0,

v � v � �v �2
c�u � v� � �cu� � v � u � �cv�
u � �v � w� � u � v � u � w
u � v � v � u

cRnwv,uTHEOREM 5.3

Properties of the 

Dot Product
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Given and find

(a) (b) (c) (d) (e)

S O L U T I O N (a) By definition, you have

(b) Using the result in part (a), you have

(c) By Property 3 of Theorem 5.3, you have

(d) By Property 4 of Theorem 5.3, you have

(e) Because you have

Consequently,

Provided with two vectors and in such that and
evaluate 

S O L U T I O N Using Theorem 5.3, rewrite the dot product as

� 3�39� � 7��3� � 2�79� � 254.

� 3�u � u� � 7�u � v� � 2�v � v�
� 3�u � u� � u � v � 6�v � u� � 2�v � v�
� u � �3u� � u � v � �2v� � �3u� � �2v� � v

�u � 2v� � �3u � v� � u � �3u � v� � �2v� � �3u � v�

�u � 2v� � �3u � v�.v � v � 79,
u � v � �3,u � u � 39,Rnvu

E X A M P L E  6 Using Properties of the Dot Product

u � �v � 2w� � 2�13� � ��2��2� � 26 � 4 � 22.

v � 2w � �5 � ��8�, 8 � 6� � �13, 2�.

2w � ��8, 6�,

�w �2 � w � w � ��4���4� � �3��3� � 25.

u � �2v� � 2�u � v� � 2��6� � �12.

�u � v�w � �6w � �6��4, 3� � �24, �18�.

u � v � 2�5� � ��2��8� � �6.

u � �v � 2w�.�w �2.u � �2v�.�u � v�w.u � v.

w � ��4, 3�,v � �5, 8�,u � �2, �2�,

E X A M P L E  5 Finding Dot Products

How does the dot product of two vectors compare with the product of their lengths? For instance,
let and . Calculate and Repeat this experiment with other
choices for and . Formulate a conjecture about the relationship between and �u� �v�.u � vvu

�u� �v�.u � vv � ��4, �3�u � �1, 1�
Discovery
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To define the angle between two vectors and in you can use the formula in 

For such a definition to make sense, however, the value of the right-hand side of this 
formula cannot exceed 1 in absolute value. This fact comes from a famous theorem named
after the French mathematician Augustin-Louis Cauchy (1789–1857) and the German
mathematician Hermann Schwarz (1843–1921).

P R O O F Case 1. If then it follows that

and

So, the theorem is true if 
Case 2. If let be any real number and consider the vector Because

it follows that

Now, let and to obtain the quadratic inequality
Because this quadratic is never negative, it has either no real roots or a

single repeated real root. But by the Quadratic Formula, this implies that the discriminant,
is less than or equal to zero.

Taking the square root of both sides produces

Verify the Cauchy-Schwarz Inequality for and v � �2, 0, �1�.u � �1, �1, 3�

E X A M P L E  7 An Example of the Cauchy-Schwarz Inequality

�u � v� � �u � u �v � v � �u � �v �.

�u � v�2 � �u � u��v � v�
 4�u � v�2 � 4�u � u��v � v�

b2 � 4ac

b2 � 4ac � 0

b2 � 4ac,

at2 � bt � c 
 0.
c � v � vb � 2�u � v�,a � u � u,

�tu � v� � �tu � v� � t2�u � u� � 2t�u � v� � v � v 
 0.

�t u � v� � �t u � v� 
 0,
tu � v.tu � 0,

u � 0.

�u � �v � � 0�v � � 0.�u � v� � �0 � v� � 0

u � 0,

cos � �
u � v

�u � �v �
.

R2Rn,vu�

If and are vectors in then

where denotes the absolute value of u � v.�u � v�
�u � v� � �u � �v �,

Rn,vuTHEOREM 5.4

The Cauchy-Schwarz

Inequality
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S O L U T I O N Because and you have

and

The inequality holds, and you have 

The Cauchy-Schwarz Inequality leads to the definition of the angle between two nonzero
vectors in 

R E M A R K : The angle between the zero vector and another vector is not defined.

The angle between and is 

Consequently, It makes sense that and should have opposite directions, because

Note that because and are always positive, and will always have the
same sign. Moreover, because the cosine is positive in the first quadrant and negative in the
second quadrant, the sign of the dot product of two vectors can be used to determine
whether the angle between them is acute or obtuse, as shown in Figure 5.6.

cos �u � v�v ��u �

u � �2v.
vu� � �.

cos � �
u � v

�u � �v �
�

�12
�24 �6

� �
12

�144
� �1.

v � �2, 0, �1, 1�u � ��4, 0, 2, �2�

E X A M P L E  8 Finding the Angle Between Two Vectors

Rn.

�u � v� � �u � �v �.

�u � �v � � �u � u �v � v � �11�5 � �55.

�u � v� � ��1� � 1

v � v � 5,u � u � 11,u � v � �1,

The angle between two nonzero vectors in is given by

0 � � � �.cos � �
u � v

�u � �v �
,

Rn�Definition of the Angle

Between Two Vectors in Rn

Figure 5.6

θ

θ
θ

π=
cos     = −1

u v

Opposite
direction

u
v

θ

θ

ππ

θ

<<

cos     < 0
2

u • v < 0

u

v
θ

θ

π

θ

=

cos     = 0
2

u • v = 0

u

v
θ

θ

π

θ

<<

cos     > 0

0
2

u • v > 0

u
v

θ
θ

direction

= 0
cos     = 1

Same
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Figure 5.6 shows that two nonzero vectors meet at a right angle if and only if their dot 
product is zero. Two such vectors are said to be orthogonal (or perpendicular).

R E M A R K : Even though the angle between the zero vector and another vector is not
defined, it is convenient to extend the definition of orthogonality to include the zero vector.
In other words, the vector is said to be orthogonal to every vector.

(a) The vectors and are orthogonal because

(b) The vectors and are orthogonal because

Determine all vectors in that are orthogonal to 

S O L U T I O N Let be orthogonal to Then

which implies that and So, every vector that is orthogonal to 
is of the form

where is a real number. (See Figure 5.7.)

The Cauchy-Schwarz Inequality can be used to prove another well-known inequality
called the Triangle Inequality (Theorem 5.5, page 288). The name “Triangle Inequality”
is derived from the interpretation of the theorem in illustrated for the vectors and 
in Figure 5.8(a). If you consider and to be the lengths of two sides of a triangle,
you can see that the length of the third side is Moreover, because the length 
of any side of a triangle cannot be greater than the sum of the lengths of the other two sides,
you have

Figure 5.8(b) illustrates the Triangle Inequality for the vectors and in R3.vu

�u � v � � �u � � �v �.

�u � v �.
�v ��u �

vuR2,

t

v � �t, �2t� � t�1, �2�,

�4, 2�v2 � �2v1.2v2 � �4v1

u � v � �4, 2� � �v1, v2� � 4v1 � 2v2 � 0,

u.v � �v1, v2�

u � �4, 2�.R2

E X A M P L E  1 0 Finding Orthogonal Vectors

u � v � �3��1� � �2���1� � ��1��1� � �4��0� � 0.

v � �1, �1, 1, 0�u � �3, 2, �1, 4�

u � v � �1��0� � �0��1� � �0��0� � 0.

v � �0, 1, 0�u � �1, 0, 0�

E X A M P L E  9 Orthogonal Vectors in Rn

0

Two vectors and in are orthogonal if

u � v � 0.

RnvuDefinition of 

Orthogonal Vectors

Figure 5.7

u

x

(4, 2)

1

2

y

1 2 3 4

−1

−2

v = (1, −2)
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(a) (b)

Figure 5.8

These results can be generalized to in the following theorem.

P R O O F Using the properties of the dot product, you have

Now, by the Cauchy-Schwarz Inequality, and you can write 

Because both and are nonnegative, taking the square root of both
sides yields

R E M A R K : Equality occurs in the Triangle Inequality if and only if the vectors and 
have the same direction. (See Exercise 117.)

vu

�u � v � ≤ �u � � �v �.

��u � � �v ���u � v �

� ��u � � �v ��2.

� �u �2 � 2 �u � �v � � �v �2

�u � v �2 � �u �2 � 2�u � v� � �v �2

�u � v� � �u � �v �,

� �u �2 � 2�u � v� � �v �2.

� �u �2 � 2�u � v� � �v �2

� u � u � 2�u � v� � v � v

� u � �u � v� � v � �u � v�
�u � v �2 � �u � v� � �u � v�

Rn

x y

z

⏐ ⏐ u + v⏐ ⏐ 

⏐ ⏐ u⏐ ⏐ 

⏐ ⏐ v⏐ ⏐ 

⏐ ⏐ v⏐ ⏐ 

⏐ ⏐ u + v⏐ ⏐ ⏐ ⏐ u⏐ ⏐ ⏐ ⏐ v⏐ ⏐ < +

⏐ ⏐ u + v⏐ ⏐ 

⏐ ⏐ u + v⏐ ⏐ 

⏐ ⏐ u⏐ ⏐ 

⏐ ⏐ u⏐ ⏐ 

⏐ ⏐ v⏐ ⏐ 

⏐ ⏐ v⏐ ⏐ 

⏐ ⏐ v⏐ ⏐ 

x

< +

y

If and are vectors in then

�u � v � � �u � � �v �.

Rn,vuTHEOREM 5.5

The Triangle Inequality
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From the proof of the Triangle Inequality, you have

If and are orthogonal, then and you have the extension of the Pythagorean
Theorem to shown below.

This relationship is illustrated graphically for and in Figure 5.9.

The Dot Product and Matrix Multiplication

It is often useful to represent a vector in as an column
matrix. In this notation, the dot product of two vectors

and

can be represented as the matrix product of the transpose of multiplied by .

For example, the dot product of the vectors

and

is

In this light, many of the properties of the dot product are direct consequences of the
corresponding properties of matrix multiplication.

u � v � uTv � �1 2 �1� �
3

�2

4
� � ��1��3� � �2���2� � ��1��4�� � �5.

v � �
3

�2

4
�u � �

1

2

�1
�

u � v � uTv � �u1 u2 .  .  . un� �
v1

v2
.
.
.
vn

� � �u1v1 � u2v2 � .  .  . � unvn�

vu

v � �
v1

v2
.
.
.
vn

�u � �
u1

u2.
.
.

un

�
n � 1Rnu � �u1, u2, .  .  . , un�

R3R2

Rn
u � v � 0,vu

�u � v �2 � �u �2 � 2�u � v� � �v �2.

If and are vectors in then and are orthogonal if and only if

�u � v �2 � �u �2 � �v �2.

vuRn,vuTHEOREM 5.6

The Pythagorean Theorem

Figure 5.9

⏐ ⏐ u + v⏐ ⏐ 

⏐ ⏐ u⏐ ⏐ 

⏐ ⏐ u⏐ ⏐ 

⏐ ⏐ v⏐ ⏐ 
x

y

x y

z

⏐ ⏐ u + v⏐ ⏐ 

⏐ ⏐ u⏐ ⏐ 

⏐ ⏐ v⏐ ⏐ 

⏐ ⏐ v⏐ ⏐ 
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ExercisesSECTION 5.1

In Exercises 1–6, find the length of the vector.

1. 2.

3. 4.

5. 6.

In Exercises 7–12, find (a) (b) and (c) 

7.

8.

9.

10.

11.

12.

In Exercises 13–18, find a unit vector (a) in the direction of and
(b) in the direction opposite that of .

13. 14.

15. 16.

17. 18.

19. For what values of c is

20. For what values of c is

In Exercises 21–26, find the vector with the given length that has
the same direction as the vector .

21. 22.

23. 24.

25.

26.

27. Given the vector find such that

(a) has the same direction as and one-half its length.

(b) has the direction opposite that of and one-fourth its
length.

(c) has the direction opposite that of and twice its length.

28. Given the vector find such that

(a) has the same direction as and one-half its length.

(b) has the direction opposite that of and one-fourth its
length.

(c) has the direction opposite that of and twice its length.

In Exercises 29–34, find the distance between and .

29.

30.

31.

32.

33.

34.

In Exercises 35– 40, find (a) (b) (c) (d) 
and (e) 

35.

36.

37.

38.

39.

40.

41. Find given that 
and

42. Find given that 
and

In Exercises 43–58, use a graphing utility or computer software
program with vector capabilities to find (a)–(f). 

(a) Norm of and 

(b) A unit vector in the direction of 

(c) A unit vector in the direction opposite that of 

(d)

(e)

(f)

43.

44.

45.

46.

47.

48.

49.

50.

51.

52. v � �0, 1
4, �

1
2�u � ��1, 1

2, 1
4�,

v � �0, 1
4, 1

5�u � �1, 1
8, 2

5�,
v � ��3, �4, 0�u � �3, 0, �4�,

v � �0, �5, �12�u � �0, 5, 12�,
v � ��7, 24�u � �9, 12�,

v � ��5, �12�u � �10, �24�,
v � �4, 3�u � �3, �4�,

v � ��12, 5�u � �5, 12�,
v � �5, 12�u � �3, �4�,
v � ��8, �15�u � �5, �12�,

v � v

u � u

u � v

u

v

vu

v � v � 6.
u � v � 7,u � u � 8,�3u � v� � �u � 3v�,

v � v � 10.
u � v � �5,u � u � 4,�u � v� � �2u � v�,

v � �6, 8, �3, 3, �5�u � �0, 4, 3, 4, 4�,
v � �0, 2, 5, 4�u � �4, 0, �3, 5�,

v � �0, 2, �1�u � �2, �1, 1�,
v � �1, �3, �2�u � ��1, 1, �2�,

v � �2, �2�u � ��1, 2�,
v � �2, �3�u � �3, 4�,

u � �5v�.
�u � v�v,�u �2,u � u,u � v,

v � �1, 1, 2, 2�u � �0, 1, �1, 2�,
v � �1, 0, 4, �1�u � �0, 1, 2, 3�,

v � ��1, 4, 1�u � �1, 2, 0�,
v � ��1, 3, 0�u � �1, 1, 2�,

v � �7, 1�u � �3, 4�,
v � ��1, 1�u � �1, �1�,

vu

vu

vu

vu

uv � ��1, 3, 0, 4�,
vu

vu

vu

uv � �8, 8, 6�,

u � �1, �1, 4, 0��v � � 2,

u � �0, 2, 1, �1��v � � 3,

u � ��1, 2, 1��v � � 4,u � ��3, 3, 0��v � � 2,

u � ��1, 1��v � � 4,u � �1, 1��v � � 4,

u
v

�c�2, 2, �1� � � 3?

�c�1, 2, 3� � � 1?

u � ��1, 1, 2, 0�u � �1, 0, 2, 2�
u � ��1, 3, 4�u � �3, 2, �5�
u � �1, �1�u � ��5, 12�

u
u

v � �0, 1, 0, 0�u � �1, 0, 0, 0�,
v � �1, 1, 3, 0�u � �0, 1, �1, 2�,

v � �0, 2, �2�u � �1, 2, 1�,
v � �1, �2, 1�u � �0, 4, 3�,

v � �2, �
1
2�u � �1, 1

2�,
v � �4, �

1
8�u � ��1, 1

4�,
�u � v �.�v �,�u �,

v � �2, �4, 5, �1, 1�v � �2, 0, �5, 5�
v � �2, 0, 6�v � �1, 2, 2�
v � �0, 1�v � �4, 3�
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53.

54.

55.

56.

57.

58.

In Exercises 59–62, verify the Cauchy-Schwarz Inequality for the
given vectors.

59.

60.

61.

62.

In Exercises 63–72, find the angle between the vectors.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

In Exercises 73–80, determine all vectors that are orthogonal to .

73. 74.

75. 76.

77. 78.

79. 80.

In Exercises 81–88, determine whether and are orthogonal,
parallel, or neither.

81.

82.

83.

84.

85.

86.

87.

88.

In Exercises 89–92, use a graphing utility or computer software 
program with vector capabilities to determine whether and are
orthogonal, parallel, or neither.

89.

90.

91.

92.

Writing In Exercises 93 and 94, determine if the vectors are 
orthogonal, parallel, or neither. Then explain your reasoning.

93.

94.

True or False? In Exercises 95 and 96, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false, provide
an example that shows the statement is not true in all cases or cite an
appropriate statement from the text.

95. (a) The length or norm of a vector is

(b) The dot product of two vectors and is another vector 
represented by 

96. (a) If is a nonzero vector in the unit vector is

(b) If then the angle between and is acute.

Writing In Exercises 97 and 98, write a short paragraph explaining
why each expression is meaningless. Assume that and are 
vectors in and that is a scalar.

97. (a) (b)

98. (a) (b) c � �u � v��u � v� � u

u � �u � v��u � v �
cRn,

vu

vu�u � v < 0,

u � v�v�.
Rn,v

u � v � �u1v1, u2v2, u3v3, .  .  . , unvn �.
vu

�v� � �v1 � v2 � v3 � .  .  . � vn�.

v � �sin �, �cos �, 0�u � ��sin �, cos �, 1�,
v � �sin �, �cos �, 0�u � �cos �, sin �, �1�,

v � ��16
3 , �2, 4

3, �
2
3�u � ��4

3, 8
3, �4, �

32
3 �,

v � �3
8, �

3
4, 9

8, 3�u � ��3
4, 3

2, �
9
2, �6�,

v � �0, 6, 21
2 , �

9
2�u � ��21

2 , 43
2 , �12, 3

2�,
v � �3

2, 1, �5
2, 0�u � ��2, 1

2, �1, 3�,

vu

v � ��2, �
3
4, 1

2, �
1
4�u � �4, 3

2, �1, 1
2�,

v � �1
4, �

5
4, 0, 1�u � ��2, 5, 1, 0�,

v � �1, �2, �1�u � �0, 1, 6�,
v � �1, �2, 0�u � �0, 1, 0�,
v � �0, �1�u � �1, �1�,
v � �2, �4�u � ��1

3, 2
3�,

v � � 1
2, �

2
3�u � �4, 3�,

v � � 3
2, �

1
6�u � �2, 18�,

vu

u � �0, 0, �1, 0�u � �0, 1, 0, 0, 0�
u � �2, �1, 1�u � �4, �1, 0�
u � �0, 0�u � ��3, 2�
u � �2, 7�u � �0, 5�

uv

v � �1, 0, �1, 0, 1�u � �1, �1, 1, 0, 1�,
v � ��1, 4, 5, �3, 2�u � �1, 3, �1, 2, 0�,

v � ��1, 2, �1, 0�u � �1, �1, 0, 1�,
v � �3, 3, 3, 3�u � �0, 1, 0, 1�,

v � ��3, 2, 0�u � �2, 3, 1�,
v � �2, 1, �1�u � �1, 1, 1�,

v � 	cos
�

4
, sin 

�

4
u � 	cos
�

3
, sin 

�

3
,

v � 	cos
3�

4
, sin 

3�

4 
u � 	cos
�

6
, sin 

�

6
,

v � �2, 0�u � �2, �1�,
v � ��2, 4�u � �3, 1�,

�

v � �0, 1, �1�u � �1, �1, 0�,
v � �1, �3, �2�u � �1, 1, �2�,

v � �1, 1�u � ��1, 0�,
v � �2, �3�u � �3, 4�,

v � �1, 2, 0, �1, 2, �2, 1, 0�
u � �3, �1, 2, 1, 0, 1, 2, �1�,
v � ��1, 0, 1, 2, �2, 1, 1, �2�
u � ��1, 1, 2, �1, 1, 1, �2, 1�,

v � ��1, 0, 2, 1, 2, �3�u � �1, 2, 3, �2, �1, �3�,
v � �2, 0, 1, 1, 2, �2�u � �0, 2, 2, �1, 1, �2�,

v � ��2, �1, ��2�u � ��1, �3, 2�,
v � ��1, �2, �1�u � �0, 1, �2�,
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In Exercises 99–102, verify the Triangle Inequality for the vectors 
and .

99. 100.

101.

102.

In Exercises 103–106, verify the Pythagorean Theorem for the 
vectors and .

103.

104.

105.

106.

107. Writing Explain what is known about the angle between 
and , if

(a) (b) (c)

In Exercises 108 and 109, let be a vector in Show
that is orthogonal to , and use this fact to find two unit 
vectors orthogonal to the given vector.

108. 109.

110. Find the angle between the diagonal of a cube and one of its
edges.

111. Find the angle between the diagonal of a cube and the diagonal
of one of its sides.

112. Prove that if , , and are vectors in then 

113. Guided Proof Prove that if is orthogonal to and , then
is orthogonal to for any scalars and 

Getting Started: To prove that is orthogonal to 
you need to show that the dot product of and is 0.

(i) Rewrite the dot product of and as a linear
combination of and using Properties 2
and 3 of Theorem 5.3.

(ii) Use the fact that is orthogonal to v and w, and the
result of part (i) to lead to the conclusion that is 
orthogonal to 

114. Prove that if and are vectors in then

115. Prove that if and are vectors in then

116. Prove that the vectors and 
are orthogonal unit vectors for any value of

Graph and for 

117. Prove that if and only if and have
the same direction.

118. Writing The vector gives the num-
bers of bushels of corn, oats, and wheat raised by a farmer in a
certain year. The vector gives the prices
in dollars per bushel of the three crops. Find the dot product

and explain what information it gives.

119. Writing Let be a solution to the homogeneous linear
system of equations Explain why is orthogonal to
the row vectors of 

120. The vector gives the numbers of units of
two models of mountain bikes produced by a company. The
vector gives the prices in dollars of the two
models, respectively. Find the dot product and explain
what information it gives.

121. Use the matrix multiplication interpretation of the dot 
product, to prove the first three properties of
Theorem 5.3.

u � v � uTv,

u � v
v � �225, 275�

u � �1245, 2600�
A.

xAx � 0.
m � nx

u � v,

v � �2.22, 1.85, 3.25�

u � �3240, 1450, 2235�

vu�u � v � � �u � � �v �
� � �3.vu�.

�sin �, cos ��v �
u � �cos �, �sin ��

�u � v �2 � �u � v �2 � 2�u �2 � 2�v �2.

Rn,vu

u � v �
1
4 �u � v �2 �

1
4 �u � v �2.

Rn,vu

cv � dw.
u

u

�u � w��u � v�
cv � dwu

cv � dwu
cv � dw,u

d.ccv � dwu
wvu

u � w � v � w.
�u � v� � w �Rn,wvu

v � �8, 15�v � �12, 5�

v�v2, �v1�
R2.v � �v1, v2�

u � v < 0.u � v > 0.u � v � 0.

v
u�,

v � �2, �3, 1�u � �4, 1, �5�,
v � �4, �3, 0�u � �3, 4, �2�,

v � �4, 6�u � �3, �2�,
v � �1, 1�u � �1, �1�,

vu

v � �0, 1, 2�u � �1, �1, 0�,
v � �2, 0�u � ��1, 1�,

v � �0, 1, �2�u � �1, 1, 1�,v � �1, 1�u � �4, 0�,

v
u

Inner Product Spaces

In Section 5.1, the concepts of length, distance, and angle were extended from to 
This section extends these concepts one step further—to general vector spaces. This is 
accomplished by using the notion of an inner product of two vectors.

You already have one example of an inner product: the dot product in The dot 
product, called the Euclidean inner product, is only one of several inner products that can
be defined on To distinguish between the standard inner product and other possible
inner products, use the following notation.

Rn.

Rn.

Rn.R2

5.2



dot product Euclidean inner product for 

general inner product for vector space 

A general inner product is defined in much the same way that a general vector space 
is defined—that is, in order for a function to qualify as an inner product, it must satisfy a
set of axioms. The axioms parallel Properties 1, 2, 3, and 5 of the dot product given in
Theorem 5.3.

R E M A R K : A vector space with an inner product is called an inner product space.
Whenever an inner product space is referred to, assume that the set of scalars is the set of
real numbers.

Show that the dot product in satisfies the four axioms of an inner product.

S O L U T I O N In the dot product of two vectors and is 

By Theorem 5.3, you know that this dot product satisfies the required four axioms, which 
verifies that it is an inner product on 

The Euclidean inner product is not the only inner product that can be defined on 
A different inner product is illustrated in Example 2. To show that a function is an inner
product, you must show that the four inner product axioms are satisfied.

Show that the following function defines an inner product on where and

S O L U T I O N 1. Because the product of real numbers is commutative,

�u, v� � u1v1 � 2u2v2 � v1u1 � 2v2u2 � �v, u�.

�u, v� � u1v1 � 2u2v2

v � �v1, v2�.
u � �u1, u2�R2,

E X A M P L E  2 A Different Inner Product for R2

Rn.

Rn.

u � v � u1v1 � u2v2 � .  .  . � unvn.

v � �v1, v2, .  .  . , vn�u � �u1, u2, .  .  . , un�Rn,

Rn

E X A M P L E  1 The Euclidean Inner Product for Rn

V

V�u, v� �

Rn��u � v �

Sect ion 5 .2 Inner  Product  Spaces 293

Let , , and be vectors in a vector space and let be any scalar. An inner product
on is a function that associates a real number with each pair of vectors and 
and satisfies the following axioms.

1.
2.
3.
4. and if and only if v � 0.�v, v� � 0�v, v� 
 0,

c�u, v� � �cu, v�
�u, v � w� � �u, v� � �u, w�
�u, v� � �v, u�

vu�u, v�V
cV,wvuDefinition of 

Inner Product
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2. Let Then

3. If is any scalar, then

4. Because the square of a real number is nonnegative,

Moreover, this expression is equal to zero if and only if (that is, if and only if

Example 2 can be generalized to show that

is an inner product on The positive constants are called weights. If any 
is negative or 0, then this function does not define an inner product.

Show that the following function is not an inner product on where and

S O L U T I O N Observe that Axiom 4 is not satisfied. For example, let Then 
which is less than zero.

Let

and

be matrices in the vector space The function

is an inner product on The verification of the four inner product axioms is left to you.M2,2.

�A, B� � a11b11 � a21b21 � a12b12 � a22b22

M2,2.

B � �b11

b21

b12

b22
�A � �a11

a21

a12

a22
�

E X A M P L E  4 An Inner Product on M2,2

�1��1� � 2�2��2� � �1��1� � �6,
�v, v� �v � �1, 2, 1�.

�u, v� � u1v1 � 2u2v2 � u3v3

v � �v1, v2, v3�.
u � �u1, u2, u3�R3,

E X A M P L E  3 A Function That Is Not an Inner Product

cic1, .  .  . , cnRn.

ci > 0�u, v� � c1u1v1 � c2u2v2 � .  .  . � cnunvn,

v1 � v2 � 0�.
v � 0

�v, v� � v1
2 � 2v2

2 
 0.

c�u, v� � c�u1v1 � 2u2v2� � �cu1�v1 � 2�cu2�v2 � �cu, v�.

c

� �u, v� � �u, w�.
� �u1v1 � 2u2v2� � �u1w1 � 2u2w2�
� u1v1 � u1w1 � 2u2v2 � 2u2w2

�u, v � w� � u1�v1 � w1� � 2u2�v2 � w2�

w � �w1, w2�.
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You obtain the inner product described in the next example from calculus. The verifica-
tion of the inner product properties depends on the properties of the definite integral.

Let and be real-valued continuous functions in the vector space Show that 

defines an inner product on 

S O L U T I O N You can use familiar properties from calculus to verify the four parts of the definition.

1.

2.

3.

4. Because for all you know from calculus that

with

if and only if is the zero function in or if 

The next theorem lists some easily verified properties of inner products.

a � b.C�a, b�,f

� f , f � � �b

a

� f �x��2 dx � 0

� f , f � � �b

a

� f �x��2 dx 
 0

x,� f �x��2 
 0

c� f , g� � c�b

a

f�x�g�x� dx � �b

a

cf�x�g�x� dx � �cf , g�

� � f , g� � � f , h�� �b

a

f �x�g�x� dx � �b

a

f �x�h�x� dx

� �b

a

� f�x�g�x� � f�x�h�x�� dx� f, g � h� � �b

a

f �x��g�x� � h�x�� dx

� f, g� � �b

a

f�x�g�x� dx � �b

a

g�x�f �x� dx � �g, f �

C�a, b�.

� f, g� � �b

a

f �x�g�x� dx

C �a, b�.gf

E X A M P L E  5 An Inner Product Defined by a Definite Integral (Calculus)

Let , , and be vectors in an inner product space and let be any real number.

1.
2.
3. �u, cv� � c�u, v�

�u � v, w� � �u, w� � �v, w�
�0, v� � �v, 0� � 0

cV,wvuTHEOREM 5.7

Properties of 

Inner Products
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P R O O F The proof of the first property follows. The proofs of the other two properties are left as 
exercises. (See Exercises 85 and 86.) From the definition of an inner product, you know

so you only need to show one of these to be zero. Using the fact that

The definitions of norm (or length), distance, and angle for general inner product spaces
closely parallel those for Euclidean -space. Note that the definition of the angle between

and presumes that

for a general inner product, which follows from the Cauchy-Schwarz Inequality shown later
in Theorem 5.8.

R E M A R K : If then is called a unit vector. Moreover, if is any nonzero vector

in an inner product space then the vector is a unit vector and is called the
unit vector in the direction of .

For polynomials and in the
vector space the function

is an inner product. Let and be 
polynomials in and determine

(a) (b) (c) (d) d�p, q�.�q � .�q, r�.� p, q�.

P2,
r�x� � x � 2x2p�x� � 1 � 2x2, q�x� � 4 � 2x � x2,

�p, q� � a0b0 � a1b1 � .  .  . � anbn

Pn,
q � b0 � b1x � .  .  . � bnxnp � a0 � a1x � .  .  . � an x n

E X A M P L E  6 Finding Inner Products

v
u � v�v �V,

vv�v � � 1,

�1 �
�u, v�

�u � �v � � 1

vu
�n

� 0.

� 0�v, v�
�0, v� � �0�v�, v�

0�v� � 0,
�0, v� � �v, 0�,

Let and be vectors in an inner product space 

1. The norm (or length) of is 
2. The distance between and is 
3. The angle between two nonzero vectors and is given by

4. and are orthogonal if �u, v� � 0.vu

0 � � � �.cos � �
�u, v�

�u � �v �
,

vu
d�u, v� � �u � v �.vu

�u � � ��u, u�.u

V.vuDefinitions of Norm,

Distance, and Angle
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S O L U T I O N (a) The inner product of and is 

(b) The inner product of and is 

(c) The norm of is

(d) The distance between and is 

Notice that the vectors and are orthogonal.

Orthogonality depends on the particular inner product used. That is, two vectors may be
orthogonal with respect to one inner product but not to another. Try reworking Example 6
using the inner product With this inner product the only
orthogonal pair is and 

Use the inner product defined in Example 5 and the functions and in
to find 

(a) (b)

S O L U T I O N (a) Because you have

So,

(b) To find write

So, d� f , g� �
1

�30
.

�
1
30

.� �x3

3
�

x4

2
�

x5

5 �
1

0
� �1

0

�x2 � 2x3 � x4� dx

� �1

0
�x � x2�2 dx� �1

0
� f �x� � g�x��2 dx

�d� f , g��2 � � f � g, f � g�

d� f , g�,

� f � �
1
�3

.� �x3

3 �
1

0
�

1
3

.� f �2 � � f , f � � �1

0

�x��x� dx � �1

0

x2 dx

f�x� � x,

d� f , g�.� f �.

C�0, 1�
g�x� � x2f �x� � x

E X A M P L E  7 Using the Inner Product on C [0, 1] (Calculus)

q.p
�p, q� � a0b0 � a1b1 � 2a2b2.

rq

� ���3�2 � 22 � ��3�2 � �22.

� ��3 � 2x � 3x2 �
d�p, q� � � p � q � � ��1 � 2x2� � �4 � 2x � x2��

qp

�q � � ��q, q� � �42 � ��2�2 � 12 � �21.

q

�q, r� � �4��0� � ��2��1� � �1��2� � 0.

rq

� �1��4� � �0���2� � ��2��1� � 2.

�p, q� � a0b0 � a1b1 � a2b2

qp
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In Example 7, you found that the distance between the functions and 
in is In practice, the actual distance between a pair of vectors is
not as useful as the relative distance between several pairs. For instance, the distance 
between and in is 1. From Figure 5.10, this seems reason-
able. That is, whatever norm is defined on it seems reasonable that you would want
to say that and are closer than and 

Figure 5.10

The properties of length and distance listed for in the preceding section also hold for
general inner product spaces. For instance, if and are vectors in an inner product space,
then the following three properties are true.

vu
Rn

d(h, g) = 1
1 2

1

2

x

y

g(x) = x2

h(x) = x2 + 1

1

30

1 2

1

2

x

y

d( f, g) =

g(x) = x2

f (x) = x

h.ggf
C�0, 1�,

C �0, 1�h�x� � x2 � 1g�x� � x2

1�30 � 0.183.C �0, 1�
g�x� � x2f�x� � x

Many graphing utilities and computer software programs have built-in routines for approximating
definite integrals. For example, on some graphing utilities, you can use the fnInt command to verify
Example 7(b). It may look like:

The result should be approximately 

Keystrokes and programming syntax for these utilities/programs applicable to Example 7(b) are 
provided in the Online Technology Guide, available at college.hmco.com/pic/larsonELA6e.

0.182574 �
1

�30
.

Technology
Note
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Properties of Norm Properties of Distance

1. 1.

2. if and only if  2. if and only if 

3. 3.

Theorem 5.8 lists the general inner product space versions of the Cauchy-Schwarz
Inequality, the Triangle Inequality, and the general Pythagorean Theorem.

The proofs of these three axioms parallel those for Theorems 5.4, 5.5, and 5.6. Simply
substitute for the Euclidean inner product 

Let and be functions in the vector space with the inner product
defined in Example 5,

Verify that 

S O L U T I O N For the left side of this inequality you have

For the right side of the inequality you have

and

So,

and �� f, g�� � � f � �g �.� f � �g � ���1�	1
3
 �

1
�3

� 0.577,

�g �2 � �1

0

g�x�g�x� dx � �1

0

x2 dx �
x3

3 �
1

0
�

1

3
.

� f �2 � �1

0

f �x� f �x� dx � �1

0

dx � x�
1

0
� 1

� f , g� � �1

0

f �x�g�x� dx � �1

0

x dx �
x2

2 �
1

0
�

1

2
.

�� f, g�� � � f � �g �.

� f , g� � �b

a

f �x�g�x� dx.

C �0, 1�,g�x� � xf�x� � 1

E X A M P L E  8 An Example of the Cauchy-Schwarz Inequality (Calculus)

u � v.�u, v�

d�u, v� � d�v, u��cu � � �c� �u �
u � v.d�u , v� � 0u � 0.�u � � 0

d�u , v� 
 0�u � 
 0

Let and be vectors in an inner product space 

1. Cauchy-Schwarz Inequality:
2. Triangle Inequality:
3. Pythagorean Theorem: and are orthogonal if and only if

�u � v �2 � �u �2 � �v �2.

vu
�u � v � � �u � � �v �

��u, v�� � �u � �v �
V.vuTHEOREM 5.8
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Orthogonal Projections in Inner Product Spaces

Let and be vectors in the plane. If is nonzero, then can be orthogonally projected
onto , as shown in Figure 5.11. This projection is denoted by Because is a
scalar multiple of , you can write

If as shown in Figure 5.11(a), then and the length of is

which implies that So,

If as shown in Figure 5.11(b), then it can be shown that the orthogonal projection
of onto is the same formula.

(a) (b)

Figure 5.11

In the orthogonal projection of onto is

as shown in Figure 5.12.

The notion of orthogonal projection extends naturally to a general inner product space.

� 	12
5

,
16
5 
,

�
20
25

�3, 4�

 projvu �
u � v
v � v

 v �
�4, 2� � �3, 4�
�3, 4� � �3, 4�

�3, 4�

v � �3, 4�u � �4, 2�R2,

E X A M P L E  9 Finding the Orthogonal Projection of u onto v

u

v

θ

projvu = av, a < 0

u

vθ

projvu = av, a > 0

vu
a < 0,

projvu �
u � v
v � v

v.

a � �u � v��v �2 � �u � v��v � v�.

�av � � �a� �v � � a�v � � �u � cos � �
�u � �v � cos �

�v �
�

u � v
�v �

,

projvucos � > 0a > 0,

projvu � av.

v
projvuprojvu.v

uvvu

u

(3, 4)

(         ),

(4, 2)

v

3

1

4

2

1 2 3 4

projvu

12
5

16
5

Figure 5.12
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R E M A R K : If is a unit vector, then and the formula for the orthogo-
nal projection of onto takes the simpler form

Use the Euclidean inner product in to find the orthogonal projection of 
onto

S O L U T I O N Because and the orthogonal projection of onto is

as shown in Figure 5.13.

R E M A R K : Notice in Example 10 that is
orthogonal to This is true in general: if and are nonzero vectors in an
inner product space, then is orthogonal to . (See Exercise 84.)

An important property of orthogonal projections used in approximation problems (see
Section 5.4) is shown in the next theorem. It states that, of all possible scalar multiples of
a vector , the orthogonal projection of onto is the one closest to , as shown in Figure
5.14. For instance, in Example 10, this theorem implies that, of all the scalar multiples of
the vector the vector is closest to You are
asked to prove this explicitly in Exercise 90.

u � �6, 2, 4�.projvu � �2, 4, 0�v � �1, 2, 0�,

uvuv

vu � projvu
vuv � �1, 2, 0�.

u � projvu � �6, 2, 4� � �2, 4, 0� � �4, �2, 4�

� �2, 4, 0�,
� 2�1, 2, 0�

�
10
5

�1, 2, 0�

 projvu �
u � v
v � v

 v

vu�v �2 � v � v � 5,u � v � 10

v � �1, 2, 0�.
u � �6, 2, 4�R3

E X A M P L E  1 0 Finding an Orthogonal Projection in R3

projvu � �u, v�v.

vu
�v, v� � �v �2 � 1,v

Let and be vectors in an inner product space such that Then the orthogo-
nal projection of unto is given by

projvu �
�u, v�
�v, v�

 v.

vu
v � 0.V,vuDefinition of 

Orthogonal Projection

2 2

6

2

4

x

y

z

4

(6, 2, 4) u

(2, 4, 0)

projvu

v

(1, 2, 0)

Figure 5.13
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Figure 5.14

P R O O F Let Then you can write

where and are orthogonal. You can verify this by using the inner prod-
uct axioms to show that

Now, by the Pythagorean Theorem you can write

which implies that

Because and you know that So,

and it follows that

The next example discusses a type of orthogonal projection in the inner product space
C �a, b�.

d�u, bv� < d�u, cv�.

�u � bv �2 < �u � cv �2,

�b � c�2�v �2  >  0.v � 0,b � c

�u � cv �2 � �u � bv �2 � �b � c�2�v�2.

��u � bv� � �b � c�v �2 � �u � bv �2 � ��b � c�v �2,

��u � bv�, �b � c�v� � 0.

�b � c�v�u � bv�

�u � cv �2 � ��u � bv� � �b � c�v �2,

b � �u, v��v, v�.

u

v
cv

d(u, cv)u

v

d( , proj )u uv

projvu

Let and be two vectors in an inner product space such that Then

c �
�u, v�
�v, v�

.d�u, projvu� < d�u, cv�,

v � 0.V,vuTHEOREM 5.9

Orthogonal Projection 

and Distance



Sect ion 5 .2 Inner  Product  Spaces 303

Let and be functions in Use the inner product defined in
Example 5,

to find the orthogonal projection of onto 

S O L U T I O N From Example 8 you know that

and

So, the orthogonal projection of onto is

�
3
2

x.

�
12
13

x

 projg f �
� f , g�
�g, g�

g

gf

�g �2 � �g, g� �
1
3

.� f, g� �
1

2

g.f

� f , g� � �a

b

f �x�g�x� dx,

C �0, 1�.g�x� � xf �x� � 1

E X A M P L E  1 1 Finding an Orthogonal Projection in C[a, b] (Calculus)

ExercisesSECTION 5.2

In Exercises 1–10, find (a) , (b) , (c) , and (d)
for the given inner product defined in 

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Calculus In Exercises 11–16, use the functions and in 
to find (a) (b) (c) and (d) for the inner product 

11.

12.

13.

14.

15.

16. g�x� � 1 � 2x2f �x� � �1,

g�x� � 3x2 � 1f �x� � 1,

g�x� � e�xf �x� � x,

g�x� � exf �x� � x,

g�x� � x2 � x � 2f �x� � �x,

g�x� � x2 � 1f �x� � x2,

� f, g� � �1

�1

f �x�g�x� dx.

d� f, g��g �,� f �,� f, g�,
C ��1, 1�gf

�u, v� � u � v

v � �2, 1, 0, �1�,u � �1, �1, 2, 0�,

�u, v� � u � v

v � �2, 2, 0, 1�,u � �2, 0, 1, �1�,
�u, v� � u1v1 � 2u2v2 � u3v3

v � �2, 5, 2�,u � �1, 1, 1�,
�u, v� � 2u1v1 � 3u2v2 � u3v3

v � �8, 3, 16�,u � �8, 0, �8�,
�u, v� � u � vv � �1, 2, 0�,u � �0, 1, 2�,

�u, v� � u � vv � �9, �2, �4�,u � �0, 9, 4�,
�u, v� � u1v1 � 2u2v2v � ��1, 1�,u � �0, �6�,

�u, v� � 3u1v1 � u2v2v � �0, 5�,u � ��4, 3�,
�u, v� � u � vv � �7, 9�,u � �1, 1�,

�u, v� � u � vv � �5, �12�,u � �3, 4�,
Rn.

d�u, v��v ��u ��u, v�



304 Chapter  5 Inner  Product  Spaces

In Exercises 17–20, use the inner product 
to find (a) (b) (c) and  

(d) for the matrices in 

17.

18.

19.

20.

In Exercises 21–24, use the inner product 
to find (a) (b) (c) and (d) for

the polynomials in 

21.

22.

23.

24.

In Exercises 25–28, prove that the indicated function is an inner 
product.

25. as shown in Exercise 3

26. as shown in Exercise 7

27. as shown in Exercises 17 and 18

28. as shown in Exercises 21 and 23

Writing In Exercises 29–36, state why is not an inner
product for and in 

29. 30.

31. 32.

33. 34.

35. 36.

In Exercises 37–46, find the angle between the vectors.

37.

38.

39.

40.

41.

42.

43.

44.

45. Calculus

46. Calculus

In Exercises 47–58, verify (a) the Cauchy-Schwarz Inequality and
(b) the Triangle Inequality.

47.

48.

49.

50.

51.

52.

53.

54.

55. Calculus

56. Calculus

57. Calculus

� f, g� � �1

0

f �x�g�x� dx

g�x� � ex,f �x� � x,

� f, g� � �2

0

f �x�g�x� dx

g�x� � cos �x,f �x� � x,

� f, g� � ��

��

f �x�g�x� dx

g�x� � cos x,f �x� � sin x,

�A, B� � a11b11 � a12b12 � a21b21 � a22b22

B � �1

2

1

�2�,A � �0

2

1

�1�,

� A, B� � a11b11 � a12b12 � a21b21 � a22b22

B � ��3

4

1

3�,A � �0

2

3

1�,

� p, q� � a0b0 � 2a1b1 � a2b2q�x� � 1 � x2,p�x� � x,

� p, q� � a0b0 � a1b1 � a2b2q�x� � 3x2 � 1,p�x� � 2x,

�u, v� � u � vv � �1, 2, 0�,u � �1, 0, 2�,
�u, v� � u � vv � ��5, 4, 1�,u � �1, 0, 4�,

�u, v� � u � vv � �1, �1�,u � ��1, 1�,
�u, v� � u � vv � �3, 4�,u � �5, 12�,

� f , g� � �1

�1

f �x�g�x� dx

g�x� � x2,f �x� � 1,

� f , g� � �1

�1

f �x�g�x� dx

g�x� � x2,f �x� � x,

� p, q� � a0b0 � 2a1b1 � a2b2

q�x� � x � x2,p�x� � 1 � x2,

� p, q� � a0b0 � a1b1 � a2b2

q�x� � 1 � x � x2,p�x� � 1 � x � x2,

�u , v� � u � vv � �1, 2, 3�,u � �0, 1, �1�,

�u , v� � u1v1 � 2u2v2 � u3v3

v � �2, �2, 2�,u � �1, 1, 1�,
�u, v� � 2u1v1 � u2v2v � �2, 1�,u � �1

4, �1�,
�u, v� � 3u1v1 � u2v2v � �0, 5�,u � ��4, 3�,
�u , v� � u � vv � �1

2, 1�,u � �2, �1�,
�u , v� � u � vv � �5, �12�,u � �3, 4�,

�u, v� � u1u2 � v1v2�u, v� � 3u1v2 � u2v1

�u, v� � u 2
1 v 2

1 � u 2
2 v 2

2�u, v� � u 2
1 v 2

1 � u 2
2 v 2

2

�u , v� � u1v1 � 2u2v2�u , v� � u1v1 � u2v2

�u , v� � �u2v2�u , v� � u1v1

R2.v � �v1, v2�u � �u1, u2�
�u , v�

� p, q�
�A, B�
�u , v�
�u, v�

q�x� � x � x2p�x� � 1 � 2x � x2,

q�x� � 1 � x2p�x� � 1 � x2,

q�x� � 1 � 2x2p�x� � 1 � x �
1
2x2,

q�x� � x � x2p�x� � 1 � x � 3x2,

P2.
d� p, q��q �,� p �,� p, q�,a1b1 � a2b2

� p, q� � a0b0 �

B � �1

0

1

�1�A � �1

0

0

�1�,

B � � 0

�2

1

0�A � �1

2

�1

4�,

B � �0

1

1

0�A � �1

0

0

1�,

B � �0

1

�2

1�A � ��1

4

3

�2�,

M2,2.d�A, B�
�B �,�A �,�A, B�,a12b12 � a21b21 � 2a22b22

�A, B� � 2a11b11 �
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58. Calculus

Calculus In Exercises 59–62, show that and are orthogonal in
the inner product space with the inner product

59.

60.

61.

62.

In Exercises 63–66, (a) find (b) find and (c) sketch
a graph of both and 

63.

64.

65.

66.

In Exercises 67–70, find (a) and (b) 

67.

68.

69.

70.

Calculus In Exercises 71–78, find the orthogonal projection of 
onto Use the inner product in 

71.

72.

73.

74.

75.

76.

77.

78.

True or False? In Exercises 79 and 80, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false, provide
an example that shows the statement is not true in all cases or cite an
appropriate statement from the text.

79. (a) The dot product is the only inner product that can be 
defined in 

(b) Of all the possible scalar multiples of a vector , the 
orthogonal projection of onto is the vector closest to .

80. (a) The norm of the vector is defined as the angle between
the vector and the positive -axis.

(b) The angle between a vector and the projection of onto
is obtuse if the scalar and acute if where

81. Let and be vectors in with the inner
product

(a) Show that and are orthogonal.

(b) Sketch the vectors and . Are they orthogonal in the
Euclidean sense?

82. Prove that for any
vectors and in an inner product space 

83. Prove that the function is an inner product for 

84. Let and be nonzero vectors in an inner product space 
Prove that is orthogonal to .

85. Prove Property 2 of Theorem 5.7: If , , and are vectors in
an inner product space, then 

86. Prove Property 3 of Theorem 5.7: If and are vectors in an
inner product space and is a scalar, then 

87. Guided Proof Let be a subspace of the inner product space
Prove that the set is a subspace of 

for all 

Getting Started: To prove that is a subspace of you
must show that is nonempty and that the closure conditions
for a subspace hold (Theorem 4.5).

(i) Find an obvious vector in to conclude that it is 
nonempty.

(ii) To show the closure of under addition, you need to
show that for all and for any

Use the properties of inner products and
the fact that and are both zero to show
this.

�v2, w��v1, w�
v1, v2 	 W�.

w 	 W�v1 � v2, w� � 0
W�

W�

W�

V,W�

w 	 W�W� � �v 	 V : �v, w� � 0

V.W�V.
W

�u, cv� � c�u, v�.c
vu

� �u, w� � �v, w�.�u � v, w�
wvu

vu � projvu
V.vu

ci > 0�u, v� � c1u1v1 � c2u2v2 � .  .  . � cnunvn,

Rn.

V.vu
�u � v �2 � �u � v �2 � 2�u �2 � 2�v �2

vu

vu

�u, v� � u1v1 � 2u2v2.
R2v � �2, �2�u � �4, 2�

av � projvu.
a > 0,a < 0v

uv�

xu
u

uvu
v

Rn.

g�x� � cos 2xf �x� � x,C ���, ��,
g�x� � sin 2xf �x� � x,C ���, ��,

g�x� � cos 2xf �x� � sin 2x,C ���, ��,
g�x� � cos xf �x� � sin x,C ���, ��,

g�x� � e�xf �x� � x,C �0, 1�,
g�x� � exf �x� � x,C �0, 1�,

g�x� � 2x � 1f �x� � x3 � x,C ��1, 1�,
g�x� � 1f �x� � x,C ��1, 1�,

� f , g� � �b

a

f �x�g�x� dx.

C �a, b�g.f

v � �2, �1, 2, �1�u � ��1, 4, �2, 3�,
v � ��1, 1, 2, 2�u � �0, 1, 3, �6�,

v � ��1, 2, �1�u � �1, 2, �1�,
v � �0, �1, 1�u � �1, 3, �2�,

projuv.projvu

v � �3, 1�u � �2, �2�,
v � �4, 4�u � ��1, 3�,

v � �4, 2�u � ��1, �2�,
v � �2, 1�u � �1, 2�,

projuv.projvu
projuv,projvu,

n � 1, 2, 3, .  .  .g�x� � cos�2nx�,f �x� � 1,C �0, ��,
g�x� �

1
2�5x3 � 3x�f �x� � x,C ��1, 1�,

g�x� �
1
2�3x2 � 1�f �x� � x,C ��1, 1�,

g�x� � sin xf �x� � cos x,C ���, ��,

� f , g� � �b

a

f �x�g�x� dx.

C �a, b�
gf

� f, g� � �1

0

f �x�g�x� dx

g�x� � e�x,f �x� � x,



Orthonormal Bases: Gram-Schmidt Process

You saw in Section 4.7 that a vector space can have many different bases. While studying
that section, you should have noticed that certain bases are more convenient than others. For 
example, has the convenient standard basis This set
is the standard basis for because it has special characteristics that are particularly useful.
One important characteristic is that the three vectors in the basis are mutually orthogonal.
That is,

A second important characteristic is that each vector in the basis is a unit vector.
This section identifies some advantages of bases consisting of mutually orthogonal unit

vectors and develops a procedure for constructing such bases, known as the Gram-Schmidt
orthonormalization process.

For this definition has the form shown below.

Orthogonal Orthonormal

1. 1.

2. i � 1, 2, .  .  . , n�vi � � 1,

i � j�vi, vj� � 0,�vi, vj� � 0, i � j

S � �v1, v2, .  .  . , vn�,

�0, 1, 0� � �0, 0, 1� � 0.

�1, 0, 0� � �0, 0, 1� � 0

�1, 0, 0� � �0, 1, 0� � 0

R3
B � ��1, 0, 0�, �0, 1, 0�, �0, 0, 1��.R3

5.3

A set of vectors in an inner product space is called orthogonal if every pair of 
vectors in is orthogonal. If, in addition, each vector in the set is a unit vector,
then is called orthonormal.S

S
VSDefinitions of Orthogonal

and Orthonormal Sets
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(iii) To show closure under multiplication by a scalar,
proceed as in part (ii). You need to use the properties of
inner products and the condition of belonging to 

88. Use the result of Exercise 87 to find if is a span of 
(1, 2, 3) in

89. Guided Proof Let be the Euclidean inner product on 
Use the fact that to prove that for any 

matrix

(a) and (b)

Getting Started: To prove (a) and (b), you can make use of
both the properties of transposes (Theorem 2.6) and the proper-
ties of dot products (Theorem 5.3).

(i) To prove part (a), you can make repeated use of the
property and Property 4 of Theorem 2.6.

(ii) To prove part (b), you can make use of the property
Property 4 of Theorem 2.6, and Property

4 of Theorem 5.3.

90. The two vectors from Example 10 are and
. Without using Theorem 5.9, show that among all

the scalar multiples of the vector , the projection of 
onto is the vector closest to —that is, show that 
is a minimum.

d�u, projvu�uv
uvcv

v � �1, 2, 0�
u � �6, 2, 4�

�u, v� � uTv,

�u, v� � uTv

�ATAu, u� � �Au�2.�ATu, v� � �u, Av�
A

n � n�u, v� � uTvRn.
�u, v�

V � R3.
WW�

W�.



If is a basis, then it is called an orthogonal basis or an orthonormal basis, respectively.
The standard basis for is orthonormal, but it is not the only orthonormal basis for 
For instance, a nonstandard orthonormal basis for can be formed by rotating the 

standard basis about the -axis to form

as shown in Figure 5.15. Try verifying that the dot product of any two distinct vectors in 
is zero, and that each vector in is a unit vector. Example 1 describes another nonstandard
orthonormal basis for 

Show that the set is an orthonormal basis for 

S O L U T I O N First show that the three vectors are mutually orthogonal.

Now, each vector is of length 1 because

So, is an orthonormal set. Because the three vectors do not lie in the same plane (see
Figure 5.16), you know that they span By Theorem 4.12, they form a (nonstandard) 
orthonormal basis for R3.

R3.
S

�v3 � � �v3 � v3 � �4
9 �

4
9 �

1
9 � 1.

�v2 � � �v2 � v2 � � 2
36 �

2
36 �

8
9 � 1

�v1 � � �v1 � v1 � �1
2 �

1
2 � 0 � 1

v2 � v3 � �
�2

9
�

�2

9
�

2�2

9
� 0

v1 � v3 �
2

3�2
�

2

3�2
� 0 � 0

v1 � v2 � �
1

6
�

1

6
� 0 � 0

	2
3

, �
2
3

,
1
3
�	�

�2
6

,
�2
6

,
2�2

3 
,S � �	 1
�2

,
1
�2

, 0
,

v3v2v1

R3.

E X A M P L E  1 A Nonstandard Orthonormal Basis for R3

R3.
B

B

B � ��cos �, sin �, 0�, ��sin �, cos �, 0�, �0, 0, 1��,

z
R3Rn.

Rn
S

Figure 5.15

k

j
i

x y

θ

z

v2

v3
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Figure 5.16

k

j
i

x y
,

, ,−, − ,

, 01

3

1
2

2   2

2(

((

)

))

z

2 22
3

2
3

1
3

v1

v2
v3

6 6



In with the inner product

the standard basis is orthonormal. The verification of this is left as an
exercise. (See Exercise 19.)

The orthogonal set in the next example is used to construct Fourier approximations of 
continuous functions. (See Section 5.5.)

In with the inner product

show that the set is orthogonal.

S O L U T I O N To show that this set is orthogonal, you need to verify the inner products shown below, where
and are positive integers.

One of these products is verified, and the others are left to you. If then the 
formula for rewriting a product of trigonometric functions as a sum can be used to obtain

� 0.

� �
1

2 �
cos(m � n)x

m � n
�

cos(m � n)x

m � n �
2�

0

�2�

0

sin mx cos nx dx �
1

2�
2�

0

�sin�m � n�x � sin�m � n�x� dx

m � n,

�cos mx, cos nx� � �2�

0

cos mx cos nx dx � 0, m � n

�sin mx, sin nx� � �2�

0

sin mx sin nx dx � 0, m � n

�sin mx, cos nx� � �2�

0

sin mx cos nx dx � 0

�1, cos nx� � �2�

0

cos nx dx � 0

�1, sin nx� � �2�

0

sin nx dx � 0

nm

S � �1, sin x, cos x, sin 2x, cos 2x, .  .  . , sin nx, cos nx�

� f , g� � �2�

0

f �x�g�x� dx,

C[0, 2��,

E X A M P L E  3 An Orthogonal Set in C [0, 2   ] (Calculus)

B � �1, x, x2, x3�

� p, q� � a0b0 � a1b1 � a2b2 � a3b3,

P3,

E X A M P L E  2 An Orthonormal Basis for P3
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H I S T O R I C A L  N O T E

Jean-Baptiste Joseph Fourier

(1768–1830)

is credited as a significant 
contributor to the field of 
education for scientists, mathe-
maticians, and engineers. His
research led to important results
pertaining to eigenvalues, 
differential equations, and
Fourier series (functions by
trigonometric series). His work
forced mathematicians of that
day to accept the definition of a
function, which at that time was
very narrow. To read about his
work, visit college.hmco.com/
pic/larsonELA6e.

�



If then

Note that Example 3 shows only that the set is orthogonal. This particular set is not 
orthonormal. An orthonormal set can be formed, however, by normalizing each vector in 
That is, because

it follows that the set

is orthonormal.
Each set in Examples 1, 2, and 3 is linearly independent. Linear independence is a 

characteristic of any orthogonal set of nonzero vectors, as stated in the next theorem.

P R O O F You need to show that the vector equation

implies To do this, form the inner product of the left side of the
equation with each vector in That is, for each 

Now, because is orthogonal, for and now the equation reduces to

But because each vector in is nonzero, you know that

So every must be zero and the set must be linearly independent.ci

�vi, vi� � �vi�2 � 0.

S

ci�vi, vi� � 0.

j � i,�vi , vj� � 0S

c1�v1, vi� � c2�v2, vi� � .  .  . � ci�vi , vi� � .  .  . � cn�vn, vi� � 0.

��c1v1 � c2v2 � .  .  . � civi � .  .  . � cnvn�, vi� � �0, vi�

i,S.
c1 � c2 � .  .  . � cn � 0.

c1v1 � c2v2 � .  .  . � cnvn � 0

� 1

�2�
,

1

��
 sin x,

1

��
 cos x, .  .  . , 

1

��
 sin nx,

1

��
 cos nx�

�cos nx �2 � �2�

0
 cos2 nx dx � �,

�sin nx �2 � �2�

0
 sin2 nx dx � �

�1 �2 � �2�

0
dx � 2�

S.
S

� 0.�2�

0

sin mx cos mx dx �
1

2m �sin2 mx�
2�

0

m � n,
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If is an orthogonal set of nonzero vectors in an inner product space
then is linearly independent.SV,
S � �v1, v2, .  .  . , vn�

THEOREM 5.10

Orthogonal Sets Are

Linearly Independent
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As a consequence of Theorems 4.12 and 5.10, you have the result shown next.

Show that the following set is a basis for 

S O L U T I O N The set has four nonzero vectors. By the corollary to Theorem 5.10, you can show that 
is a basis for by showing that it is an orthogonal set, as follows.

is orthogonal, and by the corollary to Theorem 5.10, it is a basis for 

Section 4.7 discussed a technique for finding a coordinate representation relative to a
nonstandard basis. If the basis is orthonormal, this procedure can be streamlined.

Before presenting this procedure, you will look at an example in Figure 5.17 shows
that and form an orthonormal basis for Any vector in can be
represented as where and Because and are
unit vectors, it follows that and Consequently,

which shows that the coefficients and are simply the dot products of with the
respective basis vectors. This is generalized in the next theorem.

wc2c1

� c1i � c2 j,

� �w � i�i � �w � j�j
w � w1 � w2

w2 � �w � j�j.w1 � �w � i�i
jiw2 � projjw.w1 � projiww � w1 � w2,

R2wR2.j � �0, 1�i � �1, 0�
R2.

R4.S

v3 � v4 � 1 � 0 � 2 � 1 � 0

v2 � v4 � �1 � 0 � 0 � 1 � 0

v2 � v3 � �1 � 0 � 0 � 1 � 0

v1 � v4 � �2 � 6 � 2 � 2 � 0

v1 � v3 � �2 � 0 � 4 � 2 � 0

v1 � v2 � 2 � 0 � 0 � 2 � 0

R4
SS

S � ��2, 3, 2, �2�, �1, 0, 0, 1�, ��1, 0, 2, 1�, ��1, 2, �1, 1��
v4v3v2v1

R4.

E X A M P L E  4 Using Orthogonality to Test for a Basis

If is an inner product space of dimension then any orthogonal set of nonzero 
vectors is a basis for V.

nn,VCOROLLARY TO 
THEOREM 5.10

Figure 5.17

j

i

w = w1 + w2

w2 = projjw

w1 = projiw

w = w1 + w2 = c1i + c2j

If is an orthonormal basis for an inner product space then the
coordinate representation of a vector with respect to is

w � �w, v1�v1 � �w, v2�v2 � .  .  . � �w, vn�vn.

Bw
V,B � �v1, v2, .  .  . , vn�THEOREM 5.11

Coordinates Relative to an

Orthonormal Basis
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P R O O F Because is a basis for there must exist unique scalars such that

Taking the inner product (with ) of both sides of this equation, you have

and by the orthogonality of this equation reduces to

Because is orthonormal, you have and it follows that 

In Theorem 5.11 the coordinates of relative to the orthonormal basis are called the
Fourier coefficients of relative to after the French mathematician Jean-Baptiste
Joseph Fourier (1768–1830). The corresponding coordinate matrix of relative to is

Find the coordinates of relative to the orthonormal basis for shown
below.

S O L U T I O N Because is orthonormal, you can use Theorem 5.11 to find the required coordinates.

So, the coordinate matrix relative to is

�w�B � �
�1

�7

2
�.

B

w � v3 � �5, �5, 2� � �0, 0, 1� � 2

w � v2 � �5, �5, 2� � ��4
5, 3

5, 0� � �7

w � v1 � �5, �5, 2� � �3
5, 4

5, 0� � �1

B

B � �� 3
5, 4

5, 0�, ��4
5, 3

5, 0�, �0, 0, 1��
v3v2v1

R3w � �5, �5, 2�

E X A M P L E  5 Representing Vectors Relative to an Orthonormal Basis

� ��w, v1� �w, v2� .  .  . �w, vn��T.

�w�B � �c1 c2
.  .  . cn�T

Bw
B,w

Bw

�w, vi� � ci.�vi, vi� � �vi�2 � 1,B

�w, vi� � ci�vi, vi�.

B

� c1�v1, vi� � c2�v2, vi� � .  .  . � cn�vn, vi�
�w, vi� � ��c1v1 � c2v2 � .  .  . � cnvn�, vi�

vi

w � c1v1 � c2v2 � .  .  . � cnvn.

c1, c2, .  .  . , cnV,B
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Gram-Schmidt Orthonormalization Process

Having seen one of the advantages of orthonormal bases (the straightforwardness of coor-
dinate representation), you will now look at a procedure for finding such a basis. This 
procedure is called the Gram-Schmidt orthonormalization process, after the Danish
mathematician Jorgen Pederson Gram (1850–1916) and the German mathematician Erhardt
Schmidt (1876–1959). It has three steps.

1. Begin with a basis for the inner product space. It need not be orthogonal nor consist of
unit vectors.

2. Convert the given basis to an orthogonal basis.
3. Normalize each vector in the orthogonal basis to form an orthonormal basis.

R E M A R K : The Gram-Schmidt orthonormalization process leads to a matrix factorization
similar to the LU-factorization you studied in Chapter 2. You are asked to investigate this
QR-factorization in Project 1 at the end of this chapter.

Rather than give a general proof of this theorem, it seems more instructive to discuss a
special case for which you can use a geometric model. Let be a basis for as
shown in Figure 5.18. To determine an orthogonal basis for first choose one of the 
original vectors, say Now you want to find a second vector orthogonal to Figure 5.19
shows that has this property.v2 � projv1

v2

v1.v1.
R2,

R2,�v1, v2�

1. Let be a basis for an inner product space 

2. Let where is given by

Then is an orthogonal basis for 

3. Let Then the set is an orthonormal basis for 

Moreover, span for k � 1, 2, .  .  . , n.�v1, v2, .  .  . , vk� � span�u1, u2, .  .  . , uk�

V.B� � �u1, u2, .  .  . , un�ui �
wi

�wi�
.

V.B�

wn � vn �
�vn, w1�
�w1, w1�

w1 �
�vn, w2�
�w2, w2�

w2 � .  .  . �
�vn, wn�1�

�wn�1, wn�1�
wn�1.

.

.

.

w3 � v3 �
�v3, w1�
�w1, w1�

w1 �
�v3, w2�
�w2, w2�

w2

w2 � v2 �
�v2, w1�
�w1, w1�

w1

w1 � v1

wiB� � �w1, w2, .  .  . , wn�,

V.B � �v1, v2, .  .  . , vn�THEOREM 5.12

Gram-Schmidt

Orthonormalization Process
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By letting

and

you can conclude that the set is orthogonal. By the corollary to Theorem 5.10, it
is a basis for Finally, by normalizing and you obtain the orthonormal basis for

shown below.

Apply the Gram-Schmidt orthonormalization process to the basis for shown below.

S O L U T I O N The Gram-Schmidt orthonormalization process produces

The set is an orthogonal basis for . By normalizing each vector in you
obtain

� 	��2
2

,
�2
2 
.� �2	�1

2
,

1
2
u2 �

w2

�w2 �
�

1

1�2 	�
1

2
,

1

2


� 	�2
2

,
�2
2 
�

�2
2

�1, 1�u1 �
w1

�w1 �
�

1

�2
�1, 1�

B�,R2B� � �w1, w2�

� ��1
2, 1

2�.� �0, 1� �
1
2�1, 1�

w2 � v2 �
v2 � w1

w1 � w1

w1

w1 � v1 � �1, 1�

B � ��1, 1�, �0, 1��
v2v1

R2

E X A M P L E  6 Applying the Gram-Schmidt Orthonormalization Process

�u1, u2� � � w1

�w1 �
,

w2

�w2 ��
R2

w2,w1R2.
�w1, w2�

w2 � v2 � projv1
v2 � v2 �

v2 � w1

w1 � w1

w1,w1 � v1

Figure 5.18

v1

v2

{v1, v2} is a basis for R2.

Figure 5.19

w2

v2

v1 = w1

projv1
v2

w2 = v2 − projv1
v2

is orthogonal to w1 = v1.
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So, is an orthonormal basis for See Figure 5.20.

Figure 5.20

R E M A R K : An orthonormal set derived by the Gram-Schmidt orthonormalization process
depends on the order of the vectors in the basis. For instance, try reworking Example 6 with
the original basis ordered as rather than 

Apply the Gram-Schmidt orthonormalization process to the basis for shown below.

S O L U T I O N Applying the Gram-Schmidt orthonormalization process produces

The set is an orthogonal basis for Normalizing each vector in 
produces

u2 �
w2

�w2 �
�

1

1�2 	�
1

2
,

1

2
, 0
 � 	�

�2

2
,
�2

2
, 0


u1 �
w1

�w1 �
�

1

�2
�1, 1, 0� � 	�2

2
,
�2

2
, 0


B�R3.B� � �w1, w2, w3�

� �0, 0, 2�.� �0, 1, 2� �
1

2
�1, 1, 0� �

12

12 	�
1

2
,

1

2
, 0


w3 � v3 �
v3 � w1

w1 � w1

w1 �
v3 � w2

w2 � w2

w2

� �1, 2, 0� �
3

2
�1, 1, 0� � 	�

1

2
,

1

2
, 0
w2 � v2 �

v2 � w1

w1 � w1

w1

w1 � v1 � �1, 1, 0�

B � ��1, 1, 0�, �1, 2, 0�, �0, 1, 2��
v3v2v1

R3

E X A M P L E  7 Applying the Gram-Schmidt Orthonormalization Process

�v1, v2�.�v2, v1�

1
x

, ,−
2 22 2
2 22 2( () )

y

−1

u1u2

Orthonormal basis: B″ = {u1, u2}

(1, 1)(0, 1)

1−1
x

1

y

v1v2

Given basis: B = {v1, v2}

R2.B� � �u1, u2�
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So, is an orthonormal basis for 

Examples 6 and 7 applied the Gram-Schmidt orthonormalization process to bases for 
and The process works equally well for a subspace of an inner product space. This
procedure is demonstrated in the next example.

The vectors and span a plane in Find an orthonormal basis
for this subspace.

S O L U T I O N Applying the Gram-Schmidt orthonormalization process produces

Normalizing and produces the orthonormal set

See Figure 5.21.

Apply the Gram-Schmidt orthonormalization process to the basis in 
using the inner product

� p, q� � �1

�1

p�x�q�x� dx.

P2,B � �1, x, x2�

E X A M P L E  9 Applying the Gram-Schmidt Orthonormalization Process (Calculus)

� 	�2
2

, 0, 
�2
2 
.

�
1
�2

�1, 0, 1�

u2 �
w2

�w2 �

u1 �
w1

�w1 �
� �0, 1, 0�

w2w1

� �1, 0, 1�.� �1, 1, 1� �
1

1
�0, 1, 0�

w2 � v2 �
v2 � w1

w1 � w1

w1

w1 � v1 � �0, 1, 0�

R3.v2 � �1, 1, 1�v1 � �0, 1, 0�

E X A M P L E  8 Applying the Gram-Schmidt Orthonormalization Process

R3.
R2

R3.B� � �u1, u2, u3�

u3 �
w3

�w3 �
�

1

2
�0, 0, 2� � �0, 0, 1�.

Figure 5.21

y

x

(0, 1, 0)

(1, 0, 1)
2

1

z

u1

u2
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S O L U T I O N Let Then you have

(In Exercises 43–46 you are asked to verify these calculations.) Now, by normalizing
you have

R E M A R K : The polynomials and in Example 9 are called the first three
normalized Legendre polynomials, after the French mathematician Adrien-Marie
Legendre (1752–1833).

The computations in the Gram-Schmidt orthonormalization process are sometimes 
simpler when each vector is normalized before it is used to determine the next vector.
This alternative form of the Gram-Schmidt orthonormalization process has the steps
shown below.

un �
wn

�wn �
, where wn � vn � �vn, u1�u1 � .  .  . � �vn, un�1�un�1

.

.

.

u3 �
w3

�w3 �
, where w3 � v3 � �v3, u1�u1 � �v3, u2�u2

u2 �
w2

�w2 �
, where w2 � v2 � �v2, u1�u1

u1 �
w1

�w1 �
�

v1

�v1 �

wi

u3u1, u2,

u3 �
w3

�w3 �
�

1

�845 	x2 �
1

3
 �
�5

2�2
�3x2 � 1�.

u2 �
w2

�w2 �
�

1

�23
�x� �

�3

�2
x

u1 �
w1

�w1 �
�

1

�2
�1� �

1

�2

B� � �w1, w2, w3�,

� x2 �
1
3

.

� x2 �
23

2
�1� �

0

23
�x�

w3 � v3 �
�v3, w1�
�w1, w1�

w1 �
�v3, w2�
�w2, w2�

w2

� x �
0
2

�1� � xw2 � v2 �
�v2, w1�
�w1, w1�

w1

w1 � v1 � 1

B � �1, x, x2� � �v1, v2, v3�.
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Find an orthonormal basis for the solution space of the homogeneous system of linear 
equations.

S O L U T I O N The augmented matrix for this system reduces as follows.

If you let and each solution of the system has the form

So, one basis for the solution space is

To find an orthonormal basis use the alternative form of the 
Gram-Schmidt orthonormalization process, as follows.

� 	� 3
�30

, �
4

�30
,

2
�30

,
1

�30

�

1
�30

��3, �4, 2, 1�

u2 �
w2

�w2 �

� ��3, �4, 2, 1�

� �1, �8, 0, 1� � ��1, �8, 0, 1� � 	�
2

3
,

2

3
,

1

3
, 0
� 	�

2

3
,

2

3
,

1

3
, 0


w2 � v2 � �v2, u1�u1

� 	�2
3

,
2
3

,
1
3

, 0

�

1
3

��2, 2, 1, 0�

u1 �
v1

�v1 �

B� � �u1, u2�,

B � �v1, v2� � ���2, 2, 1, 0�, �1, �8, 0, 1��.

�
x1

x2

x3

x4

� � �
�2s � t

2s � 8t

s

t
� � s�

�2

2

1

0
� � t�

1

�8

0

1
�.

x4 � t,x3 � s

�1

0

0

1

2

�2

�1

8

0

0��1

2

1

1

0

2

7

6

0

0�

x1

2x1

�

�

x2

x2 � 2x3

�

�

7x4

6x4

�

�

0
0

E X A M P L E  1 0 Alternative Form of Gram-Schmidt Orthonormalization Process
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ExercisesSECTION 5.3

In Exercises 1–14, determine whether the set of vectors in is
orthogonal, orthonormal, or neither.

1. 2.

3. 4.

5. 6.

7.

8.

9.

10.

11.

12.

13.

14.

In Exercises 15–18, determine if the set of vectors in is
orthogonal and orthonormal. If the set is only orthogonal, normal-
ize the set to produce an orthonormal set.

15. 16.

17.

18.

19. Complete Example 2 by verifying that is an ortho-
normal basis for with the inner product 

20. Verify that is an orthonormal
basis for 

In Exercises 21–26, find the coordinates of relative to the ortho-
normal basis in 

21.

22.

23.

24.

25.

26.

In Exercises 27–36, use the Gram-Schmidt orthonormalization
process to transform the given basis for into an orthonormal
basis. Use the Euclidean inner product for and use the vectors in
the order in which they are shown.

27. 28.

29. 30.

31.

32.

33.

34.

35.

36.

In Exercises 37–42, use the Gram-Schmidt orthonormalization
process to transform the given basis for a subspace of into an 
orthonormal basis for the subspace. Use the Euclidean inner prod-
uct for and use the vectors in the order in which they are shown.

37. 38.

39. 40.

41.

42.

Calculus In Exercises 43–46, let be a basis for 
with the inner product

Complete Example 9 by verifying the indicated inner products.

43. 44.

45. 46. �x2, x� � 0�x2, 1� �
2
3

�1, 1� � 2�x, 1� � 0

� p, q� � �1

�1

p�x�q�x� dx.

P2B � �1, x, x2�

B � ��7, 24, 0, 0�, �0, 0, 1, 1�, �0, 0, 1, �2��
B � ��1, 2, �1, 0�, �2, 2, 0, 1�, �1, 1, �1, 0��

B � ��1, 2, 0�, �2, 0, �2��B � �(3, 4, 0�, �1, 0, 0��
B � ��4, �7, 6��B � ���8, 3, 5��

Rn

Rn

B � ��3, 4, 0, 0�, ��1, 1, 0, 0�, �2, 1, 0, �1�, �0, 1, 1, 0��
B � ��0, 1, 1�, �1, 1, 0�, �1, 0, 1��
B � ��0, 1, 2�, �2, 0, 0�, �1, 1, 1��
B � ��4, �3, 0�, �1, 2, 0�, �0, 0, 4��
B � ��1, 0, 0�, �1, 1, 1�, �1, 1, �1��
B � ��1, �2, 2�, �2, 2, 1�, �2, �1, �2��

B � ��4, �3�, �3, 2��B � ��0, 1�, �2, 5��
B � ��1, 2�, ��1, 0��B � ��3, 4�, �1, 0��

Rn

Rn

x � �2, �1, 4, 3�
B � �� 5

13, 0, 12
13, 0�, �0, 1, 0, 0�, ��12

13, 0, 5
13, 0�, �0, 0, 0, 1��,

x � �5, 10, 15�B � ��3
5, 4

5, 0�, ��4
5, 3

5, 0�, �0, 0, 1��,

x � �3, �5, 11�B � ��1, 0, 0�, �0, 1, 0�, �0, 0, 1��,

x � �2, �2, 1�

B � �	�10

10
, 0, 

3�10

10 
, �0, 1, 0�, 	�
3�10

10
, 0, 

�10

10 
�,

B � �	�5

5
,

2�5

5 
, 	�
2�5

5
,
�5

5 
�, x � ��3, 4�

B � �	�
2�13

13
,

3�13

13 
, 	3�13

13
,

2�13

13 
�, x � �1, 2�

Rn.B
x

R2.
��sin �, cos ��, �cos �, �sin ���

a0b0 � a1b1 � a2b2 � a3b3.
� p, q� �P3

�1, x, x2, x3�

��� 2
15, 1

15, 2
15�, � 1

15, 2
15, 0��

���3, �3, �3 �, ���2, 0, �2 ��
��2, �5�, �10, 4�����1, 4�, �8, 2��

Rn

	�
3�10

10
, 0, 0, 

�10

10 
�
�	�10

10
, 0, 0, 

3�10

10 
, �0, 0, 1, 0�, �0, 1, 0, 0�,

�	�2

2
, 0, 0, 

�2

2 
, 	0,
�2

2
,
�2

2
, 0
, 	�

1

2
,

1

2
, �

1

2
,

1

2
�
���6, 3, 2, 1�, �2, 0, 6, 0��
��2, �5, �3�, �4, �2, 6��

�	�2

3
, 0, �

�2

6 
, 	0,
2�5

5
, �

�5

5 
, 	�5

5
, 0,

1

2
�
�	�2

2
, 0, 

�2

2 
, 	�
�6

6
,
�6

3
,
�6

6 
, 	�3

3
,
�3

3
, �

�3

3 
�
��2, �4, 2�, �0, 2, 4�, ��10, �4, 2��
��4, �1, 1�, ��1, 0, 4�, ��4, �17, �1��

��1, 2�, ��2
5, 1

5����3
5, 4

5�, ��4
5, 3

5��
��11, 4�, �8, �3�����4, 6�, �5, 0��
��3, �2�, ��4, �6����2, �4�, �2, 1��

Rn
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True or False? In Exercises 47 and 48, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false, provide
an example that shows the statement is not true in all cases or cite an
appropriate statement from the text.

47. (a) A set of vectors in an inner product space is orthogonal
if every pair of vectors in is orthogonal.

(b) To show that a set of nonzero vectors is a basis for it is 
sufficient to show that the set is an orthogonal set.

(c) An orthonormal basis derived by the Gram-Schmidt ortho-
normalization process does not depend on the order of the
vectors in the basis.

48. (a) A set of vectors in an inner product space is orthonor-
mal if every vector is a unit vector and each pair of vectors
is orthogonal.

(b) If a set of nonzero vectors in an inner product space is
orthogonal, then is linearly independent.

(c) The Gram-Schmidt orthonormalization process is a proce-
dure for finding an orthonormal basis for an inner product
space

In Exercises 49–54, find an orthonormal basis for the solution
space of the homogeneous system of linear equations.

49.

50.

51.

52.

53. 54.

In Exercises 55–60, let and 
be vectors in with

Determine whether the given second-degree polynomials form an
orthonormal set, and if not, use the Gram-Schmidt orthonormaliza-
tion process to form an orthonormal set.

55.

56.

57.

58.

59.

60.

61. Use the inner product in and 
the Gram-Schmidt orthonormalization process to transform

into an orthonormal basis.

62. Writing Explain why the result of Exercise 61 is not an 
orthonormal basis when the Euclidean inner product on is
used.

63. Let be an orthonormal basis for Prove
that for any
vector in This equation is called Parseval’s equality.

64. Guided Proof Prove that if is orthogonal to each vector in
then is orthogonal to every linear

combination of vectors in 
Getting Started: To prove that is orthogonal to every linear

combination of vectors in you need to show that their dot
product is 0.

(i) Write as a linear combination of vectors, with arbi-
trary scalars in S.

(ii) Form the inner product of w and v.
(iii) Use the properties of inner products to rewrite the inner

product as a linear combination of the inner
products

(iv) Use the fact that w is orthogonal to each vector in to
lead to the conclusion that w is orthogonal to 

65. Let be an matrix. Prove that the following conditions
are equivalent.

(a) (Such a matrix is called orthogonal.)
(b) The row vectors of form an orthonormal basis for 
(c) The column vectors of form an orthonormal basis 

for

66. Use each matrix to illustrate the result of Exercise 65.

(a)

(b)

67. Find an orthonormal basis for that includes the vectors

and v2 � 	0, �
1

�2
, 0, 

1

�2
.v1 � 	 1

�2
, 0, 

1

�2
, 0


R4

P � �
1�2
1�2

0

1�2
�1�2

0

0
0
1�

P � �
�1

0

0

0

0

�1

0

1

0
�

Rn.
P

Rn.P
P�1 � PT.

n � nP

v.
S

�w, vi�, i � 1, .  .  . , n.
�w, v�

c1, .  .  .  , cn,
v

S,
w

S.
wS � �v1, v2, .  .  . , vn�,
w

Rn.v
�v �2 � �v � u1�2 � �v � u2�2 � .  .  . � �v � un�2

Rn.�u1, u2, .  .  . , un�

R2

��2, 10����2, �1�,

R2�u, v� � 2u1v1 � u2v2

�3x2 � 4x

5
,

�4x2 � 3x

5
, 1�

�x2 � 1, x � 1�
�1, x, x2�

�x2, x2 � 2x, x2 � 2x � 1�
��2�x2 � 1�, �2�x2 � x � 2��
�x2 � 1

�2
,

x2 � x � 1

�3 �

� p , q� � a0b0 � a1b1 � a2b2.

P2b0 � b1x � b2x
2

q�x� �p�x� � a0 � a1x � a2x
2

x1 � 2x2 � x3 � 0x1 � 3x2 � 3x3 � 0

x1 � 2x2 � x3 � x4 � 0
x1 � x2 � x3 � x4 � 0

 2x1 � x2 � 2x3 � 2x4 � 0
x1 � x2 � x3 � x4 � 0

 3x1 � x2 � 5x3 � 4x4 � 0
 2x1 � x2      � x4 � 0
x1 � x2 � 3x3 � 2x4 � 0

x1 � x2 � 3x3 � 2x4 � 0
x1 � 2x2 � 3x3 � 4x4 � 0

 2x1 � x2 � 6x3 � 2x4 � 0

V.

S
VS

VS

Rn,
S

VS



68. Let be a subspace of Prove that the set shown below is a
subspace of in 

Then prove that the intersection of and is 

In Exercises 69–72, find bases for the four fundamental subspaces
of the matrix shown below.

Then show that and 

69. 70.

71.

72.

73. Let be an matrix.
(a) Explain why is the same as the row space of 
(b) Prove that 
(c) Prove that 
(d) Prove that N�AT � � R�A��.

N�A� � R�AT ��.
N�A� � R�AT ��.

A.R�AT �
m � nA

�
0

1

�1

0

0

�2

2

0

1

0

1

1

2

2

0

2

0

0

0

1
�

�1

1

0

1

1

1�

�
0

0

0

1

�2

�1

�1

2

1
��

1

0

1

1

2

3

�1

1

0
�

N�AT � � R�A��.N�A� � R�AT ��

R�AT � � column space of ATR�A� � column space of A

N�AT � � nullspace of ATN�A� � nullspace of A

A

�0�.W�W

W.Rn

Rn.W
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Mathematical Models and Least Squares Analysis

In this section, you will study inconsistent systems of linear equations and learn how to 
find the “best possible solution” of such a system. The necessity of “solving” inconsis-
tent systems arises in the computation of least squares regression lines, as illustrated in 
Example 1.

Let and be three points in the plane, as shown in Figure 5.22. How can
you find the line that “best fits” these points? One way is to note that if the
three points were collinear, then the following system of equations would be consistent.

This system can be written in the matrix form where

and

Because the points are not collinear, however, the system is inconsistent. Although it is
impossible to find such that you can look for an that minimizes the norm of
the error The solution �Ax � b �.

xAx � b,x

x � �c0

c1
�.b � �

0

1

3
�,A � �

1

1

1

1

2

3
�,

Ax � b,

c0 � 3c1 � 3
c0 � 2c1 � 1
c0 � c1 � 0

y � c0 � c1x
�3, 3��2, 1�,�1, 0�,

E X A M P L E  1 Least Squares Regression Line

5.4

Figure 5.22

1

2

3

4

x

y

2 3 41



of this minimization problem is called the least squares regression line

In Section 2.5, you briefly studied the least squares regression line and how to calculate
it using matrices. Now you will combine the ideas of orthogonality and projection to 
develop this concept in more generality. To begin, consider the linear system 
where is an matrix and is a column vector in You already know how to use
Gaussian elimination with back-substitution to solve for if the system is consistent. If the
system is inconsistent, however, it is still useful to find the “best possible” solution; that is,
the value of for which the difference between and is smallest. One way to define
“best possible” is to require that the norm of be minimized. This definition is the
heart of the least squares problem.

R E M A R K : The term least squares comes from the fact that minimizing is
equivalent to minimizing which is a sum of squares.

Orthogonal Subspaces

To solve the least squares problem, you first need to develop the concept of orthogonal 
subspaces. Two subspaces of are said to be orthogonal if the vectors in each subspace
are orthogonal to the vectors in the other subspace.

The subspaces

and

are orthogonal because the dot product of any vector in and any vector in is zero.S2S1

S2 � span	�
�1

1

1
�
S1 � span	�

1

0

1
�, �

1

1

0
�


E X A M P L E  2 Orthogonal Subspaces

Rn

�Ax � b �2,
�Ax � b �

Ax � b
bAxx

x
Rm.bm � nA

Ax � b,

y � c0 � c1x.

x � �c0

c1
�

Given an matrix and a vector in the least squares problem is to find in
such that is minimized.�Ax � b �2Rn

xRm,bAm � nLeast Squares Problem

The subspaces and of are orthogonal if for all in and all 
in S2.

v2S1v1v1 � v2 � 0RnS2S1
Definition of 

Orthogonal Subspaces
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Notice in Example 2 that the zero vector is the only vector common to both and 
This is true in general. If and are orthogonal subspaces of then their intersection
consists only of the zero vector. You are asked to prove this fact in Exercise 45.

Provided with a subspace of the set of all vectors orthogonal to every vector in 
is called the orthogonal complement of as shown in the next definition.

The orthogonal complement of the trivial subspace is all of and, conversely, the
orthogonal complement of is the trivial subspace In Example 2, the subspace is
the orthogonal complement of and the subspace is the orthogonal complement of 
In general, the orthogonal complement of a subspace of is itself a subspace of (see
Exercise 46). You can find the orthogonal complement of a subspace of by finding the
nullspace of a matrix, as illustrated in the next example.

Find the orthogonal complement of the subspace of spanned by the two column
vectors and of the matrix 

S O L U T I O N A vector will be in the orthogonal complement of if its dot product with the two
columns of and is zero. If you take the transpose of then you will see that the
orthogonal complement of consists of all the vectors such that 

That is, the orthogonal complement of is the nullspace of the matrix 

Using the techniques for solving homogeneous linear systems, you can find that a possible
basis for the orthogonal complement can consist of the two vectors

S� � N�AT �.

AT:S

�1

0

2

0

1

0

0

1� �
x1

x2

x3

x4

� � �0

0�

ATu � 0

ATu � 0.uS
A,v2,v1A,

Su 	 R4

v2v1

A � �
1

2

1

0

0

0

0

1
�

A.v2v1

R4S

E X A M P L E  3 Finding the Orthogonal Complement

Rn
RnRn

S1.S2S2,
S1�0�.Rn

Rn,�0�

S,
SRn,S

Rn,S2S1

S2.S1

If is a subspace of then the orthogonal complement of is the set

for all vectors v 	 S�.S� � �u 	 Rn : v � u � 0

SRn,SDefinition of 

Orthogonal Complement
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and

Notice that in Example 3 is split into two subspaces, and
In fact, the four vectors and form a basis for Each

vector in can be uniquely written as a sum of a vector from and a vector from This
concept is generalized in the next definition.

(a) From Example 2, you can see that is the direct sum of the subspaces

and

(b) From Example 3, you can see that where

and

The next theorem collects some important facts about orthogonal complements and
direct sums.

S� � span	�
�2

1

0

0
�, �

�1

0

1

0
�
.S � span	�

1

2

1

0
�, �

0

0

0

1
�


R4 � S % S�,

S2 � span	�
�1

1

1
�
.S1 � span	�

1

0

1
�, �

1

1

0
�


R3

E X A M P L E  4 Direct Sum

S�.SR4
R4.u2u1,v2,v1,S� � span�u1, u2�.

S � span�v1, v2�R4

u2 � �
�1

0

1

0
�.u1 � �

�2

1

0

0
�

Let and be two subspaces of If each vector can be uniquely written as a
sum of a vector from and a vector from , then is the direct sum
of and and you can write Rn � S1 % S2.S2,S1

Rnx � s1 � s2S2,s2S1s1

x 	 RnRn.S2S1Definition of 

Direct Sum

Let be a subspace of Then the following properties are true.

1.
2.
3. �S��� � S

Rn � S % S�

dim�S� � dim�S�� � n

Rn.STHEOREM 5.13

Properties of 

Orthogonal Subspaces
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P R O O F 1. If or then Property 1 is trivial. So let be a basis for 
Let be the matrix whose columns are the basis vectors Then

which implies that where is a matrix of rank (see Section
5.3, Exercise 73). Because the dimension of is you have shown that

2. If or then Property 2 is trivial. So let be a basis for 
and let be a basis for It can be shown that the set

is linearly independent and forms a basis for Let
If you write 

and then you have expressed an arbitrary
vector as the sum of a vector from and a vector from 

To show the uniqueness of this representation, assume (where
denotes a vector that has all zero entries except for one, which is 1). This implies that

So, the two vectors and are in both and Because
you must have and .

3. Let Then for all which implies that On the other
hand, if then, because you can write as the unique sum of
the vector from and a vector from Because is in 
it is orthogonal to every vector in and in particular to So,

This implies that and 

You studied the projection of one vector onto another in Section 5.3. This is now gener-
alized to projections of a vector onto a subspace Because every vector

in can be uniquely written as a sum of a vector from and a vector from 

The vector is called the projection of onto the subspace and is denoted by
So, which implies that the vector is

orthogonal to the subspace 
Provided with a subspace of you can use the Gram-Schmidt orthonormalization

process to calculate an orthonormal basis for It is then an easy matter to compute the 
projection of a vector onto using the next theorem. (You are asked to prove this 
theorem in Exercise 47.)

Sv
S.

Rn,S
S.

v � projSvv2 � v � v1 � v � projSv,v1 � projSv.
S,vv1

v2 	 S�.v1 	 S,v � v1 � v2,

S�:SRnv
Rn � S % S�,S.v

v � s � w � s 	 S.w � 0

� w � w.

� w � s � w � w

0 � w � v � w � �s � w�

v.S,
S�,wS�, v � s � w, s 	 S, w 	 S�.S

vRn � S % S�,v 	 �S���,
v 	 �S���.u 	 S�,v � u � 0v 	 S.

ŵw �� vv̂S � S� � �0�,
S�.Sŵ�w� vv̂ŵ.� v � w �v̂

r̂
ŵ�v̂x � v � w �

x � v � w.S�,Sx
w � ct�1vt�1 � .  .  . � cnvn,.  .  . � ctvt

v � c1v1 �x 	 Rn, x � c1v1 � .  .  . � ctvt � ct�1vt�1 � .  .  . � cnvn.
Rn .�v1, v2, .  .  . , vt, vt�1, .  .  . , vn�

S�.�vt�1, vt�2, .  .  . , vn�S
�v1, v2, .  .  . ,vt�S � �0�,S � Rn

dim(S) � dim(S�� � t � �n � t� � n.

n � t,N�AT �
tt � nATS� � N�AT�,S � R(A),

vi.n � tA0 < t < n.
S,�v1, v2, .  .  . ,vt�S � �0�,S � Rn

If is an orthonormal basis for the subspace of and then

projSv � �v � u1�u1 � �v � u2�u2 � .  .  . � �v � u t�u t.

v 	 Rn,Rn,S�u1, u2, .  .  . , u t�THEOREM 5.14

Projection onto a 

Subspace



Find the projection of the vector onto the subspace of spanned by the vectors

and

S O L U T I O N By normalizing and you obtain an orthonormal basis for 

Use Theorem 5.14 to find the projection of onto 

The projection of onto the plane is illustrated in Figure 5.23.

Theorem 5.9 said that among all the scalar multiples of a vector the orthogonal 
projection of onto is the one closest to Example 5 suggests that this property is also
true for projections onto subspaces. That is, among all the vectors in the subspace the
vector is the closest vector to These two results are illustrated in Figure 5.24.v.projSv

S,
v.uv

u,

Sv

� �
1

9
5

3
5

��
6

�10 �
0

3
�10

1
�10

� � 1�
1

0

0
�

 projSv � �v � u1�u1 � �v � u2�u2

S.v

� ��
0
3

�10
1

�10

�, �
1
0
0���u1, u2� � � 1

�10
w1,

1

2
w2�

S.w2,w1

w2 � �
2

0

0
�.w1 � �

0

3

1
�

R3Sv � �
1

1

3
�

E X A M P L E  5 Projection onto a Subspace
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Figure 5.24
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P R O O F Let By adding and subtracting the same quantity to and from the
vector you obtain

Observe that is in and is orthogonal to So, and
are orthogonal vectors, and you can use the Pythagorean Theorem (Theorem

5.6) to obtain

Because the second term on the right is positive, and you have

Fundamental Subspaces of a Matrix

You need to develop one more concept before solving the least squares problem. Recall 
that if is an matrix, the column space of is a subspace of consisting of all
vectors of the form The four fundamental subspaces of the matrix are 
defined as follows (see Exercises 69–73 in Section 5.3).

These subspaces play a crucial role in the solution of the least squares problem.

Find the four fundamental subspaces of the matrix

S O L U T I O N The column space of is simply the span of the first and third columns, because the second
column is a scalar multiple of the first.

A

A � �
1

0

0

0

2

0

0

0

0

1

0

0
�.

E X A M P L E  6 Fundamental Subspaces

R�AT � � column space of ATR�A� � column space of A

N�AT� � nullspace of ATN�A� � nullspace of A

AAx , x 	 Rn.
RmAm � nA

�v � projSv � < �v � u �.

u � projSv,

�v � u �2 � �v � projSv �2 � � projSv � u �2.

�projSv � u�
�v � projSv�S.�v � projSv�S�projSv � u�

v � u � �v � projSv� � �projSv � u�.

v � u,
projSvu 	 S, u � projSv.

Let be a subspace of and let Then, for all 

�v � projSv � < �v � u �.

u 	 S, u � projSv,v 	 Rn.RnSTHEOREM 5.15

Orthogonal Projection 

and Distance
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The column space of is equivalent to the row space of which is spanned by the first
two rows.

The nullspace of is a solution space of the homogeneous system 

Finally, the nullspace of is a solution space of the homogeneous system whose coeffi-
cient matrix is 

In Example 6, observe that and are orthogonal subspaces of and 
and are orthogonal subspaces of These and other properties of these subspaces are
stated in the next theorem.

P R O O F To prove Property 1, let and Because the column space of is equal
to the row space of you can see that implies Property 2 follows from
applying Property 1 to 

To prove Property 3, observe that So,

A similar argument applied to proves Property 4.R�AT �

Rm � R�A� % R�A�� � R�A� % N�AT �.

R�A�� � N�AT �.
AT.

u � v � 0.ATu � 0AT,
Au 	 N�AT �.v 	 R�A�

R3.N�A�
R�AT �R4,N�AT �R�A�

N�AT � � span	�
0

0

1

0
� , �

0

0

0

1
�


AT.
AT

N�A� � span	�
�2

1

0
�


Ax � 0.A

R�AT � � span	�
1

2

0
� , �

0

0

1
�


A,AT

R�A� � span	�
1

0

0

0
� , �

0

1

0

0
�


If is an matrix, then

1. and are orthogonal subspaces of 
2. and are orthogonal subspaces of 
3.
4. R�AT� % N�A� � Rn.

R�A� % N�AT � � Rm.
Rn.N�A�R�AT �
Rm.N�AT �R�A�

m � nATHEOREM 5.16

Fundamental Subspaces 

of a Matrix

Figure 5.23
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Least Squares

You have now developed all the tools needed to solve the least squares problem. Recall that
you are attempting to find a vector that minimizes where is an matrix
and is a vector in Let be the column space of You can assume that 
is not in because otherwise the system would be consistent. You are looking for
a vector in that is as close as possible to as indicated in Figure 5.25.

From Theorem 5.15 you know that the desired vector is the projection of onto 
Letting be that projection, you can see that is orthogonal
to But this implies that is in which equals according to
Theorem 5.16. This is the crucial observation: is in the nullspace of So, you
have 

The solution of the least squares problem comes down to solving the linear system
of equations These equations are called the normal equations of the least
squares problem 

Find the solution of the least squares problem

presented in Example 1.

S O L U T I O N Begin by calculating the matrix products shown below.

The normal equations are

�3

6

6

14� �
c0

c1
� � � 4

11�.

ATAx � AT b

AT b � �1

1

1

2

1

3� �
0

1

3
� � � 4

11�

ATA � �1

1

1

2

1

3� �
1

1

1

1

2

3
� � �3

6

6

14�

�
1

1

1

1

2

3
� �c0

c1
� � �

0

1

3
�

Ax � b

E X A M P L E  7 Solving the Normal Equations

Ax � b.
ATAx � AT b.

n � n

ATAx̂ � AT b.

ATAx̂ � AT b � 0

AT�Ax̂ � b� � 0

AT.Ax̂ � b
N�AT �R�A��,Ax̂ � bS � R�A�.

Ax̂ � b � projSb � bAx̂ � projSb
S.b

b,SAx
Ax � bS,

bS � R�A�.A:SRm.b
m � nA�Ax � b �,x

Figure 5.25

S

b

Ax

Figure 5.26
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The solution of this system of equations is which implies that the least squares 

regression line for the data is as indicated in Figure 5.26.

R E M A R K : For an matrix the normal equations form an system of linear
equations. This system is always consistent, but it may have an infinite number of solutions.
It can be shown, however, that there is a unique solution if the rank of is 

The next example illustrates how to solve the projection problem from Example 5 using
normal equations.

Find the orthogonal projection of the vector onto the column space of the matrix

S O L U T I O N To find the orthogonal projection of onto first solve the least squares problem 
As in Example 7, calculate the matrix products and 

AT b � �0

2

3

0

1

0� �
1

1

3
� � �6

2�

ATA � �0

2

3

0

1

0� �
0

3

1

2

0

0
� � �10

0

0

4�

ATb.ATA
Ax � b.S,b

A � �
0

3

1

2

0

0
�.

Sb � �
1

1

3
�

E X A M P L E  8 Orthogonal Projection onto a Subspace

n.A

n � nA,m � n

y �
3
2x �

5
3,

x � ��5
3

3
2
�,

Many graphing utilities and computer software programs have built-in programs for finding the least
squares regression line for a set of data points. If you have access to such tools, try verifying the
result of Example 7. Keystrokes and programming syntax for these utilities/programs applicable to
Example 7 are provided in the Online Technology Guide, available at college.hmco.com/pic/
larsonELA6e.

Technology
Note
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The normal equations are

The solution of these equations is easily seen to be

Finally, the projection of onto is

which agrees with the solution obtained in Example 5.

Mathematical Modeling

Least squares problems play a fundamental role in mathematical modeling of real-life
phenomena. The next example shows how to model the world population using a least
squares quadratic polynomial.

Table 5.1 shows the world population (in billions) for six different years. (Source: U.S.
Census Bureau)

TABLE 5.1

Year 1980 1985 1990 1995 2000 2005

Population (y) 4.5 4.8 5.3 5.7 6.1 6.5

Let represent the year 1980. Find the least squares regression quadratic polyno-
mial for these data and use the model to estimate the population for
the year 2010.

S O L U T I O N By substituting the data points and 
into the quadratic polynomial you obtain the following system of 
linear equations.

y � c0 � c1x � c2x
2,

�25, 6.5��20, 6.1�,�15, 5.7�,�10, 5.3�,�5, 4.8�,�0, 4.5�,

y � c0 � c1x � c2x
2

x � 0

E X A M P L E  9 World Population

Ax � �
0

3

1

2

0

0
� �

3
5
1
2
� � �

1
9
5
3
5

�,

Sb

x � �x1

x2
� � �

3
5

1
2
�.

�10

0

0

4� �x1

x2
� � �6

2�.

ATAx � AT b



This produces the least squares problem

The normal equations are

and their solution is

Note that So, the least squares polynomial for these data is the linear polynomial:

Evaluating this polynomial at gives the estimate of the world population for the year
2010:

billion.

Least squares models can arise in many other contexts. Section 5.5 explores some appli-
cations of least squares models to approximation of functions. In the final example of this
section, a nonlinear model is used to find a relationship between the period of a planet and
its mean distance from the sun.

y � 4.5 � 0.08�30� � 6.9

x � 30

y � 4.5 � 0.08x.

c2 � 0.

� �
4.5

0.08

0
�.

x � �
c0

c1

c2
�

�
6
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1375

75

1375

28,125

1375

28,125

611,875
� �

c0

c1

c2
� � �

 32.9

447

8435
�

ATAx � AT b

�
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� .�
1
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1
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�
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5.7
6.1
6.5
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Table 5.2 shows the mean distances and the periods of the six planets that are closest to
the sun. The mean distance is given in terms of astronomical units (where the Earth’s mean
distance is defined as 1.0), and the period is in years. Find a model for these data. (Source:
CRC Handbook of Chemistry and Physics)

TABLE 5.2

Planet Mercury Venus Earth Mars Jupiter Saturn

Distance, x 0.387 0.723 1.0 1.523 5.203 9.541

Period, y 0.241 0.615 1.0 1.881 11.861 29.457

If you plot the data as shown, they do not seem to lie in a straight line. By taking the 
logarithm of each coordinate, however, you obtain points of the form as shown
in Table 5.3.

TABLE 5.3

Planet Mercury Venus Earth Mars Jupiter Saturn

ln x –0.949 –0.324 0.0 0.421 1.649 2.256

ln y –1.423 –0.486 0.0 0.632 2.473 3.383

Figure 5.27 shows a plot of the transformed points and suggests that the least squares
regression line would be a good fit. Using the techniques of this section, you can find that
the equation of the line is

or

Figure 5.27

Mercury

Mars

1

2

3

ln x

ln y

2 3Venus Earth

Jupiter

Saturn

ln y =    ln x3
2

y � x32.ln y �
3
2 ln x

�ln x, ln y�,

yx

E X A M P L E  1 0 Application to Astronomy

You can use a computer software
program or graphing utility with 
a built-in power regression 
program to verify the result of
Example 10. For example, using
the data in Table 5.2 and a 
graphing utility, a power fit
program would result in an
answer of (or very similar to)

Keystrokes
and programming syntax for
these utilities/programs applicable
to Example 10 are provided in the
Online Technology Guide,
available at college.hmco.com/
pic/larsonELA6e.

y � 1.00042x1.49954.

Technology
Note
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ExercisesSECTION 5.4

In Exercises 1–4, determine whether the sets are orthogonal.

1.

2.

3.

4.

In Exercises 5– 8, find the orthogonal complement .

5. is the subspace of consisting of the -plane.

6. is the subspace of consisting of all vectors whose third and
fourth components are zero.

7. 8.

9. Find the orthogonal complement of the solution of Exercise 7.

10. Find the orthogonal complement of the solution of Exercise 8.

In Exercises 11–14, find the projection of the vector onto the 
subspace

11.

12.

13.

14.

In Exercises 15 and 16, find the orthogonal projection of
onto the column space of the matrix 

15. 16.

In Exercises 17– 20, find bases for the four fundamental subspaces
of the matrix 

17. 18.

19.

20.

In Exercises 21–26, find the least squares solution of the system

21.

22.

23. A � �
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1

0

1

1

1

1

1

1

0
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4
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2
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0
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24.

25.

26.

In Exercises 27–32, find the least squares regression line for the
data points. Graph the points and the line on the same set of axes.

27.

28.

29.

30.

31.

32.

In Exercises 33–36, find the least squares quadratic polynomial for
the data points.

33.

34.

35.

36.

37. The table shows the annual sales (in millions of dollars) for
Advanced Auto Parts and Auto Zone for 2000 through 2007.
Find an appropriate regression line, quadratic regression 
polynomial, or cubic regression polynomial for each company.
Then use the model to predict sales for the year 2010. Let 
represent the year, with corresponding to 2000. (Source:
Advanced Auto Parts and Auto Zone)

Year 2000 2001 2002 2003

Advanced 2288 2518 3288 3494
Auto Parts Sales, y

Auto Zone Sales, y 4483 4818 5326 5457

Year 2004 2005 2006 2007

Advanced 3770 4265 4625 5050
Auto Parts Sales, y

Auto Zone Sales, y 5637 5711 5948 6230

38. The table shows the numbers of doctorate degrees awarded in
the education fields in the United States during the years 2001
to 2004. Find the least squares regression line for the data. Let 
represent the year, with corresponding to 2001. (Source:
U.S. National Science Foundation)

Year 2001 2002 2003 2004

Doctorate
6337 6487 6627 6635

degrees, y

39. The table shows the world carbon dioxide emissions (in 
millions of metric tons) during the years 1999 to 2004. Find the
least squares regression quadratic polynomial for the data. Let 
represent the year, with corresponding to 1999.
(Source: U.S. Energy Information Administration)

Year 1999 2000 2001 2002 2003 2004

CO2, y 6325 6505 6578 6668 6999 7376

40. The table shows the sales (in millions of dollars) for Gateway,
Incorporated during the years 2000 to 2007. Find a least squares
regression quadratic polynomial that best fits the data. Let 
represent the year, with corresponding to 2000. (Source:
Gateway Inc.)

Year 2000 2001 2002 2003

Sales, y 9600.6 6079.2 4171.3 3402.4

Year 2004 2005 2006 2007

Sales, y 3649.7 3854.1 4075.0 4310.0

t � 0
t

y

t � �1
t

y

t � 1
t

y

t � 0
t

��2, 6�, ��1, 5�, �0, 7
2�, �1, 2�, �2, �1�

��2, 0�, ��1, 0�, �0, 1�, �1, 2�, �2, 5�
�0, 2�, �1, 3

2�, �2, 5
2�, �3, 4�

�0, 0�, �2, 2�, �3, 6�, �4, 12�

��2, 0�, ��1, 2�, �0, 3�, �1, 5�, �2, 6�
��2, 1�, ��1, 2�, �0, 1�, �1, 2�, �2, 1�
��3, �3�, ��2, �2�, �0, 0�, �1, 2�
��2, �1�, ��1, 0�, �1, 0�, �2, 2�
�1, 1�, �2, 3�, �4, 5�
��1, 1�, �1, 0�, �3, �3�
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41. The table shows the sales (in millions of dollars) for Dell
Incorporated during the years 1996 to 2007. Find the least
squares regression line and the least squares cubic regression
polynomial for the data. Let represent the year, with 
corresponding to 1996. Which model is the better fit for the
data? Why? (Source: Dell Inc.)

Year 1996 1997 1998 1999

Sales, y 7759 12,327 18,243 25,265

Year 2000 2001 2002 2003

Sales, y 31,888 31,168 35,404 41,444

Year 2004 2005 2006 2007

Sales, y 49,205 55,908 58,200 61,000

42. The table shows the net profits (in millions of dollars) for Polo
Ralph Lauren during the years 1996 to 2007. Find the least
squares regression line and the least squares cubic regression
polynomial for the data. Let represent the year, with 
corresponding to 1996. Which model is the better fit for the
data? Why? (Source: Polo Ralph Lauren)

Year 1996 1997 1998 1999

Net Profit, y 81.3 120.1 125.3 147.5

Year 2000 2001 2002 2003

Net Profit, y 166.3 168.6 183.7 184.4

Year 2004 2005 2006 2007

Net Profit, y 257.2 308.0 385.0 415.0

True or False? In Exercises 43 and 44, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false, provide
an example that shows the statement is not true in all cases or cite an
appropriate statement from the text.

43. (a) If and are orthogonal subspaces of then their 
intersection is an empty set.

(b) If each vector can be uniquely written as a sum of a
vector from and a vector from then is called
the direct sum of and 

(c) The solution of the least squares problem consists essen-
tially of solving the normal equations—that is, solving the

linear system of equations 

44. (a) If is an matrix, then and are ortho-
gonal subspaces of 

(b) The set of all vectors orthogonal to every vector in a 
subspace is called the orthogonal complement of 

(c) Given an matrix and a vector in the least
squares problem is to find in such that is
minimized.

45. Prove that if and are orthogonal subspaces of then their
intersection consists only of the zero vector.

46. Prove that the orthogonal complement of a subspace of is
itself a subspace of 

47. Prove Theorem 5.14.

48. Prove that if and are subspaces of and if 
then

49. Writing Describe the normal equations for the least squares
problem if the matrix has orthonormal columns.Am � n

S1 � S2 � �0�.
Rn � S1 % S2,RnS2S1

Rn.
Rn

Rn,S2S1

� Ax � b �2Rnx
Rm,bAm � n

S.S

Rn.
N�AT �R�A�m � nA

ATAx � AT b.n � n

S2.S1

RnS2,s2S1s1

v 	 Rn

Rn,S2S1

t � �4t

y

t � �4t

y



Applications of Inner Product Spaces

The Cross Product of Two Vectors in Space

Many problems in linear algebra involve finding a vector orthogonal to each vector in a set.
Here you will look at a vector product that yields a vector in orthogonal to two vectors.
This vector product is called the cross product, and it is most conveniently defined and 
calculated with vectors written in standard unit vector form.

R E M A R K : The cross product is defined only for vectors in The cross product of two
vectors in or of vectors in is not defined here.

A convenient way to remember the formula for the cross product is to use the 
determinant form shown below.

Technically this is not a determinant because the entries are not all real numbers.
Nevertheless, it is useful because it provides an easy way to remember the cross product 
formula. Using cofactor expansion along the first row, you obtain

which yields the formula in the definition. Be sure to note that the -component is preceded
by a minus sign.

Provided that and find

(a) (b) (c) v � v.v � u.u � v.

v � 3i � j � 2k,u � i � 2j � k

E X A M P L E  1 Finding the Cross Product of Two Vectors

j

� �u2v3 � u3v2�i � �u1v3 � u3v1�j � �u1v2 � u2v1�k,

u � v � �u2

v2

u3

v3�i � �u1

v1

u3

v3�j � �u1

v1

u2

v2�k

u � v � � i
u1

v1

j
u2

v2

k
u3

v3�
u � v

Rn, n > 3,R2
R3.

v � �v1, v2, v3� � v1i � v2 j � v3k

R3

5.5

Let and be vectors in The cross product
of and is the vector

u � v � �u2v3 � u3v2�i � �u1v3 � u3v1�j � �u1v2 � u2v1�k.

vu
R3.v � v1i � v2 j � v3ku � u1i � u2 j � u3kDefinition of Cross Product

of Two Vectors

Components of u

Components of v
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S O L U T I O N (a)

(b)

Note that this result is the negative of that in part (a).

(c)

� 0i � 0j � 0k � 0

� �11 �2
�2�i � �33 �2

�2�j � �33 1
1�k

v � v � � i
3
3

j
1
1

k
�2
�2�

� �3i � 5j � 7k

� � 1
�2

�2
1�i � �31 �2

1�j � �31 1
�2�k

v � u � � i
3

1

j
1

�2

k
�2

1�
� 3i � 5j � 7k

� ��2
1

1
�2�i � �13 1

�2�j � �13 �2
1�k

u � v � � i
1
3

j
�2

1

k
1

�2�

Some graphing utilities and computer software programs have vector capabilities that include finding a
cross product. For example, on a graphing utility, you can verify u v in Example 1(a) and it could
appear as shown below. Keystrokes and programming syntax for these utilities/programs applicable to
Example 1(a) are provided in the Online Technology Guide, available at college.hmco.com/pic/
larsonELA6e.

�
Technology

Note

Simulation
To explore this concept further with
an electronic simulation and for 
keystrokes and programming syntax
for specific graphing utilities and
computer software programs 
applicable to Example 1, please visit 
college.hmco.com/pic/larsonELA6e.
Similar exercises and projects are
also available on this website.
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The results obtained in Example 1 suggest some interesting algebraic properties of the
cross product. For instance,

and

These properties, along with several others, are shown in Theorem 5.17.

P R O O F The proof of the first property is shown here. The proofs of the other properties are left to
you. (See Exercises 40–44.) Let and be

and

Then is

and is

Property 1 of Theorem 5.17 tells you that the vectors and have equal
lengths but opposite directions. The geometric implication of this will be discussed after
some geometric properties of the cross product of two vectors have been established.

v � uu � v

� ��v � u�.
� ��u2v3 � u3v2�i � �u1v3 � u3v1�j � �u1v2 � u2v1�k
� �v2u3 � v3u2�i � �v1u3 � v3u1�j � �v1u2 � v2u1�k

v � u � � i
v1

u1

j
v2

u2

k
v3

u3�
v � u

� �u2v3 � u3v2�i � �u1v3 � u3v1�j � �u1v2 � u2v1�k,

u � v � � i
u1

v1

j
u2

v2

k
u3

v3 �
u � v

v � v1i � v2 j � v3k.

u � u1i � u2 j � u3k

vu

v � v � 0.u � v � ��v � u�

If and are vectors in and is a scalar, then the following properties are true.

1.
2.
3.
4.
5.
6. u � �v � w� � �u � v� � w

u � u � 0
u � 0 � 0 � u � 0
c�u � v� � cu � v � u � cv
u � �v � w� � �u � v� � �u � w�
u � v � ��v � u�

cR3wv,u,THEOREM 5.17

Algebraic Properties 

of the Cross Product
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P R O O F The proof of Property 4 follows. The proofs of the other properties are left to you. (See
Exercises 45–47.) To prove Property 4, let and represent adjacent sides of a parallelo-
gram, as shown in Figure 5.28. By Property 2, the area of the parallelogram is

Base Height

Figure 5.28

Property 1 states that the vector is orthogonal to both and This implies that
and is orthogonal to the plane determined by and One way to remem-

ber the orientation of the vectors and is to compare them with the unit vectors
and as shown in Figure 5.29. The three vectors and form a right-handed

system, whereas the three vectors and form a left-handed system.

Figure 5.29

i
u

j
v

k = i x j
u x v

xy-plane

Right-handed
Systems

This is the plane
determined by

u and v.

v � uv,u,
u � vv,u,k,j,i,

u � vv,u,
v.uv � u��u � v

v.uu � v

v

u

v   sin θ

θ

� �u � v �.Area � �u � �v � sin �

vu

If and are nonzero vectors in then the following properties are true.

1. is orthogonal to both and 
2. The angle between and is given by

3. and are parallel if and only if 
4. The parallelogram having and as adjacent sides has an area of �u � v �.vu

u � v � 0.vu

�u � v � � �u � �v � sin �.

vu�
v.uu � v

R3,vuTHEOREM 5.18

Geometric Properties of the

Cross Product
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Find a unit vector orthogonal to both

and

S O L U T I O N From Property 1 of Theorem 5.18, you know that the cross product

is orthogonal to both and as shown in Figure 5.30. Then, by dividing by the length of

you obtain the unit vector

which is orthogonal to both and , as follows.

Find the area of the parallelogram that has

and

as adjacent sides, as shown in Figure 5.31.

v � �2j � 6k

u � �3i � 4j � k

E X A M P L E  3 Finding the Area of a Parallelogram

	�
3

�134
,

2
�134

,
11

�134
 � �2, 3, 0� � 0

	�
3

�134
,

2
�134

,
11

�134
 � �1, �4, 1� � 0

vu

u � v
�u � v �

� �
3

�134
 i �

2
�134

j �
11

�134
k,

� �134,

�u � v � � ���3�2 � 22 � 112

u � v,
v,u

� �3i � 2j � 11k

u � v � � i
1

2

j
�4

3

k
1

0�
v � 2i � 3j.

u � i � 4j � k

E X A M P L E  2 Finding a Vector Orthogonal to Two Given Vectors

Figure 5.30

yx

6

8

10

12

u

v

(2, 3, 0)

z

4 4

(1, −4, 1)

(−3, 2, 11)

u x v
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Figure 5.31

S O L U T I O N From Property 4 of Theorem 5.18, you know that the area of this parallelogram is 
Because

the area of the parallelogram is

Least Squares Approximations (Calculus)

Many problems in the physical sciences and engineering involve an approximation of a
function by another function If is in the inner product space of all continu-
ous functions on then usually is chosen from a subspace of For 
instance, to approximate the function

you could choose one of the following forms of .g

f �x� � ex,   0 � x � 1,

C�a, b�.Wg�a, b��,
�C �a, b�fg.f

�u � v � � �262 � 182 � 62 � �1036 � 32.19.

u � v � � i
�3

0

j
4

�2

k
1

6� � 26i � 18j � 6k ,

�u � v �.

y

x

3

1 1
2

3
4

5

7

4

5

6

8

z

v = −2j + 6k

u = −3i + 4j + k

The area of the parallelogram is given by
u x v    =     1036.
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1. Linear

2. Quadratic

3. Trigonometric

Before discussing ways of finding the function you must define how one function can
“best” approximate another function. One natural way would require the area bounded by
the graphs of and on the interval 

to be a minimum with respect to other functions in the subspace as shown in Figure
5.32. But because integrands involving absolute value are often difficult to evaluate, it is
more common to square the integrand to obtain

With this criterion, the function is called the least squares approximation of with
respect to the inner product space 

R E M A R K : If the subspace in this definition is the entire space then
which implies that 

Find the least squares approximation for

S O L U T I O N For this approximation you need to find the constants and that minimize the value of 

� �1

0
�ex � a0 � a1x�2 dx.

I � �1

0

� f �x� � g�x��2 dx

a1a0

f �x� � ex, 0 � x � 1.

g�x� � a0 � a1x

E X A M P L E  4 Finding a Least Squares Approximation

I � 0.g�x� � f �x�,
C �a, b�,W

W.
fg

�b

a

� f �x� � g�x��2 dx.

W,

Area � �b

a
� f �x� � g�x�� dx,

�a, b�,gf

g,

g�x� � a0 � a1 cos x � a2 sin x,    0 � x � 1

g�x� � a0 � a1x � a2x
2,   0 � x � 1

g�x� � a0 � a1x,   0 � x � 1

Let be continuous on and let be a subspace of A function in is
called a least squares approximation of with respect to if the value of

is a minimum with respect to all other functions in W.

I � �b

a

� f �x� � g�x��2 dx

Wf
WgC �a, b�.W�a, b�,fDefinition of 

Least Squares

Approximation

Figure 5.32

xa
b

f

g

y
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Evaluating this integral, you have

Now, considering to be a function of the variables and use calculus to determine the
values of and that minimize Specifically, by setting the partial derivatives

equal to zero, you obtain the following two linear equations in and .

The solution of this system is

and

So, the best linear approximation of on the interval is

Figure 5.33 shows the graphs of and on 

Of course, the approximation obtained in Example 4 depends on the definition of the
best approximation. For instance, if the definition of “best” had been the Taylor polynomial
of degree 1 centered at 0.5, then the approximating function would have been

Moreover, the function obtained in Example 4 is only the best linear approximation of
(according to the least squares criterion). In Example 5 you will find the best quadratic

approximation.
f

g

� 0.824 � 1.649x.

� e0.5 � e0.5�x � 0.5�
g�x� � f �0.5� � f��0.5��x � 0.5�

g

�0, 1�.gf

� 0.873 � 1.690x.

g�x� � 4e � 10 � �18 � 6e�x

�0, 1�f(x� � ex

a1 � 18 � 6e � 1.690.a0 � 4e � 10 � 0.873

2a0

3a0

�

�

a1

2a1

�

�

2�e � 1�
6

a1a0

�I

�a1

� a0 �
2

3
a1 � 2

�I

�a0

� 2a0 � 2e � 2 � a1

I.a1a0

a1,a0I

�
1

2
�e2 � 1� � 2a0�e � 1� � 2a1 � a0

2 � a0a1 �
1

3
a1

2.

� �1

2
e2x � 2a0e

x � 2a1e
x�x � 1� � a0

2x � a0a1x
2 � a1

2
x3

3 �
1

0

� �1

0

�e2x � 2a0e
x � 2a1xex � a0

2 � 2a0a1x � a1
2x2� dx

I � �1

0

�ex � a0 � a1x�2 dx

Figure 5.33

x
1

2

3

4

y

g(x) = 0.873 + 1.690x

f (x) = ex
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Find the least squares approximation for

S O L U T I O N For this approximation you need to find the values of and that minimize the
value of

Integrating and then setting the partial derivatives of with respect to and equal
to zero produces the following system of linear equations.

The solution of this system is

So, the approximating function is

The graphs of and are shown in Figure 5.34.

The integral (given in the definition of the least squares approximation) can be expressed
in vector form. To do this, use the inner product defined in Example 5 in Section 5.2:

With this inner product you have

I � �b

a

� f �x� � g�x)�2 dx � � f � g, f � g� � � f � g �2.

� f , g� � �b

a

f �x�g�x� dx.

I

gf

g�x� � 1.013 � 0.851x � 0.839x2.

g

a2 � �570 � 210e � 0.839.

a1 � 588 � 216e � 0.851

a0 � �105 � 39e � 1.013

6a0

6a0

20a0

�

�

�

3a1

4a1

15a1

�

�

�

2a2

3a2

12a2

�

�

�

6�e � 1�
12            
60�e � 2�

a2�a1,a0,�I

�
1
3

a1
2 �

1
5

a2
2 � 2a1.� a0

2 � a0a1 �
2
3

a0a2 �
1
2

a1a2

�
1
2

�e2 � 1� � 2a0�1 � e� � 2a2�2 � e�

� �1

0
�ex � a0 � a1x � a2x2�2 dx

I � �1

0

� f �x� � g�x��2 dx

a2a0, a1,

f �x� � ex,    0 � x � 1.

g�x� � a0 � a1x � a2x
2

E X A M P L E  5 Finding a Least Squares Approximation

Figure 5.34

x
1

2

3

4

y

f (x) = ex

g(x) ≈ 1.013 + 0.851x + 0.839x2
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This means that the least squares approximating function is the function that minimizes
or, equivalently, minimizes In other words, the least squares approxima-

tion of a function is the function (in the subspace ) closest to in terms of the inner
product The next theorem gives you a way of determining the function .

P R O O F To show that is the least squares approximating function of prove that the inequality

is true for any vector in By writing as

,

you can see that is orthogonal to each which in turn implies that it is orthogonal
to each vector in In particular, is orthogonal to This allows you to apply
the Pythagorean Theorem to the vector sum

to conclude that

So, it follows that which then implies that 

Now observe how Theorem 5.19 can be used to produce the least squares approximation
obtained in Example 4. First apply the Gram-Schmidt orthonormalization process to the stan-

dard basis to obtain the orthonormal basis Then, by Theorem
5.19, the least squares approximation for in the subspace of all linear functions is 

which agrees with the result obtained in Example 4.

� 4e � 10 � �18 � 6e�x,

� �e � 1� � 3�2x � 1��3 � e�

� �1

0

ex dx � 3�2x � 1� �1

0

ex�2x � 1� dx

� �1

0

ex dx � �3�2x � 1� �1

0

�3ex�2x � 1� dx

g�x� � �ex, 1��1� � �ex,�3�2x � 1���3�2x � 1�

ex

B � �1, �3�2x � 1��.�1, x�

� f � g� � � f � w�.� f � g �2 � � f � w�2,

� f � w �2 � � f � g �2 � � g � w �2.

f � w � � f � g� � �g � w�

g � w.f � gW.
wi,f � g

f � g � f � � f, w1�w1 � � f,  w2�w2 � .  .  . � � f, wn�wn

f � gW.w

� f � g � � � f � w �

f,g

g� f , g�.
fWgf

� f � g �.� f � g �2

g

Let be continuous on and let be a finite-dimensional subspace of The
least squares approximating function of with respect to is given by

where is an orthonormal basis for W.B � �w1, w2, .  .  . , wn�

g � � f , w1�w1 � � f , w2�w2 � .  .  . � � f , wn�wn,

Wf
C�a, b�.W�a, b�,fTHEOREM 5.19

Least Squares 

Approximation
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Find the least squares approximation for with respect to the
subspace of quadratic functions.

S O L U T I O N To use Theorem 5.19, apply the Gram-Schmidt orthonormalization process to the standard
basis for to obtain the orthonormal basis

The least squares approximating function is

and you have

So, is

The graphs of and are shown in Figure 5.35.

Fourier Approximations (Calculus)

You will now look at a special type of least squares approximation called a Fourier 
approximation. For this approximation, consider functions of the form

in the subspace of spanned by the basis

S � �1, cos x, cos 2x, .  .  . , cos nx, sin x, sin 2x, .  .  . , sin nx�.

C�0, 2��W

g�x� �
a0

2
� a1 cos x � .  .  . � an cos nx � b1 sin x � .  .  . � bn sin nx

gf

� �0.4177x2 � 1.3122x � 0.0505.

g�x� �
2

�
�

10��2 � 12�
�5

�6x2 � 6�x � �2�

g

�
2�5

�2��
��2 � 12�.

� f , w3� �
�5

�2��
��

0

sin x�6x2 � 6�x � �2� dx

� f , w2� �
�3

���
��

0

sin x�2x � �� dx � 0

� f , w1� �
1

��
��

0

sin x dx �
2

��

g�x� � � f , w1�w1 � � f , w2�w2 � � f , w3�w3,

g

� � 1

��
,
�3

���
�2x � ��,

�5

�2��
�6x2 � 6�x � �2��.

B � �w1, w2, w3�

W, �1, x, x2�,

W
f �x� � sin x, 0 � x � �,

E X A M P L E  6 Finding a Least Squares Approximation

Figure 5.35
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y
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These vectors are orthogonal in the inner product space because

as demonstrated in Example 3 in Section 5.3. Moreover, by normalizing each function in
this basis, you obtain the orthonormal basis

With this orthonormal basis, you can apply Theorem 5.19 to write

The coefficients for in the equation

are shown by the following integrals.

The function is called the th-order Fourier approximation of on the interval
Like Fourier coefficients, this function is named after the French mathematician

Jean-Baptiste Joseph Fourier (1768–1830). This brings you to Theorem 5.20.
�0, 2��.

fng�x�

bn � � f , w2n�
1

��
�

1

��
�2�

0

f �x�
1

��
 sin nx dx �

1

�
�2�

0

f �x� sin nx dx

.

.

.

b1 � � f , wn�1�
1

��
�

1

��
�2�

0

f �x�
1

��
 sin x dx �

1

�
�2�

0

f �x� sin x dx

an � � f , wn�
1

��
�

1

��
�2�

0

f �x�
1

��
 cos nx dx �

1

�
�2�

0

f �x� cos nx dx

.

.

.

a1 � � f , w1�
1

��
�

1

��
�2�

0

f �x�
1

��
 cos x dx �

1

�
�2�

0

f �x� cos x dx

a0 � � f , w0�
2

�2�
�

2

�2�
�2�

0

f �x�
1

�2�
dx �

1

�
�2�

0

f �x� dx

g�x� �
a0

2
� a1 cos x � .  .  . � an cos nx � b1 sin x � .  .  . � bn sin nx

g�x�a0, a1, .  .  . , an, b1, .  .  . , bn

g�x� � � f , w0�w0 � � f , w1�w1 � .  .  . � � f , w2n�w2n.

� � 1

�2�
,

1

��
 cos x, .  .  . , 

1

��
 cos nx,

1

��
 sin x, .  .  . , 

1

��
 sin nx�.

B � �w0, w1, .  .  . , wn, wn�1, .  .  . , w2n�

� f , g� � �2�

0

f �x�g�x� dx � 0, f � g,

C�0, 2��2n � 1
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Find the third-order Fourier approximation of 

S O L U T I O N Using Theorem 5.20, you have

where

This implies that and 

So, you have 

The graphs of and are compared in Figure 5.36.gf

� � � 2 sin x �  sin 2x �
2

3
 sin 3x.

g�x� �
2�

2
� 2 sin x � sin 2x �

2

3
 sin 3x

b3 � �
2
3.

b1 � �2, b2 � �
2
2 � �1,a3 � 0,a2 � 0,a1 � 0,a0 � 2�,

bj �
1

�
�2�

0

x sin jx dx � � 1

�j 2
 sin jx �

x

� j
 cos jx�

2�

0
� �

2

j
.

aj �
1

�
�2�

0

x cos jx dx � � 1

� j2
 cos jx �

x

� j
 sin jx�

2�

0
� 0

a0 �
1

�
�2�

0

x dx �
1

�
 2� 2 � 2�

g�x� �
a0

2
� a1 cos x � a2 cos 2x � a3 cos 3x � b1 sin x � b2 sin 2x � b3 sin 3x,

f �x� � x, 0 � x � 2�.

E X A M P L E  7 Finding a Fourier Approximation

On the interval the least squares approximation of a continuous function with
respect to the vector space spanned by is
given by

where the Fourier coefficients are

bj �
1

�
�2�

0

f �x� sin jx dx, j � 1, 2, .  .  . , n.

aj �
1

�
�2�

0

f �x� cos jx dx, j � 1, 2, .  .  . , n

a0 �
1

�
�2�

0

f �x� dx

a0, a1, .  .  . , an, b1, .  .  . , bn

g�x� �
a0

2
� a1 cos x � .  .  . � an cos nx � b1 sin x � .  .  . � bn sin nx,

�1, cos x, .  .  . , cos nx, sin x, .  .  . , sin nx�
f�0, 2��,THEOREM 5.20

Fourier Approximation

Figure 5.36
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In Example 7 the general pattern for the Fourier coefficients appears to be 
and

The th-order Fourier approximation of is

As increases, the Fourier approximation improves. For instance, Figure 5.37 shows the
fourth- and fifth-order Fourier approximations of 

Figure 5.37

In advanced courses it is shown that as the approximation error 
approaches zero for all in the interval The infinite series for is called a
Fourier series.

Find the fourth-order Fourier approximation of 

S O L U T I O N Using Theorem 5.20, find the Fourier coefficients as follows.

�
2

�j2
�1 � cos j��

�
2

�
��

0

�� � x� cos jx dx

aj �
1

�
�2�

0
�x � �� cos jx dx

a0 �
1

�
�2�

0
�x � �� dx � �

f �x� � �x � ��,  0 � x � 2�.

E X A M P L E  8 Finding a Fourier Approximation

g�x��0, 2��.x
� f � g �n →�,

x
π

π

2π

2π

g

Fifth-Order Fourier Approximation

y
f (x) = x

x
π

π

2π

2π

g

Fourth-Order Fourier Approximation

y
f (x) = x

f �x� � x,  0 � x � 2�.
n

g�x� � � � 2	sin x �
1

2
 sin 2x �

1

3
 sin 3x � .  .  . �

1

n
 sin nx
.

f �x� � xn

b1 � �
2

1
, b2 � �

2

2
,  .  .  . , bn � �

2

n
.

a1 � a2 � .  .  . � an � 0,
a0 � 2�,
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So, and 
which means that the fourth-order Fourier approximation of is

The graphs of and are compared in Figure 5.38.gf

g�x� �
�

2
�

4

�
 cos x �

4

9�
 cos 3x.

f
b4 � 0,b3 � 0,b1 � 0, b2 � 0,a4 � 0,a1 � 4�, a2 � 0, a3 � 49�,a0 � �,

bj �
1

�
�2�

0
�x � �� sin jx dx � 0

Figure 5.38
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π
2
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4
9π

f (x) = x − π

g(x) =    +    cos x +      cos 3x

ExercisesSECTION 5.5

The Cross Product of Two Vectors in Space

In Exercises 1–6, find the cross product of the unit vectors [where
and ]. Sketch your result.

1. 2.

3. 4.

5. 6.

In Exercises 7–16, find and show that it is orthogonal to both
and

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

In Exercises 17–24, use a graphing utility with vector capabilities to
find and then show that it is orthogonal to both and 

17.

18.

19.

20.

21.

22.

23.

24.

In Exercises 25–28, find the area of the parallelogram that has the
vectors as adjacent sides.

25.

26.

27.

28.

In Exercises 29 and 30, verify that the points are the vertices of a
parallelogram, then find its area.

29.

30.

In Exercises 31–34, find This quantity is called the
triple scalar product of and 

31.

32.

33.

34. u � �2, 0, 1�, v � �0, 3, 0�, w � �0, 0, 1�
u � �1, 1, 1�, v � �2, 1, 0�, w � �0, 0, 1�
u � �i, v � �j , w � k

u � i, v � j , w � k

w.v,u,
u � �v � w�.

�2, �1, 1�, �5, 1, 4�, �0, 1, 1�, �3, 3, 4�
�1, 1, 1�, �2, 3, 4�, �6, 5, 2�, �7, 7, 5�

u � �2, �1, 0�, v � ��1, 2, 0�
u � �3, 2, �1�, v � �1, 2, 3�
u � i � j � k, v � j � k

u � j, v � j � k

v � i � 4ku � 4i � 2j,

v � i � j � 2ku � 2i � j � k,

v � 2i � j � ku � 3i � j � k,

v � i � 2j � ku � 2i � j � k,

v � �0, 1, 4�u � �0, 1, �2�,
v � �1, 2, 0�u � �0, 1, �1�,

v � ��1, 1, 2�u � �1, 2, �3�,
v � �2, 1, 2�u � �1, 2, �1�,

v.uu � v

u � i � 2j � k, v � �i � 3j � 2k

u � i � j � k , v � 2i � j � k

u � 2i � j � k , v � 3i � j

u � j � 6k, v � 2i � k

u � �4, 1, 0�, v � �3, 2, �2�
u � �2, �3, 1�, v � �1, �2, 1�
u � ��2, 1, 1�, v � �4, 2, 0�
u � �12, �3, 1�, v � ��2, 5, 1�
u � ��1, 1, 2�, v � �0, 1, �1�
u � �0, 1, �2�, v � �1, �1, 0�

v.u
u � v

k � ii � k

k � jj � k

i � jj � i

k � �0, 0, 1�j � �0, 1, 0�,i � �1, 0, 0�,
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35. Show that the volume of a parallelepiped having and as 
adjacent sides is the triple scalar product 

36. Use the result of Exercise 35 to find the volume of the paral-
lelepiped with and as
adjacent edges. (See Figure 5.39.)

Figure 5.39

In Exercises 37 and 38, find the area of the triangle with the 
given vertices. Use the fact that the area of the triangle having and

as adjacent sides is given by 

37.

38.

39. Find the volume of the parallelepiped shown in Figure 5.40,
with and as adjacent sides.

Figure 5.40

40. Prove that 

41. Prove that 

42. Prove that 

43. Prove that 

44. Prove that 

45. Prove that is orthogonal to both and .

46. Prove that the angle between and is given by

47. Prove that if and only if and are parallel.

48. Prove Lagrange’s Identity:

49. (a) Prove that 

(b) Find an example for which 

Least Squares Approximations (Calculus)

In Exercises 50–56, (a) find the linear least squares approximating
function for the function and (b) use a graphing utility to graph 
and

50. 51.

52. 53.

54.

55.

56.

In Exercises 57–62, (a) find the quadratic least squares approxi-
mating function for the function and (b) graph and 

57.

58.

59.

60.

61.

62.

Fourier Approximations (Calculus)

In Exercises 63–74, find the Fourier approximation of the specified
order for the function on the interval 

63. third order

64. fourth order

65. third order

66. fourth order

67. first order

68. second order

69. first order

70. second order

71. third order

72. fourth order

73. fourth order

74. fourth orderf �x� �  sin2 x,

f �x� �  2 sin x cos x,

f �x� � 1 � x,

f �x� � 1 � x,

f �x� � e�2x,

f �x� � e�2x,

f �x� � e�x,

f �x� � e�x,

f�x� � �x � ��2,

f�x� � �x � ��2,

f �x� � � � x,

f �x� � � � x,

�0, 2��.

f �x� �  cos x,   0 � x � �

f �x� �  cos x, ��2 � x � �2

f �x� �  sin x, ��2 � x � �2

f �x� �  sin x,   0 � x � �

f �x� � �x,   1 � x � 4

f �x� � x3,   0 � x � 1

g.ffg

f �x� �  sin x, ��2 � x � �2

f �x� �  sin x,   0 � x � �2

f �x� �  cos x,   0 � x � �

f �x� � e�2x,   0 � x � 1f �x� � e2x,   0 � x � 1

f �x� � �x,  1 � x � 4f �x� � x2,   0 � x � 1

g.
ffg

�u � v� � w.u � �v � w� �

u � �v � w� � �u � w�v � �u � v�w.

�u � v �2 � �u �2�v �2 � �u � v�2.

vuu � v � 0

�u � v � � �u � �v � sin �.
vu�

vuu � v

u � �v � w� � �u � v� � w.

u � u � 0.

u � 0 � 0 � u � 0.

u � �v � w� � �u � v� � �u � w�.
cu � v � c�u � v� � u � cv.

x

y

(0, 1, 1)
(1, 0, 1)

(1, 1, 0)

v
u

w

z

wv,u,

�2, �3, 4�, �0, 1, 2�, ��1, 2, 0�
�1, 3, 5�, �3, 3, 0�, ��2, 0, 5�

A �
1
2��u � v��.v

u

x

y

(0, 1, 1)
(1, 0, 2)

(1, 1, 0)

w

u

v

z

w � i � 2ku � i � j, v � j � k,

�u � �v � w��.
wv,u,
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75. Use the results of Exercises 63 and 64 to find the nth-order
Fourier approximation of on the interval 

76. Use the results of Exercises 65 and 66 to find the nth-order
Fourier approximation of on the interval
�0, 2��.

f �x� � �x � ��2�0, 2��.f �x� � � � x

Review ExercisesCHAPTER 5

In Exercises 1–8, find (a) (b) (c) and (d)

1.

2.

3.

4.

5.

6.

7.

8.

In Exercises 9–12, find and find a unit vector in the direction 
of

9. 10.

11. 12.

In Exercises 13–18, find the angle between u and v.

13.

14.

15.

16.

17.

18.

In Exercises 19–24, find 

19.

20.

21.

22.

23.

24.

25. For and (a) find the inner prod-
uct represented by and (b) use
this inner product to find the distance between and 

26. For and (a) find the inner product
represented by and (b) use
this inner product to find the distance between and 

27. Verify the Triangle Inequality and the Cauchy-Schwarz
Inequality for and from Exercise 25. (Use the inner product
from Exercise 25.)

28. Verify the Triangle Inequality and the Cauchy-Schwarz
Inequality for and from Exercise 26. (Use the inner product
given in Exercise 26.)

In Exercises 29–32, find all vectors orthogonal to 

29. 30.

31. 32.

In Exercises 33–36, use the Gram-Schmidt orthonormalization
process to transform the basis into an orthonormal basis. (Use the
Euclidean inner product.)

33.

34.

35.

36.

37. Let be a basis for a subspace of
and let be a vector in the subspace.

(a) Write as a linear combination of the vectors in That
is, find the coordinates of relative to 

(b) Use the Gram-Schmidt orthonormalization process to
transform into an orthonormal set 

(c) Write as a linear combination of the vectors in That
is, find the coordinates of relative to 

38. Repeat Exercise 37 for and
x � ��3, 4, 4�.

B � ���1, 2, 2�, �1, 0, 0��
B�.x

B�.x

B�.B

B.x
B.x

x � ��1, 4, �2�R3,
B � ��0, 2, �2�, �1, 0, �2��

B � ��0, 0, 2�, �0, 1, 1�, �1, 1, 1��
B � ��0, 3, 4�, �1, 0, 0�, �1, 1, 0��
B � ��3, 4�, �1, 2��
B � ��1, 1�, �0, 1��

u � �0, 1, 2, �1�u � �1, �2, 2, 1�
u � �1, �1, 2�u � �0, �4, 3�

u.

vu

vu

v.u
�u, v� � 2u1v1 � u2v2 � 2u3v3,

v � �4
3, 1, �3�,u � �0, 3, 13�

v.u
�u , v� � u1v1 � 2u2v2 � 3u3v3,

v � �3
2, 2, �1�,u � �2, �1

2, 1�

u � �1, 2, �1�, v � �0, 2, 3�
u � �0, �1, 2�, v � �3, 2, 4�
u � �2, 5�, v � �0, 5�
u � �1, 2�, v � �2, 5�
u � �2, 3�, v � �0, 4�
u � �2, 4�, v � �1, �5�

projvu.

u � �1, 0, �3, 0�, v � �2, �2, 1, 1�
u � �10, �5, 15�, v � ��2, 1, �3�

u � 	cos
�

6
, sin 

�

6
, v � 	cos
5�

6
, sin 

5�

6 


u � 	cos
3�

4
, sin 

3�

4 
, v � 	cos
2�

3
, sin 

2�

3 

u � �1, �1�, v � �0, 1�

u � �2, 2�, v � ��3, 3�

v � �0, 2, �1�v � �1, �1, 2�
v � �1, �2, 1�v � �5, 3, �2�

v.
�v �

u � �1, �1, 0, 1, 1�, v � �0, 1, �2, 2, 1�
u � �0, 1, �1, 1, 2�, v � �0, 1, �2, 1, 1�
u � �1, �2, 2, 0�, v � �2, �1, 0, 2�
u � �1, �2,  0, 1�, v � �1, 1, �1, 0�
u � �1, �1,  2�, v � �2, 3, 1�
u � �2, 1, 1�, v � �3, 2, �1�
u � ��1, 2�, v � �2, 3�
u � �1, 2�, v � �4, 1�

d�u, v�.u � v,�v�,�u�,



Calculus In Exercises 39–42, let and be functions in the vector
space with inner product

39. Let and be vectors in 

(a) Find 

(b) Find 

(c) Find 

(d) Orthonormalize the set 

40. Let and be vectors in 

(a) Find 

(b) Find 

(c) Find 

(d) Orthonormalize the set 

41. Show that and are orthog-
onal in 

42. Apply the Gram-Schmidt orthonormalization process to the set
in shown below.

43. Find an orthonormal basis for the following subspace of
Euclidean 3-space.

44. Find an orthonormal basis for the solution space of the
homogeneous system of linear equations.

Calculus In Exercises 45 and 46, (a) find the inner product,
(b) determine whether the vectors are orthogonal, and (c) verify
the Cauchy-Schwarz Inequality for the vectors.

45.

46.

47. Prove that if and are vectors in an inner product space such
that and then 

48. Prove that if and are vectors in an inner product space then

49. Let be an m-dimensional subspace of such that 
Prove that any vector in can be uniquely written in the form

where is in and is orthogonal to every vector
in

50. Let V be the two-dimensional subspace of spanned by
and Write the vector in

the form where is in and is orthogonal to
every vector in 

51. Let be an orthonormal subset of and let 
be any vector in Prove that

(This inequality is called Bessel’s Inequality.)

52. Let be a set of real numbers. Use the 
Cauchy-Schwarz Inequality to prove that

53. Let and be vectors in an inner product space Prove 
that if and only if and are orthogonal.

54. Writing Let be a dependent set of vectors
in an inner product space Describe the result of applying the
Gram-Schmidt orthonormalization process to this set.

55. Find the orthogonal complement of the subspace of 
spanned by the two column vectors of the matrix

56. Find the projection of the vector onto the
subspace

57. Find bases for the four fundamental subspaces of the matrix

58. Find the least squares regression line for the set of data points

Graph the points and the line on the same set of axes.

���2, 2�, ��1, 1�, �0, 1�, �1, 3��.

A � �
0

0

1

1

�3

0

0

0

1
�.

S � span��
0

�1

1
�, �

0

1

1
��.

v � �1 0 �2�T

A � �
1

2

0

2

1

�1
�.

R3SS�

V.
�u1, u2, .  .  . , un�

vu�u � v � � �u � v �
V.vu

�x1 � x2 � .  .  . � xn�2 � n�x1
2 � x2

2 � .  .  . � xn
2�.

�x1, x2, .  .  . , xn�

�v �2 
 �
m

i�1

�v � ui �2.

Rn.
vRn,�u1, u2, .  .  . , um�

V.
wVvu � v � w,
u � �1, 1, 1, 1��0, 2, 0, 0�.�0, 1, 0, 1�

R 4
V.

wVvu � v � w,
Rnu

m < n.RnV

� �u � � �v �� � �u ± v �.

V,vu
��u, v�� � 1.�v � � 1,�u � � 1

vu

f �x� � x, g�x� � 4x2, � f , g� � �1

0

f �x�g�x� dx

f �x� � x, g�x� �
1

x2 � 1
, � f , g� � �1

�1

f �x�g�x� dx

x
2x

�

�

y
y

�

�

z
z

�

�

w
2w

�

�

0
0

W � ��x1, x2, x3�: x1 � x2 � x3 � 0�

S � �1, cos x, sin x, cos 2x, sin 2x, .  .  . , cos nx, sin nx�

C ���, ��

C ��1, 1�.
g�x� � 2x�1 � x2f �x� � �1 � x2

B � � f, g�.

� f �.
��4 f , g�.
� f , g�.

C �0, 1�.g�x� � 15x � 8f �x� � x � 2

B � � f , g�.

d� f , g�.
�g �.
� f, g�.

C �0, 1�.g�x� � x2f �x� � x

� f, g� � �b

a

f �x�g�x� dx.

C �a, b�
gf
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Mathematical Modeling
59. The table shows the retail sales (in millions of dollars) of run-

ning shoes in the United States during the years 1999 to 2005.
Find the least squares regression line and least squares cubic
regression polynomial for the data. Let represent the year, with

corresponding to 1999. Which model is the better fit for
the data? Use the model to predict the sales in the year 2010.
(Source: National Sporting Goods Association)

Year 1999 2000 2001 2002

Sales, y 1502 1638 1670 1733

Year 2003 2004 2005

Sales, y 1802 1989 2049

60. The table shows the average salaries (in thousands of dollars)
for National Football League players during the years 2000 to
2005. Find the least squares regression line for the data. Let 
represent the year, with corresponding to 2000. (Source:
National Football League)

Year 2000 2001 2002

Average Salary, y 787 986 1180

Year 2003 2004 2005

Average Salary, y 1259 1331 1440

61. The table shows the world energy consumption (in quadrillions
of Btu) during the years 1999 to 2004. Find the least squares
regression line for the data. Let represent the year, with 
corresponding to 1999. (Source: U.S. Energy Information
Administration)

Year 1999 2000 2001

Energy Consumption, y 389.1 399.5 403.5

Year 2002 2003 2004

Energy Consumption, y 409.7 425.7 446.4

62. The table shows the numbers of stores for the Target
Corporation during the years 1996 to 2007. Find the least
squares regression quadratic polynomial that best fits the data.
Let represent the year, with corresponding to 1996.
Make separate models for the years 1996–2003 and 2004–2007
(Source: Target Corporation)

Year 1996 1997 1998 1999 2000 2001

Number of 
1101 1130 1182 1243 1307 1381

Stores, y

Year 2002 2003 2004 2005 2006 2007

Number of 
1475 1553 1308 1397 1495 1610

Stores, y

63. The table shows the revenues (in millions of dollars) for 
eBay, Incorporated during the years 2000 to 2007. Find the least
squares regression quadratic polynomial that best fits the data.
Let represent the year, with corresponding to 2000.
(Source: eBay, Incorporated)

Year 2000 2001 2002 2003

Revenue, y 431.4 748.8 1214.1 2165.1

Year 2004 2005 2006 2007

Revenue, y 3271.3 4552.4 5969.7 7150.0

64. The table shows the revenues (in millions of dollars) for
Google, Incorporated during the years 2002 to 2007. Find the
least squares regression quadratic polynomial that best fits the
data. Let represent the year, with corresponding to 2002.
(Source: Google, Incorporated)

Year 2002 2003 2004

Revenue, y 439.5 1465.9 3189.2

Year 2005 2006 2007

Revenue, y 6138.6 10,604.9 16,000.0

t � 2t

y

t � 0t

y

t � �4t

y

t � �1t

y

t � 0
t

y

t � �1
t

y



65. The table shows the sales (in millions of dollars) for Circuit
City Stores during the years 2000 to 2007. Find the least squares 
regression quadratic polynomial that best fits the data. Let 
represent the year, with corresponding to 2000. (Source:
Circuit City Stores)

Year 2000 2001 2002 2003

Sales, y 10,458.0 9589.8 9953.5 9745.4

Year 2004 2005 2006 2007

Sales, y 10,472.0 11,598.0 12,670.0 13,680.0

The Cross Product of Two Vectors in Space

In Exercises 66–69, find and show that it is orthogonal to
both and 

66.

67.

68.

69.

70. Find the area of the parallelogram that has and
as adjacent sides.

71. Prove that if and only if and are 
orthogonal.

In Exercises 72 and 73, the volume of the parallelepiped having 
and as adjacent sides is given by the triple scalar product

Find the volume of the parallelepiped having the
three vectors as adjacent sides.

72.

73.

Least Squares Approximations (Calculus)

In Exercises 74–77, find the linear least squares approximating
function for the function Then sketch the graphs of and 

74.

75.

76.

77.

In Exercises 78 and 79, find the quadratic least squares approximat-
ing function for the function Then, using a graphing utility, graph

and

78. 79.

Fourier Approximations (Calculus)

In Exercises 80 and 81, find the nth-order Fourier approximation of
the function.

80. , first order

81. , second order

True or False? In Exercises 82 and 83, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false, provide
an example that shows the statement is not true in all cases or cite an
appropriate statement from the text.

82. (a) The cross product of two nonzero vectors in yields 
a vector orthogonal to the two given vectors that produced it.

(b) The cross product of two nonzero vectors in is 
commutative.

(c) The least squares approximation of a function is the 
function (in the subspace W) closest to f in terms of the
inner product 

83. (a) The vectors in and have equal lengths but
opposite directions.

(b) If and are two nonzero vectors in then and are
parallel if and only if 

(c) A special type of least squares approximation, the 
Fourier approximation, is spanned by the basis 

sin 2x, . . . , sin nx�.cos 2x, . . . , cos nx, sin x,�1, cos x,
S �

u � v � 0.
vuR3,vu

v � uu � vR3

� f , g�.
g

f

R3

R3

f �x� � x, �� � x � �

f �x� � x2, �� � x � �

f �x� �
1

x
, 1 � x � 2f �x� � �x,  0 � x � 1

g.f
f.g

f �x� �  sin x cos x,  0 � x � �

f�x� � sin 2x,  0 � x � �2

f �x� � x3,   0 � x � 2

f �x� � x3, �1 � x � 1

g.ff.g

u � �1, 2, 1�, v � ��1, �1, 0�, w � �3, 4, �1�
u � �1, 0, 0�, v � �0, 0, 1�, w � �0, 1, 0�

�u � �v � w��.
wv,

u,

vu�u � v � � �u � �v �
v � ��1, 0, 2�

u � �1, 3, 0�

u � 2i � k, v � i � j � k

u � j � 6k, v � i � 2j � k

u � �1, �1, 1�, v � �0, 1, 1�
u � �1, 1, 1�, v � �1, 0, 0�

v.u
u � v

t � 0
t

y
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ProjectsCHAPTER 5

1 The QR-Factorization

The Gram-Schmidt orthonormalization process leads to an important factorization of
matrices called the QR-factorization. If is an matrix of rank then can
be expressed as the product of an matrix and an matrix 
where has orthonormal columns and is upper triangular.

The columns of can be considered a basis for a subspace of and the columns
of are the result of applying the Gram-Schmidt orthonormalization process to this
set of column vectors.

Recall that in Example 7, Section 5.3, the Gram-Schmidt orthonormalization
process was used on the column vectors of the matrix

An orthonormal basis for was obtained, which is labeled here as 

These vectors form the columns of the matrix 

The upper triangular matrix consists of the following dot products.

It is now an easy exercise to verify that 

In general, if is an matrix of rank then the QR-factorization of 
can be constructed if you keep track of the dot products used in the Gram-Schmidt
orthonormalization process as applied to the columns of The columns of the 
matrix are the orthonormal vectors that result from the Gram-Schmidt 
orthonormalization process. The upper triangular matrix consists of certain
dot products of the original column vectors and the orthonormal column vectors 
If the columns of the matrix are denoted as and the columns of 
are denoted as then the QR-factorization of is as follows.Aq1, q2, . . . , qn,

Qv1, v2, .  .  . , vnA
qi.vi

Rn � n
Q

m � nA.

An,m � nA

A � QR.


v1 � q1

0
0

v2 � q1

v2 � q2

0

v3 � q1

v3 � q2

v3 � q3
� � 

�2
0
0

3�2�2
�2�2

0

�2�2
�2�2

2 �
R

Q � 
�2�2
�2�2

0

��2�2
�2�2

0

0
0
1�

Q.

q3 � �0, 0, 1�
q2 � ���2�2, �2�2, 0�
q1 � ��2�2, �2�2, 0�

q1, q2, q3.R3

A � 
1

1

0

1

2

0

0

1

2
�.

Q
Rm,A

RQ
R,n � nQm � nA � QR

An,m � nA



1. Verify the matrix equation for the preceding example.
2. Find the QR-factorization of each matrix.

(a) (b)

(c) (d)

3. Let be the QR-factorization of the matrix of rank Show
how the least squares problem can be solved using just matrix multiplication
and back-substitution.

4. Use the result of part 3 to solve the least squares problem if is the
matrix from part 2(a) and 

The QR-factorization of a matrix forms the basis for many algorithms of linear 
algebra. Computer routines for the computation of eigenvalues (see Chapter 7) are
based on this factorization, as are algorithms for computing the least squares 
regression line for a set of data points. It should also be mentioned that, in 
practice, techniques other than the Gram-Schmidt orthonormalization process are 
actually used to compute the -factorization of a matrix.

2 Orthogonal Matrices and Change of Basis

Let be an ordered basis for the vector space Recall that the
coordinate matrix of a vector in is the column
vector

�x�B � �
c1

c2
.
.
.

cn

�.

Vx � c1v1 � c2v2 � .  .  . � cnvn

V.B � �v1, v2, .  .  . ,vn�

QR

b � ��1 1 �1�T .
AAx � b

n.Am � nA � QR

A � �
1

1

1

1

0

2

2

0

�1

0

0

0
�A � �

1

1

1

0

1

1

0

0

1
�

A � �
1

0

1

1

0

0

1

2
�A � �

1

0

1

1

1

0
�

A � QR

�v1 v2 .  .  . vn� � �q1 q2 .  .  . qn� �
v1 � q1

0
.
.
.
0

v2 � q1

v2 � q2.
.
.
0

. . .

. . .

. . .

vn � q1

vn � q2.
.
.

vn � qn

�
A � QR
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If is another basis for then the transition matrix from to changes a 
coordinate matrix relative to into a coordinate matrix relative to 

The question you will explore now is whether there are transition matrices that 
preserve the length of the coordinate matrix—that is, given does

For example, consider the transition matrix from Example 5 in Section 4.7,

relative to the bases for 

and

If then and So, using the
Euclidean norm for 

You will see in this project that if the transition matrix is orthogonal, then the
norm of the coordinate vector will remain unchanged.

1. Show that the matrix defined previously is not orthogonal.

2. Show that for any real number the matrix is orthogonal.

3. Show that a matrix is orthogonal if and only if its columns are pairwise 
orthogonal.

4. Prove that the inverse of an orthogonal matrix is orthogonal.
5. Is the sum of orthogonal matrices orthogonal? Is the product of orthogonal 

matrices orthogonal? Illustrate your answers with appropriate examples.
6. What is the determinant of an orthogonal matrix?
7. Prove that if P is an orthogonal matrix, then for all vectors 

in
8. Verify the result of part 7 using the bases and

B� � �	�
2

�5
,

1

�5
,	 1

�5
,

2

�5
�.

B � ��1, 0�, �0, 1��
Rn.

x�Px � � �x �m � n

�cos �

sin �

�sin �

cos ���,

P

P

��x�B� � � 1 � �13 � ��x�B�.

R2,
�x�B � P�x�B� � �3 2�T.�x�B� � �1 0 �Tx � ��1, 2�,

B� � ���1, 2�, �2, �2��.B � ���3, 2�, �4, �2��

R2,

P � �3

2

�2

�1�

��x�B�?��x�B� � �
P�x�B� � �x�B,

P

P�x�B� � �x�B.

B,B�
BB�PV,B�

The square matrix is orthogonal if it is invertible and P�1 � PT.PDefinition of 

Orthogonal Matrix
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Cumulative TestCHAPTERS 4 & 5
Take this test as you would take a test in class. After you are done, check your work against the 
answers in the back of the book.

1. Given the vectors and , find and sketch each vector.

(a) (b) (c)

2. If possible, write as a linear combination of the vectors and 

3. Prove that the set of all singular matrices is not a vector space.

4. Determine whether the set is a subspace of

x,

5. Determine whether the set is a subspace of 

x,

6. Determine whether the columns of matrix A span

7. (a) Define what it means to say that a set of vectors is linearly independent.

(b) Determine whether the set S is linearly dependent or independent.

8. Find the dimension of and a basis for the subspace of consisting of all the symmetric
matrices.

9. (a) Define basis of a vector space.

(b) Determine if the set is a basis for 

10. Find a basis for the solution space of if 

11. Find the coordinates of the vector relative to the basis

12. Find the transition matrix from the basis to the basis

13. Let and 

(a) Find . (b) Find the distance between and 

(c) Find (d) Find the angle between and v.u�u � v.

v.u�u �
v � ��2, 1, 3�.u � �1, 0, 2�

B� � ��1, 1, 2�, �1, 1, 1�, �0, 1, 2��.

B � ��2, 1, 0�, �1, 0, 0�, �0, 1, 1��

B � ��0, 1, 1�, �1, 1, 1�, �1, 0, 1��.

v � �1, 2, �3��v�B

A � �
1

�2
0
1

1
�2

0
1

0
0
1
0

0
0
1
0
�.

Ax � 0

��1, 2, 1�, �0, 1, 2�, �2, 1, �3��
R3.

3 � 3M3,3

S � ��1, 0, 1, 0�, �0, 3, 0, 1�, �1, 1, 2, 2�, �3, �4, 2, �3��

A � �
1
1
0
1

2
3
0
0

�1
0
1
0

0
2

�1
1
�

R4.

y 	 R���x, xy, y�:
R3.

y 	 R���x, x � y, y, y�:
R4.

2 � 2

v3 � �0, 3, 0�v2 � ��1, 0, 1�,v1 � �1, 2, 0�,

v3.v2,v1,w � �2, 4, 1�

2v � 4w3vv � w

w � �2, �5�v � �1, �2�
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14. Find the inner product of and from using the integral

15. Use the Gram-Schmidt orthonormalization process to transform the following set of vectors into
an orthonormal basis for .

16. Let and Find and graph u, v, and on the same set of 
coordinate axes.

17. Find the four fundamental subspaces of the matrix

18. Find the orthogonal complement of the set

19. Use the axioms for a vector space to prove that for all vectors 

20. Suppose that are linearly independent vectors and is a vector not in their span. Prove
that the vectors and are linearly independent.

21. Let be a subspace of an inner product space Prove that the set below is a subspace of 

for all

22. Find the least squares regression line for the points Graph the points and
the line.

23. The two matrices and are row-equivalent.

(a) Find the rank of 
(b) Find a basis for the row space of 
(c) Find a basis for the column space of 
(d) Find a basis for the nullspace of 
(e) Is the last column of in the span of the first three columns?
(f ) Are the first three columns of linearly independent?
(g) Is the last column of in the span of columns 1, 3, and 4?
(h) Are columns 1, 3, and 4 linearly dependent?

24. Let and be vectors in an inner product space Prove that if and only if
and are orthogonal.vu

�u � v ��u � v � �V.vu

A
A

A
A.

A.
A.

A.

B � �
1
0
0
0

�2
0
0
0

0
1
0
0

0
0
1
0

3
�5

1
0

2
�3

7
0
�A � �

2
1

�1
4

�4
�2

2
�8

0
�1

1
1

1
1
3

�1

7
9

�5
6

11
12
16

�2
�

BA

��1, 1�, �2, 0�, �5, �5��.

w 	 W��v 	 V: �v, w� � 0W� �

V.V.W

yx1, .  .  . , xn

yx1, .  .  . , xn

v 	 V.0v � 0

S � span	�
1
0
1�, �

�1
1
0�
.

S�

A � �
0

�1
1

1
0
1

1
0
1

0
1
1�.

projvuprojvu,v � ��3, 2�.u � �1, 2�

��2, 0, 0�, �1, 1, 1�, �0, 1, 2��
R3

� f, g� � �1

0
f �x�g�x� dx.

C �0, 1�g�x� � x � 2f �x� � x2
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6 Linear 
Transformations

6.1 Introduction to Linear
Transformations

6.2 The Kernel and Range of
a Linear Transformation

6.3 Matrices for Linear
Transformations

6.4 Transition Matrices and
Similarity

6.5 Applications of Linear
Transformations

CHAPTER OBJECTIVES

■ Find the image and preimage of a function.

■ Determine whether a function from one vector space to another is a linear transformation.

■ Find the kernel, the range, and the bases for the kernel and range of a linear transformation
and determine the nullity and rank of 

■ Determine whether a linear transformation is one-to-one or onto.

■ Verify that a matrix defines a linear function that is one-to-one and onto.

■ Determine whether two vector spaces are isomorphic.

■ Find the standard matrix for a linear transformation and use this matrix to find the image of
a vector and sketch the graph of the vector and its image.

■ Find the standard matrix of the composition of a linear transformation.

■ Determine whether a linear transformation is invertible and find its inverse, if it exists.

■ Find the matrix of a linear transformation relative to a nonstandard basis.

■ Know and use the definition and properties of similar matrices.

■ Identify linear transformations defined by reflections, expansions, contractions, shears,
and/or rotations.

T.T,

Introduction to Linear Transformations

In this chapter you will learn about functions that map a vector space into a vector space
This type of function is denoted by

The standard function terminology is used for such functions. For instance, is called the
domain of and is called the codomain of If is in and is in such that

then is called the image of under The set of all images of vectors in is called the
range of and the set of all in such that is called the preimage of (See
Figure 6.1 on the next page.)

w.T�v� � wVvT,
VT.vw

T�v� � w,

WwVvT.WT,
V

T: V → W.

W.
V

6.1
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Figure 6.1

For any vector in let be defined by

(a) Find the image of 

(b) Find the preimage of 

S O L U T I O N (a) For you have

(b) If then

This system of equations has the unique solution and So, the preimage
of is the set in consisting of the single vector 

This chapter centers on functions (from one vector space to another) that preserve the 
operations of vector addition and scalar multiplication. Such functions are called linear
transformations.

A linear transformation is said to be operation preserving, because the same result occurs
whether the operations of addition and scalar multiplication are performed before or after
the linear transformation is applied. Although the same symbols are used to denote the

�3, 4�.R2��1, 11�
v2 � 4.v1 � 3

v1

v1

�

�

v2

2v2

�

�

�1

11.

T�v� � �v1 � v2, v1 � 2v2� � ��1, 11�,

T��1, 2� � ��1 � 2, �1 � 2�2�� � ��3, 3�.

v � ��1, 2�

w � ��1, 11�.
v � ��1, 2�.

T�v1, v2� � �v1 � v2, v1 � 2v2�.

T: R2 → R2R2,v � �v1, v2�

E X A M P L E  1 A Function from R2 into R2

W: Codomain T: V → W

T

v

w

Range

V: Domain R E M A R K : For a vector
in it

would be technically correct to
use double parentheses to denote

as
For convenience, however, one
set of parentheses is dropped,
producing

T�v� � T�v1, v2, . . . ,vn�.

T�v� �T��v1, v2, . . . , vn��.T�v�

Rn,v � �v1, v2, .  .  . , vn�

Let and be vector spaces. The function is called a linear transformation of
into if the following two properties are true for all and in and for any scalar 

1.
2. T�cu� � cT�u�

T�u � v� � T�u� � T�v�
c.VvuWV

T: V → WWVDefinition of a 

Linear Transformation
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vector operations in both and you should note that the operations may be different, as
indicated in the diagram below.

Show that the function given in Example 1 is a linear transformation from into 

S O L U T I O N To show that the function is a linear transformation, you must show that it preserves 
vector addition and scalar multiplication. To do this, let and be 
vectors in and let be any real number. Then, using the properties of vector addition and
scalar multiplication, you have the two statements below.

1. Because you have

2. Because , you have

So, is a linear transformation.

Most of the common functions studied in calculus are not linear transformations.

(a) is not a linear transformation from into because, in general,

For instance, sin���2� � ��3�� � sin��2� � sin��3�.

sin�x1 � x2� � sin x1 �  sin x2.

RRf�x� � sin x

E X A M P L E  3 Some Functions That Are Not Linear Transformations

T

� cT�u�.
� c�u1 � u2, u1 � 2u2�
� �cu1 � cu2, cu1 � 2cu2�

T�cu� � T�cu1, cu2�

cu � c�u1, u2� � �cu1, cu2�

� T�u� � T�v�.
� �u1 � u2, u1 � 2u2� � �v1 � v2, v1 � 2v2�
� ��u1 � u2� � �v1 � v2�, �u1 � 2u2� � �v1 � 2v2��
� ��u1 � v1� � �u2 � v2�, �u1 � v1� � 2�u2 � v2��

T�u � v� � T�u1 � v1, u2 � v2�

u � v � �u1, u2� � �v1, v2� � �u1 � v1, u2 � v2�,

cR2
u � �u1, u2�v � �v1, v2�

T

T�v1, v2� � �v1 � v2, v1 � 2v2�

R2.R2

E X A M P L E  2 Verifying a Linear Transformation from R2 into R2

T�cu� � cT�u�T�u � v� � T�u� � T�v�

Scalar
multiplication

in W

Scalar
multiplication

in V

Addition
in W

Addition
in V

W,V

R E M A R K : A linear transfor-
mation from a vector
space into itself (as in Example
2) is called a linear operator.

T: V → V
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(b) is not a linear transformation from into because, in general,

For instance,

(c) is not a linear transformation from into because

whereas

So

R E M A R K : The function in Example 3(c) points out two uses of the term linear. In calcu-
lus, is called a linear function because its graph is a line. It is not a linear
transformation from the vector space into however, because it preserves neither vector
addition nor scalar multiplication.

Two simple linear transformations are the zero transformation and the identity
transformation, which are defined as follows.

1. for all  Zero transformation

2. for all  Identity transformation

The verifications of the linearity of these two transformations are left as exercises. (See
Exercises 68 and 69.)

Note that the linear transformation in Example 2 has the property that the zero vector is
mapped to itself. That is, . (Try checking this.) This property is true for all linear
transformations, as stated in the next theorem.

T�0� � 0

�T: V → V �vT�v� � v,
�T: V → W �vT�v� � 0,

R,R
f�x� � x � 1

f �x1 � x2� � f �x1� � f �x2�.

f�x1� � f �x2� � �x1 � 1� � �x2 � 1� � x1 � x2 � 2.

f �x1 � x2� � x1 � x2 � 1

RRf �x� � x � 1

�1 � 2�2 � 12 � 22.

�x1 � x2�2 � x1
2 � x2

2.

RRf �x� � x2

Let be a linear transformation from into where and are in Then the 
following properties are true.

1.
2.
3.
4. If 

then

� c1T�v1� � c2T�v2� � .  .  . � cnT�vn�.

T�v� � T�c1v1 � c2v2 � .  .  . � cnvn�

v � c1v1 � c2v2 � .  .  . � cnvn,
T�u � v� � T�u� � T�v�
T��v� � �T�v�
T�0� � 0

V.vuW,VTTHEOREM 6.1

Properties of 

Linear Transformations
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P R O O F To prove the first property, note that . Then it follows that

The second property follows from which implies that

.

The third property follows from which implies that

.

The proof of the fourth property is left to you.

Property 4 of Theorem 6.1 tells you that a linear transformation is determined
completely by its action on a basis of In other words, if is a basis for
the vector space and if are given, then is determined for
any in The use of this property is demonstrated in Example 4.

Let be a linear transformation such that

Find

S O L U T I O N Because can be written as

,

you can use Property 4 of Theorem 6.1 to write

Another advantage of Theorem 6.1 is that it provides a quick way to spot functions that
are not linear transformations. That is, because all four conditions of the theorem must be
true of a linear transformation, it follows that if any one of the properties is not satisfied for
a function then the function is not a linear transformation. For example, the function 

is not a linear transformation from to because T�0, 0� � �0, 0�.R2R2

T�x1, x2� � �x1 � 1, x2�

T,

� �7, 7, 0�.
� 2�2, �1, 4� � 3�1, 5, �2� � 2�0, 3, 1�

T�2, 3, �2� � 2T�1, 0, 0� � 3T�0, 1, 0� � 2T�0, 0, 1�

�2, 3, �2� � 2�1, 0, 0� � 3�0, 1, 0� � 2�0, 0, 1�

�2, 3, �2�

T�2, 3, �2�.

T�0, 0, 1� � �0, 3, 1�.
T�0, 1, 0� � �1, 5, �2�
T�1, 0, 0� � �2, �1, 4�

T: R3 → R3

E X A M P L E  4 Linear Transformations and Bases

V.v
T�v�T�v1�, T�v2�, .  .  . , T�vn�V

�v1, v2, .  .  . , vn�V.
T: V → W

T�u � v� � T �u � ��1�v� � T�u� � ��1�T�v� � T�u� � T�v�

u � v � u � ��v�,

T��v� � T ���1�v� � ��1�T�v� � �T�v�

�v � ��1�v,

T�0� � T�0v� � 0T�v� � 0.

0v � 0
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In the next example, a matrix is used to define a linear transformation from into .
The vector is written in the matrix form

so it can be multiplied on the left by a matrix of order 

The function is defined as follows.

(a) Find where 
(b) Show that is a linear transformation from into 

S O L U T I O N (a) Because you have

So, you have 

(b) Begin by observing that does map a vector in to a vector in To show that is
a linear transformation, use the properties of matrix multiplication, as shown in
Theorem 2.3. For any vectors and in the distributive property of matrix 
multiplication over addition produces

Similarly, for any vector in and any scalar the commutative property of scalar
multiplication with matrix multiplication produces

Example 5 illustrates an important result regarding the representation of linear transfor-
mations from into This result is presented in two stages. Theorem 6.2 on the next
page states that every matrix represents a linear transformation from into 
Then, in Section 6.3, you will see the converse—that every linear transformation from 
into can be represented by an matrix.m � nRm

Rn
Rm.Rnm � n

Rm.Rn

T�cu� � A�cu� � c�Au� � cT�u�.

c,R2u

T�u � v� � A�u � v� � Au � Av � T�u� � T�v�.

R2,vu

TR3.R2T

T�2, �1� � �6, 3, 0�.

Vector
in R3

Vector
in R2

T�v� � Av � �
3

2

�1

0

1

�2
� � 2

�1� � �
6

3

0
�.

v � �2, �1�,

R3.R2T
v � �2, �1�.T�v�,

T�v� � Av � �
3

2

�1

0

1

�2
� �v1

v2
�

T: R2 → R3

E X A M P L E  5 A Linear Transformation Defined by a Matrix

3 � 2.

v � �v1

v2
�,

v � �v1, v2�
R3R2
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Note in part (b) of Example 5 that no reference is made to the specific matrix This
verification serves as a general proof that the function defined by any matrix is a
linear transformation from into 

R E M A R K : The zero matrix corresponds to the zero transformation from 
into and the identity matrix corresponds to the identity transformation from 
into

Be sure you see that an matrix defines a linear transformation from into 

The linear transformation is defined by Find the dimensions of 
and for the linear transformation represented by each matrix.

(a)

(b)

(c) A � �1

3

0

1

�1

0

2

0�

A � �
2

�5

0

�3

0

�2
�

A � �
0

2

4

1

3

2

�1

0

1
�

Rm
RnT�v� � Av.T: Rn → Rm

E X A M P L E  6 Linear Transformation Given by Matrices

Vector
in Rm

Vector
in Rn

�
a11v1

a21v1.
.
.

am1v1

�

�

�

a12v2

a22v2.
.
.

am2v2

� . . . �

� . . . �

� . . . �

a1nvn

a2nvn.
.
.

amnvn

��
v1

v2.
.
.
vn

� �Av � �
a11

a21
.
.
.

am1

a12

a22
.
.
.

am2

.  .  .

.  .  .

.  .  .

a1n

a2n
.
.
.

amn

�
Rm.RnAm � n

Rn.
RnInn � nRm,
Rnm � n

Rm.Rn
m � n

A.

Let be an matrix. The function defined by

is a linear transformation from into In order to conform to matrix multiplication
with an matrix, the vectors in are represented by matrices and the vectors
in are represented by matrices.m � 1Rm

n � 1Rnm � n
Rm.Rn

T�v� � Av

Tm � nATHEOREM 6.2

The Linear Transformation

Given by a Matrix
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S O L U T I O N (a) Because the size of this matrix is it defines a linear transformation from 
into

(b) Because the size of this matrix is it defines a linear transformation from 
into

(c) Because the size of this matrix is it defines a linear transformation from 
into

In the next example, a common type of linear transformation from into is discussed.

Show that the linear transformation represented by the matrix

has the property that it rotates every vector in counterclockwise about the origin through
the angle 

S O L U T I O N From Theorem 6.2, you know that is a linear transformation. To show that it rotates every
vector in counterclockwise through the angle let be a vector in Using
polar coordinates, you can write as

where is the length of and is the angle from the positive -axis counterclockwise to
the vector Now, applying the linear transformation to produces

� �r cos(� � )

r sin(� � )�.

� �r cos � cos  � r sin � sin 

r sin � cos  � r cos � sin �

� �cos �

sin �

�sin �

cos �� �
r cos 

r sin �

T�v� � Av � �cos �

sin �

�sin �

cos �� �
x

y�
vTv.

xvr

v � �x, y� � �r cos , r sin �,

v
R2.v � �x, y��,R2

T

�.
R2

A � �cos �

sin �

�sin �

cos ��
T: R2 → R2

E X A M P L E  7 Rotation in the Plane

R2R2

R2.
R42 � 4,

R3.
R23 � 2,

Av � �
0

2

4

1

3

2

�1

0

1
� �

v1

v2

v3
� � �

u1

u2

u3
�

R3.
R33 � 3,

Vector
in R3

Vector
in R3

Figure 6.2

Rotation in the Plane
x

θ

α

y

T(x, y)

(x, y)
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So, the vector has the same length as Furthermore, because the angle from the 
positive -axis to is is the vector that results from rotating the vector 
counterclockwise through the angle as shown in Figure 6.2 on the previous page.

R E M A R K : The linear transformation in Example 7 is called a rotation in Rotations
in preserve both vector length and the angle between two vectors. That is, the angle 
between and is equal to the angle between and 

The linear transformation represented by

is called a projection in If is a vector into then In
other words, maps every vector in to its orthogonal projection in the -plane, as
shown in Figure 6.3.

So far only linear transformations from into or from into have been 
discussed. In the remainder of this section, some linear transformations involving vector
spaces other than will be considered.

Let be the function that maps an matrix to its transpose. That is,

Show that is a linear transformation.

S O L U T I O N Let and be matrices. From Theorem 2.6 you have

and

So, is a linear transformation from into Mn,m.Mm,nT

� cT�A�.
� c�AT �

T�cA� � (cA�T

� T�A� � T�B�
� AT � BT

T�A � B� � �A � B�T

m � nBA

T

T�A� � AT.

Am � nT: Mm,n → Mn,m

E X A M P L E  9 A Linear Transformation from Mm,n into Mn,m

Rn

RnRnRmRn

xyR3T
T�v� � �x, y, 0�.R3,v � �x, y, z�R3.

A � �
1

0

0

0

1

0

0

0

0
�
T: R3 → R3

E X A M P L E  8 A Projection in R3

T�v�.T�u�vu
R2

R2.

�,
v� �  , T�v�T�v�x

v.T�v�

Figure 6.3

x y

z

(x, y, z)

T (x, y, z) = (x, y, 0) 

Projection onto xy-plane
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Let be the set of all functions whose derivatives are continuous on Show
that the differential operator defines a linear transformation from into 

S O L U T I O N Using operator notation, you can write

where is in To show that is a linear transformation, you must use calculus.
Specifically, because the derivative of the sum of two functions is equal to the sum of their
derivatives and because the sum of two continuous functions is continuous, you have

Similarly, because the derivative of a scalar multiple of a function is equal to the scalar 
multiple of the derivative and because the scalar multiple of a continuous function is 
continuous, you have

So, is a linear transformation from into 

The linear transformation in Example 10 is called the differential operator. For 
polynomials, the differential operator is a linear transformation from into because
the derivative of a polynomial function of degree is a polynomial function of degree

or less. That is,

The next example describes a linear transformation from the vector space of polynomial
functions into the vector space of real numbers 

Let be defined by

Show that is a linear transformation from the vector space of polynomial functions,
into the vector space of real numbers.R,

P,T

T�p� � �b

a

p�x� dx.

T: P → R

E X A M P L E  1 1 The Definite Integral as a Linear Transformation (Calculus)

R.P

Dx�anxn � .  .  . � a1x � a0� � nanxn�1 � .  .  . � a1.

n � 1
n

Pn�1Pn

Dx

C �a, b�.C� �a, b�Dx

� cDx� f �.

Dx�cf � �
d

dx
�cf � � c	 d

dx
� f �


� Dx� f � � Dx�g�.

Dx� f � g� �
d

dx
� f � g� �

d

dx
� f � �

d

dx
�g�

DxC� �a, b�.f

Dx� f � �
d

dx
� f �,

C�a, b�.C� �a, b�Dx

�a, b�.C� �a, b�

E X A M P L E  1 0 The Differential Operator (Calculus)
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S O L U T I O N Using properties of definite integrals, you can write

and

So, is a linear transformation.T

T�cp� � �b

a

c� p�x�� dx � c�b

a

p�x� dx � cT� p�.

� T�p� � T�q�

� �b

a

p�x� dx � �b

a

q�x� dx

T�p � q� � �b

a

� p�x� � q�x�� dx

ExercisesSECTION 6.1

In Exercises 1–8, use the function to find (a) the image of and 
(b) the preimage of 

1.

2.

3.

4.

5.

6.

7.

8.

In Exercises 9–22, determine whether the function is a linear 
transformation.

9.

10.

11.

12.

13.

14.

15.

16. where

17.

18.

19.

20.

21.

22.

In Exercises 23–26, let be a linear transformation 
such that and

Find

23. 24.

25. 26. T��2, 4, �1�.T�2, �4, 1�.
T�2, �1, 0�.T�0, 3, �1�.

T�0, 0, 1� � �0, �2, 2�.
T�0, 1, 0� � �1, 3, �2�,T�1, 0, 0� � �2, 4, �1�,

T: R3 → R3

T: P2 → P2, T�a0 � a1x � a2x2� � a1 � 2a2x

�a0 � a1 � a2� � �a1 � a2�x � a2 x2

T: P2 → P2, T�a0 � a1x � a2 x2� �

T: M2,2 → M2,2, T�A� � A�1

T: M2,2 → M2,2, T�A� � AT

T: M3,3 → M3,3, T�A� � �
1
0
0

0
1
0

0
0

�1�A

T: M3,3 → M3,3, T�A� � �
0
0
1

0
1
0

1
0
0�A

A � �a
c

b
d�.T: M2,2 → R, T�A� � a � b � c � d,

T: M2,2 → R, T�A� � �A�
T: R2 → R3, T�x, y� � �x2, xy, y2 �
T: R2 → R3, T�x, y� � ��x, xy, �y �
T: R3 → R3, T�x, y, z� � �x � 1, y � 1, z � 1�
T: R3 → R3, T�x, y, z� � �x � y, x � y, z�

T: R2 → R2, T�x, y� � �x2, y�
T: R2 → R2, T�x, y� � �x, 1�

w � ��3, 2, 0�v � �2, 4�,

T�v1, v2 � � 	�3

2
v1 �

1

2
v2, v1 � v2, v2
,

w � ��5�2, �2, �16�v � �1, 1�,

T�v1, v2 � � 	�2

2
v1 �

�2

2
v2, v1 � v2, 2v1 � v2
,

w � ��1, 2�
T�v1, v2, v3� � �2v1 � v2, v1 � v2 �, v � �2, 1, 4�,
w � �3, 9�
T�v1, v2, v3� � �4v2 � v1, 4v1 � 5v2 �, v � �2, �3, �1�,
v � ��4, 5, 1�, w � �4, 1, �1�
T�v1, v2, v3� � �2v1 � v2, 2v2 � 3v1, v1 � v3�,
w � ��11, �1, 10�
T�v1, v2, v3� � �v2 � v1, v1 � v2, 2v1�, v � �2, 3, 0�,
T�v1, v2 � � �2v2 � v1, v1, v2 �, v � �0, 6�, w � �3, 1, 2�
T�v1, v2 � � �v1 � v2, v1 � v2 �, v � �3, �4�, w � �3, 19�

w.
v



372 Chapter  6 L inear  Transformat ions

In Exercises 27–30, let be a linear transformation 
such that and

Find

27. 28.

29. 30.

In Exercises 31–35, the linear transformation is defined
by Find the dimensions of and 

31.

32.

33.

34.

35.

36. For the linear transformation from Exercise 31, find 
(a) and (b) the preimage of 

37. Writing For the linear transformation from Exercise 32,
find (a) and (b) the preimage of (c) Then 
explain why the vector has no preimage under this 
transformation.

38. For the linear transformation from Exercise 33, find 
(a) and (b) the preimage of 

39. For the linear transformation from Exercise 34, find 
(a) and (b) the preimage of 

40. For the linear transformation from Exercise 35, find 
(a) (b) the preimage of and (c) the preimage of

41. Let be the linear transformation from into represented
by

Find (a) for (b) for and 
(c) for 

42. For the linear transformation from Exercise 41, let and
find the preimage of 

In Exercises 43–46, let be the linear transformation from
into from Example 10. Decide whether each 

statement is true or false. Explain your reasoning.

43.

44.

45.

46.

Calculus In Exercises 47–50, for the linear transformation from
Example 10, find the preimage of each function.

47. 48.

49. 50.

51. Calculus Let be the linear transformation from into 
shown by

Find (a) (b) and (c)

52. Calculus Let be the linear transformation from into 
represented by the integral in Exercise 51. Find the preimage of
1. That is, find the polynomial function(s) of degree 2 or less
such that 

53. Let be a linear transformation from into such that
and Find and 

54. Let be a linear transformation from into such that
and Find and 

55. Let be a linear transformation from into such 
that and Find

56. Let be a linear transformation from into such that 

Find T 	� 1

�1

3

4�
.

T 	�0

0

0

1�
 � �3

1

�1

0�.T 	�0

1

0

0�
 � �1

0

2

1�,

T 	�0

0

1

0�
 � �0

1

2

1�,T	�1

0

0

0�
 � �1

0

�1

2�,

M2,2M2,2T

T�2 � 6x � x2�.
T�x2� � 1 � x � x2.T�1� � x, T�x� � 1 � x,

P2P2T

T��2, 1�.T�1, 4�T�0, 1� � ��1, 1�.T�1, 0� � �1, 1�
R2R 2T

T�0, 2�.T�1, 0�T�1, �1� � �0, 1�.T�1, 1� � �1, 0�
R 2R 2T

T� p� � 1.

RP2T

T�4x � 6�.T�x3 � x5�,T�3x2 � 2�,

T� p� � �1

0

p�x� dx.

RPT

f �x� �
1

x
f �x� � sin x

f �x� � e xf �x� � 2x � 1

Dx	cos
x

2
 �
1

2
Dx�cos x�

Dx�sin 2x� � 2Dx�sin x�
Dx�x2 � ln x� � Dx�x2� � Dx�ln x�
Dx�e x 2

� 2x� � Dx�ex 2� � 2Dx�x�

C �a, b�C� �a, b�
Dx

v � �1, 1�.
� � 45�

� � 120�.T�5, 0�
� � 30�,T�4, 4�� � 45�,T�4, 4�

T�x, y� � �x cos � � y sin �, x sin � � y cos ��.
R 2R2T

�0, 0�.
�1, 1�,T�1, 1�,

�1, 1, 1, 1�.T�1, 1, 1, 1�

��1, 8�.T�1, 0, �1, 3, 0�

�1, 1, 1�
��1, 2, 2�.T�2, 4�

�0, 0, 0�.T�1, 0, 2, 3�

A � � 0

�1

�1

0�

A � �
�1

0

0

0

0

1

0

0

0

0

2

0

0

0

0

1
�

A � ��1

0

2

0

1

2

3

�1

4

0�

A � �
1

�2

�2

2

4

2
�

A � �
0

�1

0

1

4

1

�2

5

3

1

0

1
�

Rm.RnT�v� � Av.
T: Rn → Rm

T��2, 1, 0�.T�2, �1, 1�.
T�0, 2, �1�.T�2, 1, 0�.

T�1, 0, 1� � �1, 1, 0�.
T�0, �1, 2� � ��3, 2, �1�,T�1, 1, 1� � �2, 0, �1�,

T: R3 → R3
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True or False? In Exercises 57 and 58, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false, provide
an example that shows the statement is not true in all cases or cite an
appropriate statement from the text.

57. (a) Linear transformations are functions from one vector space
to another that preserve the operations of vector addition and
scalar multiplication.

(b) The function is a linear transformation from 
into

(c) For polynomials, the differential operator is a linear
transformation from into 

58. (a) A linear transformation is operation preserving if the 
same result occurs whether the operations of addition and
scalar multiplication are performed before or after the linear
transformation is applied.

(b) The function is a linear transformation from 
into

(c) Any linear function of the form is a linear
transformation from into 

59. Writing Suppose such that and

(a) Determine for in 

(b) Give a geometric description of 

60. Writing Suppose such that and

(a) Determine for in 

(b) Give a geometric description of T.

61. Let be the function from into such that 
where

(a) Find (b) Find 

(c) Prove that for every and 
in

(d) Prove that for every in This result
and the result in part (c) prove that is a linear 
transformation from into 

62. Writing Find and from Exercise 61 and give
geometric descriptions of the results.

63. Show that from Exercise 61 is represented by the matrix

64. Use the concept of a fixed point of a linear transformation
A vector is a fixed point if

(a) Prove that 0 is a fixed point of any linear transformation 

(b) Prove that the set of fixed points of a linear 
transformation is a subspace of 

(c) Determine all fixed points of the linear transformation 
represented by 

(d) Determine all fixed points of the linear transformation 
represented by 

65. A translation is a function of the form 
where at least one of the constants and is

nonzero.

(a) Show that a translation in the plane is not a linear 
transformation.

(b) For the translation determine
the images of and 

(c) Show that a translation in the plane has no fixed points.

66. Let be a set of linearly dependent 
vectors in and let be a linear transformation from into 
Prove that the set 

is linearly dependent.

67. Let be a set of linearly independent vectors in
Find a linear transformation from into such that the

set is linearly dependent.

68. Prove that the zero transformation is a linear 
transformation.

69. Prove that the identity transformation is a linear 
transformation.

70. Let be an inner product space. For a fixed vector in 
define by Prove that is a linear
transformation.

71. Let be defined by 
(the trace of ). Prove that is a linear transformation.

72. Let be an inner product space with a subspace having
as an orthonormal basis. Show that the

function represented by

is a linear transformation. is called the orthogonal projection
of onto W.V

T

T�v� � �v, w1�w1 � �v, w2�w2 � .  .  . � �v, wn�wn

T: V → W
B � �w1, w2, .  .  . , wn�

WV

TA
annT�A� � a11 � a22 � .  .  . �T: Mn,n → R

TT�v� � �v, v0�.T: V → R
V,v0V

T: V → V

T: V → W

�T�v1�, T�v2�, T�v3��
R3R3TR3.

S � �v1, v2, v3�

�T�v1�, T�v2�, .  .  . , T�vn��

V.VTV,
S � �v1, v2, .  .  . , vn�

�5, 4�.�0, 0�, �2, �1�,
T�x, y� � �x � 2, y � 1�,

kh�x � h, y � k�,
T�x, y� �

T�x, y� � � y, x�.T: R2 → R2

T�x, y� � �x, 2y�.T: R2 → R2

V.T: V → V

T: V → V.

T�u� � u.uT: V → V.

A � �
1
2
1
2

1
2
1
2
�.

T

T�T�3, 4��T�3, 4�
R 2.R 2

T
R 2.uT�cu� � cT�u�

R 2.
wuT�u � w� � T�u� � T�w�

T�5, 0�.T�x, y�.
v � �1, 1�.

T�u� � projvu,R 2R 2T

R2.�x, y�T�x, y�

T�0, 1� � �1, 0�.
T�1, 0� � �0, 1�T: R2 → R2

T.

R2.�x, y�T�x, y�

T�0, 1� � �0, 0�.
T�1, 0� � �1, 0�T: R2 → R2

R.R
f �x� � ax � b

R.R
g�x� � x3

Pn�1.Pn

Dx

R.
Rf �x� � cos x
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73. Guided Proof Let be a basis for a vector
space Prove that if a linear transformation 
satisfies for then T is the zero
transformation.

Getting Started: To prove that is the zero transformation,
you need to show that for every vector in 

(i) Let be an arbitrary vector in such that 

(ii) Use the definition and properties of linear transforma-
tions to rewrite as a linear combination of 

(iii) Use the fact that to conclude that , 
making the zero transformation.

74. Guided Proof Prove that is a linear transformation
if and only if for all vectors 
and and all scalars and 

Getting Started: Because this is an “if and only if” statement,
you need to prove the statement in both directions. To prove that

is a linear transformation, you need to show that the function
satisfies the definition of a linear transformation. In the other
direction, suppose is a linear transformation. You can use the
definition and properties of a linear transformation to prove that

(i) Suppose Show that 
preserves the properties of vector addition and scalar
multiplication by choosing appropriate values of a
and b.

(ii) To prove the statement in the other direction, assume 
that is a linear transformation. Use the properties and 
definition of a linear transformation to show that
T�au � bv� � aT�u� � bT�v�.

T

TT�au � bv� � aT�u� � bT�v�.
T�au � bv� � aT�u� � bT�v�.

T

T

b.av
uT�au � bv� � aT�u� � bT�v�

T: V → W

T
T�v� � 0T�vi � � 0

T�vi �.T�v�

c1v1 � c2v2 � .  .  . � cnvn.v �

Vv

V.vT�v� � 0
T

i � 1, 2, .  .  . , n,T�vi � � 0
T: V → VV.

�v1, v2, .  .  . , vn�

The Kernel and Range of a Linear Transformation

You know from Theorem 6.1 that for any linear transformation the zero vector
in is mapped to the zero vector in That is,

The  first question you will consider in this section is whether there are other vectors such
that The collection of all such elements is called the kernel of Note that the
symbol is used to represent the zero vector in both and although these two zero 
vectors are often different.

Sometimes the kernel of a transformation is obvious and can be found by inspection, as
demonstrated in Examples 1, 2, and 3.

Let be the linear transformation that maps a matrix to its transpose.
That is,

Find the kernel of T.

T�A� � AT.

A3 � 2T: M3,2 → M2,3

E X A M P L E  1 Finding the Kernel of a Linear Transformation

W,V0
T.T�v� � 0.

v

T�0� � 0.

W.V
T: V → W,

6.2

Let be a linear transformation. Then the set of all vectors in that satisfy
is called the kernel of and is denoted by ker�T�.TT�v� � 0

VvT: V → WDefinition of Kernel of a

Linear Transformation
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S O L U T I O N For this linear transformation, the zero matrix is clearly the only matrix in whose
transpose is the zero matrix in 

Zero Matrix in Zero Matrix in

So, the kernel of consists of a single element: the zero matrix in 

(a) The kernel of the zero transformation consists of all of because 
for every in That is,

(b) The kernel of the identity transformation consists of the single element .
That is,

Find the kernel of the projection represented by

S O L U T I O N This linear transformation projects the vector in to the vector in the 
-plane. The kernel consists of all vectors lying on the -axis. That is,

is a real number (See Figure 6.4.)

Figure 6.4

x y

(0, 0, 0) 

z

(0, 0, z)

(x, y, 0) 
T (x, y, z) = 

The kernel of T is the set
of all vectors on the z-axis.

�.ker�T� � ��0, 0, z�: z

zxy
�x, y, 0�R3�x, y, z�

T�x, y, z� � �x, y, 0�.

T: R3 → R3

E X A M P L E  3 Finding the Kernel of a Linear Transformation

ker�T� � �0�.
0T: V → V

ker�T� � V.V.v
T�v� � 0VT: V → W

E X A M P L E  2 The Kernels of the Zero and Identity Transformations

M3,2.T

0 � �
0

0

0

0

0

0
� 0 � �0

0

0

0

0

0�

M2,3M3,2

M2,3.
M3,23 � 2
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Finding the kernels of the linear transformations in Examples 1, 2, and 3 was fairly easy.
Generally, the kernel of a linear transformation is not so obvious, and finding it requires a
little work, as illustrated in the next two examples.

Find the kernel of the linear transformation represented by

S O L U T I O N To find you need to find all in such that

This leads to the homogeneous system

which has only the trivial solution So, you have

Find the kernel of the linear transformation defined by where

S O L U T I O N The kernel of is the set of all in such that 

From this equation you can write the homogeneous system

Writing the augmented matrix of this system in reduced row-echelon form produces

Using the parameter produces the family of solutions

�
x1

x2

x3
� � �

t
�t

t� � t�
1

�1
1�.

t � x3

x1

x2

�

�

x3

�x3.
�1

0
0
1

�1
1

0
0�

x1

�x1

�

�

x2

2x2

�

�

2x3

3x3

�

�

0

0 .� 1
�1

�1
2

�2
3� �

x1

x2

x3
� � �0

0�

T�x1, x2, x3� � �0, 0�.

R3x � �x1, x2, x3�T

A � � 1
�1

�1
2

�2
3�.

T�x� � Ax,T: R3 → R2

E X A M P L E  5 Finding the Kernel of a Linear Transformation

ker�T� � ��0, 0�� � �0�.

�x1, x2� � �0, 0�.

x1

�x1

� 2x2

0

�

�

�

0

0

0,

T�x1, x2� � �x1 � 2x2, 0, �x1� � �0, 0, 0�.

R2x � �x1, x2�ker�T�,

T�x1, x2� � �x1 � 2x2, 0, �x1�.

T: R2 → R3

E X A M P L E  4 Finding the Kernel of a Linear Transformation
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So, the kernel of is represented by

Note that in Example 5 the kernel of contains an infinite number of vectors. Of course,
the zero vector is in but the kernel also contains such nonzero vectors as 
and as shown in Figure 6.5. Figure 6.5 shows that this particular kernel is a line
passing through the origin, which implies that it is a subspace of In Theorem 6.3 you
will now see that the kernel of every linear transformation is a subspace of 

P R O O F From Theorem 6.1 you know that is a nonempty subset of So, by Theorem 4.5, you 
can show that is a subspace of by showing that it is closed under vector addition
and scalar multiplication. To do so, let and be vectors in the kernel of Then

which implies that is in the kernel. Moreover, if is any scalar, then

which implies that is in the kernel.

The next example shows how to find a basis for the kernel of a transformation defined
by a matrix.

Let be defined by where is in and

Find a basis for as a subspace of R5.ker�T�

A � �
1

2

�1

0

2

1

0

0

0

3

�2

0

1

1

0

2

�1

0

1

8
�.

R5xT�x� � Ax,T: R5 → R4

E X A M P L E  6 Finding a Basis for the Kernel

cu

� 0,

� c0

T�cu� � cT�u�

cu � v

� 0,

� 0 � 0

T�u � v� � T�u� � T�v�

T.vu
Vker�T�

V.ker�T�

V.T: V → W
R3.

�2, �2, 2�,
�1, �1, 1�ker�T�,

T

� span��1, �1, 1��.

ker�T� � �t�1, �1, 1�: t is a real number�

T

Figure 6.5

y

x

1

1
2

3

2

3

z

2 3 −2

(2, −2, 2) 

(1, −1, 1) 

Kernel:
t (1, −1, 1)

The kernel of a linear transformation is a subspace of the domain V.T: V → W
THEOREM 6.3

The Kernel Is a 

Subspace of V

R E M A R K : As a result of
Theorem 6.3, the kernel of is
sometimes called the nullspace
of T.

T



What is the rank of the matrix A
in Example 6? Formulate a 
conjecture relating the dimension
of the kernel, the rank, and the
number of columns of A. Verify
your conjecture for the matrix in
Example 5.
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S O L U T I O N Using the procedure shown in Example 5, reduce the augmented matrix to echelon
form as follows.

Letting and you have

So one basis for the kernel of is

In the solution of Example 6, a basis for the kernel of was found by solving the 
homogeneous system represented by This procedure is a familiar one—it is the
same procedure used to find the solution space of In other words, the kernel of 
is the nullspace of the matrix as shown in the following corollary to Theorem 6.3.

The Range of a Linear Transformation

The kernel is one of two critical subspaces associated with a linear transformation. The
second is the range of denoted by range Recall from Section 6.1 that the range 
of is the set of all vectors in that are images of vectors in That is, 
range

P R O O F The range of is nonempty because implies that the range contains the zero 
vector. To show that it is closed under vector addition, let and be vectors in the
range of Because and are in it follows that is also in So, the sum

is in the range of T.T�u� � T�v� � T�u � v�
V.u � vV,vuT.

T�v�T�u�
T�0� � 0T

�T� � �T�v�: v is in V�.
V.WwT: V → W

�T�.T,

A,
TAx � 0.

Ax � 0.
T

�1, 2, 0, �4, 1��.B � ���2, 1, 1, 0, 0�,

T

x � �
x1

x2

x3

x4

x5

� � �
�2s

s
s

0s
0s

�

�

�

�

�

t
2t
0t
4t
t
� � s�

�2
1
1
0
0
� � t�

1
2
0

�4
1
�.

x5 � t,x3 � s

x1 � �2x3 � x5

x2 � x3 � 2x5

x4 � � 4x5
�
1

0

0

0

0

1

0

0

2

�1

0

0

0

0

1

0

�1

�2

4

0

0

0

0

0
�

�A � 0�

Discovery

Let be the linear transformation given by Then the kernel of is
equal to the solution space of Ax � 0.

TT�x� � Ax.T: Rn → RmCOROLLARY TO 
THEOREM 6.3

The range of a linear transformation is a subspace of W.T: V → W
THEOREM 6.4

The Range of T
Is a Subspace of W
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To show closure under scalar multiplication, let be a vector in the range of and
let be a scalar. Because is in it follows that is also in So, the scalar multiple

is in the range of 

Note that the kernel and range of a linear transformation are subspaces of 
and respectively, as illustrated in Figure 6.6.
To find a basis for the range of a linear transformation defined by observe

that the range consists of all vectors such that the system is consistent. By writ-
ing the system

in the form

you can see that is in the range of if and only if is a linear combination of the column 
vectors of So the column space of the matrix is the same as the range of

In Example 4 in Section 4.6, you saw two procedures for finding a basis for the column
space of a matrix. In the next example, the second procedure from Example 4 in Section
4.6 will be used to find a basis for the range of a linear transformation defined by a matrix.

For the linear transformation from Example 6, find a basis for the range of 

S O L U T I O N The echelon form of was calculated in Example 6.

�
1

0

0

0

0

1

0

0

2

�1

0

0

0

0

1

0

�1

�2

4

0
�⇒A � �

1

2

�1

0

2

1

0

0

0

3

�2

0

1

1

0

2

�1

0

1

8
�

A

T.R5 → R4

E X A M P L E  7 Finding a Basis for the Range of a Linear Transformation

T.AA.
bTb

Ax � x1�
a11

a21

.

.

.

am1

� � x2�
a12

a22

.

.

.

am2

� � . . . � xn�
a1n

a2n

.

.

.

amn

� � �
b1

b2

.

.

.

bm

� � b

�
a11

a21.
.
.

am1

a12

a22.
.
.

am2

. . .

. . .

. . .

a1n

a2n.
.
.

amn

� �
x1

x2.
.
.

xn

� � �
b1

b2.
.
.

bm

�
Ax � bb

T�x� � Ax,
W,V

T: V → W

T.cT�u� � T�cu�
V.cuV,uc

TT�u�

Let be the linear transformation given by Then the column space
of is equal to the range of T.A

T�x� � Ax.T: Rn → RmCOROLLARY TO 
THEOREM 6.4

Figure 6.6

Range
T

0 W

V

KernelDomain
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Let be a linear transformation. The dimension of the kernel of is called the
nullity of and is denoted by nullity The dimension of the range of is called the
rank of and is denoted by rank�T�.T

T�T�.T
TT: V → WDefinition of Rank 

and Nullity of a 

Linear Transformation

Because the leading 1’s appear in columns 1, 2, and 4 of the reduced matrix on the right,
the corresponding column vectors of form a basis for the column space of One basis
for the range of is

The following definition gives the dimensions of the kernel and range of a linear 
transformation.

R E M A R K : If is provided by a matrix then the rank of is equal to the rank of as 
defined in Section 4.6.

In Examples 6 and 7, the nullity and rank of are related to the dimension of the domain
as follows.

This relationship is true for any linear transformation from a finite-dimensional vector
space, as stated in the next theorem.

P R O O F The proof provided here covers the case in which is represented by an matrix The
general case will follow in the next section, where you will see that any linear transforma-
tion from an -dimensional space to an -dimensional space can be represented by a matrix.
To prove this theorem, assume that the matrix has a rank of Then you have

From Theorem 4.17, however, you know that

nullity�T� � dim�kernel of T� � dim�solution space� � n � r.

rank�T� � dim�range of T� � dim�column space� � rank�A� � r.

r.A
mn

A.m � nT

rank�T � � nullity�T� � 3 � 2 � 5 � dimension of domain

T

A,TA,T

B � ��1, 2, �1, 0�, �2, 1, 0, 0�, �1, 1, 0, 2��.

T
A.A

Let be a linear transformation from an -dimensional vector space into a
vector space Then the sum of the dimensions of the range and kernel is equal to the
dimension of the domain. That is,

or

dim�range� � dim�kernel� � dim�domain�.

rank�T� � nullity�T� � n

W.
VnT: V → WTHEOREM 6.5

Sum of Rank 

and Nullity
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So, it follows that

Find the rank and nullity of the linear transformation defined by the matrix

S O L U T I O N Because is in row-echelon form and has two nonzero rows, it has a rank of 2. So, the rank
of is 2, and the nullity is 

R E M A R K : One way to visualize the relationship between the rank and the nullity of a
linear transformation provided by a matrix is to observe that the rank is determined by the
number of leading 1’s, and the nullity by the number of free variables (columns without
leading 1’s). Their sum must be the total number of columns of the matrix, which is the 
dimension of the domain. In Example 8, the first two columns have leading 1’s, indicating
that the rank is 2. The third column corresponds to a free variable, indicating that the 
nullity is 1.

Let be a linear transformation.

(a) Find the dimension of the kernel of if the dimension of the range is 2.
(b) Find the rank of if the nullity of is 4.
(c) Find the rank of if 

S O L U T I O N (a) By Theorem 6.5, with you have

(b) Again by Theorem 6.5, you have

(c) In this case, the nullity of is 0. So

rank�T� � n � nullity�T� � 5 � 0 � 5.

T

rank�T� � n � nullity�T� � 5 � 4 � 1.

dim�kernel� � n � dim�range� � 5 � 2 � 3.

n � 5,

ker�T� � �0�.T
TT
T

T: R5 → R7

E X A M P L E  9 Finding the Rank and Nullity of a Linear Transformation

dim�domain� � rank � 3 � 2 � 1.T
A

A � �
1

0

0

0

1

0

�2

1

0
�.

T: R3 → R3

E X A M P L E  8 Finding the Rank and Nullity of a Linear Transformation

rank�T� � nullity�T� � r � �n � r� � n.
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One-to-One and Onto Linear Transformations

This section began with a question: How many vectors in the domain of a linear transfor-
mation are mapped to the zero vector? Theorem 6.6 (below) shows that if the zero vector
is the only vector such that then is one-to-one. A function is called
one-to-one if the preimage of every in the range consists of a single vector, as shown 
in Figure 6.7. This is equivalent to saying that is one-to-one if and only if, for all and

in implies 

Figure 6.7

P R O O F Suppose is one-to-one. Then can have only one solution: In that case,
Conversely, suppose and Because is a linear

transformation, it follows that

This implies that the vector lies in the kernel of and must equal 0. So,
and and you can conclude that is one-to-one.

(a) The linear transformation represented by is one-to-one 
because its kernel consists of only the zero matrix.

(b) The zero transformation is not one-to-one because its kernel is all of R3.T: R3 → R3

m � n
T�A� � ATT: Mm,n → Mn,m

E X A M P L E  1 0 One-to-One and Not One-to-One Linear Transformations

Tu � v,
u � v � 0Tu � v

T�u � v� � T�u� � T�v� � 0.

TT�u� � T�v�.ker�T� � �0�ker�T� � �0�.
v � 0.T�v� � 0T

T

V

W

Not one-to-one 

T

V

W

One-to-one

u � v.T�u� � T�v�V,v
uT

w
T: V → WTT�v� � 0,v

Let be a linear transformation. Then is one-to-one if and only if ker�T� � �0�.TT: V → W
THEOREM 6.6

One-to-One Linear

Transformations
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A function is said to be onto if every element in has a preimage in In
other words, is onto when is equal to the range of 

For vector spaces of equal dimensions, you can combine the results of Theorems 6.5,
6.6, and 6.7 to obtain the next theorem relating the concepts of one-to-one and onto.

P R O O F If is one-to-one, then by Theorem 6.6 and In that case,
Theorem 6.5 produces

Consequently, by Theorem 6.7, is onto. Similarly, if is onto, then

which by Theorem 6.5 implies that By Theorem 6.6, is one-to-one.

The next example brings together several concepts related to the kernel and range of a
linear transformation.

The linear transformation is represented by Find the nullity and
rank of and determine whether is one-to-one, onto, or neither.

(a) (b)

(c) (d) A � �
1

0

0

2

1

0

0

1

0
�A � �1

0

2

1

0

�1�

A � �
1

0

0

2

1

0
�A � �

1

0

0

2

1

0

0

1

1
�

TT
T�x� � Ax.T: Rn → Rm

E X A M P L E  1 1 Summarizing Several Results

Tdim�ker�T�� � 0.

dim�range of T� � dim�W� � n,

TT

� dim�W�.
� n

dim�range of T� � n � dim�ker�T��

dim�ker�T�� � 0.ker�T� � �0�,T

T.WWT
V.WT: V → W

Let be a linear transformation, where is finite dimensional. Then is onto if
and only if the rank of is equal to the dimension of W.T

TWT: V → W
THEOREM 6.7

Onto Linear

Transformations

Let be a linear transformation with vector spaces and both of dimension 
Then is one-to-one if and only if it is onto.T

n.WVT: V → W
THEOREM 6.8

One-to-One and Onto 

Linear Transformations
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S O L U T I O N Note that each matrix is already in echelon form, so that its rank can be determined by 
inspection.

Dim(range) Dim(kernel)
Dim(domain) Rank Nullity One-to-One Onto

(a) 3 3 0 Yes Yes
(b) 2 2 0 Yes No
(c) 3 2 1 No Yes
(d) 3 2 1 No No

Isomorphisms of Vector Spaces

This section ends with a very important concept that can be a great aid in your under-
standing of vector spaces. The concept provides a way to think of distinct vector spaces as
being “essentially the same”—at least with respect to the operations of vector addition and
scalar multiplication. For example, the vector spaces and are essentially the same
with respect to their standard operations. Such spaces are said to be isomorphic to each
other. (The Greek word isos means “equal.”)

One way in which isomorphic spaces are “essentially the same” is that they have 
the same dimensions, as stated in the next theorem. In fact, the theorem goes even 
further, stating that if two vector spaces have the same finite dimension, then they must be 
isomorphic.

P R O O F Assume is isomorphic to where has dimension By the definition of isomorphic
spaces, you know there exists a linear transformation that is one-to-one and onto.
Because is one-to-one, it follows that which also implies that

In addition, because is onto, you can conclude that

dim�range� � dim�W� � n.

T

dim�range� � dim�domain� � n.

dim�kernel� � 0,T
T: V → W

n.VW,V

M3,1R3

T: R3 → R3
T: R3 → R2
T: R2 → R3
T: R3 → R3

�T��T�Rm→T: Rn

A linear transformation that is one-to-one and onto is called an isomorphism.
Moreover, if and are vector spaces such that there exists an isomorphism from to

then and are said to be isomorphic to each other.WVW,
VWV

T: V → WDefinition of 

Isomorphism

Two finite-dimensional vector spaces and are isomorphic if and only if they are of
the same dimension.

WV
THEOREM 6.9

Isomorphic Spaces 

and Dimension
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To prove the theorem in the other direction, assume and both have dimension Let
be a basis of and let be a basis of 

Then an arbitrary vector in can be represented as

and you can define a linear transformation as follows.

It can be shown that this linear transformation is both one-to-one and onto. So, and are
isomorphic.

Our study of vector spaces has provided much greater coverage to than to other vector
spaces. This preference for stems from its notational convenience and from the geomet-
ric models available for and Theorem 6.9 tells you that is a perfect model for
every -dimensional vector space. Example 12 lists some vector spaces that are isomorphic
to

The vector spaces listed below are isomorphic to each other.

(a) -space
(b) space of all matrices
(c) space of all matrices
(d) space of all polynomials of degree 3 or less
(e) is a real number subspace of 

Example 12 tells you that the elements in these spaces behave the same way as vectors
even though they are distinct mathematical entities. The convention of using the notation
for an -tuple and an matrix interchangeably is justified.n � 1n

R5���xiV � ��x1, x2, x3, x4, 0�:
P3 �

2 � 2M2, 2 �
4 � 1M4,1 �

R4 � 4

E X A M P L E  1 2 Isomorphic Vector Spaces

R4.
n

RnR3.R2
Rn

Rn

WV

T�v� � c1w1 � c2w2 � . . . � cnwn

T: V → W

v � c1v1 � c2v2 � . . . � cnvn,

V
W.B� � �w1, w2, . . . , wn�V,B � �v1, v2, . . . , vn�

n.WV

ExercisesSECTION 6.2

In Exercises 1–10, find the kernel of the linear transformation.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

In Exercises 11–18, the linear transformation is represented by
Find a basis for (a) the kernel of and (b) the range of 

11. 12.

13. 14. A � �1

0

�2

2

1

1�A � �1

0

�1

1

2

2�

A � � 1

�2

2

�4�A � �1

3

2

4�
T.TT�v� � Av.

T

T�x, y� � �x � y, y � x�T: R2 → R2,

T�x, y� � �x � 2y, y � x�T: R2 → R2,

T�a0 � a1x � a2x2 � a3x
3� � a1 � 2a2x � 3a3x

2

T: P3 → P2,

T�a0 � a1x � a2x2� � a1 � 2a2xT: P2 → P1,

T�a0 � a1x � a2x2� � a0T: P2 → R,

T�a0 � a1x � a2x2 � a3x3� � a0T: P3 → R,

T�x, y, z� � �z, y, x�T: R3 → R3,

T�x, y, z, w� � � y, x, w, z�T: R4 → R4,

T�x, y, z� � �x, 0, z�T: R3 → R3,

T�x, y, z� � �0, 0, 0�T: R3 → R3,
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15. 16.

17.

18.

In Exercises 19–30, the linear transformation is defined by
Find (a) (b) nullity (c) range and 

(d) rank

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29.

30.

In Exercises 31–38, let T: be a linear transformation. Use
the given information to find the nullity of T and give a geometric
description of the kernel and range of T.

31. rank 32. rank

33. rank 34. rank

35. is the counterclockwise rotation of about the -axis:

36. is the reflection through the -coordinate plane:

37. is the projection onto the vector 

38. is the projection onto the -coordinate plane:

In Exercises 39–42, find the nullity of 

39. T: rank 40. T: rank

41. T: rank 42. T: rank

43. Identify the zero element and standard basis for each of the 
isomorphic vector spaces in Example 12.

44. Which vector spaces are isomorphic to 

(a) (b) (c)

(d) (e)

(f) is a real number

45. Calculus Let be represented by What is
the kernel of 

46. Calculus Let be represented by

What is the kernel of 

47. Let be the linear transformation that projects onto

(a) Find the rank and nullity of 
(b) Find a basis for the kernel of 

48. Repeat Exercise 47 for 

In Exercises 49–52, verify that the matrix defines a linear function
that is one-to-one and onto.

49. 50.

51. 52. A � �
1

�1

0

2

2

4

3

4

1
�A � �

1

0

0

0

0

1

0

1

0
�

A � �1

0

0

�1�A � ��1

0

0

1�
T

v � �3, 0, 4�.
T.

T.

v � �2, �1, 1�.
uT: R3 → R3

T ?

T� p� � �1

0

p�x� dx.

T: P2 → R

T ?
T�p� � p�.T: P4 → P3

�xi��x1, x2, x3, 0, x5, x6, x7�:
P5M6,1

C �0, 6�P6M2,3

R6?

�T� � 2P3 → P1,�T� � 0R4 → R4,

�T� � 2R5 → R2,�T� � 2R4 → R2,

T.

T�x, y, z� � �x, y, 0�
xyT

T�x, y, z� �
x � 2y � 2z

9
�1, 2, 2�

v � �1, 2, 2�:T

T�x, y, z� � ��x, y, z�
yzT

T�x, y, z� � 	�2
2

x �
�2
2

y,
�2
2

x �
�2
2

y, z

z45 �T

�T � � 3�T � � 0

�T � � 1�T � � 2

R3 → R3

A � �
3

4

2

�2

3

�3

6

8

4

�1

10

�4

15

�14

20
�

A � �
2

1

3

6

2

1

3

6

�3

1

�5

�2

1

1

0

4

13

�1

14

16
�

A � �
1

0

0

0

0

0

0

0

1
�A � �

4
9

�
4
9
2
9

�
4
9
4
9

�
2
9

2
9

�
2
9
1
9

�
A � �

1
26

�
5

26

�
5
26
25
26
�A � �

9
10
3

10

3
10
1

10
�

A � �1

0

1

0

0

1

0

1�A � �0

4

�2

0

3

11�

A � �
4

0

2

1

0

�3
�A � �

5

1

1

�3

1

�1
�

A � � 3

�9

2

�6�A � ��1

1

1

1�
�T�.

�T�,�T�,ker�T�,T�x� � Ax.
T

A � �
�1

2

2

3

3

1

2

5

2

1

0

1

4

0

0
�

A � �
1

3

�4

�1

2

1

�3

�2

�1

2

�1

1

4

�1

�3

1
�

A � �
1

�1

0

1

2

1
�A � �

1

�1

1

2

�2

1
�
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True or False? In Exercises 53 and 54, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false, provide
an example that shows the statement is not true in all cases or cite an
appropriate statement from the text.

53. (a) The set of all vectors mapped from a vector space to 
another vector space by a linear transformation is
known as the kernel of 

(b) The range of a linear transformation from a vector space 
to a vector space is a subspace of the vector space 

(c) A linear transformation from to is called one-to-one
if and only if for all and in V, implies that

(d) The vector spaces and are isomorphic to each other.

54. (a) The kernel of a linear transformation from a vector space
to a vector space is a subspace of the vector space 

(b) The dimension of a linear transformation from a vector
space to a vector space is called the rank of 

(c) A linear transformation from to is one-to-one if 
the preimage of every in the range consists of a single 
vector 

(d) The vector spaces and are isomorphic to each other.

55. For the transformation represented by 
what can be said about the rank of if (a) and 
(b)

56. Let be represented by Show
that the kernel of is the set of symmetric matrices.

57. Determine a relationship among and such that is
isomorphic to 

58. Guided Proof Let be an invertible matrix. Prove that
the linear transformation represented by

is an isomorphism.

Getting Started: To show that the linear transformation is 
an isomorphism, you need to show that is both onto and 
one-to-one.

(i) Because is a linear transformation with vector spaces
of equal dimension, then by Theorem 6.8, you only need
to show that is one-to-one.

(ii) To show that is one-to-one, you need to determine the 
kernel of and show that it is (Theorem 6.6). Use
the fact that is an invertible matrix and that

(iii) Conclude that is an isomorphism.

59. Let be a linear transformation. Prove that is 
one-to-one if and only if the rank of equals the dimension 
of

60. Let be a linear transformation, and let be a subspace
of Prove that the set is a sub-
space of What is if 

61. Writing Are the vector spaces and exactly the
same? Describe their similarities and differences.

62. Writing Let be a linear transformation. Explain
the differences between the concepts of one-to-one and onto.
What can you say about and if is onto? What can you say
about and if is one-to-one?Tnm

Tnm

T: Rm → Rn

M1,4M2,2,R4,

U � �0�?T�1�U�V.
T �1�U� � �v 	 V: T�v� 	 U�W.

UT: V → W

V.
T

TT: V → W

T

T�A� � AB.
n � nB

�0�T
T

T

T

T

T�A� � AB
T: Mn, n → Mn, n

n � nB

Mj, k.
Mm,nkm, n, j,

n � nT
T�A� � A � AT.T: Mn,n → Mn,n

det�A� � 0?
det�A� � 0T

T�v� � Av,T: Rn → Rn

P1R2

v.
w

WVT

T.WV
T

V.WV
T

M3,1R3

u � v.
T�u� � T�v�vu

WVT

V.W
V

T.
TW
V

Matrices for Linear Transformations

Which representation of is better,

or

The second representation is better than the first for at least three reasons: it is simpler to
write, simpler to read, and more easily adapted for computer use. Later you will see that
matrix representation of linear transformations also has some theoretical advantages. In this
section you will see that for linear transformations involving finite-dimensional vector
spaces, matrix representation is always possible.

T�x� � Ax � �
2

�1

0

1

3

3

�1

�2

4
� �

x1

x2

x3
�?

T�x1, x2, x3� � �2x1 � x2 � x3, �x1 � 3x2 � 2x3, 3x2 � 4x3�

T: R3 → R3

6.3
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The key to representing a linear transformation by a matrix is to determine how
it acts on a basis of Once you know the image of every vector in the basis, you can use
the properties of linear transformations to determine for any in 

For convenience, the first three theorems in this section are stated in terms of linear 
transformations from into relative to the standard bases in and At the end of
the section these results are generalized to include nonstandard bases and general vector
spaces.

Recall that the standard basis for written in column vector notation, is represented by

P R O O F To show that for any in you can write

Because is a linear transformation, you have

� v1T�e1� � v2T�e2� � . . . � vnT�en�.
� T�v1e1� � T�v2e2� � . . . � T�vnen�

T�v� � T�v1e1 � v2e2 � . . . � vnen�

T

v � �
v1

v2.
.
.

vn

� � v1e1 � v2e2 � . . . � vnen.

Rn,vT�v� � Av

B � �e1, e2, . . . , en� � ��
1

0.
.
.
0
�, �

0

1.
.
.
0
�, . . . , �

0

0.
.
.
1
��.

Rn,

Rm.RnRm,Rn

V.vT�v�
V.

T: V → W

Let be a linear transformation such that 

Then the matrix whose columns correspond to 

is such that for every in is called the standard matrix for T.ARn.vT�v� � Av

A � �
a11

a21.
.
.

am1

a12

a22.
.
.

am2

. . .

. . .

 . . .

a1n

a2n.
.
.

amn

�,

T�ei�,nm � n

T�e1� � �
a11

a21.
.
.

am1

�, T�e2� � �
a12

a22.
.
.

am2

�, . . . , T�en� � �
a1n

a2n.
.
.

amn

�.

T: Rn → RmTHEOREM 6.10

Standard Matrix for a 

Linear Transformation



Sect ion 6 .3 Matr ices  for  L inear  Transformat ions 389

On the other hand, the matrix product is represented by

So, for each in 

Find the standard matrix for the linear transformation defined by

S O L U T I O N Begin by finding the images of and 

Vector Notation Matrix Notation

By Theorem 6.10, the columns of consist of and and you have

A � �T�e1� � T�e2� � T�e3�� � �1

2

�2

1

0

0�.

T�e3�,T�e1�, T�e2�,A

T�e3� � T	�
0

0

1
�
 � �0

0�T�e3� � T�0, 0, 1� � �0, 0�

T�e2� � T	�
0

1

0
�
 � ��2

 1�T�e2� � T�0, 1, 0� � ��2, 1�

T�e1� � T	�
1

0

0
�
 � �1

2�T�e1� � T�1, 0, 0� � �1, 2�

e3.e1, e2,

T�x, y, z� � �x � 2y, 2x � y�.

T: R3 → R2

E X A M P L E  1 Finding the Standard Matrix for a Linear Transformation

Rn.vT�v� � Av

� v1T�e1� � v2T�e2� � . . . � vnT�en�.

� v1�
a11

a21.
.
.

am1

� � v2�
a12

a22.
.
.

am2

� � . . . � vn�
a1n

a2n.
.
.

amn

�
�

a11v1

a21v1.
.
.

am1v1

�

�

�

a12v2

a22v2.
.
.

am2v2

� . . . �

� . . . �

� . . . �

a1nvn

a2nvn.
.
.

amnvn

�Av � �
a11

a21.
.
.

am1

a12

a22.
.
.

am2

. . .

. . .

. . .

a1n

a2n.
.
.

amn

� �
v1

v2.
.
.

vn

� �

Av
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As a check, note that

which is equivalent to 

A little practice will enable you to determine the standard matrix for a linear transfor-
mation, such as the one in Example 1, by inspection. For instance, the standard matrix for
the linear transformation defined by

is found by using the coefficients of and to form the rows of as follows.

The linear transformation is given by projecting each point in onto the -axis,
as shown in Figure 6.8. Find the standard matrix for 

S O L U T I O N This linear transformation is represented by

So, the standard matrix for is

The standard matrix for the zero transformation from into is the zero
matrix, and the standard matrix for the identity transformation from into is 

Composition of Linear Transformations

The composition, of with is defined by

where is a vector in This composition is denoted by

T � T2 � T1.

Rn.v

T�v� � T2�T1�v��,

T2: Rm → RpT1: Rn → RmT,

In.RnRn
m � nRmRn

� �1
0

0
0�.

A � �T�1, 0� � T�0, 1��

T

T�x, y� � �x, 0�.

T.
xR2T: R2 → R2

E X A M P L E  2 Finding the Standard Matrix for a Linear Transformation

A � �
1

2

4

�2

0

1

5

3

�2
�

A,x3x1, x2,

T�x1, x2, x3� � �x1 � 2x2 � 5x3, 2x1 � 3x3, 4x1 � x2 � 2x3�

T�x, y, z� � �x � 2y, 2x � y�.

A�
x

y

z
� � �1

2

�2

1

0

0� �
x

y

z
� � � x � 2y

2x � y�,

4x1 � 1x2 � 2x3

2x1 � 0x2 � 3x3

1x1 � 2x2 � 5x3

Figure 6.8

x

y

Projection onto the x -axis
(x, 0) 

(x, y)

T(x, y) = (x, 0) 
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The domain of is defined as the domain of Moreover, the composition is not 
defined unless the range of lies within the domain of as shown in Figure 6.9.

Figure 6.9

The next theorem emphasizes the usefulness of matrices for representing linear transfor-
mations. This theorem not only states that the composition of two linear transformations is
a linear transformation, but also says that the standard matrix for the composition is the 
product of the standard matrices for the two original linear transformations.

P R O O F To show that is a linear transformation, let and be vectors in and let be any scalar. 
Then, because and are linear transformations, you can write

Now, to show that is the standard matrix for use the associative property of matrix 
multiplication to write

T�v� � T2�T1�v�� � T2�A1v� � A2�A1v� � �A2A1�v.

T,A2 A1

� cT2�T1�v�� � cT�v�.
� T2�cT1�v��

T�cv� � T2�T1�cv��

� T2�T1�u�� � T2�T1�v�� � T�u� � T�v�
� T2�T1�u� � T1�v��

T�u � v� � T2�T1�u � v��

T2T1

cRnvuT

v

u

w

T

Composition of Transformations 

Rm

Rp

Rn T1

T2

T2,T1

T1.T

Let and be linear transformations with standard matrices 
and The composition defined by is a linear 

transformation. Moreover, the standard matrix for is given by the matrix product

A � A2 A1.

TA
T�v� � T2�T1�v��,T: Rn → Rp,A2.A1

T2: Rm → RpT1: Rn → RmTHEOREM 6.11

Composition of 

Linear Transformations

R E M A R K : Theorem 6.11 can
be generalized to cover the 
composition of linear transfor-
mations. That is, if the standard
matrices of are

then the stan-
dard matrix for the composition 

is represented by 

A � AnAn�1
.  .  . A2 A1.

T

A1, A2, .  .  . , An,
T1, T2, .  .  . , Tn

n
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Because matrix multiplication is not commutative, order is important when the compo-
sitions of linear transformations are formed. In general, the composition is not the
same as as demonstrated in the next example.

Let and be linear transformations from into such that

and

Find the standard matrices for the compositions and 

S O L U T I O N The standard matrices for and are

and

By Theorem 6.11, the standard matrix for is

and the standard matrix for is

Another benefit of matrix representation is that it can represent the inverse of a linear
transformation. Before seeing how this works, consider the next definition.

Not every linear transformation has an inverse. If the transformation is invertible,
however, then the inverse is unique and is denoted by 

Just as the inverse of a function of a real variable can be thought of as undoing what the
function did, the inverse of a linear transformation can be thought of as undoing the map-
ping done by For instance, if is a linear transformation from onto such that

T�1, 4, �5� � �2, 3, 1�

R3R3TT.
T

T1
�1.

T1

A� � A1A2 � �
2

0

1

1

0

0

0

0

1
� �

1

0

0

�1

0

1

0

1

0
� � �

2

0

1

�2

0

0

1

0

0
�.

T�

A � A2A1 � �
1

0

0

�1

0

1

0

1

0
� �

2

0

1

1

0

0

0

0

1
� � �

2

1

0

1

0

0

0

1

0
�,

T

A2 � �
1

0

0

�1

0

1

0

1

0
�.A1 � �

2

0

1

1

0

0

0

0

1
�

T2T1

T� � T1 � T2.T � T2 � T1

T2�x, y, z� � �x � y, z, y�.T1�x, y, z� � �2x � y, 0, x � z�

R3R3T2T1

E X A M P L E  3 The Standard Matrix for a Composition

T1 � T2,
T2 � T1

If and are linear transformations such that for every in 

and

then is called the inverse of and is said to be invertible.T1T1,T2

T1�T2�v�� � v,T2�T1�v�� � v

RnvT2: Rn → RnT1: Rn → RnDefinition of Inverse 

Linear Transformation
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and if exists, then maps back to its preimage under That is,

The next theorem states that a linear transformation is invertible if and only if it is an 
isomorphism (one-to-one and onto). You are asked to prove this theorem in Exercise 78.

R E M A R K : Several other conditions are equivalent to the three given in Theorem 6.12; see
the summary of equivalent conditions from Section 4.6.

The linear transformation is defined by

Show that is invertible, and find its inverse.

S O L U T I O N The standard matrix for is

Using the techniques for matrix inversion (see Section 2.3), you can find that is invertible
and its inverse is

So, is invertible and its standard matrix is A�1.T

A�1 � �
�1

�1

6

1

0

�2

0

1

�3
�.

A

A � �
2

3

2

3

3

4

1

1

1
�.

T

T

T�x1, x2, x3� � �2x1 � 3x2 � x3, 3x1 � 3x2 � x3, 2x1 � 4x2 � x3�.

T: R3 → R3

E X A M P L E  4 Finding the Inverse of a Linear Transformation

T �1�2, 3, 1� � �1, 4, �5�.

T.�2, 3, 1�T �1T�1

Let be a linear transformation with standard matrix Then the following 
conditions are equivalent.

1. is invertible.
2. is an isomorphism.
3. is invertible.
And, if is invertible with standard matrix then the standard matrix for is A�1.T�1A,T

A
T
T

A.T: Rn → RnTHEOREM 6.12

Existence of an 

Inverse Transformation
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Using the standard matrix for the inverse, you can find the rule for by computing
the image of an arbitrary vector 

In other words,

Nonstandard Bases and General Vector Spaces

You will now consider the more general problem of finding a matrix for a linear 
transformation where and are ordered bases for and respectively.
Recall that the coordinate matrix of relative to is denoted by In order to represent
the linear transformation must be multiplied by a coordinate matrix relative to The
result of the multiplication will be a coordinate matrix relative to That is,

is called the matrix of relative to the bases and
To find the matrix you will use a procedure similar to the one used to find the 

standard matrix for That is, the images of the vectors in are written as coordinate 
matrices relative to the basis These coordinate matrices form the columns of A.B�.

BT.
A,

B�.BTA

�T�v��B� � A�v�B.

B�.
B.AT,

�v�B.Bv
W,VB�BT: V → W,

T �1�x1, x2, x3� � ��x1 � x2, �x1 � x3, 6x1 � 2x2 � 3x3�.

A�1v � �
�1

�1

6

1

0

�2

0

1

�3
� �

x1

x2

x3
� � �

�x1

�x1

6x1

� x2

� 2x2

� x3

� 3x3
�

v � �x1, x2, x3�.
T �1

Let and be finite-dimensional vector spaces with bases and respectively, where

If is a linear transformation such that

then the matrix whose columns correspond to 

is such that for every in V.v�T�v��B� � A�v�B

A � �
a11

a21.
.
.

am1

a12

a22.
.
.

am2

. . .

. . .

. . .

a1n

a2n.
.
.

amn

�,

�T�vi��B� ,nm � n

�T�v1��B� � �
a11

a21
.
.
.

am1

�, �T�v2��B� � �
a12

a22
.
.
.

am2

�, . . . , �T�vn��B� � �
a1n

a2n
.
.
.

amn

�,

T: V → W

B � �v1, v2, .  .  . , vn�.

B�,BWVTransformation Matrix for

Nonstandard Bases



Sect ion 6 .3 Matr ices  for  L inear  Transformat ions 395

Let be a linear transformation defined by

Find the matrix for relative to the bases

and

S O L U T I O N By the definition of you have

The coordinate matrices for and relative to are

and

The matrix for relative to and is formed by using these coordinate matrices as
columns to produce

For the linear transformation from Example 5, use the matrix to find 
where

S O L U T I O N Using the basis you find

which implies

So, is

Finally, because it follows that

T�v� � 3�1, 0� � 3�0, 1� � �3, 3�.

B� � ��1, 0�, �0, 1��,

A�v�B � �3

0

0

�3� �
1

�1� � �3

3� � �T�v��B� .

�T�v��B�

�v�B � � 1

�1�.

v � �2, 1� � 1�1, 2� � 1��1, 1�,

B � ��1, 2�, ��1, 1��,

v � �2, 1�.
T�v�,AT: R2 → R2

E X A M P L E  6 Using a Matrix to Represent a Linear Transformation

A � �3

0

0

�3�.

B�BT

�T�v2��B� � � 0

�3�.�T�v1��B� � �3

0�
B�T�v2�T�v1�

T�v2� � T��1, 1� � �0, �3� � 0w1 � 3w2.

T�v1� � T�1, 2� � �3, 0� � 3w1 � 0w2

T,

B� � ��1, 0�, �0, 1��.B � ��1, 2�, ��1, 1��
w2w1v2v1

T

T�x1, x2� � �x1 � x2, 2x1 � x2�.

T: R2 → R2

E X A M P L E  5 Finding a Matrix Relative to Nonstandard Bases
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You can check this result by directly calculating using the definition of from
Example 5:

In the special case where and the matrix is called the matrix of 
relative to the basis In such cases the matrix of the identity transformation is simply 
To see this, let Because the identity transformation maps each to
itself, you have

and it follows that 
In the next example you will construct a matrix representing the differential operator 

discussed in Example 10 in Section 6.1.

Let be the differential operator that maps a quadratic polynomial onto its 
derivative Find the matrix for using the bases

and

S O L U T I O N The derivatives of the basis vectors are

So, the coordinate matrices relative to are

and the matrix for is

Note that this matrix does produce the derivative of a quadratic polynomial 

Ap � �0

0

1

0

0

2� �
a

b

c
� � � b

2c� ⇒  b � 2cx � Dx�a � bx � cx2�

a � bx � cx2.
p�x� �

A � �0

0

1

0

0

2�.

Dx

�Dx�1��B� � �0

0�, �Dx�x��B� � �1

0�, �Dx�x2��B� � �0

2�,

B�

Dx�x 2� � 2x � 0�1� � 2�x�.
Dx�x� �  1  � 1�1� � 0�x�
Dx�1� �  0  � 0�1� � 0�x�

B� � �1, x�.B � �1, x, x2�

Dxp�.
pDx: P2 → P1

E X A M P L E  7 A Matrix for the Differential Operator (Calculus)

A � In.

�T�v1��B � �
1

0
.
.
.
0
�, �T�v2��B � �

0

1
.
.
.
0
�, . . . , �T�vn��B � �

0

0
.
.
.
1
�,

viB � �v1, v2, .  .  . , vn�.
In.B.
TAB � B�,V � W

T�2, 1� � �2 � 1, 2�2� � 1� � �3, 3�.

TT�v�
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ExercisesSECTION 6.3

In Exercises 1–10, find the standard matrix for the linear transfor-
mation

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

In Exercises 11–16, use the standard matrix for the linear transfor-
mation to find the image of the vector 

11.

12.

13.

14.

15.

16.

In Exercises 17–34, (a) find the standard matrix for the linear
transformation (b) use to find the image of the vector and
(c) sketch the graph of and its image.

17. is the reflection through the origin in 

18. is the reflection in the line in 

19. is the reflection in the -axis in 

20. is the reflection in the -axis in 

21. is the counterclockwise rotation of in 

22. is the counterclockwise rotation of in 

23. is the clockwise rotation ( is negative) of in 

24. is the clockwise rotation ( is negative) of in 

25. is the reflection through the -coordinate plane in

26. is the reflection through the -coordinate plane in

27. is the reflection through the -coordinate plane in

28. is the counterclockwise rotation of in 

29. is the counterclockwise rotation of in 

30. is the counterclockwise rotation of in 

31. is the projection onto the vector in

32. is the projection onto the vector in 

33. is the reflection through the vector in 
The reflection of a vector through is

34. Repeat Exercise 33 for and

In Exercises 35–38, (a) find the standard matrix for the linear
transformation (b) use to find the image of the vector and (c)
use a graphing utility or computer software program and to verify
your result from part (b).

35.

36.

37.

38.

In Exercises 39–44, find the standard matrices for and

39.

40.

41.

T2: R3 → R 3, T2�x, y, z� � �0, x, 0�
T1: R3 → R 3, T1�x, y, z� � �x, y, z�
T2: R2 → R 2, T2�x, y� � �y, 0�
T1: R2 → R 2, T1�x, y� � �x � 2y, 2x � 3y�
T2: R2 → R 2, T2�x, y� � �2x, x � y�
T1: R2 → R 2, T1�x, y� � �x � 2y, 2x � 3y�

T� � T1 � T2.
T � T2 � T1

v � �0, 1, �1, 1�
T�x1, x2, x3, x4� � �x1 � 2x2, x2 � x1,  2x3 � x4, x1�,
v � �1, 0, 1, �1�
T�x1, x2, x3, x4� � �x1 � x2, x3, x1 � 2x2 � x4, x4�,
v � �2, �1, �1�
T�x, y, z� � �3x � 2y � z, 2x � 3y, y � 4z),

v � �1, 2, �1�
T�x, y, z� � �2x � 3y � z, 3x � 2z, 2x � y � z�,

A
v,AT,

A

v � �5, 0�.w � �4, �2�
T�v� � 2 projwv � v.�

wv�v � �1, 4�.
R 2,w � �3, 1�T

T�v� � projwv, v � �2, �3�.
R 2:w � ��1, 5�T

projwv, v � �1, 4�.
R 2: T�v� �w � �3, 1�T

R 2, v � �1, 2�.180�T

R 2, v � �1, 2�.30�T

R 2, v � �2, 2�.45�T

R 3: T�x, y, z� � �x, �y, z�, v � �1, 2, �1�.
xzT

R 3: T�x, y, z� � ��x, y, z�, v � �2, 3, 4�.
yzT

R 3: T�x, y, z� � �x, y, �z�, v � �3, 2, 2�.
xyT

v � �2, 1�.
R2,30��T

v � �1, 2�.
R2,60��T

R 2, v � �2, 2�.120�T

R 2, v � �4, 4�.135�T

v � �4, �1�.
R 2: T�x, y� � �x, �y�,xT

v � �2, �3�.
R 2: T�x, y� � ��x, y�,yT

v � �3, 4�.
R 2: T�x, y� � �y, x�,y � xT

v � �3, 4�.
��x, �y�,R 2: T�x, y� �T

v
v,AT,

A

v � �1, 2, 3, �2�
T�x1, x2, x3, x4� � �2x1 � x3, 3x2 � 4x4, 4x3 � x1, x2 � x4�,
T�x1, x2, x3, x4� � �x1 � x2, x3 � x4�,  v � �1, �1, 1, �1�
T�x, y� � �x � y, x � 2y, y�, v � �2, �2�
T�x, y� � �x � y, x � y, 2x, 2y�, v � �3, �3�
T�x, y, z� � �2x � y, 3y � z�, v � �0, 1, �1�
T�x, y, z� � �13x � 9y � 4z, 6x � 5y � 3z�, v � �1, �2, 1�

v.T

T�x1, x2, x3� � �0, 0, 0�
T�x1, x2, x3, x4� � �0, 0, 0, 0�
T�x, y, z� � �3x � 2z, 2y � z�
T�x, y, z� � �3z � 2y, 4x � 11z�
T�x, y, z� � �5x � 3y � z, 2z � 4y, 5x � 3y�
T�x, y, z� � �x � y, x � y, z � x�
T�x, y� � �4x � y, 0, 2x � 3y�
T�x, y� � �2x � 3y, x � y, y � 4x�
T�x, y� � �3x � 2y, 2y � x�
T�x, y� � �x � 2y, x � 2y�

T.
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42.

43.

44.

In Exercises 45–56, determine whether the linear transformation is
invertible. If it is, find its inverse.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

In Exercises 57–64, find by using (a) the standard matrix and
(b) the matrix relative to and 

57.

58.

59.

60.

61.

62.

63.

64.

65. Let be given by Find the matrix for 
relative to the bases and 

66. Let be given by Find the matrix for 
relative to the bases and 

67. Calculus Let be a basis of a subspace of
the space of continuous functions, and let be the differential
operator on Find the matrix for relative to the basis 

68. Calculus Repeat Exercise 67 for 

69. Calculus Use the matrix from Exercise 67 to evaluate

70. Calculus Use the matrix from Exercise 68 to evaluate

71. Calculus Let be a basis for and let 
be the linear transformation represented by

(a) Find the matrix for with respect to and the 
standard basis for 

(b) Use to integrate 

True or False? In Exercises 72 and 73, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false, provide
an example that shows the statement is not true in all cases or cite an
appropriate statement from the text.

72. (a) If is a linear transformation to the matrix 
is called the standard matrix such that for every

in

(b) The composition of linear transformations and 
defined by has the standard matrix 
represented by the matrix product 

(c) All linear transformations have a unique inverse T �1.T

A � A2 A1.
AT�v� � T2�T1�v��,

T2,T1T

Rn.v
T�v� � Av

Am � nRm,RnT

p�x� � 6 � 2x � 3x3.A
P4.

BTA

T�xk� � �x

0

tk dt.

T: P3 → P4

P3,B � �1, x, x2, x3�

Dx�5e2x � 3xe2x � x2e2x�.

Dx�3x � 2xe x�.

B � �e2x, xe2x, x2e2x�.

B.DxW.
Dx

WB � �1, x, e x, xe x�

B� � �1, x, x2, x3, x 4�.B � �1, x, x2�
TT� p� � x2 p.T: P2 → P4

B� � �1, x, x2, x3�.B � �1, x, x2�
TT� p� � xp.T: P2 → P3

B � B� � ��4, 1�, �3, 1��
T: R2 → R 2, T�x, y� � �2x � 12y, x � 5y�, v � �10, 5�,
B� � ��1, 1, 1�, �1, 1, 0�, �0, 1, 1��
B � ��2, 0, 1�, �0, 2, 1�, �1, 2, 1��,

v � �4, �5, 10�,
T: R3 → R 3, T�x, y, z� � �x � y � z, 2z � x, 2y � z�,

B� � ��1, 1�, �2, 0��
B � ��1, 0, 0, 1�, �0, 1, 0, 1�, �1, 0, 1, 0�, �1, 1, 0, 0��,

v � �4, �3, 1, 1�,
T: R4 → R 2, T�x1, x2, x3, x4� � �x1 � x2 � x3 � x4, x4 � x1�,
B� � ��1, 0, 0, 1�, �0, 1, 0, 1�, �1, 0, 1, 0�, �1, 1, 0, 0��
B � ��2, 0, 1�, �0, 2, 1�, �1, 2, 1��,

v � �1, �5, 2�,
T: R3 → R 4, T�x, y, z� � �2x, x � y, y � z, x � z�,
B � ��2, 0, 1�, �0, 2, 1�, �1, 2, 1��, B� � ��1, 1�, �2, 0��
T: R3 → R 2, T�x, y, z� � �2x � z, y � 2x�, v � �0, �5, 7�,
B � ��1, 1, 1�, �1, 1, 0�, �0, 1, 1��, B� � ��1, 2�, �1, 1��
T: R3 → R 2, T�x, y, z� � �x � y, y � z�, v � �1, 2, �3�,
B � ��1, 2�, �1, 1��, B� � ��1, 1, 1�, �1, 1, 0�, �0, 1, 1��
T: R2 → R 3, T�x, y� � �x � y, 0, x � y�, v � ��3, 2�,
B � ��1, �1�, �0, 1��, B� � ��1, 1, 0�, �0, 1, 1�, �1, 0, 1��
T: R2 → R 3, T�x, y� � �x � y, x, y�, v � �5, 4�,

B�.B
T�v�

T�x1, x2, x3, x4� � �x4, x3, x2, x1�
T�x1, x2, x3, x4� � �x1 � 2x2, x2, x3 � x4, x3�
T�x, y� � ��2x, 2y�
T�x, y� � �5x, 5y�
T�x, y� � �x � 4y, x � 4y�
T�x, y� � �x � y, 3x � 3y�
T�x, y� � �0, �y�
T�x, y� � �2x, 0�
T�x1, x2, x3� � �x1 � x2, x2 � x3, x1 � x3�
T�x1, x2, x3� � �x1, x1 � x2, x1 � x2 � x3�
T�x, y� � �x � 2y, x � 2y�
T�x, y� � �x � y, x � y�

T2: R3 → R 2, T2�x, y, z� � �y, z�
T1: R2 → R 3, T1�x, y� � �x, y, y�
T2: R3 → R 2, T2�x, y, z� � �x � 3y, z � 3x�
T1: R2 → R 3, T1�x, y� � ��x � 2y, x � y, x � y�
T2: R3 → R 3, T2�x, y, z� � �y � z, x � z, 2y � 2z�
T1: R3 → R 3, T1�x, y, z� � �x � 2y, y � z, �2x � y � 2z�
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73. (a) The composition T of linear transformations and 
represented by is defined if the range of

lies within the domain of 

(b) In general, the compositions and have the
same standard matrix 

(c) If is an invertible linear transformation with
standard matrix then has the same standard matrix 

74. Let be a linear transformation such that for in 
Find the standard matrix for 

75. Let be represented by Find the
matrix for relative to the standard bases for and 

76. Show that the linear transformation given in Exercise 75 is an
isomorphism, and find the matrix for the inverse of 

77. Guided Proof Let and be one-to-one 
linear transformations. Prove that the composition 
is one-to-one and that exists and is equal to 

Getting Started: To show that is one-to-one, you can 
use the definition of a one-to-one transformation and show that

implies For the second statement, you first

need to use Theorems 6.8 and 6.12 to show that is invertible,
and then show that and are
identity transformations.

(i) Let Recall that 
for all vectors Now use the fact that and are
one-to-one to conclude that 

(ii) Use Theorems 6.8 and 6.12 to show that and 
are all invertible transformations. So and 
exist.

(iii) Form the composition It is a linear
transformation from to To show that it is the
inverse of you need to determine whether the compo-
sition of with on both sides gives an identity 
transformation.

78. Prove Theorem 6.12.

79. Writing Is it always preferable to use the standard basis for
Discuss the advantages and disadvantages of using different

bases.

80. Writing Look back at Theorem 4.19 and rephrase it in terms
of what you have learned in this chapter.

R n?

T�T
T,

V.V
T� � T1

�1
� T2

�1.

T2
�1T1

�1
TT2,T1,

u � v.
T1T2v.

�T2 � T1��v� � T2�T1�v��T�u� � T�v�.

�T1
�1

� T2
�1� � TT � �T1

�1
� T2

�1�
T

u � v.T�u� � T�v�

T

T1
�1

� T2
�1.T �1

T � T2 � T1

T2: V→VT1: V→V

T.
T

M3,2.M2,3T
T�A� � AT.T: M2,3 → M3,2

T.
R n.vT�v� � kvT

A.T �1A,
T: Rn → Rn

A.
T1 � T2T2 � T1

T2.T1

T�v� � T2�T1�v��,
T2,T1

Transition Matrices and Similarity

In Section 6.3 you saw that the matrix for a linear transformation depends on the
basis of In other words, the matrix for relative to a basis is different from the matrix
for relative to another basis 

A classical problem in linear algebra is this: Is it possible to find a basis such that the
matrix for relative to is diagonal? The solution of this problem is discussed in Chapter
7. This section lays a foundation for solving the problem. You will see how the matrices for
a linear transformation relative to two different bases are related. In this section,
and represent the four square matrices listed below.

1. Matrix for relative to 
2. Matrix for relative to 
3. Transition matrix from to 
4. Transition matrix from to 

Note that in Figure 6.10 there are two ways to get from the coordinate matrix to
the coordinate matrix One way is direct, using the matrix to obtain 

The other way is indirect, using the matrices and to obtain 

P�1AP�v�B� � �T�v��B�.

P�1A,P,

A� �v�B� � �T�v��B�.

A��T�v��B�.
�v�B�

P�1B�:B
PB:B�
A�B�:T
AB:T

P�1
A, A�, P,

BT
B

B�.T
BTV.

T: V → V

6.4
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But by the definition of the matrix of a linear transformation relative to a basis, this implies
that

This relationship is demonstrated in Example 1.

Figure 6.10

Find the matrix for 

relative to the basis 

S O L U T I O N The standard matrix for is

Furthermore, using the techniques of Section 4.7, you can find that the transition matrix
from to the standard basis is

The inverse of this matrix is the transition matrix from to 

The matrix for relative to is

A� � P�1AP � �1

0

�1

1� �
2

�1

�2

3� �
1

0

1

1� � � 3

�1

�2

2�.

B�T

P�1 � �1

0

�1

1�.

B�,B

P � �1

0

1

1�.

B � ��1, 0�, �0, 1��B�

A � � 2

�1

�2

3�.

T

B� � ��1, 0�, �1, 1��.

T�x1, x2� � �2x1 � 2x2, �x1 � 3x2�,

T: R2 → R2,A�

E X A M P L E  1 Finding a Matrix of a Linear Transformation

A

A′

P P−1

V

[ ]v B

[ ]v B′

[ ( )]T v B

[ ( )]T v B′

V

V V
(Basis B )

(Basis B ′ )

A� � P�1AP.
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In Example 1, the basis is the standard basis for In the next example, both and 
are nonstandard bases.

Let

and

be bases for and let

be the matrix for relative to Find the matrix of relative to 

S O L U T I O N In Example 5 in Section 4.7, you found that

and

So, the matrix of relative to is

The diagram in Figure 6.10 should help you to remember the roles of the matrices
and

For the linear transformation from Example 2, find and 
for the vector whose coordinate matrix is

S O L U T I O N To find use the transition matrix from to 

To find multiply by the matrix to obtain

�T�v��B � A�v�B � ��2

�3

7

7� �
�7

�5� � ��21

�14�.

A�v�B�T�v��B,

�v�B � P�v�B� � �3

2

�2

�1� �
�3

�1� � ��7

�5�
B.B�P�v�B,

�v�B� � ��3

�1�.

v
�T�v��B��v�B, �T�v��B,T: R2 → R2

E X A M P L E  3 Using a Matrix for a Linear Transformation

P�1.A, A�, P,

A� � P�1AP � ��1

�2

2

3� �
�2

�3

7

7� �
3

2

�2

�1� � � 2

�1

1

3�.

B�T

P�1 � ��1

�2

2

3�.

P � �3

2

�2

�1�

B�.TA�,B.T: R2 → R2

A � ��2

�3

7

7�
R2,

B� � ���1, 2�, �2, �2��B � ���3, 2�, �4,�2��

E X A M P L E  2 Finding a Matrix for a Linear Transformation

B�BR2.B
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To find multiply by to obtain

or multiply by to obtain

R E M A R K : It is instructive to note that the transformation in Examples 2 and 3 is 
represented by the rule Verify the results of Example 3 by
showing that and 

Similar Matrices

Two square matrices and that are related by an equation are called 
similar matrices, as indicated in the next definition.

If is similar to then it is also true that is similar to as stated in the next 
theorem. So, it makes sense to say simply that and are similar.

P R O O F The first property follows from the fact that To prove the second property, write

where

The proof of the third property is left to you. (See Exercise 23.)

Q � P�1.Q�1AQ � B,

PAP�1 � B

PAP�1 � P�P�1BP�P�1

A � P�1BP

A � InAIn.

A�A
A�,AA,A�

A� � P�1APA�A

T�v� � �7, �14�.v � �1, �4�
T�x, y� � �x �

3
2 y, 2x �  4y�.

T

�T�v��B� � A� �v�B� � � 2

�1

1

3� �
�3

�1� � ��7

0�.

A��v�B�

�T�v��B� � P�1�T�v��B � ��1

�2

2

3� �
�21

�14� � ��7

0�
P�1�T�v��B�T�v��B� ,

For square matrices and of order is said to be similar to if there exists an 
invertible matrix such that A� � P�1AP.P

AA�n,A�ADefinition of 

Similar Matrices

Let and be square matrices of order Then the following properties are true.

1. is similar to 
2. If is similar to then is similar to 
3. If is similar to and is similar to then is similar to C.AC,BBA

A.BB,A
A.A

n.CA, B,THEOREM 6.13

Properties of 

Similar Matrices
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From the definition of similarity, it follows that any two matrices that represent the same
linear transformation with respect to different bases must be similar.

(a) From Example 1, the matrices

and

are similar because where 

(b) From Example 2, the matrices

and

are similar because where 

You have seen that the matrix for a linear transformation depends on the basis
used for This observation leads naturally to the question: What choice of basis will make
the matrix for as simple as possible? Is it always the standard basis? Not necessarily, as
the next example demonstrates.

Suppose

is the matrix for relative to the standard basis. Find the matrix for relative to
the basis

S O L U T I O N The transition matrix from to the standard matrix has columns consisting of the vectors 
in

P � �
1

1

0

1

�1

0

0

0

1
�,

B�,
B�

B� � ��1, 1, 0�, �1, �1, 0�, �0, 0, 1��.

TT: R3 → R3

A � �
1

3

0

3

1

0

0

0

�2
�

E X A M P L E  5 A Comparison of Two Matrices for a Linear Transformation

T
V.

T: V → V

P � �3

2

�2

�1�.A� � P�1AP,

A� � � 2

�1

1

3�A � ��2

�3

7

7�

P � �1

0

1

1�.A� � P�1AP,

A� � � 3

�1

�2

2�A � � 2

�1

�2

3�

E X A M P L E  4 Similar Matrices

T: V → V
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and it follows that

So, the matrix for relative to is

Note that matrix is diagonal.

Diagonal matrices have many computational advantages over nondiagonal ones. For 
instance, for the diagonal matrix

the th power is represented as follows.

A diagonal matrix is its own transpose. Moreover, if all the diagonal elements are nonzero,
then the inverse of a diagonal matrix is the matrix whose main diagonal elements are the
reciprocals of corresponding elements in the original matrix. With such computational 
advantages, it is important to find ways (if possible) to choose a basis for such that the
transformation matrix is diagonal, as it is in Example 5. You will pursue this problem in 
the next chapter.
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ExercisesSECTION 6.4

In Exercises 1–8, (a) find the matrix for relative to the basis
and (b) show that is similar to the standard matrix for 

1.

2.

3.

4.

5.

6.

7.

8.

9. Let and be
bases for and let

be the matrix for relative to 

(a) Find the transition matrix from to 
(b) Use the matrices and to find and 

where

(c) Find (the matrix for relative to ) and 
(d) Find in two ways: first as and then

as

10. Repeat Exercise 9 for 
and

(Use matrix provided in Exercise 9.)

11. Let and 
be bases for and let

be the matrix for relative to 

(a) Find the transition matrix from to 
(b) Use the matrices and to find and 

where

(c) Find (the matrix for relative to ) and 
(d) Find in two ways: first as and then

as

12. Repeat Exercise 11 for 
and

(Use matrix provided in Exercise 11.)

13. Let and be

bases for and let be the matrix for 

relative to

(a) Find the transition matrix from to 

(b) Use the matrices and to find and where

(c) Find (the matrix for relative to ) and 

(d) Find in two ways: first as and then
as

14. Repeat Exercise 13 for ,

and (Use matrix 

provided in Exercise 13.)

15. Prove that if and are similar, then Is the converse
true?

16. Illustrate the result of Exercise 15 using the matrices

where B � P�1AP.

P�1 � �
�1

0

1

�1

�1

2

2

2

�3
�,P � �

�1

2

1

1

1

1

0

2

1
�,

A � �
1

0

0

0

�2

0

0

0

3
�, B � �

11

10

�18

7

8

�12

10

10

�17
�,

�A� � �B�.BA

A�v�B� � � 1
�4�.B� � ���1, 1�, �1, 2��,

B � ��1, �1�, ��2, 1��

A� ��v��B� .
P�1�T�v��B�T�v��B�

P�1.B�TA�

�v�B� � ��1
4�.

�T�v��B,�v�BPA

B.B�P

B.

T: R2→R2A � �2
0

1
�1�R2,

B� � ���4, 1�, �0, 2��B � ��1, 2�, ��1, �1��

A�v�B� � �
2

1

1
�.

B� � ��1, 1, �1�, �1, �1, 1�, ��1, 1, 1��,
B � ��1, 0, 0�, �0, 1, 0�, �0, 0, 1��,

A� �v�B� .
P�1�T�v��B�T�v��B�

P�1.B�TA�

�v�B� � �
1

0

�1
�.

�T�v��B,�v�BPA
B.B�P

B.T: R3 → R3

A � �
3
2

�
1
2
1
2

�1

2

1

�
1
2
1
2
5
2

�
R 3,�0, 1, 0�, �0, 0, 1��

B� � ��1, 0, 0�,B � ��1, 1, 0�, �1, 0, 1�, �0, 1, 1��

A�v�B� � � 1

�3�.

�0, 1��,
B� � ��1, �1�,B � ��1, 1�, ��2, 3��,

A� �v�B�.
P�1�T�v��B�T�v��B�

P�1.B�TA�

�v�B� � ��1

2�.

�T�v��B,�v�BPA
B.B�P

B.T: R2 → R2

A � �3

0

2

4�
R 2,

B� � ���12, 0�, ��4, 4��B � ��1, 3�, ��2, �2��

B� � ��1, �1, 0�, �0, 0, 1�, �0, 1, �1��
T: R3 → R 3, T�x, y, z� � �x, x � 2y, x � y � 3z�,
B� � ��1, 0, 1�, �0, 2, 2�, �1, 2, 0��

T�x, y, z� � �x � y � 2z, 2x � y � z, x � 2y � z�,T: R3→R 3,

B� � ��1, 1, 0�, �1, 0, 1�, �0, 1, 1��
T: R3 → R 3, T�x, y, z� � �0, 0, 0�,
B� � ��1, 1, 0�, �1, 0, 1�, �0, 1, 1��
T: R3 → R 3, T�x, y, z� � �x, y, z�,
T: R2 → R 2, T�x, y� � �x � 2y, 4x�, B� � ���2, 1�, ��1, 1��
T: R2 → R 2, T�x, y� � �x � y, 4y�, B� � ���4, 1�, �1, �1��

B� � ��1, 2�, �0, 4��T: R2 → R 2, T�x, y� � �2x � y, x � 2y�,
B� � ��1, �2�, �0, 3��T: R2 → R 2, T�x, y� � �2x � y, y � x�,

T.A,A�B�
TA�
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17. Let and be similar matrices.

(a) Prove that and are similar.

(b) Prove that if is nonsingular, then is also nonsingular
and and are similar.

(c) Prove that there exists a matrix such that

18. Use the result of Exercise 17 to find where for
the matrices

19. Determine all matrices that are similar to 

20. Prove that if is idempotent and is similar to then is
idempotent. An matrix is idempotent if 

21. Let be an matrix such that Prove that if is
similar to then 

22. Let Prove that if then 

23. Complete the proof of Theorem 6.13 by proving that if is 
similar to and is similar to then is similar to 

24. Writing Suppose and are similar. Explain why they have
the same rank.

25. Prove that if and are similar, then is similar to 

26. Prove that if and are similar, then is similar to for any
positive integer 

27. Let , where is an invertible matrix. Prove that
the matrix is similar to 

28. Let , where is a diagonal matrix with main 
diagonal entries Prove that

for

29. Writing Let be a basis for the vector
space let be the standard basis, and consider the identity
transformation What can you say about the matrix for

relative to both and What can you say about the matrix
for relative to Relative to 

True or False? In Exercises 30 and 31, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false, provide
an example that shows the statement is not true in all cases or cite an
appropriate statement from the text.

30. (a) The matrix for a linear transformation relative to the basis
is equal to the product where is the transi-

tion matrix from to is the matrix for the linear 
transformation relative to basis and is the transition
matrix from to 

(b) Two matrices that represent the same linear transformation
with respect to different bases are not necessarily

similar.

31. (a) The matrix for a linear transformation relative to the basis
is equal to the product where is the transition

matrix from to B, is the matrix for the linear transfor-
mation relative to basis and is the transition matrix
from to 

(b) The standard basis for will always make the coordinate
matrix for the linear transformation T the simplest matrix
possible.

Rn

B�.B
P�1B�,

A�B�
PPA�P�1,B

A

T: V → V

B.B�
PB,

AB�,B
P�1P�1AP,B�

A�

B� ?B?I
B� ?BI
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n � nCA � CD
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BkAkBA

B 2.A2BA
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C.AC,BB
A

PBP�1x � x .Ax � x ,B � P�1AP.

B 2 � O.A,
BA2 � O.n � nA

A � A2.�An � n�
BA,BA

In.n � n

P � �2
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5

3�, P�1 � � 3

�1

�5

2�.

A � �1

0

0

2�, B � ��4
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7�,

B � P�1APB 4,

B k � P�1AkP.
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B�1A�1
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BTAT
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Applications of Linear Transformations

The Geometry of Linear Transformations in the Plane

This section gives geometric interpretations of linear transformations represented by 
elementary matrices. A summary of the various types of elementary matrices is 
followed by examples in which each type of matrix is examined in more detail.

The transformations defined by the matrices listed below are called reflections. Reflections
have the effect of mapping a point in the -plane to its “mirror image” with respect to one
of the coordinate axes or the line as shown in Figure 6.11.

(a) (b) (c)

Figure 6.11

x

y

(x, y)

(y, x)
x

Reflections in the Plane

y

(x, y)

(x, −y)

x

y

(x, y)(−x, y)

y � x,
xy

E X A M P L E  1 Reflections in the Plane

2 � 2
2 � 2

6.5

Reflection in y-Axis Reflection in x-Axis Reflection in Line

Horizontal Expansion Vertical Expansion 
or Contraction or Contraction

Horizontal Shear Vertical Shear

A � �1

k

0

1�A � �1

0

k

1�

A � �1

0

0

k�A � �k

0

0

1�
�0 < k < 1��0 < k < 1�

�k > 1��k > 1�

A � �0

1

1

0�A � �1

0

0

�1�A � ��1

0

0

1�
y � xElementary Matrices 

for Linear Transformations

in the Plane
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(a) Reflection in the -axis:

(b) Reflection in the -axis:

(c) Reflection in the line :

The transformations defined by the matrices below are called expansions or contractions,
depending on the value of the positive scalar 

(a) Horizontal contractions and expansions:

(b) Vertical contractions and expansions:

Note that in Figures 6.12 and 6.13, the distance the point is moved by a contraction
or an expansion is proportional to its - or -coordinate. For instance, under the transforma-
tion represented by the point would be moved one unit to the right,
but the point would be moved four units to the right.�4, 3�

�1, 3�T�x, y� � �2x, y�,
yx

�x, y�

�1

0

0

k� �
x

y� � � x

ky�
T�x, y� � �x, ky�

�k

0

0

1� �
x

y� � �kx

y�
T�x, y� � �kx, y�

k.

E X A M P L E  2 Expansions and Contractions in the Plane

�0

1

1

0� �
x

y� � �y

x�
T�x, y� � �y, x�

y � x

�1

0

0

�1� �
x

y� � � x

�y�
T�x, y� � �x, �y�

x

��1

0

0

1� �
x

y� � ��x

y�
T�x, y� � ��x, y�

y
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Figure 6.12

Figure 6.13

The third type of linear transformation in the plane corresponding to an elementary matrix
is called a shear, as described in Example 3.

The transformations defined by the following matrices are shears.

(a) The horizontal shear represented by is shown in Figure 6.14.
Under this transformation, points in the upper half-plane are “sheared” to the right by
amounts proportional to their -coordinates. Points in the lower half-plane are “sheared”
to the left by amounts proportional to the absolute values of their -coordinates. Points
on the -axis are unmoved by this transformation.x

y
y

T�x, y� � �x � 2y, y�

�1

k

0

1� �
x

y� � � x

kx � y��1

0

k

1� �
x

y� � �x � ky

y�
T�x, y� � �x, y � kx�T�x, y� � �x � ky, y�

E X A M P L E  3 Shears in the Plane

x

y

(x, y)

(x, ky)

Expansion (k > 1) 

x

y

(x, y)

(x, ky)

Contraction (0 < k < 1) 

x

y

(x, y) (kx, y)

Expansion (k  > 1) 

x

y

(x, y)(kx, y)

Contraction (0 < k < 1)

Figure 6.14
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x y

z

(b) The vertical shear represented by is shown in Figure 6.15. Here,
points in the right half-plane are “sheared” upward by amounts proportional to their 
-coordinates. Points in the left half-plane are “sheared” downward by amounts propor-

tional to the absolute values of their -coordinates. Points on the -axis are unmoved.

Computer Graphics

Linear transformations are useful in computer graphics. In Example 7 in Section 6.1, you
saw how a linear transformation could be used to rotate figures in the plane. Here you will
see how linear transformations can be used to rotate figures in three-dimensional space.

Suppose you want to rotate the point counterclockwise about the -axis through
an angle as shown in Figure 6.16. Letting the coordinates of the rotated point be

you have

Example 4 shows how to use this matrix to rotate a figure in three-dimensional space.

The eight vertices of a rectangular box having sides of lengths 1, 2, and 3 are as follows.

Find the coordinates of the box when it is rotated counterclockwise about the -axis through
each angle.

(a) (b) (c)

S O L U T I O N The original box is shown in Figure 6.17.

(a) The matrix that yields a rotation of is

A � �
cos 60�

sin 60�

0

�sin 60�

cos 60�

0

0
0
1� � �

12
�32

0

��32
12

0

0
0
1�.

60�

� � 120�� � 90�� � 60�

z

V8 � �0, 2, 3�V7 � �1, 2, 3�,V6 � �1, 0, 3�,V5 � �0, 0, 3�,
V4 � �0, 2, 0�,V3 � �1, 2, 0�,V2 � �1, 0, 0�,V1 � �0, 0, 0�,

E X A M P L E  4 Rotation About the z-Axis

�
x�
y�

z�� � �
cos �

sin �

0

�sin �

cos �

0

0
0
1��

x
y
z� � �

x cos � � y sin �
x sin � � y cos �

z �.

�x�, y�, z��,
�,

z�x, y, z�

yx
x

T�x, y� � �x, y � 2x�

Figure 6.17
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Figure 6.15
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Figure 6.16
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(x, y, z) (x ′, y ′, z ′)



Multiplying this matrix by the eight vertices produces the rotated vertices listed below

Original Vertex Rotated Vertex

A computer-generated graph of the rotated box is shown in Figure 6.18(a). Note that in
this graph, line segments representing the sides of the box are drawn between images 
of pairs of vertices connected in the original box. For instance, because and are
connected in the original box, the computer is told to connect the images of and 
in the rotated box.

(b) The matrix that yields a rotation of is

and the graph of the rotated box is shown in Figure 6.18(b).

(c) The matrix that yields a rotation of is

and the graph of the rotated box is shown in Figure 6.18(c).

In Example 4, matrices were used to perform rotations about the -axis. Similarly, you
can use matrices to rotate figures about the - or -axis. All three types of rotations are
summarized as follows.

Rotation About the x-Axis Rotation About the y-Axis Rotation About the z-Axis

In each case the rotation is oriented counterclockwise relative to a person facing the 
negative direction of the indicated axis, as shown in Figure 6.19.

�
cos �

sin �

0

�sin �

cos �

0

0
0
1��

cos �

0
�sin �

0
1
0

sin �

0
cos �

��
1
0
0

0
cos �

sin �

0
�sin �

cos �
�

yx
z

A � �
cos 120�

sin 120�

0

�sin 120�

cos 120�

0

0
0
1� � �

�12
�32

0

��32
�12

0

0
0
1 �,

120�

A � �
cos 90�

sin 90�

0

�sin 90�

cos 90�

0

0
0
1� � �

0
1
0

�1
0
0

0
0
1�,

90�

V2V1

V2V1

��1.73, 1, 3�V8 � �0, 2, 3�
��1.23, 1.87, 3�V7 � �1, 2, 3�

�0.5, 0.87, 3�V6 � �1, 0, 3�
�0, 0, 3�V5 � �0, 0, 3�

��1.73, 1, 0�V4 � �0, 2, 0�
��1.23, 1.87, 0�V3 � �1, 2, 0�

�0.5, 0.87, 0�V2 � �1, 0, 0�
�0, 0, 0�V1 � �0, 0, 0�
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Figure 6.18
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Simulation
Explore this concept further with an
electronic simulation available on
college.hmco.com/pic/larsonELA6e.

Figure 6.21

x

y

z

90° 

120° 

Figure 6.19

(a) The matrix that yields a rotation of about the -axis is

and the graph of the rotated box from Example 4 is shown in Figure 6.20(a) below.

(b) The matrix that yields a rotation of about the -axis is

and the graph of the rotated box from Example 4 is shown in Figure 6.20(b) below.

(a) (b)

Figure 6.20

Rotations about the coordinate axes can be combined to produce any desired view of a
figure. For instance, Figure 6.21 shows the rotation produced by first rotating the box (from
Example 4) about the -axis, then further rotating the box about the -axis.z120�y90�

x y

z

° 90

x y

z

90° 

� �
0
0

�1

  0
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  0

1
0
0�,A � �

cos �

0
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  0
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0
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y90�

� �
1
0
0

   0
   0
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0
�1

0�,A � �
1
0
0

  0
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0
�sin �

cos �
�

x90�

E X A M P L E  5 Rotation About the x-Axis and y-Axis
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ExercisesSECTION 6.5

The Geometry of Linear Transformations 
in the Plane
1. Let be a reflection in the -axis. Find the image of

each vector.

(a) (b) (c)

(d) (e) (f)

2. Let be a reflection in the -axis. Find the image of
each vector.

(a) (b) (c)

(d) (e) (f)

3. Let be a reflection in the line Find the image
of each vector.

(a) (b) (c)

(d) (e) (f)

4. Let be a reflection in the line Find the image
of each vector.

(a) (b) (c)

(d) (e) (f)

5. Let and 

(a) Determine for any

(b) Give a geometric description of T.

�x, y�.T�x, y�
T�0, 1� � �1, 0�.T�1, 0� � �0, 1�

�� f, g��e, �d��0, b�
�a, 0��2, 3���1, 2�

y � �x.T: R2 → R2

� f, �g���c, d��0, b�
�a, 0���1, 3��0, 1�

y � x.T: R2 → R2

� f, g��c, �d��0, b�
�a, 0���4, �1��2, 5�

yT: R2 → R2

� f, �g���c, d��0, b�
�a, 0��2, �1��3, 5�

xT: R2 → R2

The use of computer graphics has become common among designers in many fields. By
simply entering the coordinates that form the outline of an object into a computer, a 
designer can see the object before it is created. As a simple example, the images of the toy
boat shown in Figure 6.22 were created using only 27 points in space. Once the points have
been stored in the computer, the boat can be viewed from any perspective.

Figure 6.22
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6. Let and 

(a) Determine for any 

(b) Give a geometric description of 

In Exercises 7–14, (a) identify the transformation and (b) graphi-
cally represent the transformation for an arbitrary vector in the
plane.

7. 8.

9. 10.

11. 12.

13. 14.

In Exercises 15–22, find all fixed points of the linear transforma-
tion. The vector is a fixed point of if 

15. A reflection in the -axis

16. A reflection in the -axis

17. A reflection in the line 

18. A reflection in the line 

19. A vertical contraction

20. A horizontal expansion

21. A horizontal shear

22. A vertical shear

In Exercises 23–28, sketch the image of the unit square with 
vertices at and under the specified 
transformation.

23. is a reflection in the -axis.

24. is a reflection in the line 

25. is the contraction given by 

26. is the expansion given by 

27. is the shear given by 

28. is the shear given by 

In Exercises 29–34, sketch the image of the rectangle with vertices
at and under the specified transformation.

29. is a reflection in the -axis.

30. is a reflection in the line 

31. is the contraction represented by 

32. is the expansion represented by 

33. is the shear represented by

34. is the shear represented by 

In Exercises 35–38, sketch each of the images with the given 
vertices under the specified transformations.

(a) (b)

35. is the shear represented by 

36. is the shear represented by 

37. is the expansion and contraction represented by 

38. is the expansion and contraction represented by 

39. The linear transformation defined by a diagonal matrix with
positive main diagonal elements is called a magnification. Find
the images of and under the linear transfor-
mation and graphically interpret your result.

40. Repeat Exercise 39 for the linear transformation defined by

In Exercises 41–46, give a geometric description of the linear 
transformation defined by the elementary matrix.

41. 42.

43. 44.

45. 46.

In Exercises 47 and 48, give a geometric description of the linear
transformation defined by the matrix product.

47.

48. A � �0

1

3

0� � �0

1

1

0� �
1

0

0

3�
A � �2

2

0

1� � �2

0

0

1� �
1

2

0

1�

A � ��1

0

0

1�A � �1

0

0

�2�

A � �1

0

3

1�A � �0

1

1

0�

A � �1

2

0

1�A � �2

0

0

1�

A � �3

0

0

3�.

A � �2

0

0

3�
A

�2, 2��1, 0�, �0, 1�,

T�x, y� � �1
2x, 2y�.

T

T�x, y� � �2x, 1
2 y�.

T

T�x, y� � �x, x � y�.T

T�x, y� � �x � y, y�.T

−2
−2

2 4 6 8 

2

4

6

8

(0, 0) (6, 0) 

(0, 6) (6, 6) 

x

y

−2
−2

2 4 6 8 

2

4

6

8
(3, 6) 

(5, 2) 
(1, 2) (6, 0) (0, 0) 

x

y

T�x, y� � �x, y � 2x�.T

T�x, y� � �x � y, y�.T

T�x, y� � �2x, y�.T

T�x, y� � �x, y2�.T

y � x.T

yT

�1, 0��0, 0�, �0, 2�, �1, 2�,

T�x, y� � �x, y � 3x�.T

T�x, y� � �x � 2y, y�.T

T�x, y� � �x, 3y�.T

T�x, y� � �x2, y�.T

y � x.T

xT

�0, 1��1, 1�,�1, 0�,�0, 0�,

y � �x

y � x

x

y

T�v� � v.Tv

T�x, y� � �x, 4x � y�T�x, y� � �x, 2x � y�
T�x, y� � �x � 4y, y�T�x, y� � �x � 3y, y�
T�x, y� � �x, 2y�T�x, y� � �4x, y�
T�x, y� � �x4, y�T�x, y� � �x, y2�

T.

�x, y�.T�x, y�
T�0, 1� � �0, 1�.T�1, 0� � �2, 0�
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Computer Graphics

In Exercises 49–52, find the matrix that will produce the indicated
rotation.

49. about the -axis 50. about the -axis

51. about the -axis 52. about the -axis

In Exercises 53–56, find the image of the vector for the 
indicated rotation.

53. about the -axis 54. about the -axis

55. about the -axis 56. about the -axis

In Exercises 57–62, determine which single counterclockwise 
rotation about the -, -, or -axis will produce the indicated 
tetrahedron. The original tetrahedron position is illustrated in 
Figure 6.23.

Figure 6.23

57. 58.

59. 60.

61. 62.

In Exercises 63–66, determine the matrix that will produce the 
indicated pair of rotations. Then find the image of the line segment
from to under this composition.

63. about the -axis followed by about the -axis

64. about the -axis followed by about the -axis

65. about the -axis followed by about the -axis

66. about the -axis followed by about the -axisx135� z45�

y60� z30�

z90� y45�

y90� x90�

�1, 1, 1��0, 0, 0�

x y

z

x y

z

x y

z

x y

z

x y

z

x y

z

x y

z

zyx

x120�y60�

x60�z30�

�1, 1, 1�

x120�y60�

x60�z30�
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Review ExercisesCHAPTER 6

In Exercises 1– 4, find (a) the image of and (b) the preimage of 
for the linear transformation.

1.

2.

3.

4.

In Exercises 5–12, determine whether the function is a linear 
transformation. If it is, find its standard matrix 

5.

6.

7.

8.

9.
(translation in the plane)

10.

11.

12.

13. Let be a linear transformation from to such that
and Find and 

14. Let be a linear transformation from to such that
and Find

15. Let be a linear transformation from to such that
and Find 

16. Let be a linear transformation from to such that
and Find 

In Exercises 17–20, find the indicated power of the standard
matrix for 

17. reflection in the -plane. Find 

18. projection onto the -plane. Find 

19. counterclockwise rotation through the angle 
Find

20. Calculus differential operator. Find 

In Exercises 21–28, the linear transformation is defined
by For each matrix (a) determine the dimensions of

and (b) find the image of the given vector and (c)
find the preimage of the given vector 

21.

22.

23.

24.

25.

26.

27.

28.

In Exercises 29–32, find a basis for (a) and (b) 

29.

30.

31.

32.

In Exercises 33–36, the linear transformation is given by
Find a basis for (a) the kernel of and (b) the range of

and then find (c) the rank of and (d) the nullity of 

33. 34.

35. 36. A � �
1

1

0

1

2

1

�1

1

0
�A � �

2

1

0

1

1

1

3

0

�3
�

A � �
1

0

2

1

�1

1
�A � �

1

�1

1

2

0

1
�

T.TT,
TT�v� � Av.

T

T�x, y, z� � �x, y � 2z, z�T: R3 → R3,

T�x, y, z� � �x � y, y � z, x � z�T: R3 → R3,

T�x, y, z� � �x � 2y, y � 2z, z � 2x�T: R3 → R3,

�2w �  4x � 6y � 5z, �w � 2x � 2y, 8y � 4z�
T�w, x, y, z� �T: R4 → R3,

range�T�.ker�T�

A � �
1

0

1

0

�1

2
�, v � �1, 2�, w � �2, �5, 12�

A � �
4

0

1

0

5

1
�, v � �2, 2�, w � �4, �5, 0�

A � �2

0

1

1�, v � �8, 4�, w � �5, 2�

A � �
1

0

0

1

1

0

1

1

1
�, v � �2, 1, �5�, w � �6, 4, 2�

A � �2, �1�, v � �1, 2�, w � ��1�
A � �1, 1�, v � �2, 3�, w � �4�

A � �1

1

2

0

�1

1�, v � �5, 2, 2�, w � �4, 2�

A � � 0

�2

1

0

2

0�, v � �6, 1, 1�, w � �3, 5�

w.
v,T�v�Rm,Rn

A,T�v� � Av.
T: Rn → Rm

A2.T: P3 → P3,

A3.
�.T: R2 → R2,

A2.xyT: R3 → R3,

A2.xyT: R3 → R3,

T.
A,

T�2, 4�.T�0, 2� � �0, 8�.T�1, �1� � �2, �3�
R2R2T

T�0, �1�.T�2, �1� � �1, 0�.T�1, 1� � �2, 3�
R2R2T

T�0, 1, 1�.T�1, 0, 0� � 3.T�1, 1, 0� � 2,T�1, 1, 1� � 1,
RR3T

T�0, 1�.T�1, 1�T�0, 3� � �3, 3�.T�2, 0� � �1, 1�
R2R2T

T�x, y, z� � �z, y, x�T: R3 → R3,

T�x1, x2, x3� � �x1 � x2, x2 � x3, x3 � x1�T: R3 → R3,

T�x, y� � ��x�, �y��T: R2 → R2,

T�x, y� � �x � h, y � k�, h � 0 or k � 0T: R2 → R2,

T�x, y � � �x � y, y �T: R2 → R2,

T�x, y � � �x � 2y, 2y � x �T: R2 → R2,

T�x1, x2 � � �x1 � 3, x2 �T: R2 → R2,

T�x1, x2 � � �x1 � 2x2, �x1 � x2 �T: R2 → R2,

A.

w � �0, 1, 2�v � ��2, 1, 2�,
T�v1, v2, v3� � �v1 � v2, v2 � v3, v3�,T: R3 → R3,

w � �0, 2, 5�v � ��3, 2, 5�,
T�v1, v2, v3� � �0, v1 � v2, v2 � v3�,T: R3 → R3,

w � �8, 4�
T�v1, v2 � � �v1 � v2, 2v2 �, v � �4, �1�,T: R2 → R2,

w � �4, 12�
T�v1, v2 � � �v1, v1 � 2v2 �, v � �2, �3�,T: R2 → R2,

wv
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37. Given and find 

38. Given and find 

39. Given and find 

40. Given and find 

In Exercises 41–48, determine whether the transformation has an
inverse. If it does, find and 

41.

42.

43.

44.

45.

46.

47.

48.

In Exercises 49 and 50, find the standard matrices for 
and

49.

50.

51. Use the standard matrix for counterclockwise rotation in 
to rotate the triangle with vertices and 
counterclockwise about the origin. Graph the triangles.

52. Rotate the triangle in Exercise 51 counterclockwise about
the point Graph the triangles.

In Exercises 53–56, determine whether the linear transformation
represented by the matrix is (a) one-to-one, (b) onto, and (c) 
invertible.

53. 54.

55. 56.

In Exercises 57 and 58, find by using (a) the standard matrix
and (b) the matrix relative to and 

57.

58.

In Exercises 59 and 60, find the matrix for relative to the basis
and show that is similar to the standard matrix for 

59.

60.

61. Let be represented by where 

(a) Find the standard matrix for 
(b) Let be the linear transformation represented by 

Show that is of the form 
where and are fixed vectors in 

(c) Show that the kernel of is equal to the range of 

62. Let be represented by where

(a) Find the standard matrix for and show that 
(b) Show that 
(c) Find and for 
(d) Sketch the graph of and 

63. Let and be linear transformations from into Show 
that and are both linear transformations, where

and

64. Suppose and are similar matrices and is invertible.

(a) Prove that is invertible.
(b) Prove that and are similar.

In Exercises 65 and 66, the sum of two linear transfor-
mations and is defined as 

65. Prove that 

66. Give an example for each.

(a)
(b)

67. Let such that 

(a) Prove that is linear.
(b) Find the rank and nullity of 
(c) Find a basis for the kernel of 

68. Let and be linear transformations.

(a) Prove that if and are both one-to-one, then so is

(b) Prove that the kernel of is contained in the kernel of

(c) Prove that if is onto, then so is S.S � T
S � T.

T
S � T.

TS

S: U → WT: V → U

T.
T.

T

a0 � a1 � a2 � a3.
T�a0 � a1x � a2 x2 � a3 x3� �T: P3 → R

Rank�S � T� < rank�S� � rank�T�
Rank�S � T� � rank�S� �  rank�T�

rank�S � T � � rank�S� � rank�T�.

S�v� � T�v�.
�S � T��v� �T: V → WS: V → W

S � T

B�1A�1
B

ABA

�kT��v� � kT�v�.�S � T��v� � S�v� � T�v�
kTS � T

W.VTS

�I � A�v.u, v, Av,
v � �5, 0�.�I � A�vAv

�I � A�2 � I � A.
A2 � A.T,A,

u � �4, 3�.
T�v� � projuv,T: R2 → R2

S.T
R3.w2w1

S�v� � projw1
v � projw2

v,S
I � A.S

T.A,

�0, 1, 2�.
u �T�v� � projuv,T: R3 → R3

B� � ��1, 1, 0�, �1, �1, 0�, �0, 0, 1��
T�x, y, z� � �x � 3y, 3x � y, �2z�,T: R3 → R3,

T�x, y� � �x � 3y, y � x�, B� � ��1, �1�, �1, 1��T: R2 → R2,

T.A,A�B�
TA�

B � ��2, 1�, ��1, 0��, B� � ���1, 0�, �2, 2��
T�x, y� � �2y, 0�, v � ��1, 3�,T: R2 → R2,

B � ��1, 1�, �1, �1��, B� � ��0, 1, 0�, �0, 0, 1�, �1, 0, 0��
T�x, y� � ��x, y, x � y�, v � �0, 1�,T: R2 → R3,

B�.B
T�v�

A � �
4

5

0

0

5

0

7

1

2
�A � �1

0

1
4

1�

A � �1

0

1

1

1

1�A � �2

0

0

3�

A

�5, 3�.
90� 

90�
�3, 0��3, 5�, �5, 3�,

R2

T�x, y� � �y � 2x�T2: R2 → R,

T�x� � �x, 3x�T1: R → R2,

T2�x, y, z� � �0, y�T2: R3 → R2,

T1�x, y� � �x, x � y, y�T1: R2 → R3,

T� � T2 � T1.
T � T1 � T2

T�x, y, z� � �x � y � z, z�T: R3 → R2,

T�x, y, z� � �x � y, y � z�T: R3 → R2,

T�x, y, z� � �x, �y, z�T: R3 → R3,

T�x, y, z� � �x, y, 0�T: R3 → R3,

T�x, y� � �x, �y�T: R2 → R2,

T�x, y� � �x cos � � y sin �, x sin � � y cos ��T: R2 → R2,

T�x, y� � �0, y�T: R2 → R2,

T�x, y� � �2x, y�T: R2 → R2,

A�1.A
T

nullity�T�.rank�T� � 3,T: M2,2 → M2,2

nullity�T�.rank�T� � 3,T: P4 → R5

rank�T�.nullity�T� � 4,T: P5 → P3

rank�T�.nullity�T� � 2,T: R5 → R3
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69. Let be an inner product space. For a fixed nonzero vector in
let be the linear transformation 

Find the kernel, range, rank, and nullity of 

70. Calculus Let be a basis for a 
subspace W of the space of continuous functions, and let be
the differential operator on W. Find the matrix for 
relative to the basis B. Find the range and kernel of 

71. Writing Under what conditions are the spaces and 
isomorphic? Describe an isomorphism T in this case.

72. Calculus Let be represented by
Find the rank and nullity of 

The Geometry of Linear Transformations 
in the Plane

In Exercises 73–78, (a) identify the transformation and (b) graphi-
cally represent the transformation for an arbitrary vector in the plane.

73. 74.

75. 76.

77. 78.

In Exercises 79–82, sketch the image of the triangle with vertices
and under the given transformation.

79. is a reflection in the x-axis.

80. is the expansion represented by 

81. is the shear represented by 

82. is the shear represented by 

In Exercises 83 and 84, give a geometric description of the linear
transformation defined by the matrix product.

83.

84.

Computer Graphics
In Exercises 85–88, find the matrix that will produce the indicated
rotation and then find the image of the vector 

85. about the -axis 86. about the -axis

87. about the -axis 88. about the -axis

In Exercises 89–92, determine the matrix that will produce the 
indicated pair of rotations.

89. about the -axis followed by about the -axis

90. about the -axis followed by about the -axis

91. about the -axis followed by about the -axis

92. about the -axis followed by about the -axis

In Exercises 93–96, find the image of the unit cube with vertices

and when it is rotated by the given angle.

93. about the -axis 94. about the -axis

95. about the -axis 96. about the -axis

True or False? In Exercises 97–100, determine whether each state-
ment is true or false. If a statement is true, give a reason or cite an
appropriate statement from the text. If a statement is false, provide
an example that shows the statement is not true in all cases or cite an
appropriate statement from the text.

97. (a) Linear transformations called reflections that map a point
in the -plane to its mirror image across the line 

are defined by the standard matrix in 

(b) The linear transformations called horizontal expansions or

contractions are defined by the matrix in 

(c) The matrix would rotate a point

about the -axis.

98. (a) Linear transformations called reflections that map a point
in the -plane to its mirror image across the -axis are

defined by the matrix in 

(b) The linear transformations called vertical expansions or

contractions are defined by the matrix in 

(c) The matrix would rotate a

point about the -axis.

99. (a) In calculus, any linear function is also a linear transforma-
tion from to 

(b) A linear transformation is said to be onto if and only if for
all and in implies 

(c) Because of the computational advantages, it is best to choose
a basis for such that the transformation matrix is diagonal.V

u � v.T�u� � T�v�V,vu

R2.R2

y30�

�
�32

0
�12

0
1
0

12
0

�32�
M2,2.�1

0
0
k�

M2,2.�1
0

0
�1�

xxy

x60�

�
1
0
0

0
12

�32

0
��32

12 �
M2,2.�k

0
0
1�

M2,2.�1
0

0
1�

y � xxy

z120�x30�

x90�z45�

�0, 1, 1�
�1, 1, 1�,�1, 0, 1�,�0, 0, 1�,�0, 1, 0�,�1, 1, 0�,�1, 0, 0�,�0, 0, 0�,

z60�x60�

z45�y30�

z45�y120�

z30�x60�

y30�x60�

x90�z45�

�1, �1, 1�.

�1

6

0

2� � �1

0

0

2� �
1

3

0

1�
�0

1

2

0� � �2

0

0

1� �
0

1

1

0�

T�x, y� � �x, y � 2x�.T

T�x, y� � �x � 3y, y�.T

T�x, y� � �2x, y�.T

T

�0, 1��0, 0�, �1, 0�,

T�x, y� � �x, x � 2y�T�x, y� � �x � 2y, y�
T�x, y� � �5x, y�T�x, y� � �x, y � 3x�
T�x, y� � �x � y, y�T�x, y� � �x, 2y�

T.T� p� � p�x� � p��x�.
T: P3 → P3

Mp,qMm,n

Dx .
Dx

Dx

B � �1, x, sin x, cos x�
T.

T�v� � �v, v0�.T: V → RV,
v0V
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100. (a) For polynomials, the differential operator is a linear
transformation from to 

(b) The set of all vectors in that satisfy is called
the kernel of 

(c) The standard matrix of the composition of two linear
transformations is the product of the
standard matrix for and the standard matrix for T1.T2

T�v� � T2�T1�v��
A

T.
T�v� � vVv

Pn�1.Pn

Dx

ProjectsCHAPTER 6

1 Reflections in the Plane (I)

Let be the line in the plane. The linear transformation that
sends a point to its mirror image in is called the reflection in (See Figure
6.24.)

The goal of these two projects is to find the matrix for this reflection relative to the
standard basis. The first project is based on transition matrices, and the second 
project uses projections.

1. Find the standard matrix for for the line 
2. Find the standard matrix for for the line 
3. Find the standard matrix for for the line 
4. Consider the line represented by Find a vector parallel to 

and another vector orthogonal to Determine the matrix for the 
reflection in relative to the ordered basis Finally, use the appropri-
ate transition matrix to find the matrix for the reflection relative to the 
standard basis. Use this matrix to find and 

5. Consider the general line Let be a vector parallel to and
let be a vector orthogonal to Determine the matrix for the reflection
in relative to the ordered basis Finally, use the appropriate transi-
tion matrix to find the matrix for relative to the standard basis.

6. Find the standard matrix for the reflection in the line Use this
matrix to find the images of the points and 

Figure 6.24

x

y

L(x, y)

(x, y)

�0, 5�.�3, 4�, ��4, 3�,
3x � 4y � 0.

L
�v, w�.�

A�.w
�,vax � by � 0.

L�5, 0�.L�2, 1�, L��1, 2�,

�v, w�.�
A�.w�

vx � 2y � 0.�
x � y � 0.L
y � 0.L
x � 0.L

�.��x, y�
L: R2 → R2ax � by � 0 �
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2 Reflections in the Plane (II)

In this second project, you will use projections to determine the standard matrix for
the reflection in the line (See Figure 6.25.) Recall that the projection
of the vector onto the vector v is represented by

1. Find the standard matrix for the projection onto the -axis. That is, find the
standard matrix for if 

2. Find the standard matrix for the projection onto the -axis.
3. Consider the line represented by Find a vector parallel to 

and another vector orthogonal to Determine the matrix for the projec-
tion onto relative to the ordered basis Finally, use the appropriate
transition matrix to find the matrix for the projection relative to the standard
basis. Use this matrix to find for the cases 
and

4. Consider the general line Let be a vector parallel to and
let be a vector orthogonal to Determine the matrix for the projection
onto relative to the ordered basis Finally, use the appropriate 
transition matrix to find the matrix for the projection relative to the standard
basis.

5. Use Figure 6.26 to show that

where is the reflection in the line Solve this equation for and compare
your answer with the formula from the first project.

L�.L

projvu �
1
2 �u � L�u��,

�v, w�.�
A�.w

�,vax � by � 0.
u � �5, 0�.

u � ��1, 2�,u � �2, 1�,projvu

�v, w�.�
A�.w

�vx � 2y � 0.�
x

v � �0, 1�.projvu
y

projvu �
u 
 v
v 
 v

 v.

u
ax � by � 0.L

Figure 6.25

u 

v projvu 

Figure 6.26

x

u

y

L(u)

projvu
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7 Eigenvalues and
Eigenvectors

7.1 Eigenvalues and
Eigenvectors

7.2 Diagonalization
7.3 Symmetric Matrices and

Orthogonal
Diagonalization

7.4 Applications of
Eigenvalues and
Eigenvectors

CHAPTER OBJECTIVES

■ Find the eigenvalues and corresponding eigenvectors of a linear transformation, as well as the
characteristic equation and the eigenvalues and corresponding eigenvectors of a matrix 

■ Demonstrate the Cayley-Hamilton Theorem for a matrix 

■ Find the eigenvalues of both an idempotent matrix and a nilpotent matrix.

■ Determine whether a matrix is triangular, diagonalizable, symmetric, and/or orthogonal.

■ Find (if possible) a nonsingular matrix for a matrix such that is diagonal.

■ Find a basis (if possible) for the domain of a linear transformation such that the matrix of
relative to is diagonal.

■ Find the eigenvalues of a symmetric matrix and determine the dimension of the 
corresponding eigenspace.

■ Find an orthogonal matrix that diagonalizes 

■ Find and use an age transition matrix and an age distribution vector to form a population
model and find a stable age distribution for the population.

■ Solve a system of first-order linear differential equations.

■ Find a matrix of the quadratic form associated with a quadratic equation.

■ Use the Principal Axes Theorem to perform a rotation of axes and eliminate the -, -, and
-terms, and find the equation of the rotated quadratic surface.yz

xzxy

A.P

BT
TB

P �1APAP

A.

A.

Eigenvalues and Eigenvectors

This section presents one of the most important problems in linear algebra, the eigenvalue
problem. Its central question can be stated as follows. If is an matrix, do nonzero
vectors in exist such that is a scalar multiple of The scalar, denoted by the Greek
letter lambda is called an eigenvalue of the matrix and the nonzero vector is called
an eigenvector of corresponding to The terms eigenvalue and eigenvector are derived
from the German word Eigenwert, meaning “proper value.” So, you have

	.A
xA,�	�,

x?AxRnx
n � nA

7.1
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Although you looked at the eigenvalue problem briefly in Section 3.4, the approach in
this chapter will not depend on that material.

Eigenvalues and eigenvectors have many important applications, some of which are dis-
cussed in Section 7.4. For now you will consider a geometric interpretation of the problem
in If is an eigenvalue of a matrix and is an eigenvector of corresponding to 
then multiplication of by the matrix produces a vector that is parallel to as shown
in Figure 7.1.

Figure 7.1

Only real eigenvalues are presented in this chapter.

R E M A R K : Note that an eigenvector cannot be zero. Allowing to be the zero vector
would render the definition meaningless, because is true for all real values of 
An eigenvalue of however, is possible. (See Example 2.)

A matrix can have more than one eigenvalue, as demonstrated in Examples 1 and 2.

	 � 0,
	.A0 � 	0

x

x

λx

λAx = x, λ < 0

x

λx

λAx = x, λ 0<

x,	xAx
	,AxA	R2.

Eigenvector

Ax � 	x.

Eigenvalue

Let be an matrix. The scalar is called an eigenvalue of if there is a nonzero
vector such that

The vector is called an eigenvector of corresponding to 	.Ax

Ax � 	x.

x
A	n � nADefinitions of Eigenvalue

and Eigenvector
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For the matrix

verify that is an eigenvector of corresponding to the eigenvalue and
that is an eigenvector of corresponding to the eigenvalue 

S O L U T I O N Multiplying by produces

So, is an eigenvector of corresponding to the eigenvalue Similarly,
multiplying by produces

So, is an eigenvector of corresponding to the eigenvalue 

For the matrix

verify that

and

are eigenvectors of and find their corresponding eigenvalues.A

x2 � �1, 0, 0�x1 � ��3, �1, 1�

A � �
1

0

0

�2

0

1

1

0

1
�,

E X A M P L E  2 Verifying Eigenvalues and Eigenvectors

	 2 � �1.Ax2 � �0, 1�

� �1�0

1�.

� � 0

�1�

Ax2 � �2

0

0

�1� �
0

1�
Ax2

	1 � 2.Ax1 � �1, 0�

EigenvectorEigenvalue

� 2�1

0�.

� �2

0�

Ax1 � �2

0

0

�1� �
1

0�
Ax1

	 2 � �1.Ax2 � �0, 1�
	1 � 2,Ax1 � �1, 0�

A � �2

0

0

�1�,

E X A M P L E  1 Verifying Eigenvalues and Eigenvectors
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S O L U T I O N Multiplying by produces

So, is an eigenvector of corresponding to the eigenvalue 
Similarly, multiplying by produces

So, is an eigenvector of corresponding to the eigenvalue 

Eigenspaces

Although Examples 1 and 2 list only one eigenvector for each eigenvalue, each of the four
eigenvalues in Examples 1 and 2 has an infinite number of eigenvectors. For instance, in
Example 1 the vectors and are eigenvectors of corresponding to the eigen-
value 2. In fact, if is an matrix with an eigenvalue and a corresponding
eigenvector then every nonzero scalar multiple of is also an eigenvector of This may
be seen by letting be a nonzero scalar, which then produces

It is also true that if and are eigenvectors corresponding to the same eigenvalue then
their sum is also an eigenvector corresponding to because

In other words, the set of all eigenvectors of a given eigenvalue together with the zero
vector, is a subspace of This special subspace of is called the eigenspace of

Determining the eigenvalues and corresponding eigenspaces of a matrix can be difficult.
Occasionally, however, you can find eigenvalues and eigenspaces by simple inspection, as
demonstrated in Example 3.

	.RnRn.
	,

A�x1 � x2� � Ax1 � Ax2 � 	x1 � 	x2 � 	�x1 � x2�.

	,
	,x2x1

A�cx� � c�Ax� � c�	x� � 	�cx�.

c
A.xx,

	n � nA
A��3, 0��2, 0�

	2 � 1.Ax2 � �1, 0, 0�

Ax2 � �
1

0

0

� 2

0

1

1

0

1
� �

1

0

0
� � �

1

0

0
� � 1�

1

0

0
�.

Ax2

	1 � 0.Ax1 � ��3, �1, 1�

Ax1 � �
1

0

0

�2

0

1

1

0

1
� �

�3

�1

1
� � �

0

0

0
� � 0�

�3

�1

1
� .

Ax1

In Example 2, is an
eigenvalue of the matrix 
Calculate the determinant of the
matrix where is the

identity matrix. Repeat 
this experiment for the other
eigenvalue, In general,
if is an eigenvalue of the
matrix what is the value of
� A � 	 I� ?

A,
	

	1 � 0.

3 � 3
IA � 	 2 I,

A.
	2 � 1

Discovery

If is an matrix with an eigenvalue then the set of all eigenvectors of together
with the zero vector

is a subspace of This subspace is called the eigenspace of 	.Rn.

�0� � �x: x is an eigenvector of 	�,

	,	,n � nATHEOREM 7.1

Eigenvectors of Form a

Subspace
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Find the eigenvalues and corresponding eigenspaces of

S O L U T I O N Geometrically, multiplying a vector in by the matrix corresponds to a reflection
in the -axis. That is, if then

Figure 7.2 illustrates that the only vectors reflected onto scalar multiples of themselves are
those lying on either the -axis or the -axis.

For a vector on the x-axis For a vector on the y-axis

So, the eigenvectors corresponding to are the nonzero vectors on the -axis, and
the eigenvectors corresponding to are the nonzero vectors on the -axis. This 
implies that the eigenspace corresponding to is the -axis, and that the eigenspace 
corresponding to is the -axis.

Finding Eigenvalues and Eigenvectors

The geometric solution in Example 3 is not typical of the general eigenvalue problem. A
general approach will now be described.

To find the eigenvalues and eigenvectors of an matrix let be the 
identity matrix. Writing the equation in the form then produces

This homogeneous system of equations has nonzero solutions if and only if the coefficient
matrix is not invertible—that is, if and only if the determinant of is zero.
This is formally stated in the next theorem.

�	I � A��	I � A�

�	 I � A�x � 0.

	 Ix � AxAx � 	x
n � nIA,n � n

y	2 � 1
x	1 � �1

y	2 � 1
x	1 � �1

��1

0

0

1� �
0

y� � �0

y� � 1�0

y���1

0

0

1� �
x

0� � ��x

0� � �1�x

0�

yx

Av � ��1

0

0

1� �
x

y� � ��x

y�.

v � �x, y�,y
AR2�x, y�

A � ��1

0

0

1�.

E X A M P L E  3 An Example of Eigenspaces in the Plane

Eigenvalue is 	1 � �1. Eigenvalue is 	2 � 1.

Figure 7.2

x

A reflects vectors
in the y-axis.

(0, y) (0, y) (x, y)(−x, y)

(x, 0)(−x, 0)

y
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The equation is called the characteristic equation of Moreover,
when expanded to polynomial form, the polynomial

is called the characteristic polynomial of This definition tells you that the eigenvalues
of an matrix correspond to the roots of the characteristic polynomial of Because 
the characteristic polynomial of is of degree , can have at most distinct eigenvalues.

REMARK: The Fundamental Theorem of Algebra states that an th-degree polynomial has 
precisely roots. These roots, however, include both repeated and complex roots. In this
chapter you will be concerned only with the real roots of characteristic polynomials—that
is, real eigenvalues.

Find the eigenvalues and corresponding eigenvectors of

S O L U T I O N The characteristic polynomial of is

So, the characteristic equation is which gives and 
as the eigenvalues of To find the corresponding eigenvectors, use Gauss-Jordan elimina-
tion to solve the homogeneous linear system represented by twice: first for

and then for For the coefficient matrix is

��1�I � A � ��1 � 2

�1

   12

�1 � 5� � ��3

�1

12

4�,

	1 � �1,	 � 	2 � �2.	 � 	1 � �1,
�	 I � A�x � 0

A.
	2 � �2	1 � �1�	 � 1��	 � 2� � 0,

� �	 � 1��	 � 2�.
� 	2 � 3	 � 2

� 	2 � 3	 � 10 � 12

� �	 � 2��	 � 5� � ��12�

�	 I � A� � �	 � 2

�1

12

	 � 5 �
A

A � �2

1

�12

�5�.

E X A M P L E  4 Finding Eigenvalues and Eigenvectors

nn
n

nAnA
A.An � n

A.

�	 I � A� � 	n � cn�1	
n�1 � . . . � c1	 � c0

A.det�	 I � A� � 0

Let be an matrix.

1. An eigenvalue of is a scalar such that

2. The eigenvectors of corresponding to are the nonzero solutions of

�	I � A�x � 0.

	A

det�	 I � A� � 0.

	A

n � nATHEOREM 7.2

Eigenvalues and

Eigenvectors of a Matrix
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which row reduces to

showing that Letting you can conclude that every eigenvector of 
is of the form

For you have

Letting you can conclude that every eigenvector of is of the form

Try checking for the eigenvalues and eigenvectors in this example.

The homogeneous systems that arise when you are finding eigenvectors will always 
row reduce to a matrix having at least one row of zeros, because the systems must have 
nontrivial solutions. The steps used to find the eigenvalues and corresponding eigenvectors
of a matrix are summarized as follows.

Finding the eigenvalues of an matrix can be difficult because it involves the 
factorization of an th-degree polynomial. Once an eigenvalue has been found, however,
finding the corresponding eigenvectors is a straightforward application of Gauss-Jordan 
reduction.

n
n � n

Ax � 	i x

x � �x1

x2
� � �3t

t� � t�3

1�, t � 0.

	2x2 � t,

�1

0

�3

0 �.��2�I � A � ��2 � 2

�1

   12

�2 � 5 � � ��4

�1

12

3�
	2 � �2,

t � 0.x � �x1

x2
� � �4t

t� � t�4

1�,

	1x2 � t ,x1 � 4x2 � 0.

�1
0

�4
0�,

Let be an matrix.

1. Form the characteristic equation It will be a polynomial equation of
degree in the variable 

2. Find the real roots of the characteristic equation. These are the eigenvalues of 
3. For each eigenvalue find the eigenvectors corresponding to by solving the 

homogeneous system This requires row reducing of an matrix.
The resulting reduced row-echelon form must have at least one row of zeros.

n � n�	 i I � A� x � 0.
	 i	 i,

A.
	.n

�	 I � A� � 0.

n � nAFinding Eigenvalues 

and Eigenvectors
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Find the eigenvalues and corresponding eigenvectors of

What is the dimension of the eigenspace of each eigenvalue?

S O L U T I O N The characteristic polynomial of is

So, the characteristic equation is 
So, the only eigenvalue is To find the eigenvectors of solve the homoge-

neous linear system represented by 

This implies that Using the parameters and you can find that the 
eigenvectors of are of the form

and not both zero.

Because has two linearly independent eigenvectors, the dimension of its eigenspace 
is 2.

If an eigenvalue occurs as a multiple root ( times) of the characteristic polynomial,
then has multiplicity This implies that is a factor of the characteristic 
polynomial and is not a factor of the characteristic polynomial. For instance,
in Example 5 the eigenvalue has a multiplicity of 3.

Also note that in Example 5 the dimension of the eigenspace of is 2. In general,
the multiplicity of an eigenvalue is greater than or equal to the dimension of its eigenspace.

	 � 2
	 � 2

�	 � 	1�k�1
�	 � 	1�kk.	1

k	1

	 � 2

tsx � �
x1

x2

x3
� � �

s
0
t
� � s�

1
0
0� � t�

0
0
1�,

	 � 2
t � x3 ,s � x1x2 � 0.

2 I � A � �
0

0

0

�1

0

0

0

0

0
�

�2 I � A�x � 0.
	 � 2,	 � 2.

�	 � 2�3 � 0.

�	 I � A� � �	 � 2
0
0

�1
	 � 2

0

0
0

	 � 2 � � �	 � 2�3.

A

A � �
2

0

0

1

2

0

0

0

2
�.

E X A M P L E  5 Finding Eigenvalues and Eigenvectors
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Find the eigenvalues of

and find a basis for each of the corresponding eigenspaces.

S O L U T I O N The characteristic polynomial of is

So, the characteristic equation is and the eigenvalues are
and (Note that has a multiplicity of 2.)

You can find a basis for the eigenspace of as follows.

Letting and produces

A basis for the eigenspace corresponding to is

Basis for 

For and follow the same pattern to obtain the eigenspace bases

Basis for 

Basis for 

Finding eigenvalues and eigenvectors of matrices of order can be tedious.
Moreover, the procedure followed in Example 6 is generally inefficient when used on a
computer, because finding roots on a computer is both time consuming and subject to
roundoff error. Consequently, numerical methods of approximating the eigenvalues of large 

n 
 4

�3 � 3B3 � ��0, �5, 0, 1��.

�2 � 2B2 � ��0, 5, 1, 0��

	3 � 3,	2 � 2

�1 � 1B1 � ��0, 1, 0, 0�, ��2, 0, 2, 1��.

	1 � 1

x � �
x1

x2

x3

x4

� � �
0s � 2 t

s � 0 t

0s � 2 t

0s � t
� � s�

0

1

0

0
� � t�

�2

0

2

1
�.

t � x4s � x2

�
1

0

0

0

0

0

0

0

0

1

0

0

2

�2

0

0
��1�I � A � �

0

0

�1

�1

0

0

0

0

0

�5

�1

0

0

10

0

�2
�

	1 � 1
	1 � 1	3 � 3.	1 � 1, 	2 � 2,

�	 � 1�2�	 � 2��	 � 3� � 0

� �	 � 1�2�	 � 2��	 � 3�.

�	I � A� � �	 � 1
0

�1
�1

0
	 � 1

0
0

0
�5

	 � 2
0

0
10
0

	 � 3 �
A

A � �
1

0

1

1

0

1

0

0

0

5

2

0

0

�10

0

3
�

E X A M P L E  6 Finding Eigenvalues and Eigenvectors
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matrices are required. These numerical methods can be found in texts on advanced linear
algebra and numerical analysis.

There are a few types of matrices for which eigenvalues are easy to find. The next 
theorem states that the eigenvalues of an triangular matrix are the entries on the main 
diagonal. Its proof follows from the fact that the determinant of a triangular matrix is the
product of its diagonal elements.

Find the eigenvalues of each matrix.

(a) (b)

S O L U T I O N (a) Without using Theorem 7.3, you can find that

� �	 � 2��	 � 1��	 � 3�.

�	I � A� � �	 � 2
1

�5

0
	 � 1

�3

0
0

	 � 3 �

A � �
�1

0

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

�4

0

0

0

0

0

3
�A � �

2

�1

5

0

1

3

0

0

�3
�

E X A M P L E  7 Finding Eigenvalues of Diagonal and Triangular Matrices

n � n

Many computer software programs and graphing utilities have built-in programs to approximate the
eigenvalues and eigenvectors of an matrix. If you enter the matrix from Example 6, you
should obtain the four eigenvalues

Your computer software program or graphing utility should also be able to produce a matrix in
which the columns are the corresponding eigenvectors, which are sometimes scalar multiples 
of those you would obtain by hand calculations. Keystrokes and programming syntax for these 
utilities/programs applicable to Example 6 are provided in the Online Technology Guide, available
at college.hmco.com/pic/larsonELA6e.

�1  1  2  3�.

An � n
Technology

Note

If is an triangular matrix, then its eigenvalues are the entries on its main 
diagonal.

n � nA
THEOREM 7.3

Eigenvalues of 

Triangular Matrices
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So, the eigenvalues are and which are simply the main 
diagonal entries of 

(b) In this case, use Theorem 7.3 to conclude that the eigenvalues are the main diagonal 
entries and 

Eigenvalues and Eigenvectors of Linear Transformations

This section began with definitions of eigenvalues and eigenvectors in terms of matrices.
They can also be defined in terms of linear transformations. A number is called an 
eigenvalue of a linear transformation if there is a nonzero vector such that

The vector is called an eigenvector of corresponding to and the set of all
eigenvectors of (with the zero vector) is called the eigenspace of

Consider the linear transformation whose matrix relative to the standard
basis is

In Example 5 of Section 6.4, you found that the matrix of relative to the basis is the 
diagonal matrix

The question now is: “For a given transformation can you find a basis whose 
corresponding matrix is diagonal?” The next example gives an indication of the answer.

Find the eigenvalues and corresponding eigenspaces of

S O L U T I O N Because

� �	 � 2��	2 � 2	 � 8� � �	 � 2�2�	 � 4�,
� �	 � 2���	 � 1�2 � 9�

�	I � A� � �	 � 1
�3

0

�3
	 � 1

0

0
0

	 � 2�
A � �

1

3

0

3

1

0

0

0

�2
�.

E X A M P L E  8 Finding Eigenvalues and Eigenspaces

B�T,

A� � �
4

0

0

0

�2

0

0

0

�2
�.

B�T

A � �
1

3

0

3

1

0

0

0

�2
�.

T: R3 → R3,
	.	

	,TxT�x� � 	x.
xT: V → V

	

	5 � 3.	1 � �1, 	2 � 2, 	3 � 0, 	 4 � �4,

A.
	3 � �3,	1 � 2, 	 2 � 1,

Standard basis:
B � {�1, 0, 0�, �0, 1, 0�, �0, 0, 1�}

Nonstandard basis:
B� � {�1, 1, 0�, �1, �1, 0�, �0, 0, 1�}



432 Chapter  7 E igenvalues and E igenvectors

the eigenvalues of are and The eigenspaces for these two eigenvalues
are as follows.

Basis for 

Basis for 

Example 8 illustrates two important and perhaps surprising results.

1. Let be the linear transformation whose standard matrix is and let be the
basis of made up of the three linearly independent eigenvectors found in Example 8.
Then the matrix of relative to the basis is diagonal.

2. The main diagonal entries of the matrix are the eigenvalues of 

The next section formalizes these two results and also characterizes linear transforma-
tions that can be represented by diagonal matrices.

A.A�

B�,TA� ,
R3

B�A,T: R3 → R3

�2 � �2B2 � ��1, �1, 0�, �0, 0, 1��
�1 � 4B1 � ��1, 1, 0��

	 2 � �2.	1 � 4A

Nonstandard basis:
B� � {�1, 1, 0�, �1, �1, 0�, �0, 0, 1�}

A� � �
4

0

0

0

�2

0

0

0

�2
�

Eigenvectors of AEigenvalues of A

ExercisesSECTION 7.1

In Exercises 1–8, verify that is an eigenvalue of and that is
a corresponding eigenvector.

1.

2.

3.

4.

5.

6.

7.

8.

9. Use and from Exercise 3 to show that

(a) for any real number 
(b) for any real number 

10. Use and from Exercise 5 to show that

(a) for any real number 
(b) for any real number 
(c) for any real number c.A�cx3� � 3�cx3�

c.A�cx2� � ��cx2�
c.A�cx1� � 2�cx1�

x i	 i ,A,

c.A�cx2� � 2�cx 2�
c.A�cx1� � 0�cx1�

x i	 i ,A,

A � �
4

0

0

�1

2

0

3

1

3
�,   

	1 � 4, x1 � �1, 0, 0�
	2 � 2, x2 � �1, 2, 0�
	3 � 3, x3 � ��2, 1, 1�

A � �
0

0

1

1

0

0

0

1

0
�, 	1 � 1, x1 � �1, 1, 1�

A � �
�2

2

�1

2

1

�2

�3

�6

0
�,   

	1 � 5, x1 � �1, 2, �1�
	2 � �3, x2 � ��2, 1, 0�
	3 � �3, x3 � �3, 0, 1�

A � �
2

0

0

3

�1

0

1

2

3
�,  

	1 � 2, x1 � �1, 0, 0�
	2 � �1, x2 � �1, �1, 0�
	3 � 3, x3 � �5, 1, 2�

A � ��2

1

4

1�,  
	1 � 2, x1 � �1, 1�
	2 � �3, x2 � ��4, 1�

A � �1

1

1

1�,  
	1 � 0, x1 � �1, �1�
	2 � 2, x2 � �1, 1�

A � �4

2

�5

�3�,  
	1 � �1, x1 � �1, 1�
	2 � 2, x2 � �5, 2�

A � �1

0

0

�1�,  
	1 � 1, x1 � �1, 0�
	2 � �1, x2 � �0, 1�

xiA	i
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In Exercises 11–14, determine whether is an eigenvector of 

11. 12.

(a) (a)
(b) (b)
(c) (c)
(d) (d)

13.

14.

In Exercises 15–28, find (a) the characteristic equation and (b) the
eigenvalues (and corresponding eigenvectors) of the matrix.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

In Exercises 29–40, use a graphing utility with matrix capabilities
or a computer software program to find the eigenvalues of the
matrix.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

In Exercises 41– 48, demonstrate the Cayley-Hamilton Theorem 
for the given matrix. The Cayley-Hamilton Theorem states that a
matrix satisfies its characteristic equation. For example, the charac-
teristic equation of 

is and by the theorem you have

41. 42.

43. 44.

45. 46. �
3
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x � �5, �3�x � ��1, 0�
x � ��4, 8�x � �1, �2�
x � ��8, 4�x � �2, 1�
x � �4, 4�x � �1, 2�

A � ��3

5

10

2�A � �7

2

2

4�
A.x

(a)

(b)
(c)

(d) x � �2�6 � 3,�2�6 � 6, 3�
x � �0, 0, 0�
x � ��5, 2, 1�
x � �1, 1, 0�

(a)
(b)
(c)
(d) x � ��1, 0, 1�

x � �2, 2, 0�
x � �2, 0, 6�
x � �2, �4, 6�
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47. 48.

49. Perform the computational checks listed below on the eigen-
values found in Exercises 15–27 odd.

(a) The sum of the eigenvalues equals the sum of the 
diagonal entries of the matrix. (This sum is called the
trace of )

(b) The product of the eigenvalues equals 

(If is an eigenvalue of multiplicity remember to enter it 
times in the sum or product of these checks.)

50. Perform the computational checks listed below on the eigen-
values found in Exercises 16–28 even.

(a) The sum of the eigenvalues equals the sum of the 
diagonal entries of the matrix. (This sum is called the
trace of )

(b) The product of the eigenvalues equals 

(If is an eigenvalue of multiplicity remember to enter it 
times in the sum or product of these checks.)

51. Show that if is an matrix whose th row is identical to
the th row of then 1 is an eigenvalue of 

52. Prove that is an eigenvalue of if and only if is 
singular.

53. Writing For an invertible matrix prove that and have
the same eigenvectors. How are the eigenvalues of related to
the eigenvalues of 

54. Writing Prove that and have the same eigenvalues. Are
the eigenspaces the same?

55. Prove that the constant term of the characteristic polynomial 
is

56. Let be represented by where is a
fixed vector in Show that the eigenvalues of (the standard
matrix of ) are 0 and 1.

57. Guided Proof Prove that a triangular matrix is nonsingular if
and only if its eigenvalues are real and nonzero.

Getting Started: Because this is an “if and only if” statement,
you must prove that the statement is true in both directions.
Review Theorems 3.2 and 3.7.

(i) To prove the statement in one direction, assume that the 
triangular matrix is nonsingular. Use your knowledge
of nonsingular and triangular matrices and determinants
to conclude that the entries on the main diagonal of 
are nonzero.

(ii) Because is triangular, you can use Theorem 7.3 and
part (i) to conclude that the eigenvalues are real and
nonzero.

(iii) To prove the statement in the other direction, assume
that the eigenvalues of the triangular matrix are real
and nonzero. Repeat parts (i) and (ii) in reverse order to
prove that is nonsingular.

58. Guided Proof Prove that if then 0 is the only 
eigenvalue of 

Getting Started: You need to show that if there exists a
nonzero vector and a real number such that then
if must be zero.

(i) Because you can write as 

(ii) Use the fact that and the properties of matrix
multiplication to conclude that 

(iii) Because is a zero matrix, you can conclude that 
must be zero.

59. If the eigenvalues of

are and what are the possible values of 
and

60. Show that

has no real eigenvalues.

True or False? In Exercises 61 and 62, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false,
provide an example that shows the statement is not true in all cases
or cite an appropriate statement from the text.

61. (a) The scalar is an eigenvalue of an matrix if there
exists a vector such that 

(b) If A is an matrix with eigenvalue and corresponding
eigenvector then every nonzero scalar multiple of 

is also an eigenvector of 

(c) To find the eigenvalue(s) of an matrix you can
solve the characteristic equation, det

62. (a) Geometrically, if is an eigenvalue of a matrix and is an
eigenvector of corresponding to then multiplying by

produces a vector parallel to 

(b) An matrix can have only one eigenvalue.

(c) If is an matrix with an eigenvalue then the set of
all eigenvectors of is a subspace of Rn.	

	,n � nA

An � n

x.	xA
x	,A

xA	

�	I � A� � 0.
A,n � n

A.x
x,

	n � n

Ax � 	x.x
An � n	

A � � 0

�1

1

0�

d?
a	2 � 1,	1 � 0

A � �a

0

b

d�

	A2

A2x � 	2x.
Ax � 	x

A�Ax�.A2xA2 � A � A,

	A2 � O,
Ax � 	x,	x

A.
A2 � O,

A

A

A

A

A

T
AR2.

uT�v� � projuv,T: R2 → R2

±�A�.

ATA

A�1?
A

A�1AA,

AA	 � 0
A.I,i

in � nA

kk,	
�A�.n

A.

n

kk,	
�A�.n

A.

n

�
�3

�1

0

1

3

4

0

2

3
��

1

0

2

0

3

0

�4

1

1
�
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In Exercises 63–66, find the dimension of the eigenspace correspon-
ding to the eigenvalue 

63. 64.

65. 66.

67. Calculus Let be given by 
Show that is an eigenvalue of with corresponding
eigenvector 

68. Calculus For the linear transformation given in Exercise 67,
find the eigenvalue corresponding to the eigenvector

69. Let be represented by

Find the eigenvalues and the eigenvectors of relative to the
standard basis

70. Let be represented by

Find the eigenvalues and eigenvectors of relative to the 
standard basis 

71. Let be represented by

Find the eigenvalues and eigenvectors of relative to the 
standard basis

72. A square matrix is called idempotent if What are the
possible eigenvalues of an idempotent matrix?

73. A square matrix is called nilpotent if there exists a positive
integer such that What are the possible eigenvalues of
a nilpotent matrix?

74. Find all values of the angle for which the matrix

has real eigenvalues. Interpret your answer geometrically.

75. Let be an matrix such that the sum of the entries in each
row is a fixed constant Prove that is an eigenvalue of 
Illustrate this result with a specific example.

A.rr.
n � nA

A � �cos �

sin �

�sin �

cos � �
�

Ak � 0.k
A

A 2 � A.A

B � ��1

0

0

0�, �0

0

1

0�, �0

1

0

0�, �0

0

0

1��.

T

T 	�a
c

b
d�
 � � a

�2a
� c
� 2c

� d
� 2d

b
2b

� d
� 2d �.

T: M2,2 → M2,2

�1, x, x 2�.
T

��a1 � 2a2�x � a2 x2.
T�a0 � a1x � a2x2� � �2a0 � a1 � a2� �

T: P2 → P2

�1,  x, x2�.
T

��4a0 � 4a1 � 10a2�x � 4a2 x2.

T�a0 � a1x � a2x2� � ��3a1 � 5a2� �

T: P2 → P2

f �x� � e�2x.

f �x� � e x.
T	 � 1

T� f � � f�.T: C� �0, 1� → C �0, 1�

A � �
3

0

0

1

3

0

1

1

3
�A � �

3

0

0

1

3

0

0

1

3
�

A � �
3

0

0

1

3

0

0

0

3
�A � �

3

0

0

0

3

0

0

0

3
�

	 � 3.

Diagonalization

The preceding section discussed the eigenvalue problem. In this section, you will look at
another classic problem in linear algebra called the diagonalization problem. Expressed in
terms of matrices*, the problem is this: “For a square matrix does there exist an invert-
ible matrix such that is diagonal?”

Recall from Section 6.4 that two square matrices and are called similar if there
exists an invertible matrix such that 

Matrices that are similar to diagonal matrices are called diagonalizable.
B � P�1AP.P

BA
P�1APP

A,

7.2

An matrix is diagonalizable if is similar to a diagonal matrix. That is, is 
diagonalizable if there exists an invertible matrix such that is a diagonal matrix.P�1APP

AAAn � nDefinition of a

Diagonalizable Matrix

* At the end of this section, the diagonalization problem will be expressed in terms of linear transformations.
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Provided with this definition, the diagonalization problem can be stated as follows:
“Which square matrices are diagonalizable?” Clearly, every diagonal matrix is diagonal-
izable, because the identity matrix can play the role of to yield Example 1
shows another example of a diagonalizable matrix.

The matrix from Example 5 in Section 6.4,

is diagonalizable because

has the property

As indicated in Example 8 in the preceding section, the eigenvalue problem is related
closely to the diagonalization problem. The next two theorems shed more light on this 
relationship. The first theorem tells you that similar matrices must have the same eigenvalues.

P R O O F Because and are similar, there exists an invertible matrix such that By
the properties of determinants, it follows that

� �	I � A�.
� �P�1P��	I � A�
� �P�1��P��	I � A�
� �P�1��	I � A��P�
� �P�1�	I � A�P�

�	I � B� � �	I � P�1AP� � �P�1	IP � P�1AP�

B � P�1AP.PBA

P�1AP � �
4

0

0

0

�2

0

0

0

�2
�.

P � �
1

1

0

1

�1

0

0

0

1
�

A � �
1

3

0

3

1

0

0

0

�2
�,

E X A M P L E  1 A Diagonalizable Matrix

D � I�1DI.PI
D

If and are similar matrices, then they have the same eigenvalues.n � nBA
THEOREM 7.4

Similar Matrices Have 

the Same Eigenvalues



Sect ion 7.2 Diagonal izat ion 437

But this means that and have the same characteristic polynomial. So, they must have
the same eigenvalues.

The matrices and are similar.

and

Use Theorem 7.4 to find the eigenvalues of and 

S O L U T I O N Because is a diagonal matrix, its eigenvalues are simply the entries on its main 
diagonal—that is,

and

Moreover, because is said to be similar to you know from Theorem 7.4 that has the
same eigenvalues. Check this by showing that the characteristic polynomial of is 

R E M A R K : Example 2 simply states that matrices and are similar. Try checking
using the matrices

and

In fact, the columns of are precisely the eigenvectors of corresponding to the 
eigenvalues 1, 2, and 3.

The two diagonalizable matrices in Examples 1 and 2 provide a clue to the diagonaliza-
tion problem. Each of these matrices has a set of three linearly independent eigenvectors.
(See Example 3.) This is characteristic of diagonalizable matrices, as stated in Theorem 7.5.

AP

P�1 � �
1

�1

0

0

2

�1

0

�1

1
�.P � �

1

1

1

0

1

1

0

1

2
�

D � P�1AP
DA

�	I � A� � �	 � 1��	 � 2��	 � 3�.

A
AD,A

	3 � 3.

	2 � 2,

	1 � 1,

D

D.A

D � �
1

0

0

0

2

0

0

0

3
�A � �

1

�1

�1

0

1

�2

0

1

4
�

DA

E X A M P L E  2 Finding Eigenvalues of Similar Matrices

BA

An matrix is diagonalizable if and only if it has linearly independent
eigenvectors.

nAn � n
THEOREM 7.5

Condition for

Diagonalization
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P R O O F First, assume is diagonalizable. Then there exists an invertible matrix such that
is diagonal. Letting the main entries of be and the column

vectors of be produces

Because which implies

In other words, for each column vector This means that the column vectors
of are eigenvectors of Moreover, because is invertible, its column vectors are 

linearly independent. So, has linearly independent eigenvectors.
Conversely, assume has linearly independent eigenvectors with 

corresponding eigenvalues Let be the matrix whose columns are these 
eigenvectors. That is, Because each is an eigenvector of 
you have and

The right-hand matrix in this equation can be written as the matrix product below.

Finally, because the vectors are linearly independent, is invertible and
you can write the equation as which means that is diagonalizable.

A key result of this proof is the fact that for diagonalizable matrices, the columns of
consist of the linearly independent eigenvectors. Example 3 verifies this important 
property for the matrices in Examples 1 and 2.

(a) The matrix in Example 1 has the eigenvalues and corresponding eigenvectors listed
below.

	1 � 4, p1 � �
1

1

0
�; 	2 � �2, p2 � �

1

�1

0
�; 	3 � �2, p3 � �

0

0

1
�

E X A M P L E  3 Diagonalizable Matrices

n
P

AP�1AP � D,AP � PD
Pp1, p2, . . . , pn

AP � �p1 � p2 � .  .  . � pn� �
	1

0
.
.
.

0

0
	2
.
.
.

0

. . .

. . .

. . .

0
0
.
.
.

	n

� � PD

AP � A�p1 � p2 � . . . � pn� � �	1p1 � 	2p2 � . . . � 	npn�.

Api � 	ipi

A,piP � �p1 � p2 � . . . � pn�.
nP	1, 	2, . . . , 	n .

p1, p2, . . . , pnnA
nA

PA.Ppi

pi.Api � 	ipi

�Ap1 � Ap2 � . . . � Apn� � �	1p1 � 	2p2 � . . . � 	npn�.

AP � PD,P�1AP � D,

� �	1p1 � 	2p2 � . . . � 	npn�.

PD � �p1 � p2 � . . . � pn � �
	1

0.
.
.
0

0
	2.
.
.
0

. . .

. . .

. . .

0
0.
.
.

	n

�
p1, p2, .  .  . , pnP

	1, 	2, .  .  . , 	nDP�1AP � D
PA
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The matrix whose columns correspond to these eigenvectors is

Moreover, because is row-equivalent to the identity matrix, the eigenvectors 
and are linearly independent.

(b) The matrix in Example 2 has the eigenvalues and corresponding eigenvectors listed
below.

The matrix whose columns correspond to these eigenvectors is

Again, because is row-equivalent to the identity matrix, the eigenvectors and
are linearly independent.

The second part of the proof of Theorem 7.5 and Example 3 suggest the steps listed below
for diagonalizing a matrix.

Show that the matrix is not diagonalizable.

A � �1

0

2

1�
A

E X A M P L E  4 A Matrix That Is Not Diagonalizable

p3

p1, p2,P

P � �
1

1

1

0

1

1

0

1

2
�.

P

	1 � 1, p1 � �
1

1

1
�; 	2 � 2, p2 � �

0

1

1
�; 	3 � 3, p3 � �

0

1

2
�

p3

p1, p2,P

P � �
1

1

0

1

�1

0

0

0

1
�.

P

Let be an matrix.

1. Find linearly independent eigenvectors for with corresponding
eigenvalues If linearly independent eigenvectors do not exist, then

is not diagonalizable.
2. If has linearly independent eigenvectors, let be the matrix whose columns

consist of these eigenvectors. That is,

3. The diagonal matrix will have the eigenvalues on its main
diagonal (and zeros elsewhere). Note that the order of the eigenvectors used to form 
will determine the order in which the eigenvalues appear on the main diagonal of D.

P
	1, 	2, . . . , 	nD � P�1AP

P � �p1 � p2 � .  .  . � pn�.

n � nPnA
A

n	1, 	2, .  .  . , 	n .
Ap1, p2, .  .  . , pnn

n � nASteps for Diagonalizing 

an Square Matrixn � n
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S O L U T I O N Because is triangular, the eigenvalues are simply the entries on the main diagonal. So, the
only eigenvalue is The matrix has the reduced row-echelon form shown
below.

This implies that and letting you can find that every eigenvector of has
the form

So, does not have two linearly independent eigenvectors, and you can conclude that is
not diagonalizable.

Show that the matrix is diagonalizable.

Then find a matrix such that is diagonal.

S O L U T I O N The characteristic polynomial of is

So, the eigenvalues of are From these eigenvalues you
obtain the reduced row-echelon forms and corresponding eigenvectors shown below.

Eigenvector

�
�1

1

1
��

1
0
0

0
1
0

1
�1

0��3I � A � �
2

�1

3

1

0

�1

1

�1

4
�

�
1

�1

4
��

1

0

0

0

1

0

�
1
4
1
4

0
��2I � A � �

�3

�1

3

1

�5

�1

1

�1

�1
�

�
�1

0

1
��

1

0

0

0

1

0

1

0

0
��2I � A � �

1

�1

3

1

�1

�1

1

�1

3
�

	1 � 2, 	2 � �2, and 	3 � 3.A

�	I � A� � �	 � 1
�1

3

1
	 � 3

�1

1
�1

	 � 1� � �	 � 2��	 � 2��	 � 3�.

A

P�1APP

A � �
1

1

�3

�1

3

1

�1

1

�1
�

A

E X A M P L E  5 Diagonalizing a Matrix

AA

x � �x1

x2
� � � t

0� � t�1

0�.

Ax1 � t,x2 � 0,

�0

0

1

0�I � A � �0

0

�2

0�

�I � A�	 � 1.
A



Sect ion 7.2 Diagonal izat ion 441

Form the matrix whose columns are the eigenvectors just obtained.

This matrix is nonsingular, which implies that the eigenvectors are linearly independent and
is diagonalizable. The inverse of is

and it follows that

Show that the matrix is diagonalizable.

Then find a matrix such that is diagonal.

S O L U T I O N In Example 6 in Section 7.1, you found that the three eigenvalues and
have the eigenvectors shown below.

The matrix whose columns consist of these eigenvectors is

P � �
0

1

0

0

�2

0

2

1

0

5

1

0

0

�5

0

1
�.

	1: �
0

1

0

0
�, �

�2

0

2

1
� 	2: �

0

5

1

0
� 	3: �

0

�5

0

1
�

	3 � 3
	1 � 1, 	2 � 2,

P�1APP

A � �
1

0

1

1

0

1

0

0

0

5

2

0

0

�10

0

3
�

A

E X A M P L E  6 Diagonalizing a Matrix

P�1AP � �
2

0

0

0

�2

0

0

0

3
�.

P�1 � �
�1

1
5
1
5

�1

0

1

0
1
5
1
5

�,

PA

P � �
�1

0

1

1

�1

4

�1

1

1
�

P
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Because is invertible (check this), its column vectors form a linearly independent set. 

So, is diagonalizable, and you have

For a square matrix of order to be diagonalizable, the sum of the dimensions of the
eigenspaces must be equal to One way this can happen is if has distinct eigenvalues.
So, you have the next theorem.

P R O O F Let be distinct eigenvalues of corresponding to the eigenvectors
To begin, assume the set of eigenvectors is linearly dependent. Moreover,

consider the eigenvectors to be ordered so that the first eigenvectors are linearly independ-
ent, but the first are dependent, where Then can be written as a linear
combination of the first eigenvectors:

Equation 1

where the ’s are not all zero. Multiplication of both sides of Equation 1 by yields

Equation 2

whereas multiplication of Equation 1 by yields

Equation 3

Now, subtracting Equation 2 from Equation 3 produces

and, using the fact that the first eigenvectors are linearly independent, you can conclude
that all coefficients of this equation must be zero. That is,

c1�	m�1 � 	1� � c2�	m�1 � 	2� � . . . � cm�	m�1 � 	m� � 0.

m

c1�	m�1 � 	1�x1 � c2�	m�1 � 	2�x2 � . . . � cm�	m�1 � 	m�xm � 0,

	m�1xm �1 � c1	m �1x1 � c2	m �1x2 � . . . � cm	m�1xm.

	m �1

	m �1xm �1 � c1	1x1 � c2	2x2 � . . . � cm	mxm,

Axm �1 � Ac1x1 � Ac2x2 � . . . � Acmxm

Aci

xm�1 � c1x1 � c2x2 � . . . � cmxm ,

m
xm �1m < n.m � 1

m
x1, x2, . . . , xn .

An	1, 	2, . . . , 	n

nAn.
nA

P�1AP � �
1

0

0

0

0

1

0

0

0

0

2

0

0

0

0

3
�.

A

P�1 � �
�

5
2

�
1
2

1
1
2

1

0

0

0

�5

0

1

0

5

0

0

1
�

P

If an matrix has distinct eigenvalues, then the corresponding eigenvectors are
linearly independent and is diagonalizable.A

nAn � n
THEOREM 7.6

Sufficient Condition 

for Diagonalization
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Because all the eigenvalues are distinct, it follows that But this
result contradicts our assumption that can be written as a linear combination of the
first eigenvectors. So, the set of eigenvectors is linearly independent, and from Theorem
7.5 you can conclude that is diagonalizable.

Determine whether the matrix is diagonalizable.

S O L U T I O N Because is a triangular matrix, its eigenvalues are the main diagonal entries

Moreover, because these three values are distinct, you can conclude from Theorem 7.6 that
is diagonalizable.

R E M A R K : Remember that the condition in Theorem 7.6 is sufficient but not necessary for
diagonalization, as demonstrated in Example 6. In other words, a diagonalizable matrix
need not have distinct eigenvalues.

Diagonalization and Linear Transformations

So far in this section, the diagonalization problem has been considered in terms of 
matrices. In terms of linear transformations, the diagonalization problem can be stated as
follows. For a linear transformation

does there exist a basis for such that the matrix for relative to is diagonal? The
answer is “yes,” provided the standard matrix for is diagonalizable.

Let be the linear transformation represented by

If possible, find a basis for such that the matrix for relative to is diagonal.BTR3B

T�x1, x2, x3� � �x1 � x2 � x3, x1 � 3x2 � x3, �3x1 � x2 � x3�.

T: R3 → R3

E X A M P L E  8 Finding a Diagonal Matrix for a Linear Transformation

T
BTVB

T: V → V,

A

	1 � 1, 	2 � 0, 	3 � �3.

A

A � �
1

0

0

�2

0

0

1

1

�3
�

A

E X A M P L E  7 Determining Whether a Matrix Is Diagonalizable

A
m

xm�1

ci � 0, i � 1, 2, . . . , m.
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S O L U T I O N The standard matrix for is represented by

From Example 5, you know that is diagonalizable. So, the three linearly independent
eigenvectors found in Example 5 can be used to form the basis That is,

The matrix for relative to this basis is

D � �
2

0

0

0

�2

0

0

0

3
�.

T

B � ���1, 0, 1�, �1, �1, 4�, ��1, 1, 1��.

B.
A

A � �
1

1

�3

�1

3

1

�1

1

�1
�.

T

ExercisesSECTION 7.2

In Exercises 1–8, verify that is diagonalizable by computing

1.

2.

3.

4.

5.

6.

7.

8.

In Exercises 9–16, show that the matrix is not diagonalizable.

9. 10.

11. 12.

13. 14.

15. 16.

(See Exercise 37, (See Exercise 38,
Section 7.1.) Section 7.1.)

In Exercises 17–20, find the eigenvalues of the matrix and determine
whether there is a sufficient number to guarantee that the matrix is
diagonalizable. (Recall that the matrix may be diagonalizable even
though it is not guaranteed to be diagonalizable by Theorem 7.6.)

17. 18.

19. 20. �
4

0

0

3

1

0

�2

1

�2
��

3

�3

�1

2

�4

�2

�3

9

5
�

�2

5

0

2��1

1

1

1�

�
1

�1

�2

1

�3

4

0

0

3

�3

1

0

3

�3

1

0
��

1

0

�2

0

0

1

0

2

�1

0

2

0

1

1

�2

2
�

�
2

0

0

1

�1

0

�1

2

�1
��

1

0

0

�2

1

0

1

4

2
�

� 1

�2

0

1��1

0

1

1�

� 1

�2

1
2

�1��0

5

0

0�

P � �
1
1
1
1

�1
�1

1
1

0
0
1

�1

1
�1

0
0
�A � �

0.80
0.10
0.05
0.05

0.10
0.80
0.05
0.05

0.05
0.05
0.80
0.10

0.05
0.05
0.10
0.80

�,

A � �
4

0

0

�1

2

0

3

1

3
�, P � �

1

0

0

1

2

0

�2

1

1
�

A � �
2

0

0

3

�1

0

1

2

3
�, P � �

1

0

0

1

�1

0

5

1

2
�

A � �
�1

0

4

1

3

�2

0

0

5
�, P � �

0

0

1

1

4

2

�3

0

2
�

A � �4

2

�5

�3�, P � �1

1

5

2�

A � ��2

1

4

1�, P � �1

1

�4

1�

A � � 1

�1

3

5�, P � �3

1

1

1�

A � ��11

�3

36

10�, P � ��3

�1

�4

�1�
P�1AP.

A
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In Exercises 21–34, for each matrix find (if possible) a nonsin-
gular matrix such that is diagonal. Verify that is
a diagonal matrix with the eigenvalues on the diagonal.

21. 22.

(See Exercise 15, (See Exercise 16,
Section 7.1.) Section 7.1.)

23. 24.

(See Exercise 17, (See Exercise 18,
Section 7.1.) Section 7.1.)

25. 26.

(See Exercise 21, (See Exercise 22,
Section 7.1.) Section 7.1.)

27. 28.

(See Exercise 23, (See Exercise 24,
Section 7.1.) Section 7.1.)

29. 30.

(See Exercise 25, (See Exercise 26,
Section 7.1.) Section 7.1.)

31. 32.

33. 34.

In Exercises 35–38, find a basis for the domain of such that the
matrix of relative to is diagonal.

35.

36.

37.

38.

39. Let be a diagonalizable matrix and an invertible 
matrix such that is the diagonal form of 

Prove that

(a) where is a positive integer.
(b) where is a positive integer.

40. Let be distinct eigenvalues of the 
matrix Use the result of Exercise 39 to find the eigenvalues 
of .

In Exercises 41–44, use the result of Exercise 39 to find the 
indicated power of 

41. 42.

43. 44.

True or False? In Exercises 45 and 46, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false,
provide an example that shows the statement is not true in all cases
or cite an appropriate statement from the text.

45. (a) If and are similar matrices, then they always have
the same characteristic polynomial equation.

(b) The fact that an matrix has distinct eigenvalues
does not guarantee that is diagonalizable.

46. (a) If is a diagonalizable matrix, then it has linearly 
independent eigenvectors.

(b) If an matrix is diagonalizable, then it must have 
distinct eigenvalues.

47. Writing Can a matrix be similar to two different diagonal
matrices? Explain your answer.

48. Are the two matrices similar? If so, find a matrix such that

49. Prove that if is diagonalizable, then is diagonalizable.

50. Prove that the matrix

is diagonalizable if and is not diagonalizable
if �4bc > �a � d�2.

�4bc < �a � d�2

A � �a

c

b

d�

ATA

B � �
3

0

0

0

2

0

0

0

1
�A � �

1

0

0

0

2

0

0

0

3
�

B � P�1AP.
P

nAn � n

nA

A
nAn � n

n � nBA

A � �
2

0

3

0

2

0

�2

�2

�3
�, A5A � �

3

�3

�1

2

�4

�2

�3

9

5
�, A8

A � �1

2

3

0�, A7A � � 10

�6

18

�11�, A6

A.

Ak

A.
n � nn	1, 	2, .  .  . , 	n

kAk � PBkP�1,
kBk � P�1AkP,

A.B � P�1APn � n
Pn � nA

�3a 1 � 4a2�x � a2 x 2

T: P2 → P2: T�a0 � a1x � a 2x 2� � �2a0 � a 2 � �

T: P1 → P1: T�a � bx� � a � �a � 2b�x

�x � 2y�
T: R3 → R 3: T�x, y, z� � ��2x � 2y � 3z , 2x � y � 6z,

T: R2 → R 2: T�x, y� � �x � y, x � y�

BT
TB

A � �
1

1

0

0

0

0

0

1

0

1

1

0

0

0

0

1
�A � �

2

3

0

0

0

�1

1

0

0

0

1

1

0

0

0

�2
�

A � �
4

2

0

0

2

2

0

0

2
�A � �

1

1

1

0

2

0

0

1

2
�

A � �
1

�2
3
2

�
3
2

13
2

�
9
2

5
2

�10

8
�A � �

0

�4

0

�3

4

0

5

�10

4
�

A � �
3

�3

�1

2

�4

�2

�3

9

5
�A � �

1

�2

�6

2

5

6

�2

�2

�3
�

A � �
3

0

0

2

0

2

1

2

0
�A � �

2

0

0

�2

3

�1

3

�2

2
�

A � �
1
4
1
2

1
4

0�A � �1
1
2

�
3
2

�1�

A � � 1

�2

�4

8�A � � 6

�2

�3

1�

P �1APP �1APP
A,
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51. Prove that if is diagonalizable with real eigenvalues
then

52. Calculus If is a real number, then can be defined by the
series

In a similar way, if is a square matrix, you can define by the
series

Evaluate where is the indicated square matrix.

(a) (b) 

(c) (d) 

(e)

53. Guided Proof Prove that if the eigenvalues of a diagonaliz-
able matrix are all then the matrix is equal to its 
inverse.

Getting Started: To show that the matrix is equal to its
inverse, use the fact that there exists an invertible matrix such
that where is a diagonal matrix with along
its main diagonal.

(i) Let where D is a diagonal matrix with 
along its main diagonal.

(ii) Find in terms of and 

(iii) Use the properties of the inverse of a product of 
matrices and the fact that is diagonal to expand to 
find 

(iv) Conclude that 

54. Guided Proof Prove that nonzero nilpotent matrices are not
diagonalizable.

Getting Started: From Exercise 73 in Section 7.1, you know
that 0 is the only eigenvalue of the nilpotent matrix Show that
it is impossible for to be diagonalizable.

(i) Assume is diagonalizable, so there exists an invertible
matrix such that where is the zero
matrix.

(ii) Find in terms of and 

(iii) Find a contradiction and conclude that nonzero nilpo-
tent matrices are not diagonalizable.

55. Prove that if is a nonsingular diagonalizable matrix, then 
is also diagonalizable.

In Exercises 56 and 57, show that the matrix is not diagonalizable.
Then write a brief statement explaining your reasoning.

56. 57. �k

0

0

k��3

0

k

3�, k � 0

A�1A

D.P�1,P,A

DP�1AP � D,P
A

A
A.

A�1 � A.

A�1.
D

D.P�1,P,A

±1D � P�1AP,

±1DD � P�1AP,
P

±1,A

X � �2

0

0

�2�

X � �0

1

1

0�X � �1

1

0

0�

X � �0

0

0

0�X � �1

0

0

1�

XeX,

eX � I � X �
1

2!
X 2 �

1

3!
X 3 �

1

4!
X 4 � .  .  . .

eXX

ex � 1 � x �
x2

2!
�

x3

3!
�

x4

4!
� .  .  . .

exx

�A� � 	1	2
.  .  . 	n.	2, .  .  . , 	n,

	1,nA

Symmetric Matrices and Orthogonal Diagonalization

For most matrices you must go through much of the diagonalization process before you can
finally determine whether diagonalization is possible. One exception is a triangular matrix
with distinct entries on the main diagonal. Such a matrix can be recognized as diagonaliz-
able by simple inspection. In this section you will study another type of matrix that is 
guaranteed to be diagonalizable: a symmetric matrix.

You can determine easily whether a matrix is symmetric by checking whether it is 
symmetric with respect to its main diagonal.

7.3

A square matrix is symmetric if it is equal to its transpose:

A � AT.

ADefinition of 

Symmetric Matrix
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The matrices and are symmetric, but the matrix is not.

Symmetric

Symmetric

Nonsymmetric

Nonsymmetric matrices have the following special properties that are not exhibited by
symmetric matrices. 

1. A nonsymmetric matrix may not be diagonalizable.
2. A nonsymmetric matrix can have eigenvalues that are not real. For instance, the matrix

has a characteristic equation of So, its eigenvalues are the imaginary 
numbers and 

3. For a nonsymmetric matrix, the number of linearly independent eigenvectors corre-
sponding to an eigenvalue can be less than the multiplicity of the eigenvalue. (See
Example 4, Section 7.2.)

None of these three properties is exhibited by symmetric matrices.

R E M A R K : Theorem 7.7 is called the Real Spectral Theorem, and the set of eigenvalues
of is called the spectrum of

A general proof of Theorem 7.7 is beyond the scope of this text. The next example 
verifies that every symmetric matrix is diagonalizable.2 � 2

A.A

	2 � �i.	1 � i
	2 � 1 � 0.

A � �0

1

�1

0�

C � �
3

1

1

2

�4

0

1

0

5
�

B � �4

3

3

1�

A � �
0

1

�2

1

3

0

�2

0

5
�

CBA

E X A M P L E  1 Symmetric Matrices and Nonsymmetric Matrices

If you have access to a computer
software program or a graphing
utility that can find eigenvalues,
try the following experiment. Pick
an arbitrary square matrix and 
calculate its eigenvalues. Can
you find a matrix for which the
eigenvalues are not real?
Now pick an arbitrary symmetric
matrix and calculate its eigen-
values. Can you find a symmetric
matrix for which the eigenvalues
are not real? What can you 
conclude about the eigenvalues
of a symmetric matrix?

Discovery

If is an symmetric matrix, then the following properties are true.

1. is diagonalizable.
2. All eigenvalues of are real.
3. If is an eigenvalue of with multiplicity then has linearly independent 

eigenvectors. That is, the eigenspace of has dimension k.	
k	k,A	

A
A

n � nATHEOREM 7.7

Eigenvalues of 

Symmetric Matrices
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Prove that a symmetric matrix

is diagonalizable.

S O L U T I O N The characteristic polynomial of is

As a quadratic in this polynomial has a discriminant of

Because this discriminant is the sum of two squares, it must be either zero or positive. 
If then and which implies that is already diagonal.
That is,

On the other hand, if then by the Quadratic Formula the character-
istic polynomial of has two distinct real roots, which implies that has two distinct real 
eigenvalues. So, is diagonalizable in this case also.

Find the eigenvalues of the symmetric matrix

and determine the dimensions of the corresponding eigenspaces.

S O L U T I O N The characteristic polynomial of is represented by

�	I � A� � �	 � 1
2
0
0

2
	 � 1

0
0

0
0

	 � 1
2

0
0
2

	 � 1� � �	 � 1�2�	 � 3�2.

A

A � �
1

�2

0

0

�2

1

0

0

0

0

1

�2

0

0

�2

1
�

E X A M P L E  3 Dimensions of the Eigenspaces of a Symmetric Matrix

A
AA

�a � b�2 � 4c2 > 0,

A � �a

0

0

a�.

Ac � 0,a � b�a � b�2 � 4c2 � 0,

� �a � b�2 � 4c2.

� a2 � 2ab � b2 � 4c2

�a � b�2 � 4�ab � c2� � a2 � 2ab � b2 � 4ab � 4c2

	,

�	I � A� � �	 � a
�c

�c
	 � b� � 	2 � �a � b�	 � ab � c2.

A

A � �a

c

c

b�

E X A M P L E  2 The Eigenvalues and Eigenvectors of a 2     2 Symmetric Matrix�
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So, the eigenvalues of are and Because each of these eigenvalues has
a multiplicity of 2, you know from Theorem 7.7 that the corresponding eigenspaces also
have dimension 2. Specifically, the eigenspace of has a basis of 

and the eigenspace of has a basis of 

Orthogonal Matrices

To diagonalize a square matrix you need to find an invertible matrix such that 
is diagonal. For symmetric matrices, you will see that the matrix can be chosen to have
the special property that This unusual matrix property is defined as follows.

(a) The matrix

is orthogonal because

(b) The matrix

is orthogonal because

In parts (a) and (b) of Example 4, the columns of the matrices form orthonormal sets in
and respectively. This suggests the next theorem.R3,R2

P

P�1 � PT � �
3
5

0

�
4
5

0

1

0

4
5

0
3
5
�.

P � �
3
5

0
4
5

0

1

0

�
4
5

0
3
5
�

P�1 � PT � �0

1

�1

0�.

P � � 0

�1

1

0�

E X A M P L E  4 Orthogonal Matrices

P�1 � PT.
P

P�1APPA,

B2 � ��1, �1, 0, 0�, �0, 0, 1, �1��.	2 � 3�0, 0, 1, 1��
��1, 1, 0, 0�,B1 �	1 � �1

	2 � 3.	1 � �1A

A square matrix is called orthogonal if it is invertible and if

P�1 � PT.

PDefinition of an 

Orthogonal Matrix
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P R O O F Suppose the column vectors of form an orthonormal set:

Then the product has the form

Because the set is orthonormal, you have 

and

So, the matrix composed of dot products has the form

This implies that and you can conclude that is orthogonal.
Conversely, if is orthogonal, you can reverse the steps above to verify that the column 

vectors of form an orthonormal set.P
P

PPT � P�1,

PTP � �
1
0
.
.
.

0

0
1
.
.
.

0

. . .

. . .

. . .

0
0
.
.
.

1
� � In.

pi � pi � �pi�2 � 1.i � jpi � pj � 0,

�p1, p2, . . . , pn�

PTP � �
p1 � p1

p2 � p1.
.
.

pn � p1

p1 � p2

p2 � p2.
.
.

pn � p2

. . .

. . .

. . .

p1 � pn

p2 � pn.
.
.

pn � pn

�.

�
p11

p21..
.

pn1

p12

p22..
.

pn2

. . .

. . .

. . .

p1n

p2n..
.

pnn

�PTP � �
p11

p12.
.
.

p1n

p21

p22.
.
.

p2n

. . .

. . .

. . .

pn1

pn2.
.
.

pnn

�
PTP

� �
p11

p21.
.
.

pn1

p12

p22.
.
.

pn2

. . .

. . .

. . .

p1n

p2n.
.
.

pnn

�.

P � �p1� p2 � . . . � pn�

P

An matrix is orthogonal if and only if its column vectors form an orthonormal set.Pn � n
THEOREM 7.8

Property of 

Orthogonal Matrices
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Show that

is orthogonal by showing that Then show that the column vectors of form an
orthonormal set.

S O L U T I O N Because

it follows that and you can conclude that is orthogonal. Moreover, letting

produces

and

So, is an orthonormal set, as guaranteed by Theorem 7.8.

It can be shown that for a symmetric matrix, the eigenvectors corresponding to distinct
eigenvalues are orthogonal. This property is stated in the next theorem.

�p1, p2, p3�

� p1� � � p2� � � p3� � 1.

p1 � p2 � p1 � p3 � p2 � p3 � 0

p1 � �
1
3

�
2
�5

�
2

3�5

� , p2 � �
2
3

1
�5

�
4

3�5

� ,   and p3 � �
2
3

0
   5
3�5

�
PPT � P�1,

� �
1
0
0

0
1
0

0
0
1� � I3,

�
1
3
2
3
2
3

�
2
�5
1
�5

0

�
2

3�5

�
4

3�5
5

3�5

�PPT � �
1
3

�
2
�5

�
2

3�5

2
3

1
�5

�
4

3�5

2
3

0

5

3�5

�
PPPT � I.

P � �
1
3

�
2
�5

�
2

3�5

2
3

1
�5

�
4

3�5

2
3

0

5

3�5

�
E X A M P L E  5 An Orthogonal Matrix
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P R O O F Let and be distinct eigenvalues of with corresponding eigenvectors and So,

and

To prove the theorem, use the matrix form of the dot product shown below.

Now you can write

Because is symmetric,

This implies that and because it follows that 
So, and are orthogonal.

Show that any two eigenvectors of

corresponding to distinct eigenvalues are orthogonal.

S O L U T I O N The characteristic polynomial of is

�	I � A� � �	 � 3

�1

   �1

	 � 3� � �	 � 2��	 � 4�,

A

A � �3

1

1

3�

E X A M P L E  6 Eigenvectors of a Symmetric Matrix

x2x1

x1 � x2 � 0.	1� 	2�	1 � 	2��x1 � x2� � 0,

� 	2�x1 � x2�.
� x1 � �	2x2�
� x1

T�	2x2�
� x1

T�Ax2�
A � AT.A� �x1

TA�x2

� �x1
TAT �x2

� �Ax1�Tx2

� �Ax1� � x2

	1�x1 � x2� � �	1x1� � x2

x1 � x2 � �x11 x12
. . . x1n� �

x21

x22.
.
.

x2n

� � x1
Tx2

Ax2 � 	2x2.Ax1 � 	1x1

x2.x1A	2	1

Let be an symmetric matrix. If and are distinct eigenvalues of then their
corresponding eigenvectors and are orthogonal.x2x1

A,	2	1n � nA
THEOREM 7.9

Property of 

Symmetric Matrices
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which implies that the eigenvalues of are and Every eigenvector corre-
sponding to is of the form

and every eigenvector corresponding to is of the form

So,

and you can conclude that and are orthogonal.

Orthogonal Diagonalization

A matrix is orthogonally diagonalizable if there exists an orthogonal matrix such 
that is diagonal. The following important theorem states that the set of 
orthogonally diagonalizable matrices is precisely the set of symmetric matrices.

P R O O F The proof of the theorem in one direction is fairly straightforward. That is, if you assume 
is orthogonally diagonalizable, then there exists an orthogonal matrix such that

is diagonal. Moreover, because you have 
which implies that So, is symmetric.

The proof of the theorem in the other direction is more involved, but it is 
important because it is constructive. Assume is symmetric. If has an eigenvalue of
multiplicity then by Theorem 7.7, has linearly independent eigenvectors. Through the 
Gram-Schmidt orthonormalization process, this set of vectors can be used to form an 
orthonormal basis of eigenvectors for the eigenspace corresponding to This procedure is
repeated for each eigenvalue of The collection of all resulting eigenvectors is orthogonal
by Theorem 7.9, and you know from the normalization process that the collection is also
orthonormal. Now let be the matrix whose columns consist of these orthonormal eigen-
vectors. By Theorem 7.8, is an orthogonal matrix. Finally, by Theorem 7.5, you can 
conclude that is diagonal. So, is orthogonally diagonalizable.AP�1AP

P
nP

A.
	.

k
k	k,

	AA

AAT � �PDPT�T � �PT�TDTPT � PDPT � A.
A � PDP�1 � PDPT,P�1 � PT,D � P�1AP

P
A

P�1AP � D
PA

x2x1

x1 � x 2 � � s

�s� � �t

t� � st � st � 0,

x2 � �t

t�, t � 0.

	2 � 4

x1 � � s

�s�, s � 0

	1 � 2
	2 � 4.	1 � 2A

Let be an matrix. Then is orthogonally diagonalizable and has real eigenvalues
if and only if is symmetric.A

An � nA
THEOREM 7.10

Fundamental Theorem 

of Symmetric Matrices
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Which matrices are orthogonally diagonalizable?

S O L U T I O N By Theorem 7.10, the orthogonally diagonalizable matrices are the symmetric ones:
and

It was mentioned that the second part of the proof of Theorem 7.10 is constructive. That
is, it gives you steps to follow to diagonalize a symmetric matrix orthogonally. These steps
are summarized as follows.

Find an orthogonal matrix that orthogonally diagonalizes

S O L U T I O N 1. The characteristic polynomial of is

So the eigenvalues are and 
2. For each eigenvalue, find an eigenvector by converting the matrix to reduced

row-echelon form.
	I � A

	2 � 2.	1 � �3

�	I � A� � �	 � 2

�2

   �2

	 � 1� � �	 � 3��	 � 2�.

A

A � ��2

2

2

1�.

P

E X A M P L E  8 Orthogonal Diagonalization

A4.
A1

A4 � �0

0

0

�2�A3 � �3

2

2

0

0

1�

A2 � �
5

2

�1

2

1

8

1

8

0
�A1 � �

1

1

1

1

0

1

1

1

1
�

E X A M P L E  7 Determining Whether a Matrix Is Orthogonally Diagonalizable

Let be an symmetric matrix.

1. Find all eigenvalues of and determine the multiplicity of each.
2. For each eigenvalue of multiplicity 1, choose a unit eigenvector. (Choose any

eigenvector and then normalize it.)
3. For each eigenvalue of multiplicity find a set of linearly independent

eigenvectors. (You know from Theorem 7.7 that this is possible.) If this set is not 
orthonormal, apply the Gram-Schmidt orthonormalization process. 

4. The composite of steps 2 and 3 produces an orthonormal set of eigenvectors. Use
these eigenvectors to form the columns of The matrix will be
diagonal. (The main diagonal entries of are the eigenvalues of )A.D

P�1AP � PTAP � DP.
n

kk 
 2,

A

n � nAOrthogonal Diagonalization

of a Symmetric Matrix
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Eigenvector

The eigenvectors and form an orthogonal basis for Each of these
eigenvectors is normalized to produce an orthonormal basis.

3. Because each eigenvalue has a multiplicity of 1, go directly to step 4.
4. Using and as column vectors, construct the matrix 

Verify that is correct by computing 

Find an orthogonal matrix that diagonalizes

S O L U T I O N 1. The characteristic polynomial of yields the eigenvalues
and has a multiplicity of 1 and has a multiplicity of 2.

2. An eigenvector for is which normalizes to 

u1 �
v1

�v1�
� 	1

3
, �

2

3
, 2

3
.

v1 � �1, �2, 2�,	1

	2	2 � 3. 	1	1 � �6
�	I � A� � �	 � 3�2�	 � 6�,A,

A � �
2

2

�2

2

�1

4

�2

4

�1
�.

P

E X A M P L E  9 Orthogonal Diagonalization

��
2
�5
1
�5

1
�5
2
�5

� � ��3
0

0
2�PTAP � ��

2
�5
1
�5

1
�5
2
�5

� ��2
2

2
1�

P�1AP � PTAP.P

P � ��
2
�5
1
�5

1
�5
2
�5

�
P.p2p1

p2 �
�1, 2�

��1, 2��
�

1

�5
�1, 2� � 	 1

�5
,

2

�5


p1 �
��2, 1�

���2, 1��
�

1

�5
��2, 1� � 	�

2

�5
,

1

�5


R2.�1, 2���2, 1�

�1

2��1

0

�
1
2

0� 2I � A � � 4
�2

�2
1�

��2

1��1

0

2

0��3I � A � ��1
�2

�2
�4�
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3. Two eigenvectors for are and Note that is 
orthogonal to and as guaranteed by Theorem 7.9. The eigenvectors and 
however, are not orthogonal to each other. To find two orthonormal eigenvectors for 
use the Gram-Schmidt process as follows.

These vectors normalize to

4. The matrix has and as its column vectors.

A check shows that

P�1AP � PTAP � �
�6

0

0

0

3

0

0

0

3
�.

P � �
1
3

�
2
3
2
3

2
�5
1
�5

0

�
2

3�5
4

3�5
5

3�5

�
u3u1, u2,P

u3 �
w3

�w3�
� 	�

2

3�5
,

4

3�5
,

5

3�5
.

u2 �
w2

�w2�
� 	 2

�5
,

1
�5

, 0


w3 � v3 � 	 v3 � w2

w2 � w2

w2 � 	�

2

5
, 4

5
, 1


w2 � v2 � �2, 1, 0�

	2,
v3,v2v3,v2

v1v3 � ��2, 0, 1�.v2 � �2, 1, 0�	2

ExercisesSECTION 7.3

In Exercises 1–6, determine whether the matrix is symmetric.

1. 2.

3. 4.

5. 6. �
2
0
3
5

0
11
0

�2

3
0
5
0

5
�2

0
1
��

0
1
2

�1

1
0

�3
2

2
�3

0
1

�1
2
1

�2
�

�
1

�5

�4

�5

3

6

4

6

2
��

4

3

1

�2

1

2

1

2

1
�

� 6

�2

�2

1��1

3

3

�1�
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In Exercises 7–14, find the eigenvalues of the symmetric matrix.
For each eigenvalue, find the dimension of the corresponding 
eigenspace.

7. 8.

9. 10.

11. 12.

13. 14.

In Exercises 15–22, determine whether the matrix is orthogonal.

15. 16.

17. 18.

19.

20.

21.

22.

In Exercises 23–32, find an orthogonal matrix such that 
diagonalizes Verify that gives the proper diagonal form.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

True or False? In Exercises 33 and 34, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false, provide
an example that shows the statement is not true in all cases or cite an
appropriate statement from the text.

33. (a) Let be an matrix. Then is symmetric if and only
if is orthogonally diagonalizable.

(b) The eigenvectors corresponding to distinct eigenvalues are
orthogonal for symmetric matrices.

A
An � nA

A � �
1

1

0

0

1

1

0

0

0

0

1

1

0

0

1

1
�A � �

4

2

0

0

2

4

0

0

0

0

4

2

0

0

2

4
�

A � �
�2

2

4

2

�2

4

4

4

4
�A � �

1

�1

2

�1

1

2

2

2

2
�

A � �
0

3

0

3

0

4

0

4

0
�A � �

0

10

10

10

5

0

10

0

�5
�

A � �
0

1

1

1

0

1

1

1

0
�A � � 2

�2

�2

1 �

A � �4

2

2

4�A � �1

1

1

1�
PTAPA.

PTAPP

�
1
8
0
0

3�7
8

0

1
0

0

0

0
1

0

3�7
8

0
0
1
8
�

�
 1 
10

0

0

 3 
10

�10

�10

0

0

1

0

0

1

0

0

�
 3 
10

0

0

 1 
10

�10

�10
�

�
�2

3

0

�
�2

6

0

2�5
5

�
�5

5

�5
2

0

1
2
�

�
�2

2

0

�2
2

�
�6

6

�6
3

�6
6

�3
3

�3
3

�
�3

3

�
�

�4
5
0
3
5

0

1

0

3
5
0
4
5
��

�4

0

3

0

1

0

3

0

4
�

�
2
3
2
3

�
2
3
1
3
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2

�
�2
2

�2
2
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2

�

�
2

�1

�1

�1

2

�1

�1

�1

2
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0

1

1

1

0

1

1

1

1
�

�
0

4

4

4

2

0

4

0

�2
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0

2

2

2

0

2

2

2

0
�

�
2

1

1

1

2

1

1

1

2
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3

0

0

0
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0

0

0

2
�

�2
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1

1

3�



458 Chapter  7 E igenvalues and E igenvectors

Applications of Eigenvalues and Eigenvectors

Population Growth

Matrices can be used to form models for population growth. The first step in this process is
to group the population into age classes of equal duration. For instance, if the maximum
life span of a member is years, then the age classes are represented by the intervals
shown below.

First age Second age nth age
class class class

The number of population members in each age class is then represented by the age
distribution vector

Over a period of years, the probability that a member of the th age class will survive
to become a member of the age class is given by where

The average number of offspring produced by a member of the th age class is given by 
where

0 � bi, i � 1, 2, .  .  . , n.

bi,i

0 � pi � 1, i � 1, 2, .  .  . , n � 1.

pi,�i � 1�th
iLn

x � �
x1

x2.
.
.

xn

�.

�L
n

,
2L
n 
, .  .  . , ��n � 1�L

n
, L��0,

L
n
,

nL

7.4

34. (a) A square matrix is orthogonal if it is invertible—that is, if

(b) If is an symmetric matrix, then is orthogonally
diagonalizable and has real eigenvalues.

35. Prove that if is an matrix, then and are 
symmetric.

36. Find and for the matrix below.

37. Prove that if is an orthogonal matrix, then 

38. Prove that if and are orthogonal matrices, then and
are orthogonal.

39. Show that the matrix below is orthogonal for any value of 

40. Prove that if a symmetric matrix has only one eigenvalue 
then

41. Prove that if is an orthogonal matrix, then so are and A�1.ATA

A � 	I.
	,A

A � �cos �

sin �

�sin �

cos ��
�.

BA
ABn � nBA

�A� � ±1.A

A � �1

4

�3

�6

2

1�
AATATA

AATATAm � nA

An � nA

P�1 � PT.
P

Number in first age class

Number in second age class

Number in nth age class

...



These numbers can be written in matrix form, as shown below.

Multiplying this age transition matrix by the age distribution vector for a specific time
period produces the age distribution vector for the next time period. That is,

This procedure is illustrated in Example 1.

A population of rabbits raised in a research laboratory has the characteristics listed below.

(a) Half of the rabbits survive their first year. Of those, half survive their second year. The
maximum life span is 3 years.

(b) During the first year, the rabbits produce no offspring. The average number of offspring
is 6 during the second year and 8 during the third year.

The laboratory population now consists of 24 rabbits in the first age class, 24 in the second,
and 20 in the third. How many rabbits will be in each age class in 1 year?

S O L U T I O N The current age distribution vector is

and the age transition matrix is

After 1 year the age distribution vector will be

x2 � Ax1 � �
0

0.5

0

6

0

0.5

8

0

0
� �

24

24

20
� � �

304

12

12
�.

A � �
0

0.5
0

6
0

0.5

8
0
0�.

x1 � �
24

24

20
�

E X A M P L E  1 A Population Growth Model

Axi � xi�1.

A � �
b1

p1

0
.
.
.
0

b2

   0

p2.
.
.

   0

b3

0

0
.
.
.
0

. . .

. . .

. . .

. . .

bn�1

0

0
.
.
.

pn�1

bn

0

0
.
.
.
0
�
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2 � age � 3

1 � age < 2

0 � age < 1

2 � age � 3

1 � age < 2

0 � age < 1
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If the pattern of growth in Example 1 continued for another year, the rabbit population
would be

From the age distribution vectors and you can see that the percent of rabbits 
in each of the three age classes changes each year. Suppose the laboratory prefers a 
stable growth pattern, one in which the percent in each age class remains the same each
year. For this stable growth pattern to be achieved, the age distribution vector
must be a scalar multiple of the th age distribution vector. That is,
So, the laboratory can obtain a growth pattern in which the percent in each age class 
remains constant each year by finding an eigenvector of Example 2 shows how to solve
this problem.

Find a stable age distribution vector for the population in Example 1.

S O L U T I O N To solve this problem, find an eigenvalue and a corresponding eigenvector such that

The characteristic polynomial of is

which implies that the eigenvalues are and 2. Choosing the positive value, let 
To find a corresponding eigenvector, row reduce the matrix to obtain

So, the eigenvectors of are of the form

For instance, if then the initial age distribution vector would be

x1 � �
32

8

2
�
t � 2,

x � �
x1

x2

x3
� � �

16t

4t

t
� � t�

16

4

1
�.

	 � 2

�
1

0

0

0

1

0

�16

�4

0
�.�

2

�0.5

0

�6    

2

�0.5

�8

0

2
�

2I � A
	 � 2.�1

�	I � A� � � 	

�0.5

  0

�6

	

�0.5

�8

0

	� � 	3 � 3	 � 2 � �	 � 1�2�	 � 2�,

A

Ax � 	x.

x	

E X A M P L E  2 Finding a Stable Age Distribution Vector

A.

Axn � xn�1 � 	xn.n
�n � 1�th

x3,x1, x2,

x3 � Ax2 � �
0

0.5

0

6

0

0.5

8

0

0
� �

304

12

12
� � �

168

152

6
�.

Simulation
Explore this concept further with an
electronic simulation available at
college.hmco.com/pic/larsonELA6e.

2 � age � 3

1 � age < 2

0 � age < 1

2 � age � 3

1 � age < 2

0 � age < 1
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and the age distribution vector for the next year would be

Notice that the ratio of the three age classes is still 16 : 4 : 1, and so the percent of the 
population in each age class remains the same.

Systems of Linear Differential Equations (Calculus)

A system of first-order linear differential equations has the form

where each is a function of and If you let

and

then the system can be written in matrix form as 

Solve the system of linear differential equations.

S O L U T I O N From calculus you know that the solution of the differential equation is

So, the solution of the system is

y3 � C3e
2t.

y2 � C2e
� t

y1 � C1e
4t

y � Cekt.

y� � ky

y3� � 2y3

y2� � �y2

y1� � 4y1

E X A M P L E  3 Solving a System of Linear Differential Equations

y� � Ay.

y� � �
y1�

y2�.
.
.

yn�
�,y � �

y1

y2.
.
.

yn

�
yi� � dyidt.tyi

yn� � an1y1 � an2y2 � .  .  . � annyn,

.

.

.

y2� � a21y1 � a22y2 � .  .  . � a2nyn

y1� � a11y1 � a12y2 � .  .  . � a1nyn

x2 � Ax1 � �
0

0.5

0

6

0

0.5

8

0

0
� �

32

8

2
� � �

64

16

4
�.

2 � age � 3

1 � age < 2

0 � age < 1
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The matrix form of the system of linear differential equations in Example 3 is or

So, the coefficients of in the solutions are provided by the eigenvalues of the
matrix

If is a diagonal matrix, then the solution of

can be obtained immediately, as in Example 3. If is not diagonal, then the solution 
requires a little more work. First attempt to find a matrix that diagonalizes Then the
change of variables represented by and produces

where is a diagonal matrix. This procedure is demonstrated in Example 4.

Solve the system of linear differential equations.

S O L U T I O N First find a matrix that diagonalizes The eigenvalues of are 

and with corresponding eigenvectors

and

Diagonalize using the matrix whose columns consist of and to obtain

and

The system represented by has the following form.

The solution of this system of equations is

w2 � C2e
5t.

w1 � C1e
�3t

w1� � �3w1

w2� � 5w2
�w1�

w2�
� � ��3

0

0

5� �
w1

w2
�

w� � P�1APw

P�1AP � ��3

0

0

5�.P�1 � �
1
4

3
4

�1
4

1
4
�,P � � 1

�3

1

1�,

p2p1PA

p2 � �1

1�.p1 � � 1

�3�
	2 � 5,

	1 � �3AA � �3

6

2

�1�.P

y2� � 6y1 � y2

y1� � 3y1 � 2y2

E X A M P L E  4 Solving a System of Linear Differential Equations

P�1AP

w� � P�1APw,Pw� � y� � Ay � APw

y� � Pw�y � Pw
A.P

A

y� � Ay

A
A.

yi � Ci e	 itt

�
y1�

y2�

y3�
� � �

4

0

0

0

�1

0

0

0

2
� �

y1

y2

y3
�.

y� � Ay,
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To return to the original variables and , use the substitution and write

which implies that the solution is

For the systems of linear differential equations in Examples 3 and 4, you found that each
can be written as a linear combination of where are

distinct real eigenvalues of the matrix If has eigenvalues with multiplicity
greater than 1 or if has complex eigenvalues, then the technique for solving the system
must be modified. If you take a course on differential equations you will cover these two
cases. For now, you can get an idea of the type of modification required from the next two
systems of linear differential equations.

1. Eigenvalues with multiplicity greater than 1: The coefficient matrix of the system

is

The only eigenvalue of is and the solution of the system of linear differential
equations is

2. Complex eigenvalues: The coefficient matrix of the system

is

The eigenvalues of are and and the solution of the system of linear
differential equations is

Try checking these solutions by differentiating and substituting into the original systems of
equations.

Quadratic Forms

Eigenvalues and eigenvectors can be used to solve the rotation of axes problem introduced
in Section 4.8. Recall that classifying the graph of the quadratic equation

Quadratic equationax2 � bxy � cy2 � dx � ey � f � 0

y2 � �C2 cos t � C1 sin t.

y1 � C1 cos t � C2 sin t

	2 � �i,	1 � iA

A � �0

1

�1

0� .
y1�

y2�

�

�

�y2

y1

y2 � �2C1 � C2�e2t � 2C2te
2t.

y1 � C1e
2t � C2te

2t

	 � 2,A

A � � 0

�4

1

4� .
y1�

y2�

�

� �4y1 �

y2

4y2

A
AA.n � n

	1, 	2, .  .  . , 	ne	1t, e	2t, .  .  . , e	nt,yi

y2 � �3w1 � w2 � �3C1e
�3t � C2e

5t.

y1 � w1 � w2 � C1e
�3t � C2e

5t

� y1

y2
� � � 1

�3

1

1� �
w1

w2
�,

y � Pwy2y1
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is fairly straightforward as long as the equation has no -term (that is, ). If the equa-
tion has an -term, however, then the classification is accomplished most easily by first
performing a rotation of axes that eliminates the -term. The resulting equation (relative to
the new -axes) will then be of the form

You will see that the coefficients and are eigenvalues of the matrix

The expression

Quadratic form

is called the quadratic form associated with the quadratic equation 
and the matrix is called the matrix of the quadratic form. Note that

the matrix is symmetric by definition. Moreover, the matrix will be diagonal if and only
if its corresponding quadratic form has no -term, as illustrated in Example 5.

Find the matrix of the quadratic form associated with each quadratic equation.

(a) (b)

S O L U T I O N (a) Because and the matrix is

Diagonal matrix (no -term)

(b) Because and the matrix is

Nondiagonal matrix ( -term)

In standard form, the equation is

which is the equation of the ellipse shown in Figure 7.3. Although it is not apparent by
simple inspection, the graph of the equation is similar. In
fact, if you rotate the - and -axes counterclockwise to form a new -coordinate
system, this equation takes the form

which is the equation of the ellipse shown in Figure 7.4.

�x��2

32
�

�y��2

22
� 1,

x�y�45�yx
13x2 � 10xy � 13y2 � 72 � 0

x2

32
�

y2

22
� 1,

4x2 � 9y2 � 36 � 0

xyA � � 13

�5

�5

13�.

c � 13,a � 13, b � �10,

xyA � �4

0

0

9�.

c � 9,a � 4, b � 0,

13x2 � 10xy � 13y2 � 72 � 04x2 � 9y2 � 36 � 0

E X A M P L E  5 Finding the Matrix of a Quadratic Form

xy
AA

Adx � ey � f � 0,
ax2 � bxy � cy2 �

ax2 � bxy � cy2

A � � a

b2

b2

c�.

c�a�

a��x��2 � c��y� �2 � d�x� � e�y� � f� � 0.

x�y�
xy

xy
b � 0xy

Figure 7.3

−2 −1
−1

2

−3

1

3

x

x2 y2

32 22+ = 1

y
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To see how the matrix of a quadratic form can be used to perform a rotation of axes,
let

Then the quadratic expression can be written in matrix
form as follows.

If no rotation is necessary. But if then because is symmetric, you can apply
Theorem 7.10 to conclude that there exists an orthogonal matrix such that is
diagonal. So, if you let

it follows that and you have

The choice of the matrix must be made with care. Because is orthogonal, its 
determinant will be It can be shown (see Exercise 55) that if is chosen so 
then will be of the form

where gives the angle of rotation of the conic measured from the positive -axis to the
positive -axis. This brings you to the next theorem, the Principal Axes Theorem.x�

x�

P � �cos �

sin �

�sin �

cos ��,

P
�P� � 1,P±1.

PP

� �X� �TDX�.

� �X� �TPTAPX�

XTAX � �PX��TA�PX��

X � PX�,

PTX � X� � � x�

y��,

PTAP � DP
Ab � 0,b � 0,

� ax2 � bxy � cy2 � dx � ey � f

XTAX � �d e�X � f � �x y� � a

b2

b2

c� �
x

y� � �d e� � x

y� � f

ax2 � bxy � cy2 � dx � ey � f

X � � x

y�.

For a conic whose equation is the rotation given
by eliminates the -term if is an orthogonal matrix, with that 
diagonalizes That is,

where and are eigenvalues of The equation of the rotated conic is given by

	1�x� �2 � 	2�y� �2 � �d e�PX� � f � 0.

A.	2	1

P�AP � �	1

0

0

	2
�,

A.
�P� � 1,PxyX � PX�

ax2 � bxy � cy2 � dx � ey � f � 0,Principal Axes Theorem

Figure 7.4

13x2 − 10xy + 13y2 −72 = 0

−1−3 3

−3

−2

1

3y ′ x ′

x
45°

y
(x ′)2 (y ′)2

32 22+ = 1

1
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R E M A R K : Note that the matrix product has the form

Perform a rotation of axes to eliminate the -term in the quadratic equation 

S O L U T I O N The matrix of the quadratic form associated with this equation is

Because the characteristic polynomial of is

it follows that the eigenvalues of are and So, the equation of the rotated
conic is 

which, when written in the standard form

is the equation of an ellipse. (See Figure 7.4.)

In Example 6, the eigenvectors of the matrix are

and

which you can normalize to form the columns of as follows.

Note first that which implies that is a rotation. Moreover, because cos 
you can conclude that as shown in Figure 7.4.

The orthogonal matrix specified in the Principal Axes Theorem is not unique. Its 
entries depend on the ordering of the eigenvalues and and on the subsequent choice
of eigenvectors and For instance, in the solution of Example 6, any of the following
choices of (see the next page) would have worked.P

x2.x1

	2	1

P
� � 45�,1�2 � sin 45� ,

45� �P�P� � 1,

� �cos �

sin �

�sin �

cos ��P � �
  1
�2
  1
�2

�
  1
�2
  1
�2

�
P,

x2 � ��1

1�,x1 � �1

1�
A

�x��2

32
�

�y� �2

22
� 1,

8�x� �2 � 18�y� �2 � 72 � 0,

	2 � 18.	1 � 8A

�	 � 13

5

5

	 � 13 � � �	 � 13�2 � 25 � �	 � 8��	 � 18�,

A

A � � 13

�5

�5

13�.

10xy � 13y2 � 72 � 0.13x2 �

xy

E X A M P L E  6 Rotation of a Conic

�d e�PX� � �d cos � � e sin ��x� � ��d sin � � e cos ��y�.

�d e�PX�
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For any of these choices of the graph of the rotated conic will, of course, be the same.
(See Figure 7.5.)

Figure 7.5

The steps used to apply the Principal Axes Theorem are summarized as follows.

1. Form the matrix and find its eigenvalues and 
2. Find eigenvectors corresponding to and Normalize these eigenvectors to form the

columns of 
3. If then multiply one of the columns of by to obtain a matrix of the

form

4. The angle represents the angle of rotation of the conic.
5. The equation of the rotated conic is 

Example 7 shows how to apply the Principal Axes Theorem to rotate a conic whose
center has been translated away from the origin.

	1�x� �2 � 	2�y� �2 � �d e�PX� � f � 0.
�

P � �cos �

sin �

�sin �

cos ��.

�1P�P� � �1,
P.

	2.	1

	2.	1A
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Perform a rotation of axes to eliminate the -term in the quadratic equation

S O L U T I O N The matrix of the quadratic form associated with this equation is

The eigenvalues of are and with corresponding eigenvectors of
and This implies that the matrix is 

where

Because and you can conclude that the angle of 
rotation is Finally, from the matrix product

you can conclude that the equation of the rotated conic is

In standard form, the equation

is the equation of a hyperbola. Its graph is shown in Figure 7.6.

Quadratic forms can also be used to analyze equations of quadric surfaces in space,
which are the three-dimensional analogues of conic sections. The equation of a quadric 
surface in space is a second-degree polynomial of the form

There are six basic types of quadric surfaces: ellipsoids, hyperboloids of one sheet,
hyperboloids of two sheets, elliptic cones, elliptic paraboloids, and hyperbolic paraboloids.
The intersection of a surface with a plane, called the trace of the surface in the plane, is
useful to help visualize the graph of the surface in space. The six basic types of quadric 
surfaces, together with their traces, are shown on the next two pages.

ax2 � by2 � cz2 � dxy � exz � fyz � gx � hy � iz � j � 0.

�x� � 1�2

12
�

�y� � 4�2

22
� 1

8�x� �2 � 2�y��2 � 16x� � 16y� � 32 � 0.

� �16x� � 16y�,

�d e�PX� � �16�2 0� ��
  1
�2
  1
�2

�
  1
�2

�
  1
�2

� �x�

y��

135�.
sin 135� � 1�2,cos 135� � �1�2

�P� � 1.P � ��
  1
�2
  1
�2

�
  1
�2

�
  1
�2

� � �cos �

sin �

�sin �

cos ��,

Px2 � ��1, �1�.x1 � ��1, 1�
	2 � �2,	1 � 8A

A � � 3

�5

�5

3�.

3x2 � 10xy � 3y2 � 16�2x � 32 � 0.

xy
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x

yz-trace

no xy-trace

xz-trace
z

y
x

z

yz-trace

xy-trace

xz-trace

y
x

z

y
x

z

yz-trace

xy-trace

xz-trace

y

x

z

y

x

z Ellipsoid

Trace Plane

Ellipse Parallel to xy-plane
Ellipse Parallel to xz-plane
Ellipse Parallel to yz-plane

The surface is a sphere if a � b � c � 0.

x2

a2
�

y2

b2
�

z2

c2
� 1

Hyperboloid of One Sheet

Trace Plane

Ellipse Parallel to xy-plane
Hyperbola Parallel to xz-plane
Hyperbola Parallel to yz-plane

The axis of the hyperboloid corresponds to
the variable whose coefficient is negative.

x2

a2
�

y2

b2
�

z2

c2
� 1
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Hyperboloid of Two Sheets

Trace Plane

Ellipse Parallel to xy-plane
Hyperbola Parallel to xz-plane
Hyperbola Parallel to yz-plane

The axis of the hyperboloid corresponds to
the variable whose coefficient is positive.
There is no trace in the coordinate plane
perpendicular to this axis.

z2

c2
�

x2

a2
�

y2

b2
� 1
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Hyperbolic Paraboloid

Trace Plane

Hyperbola Parallel to xy-plane
Parabola Parallel to xz-plane
Parabola Parallel to yz-plane

The axis of the paraboloid corresponds to 
the variable raised to the first power.

z �
y2

b2
�

x2

a2

y

x

yz-trace

xy-trace

xz-trace

z

y

x

z

y
x

xy-trace
(one point)

xz-traceyz-trace z

yx

z

x
y

xy-trace
(one point)

yz-trace

xz-trace
z

y
x

z Elliptic Cone

Trace Plane

Ellipse Parallel to xy-plane
Hyperbola Parallel to xz-plane
Hyperbola Parallel to yz-plane

The axis of the cone corresponds to the
variable whose coefficient is negative. The
traces in the coordinate planes parallel to
this axis are intersecting lines.
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�

z2

c2
� 0

Elliptic Paraboloid

Trace Plane

Ellipse Parallel to xy-plane
Parabola Parallel to xz-plane
Parabola Parallel to yz-plane

The axis of the paraboloid corresponds to
the variable raised to the first power.
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x2
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The quadratic form of the equation

Quadric surface

is defined as

Quadratic form

The corresponding matrix is

In its three-dimensional version, the Principal Axes Theorem relates the eigenvalues and
eigenvectors of to the equation of the rotated surface, as shown in Example 8.

Perform a rotation of axes to eliminate the -term in the quadratic equation

S O L U T I O N The matrix associated with this quadratic equation is

which has eigenvalues of and So, in the rotated -system, the
quadratic equation is which in standard form is

The graph of this equation is an ellipsoid. As shown in Figure 7.7, the -axes represent
a counterclockwise rotation of about the -axis. Moreover, the orthogonal matrix

whose columns are the eigenvectors of has the property that is diagonal.PTAPA,
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5
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A
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xz
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A

A � �
a

d
2
e
2

d
  2

b

f

  2

e
2
f

2

c
� .

ax2 � by2 � cz2 � dxy � exz � fyz.
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ExercisesSECTION 7.4

Population Growth

In Exercises 1–4, use the age transition matrix and age distribution
vector to find the age distribution vectors 

1.

2.

3.

4.

5. Find a stable age distribution vector for the age transition matrix
in Exercise 1.

6. Find a stable age distribution vector for the age transition matrix
in Exercise 2.

7. Find a stable age distribution vector for the age transition matrix
in Exercise 3.

8. Find a stable age distribution vector for the age transition matrix
in Exercise 4.

9. A population has the characteristics listed below.

(a) A total of 75% of the population survives its first year.
Of that 75%, 25% survives the second year. The maxi-
mum life span is 3 years.

(b) The average number of offspring for each member of
the population is 2 the first year, 4 the second year, and
2 the third year.

The population now consists of 120 members in each of the
three age classes. How many members will there be in each age
class in 1 year? In 2 years?

10. A population has the characteristics listed below.

(a) A total of 80% of the population survives its first year.
Of that 80%, 25% survives the second year. The maxi-
mum life span is 3 years.

(b) The average number of offspring for each member of the
population is 3 the first year, 6 the second year, and 3 the
third year.

The population now consists of 150 members in each of the
three age classes. How many members will there be in each age
class in 1 year? In 2 years?

11. A population has the characteristics listed below.

(a) A total of 60% of the population survives its first 
year. Of that 60%, 50% survives the second year. The
maximum life span is 3 years.

(b) The average number of offspring for each member of
the population is 2 the first year, 5 the second year, and
2 the third year.

The population now consists of 100 members in each of the
three age classes. How many members will there be in each age
class in 1 year? In 2 years?

12. Find the limit (if it exists) of as n approaches infinity for
the following matrices.

and

Systems of Linear Differential Equations
(Calculus)

In Exercises 13–18, solve the system of first-order linear differen-
tial equations.

13. 14.

15. 16.

17. 18.

In Exercises 19–26, solve the system of first-order linear differen-
tial equations.

19. 20.

21. 22.

23. 24.

y3� �          y3y3� �          4y3

y2� �          3y2 � 4y3y2� �  �4y1 � 4y2 � 10y3

y1� �  �2y1     � y3y1� �    �  3y2 � 5y3

y2� �  2y1 � 4y2y2� �  2y1 � y2

y1� �  y1 � y2y1� �  y1 � 2y2

y2� �  �2y1 �  8y2y2� �      2y2

y1� �  y1 � 4y2y1� �  y1 � 4y2

y3� �  y3y3� �  y3

y2� �  �2y2y2� �  �y2

y1� �  �y1y1� �  2y1

y3� �  �3y3y3� �  y3

y2� �  �2y2y2� �  6y2

y1� �  5y1y1� �  �y1

y2� �  4y2y2� �  y2

y1� �  �3y1y1� �  2y1

x1 � �a

a�A � �0
1
2

2

0�

Anx1

A � �
0
1
4

0

0

2

0

1

0

2

0

0
1
2

0

0

0

0
�, x1 � �

100

100

100

100
�

A � �
0

1

0

3

0
1
2

4

0

0
�, x1 � �

12

12

12
�

A � � 0
1

16

4

0�, x1 � �160

160�

A � �0
1
2

2

0�, x1 � �10

10�

x2 and x3.x1

A
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25. 26.

In Exercises 27–30, write out the system of first-order linear differ-
ential equations represented by the matrix equation Then
verify the indicated general solution.

27.

28.

29.

30.

Quadratic Forms

In Exercises 31–36, find the matrix of the quadratic form associated
with the equation.

31.

32.

33.

34.

35.

36.

In Exercises 37–42, find the matrix of the quadratic form associ-
ated with the equation. In each case, find the eigenvalues of and
an orthogonal matrix such that is diagonal.

37.

38.

39.

40.

41.

42.

In Exercises 43–50, use the Principal Axes Theorem to perform a
rotation of axes to eliminate the -term in the quadratic equation.
Identify the resulting rotated conic and give its equation in the new
coordinate system.

43.

44.

45.

46.

47.

48.

49.

50.

In Exercises 51–54, find the matrix of the quadratic form 
associated with the equation. Then find the equation of the rotated
quadric surface in which the -, -, and -terms have been 
eliminated.

51.

52.

53.

54.

55. Let be a orthogonal matrix such that Show 
that there exists a number such that

P � �cos �

sin �

�sin �

cos ��.

�, 0 � � < 2�,
�P� � 1.2 � 2P

x2 � y2 � z2 � 2xy � 8 � 0

x2 � 2y2 � 2z2 � 2yz � 1 � 0

2x2 � 2y2 � 2z2 � 2xy � 2xz � 2yz � 1 � 0

3x2 � 2xy � 3y2 � 8z2 � 16 � 0

yzxzxy

A

5x2 � 2xy � 5y2 � 10�2x � 0

xy � x � 2y � 3 � 0

8x2 � 8xy � 8y2 � 10�2x � 26�2y � 31 � 0

2x2 � 4xy � 2y2 � 6�2x � 2�2y � 4 � 0

2x2 � 4xy � 5y2 � 36 � 0

7x2 � 32xy � 17y2 � 50 � 0

x2 � 4xy � y2 � 9 � 0

13x2 � 8xy � 7y2 � 45 � 0

xy

17x2 � 32xy � 7y2 � 75 � 0

16x2 � 24xy � 9y2 � 60x � 80y � 100 � 0

3x2 � 2�3xy � y 2 � 2x � 2�3y � 0

13x2 � 6�3 xy � 7y 2 � 16 � 0

5x2 � 2xy � 5y2 � 10x � 17 � 0

2x2 � 3xy � 2y2 � 10 � 0

PTAPP
A

A

16x2 � 4xy � 20y2 � 72 � 0

10xy � 10y2 � 4x � 48 � 0

12x2 � 5xy � x � 2y � 20 � 0

9x2 � 10xy � 4y2 � 36 � 0

x2 � 4xy � y2 � 4 � 0

x2 � y2 � 4 � 0

y1 �

y2 �

y3 �

C1e
t

�C1 � C2�et

�C1 � 2C2 � 2C3�et

�

�

�

C2te
t

�C2 � 2C3�tet

�C2 � 4C3�tet

�

�

�

C3t
2et

C3t
2et

C3t
2et

A � �
0

0

1

1

0

�3

0

1

3
�,

y1 �

y2 �

y3 �

C1 � C2 cos 2t
2C3 cos 2t

�4C2 cos 2t

�

�

�

C3 sin 2t
2C2 sin 2t
4C3 sin 2t

A � �
0

0

0

1

0

�4

0

1

0
�,

y1 � C1e
t cos t � C2e

t sin t
y2 � �C2e

t cos t � C1e
t sin t

A � �1

1

�1

1�,

y1 � C1e
t � C2te

t

y2 � C2e
tA � �1

0
1
1�,

y� � Ay.

y3� �  y1      � y3y3� �          3y3

y2� �  y1 � y2    y2� �      2y2 � 4y3

y1� �  2y1 � y2 � y3y1� �  y1 � 2y2 � y3
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Review ExercisesCHAPTER 7

In Exercises 1–6, find (a) the characteristic equation of (b) the
real eigenvalues of and (c) a basis for the eigenspace correspon-
ding to each eigenvalue.

1. 2.

3. 4.

5. 6.

In Exercises 7 and 8, use a graphing utility or computer software
program to find (a) the characteristic equation of (b) the real
eigenvalues of and (c) a basis for the eigenspace corresponding
to each eigenvalue.

7. 8.

In Exercises 9–12, determine whether is diagonalizable. If it is,
find a nonsingular matrix such that is diagonal.

9. 10.

11. 12.

13. Show that if then the transformation for a 
counterclockwise rotation through an angle has no real 
eigenvalues.

14. For what value(s) of a does the matrix

have the characteristics listed below?

(a) has an eigenvalue of multiplicity 2.
(b) has and 2 as eigenvalues.
(c) has real eigenvalues.

Writing In Exercises 15–18, explain why the matrix is not 
diagonalizable.

15. 16.

17. 18.

In Exercises 19–22, determine whether the matrices are similar. If
they are, find a matrix such that 

19.

20.

21.

22.

In Exercises 23–28, determine whether the matrix is symmetric,
orthogonal, both, or neither.

23. 24.

25. 26.

27. 28. A � �
4
5

0

�
3
5

0

1

0

3
5

0
4
5
�A � �

� 2
3
2
3
1
3

1
3
2
3

�
2
3

�
2
3

�
1
3
2
3

�

A � �
�3
3
�3
3
�3
3

�3
3

2�3
3

0

�3
3

0

�3
3

�A � �
0

0

1

0

1

0

1

0

1
�

A � �
2�5

5
�5

5

�5

5

�
2�5
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In Exercises 29–32, find an orthogonal matrix that diagonalizes 

29. 30.

31. 32.

In Exercises 33–40, find the steady state probability vector (if it
exists) for the matrix. An eigenvector v of an matrix is called
a steady state probability vector if and the components of

add up to 1.

33. 34.

35. 36.

37. 38.

39. 40.

41. Prove that if is an symmetric matrix, then is 
symmetric for any matrix 

42. Show that the characteristic equation of

is
A is called the companion matrix of the 

polynomial

In Exercises 43 and 44, use the result of Exercise 42 to find the
companion matrix of the polynomial and find the eigenvalues 
of

43.

44.

45. The characteristic equation of the matrix

is Because you
can find powers of A by the process shown below.

Use this process to find the matrices and 

46. Repeat Exercise 45 for the matrix

47. Let be an matrix.

(a) Prove or disprove that an eigenvector of is also an
eigenvector of 

(b) Prove or disprove that an eigenvector of is also an
eigenvector of 

48. Let be an matrix. Prove that if then is 
an eigenvector of What is the corresponding 
eigenvalue?

49. Let and be matrices. Prove that if is nonsingular,
then is similar to 

50. (a) Find a symmetric matrix such that for the matrix

(b) Generalize the result of part (a) by proving that if A is an
symmetric matrix with positive eigenvalues, then

there exists a symmetric matrix such that 
51. Find an orthogonal matrix such that is diagonal for the

matrix

52. Writing Let be an idempotent matrix (that is,
). Describe the eigenvalues of 

53. Writing The matrix below has an eigenvalue of 
multiplicity 4.

(a) Under what conditions is diagonalizable?
(b) Under what conditions does the eigenspace of 

have dimension 1? 2? 3?
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54. Determine all symmetric matrices that have 0 as their only
eigenvalue.

True or False? In Exercises 55 and 56, determine whether each
statement is true or false. If a statement is true, give a reason or cite
an appropriate statement from the text. If a statement is false, provide
an example that shows the statement is not true in all cases or cite an
appropriate statement from the text.

55. (a) An eigenvector of an matrix is a nonzero vector 
in such that Ax is a scalar multiple of 

(b) Similar matrices may or may not have the same eigenvalues.
(c) To diagonalize a square matrix you need to find an 

invertible matrix such that is diagonal.

56. (a) An eigenvalue of a matrix is a scalar such that
det

(b) An eigenvector may be the zero vector 0.

(c) A matrix is orthogonally diagonalizable if there exists an
orthogonal matrix P such that is diagonal.

Population Growth

In Exercises 57–60, use the age transition matrix and the age 
distribution vector to find the age distribution vectors and 
Then find a stable age distribution vector for the population.

57.

58.

59.

60.

61. A population has the characteristics listed below.

(a) A total of 90% of the population survives its first year. Of
that 90%, 75% survives the second year. The maximum
life span is 3 years.

(b) The average number of offspring for each member of the
population is 4 the first year, 6 the second year, and 2 the
third year.

The population now consists of 120 members in each of the
three age classes. How many members will there be in each age
class in 1 year? In 2 years?

62. A population has the characteristics listed below.

(a) A total of 75% of the population survives its first year. Of
that 75%, 60% survives the second year. The maximum
life span is 3 years.

(b) The average number of offspring for each member of the
population is 4 the first year, 8 the second year, and 2 the
third year.

The population now consists of 120 members in each of the
three age classes. How many members will there be in each age
class in 1 year? In 2 years?

Systems of Linear Differential Equations
(Calculus)

In Exercises 63–66, solve the system of first-order linear differen-
tial equations.

63. 64.

65. 66.

Quadratic Forms

In Exercises 67–70, find the matrix of the quadratic form associ-
ated with the equation. In each case, find an orthogonal matrix 
such that is diagonal. Sketch the graph of each equation.

67.

68.

69.

70. 9x2 � 24xy � 16y2 � 400x � 300y � 0

xy � 2 � 0
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ProjectsCHAPTER 7

1 Population Growth and Dynamical Systems (I)

Systems of differential equations often arise in biological applications of population
growth of various species of animals. These equations are called dynamical systems 
because they describe the changes in a system as functions of time. Suppose that over
time you are studying the populations of predator sharks and their small fish
prey One simple model for the relative growths of these populations is

Predator

Prey

where and are constants that depend on the particular species being studied
and on factors such as environment, available food, other competing species, and so
on. Generally, the constants and are positive, reflecting the growth rates of the
individual species. If the species are in a predator–prey relationship, then and

indicate that an increase in prey fish would cause an increase in whereas
an increase in the predator sharks would cause a decrease in 

Suppose the system of linear differential equations shown below models the popula-
tions of sharks and prey fish with the given initial populations at time 

1. Use the diagonalization techniques of this chapter to find the populations
and at any time 

2. Interpret the solutions in terms of the long-term population trends for the
two species. Does one species ultimately disappear? Why or why not?

3. If you have access to a computer software program or graphing utility, graph
the solutions and over the domain 

4. Use the explicit solution found in part 1 to explain why the quotient
approaches a limit as increases.

5. If you have access to a computer software program or graphing utility that
can solve differential equations numerically, use it to graph the solution of
the original system of equations. Does this numerical approximation appear
to be accurate?

ty2�t��y1�t�

0 
 t 
 3.y2�t�y1�t�

t > 0.y2�t�y1�t�

 y2��t� �  �0.4y1�t� �  3.0y2�t�      y2�0� � 121

 y1��t� �  0.5y1�t� �  0.6y2�t�      y1�0� � 36

t � 0.y2�t�y1�t�

y2.y1

y1,y2c < 0
b > 0

da

da, b, c,

y2��t� � cy1�t� � dy2�t�

y1��t� � ay1�t� � by2�t�

y2�t�.
y1�t�t
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For Further Reference You can learn more about dynamical systems and popula-
tion modeling in most books on differential equations. For example, Differential
Equations and Their Applications, fourth edition, by Martin Braun, Springer-Verlag,
1993, discusses the theory and applications of systems of linear differential equations.
An especially interesting application of nonlinear differential equations is given in
Section 4.10: “Predator-prey problems; or why the percentage of sharks caught in the
Mediterranean Sea rose dramatically during World War I.”

2 The Fibonacci Sequence

The Fibonacci sequence is named after the Italian mathematician Leonard Fibonacci
of Pisa (1170–1250). The simplest way to form this sequence is to define the first two
terms as and and then define the th term as the sum of its two 
immediate predecessors. That is,

So, the third term is the fourth term is and so on. The 
formula is called recursive because the first terms must be
calculated before the th term can be calculated. Is it possible to find an explicit 
formula for the th term of the Fibonacci sequence? In this project, you will use
eigenvalues and diagonalization to derive such a formula.

1. Use the formula to calculate the first 12 terms in the
Fibonacci sequence.

2. Explain how the matrix identity

can be used to generate recursively the Fibonacci sequence.

3. Starting with show that where 

4. Find a matrix that diagonalizes 
5. Derive an explicit formula for the th term of the Fibonacci sequence. Use

this formula to calculate and 
6. Use the explicit formula for the th term of the Fibonacci sequence together

with a computer or graphing utility to find and 
7. Calculate the quotient for various large values of Does the 

quotient appear to be approaching a fixed number as tends to infinity?
8. Determine the limit of as approaches infinity. Do you recognize

this number?

For Further Reference You can learn more about Fibonacci numbers in most books
on number theory. You might find it interesting to look at the Fibonacci Quarterly,
the official journal of the Fibonacci Association.
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CHAPTERS 6 & 7

Take this test as you would take a test in class. After you are done, check your work against the 
answers in the back of the book.

1. Determine whether the function is a linear transfor-
mation.

2. Determine whether the function is a linear transformation.
3. Let be the linear transformation defined by where

Find (a) and (b) the preimage of 
4. Find the kernel of the linear transformation 

5. Let be the linear transformation represented by where

Find a basis for (a) the kernel of and (b) the range of (c) Determine the rank and 
nullity of 

6. Find the standard matrix for the linear transformation represented by

7. Find the standard matrix of the linear transformation that projects an 
arbitrary vector onto the vector

as shown in Figure 7.8. Use this matrix to find the images of the vectors and 

8. Find the inverse of the linear transformation represented by 
Verify that 

9. Find the matrix of the linear transformation relative to the bases
for and for Use this matrix

to find the image of the vector 
10. Let and be bases for 

(a) Find the matrix of relative to the basis 
(b) Find the transition matrix from to 
(c) Find the matrix of relative to the basis 

(d) Find 

(e) Verify your answer in part (d) by finding and 

11. Find the eigenvalues and the corresponding eigenvectors of the matrix
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12. Find the eigenvalues and the corresponding eigenvectors of the matrix

13. Find a nonsingular matrix such that is diagonal if

14. Find a basis for such that the matrix for 
relative to is diagonal.

15. Find an orthogonal matrix such that diagonalizes the symmetric matrix

16. Use the Gram-Schmidt orthonormalization process to find an orthogonal matrix such
that diagonalizes the symmetric matrix

17. Solve the system of differential equations.

18. Find the matrix of the quadratic form associated with the quadratic equation

19. A population has the characteristics listed below.

(a) A total of 80% of the population survives its first year. Of that 80%, 40% survives its
second year. The maximum life span is 3 years.

(b) The average number of offspring for each member of the population is 3 the first year,
6 the second year, and 3 the third year.

The population now consists of 150 members in each of the three age classes. How many
members will there be in each age class in 1 year? In 2 years?

20. Let be an matrix. Define the terms eigenvalue and eigenvector of How many
eigenvalues can have?

21. Define an orthogonal matrix and determine the possible values of its determinant.
22. Prove that if is similar to and is diagonalizable, then is diagonalizable.
23. Prove that if 0 is an eigenvalue of then is singular.
24. Prove that the eigenvectors corresponding to distinct eigenvalues of a symmetric matrix are

orthogonal.
25. Prove that the range of a linear transformation is a subspace of 
26. Prove that a linear transformation is one-to-one if and only if its kernel is 
27. Find all eigenvalues of if A2 � O.A

�0�.
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AA,
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0
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Mathematical Induction and Other Forms of Proofs

In this appendix you will study some basic strategies for writing mathematical proofs—
mathematical induction, proof by contradiction, and the use of counterexamples.

Mathematical Induction

To see the need for using mathematical induction, study the problem situation in the 
next example.

Use the pattern to propose a formula for the sum of the first odd integers.

S O L U T I O N Notice that the sums on the right are equal to the squares and Judging from
this pattern, you can surmise that the sum of the first odd integers is 

Although this formula is valid, it is important to see that recognizing a pattern and then
simply jumping to the conclusion that the pattern must be true for all values of is not a
logically valid method of proof. There are many examples in which a pattern appears to be
developing for small values of and then at some point the pattern fails. One of the most
famous cases of this was the conjecture by the French mathematician Pierre de Fermat
(1601–1665), who speculated that all numbers of the form

are prime. For 1, 2, 3, and 4, the conjecture is true.

The size of the next Fermat number is so great that it was 
difficult for Fermat to determine whether it was prime or not. Another well-known 

�F5 � 4,294,967,297�

F4 � 65,537

F3 � 257

F2 � 17

F1 � 5

F0 � 3

n � 0,

n � 0, 1, 2, . . .Fn � 22n
� 1,

n

n

1 � 3 � 5 � 7 � . . . � �2n � 1� � n2.

n2,n
52.42,32,22,12,

 1 � 3 � 5 � 7 � 9 � 25

 1 � 3 � 5 � 7 � 16

 1 � 3 � 5 � 9

 1 � 3 � 4

 1 � 1

n

E X A M P L E  1 Sum of Odd Integers

APPENDIX
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mathematician, Leonhard Euler (1707–1783), later found the factorization

which proved that is not prime and Fermat’s conjecture was false.
Just because a rule, pattern, or formula seems to work for several values of you cannot

simply decide that it is valid for all values of without proving it to be so. One legitimate
method of proof for such conjectures is the Principle of Mathematical Induction.

In the next example, the Principle of Mathematical Induction is used to prove the 
conjecture from Example 1.

Use mathematical induction to prove that the following formula is valid for all positive 
integers 

S O L U T I O N Mathematical induction consists of two distinct parts. First, you must show that the formula
is true when 

1. When the formula is valid because 

The second part of mathematical induction has two steps. The first step is to assume the
formula is valid for some integer (the induction hypothesis). The second step is to use
this assumption to prove that the formula is valid for the next integer,

2. Assuming the formula

is true, you must show that the formula

is true. Notice in the steps shown below that because is the th term of the sum,
is the st term.

from induction hypothesis.

� �k � 1�2

Sk � k2� k2 � 2k � 1

� Sk � �2k � 1�
� �1 � 3 � 5 � 7 � . . . � �2k � 1�� � �2k � 1�

Sk�1 � 1 � 3 � 5 � 7 � . . . � �2k � 1� � �2�k � 1� � 1�

�k � 1��2�k � 1� � 1�
k�2k � 1�

Sk�1 � �k � 1�2

Sk � 1 � 3 � 5 � 7 � . . . � �2k � 1� � k2

k � 1.
k

S1 � 1 � 12.n � 1,

n � 1.

Sn � 1 � 3 � 5 � 7 � . . . � �2n � 1� � n2

n.

E X A M P L E  2 Using Mathematical Induction

n
n,

F5

F5 � 4,294,967,297 � �641��6,700,417�,

Let be a statement involving the positive integer If

1. is true, and
2. the truth of implies the truth of for every positive integer then must be

true for all positive integers n.
Pnk,Pk�1Pk

P1

n.PnPrinciple of 

Mathematical Induction
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Combining the results of parts (1) and (2), you can conclude by mathematical induction that
the formula is valid for all positive integers 

A well-known illustration used to explain why mathematical induction works is the 
unending line of dominoes shown in the figure at the left. If the line actually contains 
infinitely many dominoes, then it is clear that you could not knock the entire line down 
by knocking down only one domino at a time. Suppose, however, it were true that each
domino would knock down the next one as it fell. Then you could knock them all down
simply by pushing the first one and starting a chain reaction.

Mathematical induction works in the same way. If the truth of implies the truth of
and if is true, then the chain reaction proceeds as follows:

implies

implies

implies and so on.

In the next example you will see the proof of a formula that is often used in calculus.

Use mathematical induction to prove the formula for the sum of the first squares.

S O L U T I O N 1. The formula is valid when because

2. Assuming the formula is true for 

you must show that it is true for 

To do this, write as the sum of and the st term, as follows.

Induction hypothesis

�
k�k � 1��2k � 1� � 6�k � 1�2

6

�
k�k � 1��2k � 1�

6
� �k � 1�2

� �12 � 22 � 32 � 42 � . . . � k2� � �k � 1�2

Sk�1 � 12 � 22 � 32 � 42 � . . . � k2 � �k � 1�2

�k � 1�2,�k � 1�SkSk�1

Sk�1 �
�k � 1���k � 1� � 1� �2�k � 1� � 1�

6
�

�k � 1��k � 2��2k � 3�
6

.

k � 1,

Sk � 12 � 22 � 32 � 42 � . . . � k2 �
k�k � 1��2k � 1�

6
,

k,

S1 � 12 �
1�1 � 1��2�1� � 1�

6
�

1�2��3�
6

� 1.

n � 1

Sn � 12 � 22 � 32 � 42 � . . . � n2 �
n�n � 1��2n � 1�

6

n

E X A M P L E  3 Using Mathematical Induction

P4,P3

P3P2

P2P1

P1Pk�1

Pk

n.
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Combining the results of parts (1) and (2), you can conclude by mathematical induction
that the formula is valid for all positive integers 

Many of the proofs in linear algebra use mathematical induction. Here is an example
from Chapter 2.

If are invertible matrices, prove the generalization of Theorem 2.9.

S O L U T I O N 1. The formula is valid trivially when because 
2. Assuming the formula is valid for 

you must show that it is valid for To do this, use Theorem 2.9, which says that
the inverse of a product of two invertible matrices is the product of their inverses in 
reverse order.

Theorem 2.9

Induction hypothesis

So, the formula is valid for 
Combining the results of parts (1) and (2), you can conclude by mathematical 

induction that the formula is valid for all positive integers 

Proof by Contradiction

A second basic strategy for writing a proof is proof by contradiction. In mathematical logic,
proof by contradiction is described by the following equivalence.

implies if and only if not implies not p.qqp

n.

k � 1.

� Ak�1
�1 Ak

�1 . . . A3
�1A2

�1A1
�1

� Ak�1
�1 �Ak

�1 . . . A3
�1A2

�1A1
�1�

� Ak�1
�1 �A1A2 A3

. . . Ak��1

�A1A2A3
. . . AkAk�1��1 � ��A1A2A3

. . . Ak�Ak�1��1

k � 1.

�A1A2 A3
. . . Ak��1 � Ak

�1 . . . A3
�1A2

�1A1
�1,

k,
A1

�1 � A1
�1.n � 1

�A1A2A3
. . . An��1 � An

�1 . . . A3
�1A2

�1A1
�1

AnA2, . . . ,A1,

E X A M P L E  4 Using Mathematical Induction in Linear Algebra

n.

�
�k � 1��k � 2��2k � 3�

6

�
�k � 1��2k2 � 7k � 6�

6

�
�k � 1��k�2k � 1� � 6�k � 1��

6
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One way to prove that is a true statement is to assume that is not true. If this leads you
to a statement that you know is false, then you have proved that must be true.

The next example shows how to use proof by contradiction to prove that is 
irrational.

Prove that is an irrational number.

S O L U T I O N Begin by assuming that is not an irrational number. is rational and can be written as
the quotient of two integers and that have no common factor.

Assume that is a rational number.

Square each side.

Multiply each side by 

This implies that 2 is a factor of So, 2 is also a factor of and can be written as 

Substitute for 

Simplify.

Divide each side by 2.

2 is a factor of and it is also a factor of So, 2 is a factor of both and But this is
impossible because and have no common factor. It must be impossible that is a 
rational number. You can conclude that must be an irrational number.

Proof by contradiction is not a new technique. The proof in the next example was 
provided by Euclid around 300 B.C.

A positive integer greater than 1 is a prime if its only positive factors are 1 and itself. Prove
that there are infinitely many prime numbers.

S O L U T I O N Assume there are only finitely many primes, Consider the number
This number is either prime or composite. If it is composite, then 

it can be factored as the product of primes. But, none of the primes divide
evenly into is itself a prime, and you have found a new prime number, which 
contradicts the assumption that there are only prime numbers.

It follows that no list of prime numbers is complete. There are infinitely many prime
numbers.

You can use proof by contradiction to prove many theorems in linear algebra. On the 
next page is an example from Chapter 3.

n
NN.

� p1, p2, .  .  . , pn�
N � p1p2

. . . pn � 1.
p1, p2, . . . , pn.

E X A M P L E  6 Using Proof by Contradiction

�2
�2ba

b.ab.b2,

b2 � 2c2

2b2 � 4c2

a.2c2b2 � �2c�2

2c.aa,a2.

b2.2b2 � a2

 2 �
a2

b2

�2�2 �
a
b

ba
�2�2

�2

E X A M P L E  5 Using Proof by Contradiction

�2
q

qq
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Let and be matrices such that is singular. Prove that either or is 
singular.

S O L U T I O N Assume that neither nor is singular. Because you know that a matrix is singular if 
and only if its determinant is zero, and det are both nonzero real numbers. By
Theorem 3.5, So, is not zero because it is a product of two
nonzero real numbers. But this contradicts that is a singular matrix. So, you can conclude
that the assumption was wrong and that either or must be singular.

Using Counterexamples

Often you can disprove a statement using a counterexample. For instance, when Euler 
disproved Fermat’s conjecture about prime numbers of the form 

he used the counterexample which is not prime. 

Use a counterexample to show that the statement is false.

Every odd number is a prime.

S O L U T I O N Certainly, you can list many odd numbers that are prime but the statement above
is not true, because 9 and 15 are odd but they are not prime numbers. The numbers 9 and 15
are counterexamples.

Counterexamples can be used to disprove statements in linear algebra, as shown in the
next example.

Use a counterexample to show that the statement is false.

If and are square singular matrices of order then is a singular matrix of
order

S O L U T I O N Let and Both and are singular of order 2, but

is the identity matrix of order 2, which is not singular.

A � B � �1
0

0
1�

BAB � �0
0

0
1�.A � �1

0
0
0�

n.
A � Bn,BA

E X A M P L E  9 Using a Counterexample

�3, 5, 7, 11�,

E X A M P L E  8 Using a Counterexample

F5 � 4,294,967,297,1, 2, .  .  . ,
n � 0,Fn � 22n

� 1,

BA
AB

det�AB�det�AB� � det�A� det�B�.
�B�det�A�

BA

BAABn � nBA

E X A M P L E  7 Using Proof by Contradiction in Linear Algebra
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Exercises

In Exercises 1–4, use mathematical induction to prove that the formula is valid for all positive 
integers 

1.

2.

3.

4.

In Exercises 5 and 6, propose a formula for the sum of the first terms of the sequence. Then use
mathematical induction to prove that the formula is valid.

5.

6.

In Exercises 7 and 8, use mathematical induction to prove the inequality for the indicated integer
values of 

7.

8.

9. Prove that for all integers 

10. (From Chapter 2) Use mathematical induction to prove that

assuming that are matrices with sizes such that the multiplications are defined.

11. (From Chapter 3) Use mathematical induction to prove that

where are square matrices of the same size.

In Exercises 12–17, use proof by contradiction to prove the statement.

12. If is an integer and is odd, then is odd. (Hint: An odd number can be written as 
where is an integer.)

13. If and are real numbers and then 

14. If and are real numbers such that and then 

15. If and are real numbers and then 

16. If and are real numbers and then or or a � b � 0.b � 0a � 0�a � b�2 � a2 � b2,ba

1
a

>
1
b

.1 < a < b,ba

a 
 b.c > 0,ac 
 bcca, b,

a � c � b � c.a � b,ba

n
2n � 1,pp2p

A3, . . . , AnA2,A1,
�A1A2A3

. . . An� � �A1��A2��A3� . . . �An�,

A1, A2, A3 , . . . , An

�A1 A2 A3
. . . An�T � An

T . . . A3
T A2

T A1
T,

a0 � a1 � a2 � a3 � . . . � an �
1 � an�1

1 � a
, a � 1.

n > 0,

1

�1
�

1

�2
�

1

�3
� . . . �

1

�n
> �n, n 
 2

n! > 2n, n 
 4

n.

1

1 � 2
,

1

2 � 3
,

1

3 � 4
,

1

4 � 5
, . . .

21,  22,  23,  24, . . .

n

	1 �
1

1
	1 �
1

2
	1 �
1

3
 . . . 	1 �
1

n
 � n � 1

3 � 7 � 11 � 15 � . . . � �4n � 1� � n�2n � 1�

13 � 23 � 33 � . . . � n3 �
n2�n � 1�2

4

1 � 2 � 3 � . . . � n �
n�n � 1�

2

n.
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17. If is a real number and then 

18. Use proof by contradiction to prove that the sum of a rational number and an irrational number is
irrational.

19. (From Chapter 4) Use proof by contradiction to prove that in a given vector space, the zero vector
is unique.

20. (From Chapter 4) Let be a linearly independent set. Use proof by contradiction to prove
that the set is linearly independent.

In Exercises 21–27, use a counterexample to show that the statement is false.

21. If and are real numbers and then 

22. The product of two irrational numbers is irrational.

23. If and are real numbers such that and then 

24. If is a polynomial function and then 

25. If and are differentiable functions and then 

26. (From Chapter 2) If and are matrices and then 

27. (From Chapter 3) If is a matrix, then det�A�1� �
1

det A
.A

A � B.AC � BC,CA, B,

dy
dx

� f��x�g��x�.y � f �x�g�x�,gf

a � b.f �a� � f �b�,f

�a � b�3 � a3 � b3.b � 0,a � 0ba

a2 < b2.a < b,ba

�u � v, u � v�
S � �u, v�

a2 < a.0 < a < 1,a
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ANSWER KEY

Chapter 1

Section 1.1 (page 11)

1. Linear 3. Not linear 5. Not linear

7. 9.

11. 13. 15.

17. 19.

No solution

21. 23.

25. 27.

29.

31. (a) (b) Inconsistent

33. (a) (b) Consistent

(c)

(d)

(e) The solutions are 
the same.

y � �
1
4

x �
1
2

y � �
1
4

x �
1
2

−4

−3

4

3
2x − 8y = 3

1
2x + y = 0

−4

−3

4

3
−3x − y = 3

6 + 2 = 1x y

y �
3
5

x �
18
5

−1 1 3 4−2

2

4

6

8

x − y = 3

x
4

= 1+
y
6

x

y

y � �1y � �2
x � 2x � 5

1 2 4 5 6 7 8−2
−4
−6

2
4
6
8

0.05x − 0.03y = 0.07

0.07x + 0.02y = 0.16

x

y

1 2 3 6 7−2
−4
−6
−8

−10
−12

4
6

x + 3
4

y − 1
3

= 1+

2x − y = 12
x

y

y � �1y � 1
x � 2x � 4

x

y

−2−4−6 4 6

2x − y = 5
5x − y = 11

−2

−4

−12−2 2 4 6 8 10
x

2

4

6

3x − 5y = 7

2x + y = 9
8

10

y

y � 0
x � 2

x
1

3
4

−2−4

−3
−4

2

−2x + 2y = 5

x − y = 1

y

1 3 4
x

1
2
3

3

4

−2
−2

−4

−4 4

x − y = 2

2x + y = 4

y

x3 � tz � 0
x2 � 2ty �

3
2x2 � 3

x1 � �tx �
3
2x1 � 5

z � t
y � sy � t
x � 1 � s � tx � 2t
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35. (a) (b) Consistent

(c) There are infinite
solutions.

(d)

(e) The solutions are
consistent.

37. 39. 41.

43. 45. 47.

49. No solution 51. 53. No solution

55. 57. 59.

61.

63.

65. This system must have at least one solution because
is an obvious solution.

Solution:

This system has exactly one solution.

67. This system must have at least one solution because
is an obvious solution.

Solution:

This system has an infinite number of solutions.

69. (a) True. You can describe the entire solution set using
parametric representation.

Choosing as the free variable, the solution is

where is any real number.

(b) False. For example, consider the system

which is an inconsistent system.
(c) False. A consistent system may have only one 

solution.

71.

(The answer is not unique.)

73.

75.

where

77. 79.

81. All 83. 85.

87. (a) Three lines intersecting at one point
(b) Three coincident lines
(c) Three lines having no common point

89. Answers will vary. (Hint: Choose three different values
of x and solve the resulting system of linear equations in
the variables and )c.a, b,

k � 1, �2k �
8
3k � ±1

y � sin �
k � �2x � cos �

t � 5,
1
4

, 0z �
1
t

y �
1

4t � 1

x �
2

5 � t

y � �4
x � 3

�3x1 � x2 � �4
 3x1 � x2 � 4

x1 � x2 � x3 � 2
x1 � x2 � x3 � 1

ty � t,x �
c
a

�
b
a

t,

y � t

ax � by � c

z � t

y �
4
5 t

x � �
3
5 t

x � y � z � 0

z � 0

y � 0

x � 0

x � y � z � 0

w � �59.2913

z � �210.2915

y � �163.3111

x � 6.8813

x3 �
1
2

x2 � �
4
5

x1 �
1
5

x4 � �75w � 2
z � 2.4x3 � 45z � 3
y � �0.6x2 � 40y � 0
x � �1.2x1 � �15x � 1

x3 � t
x2 � 4t � 1

x1 �
5
2 �

1
2t

z � 3
y � 2x2 � 7y � 1
x � 1x1 � 8x � 7

y � �
2
3v � 40x2 � �1

x � �
1
3u � 40x1 � �1

y � t

x �
9
4 � 2t−4

−3

4

3
4x − 8y = 9

0.8x − 1.6y = 1.8
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91.

The intersection points are all the same.
93.

The graphs are misleading because, while they appear
parallel, when the equations are solved for , they have
slightly different slopes.

Section 1.2 (page 26)

1. 3. 5. 7.

9. Reduced row-echelon form

11. Not in row-echelon form

13. Not in row-echelon form

15. 17. 19.

21. 23. 25. No solution

27. 29. 31.

33.

35. 37.

39. 41.

43. 45.

47. (a) Two equations in two variables

(b) All real 

(c) Two equations in three variables
(d) All real k

49. (a)
(b)
(c) Not possible

51. (a) (b)

(c) (d) Each system has an 
infinite number of 
solutions.

53.

55. �1

0

0

1�, �1

0

k

0�, �0

0

1

0�, �0

0

0

0�
�1

0

0

1�
z � t
y � �3 � t
x � 3 � t

z � tz � t

y � �
20
7 �

13
14 ty � �

8
3 �

5
6 t

x �
18
7 �

11
14 tx �

8
3 �

5
6 t

a � b � c � 0
a � b � c � 0

k � �
4
3

x4 � t
x3 � 0x3 � t
x2 � sx2 � �t
x1 � �tx1 � 0

x6 � 3
x5 � �4x5 � 1
x4 � �3x4 � �5
x3 � 6x3 � 3
x2 � �2x2 � �2
x1 � 1x1 � 2

x4 � t
x3 � 7.4306 � 2.1389tz � t
x2 � 18.5444 � 4.1111ty �  2 �  4t
x1 � 23.5361 � 0.5278tx �  0     

w � t
z � 54 � 52t
y � s
x � 100 � 96t � 3s

x3 � tx3 � 2
x2 � 2 � 3tx2 � �3y � �2
x1 � 1 � 2tx1 � 4x �  4

x4 � 4
x3 � �7

y � 2x2 � 13
x � 3x1 � �26

x3 � 0x3 � �1
x2 � 1x2 � �1x2 � 2
x1 � 1x1 � 2x1 � 0

4 � 51 � 52 � 43 � 3

y

y � 398

x � 39,600

x
−2−4 321

−4
−3
−2

−5

3

1

4
5

y = 2

x = 5
y

4
x

x − 4y = −3
5−2−4 43

−4
−3
−2

−5

3
4
5

y = 2

y

y � 2y �  2
x � 5x � 4y � �3

x

x − 4y = −3
5−2−4 43

−4
−3
−2

−5

3
4
5

14y = 28

y

x

x − 4y = −3

5x − 6y = 13

5−2−4 3 4

2

−4
−5

3
4
5

y

 14y �  28 5x �  6y �  13
x � 4y � �3x �  4y � �3
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57. (a) True. In the notation m is the number of rows
of the matrix. So, a matrix has six rows.

(b) True. At the top of page 19, the sentence reads, “It
can be shown that every matrix is row-equivalent to
a matrix in row-echelon form.”

(c) False. Consider the row-echelon form

which gives the solution 
and

(d) True. Theorem 1.1 states that if a homogeneous 
system has fewer equations than variables, then it
must have an infinite number of solutions.

59.

61.

63. Yes, it is possible:

65. The rows have been interchanged. The first elementary
row operation is redundant, so you can just use the
second and third elementary row operations.

67. An inconsistent matrix in row-echelon form would have
a row consisting of all zeros except for the last entry.

69. In the matrix in reduced row-echelon form, there would
be zeros above any leading ones.

Section 1.3 (page 38)

1. (a)
(b)

3. (a)
(b)

5. (a)

(b)

7. is not a function of because the -value of 3 is 
repeated.

9. 11.

13. where
Year 2010:
Year 2020: million

15. (a) a0

a0

a0

a0

�

�

�

�

a1

3a1

5a1

7a1

�

�

�

�

a2

9a2

25a2

49a2

�

�

�

�

a3

27a3

125a3

343a3

�

�

�

�

10,003
10,526
12,715
14,410

p � 375
p � 323 million

z � x � 1990��p�z� � 249 � 2.7z � 0.05z2

−1 2

−2

−1

x

(−1, 2)

(1, −2)

y

1

−1 2 4

3

3

4

5

x
(0, 1)

2, 4,
1 1
3 5

y = − + 1 x2 7x
15 15

) )) )

y

1

y = 1
1 + x

p�x� � �3x � x3p�x� � 1 � x

xxy

z

3

9

12

−1 1
(2006) (2008)(2007)

(−1, 5)

(0, 7)

(1, 12)

y
p�x� � 7 �

7
2�x � 2007� �

3
2�x � 2007�2

p�z� � 7 �
7
2z �

3
2z2

x

2

1 2 3 4 5

4

6

8

10

(2, 4)
(3, 6)

(5, 10)

y
p�x� � 2x

x

1

1

2

2

3

3

4

4

5

5

6

6

(2, 5) (4, 5)

(3, 2)

y
p�x� � 29 � 18x � 3x2

x1 � x2 � x3 � 1
x1 � x2 � x3 � 0

	 � 1, 3

ad � bc � 0

x4 � 3.
x3 � 2,x2 � 1,x1 � 0,

�
1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

0
1
2
3
�

6 � 3
m � n,
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(b)

where

No, the profits have increased every year except
2006 and our model predicts a decrease in 2008.
This is not a reasonable estimate.

17.

(Actual value is )

19. Solve the system:

21. (a) (b) (c)

23. (a) (b) (c)

25. 27. (a) (b)

29.

31.

33.

35.

where touchdowns, extra points,
and field goals

Review Exercises – Chapter 1 (page 41)

1. Not linear 3. Linear

5. Not linear 7. Linear

9.

11. 13. 15.

17. No solution

19. 21. 23.

25. Row-echelon form (not reduced)

27. Not in row-echelon form

29. 31. 33.

35. 37. 39.

41. 43. 45.

47. 49. 51.

x3 � tx3 � 0

x2 � �
1
2 tx2 � 0

k � ±1x1 � �4tx1 � 0

w � 0w � �2
z � tz � 4z � t

y � ty � 0y � 2 � 4t

x � �2tx � 1x � 0

x4 � �2
x3 � �3z � tz � t

x2 � 4y �  1 � 2ty �  5 � 2t

x1 � 1x �
3
2 � 2tx �  4 � 3t

z �  1z �  3x3 � 0

y � �
1
3y � �3x2 � t

x �
1
2x �  2x1 � �2t

y � 0x2 �
4
5

2 � 3x � 0x1 � �
1
2

y � 0y � �8y �
3
2

x � 0x � �12x �
1
2

z � t
y � s
x � �

1
4 �

1
2 s �

3
2 t

x3 � 4
x2 � 4
x1 � 5

x3 �
x2 �x1 �

x2 �     x3 � 0
6x1 � x2 � 3x3 � 46
   x1 � x2 �    x3 � 13

	 � �4
y � 2
x � 2

1
x � 2

�
2

x � 2
�

4
�x � 2�2

1
x � 1

�
3

x � 1
�

2
�x � 1�2

I3 � 1I3 � 1I3 � 1
I2 � 1I2 � 2I2 � 1
I1 � 0I1 � 1I1 � 0

x4 � 100x4 � 0x4 � t
x3 � 300x3 � 200x3 � 200 � t
x2 �     0x2 � �100x2 � �100 � t
x1 � 200x1 � 100x1 � 100 � t

x7 � �500x7 �     0x7 � t
x6 � 0x6 �     0x6 � s
x5 � 1000x5 � 500x5 � 500 � t
x4 � 500x4 �     0x4 � s � t
x3 � 600x3 � 600x3 � 600 � s
x2 � �500x2 �     0x2 � t
x1 � 0x1 �     0x1 � s

   a0 � a1 � a2 � 0
p�1� � a0 � a1 � a2 � 0
p�0� � a0         � 0

p��1� � a0 � a1 � a2 � 0

�32 � 0.866.

sin
�

3
�

8
9

� 0.889

p�x� � �
4

�2
x2 �

4
�

x

z � x � 2000��
p�z� � 11,041.25 � 1606.5z � 613.25z2 � 45z3



A14 Answer Key

53. (a)
(b)
(c)

55. Use an elimination method to get both matrices in 
reduced row-echelon form. The two matrices are 
row-equivalent because each is row-equivalent to

57.

59. (a) False. See page 3, following Example 2.

(b) True. See page 5, Example 4(b).

61. (a)

where number of three-point baskets,
number of two-point baskets,
number of one-point free throws

(b)

63.

65. (a)
(b)

67.
(First year is represented by )
Fourth-year sales:

69. (a)

(b) and (c)

So,

(d) The results to (b) and (c) are the same.
(e) There is precisely one polynomial function of degree

(or less) that fits distinct points.

71.

Chapter 2

Section 2.1 (page 56)

1. (a) (b) (c)

(d) (e)

3. (a) (b) (c)

(d) (e)

5. (a) (b)

(c) (d) �
6

�1
�2

2
4
1

�3
8
4��

6
4
0

4
8
2

�2
10
4�

�
3

�3
�2

0
0
0

�2
3
2��

3
7
2

4
8
2

0
7
2�

� 4

0

�1
2

7
2

7
25
2
��

11

5

�7

�6

3

0
�

�
12

4

�6

�2

8

10
��

5

3

�4

�5

�1

�5
��

7

1

�2

3

9

15
�

�
5
2

0

�
3
2

15
2 ��0

5

�1

�10�

�2

4

�2

�2���1

3

0

�9��3

1

�2

7�

I3 �
1
13

I2 �
6
13

I1 �
5
13

nn � 1

y �
1

32 x2 �
25
8 x � 80.

a2 �
1
32

a1 � �
25
8

a0 �  80

a0

a0

a0

�

�

4a1

80a1

�

�

16a2

6400a2

�

�

�

80
68
30

p�3� � 95
x � 0.

p�x� � 50 �
15
2 x �

5
2x2

1 2 3 4 5

5

10

15

20

25

x

(2, 5)
(3, 0)

(4, 20)

y

p�x� � 90 �
135
2 x �

25
2 x2

1
x � 2

�
2

x � 2
�

1
�x � 2�2

x3 � 14

x2 � 15

x1 � 5

x3 �
x2 �
x1 �
   x2 � x3 �  1

3x1 �    x2             � 0
3x1 � 2x2 � x3 � 59

�
1
0
0.
.
.
0

0
1
0

0

�1
2
0

0

�2
3
0

0

. . .

. . .

. . .

. . .

2 � n
n � 1

0.
.
.
0

�
�
1

0

0

0

1

0

0

0

1
�.

a � �3 and b � �6
b � 2a
b � 2a and a � �3



Answer Key A15

(e)

7. (a) (b)

9.

11. (a) (b)

13. (a) Not defined (b)

15. (a) (b) Not defined

17. (a) (b) Not defined

19. (a)

(b)

(c)

(d)

21. 23. 25.

27. Not defined, sizes do not match.

29.

31.

33.

35.

37.

39.

41.

43. 45.

BA � ��10
0

0
�12�

AB � ��10
0

0
�12��

1

0

0

0

4

0

0

0

9
�

x � �yw � z,

d �
7
2c � �

1
2,b � �4,a � 7,

��5

3

2

�1�

�
x1

x2

x3
� � �

�1
3

�2�
�

1

�3

0

�5

1

�2

2

�1

5
� �

x1

x2

x3
� � �

�20

8

�16
�

�
x1

x2

x3
� � �

1
�1

2�
�

1

�1

2

�2

3

�5

3

�1

5
� �

x1

x2

x3
� � �

9

�6

17
�

�x1

x2
� � ��7

6�
��2

6
�3

1��
x1

x2
� � � �4

�36�
�x1

x2
� � �4

8�
��1

�2
1
1��

x1

x2
� � �4

0�

3 � 24 � 23 � 4

�
8

15
�4
16
20

�10

16
�19

0
�6

9
�26

21
20

�12
12
1
3

�21
6

�2
3

�26
33

�8
6

�5
11

�6
9

28
�8
11
6

23
�33

�

�
2
6
1
4
8

�2

�2
�27

22
�4
�4

�11

�5
10

�34
�11
�11
�30

�2
�2
15
1
9

10

�3
�21

37
2

�10
3

�8
1
7

�1
17
9
�

�
1
7

�3
1
1
1

8
�13
�3

7
�4
�8

�13
1

�10
6

�7
9

11
11

�2
6
4

�2

3
�2

0
2

11
�11

3
3
1

�5
3

�1
�

�
5
0
6
5

12
5

�2
5

�8
0
1
2

5
5

�1
9

�7
10

6
�1

4
2

�8
�10

1
�3

7
3
6

�6

8
8

�9
3
8

�5
�

�
60

�20

10

60

72

�24

12

72
�

�
�1

4

0

19

�27

14
�

�
3

10

26

�4

16

46
�

��2

31

2

14��0

6

15

12�
x � 3, y � 2, z � 1

c13 �
0
29c21 � �6

�
3
2

6
2

3

6
3
2

1
2
9
2

1�



A16 Answer Key

47. Proof 49. 2 51. 4 53. Proof

55. Let

Then the given matrix equation expands to

Because and cannot both
be true, you can conclude that there is no solution.

57. (a)

(b)

59. Proof 61. Proof

63.

65.
Each entry represents the total profit at each outlet.

67. (a) True. On page 51, “. . . for the product of two 
matrices to be defined, the number of columns of the
first matrix must equal the number of rows of the
second matrix.”

(b) True. On page 55, “. . . the system is consis-
tent if and only if can be expressed as . . . a linear
combination, where the coefficients of the linear
combination are a solution of the system.”

69.

This product represents the changes in party affiliation
after two elections.

71.

73.

(The answer is not unique.)

75.

Section 2.2 (page 70)

1. 3. 5.

7. (a) (b)

(c) (d)

9. 11.

13. 15.

17. Proof 19. 21.

23. (a) (b)

(c)

25. (a) (b)

(c) �
14

3

�1

3

18

9

�1

9

5
�

�
5

6

�5

6

21

3

�5

3

11
��

2

1

�3

1

4

1

0

2

1
�

�21

3

3

5�

�
16

8

4

8

8

0

4

0

2
��

4

2

1

0

2

�1
�

�2

0

2

0��1

0

0

1�
AC � BC � �2

2

3

3��12

8

�4

4�
� 1

�2

6

�2

�1

�8���3

�2

�5

�5

�10

�5�

��
13
6

�
1
3

0

1

�
17
6
10
3
��

�14

7

�17

�4

�17

�2
�

��
13
3

4

�
26
3

�
10
3

�5

�
16
3
��

3

�
4
3

10
3

2
3

11
3

0
�

� 7

28

7

14�� 0

12

�12

�24�� 3

13

2

4�

b � 1�
1
1
2� � 2�

1
0

�1� � 0�
�5
�1
�1� � �

3
1
0�

b � 3�1

3� � 0��1

�3� � 2�2

1� � ��1

7�

�
�1

�1

0

4

1

0

0

0

5
�

� �
0.6225

0.33
0.395

0.2425
0.47

0.405

0.135
0.20
0.20�

PP � �
0.75
0.20
0.30

0.15
0.60
0.40

0.10
0.20
0.30��

0.75
0.20
0.30

0.15
0.60
0.40

0.10
0.20
0.30�

b
Ax � b

�$1037.50 $1400.00 $1012.50�

�84
42

60
120

30
84�

B2 � ��i2

0
0

�i2� � �1
0

0
1� � I

A4 � �i4

0
0
i4� � �1

0
0
1�

A3 � �i3

0
0
i3� � ��i

0
0

�i�

A2 � �i2

0
0
i2� � ��1

0
0

�1�

a11 � a21 � 0a11 � a21 � 1

�a11 � a21

a11 � a21

a12 � a22

a12 � a22
� � �1

0
0
1�.

A � �a11

a21

a12

a22
�.



27. (a)

(b)

(c)

29. which is not
necessarily equal to because AB is not neces-
sarily equal to BA.

31.

33.

35. (a) True. See Theorem 2.1, part 1.
(b) True. See Theorem 2.3, part 1.
(c) False. See Theorem 2.6, part 4, or Example 9.
(d) True. See Example 10.

37. (a) and 
(b)

No solution
(c)

(d) let 

39. 41.

43. 45.

47–55. Proof 57. Skew-symmetric

59. Symmetric 61. Proof

63. (a)

(b)

(c) Proof

(d)

Skew-symmetric Symmetric

65. (a)

(The answer is not unique.)

(b) Proof

Section 2.3 (page 84)

1.

3. AB � �
1

0

0

0

1

0

0

0

1
� � BA

AB � �1

0

0

1� � BA

B � ��1

1

1

0�A � �0

1

1

0�,

�
0

�4
1
2

4

0
1
2

�
1
2

�
1
2

0
� � �

2

1
7
2

1

6
1
2

7
2
1
2

1
�

A �
1
2�A � AT � �

1
2�A � AT � �

�
1
2�

0
a21 � a12.

.

.
an1 � a1n

a12 � a21

0.
.
.

an2 � a2n

. . .

. . .

. . .

a1n � an1

a2n � an2.
.
.
0

�
� �

a11

a12.
.
.

a1n

a21

a22.
.
.

a2n

. . .

. . .

. . .

an1

an2.
.
.

ann

�
�
1
2	�

a11

a21.
.
.

an1

a12

a22.
.
.

an2

. . .

. . .

. . .

a1n

a2n.
.
.

ann

�
1
2�A � AT �

�
1
2�

2a11

a21 � a12.
.
.

an1 � a1n

a12 � a21

2a22.
.
.

an2 � a2n

. . .

. . .

. . .

a1n � an1

a2n � an2.
.
.

2ann

�
� �

a11

a12.
.
.

a1n

a21

a22.
.
.

a2n

. . .

. . .

. . .

an1

an2.
.
.

ann

�
�
1
2	�

a11

a21.
.
.

an1

a12

a22.
.
.

an2

. . .

. . .

. . .

a1n

a2n.
.
.

ann

�
1
2�A � AT �

��1
1

�1
1���4

8

0

2�

�±3
0

0
±2��

1

0

0

0

�1

0

0

0

1
�

c � t
b � t

c � 1b � 1,a � �3,t � 1:a � �3t;
a      � c � 0
     b � c � 0   

c � 0 → a � 0a � b � c � 0; a � �c → b � 0 →

a � 1
   b � 1
a � b � 1

b � �1a � 3

�AB�T � BTAT � �
4

10

1

0

4

�1

�4

�2

�3
�

�AB�T � BTAT � �2

4

�5

�1�

A2 � B2
�A � B��A � B� � A2 � BA � AB � B2,

�
29

�14
5

�5

�14
81

�3
2

5
�3
39

�13

�5
2

�13
13

�
�

68
26

�10
6

26
41
3

�1

�10
3

43
5

6
�1

5
10

�
�

0
�4

3
2

  8
4
0
1

�2
3
5
1

0
0

�3
2
�

Answer Key A17



A18 Answer Key

5. 7.

9. 11. Singular

13. 15.

17. 19. Singular

21.

23. Singular

25. (a) (b) (c)

27. (a) (b)

29. 31.

33. (a) (b)

(c) (d)

35. (a) (b)

(c) (d)

37. 39.

41. 43. Proof

45. (a) True. See Theorem 2.7.
(b) True. See Theorem 2.10, part 1.
(c) False. See Theorem 2.9.
(d) True. See “Finding the Inverse of a Matrix by

Gauss-Jordan Elimination,” part 2, page 76.

47– 53. Proof

55. The sum of two invertible matrices is not necessarily 
invertible. For example, let

and

57. (a) (b)

59. (a) Proof (b)

61.
No, is not necessarily equal to 

63.

Section 2.4 (page 96)

1. Elementary, multiply Row 2 by 2.

3. Elementary, add 2 times Row 1 to Row 2.

5. Not elementary

7. Elementary, add times Row 2 to Row 3.

9. 11. �
0

0

1

0

1

0

1

0

0
��

0

0

1

0

1

0

1

0

0
�

�5

� 1
�1

0
0�

D.A
A � PDP�1

H � �
0

�1
0

�1
0
0

0
0
1�

�
2

0

0

0

3

0

0

0

4
��

�1

0

0

0
1
3

0

0

0
1
2
�

B � ��1

0

0

�1�.A � �1

0

0

1�

��1
3
4

1
2

�
1
4
�

x � 6x � 4

1
8�

4

6

1

�2

2

4

3

�8

2
�1

16�
7

28

30

0

�40

14

34

�14

�25
�

1
4�

4

�2

3

6

2

�8

1

4

2
�1

16�
138

37

24

56

26

34

�84

�71

3
�
� 1

�
7
2

5
2

3���31

�56

40

1�

�2

5

�7

6��35

4

17

10�
x6 � �2

x5 � 1x5 � 0

x4 � 0x4 � �1

x3 � 3x3 � 2

x2 � �2x2 � 1

x1 � 1x1 � 0

x3 � �1x3 � �1

x2 � 1x2 � 1

x1 � 0x1 � 1

y � �
3
4y � 4y � �1

x � �
3
2x � 2x � 1

�
�24

�10

�29

12

7

3

7

�3

1

0

3

�1

�2

�1

�2

1
�

�
1

�
3
4

7
20

0
1
4

�
1
4

0

0
1
5

�
�

0

�10

10

�2

4

�2

0.8

4.4

�3.2
�� �

3
2
9
2

�1

3
2

�
7
2

1

1

�3

1
�

�
1

�3

3

1

2

�3

�1

�1

2
�

��19

�4

�33

�7�� 7

�3

�2

1�



Answer Key A19

13. 15.

17. 19.

21. 23.

25.

(The answer is not unique.)

27.

(The answer is not unique.)

29.

(The answer is not unique.)

31.

(The answer is not unique.)

33. (a) True. See “Remark” following “Definition of
Elementary Matrix,” page 87.

(b) False. Multiplication of a matrix by a scalar is not 
a single elementary row operation so it cannot be
represented by a corresponding elementary matrix.

(c) True. See “Definition of Row Equivalence,” page 90.
(d) True. See Theorem 2.13.

35. (a) EA will have two rows interchanged. (The same
rows are interchanged in E.)

(b)

37.

39. No. For example,

41.

(The answer is not unique.)

43.

(The answer is not unique.)

45. (a)

(The answer is not unique.)

(b) (c)

47. First, factor the matrix Then, for each right-
hand side solve and 

49. Idempotent 51. Not idempotent

53. Not idempotent

55. Case 1:
Case 2:

57– 61. Proofs

Section 2.5 (page 112)

1. Not stochastic 3. Stochastic

5. Stochastic 7. Next month: 350 people
In 2 months: 475 people

b � 0, a � any real number
b � 1, a � 0

Ux � y.Ly � bibi,
A � LU.

x � �
1
3
1
3

�
5
3

�y � �
1

2

�5
�

�
1

0

�1

0

1

2

0

0

1
� �

2

0

0

1

1

0

0

�1

3
�

�
1

2

�1

0

1

1

0

0

1
� �

3

0

0

0

1

0

1

�1

2
�

� 1

�2

0

1� �
1

0

0

1�
�1

2

0

1� �
1

0

1

1� � �1

2

1

3�.

A�1 � �
1

�b

0

�a
ab � 1

0

0
0
1
c
�

E2 � In

�
1
0
0
0

0
1
0
0

0
�3

1
0

0
0
0
1
��

1
0
0
0

0
1
0
0

0
0
1
0

1
0
0
1
�

�
1
0
0
0

0
1
0
0

0
0
1
0

0
0
0

�1
��

1
0
0
0

0
1
0
0

0
0
1

�1

0
0
0
1
�

�
1
0
0
0

0
�1

0
0

0
0
1
0

0
0
0
1
��

1
0
0
0

0
1
0
0

0
0
2
0

0
0
0
1
�

�
1

�1

0

0

1

0

0

0

1
� �

1

0

0

�2

1

0

0

0

1
�

�1

0

1

1� �
1

3

0

1� �
1

0

0

�1�

�1

1

0

1� �
1

0

�1

1� �
1

0

0

�2�

�
1

0

0

0
1
6

0

1
4

1
24
1
4
�� 0

�1
2

1
3
2
�

�
1

0

0

0

0

1

0

1

0
��1

k
0

0

1
�

�
0

0

1

0

1

0

1

0

0
��0

1

1
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9. In 1 month In 2 months

Nonsmokers 5025 5047
Smokers of less than 1 pack/day 2500 2499
Smokers of more than 1 pack/day 2475 2454

11. Tomorrow: 25 students 13. Proof
In 2 days: 44 students
In 30 days: 40 students

15. Uncoded:

Encoded:

17. Uncoded:

Encoded: 48, 81, 28, 51, 24, 40, 54, 95, 5, 10,
64, 113, 57, 100

19. HAPPY_NEW_YEAR

21. ICEBERG_DEAD_AHEAD

23. MEET_ME_TONIGHT_RON

25.

_SEPTEMBER_THE_ELEVENTH_WE_WILL
_ALWAYS_REMEMBER

Coal Steel

27.

29.

31. (a) 33. (a)

(b) (b)

(c) (c) 2

35. 37.

39. 41.

43. (a)
(b) 3490 gallons

45. (a)
(b)

Review Exercises – Chapter 2 (page 115)

1. 3.

5. 7.

9.

11.

13.

15.

17.

19. 21. �
3

20

3
10

�
1
5

3
20

�
1
30

�
1
5

1
10

�
2
15

1
5

��1

2

�1

�3�

AAT � �
1
3

�1

3
9

�3

�1
�3

1�
ATA � �11�AT � �1 3 �1�,

AAT � � 14

�4

�4

5�

AT � �
1

2

�3

0

1

2
�, ATA � �

1

2

�3

2

5

�4

�3

�4

13
�,

�
2

2

4

3

�3

�2

1

�3

3
� �

x1

x2

x3
� � �

10

22

�2
�

�2
3

�1
2��

x
y� � � 5

�4�

�x1 �

2x1 �

x2 �

3x2 �

2x2 �

2x3 � �1
x3 � 0

4x3 � 2

�x � y � �22
 5x �  4y �  2�

4

0

0

6

6

0

3

�10

6
�

�
14

14

36

�2

�10

�12

8

40

48
���13

0

�8

11

18

�19�

y � 3.24t � 223.5
y � 3.24t � 223.5

y � 11,650 � 2400x

y � �0.5x � 7.5y � 0.412x � 3

y � 1.3 � 0.6xy � �
1
3 � 2x

1
6

y � 4 � 2xy �
4
3 �

3
4x

x

1

−1 2 3

2

3

4
(0, 4)

(1, 3)

(1, 1) (2, 0)

y

1−1 2

2

3

4

x

(−2, 0)
(0, 1)

(2, 3)

y

1

Farmer

Baker

Grocer

X � �
8622.0
4685.0
3661.4�

Coal

Steel
X � �20,000

40,000�
Coal

Steel
D � �0.1

0.8
0.2
0.1�

A�1 � �
�3
�4

2

2
2

�1

2
3

�1�;

�19   15�, �15   14�
�3   15�, �13   5�, �0   8�, �15   13�, �5   0�,
�27, 3, 15, �115, 36, 59,  9, �5, �4
�48, 5, 31, �6, �6, 9, �85, 23, 43,

�15   12   9�, �4   1   20�, �5   4   0�
�19   5   12�, �12   0   3�, �15   14   19�,



Answer Key A21

23.

25.

27. 29.

31. 33.

(The answer is not unique.)

35.

(The answer is not unique.)

37. and

(The answer is not unique.)

39. and

(The answer is not unique.)

41. (a) (b) Proof

43. Proof 45.

(The answer is not unique.)

47.

49. (a) False. See Theorem 2.1, part 1, page 61.
(b) True. See Theorem 2.6, part 2, page 68.

51. (a) False. The matrix is not invertible.

(b) False. See Exercise 55, page 72.

53. (a)

The first column of the matrix gives the total sales
for each type of gas and the second column gives the
profit for each type of gas.

(b) $384.40

55. (a) (b)

(c) The matrix represents the numbers of calories
burned by the 120-pound person and the 150-pound
person.

57. Not stochastic

59.

61. (a) (b)

63. Uncoded:

Encoded: 103, 44, 25, 10, 57, 24, 4, 2, 125, 50, 62,
25, 78, 32

65. ALL_SYSTEMS_GO

67. INVASION_AT_DAWN

69. _CAN_YOU_HEAR_ME_NOW

71.

73. 75. y �
2
5 �

9
5xy �

20
3 �

3
2x

D � �0.20

0.30

0.50

0.10�, X � �133,333

133,333�

A�1 � �
�2

0
�5

�1
1

�3

0
1

�3�;

A�1 � �3

4

2

3�;

�12   1�, �14   4�
�15   14�, �5   0�, �9   6�, �0   2�, �25   0�,

�
123,125

100,000

76,875
�

Region 1

Region 2

Region 3
�
110,000

100,000

90,000
�

Region 1

Region 2

Region 3

PX � � 80

112�, P2X � � 68

124�, P3X � � 65

127�

BA

BA � �473.5 588.5�B � �2 1
2 3�

�
5455
3551
7591

128.2
77.6

178.6�

�1
0

0
0�

x � 4, y � 1, z � �1

�1

3

0

1� �
2

0

5

�1�
c �  1
b � �1
a � �1

�1

0

0

0��0

0

0

0�, �1

0

0

1�,

�1

0

0

1���1

0

0

�1�

�
1

0

0

0

1

0

0

0

4
� �

1

0

0

0

1

0

0

�2

1
� �

1

0

0

0

1

0

1

0

1
�

�1

0

3

1� �
2

0

0

1��
1

0

0

0

1

0

�4

0

1
�

x � 3�
1

14

�
1

21

1
42
2
21
�

�
x1

x2

x3
� � �

2
�3

3�

A�1 � ��
2
15

�
1
15
7
15

�
2
5
4
5

�3
5

1
3

�
1
3
1
3
�

�
�1

2
5

1
3
4

2
1
2��

x1

x2

x3
� � �

1
�2

4�
�x1

x2
� � � 10

�12�

A�1 � �
1
9
1
9

�
4
9
5
9
�

� 5

�1

4

1� �
x1

x2
� � � 2
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77. (a)
(b) 41.4 kilograms per square kilometer

79. (a) (b)
The models are the same.

(c) x Actual Estimated

0 30.37 30.81

1 32.87 32.64

2 34.71 34.47

3 36.59 36.29

4 38.14 38.12

5 39.63 39.95

The estimated values are very close to the actual
values.

(d) 49.09 (e) 2011

81. (a) (b)

The models are the same.

(c) x Actual Estimated

0 1.8 1.9

1 2.1 2.0

2 2.3 2.1

3 2.4 2.3

4 2.3 2.4

5 2.5 2.5

The estimated values are close to the actual values.
(d) 3.1 million (e) 2015

Chapter 3

Section 3.1 (page 130)

1. 1 3. 5 5. 27 7.

9. 6 11.

13. (a) (b)

15. (a)

(b)

17. (a)
(b)

19. 21. 23.

25. 27. 29. 0

31.

33. 35. 37.

39. 329 41. 43. 0 45.

47. (a) False. See “Definition of the Determinant of a
Matrix,” page 123.

(b) True. See the first line after “Remark,” page 124.

(c) False. See “Definitions of Minors and Cofactors of
a Matrix,” page 124.

49. 51.
53. 55.
57. 59.
61. 63.

65. Expanding along the first row, the determinant of a
matrix involves four determinants. Each of

these determinants requires six triple products. So,
there are quadruple products.

67. 69.
71.

73.

75. (a) Proof

(b)

Section 3.2 (page 140)

1. The first row is 2 times the second row. If one row of a
matrix is a multiple of another row, then the determinant
of the matrix is zero.

3. The second row consists entirely of zeros. If one row of
a matrix consists entirely of zeros, then the determinant
of the matrix is zero.

� x
�1

0
0

0
x

�1
0

0
0
x

�1

d
c
b
a �

bc2 � ca2 � ab2 � ba2 � ac2 � cb2

xy2 � xz2 � yz2 � x2y � x2z � y2z
wz � xywz � xy

4�6� � 24
3 � 3

3 � 34 � 4

1 � ln xe5x

8uv � 1	 � �2, 0, or 1

	 � �1 ± �3x � �1, 4

x � 0, 1x � �1, �4

2 � 2

�30�24

�1098�43.5�100

65,644w � 62,256x � 12,294y � 24,672z

�1684x � 2y � 2

�0.022�30�58

2�8� � 5��5� � 3�22� � �75
4��5� � 5��5� � 6��5� � �75

C33 � �23C32 �  22C31 �  7
C23 � �5C22 � �5C21 � �5
C13 � �22C12 �  8C11 �  23

M33 � �23M32 � �22M31 � 7
M23 �  5M22 � �5M21 � 5
M13 � �22M12 � �8M11 � 23

C22 �  1M22 � 1
C21 � �2M21 � 2
C12 � �3M12 � 3
C11 �  4M11 � 4

	2 � 4	 � 5

�24

0.12x � 1.90.12x � 1.9

1.828x � 30.811.828x � 30.81

y � 19 � 14x
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5. The second and third columns are interchanged. If two
columns of a matrix are interchanged, then the determi-
nant of the matrix changes sign.

7. The first row of the matrix is multiplied by 5. If a row in
a matrix is multiplied by a scalar, then the determinant
of the matrix is multiplied by that scalar.

9. A 4 is factored out of the second column and a 3 is 
factored out of the third column. If a column of a matrix
is multiplied by a scalar, then the determinant of the
matrix is multiplied by that scalar.

11. The matrix is multiplied by 5. If an matrix is 
multiplied by a scalar then the determinant of the
matrix is multiplied by 

13. times the first row is added to the second row. If a
scalar multiple of one row of a matrix is added to 
another row, then the determinant of the matrix is 
unchanged.

15. A multiple of the first row is added to the second row. If
a scalar multiple of one row is added to another row,
then the determinants are equal.

17. The second row of the matrix is multiplied by If a
row of a matrix is multiplied by a scalar, then the 
determinant is multiplied by that scalar.

19. The sixth column is 2 times the first column. If one
column of a matrix is a multiple of another column, then
the determinant of the matrix is zero.

21. 23. 19 25. 28

27. 17 29. 31. 223

33. 35. 136 37.

39. (a) True. See Theorem 3.3, part 1, page 134.

(b) True. See Theorem 3.3, part 3, page 134.

(c) True. See Theorem 3.4, part 2, page 136.

41. k 43. 45. 1 47. Proof

49. 51.

53. Not possible. The determinant is equal to
which cannot equal zero because

55. Proof

Section 3.3 (page 149)

1. (a) 0 (b) 3. (a) 2 (b)

(c) (c)

(d) 0 (d)

5. (a) 3 (b) 6

(c)

(d) 18

7. 9. 54

11. (a) (b) (c) 0

13. (a) 0 (b) (c)

15. (a) 14 17. (a) 29 19. (a) 22
(b) 196 (b) 841 (b) 22
(c) 196 (c) 841 (c) 484
(d) 56 (d) 232 (d) 88

(e) (e) (e)

21. (a) 23. (a) 25. (a) 8
(b) (b) (b) 4
(c) 13,225 (c) 243 (c) 64
(d) (d) (d) 8

(e) (e) (e)

27. Singular 29. Nonsingular

31. Nonsingular 33. Singular

35. 37. 39.

41. The solution is not unique because the determinant of
the coefficient matrix is zero.

43. The solution is unique because the determinant of the
coefficient matrix is nonzero.

45. 47. 49. Proof

51. and 53. 0

(The answer is not unique.)

55. Proof

�1

0

0

0��0

0

1

0�
k � 24k � �1, 4

1
24�

1
2

1
5

1
2�

1
5�

1
115

�15�1840

�125�115
�15�115

1
22

1
29

1
14

�15�1

�2�2

�44

�
6
2
9
8

3
1
4
5

�2
0

�3
�4

2
�1

8
5
�

�12

�
1

�1

0

4

0

2

3

3

0
���2

4

�3

6�

�6�1

cos2 x � sin2 x � 1.
cos2 x � sin2 x,

sin2 � � 1 � �cos2 �cos2 � � sin2 � � 1

�1

�1100�1344

�60

�1

�1.

�4

cn.
c,

n � n
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57. No; in general, For example, let

and

Then you have

The equation is true in general because

59. (a) False. See Theorem 3.6, page 144.

(b) True. See Theorem 3.8, page 146.

(c) True. See “Equivalent Conditions for a Nonsingular
Matrix,” parts 1 and 2, page 147.

61. Proof 63. Orthogonal 65. Not orthogonal

67. Orthogonal 69. Proof

71. (a) (b) (c) 1

A is orthogonal.

73. Proof

Section 3.4 (page 157)

1.

3.

5. (a) (b)

(c)

7. (a) (b) 3,

(c)

9. (a) (b) 6,

(c)

11. (a) (b)

(c)

13. (a) (b)

(c) ;

15. Eigenvalues:

Eigenvectors:

17. Eigenvalues:

Eigenvectors:

; ; 	 � 3: x � �
2
0
1�	 � 2: x � �

1
0
1�	 � 1: x � �

0
�1

1�

	 � 1, 2, 3

	 � 1: x � ��5
1�

	 � �3: x � ��1
1�

	 � �3, 1

	 � 3: x � �
1

0

2
�

	 � �1: x � �
�1

0

2
�	 � 1: x � �

0

�1

2
�

�1, 1, 3	3 � 3	2 � 	 � 3 � 0

	 � �2: x � �
1

�1

4
�

	 � 2: x � �
�1

0

1
�; 	 � 3: x � �

�1

1

1
�;

2, 3, �2	3 � 3	2 � 4	 � 12 � 0

x � ��4
1�	 � �3:x � �1

2�;	 � 6:

�3	2 � 3	 � 18 � 0

x � ��1
3�	 � �1:x � �1

1�;	 � 3:

�1	2 � 2	 � 3 � 0

	 � 2: x � �5

2�; 	 � �1: x � �1

1�
2, �1	2 � 	 � 2 � 0

�
1

0

1

1

1

1

1

0

1
� �

�1

1

�1
� � �

�1

1

�1
� � 1�

�1

1

�1
�

�
1

0

1

1

1

1

1

0

1
� �

�1

0

1
� � �

0

0

0
� � 0�

�1

0

1
�

�
1

0

1

1

1

1

1

0

1
� �

1

0

1
� � �

2

0

2
� � 2�

1

0

1
�

�1

0

2

�3� �
�1

2� � � 3

�6� � �3��1

2�
�1

0

2

�3� �
1

0� � 1�1

0�;

�
2
3

�
2
3
1
3

2
3
1
3

�
2
3

1
3
2
3
2
3
��

2
3

�
2
3
1
3

2
3
1
3

�
2
3

1
3
2
3
2
3
�

1

�P��P��A� � �A�.� �P�1��P��A� �

�P�1 AP� � �P�1��A��P�
�P�1AP� � �A�

P�1AP � ��27

16

�49

29� � A.

A � � 2

�1

1

0�.

P � �1

3

2

5�, P�1 � ��5

3

2

�1�,

P�1AP � A.



19. Eigenvalues:

Eigenvectors:

;

21. Eigenvalues:

Eigenvectors:

; ; 

;

23. Eigenvalues:

Eigenvectors:

;

;

25. (a) False. If is an eigenvector corresponding to then
any nonzero multiple of is also an eigenvector 
corresponding to See page 153, first paragraph.

(b) False. If is an eigenvalue of the matrix then
is a solution of the characteristic equation

See page 153, second paragraph.

Section 3.5 (page 168)

1.

3. does not exist.

5.

7.

9. Proof 11. Proof

13.

15. Proof
17. 19. 21.

23. Cramer’s Rule does not apply because the coefficient
matrix has a determinant of zero.

25. Cramer’s Rule does not apply because the coefficient
matrix has a determinant of zero.

27. 29. 31.

33. Cramer’s Rule does not apply because the coefficient
matrix has a determinant of zero.

35. 37.

39. 41.

43.

The system will be inconsistent if 

45. 3 47. 3

49. Collinear 51. Not collinear

53. 55. x � �23y � 4x � 0

k �
1
2.

x �
4k � 3

2k � 1
, y �

4k � 1

2k � 1

x1 � 5x1 � �7

x1 � �1x1 � �4

x3 �
1
2x3 �

3
2x3 � 2

x2 � �
1
2x2 �

1
2x2 � 1

x1 �  0x1 � 1x1 � 1

x2 � �
1
2x2 � �2x2 � 2

x1 �
3
4x1 � 2x1 � 1

�A�2�1 � �11 0
�2�2�1

� �2

�adj�A�� � ��2
�1

0
1� � �2,

A�1 � �
7
9

7
9

�
4
9

2
9

1
9

1
9

2
9

�
1
9

1

0

�1

1

�
13
9

�
4
9

10
9

�
5
9

�
adj�A� � �

7

7

�4

2

1

1

2

�1

9

0

�9

9

�13

�4

10

�5
�,

A�1 � �
7
3

�2
3

�2
3

4

�1

�1

�
13
3

5
3

2
3

�adj�A� � �
�7

2

2

�12

3

3

13

�5

�2
�,

adj�A� � �
0

0

0

0

�12

4

0

�6

2
�, A�1

A�1 � ��2
3
2

1

�
1
2
�adj�A� � � 4

�3
�2

1�,

�	I � A� � 0.
	 � a

A,	 � a

	.
x

	,x

	 � 3: x � �
1
0
2
2
�	 � 1: x � �

1
0
0
0
�

	 � �1: x � �
1
0

�2
6
�	 � �2: x ��

0
1
0
0
�

	 � �2, �1, 1, 3

	 � 5: x � �
0
0
5
3
�	 � 3: x � �

1
0
0
0
�

	 � �1: x � �
0
1
0
0
�	 � �3: x � �

0
0

�1
1
�

	 � �3, �1, 3, 5

	 � �2: x � �
1
0
3�	 � 1: x � �

1
0
0�
	 � 1, �2

Answer Key A25



A26 Answer Key

57. 59. 2

61. Not coplanar 63. Coplanar

65. 67.

69. Incorrect. The numerator and denominator should be 
interchanged.

71. Correct

73. (a)

(b)

(c)

(d) The polynomial fits the data exactly.

Review Exercises – Chapter 3 (page 171)

1. 10 3. 0 5. 0

7. 9. 1620 11. 82

13. 15. 17.

19. Because the second row is a multiple of the first row,
the determinant is zero.

21. A has been factored out of the second column and a
3 has been factored out of the third column. If a column
of a matrix is multiplied by a scalar, then the determinant
of the matrix is also multiplied by that scalar.

23. (a) (b) (c) (d) 5

25. (a) (b) (c) 144 (d)

27. (a) (b)

29. 31.
33. 35.

37. Unique solution 39. Unique solution

41. Not a unique solution

43. (a) False. See “Definitions of Minors and Cofactors of
a Matrix,” page 124.

(b) False. See Theorem 3.3, part 1, page 134.

(c) False. See Theorem 3.9, page 148.

45. 128 47. Proof 49. 0

51. and

53.

and

55. 57.

59. Row reduction is generally preferred for matrices with
few zeros. For a matrix with many zeros, it is often
easier to expand along a row or column having many
zeros.

61. 63. Unique solution:

65. Unique solution:

67. (a) (b)

(c)

(d) The polynomial fits the data exactly.

69. 16 71.

73.

75. (a) False. See Theorem 3.11, page 163.

(b) False. See “Test for Collinear Points in the 
xy-Plane,” page 165.

9x � 4y � 3z � 0

x � 2y � �4

250
0 40

400

c � 282.9900a � 30b � c � 363.6
b � 2.555400a � 20b � c � 335.8

a � 0.0045100a � 10b � c � 308.9

x3 � �1
x2 � �

1
3

x1 � �
1
2

y � 0.5

x � 0.6�1
2

�1
0�

�uv�
1
2

	 � 4: x � �
0
0
1�
	 � 3: x � �

0
1
0�;	 � 1: x � �

1
1
0�;

	 � �8: x � ��2

1�	 � 7: x � �1

1�

x3 � 2x3 �
1
2

x2 � �1x2 � �
1
2

x1 � �3x1 � 0

�
1

10
1
6

�
1
20�20

�300�1728�12

�1

2

�2

1��5�1

�4

�1�1�64

�6

0 10
4300

4600

a � 13, b � �136, c � 4695

81a � 9b � c � 4524

64a � 8b � c � 4439

49a � 7b � c � 4380

x � y � z � 04x � 10y � 3z � 27

1
3



Answer Key A27

Cumulative Test Chapters 1–3 (page 177)

1.

2.

3. 4.

5.
The entries represent the total values (in dollars) of the
products sent to the two warehouses.

6.

7.

8. (a) (b)

9.

10. 11.

(The answer is not unique.)

12. (a) 14 (b) (c) (d)

13. (a) 567 (b) 7 (c) (d) 343

14. 15.

(The answer is not
unique.)

16.

17. 18. 16

19.

20. No; proof 21. Proof 22. Proof

23. (a) is row-equivalent to if there exist elementary
matrices, such that 

(b) Proof

Chapter 4

Section 4.1 (page 188)

1.
3. 5.

7. 9.

11. 13.

−2

2

4

−2

−4

y

x

u

2w
v = u + 2w

(−8, −1)

(−6, −4)

(−2, 3)

−4−5 −3 −2 −1

2

3

4

5

y

x

v =    u3
2

u

(−2, 3)

−3, 9
2 ((

v � ��8, �1�v � ��3, 9
2�

−1−2−3−4−5 1

1

x

y

(−1, −4)−1 1 2 3 4 5−1

1

2

3

4

5

(3, 1)

x

y
u � v � ��1, �4�u � v � �3, 1�

−1−2−3−4−5 1

−2

−3

−4

−5

1

x

y

(−3, −4)

−1 1 2 3 4 5−1

−2

−3

−4

−5

1

(2, −4)

x

y
v � �4, 5�

A � Ek . . . E1B.E1, . . . , Ek ,
BA

�
�2
�2

1�	 � 2,�
�2

0
1�;	 � �2,�

�5
1
1�;	 � �1,

3x � 2y � 11

−3 −2 −1 2 3

2

3

4

5

6

x

(2, 6)

(0, 1)
(−1, 2)

y

1

y �
7
6x2 �

1
6x � 1

a � 1, b � 0, c � 2�
4
11

�
1
11

�
2
11

�10
11

�
3
11
5
11

7
11
1
11
2
11

�
1
7

1
14�140�10

�34�0

1

1

0� �
1

2

0

1� �
1

0

0

�4�

�1

0
3
5

0

0
1
5

�1

1

�
9
5
�

��
2
7

1
7

1
7

2
21
���

1
4

1
6

1
8

1
12
�

ATA � �
17

22

27

22

29

36

27

36

45
�

x � �3, y � 4

�13,275.00     15,500.00�BA �

k � 12x1 � �2s, x2 � s, x3 � 2t, x4 � t

x1 � s � 2t, x2 � 2 � t, x3 � t, x4 � s

x1 � 2, x2 � �3, x3 � �2
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A28 Answer  Key

15.

17. (a) (b)

(c)

19.

21. 23.

25. (a) (b)

(c)

27. (a) and (b)

29. (a)

(b)

(c)

31. (a)

(b)
(c)

33. (a) (b)

(c) (d)

35. 37.

39. 41.

43. 45.

47.

49. It is not possible to write v as a linear combination of
and

51.

53.

55. (a) True. Two vectors in are equal if and only if their
corresponding components are equal, that is,
if and only if .  .  . ,

(b) False. The vector is times as long as v and has
the same direction as v if c is positive and the 
opposite direction if c is negative.

57. No

59. Answers will vary. 61. Proof

63. (a) Add to both sides.
(b) Associative property and additive identity
(c) Additive inverse
(d) Commutative property
(e) Additive identity

�v

�c�cv

uu � vu.u2 � v2,u1 � v1,
u � v

Rn

v � 5u1 � u2 � u3 � 2u4 � 5u5 � 3u6

v � 2u1 � u2 � 2u3 � u4 � u5

u3.u1, u2,

v � u1 � 2u2 � 3u3

��1, 5
3, 6, 23�v � �u

v � u � 2wv � u � w

�4, 8, 18, �2�� 1
2, �

7
2, �

9
2, 2�

�1
4, 3, �3, �1���3

2, 11, �13
2 , �

21
2 �

��1, �8, 10, 0��1, 6, �5, �3�
�11, �6, �4, 6, �3�
��2, �18, �12, 18, 36�
��9, 3, 2, �3, 6�
��4, 4, 13, 3�
�8, 12, 24, 34�
�4, �2, �8, 1�

x y

11

1

2

22

v v
(1, 2, 2)1

2

( (

z

, 1, 11
2

x y
1

1

2

22

v

−v
(−1, −2, −2)

(1, 2, 2)

z

x y

2

2
3 3 44

55

2

3
4
5

v 2v
(2, 4, 4)

(1, 2, 2)

z

� 7
2, 3, 52��6, 12, 6�

v � u � �1, 0, �4�
u � v � ��1, 0, 4�

y

x

v
(2, 1)

1 2

1

2

v1
2 1, 1

2 ))

y

x

−3v

v

(−6, −3)

(2, 1)

−4 2

−2

−4

2

4

y

x

2v

v (2, 1)

(4, 2)

−1 1 2 3 4
−1

1

2

3

4

−8

4

8

−4

y

x

3u

w
(−3, −2)

(−6, 9)

v =    (3u + w)1
2

9
2

7
2 ))− ,

v � ��9
2, 7

2�



65. (a) Additive identity
(b) Distributive property
(c) Add to both sides.
(d) Additive inverse and associative property
(e) Additive inverse
(f ) Additive identity

67. (a) Additive inverse
(b) Transitive property
(c) Add v to both sides.
(d) Associative property
(e) Additive inverse
(f ) Additive identity

69. No

71. You could describe vector subtraction as follows:

or write subtraction in terms of addition,

Section 4.2 (page 197)

1. 3.

5.

7.

9.

11.

13. The set is a vector space.

15. The set is not a vector space. Axiom 1 fails because
which is not a third-degree poly-

nomial. (Axioms 4, 5, and 6 also fail.)

17. The set is not a vector space. Axiom 4 fails. 

19. The set is not a vector space. Axiom 6 fails because
which is not in the set when

21. The set is a vector space.

23. The set is a vector space.

25. The set is not a vector space. Axiom 1 fails because

which is not singular.

27. The set is a vector space.

29. (a) The set is not a vector space. Axiom 8 fails because 

(b) The set is not a vector space. Axiom 2 fails because 

(Axioms 4, 5, and 8 also fail.)

(c) The set is not a vector space. Axiom 6 fails because
which is not in 

(Axioms 8 and 9 also fail.)

31. Proof

33. The set is not a vector space. Axiom 5 fails because
is the additive identity so has no additive 

inverse. (Axioms 7 and 8 also fail.)

35. (a) True. See page 191.
(b) False. See Example 6, page 195.
(c) False. With standard operations on the additive

inverse axiom is not satisfied.

37. (a) Add to both sides.
(b) Associative property
(c) Additive inverse
(d) Additive identity

39. Proof 41. Proof

Section 4.3 (page 205)

1. Because is nonempty and you need 
only check that is closed under addition and scalar
multiplication. Given

and

it follows that

So, for any real number and it 
follows that
c�x1, x2, x3, 0� � �cx1, cx2, cx3, 0� 	 W.

W,�x1, x2, x3, 0� 	c
� �x1 � y1, x2 � y2, x3 � y3, 0� 	 W.

�x1, x2, x3, 0� � �y1, y2, y3, 0�

�y1, y2, y3, 0� 	 W,�x1, x2, x3, 0� 	 W

W
W � R4,W

�w

R2,

�0, 0��1, 1�

R2.��1��1, 1� � ���1, ��1�,

�2, 1� � �1, 2� � �2, 0�.
�1, 2� � �2, 1� � �1, 0�

 1�1, 1� � 2�1, 1� � �1, 1� � �2, 1� � �3, 2�.
�1 � 2��1, 1� � 3�1, 1� � �3, 1�

�1

0

0

0� � �0

0

0

1� � �1

0

0

1�,

x � 0.
��1��x, y� � ��x, �y�,

x3 � ��x3 � 1� � 1,

��a0 � a1x � a2x
2 � a3x

3� � �a0 � a1x � a2x
2 � a3x

3

��a11

a21

a12

a22

a13

a23
� � ��a11

�a21

�a12

�a22

�a13

�a23
�

��v1, v2, v3, v4 � � ��v1, �v2, �v3, �v4 �
0 � 0x � 0x2 � 0x3

�0

0

0

0

0

0��0, 0, 0, 0�

u � v � u � ��1�v.

v

u
u − v

�c0
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A30 Answer  Key

3. Because is nonempty and you need only
check that is closed under addition and scalar multi-
plication. Given

and

it follows that

So, for any real number and

it follows that

5. Recall from calculus that continuity implies integrability;
So, because is nonempty, you need only

check that is closed under addition and scalar multi-
plication. Given continuous functions it 
follows that is continuous and Also,
for any real number and for a continuous function

is continuous. So,

7. Not closed under addition:

Not closed under scalar multiplication:

9. Not closed under scalar multiplication:

11. Not closed under scalar multiplication:

13. Not closed under scalar multiplication:

15. Not closed under addition:

17. Not closed under addition:

Not closed under scalar multiplication:

19. Not a subspace 21. Subspace 23. Subspace

25. Subspace 27. Subspace 29. Not a subspace

31. is a subspace of ( is nonempty and closed under
addition and scalar multiplication.)

33. is a subspace of ( is nonempty and closed under
addition and scalar multiplication.)

35. is not a subspace of 
Not closed under addition:

Not closed under scalar multiplication:

37. (a) True. See “Remark,” page 199.

(b) True. See Theorem 4.6, page 202.

(c) False. There may be elements of which are not 
elements of , or vice-versa.

39–47. Proof

Section 4.4 (page 219)

1. (a) cannot be written as a linear combination of the
given vectors.

(b)

(c)

(d)

3. (a)

(b) v cannot be written as a linear combination of the
given vectors.

(c)

(d)

5. S spans 7. S spans

9. S does not span It spans a line in 

11. S does not span It spans a line in 

13. S does not span It spans a line in 

15. S spans 17. S spans

19. S does not span It spans a plane in 

21. S does not span It spans a plane in 

23. Linearly independent 25. Linearly dependent

27. Linearly independent 29. Linearly dependent

31. Linearly independent 33. Linearly independent

35.

(The answer is not unique.)
�3, 4� � 4��1, 1� �

7
2�2, 0�

�3, 4� � 4��1, 1� �
7
2�2, 0� � �0, 0�,

R3.��R3.

R3.��R3.

R3.R2.

R2.��R2.

R2.��R2.

R2.��R2.

R2.R2.

z � �4�2, 0, 7) � 5�2, 4, 5� � 0�2, �12, 13�
w � �

1
6�2, 0, 7� �

1
3�2, 4, 5� � 0�2, �12, 13�

u � �
7
4�2, 0, 7� �

5
4�2, 4, 5� � 0�2, �12, 13�

z � 2�2, �1, 3� � �5, 0, 4�
w � 8�2, �1, 3� � 3�5, 0, 4�
v �

1
4�2, �1, 3� �

3
2�5, 0, 4�

u

U
W

2�1, 1, 1� � �2, 2, 2�

�1, 1, 1� � �1, 1, 1� � �2, 2, 2�

R3.W

WR3.W

WR3.W

2�3, 27� � �6, 54�

�2, 8� � �3, 27� � �5, 35�

�1

0

0

0� � �0

0

0

1� � �1

0

0

1�

��2��1, 1, 1� � ��2, �2, �2�

��1� ex � �ex

�2�1, 1� � ��2, �2 �

2�0, 0, �1� � �0, 0, �2�

�0, 0, �1� � �0, 0, �1� � �0, 0, �2�

cf 	 W.cff 	 W,
c

f � g 	 W.f � g
g 	 W,f,

W
WW � V.

c�0
b

a
0� � � 0

cb
ca
0� 	 W.

�0
b

a
0� 	 W,

c

� 0
b1

a1

0� � � 0
b2

a2

0� � � 0
b1 � b2

a1 � a2

0� 	 W.

� 0
b2

a2

0� 	 W,� 0
b1

a1

0� 	 W

W
W � M2,2,W



37.

(The answer is not unique.)

39. (a) All (b) All 

41. (a)

(b) Not a linear combination of A and B

(c)

(d)

43. Linearly dependent 45. Linearly independent

47. does not span 

49. (a) Any set of three vectors in must be linearly
dependent.

(b) The second vector is a scalar multiple of the first
vector.

(c) The first vector is the zero vector.

51. and span the same subspace.

53. (a) False. See “Definition of Linear Dependence and
Linear Independence,” page 213.

(b) True. See corollary to Theorem 4.8, page 218.

55–61. Proof

63. The theorem requires that only one of the vectors be a
linear combination of the others. Because 

there is no contradiction.

65. Proof

67. On

dependent

On and are not multiples of each other.
For if they were, then But if

whereas if 

69. Proof

Section 4.5 (page 230)

1.

3.

5. 7. is linearly dependent.

9. is linearly dependent and does not span 

11. is linearly dependent and does not span 

13. does not span 

15. is linearly dependent and does not span 

17. does not span 

19. is linearly dependent and does not span 

21. is linearly dependent. 23. is linearly dependent.

25. does not span 

27. is linearly dependent and does not span 

29. The set is a basis for 

31. The set is not a basis for 

33. The set is not a basis for 

35. is a basis for 37. is a basis for 

39. is not a basis for 

41. is a basis for 43. is a basis for 

45. is a basis for 47. is not a basis for 

49. is a basis for 

51. is not a basis for 53. is not a basis for 

55. 6 57. 1 59. 8 61. 6

R3.SR3.S

�8, 3, 8� � 2�4, 3, 2� � �0, 3, 2� � 3�0, 0, 2�
R3.S

P3.SP3.S

M2,2.SR4.S

R3.S

R3.SR2.S

R2.

R2.

R2.

M2,2.S

M2,2.S

SS

R3.S

R3.S

R3.S

R2.S

R2.S

R2.S

SP4: �1, x, x2, x3, x4�

�0

0

0

0

0

1

0

0�, �0

0

0

0

0

0

0

1��
�0

1

0

0

0

0

0

0�, �0

0

0

1

0

0

0

0�,

�0

0

0

0

1

0

0

0�, �0

0

0

0

0

0

1

0�,

M2,4: ��1

0

0

0

0

0

0

0�, �0

0

1

0

0

0

0

0�,

�0, 0, 0, 1, 0, 0�, �0, 0, 0, 0, 1, 0�, �0, 0, 0, 0, 0, 1��
R6: ��1, 0, 0, 0, 0, 0�, �0, 1, 0, 0, 0, 0�, �0, 0, 1, 0, 0, 0�,

c � �
1
3.x � �1,c �

1
3,x � 1,

c�3x� � �x�.cf1�x� � f2�x�,
f2f1��1, 1�,

x

3
2

4

−2−4 2

f2(x) = |x|

(x) = 3xy f1

3 41

�
1
3 f1�x� ⇒ � f1, f2�

f2�x� � �x� � x �
1
3�3x�

�0, 1�,

0�1, 2, 3� � �1, 0, �2�,
��1, 0, 2� �

S2S1

R2

P2.S

�0

0

0

0� � 0A � 0B

��2

1

28

�11� � �A � 5B

� 6

10

�19

7� � 3A � 2B

t �
1
2t � 1, �2

�1, 1, 1� � �1, 1, 0� � �0, 0, 1� � 0�0, 1, 1�
�1, 1, 1� � �1, 1, 0� � �0, 0, 1� � 0�0, 1, 1� � �0, 0, 0�
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63.

65.

67. (The answer is not unique.)

69. (a) Line through the origin
(b) (c) 1

71. (a) Line through the origin
(b) (c) 1

73. (a) (b) 2
75. (a) (b) 1

77. (a) False. If the dimension of is then every span-
ning set of must have at least vectors.

(b) True. Find a set of basis vectors in that will span
and add any other vector.

79. Proof 81. Proof

83. (a) Basis for dimension
Basis for dimension
Basis for dimension
Basis for 
dimension

(b) No, it is not possible.

85. Proof

Section 4.6 (page 246)

1. (a) 2 (b)

(c)

3. (a) 1 (b) (c)

5. (a) 2 (b)

(c)

7. (a) 2 (b)

(c)

9. (a) 2 (b)

(c)

11. (a) 5

(b)

(c)

13.

15.

17.

19.

21.

23.

25.

27.

29.

31.

33. (a) (b) 1

35. (a) (b) 2
37. (a) (b) 2

39. (a) (b) 1

41. (a) Consistent
(b)

43. (a) Inconsistent (b) Not applicable

45. (a) Consistent
(b)

47.

49. �
5
4�

1

�1

2
� �

3
4�

3

1

0
� �

1
2�

0

0

1
� � �

1

2

�3
�

��1

4� � 2�2

0� � �3

4�
�1, 0, 2, �3, 0�

x � t�5, 0, �6, �4, 1� � s��2, 1, 0, 0, 0� �

x � t�2, �4, 1� � �3, 5, 0�

��8, �9, �6, 6��
���4, �1, 1, 0�, ��3, �

2
3, 0, 1��

���3, 0, 1�, �2, 1, 0��
���1, �3, 2��

��0, 0, 0, 0��, dim � 0

��2, �2, 0, 1�, ��1, 1, 1, 0��, dim � 2

���1, 2, 1��, dim � 1

���3, 0, 1��, dim � 1

���2, 1, 0�, ��3, 0, 1��, dim � 2

��0, 0��, dim � 0

��1, 0, 0, 0�, �0, 1, 0, 0�, �0, 0, 1, 0�, �0, 0, 0, 1��
��1, 0, �1, 0�, �0, 1, 0, 0�, �0, 0, 0, 1��
��1, 1, 0�, �0, 0, 1��
��1, 0, 0�, �0, 1, 0�, �0, 0, 1��

��
1
0
0
0
1

�, �
0
0
0
1
0

�, �
0
0
1
0
0

�, �
0
1
0
0
0

�, �
1
0
0
0
0

��
�0, 0, 0, 0, 1���0, 0, 1, 0, 0�, �0, 0, 0, 1, 0�,

��1, 0, 0, 0, 0�, �0, 1, 0, 0, 0�,

��
1

0
19
7
�, �

0

1
8
7
��
��1, 2, �2, 0�, �0, 0, 0, 1��

��
1

0

�
2
5
�, �

0

1
3
5
��

�0, 1, 32����1, 0, 14 �,
��1

0�, �0
1��
��1, 0, 12�, �0, 1, �1

2��
��1����1, 2, 3��

��1

0�, �0

1��
��1, 0�, �0, 1��

� 3
S1 � S2: ��1, 0, 0�, �0, 1, 0�, �0, 0, 1��,

� 1S1 � S2: ��0, 1, 0��,
� 2S2: ��0, 0, 1�, �0, 1, 0��,
� 2S1: ��1, 0, 0�, �1, 1, 0��,

V
Vn

nV
n,V

��0, 6, 1, �1��
��2, 1, 0, 1�, ��1, 0, 1, 0��
��2, 1, �1��

��2, 1��

��1, 1�, �1, 0��
��1, 0�, �0, 1��, ��1, 0�, �1, 1��, ��0, 1�, �1, 1��
dim�D3,3� � 3

�
1

0

0

0

0

0

0

0

0
�, �

0

0

0

0

1

0

0

0

0
�, �

0

0

0

0

0

0

0

0

1
�,



51. Four vectors in must be linearly dependent.

53. Proof

55. (a)

(b)

(c)

57. (a) m (b) r (c) r (d) (e)

59. Answers will vary. 61. Proof

63. (a) True. See Theorem 4.13, page 233.

(b) False. See Theorem 4.17, page 241.

65. (a) True. the columns of become the rows of 
so the columns of span the same space as the rows
of

(b) False. The elementary row operations on do not
change linear dependency relationships of the
columns of but may change the column space 
of

67. (a) rank rank
nullity

(b) Choosing and as the free variables,

A basis for the nullspace is

(c)
(d)
(e) Linearly dependent
(f) (i) and (iii)

69. Proof 71. Proof

Section 4.7 (page 260)

1. 3. 5. 7.

9. 11. 13.

15. 17.

19.

21. 23.

25.

27.

29. (a) (b)

(c) Verify. (d)

31. (a) (b) �
1
2

�1
2

3
2

1
2

�1
2

1
2

�5
4

3
4

5
4

��
4

�7

�2

5

�10

�2

1

�1

0
�

�6

3�

�6

9

4

4���
1
3
3
4

1
3

�
1
2
�

1

0

�
5
4

�
3
4

0

�
3
11

�
2
11
9
22
1
2

�
1
11

5
11
3
22

�
19
44

�
1
4

�
2
11

0

0

�
1
4
1
4

0

�
7
11

�
1
11
21
22
1
2
5

11

�
�24

�10

�29

12

7

3

7

�3

1

0

3

�1

�2

�1

�2

1
�

�
�7

5
11

3
�1
�3

10
�6

�10��
1

3

3

1

5

6

1

4

5
�

�
9
5
8
5

4
5
3
5
�

�
1

0

0

2
1
2

�
1
3

�
1
2

0
1

12
��2

4

�1

3�

�
3
2

�2

�
1
2

1��
0

�1

2
��

1

�1

2
�

�3

2��
�1

2

0

1
��

5

4

3
�� 8

�3�

�0, 1, 7, 5����5, 3, 11, 7�,���2, 1, 3, 1�,
�0, 0, 0, 1, �5���0, 1, �2, 0, 3�,��1, 0, 1, 0, 1�,

��.

�1
�3

0
5
1

��,

�1
2
1
0
0

��
x5 � t.
x4 � 5t
x3 � s
x2 � 2s � 3t
x1 � �s � t

x5x3

n � r � 5 � 3 � 2�A� �

�B� � 3�A� �

A.
A

A

AT.
A

AT,A

RmRn

�1

0

0

0�, �0

0

0

1�
�1

0

0

0�, �0

0

1

0�
�1

0

0

1�, �0

1

1

0�

R3
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A34 Answer  Key

(c) Verify. (d)

33. (a) (b)

(c) Verify. (d)

35. 37. 39. 41.

43. (a) False. See Theorem 4.20, page 253.

(b) True. See the discussion following Example 4,
page 257.

45.

47. If is the standard basis, then

shows that the transition matrix from to is

If is the standard basis, then 
shows that the transition matrix from to is 

Section 4.8 (page 270)

1. (b), (c), and (d) 3. (a), (b), and (d)

5. (b) 7. (b) 9.
11. 13. 0 15.

17. Linearly independent 19. Linearly dependent

21. Linearly dependent 23. Linearly dependent

25.

27.

29. Proof 31. Proof

33. No. For instance, consider Two solutions are

and Their sum is not a solution.

35. Parabola 37. Ellipse

39. Hyperbola 41. Parabola

43. Point

45. Hyperbola

x

(−3, 5)

1−2−4−6

2

4

6

8

y

9x2 − y2 + 54x + 10y + 55 = 0

1 2

1

2

x

(2, 1)

y

9x2 + 25y2 − 36x − 50y + 61 = 0

x
−2 −1 4

1

−4

−5

(1, −2)

y

3

x2 − 2x + 8y + 17 = 0

−6

−4

4

6

−6 −4 4
x

− − 1 = 0  

y

2 6

x2 y2

9 16

−2−4 2 4

−3

−5

1

3

5

x

y

51

−4

4

x2 + 4y2 − 16 = 0

−2

−1

1

2

−4 −3 −2 −1
x

y

y2 + x = 0

y �
x2

2
� 1.y �

x2

2

y� � 1.

y � C1 � C2 sin x � C3 cos x

y � C1 sin x � C2 cos x

2e3x�x

�2

B.B�,BP�1,
�B� � B� � �I � B�B�

�B���1.
B�,BP�1,

�B� � B� � �B� � I� ⇒ �I � �B� ��1�
B

QP

�
1

2

�1
��

0

3

2
��

1

5

�2
��

4

11

1
�

�
279
160

�61
80

�
7

10
�

�
3

32

� 1
16
1
2

17
20

� 3
10
6
5

5
4

�1
2

0��
�48

5

4

�6
5

�24

10

�5

4
5

1
2

�2
5
�

�
11
4

�9
4

5
4

�



47. Ellipse 49. Hyperbola

51. Parabola

53. 55.

57. 59.

61. 63.

65.

67. Proof 69. Proof

Review Exercises – Chapter 4 (page 272)

1. (a) 3. (a)
(b) (b)
(c) (c)
(d) (d)

5. 7.

9. 11.

13.

15.

17. is a subspace of 

19. is not a subspace of 

21. is a subspace of R3.W

R2.W

R2.W

�A � ��a1, �a2, �a3�
O � �0, 0, 0�

�A � �
�a11

�a21

�a31

�a12

�a22

�a32

�a13

�a23

�a33

�a14

�a24

�a34
�

O3,4 � �
0

0

0

0

0

0

0

0

0

0

0

0
�,

v �
9
8u1 �

1
8u2 � 0u3v � 2u1 � u2 � 3u3

� 5
2, �6, 0�� 1

2, �4, �4�
�9, �7, 2, 7���5, 6, 5�
�3, �3, 0, 2���2, 2, 1�
�0, 4, 4, 2��2, 0, 4�
�3, 1, 4, 4��0, 2, 5�

−1−2−3 1 2 3−1

−2

−3

1

2

3

x

y

x'y'

45°

x� � ±
�2

2

−2 −1 2

−2

−1

1

1

2

x

x'y'

y

45°

2 4 6

−6

−4

−2

y' x'

x
60°

y

y� � 0y� � 4 � ��x� �2

−2

−2

2

x

x'

y'
y

2

30˚

x'y'

−3 −1 3

−3

−2

1

3

x
45°

y

1

�x� �2 �
�y� �2

4
� 1

�x� �2

6
�

�y� �2

4
� 1

1

1 3

3

x

y

x'y'

45°

−3

−1−3−2 −1

−2

−1

1

1
x

x'y'

45°

y

�x� �2

3
�

�y� �2

5
� 1

�y� �2

2
�

�x� �2

2
� 1

−4 −3 −2 −1

−3

−2

−1

1

x

y

x2 + 4x + 6y − 2 = 0

x

(−1, 5)

−2−4

2

8

10

4

y

2

2x2 − y2 + 4x + 10y − 22 = 0
x2 + 4y2 + 4x + 32y + 64 = 0

−5 −4 −3 −2 −1

−4

−2

x

y
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A36 Answer  Key

23. is not a subspace of 

25. (a) is a subspace of 
(b) is not a subspace of 

27. (a) Yes (b) Yes (c) Yes

29. (a) No (b) No (c) No

31. (a) Yes (b) No (c) No

33. is a basis for 

35. The set is not a basis for 

37. (a) (b) 2

39. (a) (b) 2

41.

43.

45.

47. (a) 2 (b)

49. (a) 1 (b)

51. (a) 3 (b)

53. 55. 57.

59. 61. 63.

65. 67. 69.

71.

73. Basis for 
Basis for 
Basis for 

75. No. For example, the set

is a basis for 

77. Yes, W is a subspace of V.

79. Proof

81. Answers will vary.

83. (a) True. See discussion above “Definitions of Vector
Addition and Scalar Multiplication in ”
page 183.

(b) False. See Theorem 4.3, part 2, page 186.
(c) True. See “Definition of Vector Space” and the 

discussion following, page 191.

85. (a) True. See discussion under “Vectors in ” page
183.

(b) False. See “Definition of Vector Space,” part 4,
page 191.

(c) True. See discussion following “Summary of 
Important Vector Spaces,” page 194.

87. (a) and (d) are solutions.

89. (a) is a solution.

91. 93.

95. Linearly independent 97. Linearly dependent

99. Circle 101. Hyperbola

103. Parabola 105. Ellipse

x

(−4, −2)

−1−2−4−6

−2

1

−3

−4

−5

y

4x2 + y2 + 32x + 4y + 63 = 0

−10

10

20

30

40

50

x

(5, −4)

y

2x2 − 20x − y + 46 = 0

1 2 3 4 6 7 8

x
(−1, 0)

2−1−2−4

2

3

−2

−3

y

x2 − y2 + 2x − 3 = 0

1 2 3 4

−4

2

x

y

x2 + y2 − 4x + 2y − 4 = 0 

�8ex

Rn,

Rn,

P2.

�x2 � x, x2 � x, 1�

W � U: �x�x � 1�, x2�x � 1��
U: ��x � 1�, x�x � 1�, x2�x � 1��
W: �x, x2, x3�

�
0
0
1

0
1
0

1
0
0�

� 1

�1

3

1��
�2

1

�2
���12

6�

�
3

1

0

1
��

�1

4
3
2
��

2
5

�1
4
�

�
2

�1

�1
��

3
4
1
4
���2

8�
��1, 0, 0�, �0, 1, 0�, �0, 0, 1��
��1, �4, 0, 4��
��1, 0�, �0, 1��

Rank�A� � nullity�A� � 2 � 1 � 3

��4, �2, 1��
Rank�A� � nullity�A� � 2 � 2 � 4

��3, 0, 1, 0�, ��1, �2, 0, 1��
Rank�A� � nullity�A� � 1 � 1 � 2

��8, 5��
��2, 3, 7, 0�, ��1, 0, 0, 1��
���3, 0, 4, 1�, ��2, 1, 0, 0��

M2,2.

P3.S

R3.W
R3.W

C ��1, 1�.W



Answer Key A37

107. 109.

Chapter 5

Section 5.1 (page 290)

1. 5 3. 3 5.

7. (a) (b) (c)

9. (a) 5 11. (a) 13. (a)

(b) (b) (b)

(c) (c)

15. (a)

(b)

17. (a) (b)

19. 21.

23. 25.

27. (a) (b)

(c)

29. 31. 33.
35. (a) 37. (a) 0 39. (a) 5

(b) 25 (b) 6 (b) 50

(c) 25 (c) 6 (c) 50

(d) (d) 0 (d)

(e) (e) 0 (e) 25

41.

43. (a) 45. (a)

(b) (b)

(c) (c)

(d) 140 (d) 0
(e) 169 (e) 169
(f) 289 (f) 169

47. (a) (b)

(c) (d) 238

(e) 676 (f) 169

49. (a) (b)

(c) (d)

(e) 169 (f) 169

51. (a)

(b)

(c)
(d) (e) (f)

53. (a)

(b)

(c)
(d) 0 (e) 3 (f) 4

55. (a)

(b)

(c)
(d) 7 (e) 14 (f) 14

57. (a)

(b)

(c)

(d) (e) 14 (f) 16

59.

61.

63. 1.713 radians; 65. ; �105��7�

12
�98.13��

 2 � 2�21
� ��1, 1, �2�� ��1, �3, �2��

��1, 1, �2� � �1, �3, �2��
 6 � 5�13

��3, 4� � �2, �3�� � ��3, 4�� ��2, �3��
�4
�0.2673, 0.5345, �0.2673�

�0.2673, �0.2673, �0.5345, 0.2673, �0.2673,

��0.25, 0, 0.25, 0.5, �0.5, 0.25, 0.25, �0.5�

�v � � 4�u � � 3.7417,

�0, �0.5345, �0.5345, 0.2673, �0.2673, 0.5345�
�0.5345, 0, 0.2673, 0.2673, 0.5345, �0.5345�

�v � � 3.7417�u � � 3.7417,

�0, �0.5774, �0.8165�
��0.5, 0.7071, �0.5�

�v � � 2�u � � 1.7321,

0.10251.17560.1113
��0.9223, �0.1153, �0.3689�
�0, 0.7809, 0.6247�

�v � � 0.3202�u � � 1.0843,

�169�0, �
5
13, �

12
13�

�0, � 5
13, �12

13��v � � 13�u � � 13,

��10
26, 24

26� � �� 5
13, 12

13�
�� 5

13, �
12
13��v � � 13�u � � 26,

�� 5
13, �

12
13��� 5

13, 12
13�

��12
13, 5

13��� 8
17, �

15
17�

�v � � 13�v � � 17

�u � � 13,�u � � 13,

�7

�30

�0, 10, 25, 20���12, 18�

�6

�222�32�2

��16, �16, �12�
��2, �2, �

3
2��4, 4, 3�

	0,
6
�6

,
3
�6

, �
3
�6
�1, �3, 0�

�2�2, 2�2�±
1

�14

��1
3, 0, �2

3, �
2
3��1

3, 0, 23, 2
3�

	�
3

�38
, �

2

�38
,

5

�38

	 3
�38

,
2

�38
, �

5
�38

�13�21

� 5
13, �

12
13��11�6

�� 5
13, 12

13��6

�577
8

5�41
8

�17
4

3�6

−2−4−6

−4

2
4
6
8

10
12

x

y

≈ −36.87°

x'

y'

θ

−6 63

−6

6y' x'

x
45°

y

�x��2 � 4�y� � 1�
�x� �2

6
�

�y� �2

6
� 1



A38 Answer Key

67. 1.080 radians; 

69. 71. 73.

75. 77.
79.
81. Orthogonal 83. Parallel 85. Neither

87. Neither 89. Orthogonal 91. Neither

93. Orthogonal;

95. (a) False. See “Definition of Length of a Vector in 
” page 278.

(b) False. See “Definition of Dot Product in ” page
282.

97. (a) is meaningless because is a scalar.
(b) is meaningless because u is a vector

and is a scalar.

99.

101.

103.

105.

107. (a)

(b) (c)

109. and , and and 
are orthogonal to The answer is not unique.

111.

113–117. Proof

119. means that the dot product of each row of 
with the column vector is zero. So, is orthogonal
to the row vectors of 

121. Proof

Section 5.2 (page 303)

1. (a) 3. (a) 15 5. (a)

(b) 5 (b) (b)

(c) 13 (c) 5 (c)

(d) (d) (d)

7. (a) 0 (b) (c) (d)

9. (a) 3 (b) (c) 3 (d) 3

11. (a) (b) (c) (d)

13. (a) (b)

(c)

(d)

15. (a) 0 (b) (c) (d)

17. (a) (b) (c) (d)

19. (a) (b) (c) (d)

21. (a) (b) (c) (d)

23. (a) 0 (b) (c) (d) 2

25. Proof 27. Proof

29. Axiom 4 fails, page 293.

31. Axiom 4 fails, page 293.

33. Axiom 2 fails, page 293.

35. Axiom 1 fails, page 293. If and 
and

37. 2.103 radians 39. 1.16 radians 

41. 43. 1.23 radians 

45.
�

2

�70.53��
�

2

�66.59���120.5��
�v, u� � 3�2��2� � 3�1� � 9.
�u, v� � 3�1��3� � 2�2� � 5

v � �2, 3�,u � �1, 2�
��1, 0�, �1, 0�� � ��1, 0�, �1, 0�� � 1 � 1 � 2

��1, 0�, �1, 0� � �1, 0�� � ��1, 0�, �2, 0)� � 4

��1, 1�, �1, 1�� � 0, but �1, 1� � 0.

��0, 1�, �0, 1�� � 0, but �0, 1� � 0.

�2�2

�21�2�11�4

3�6�5�39�5

3�6�7�35�6

3�2
�5

2�2
�5

�2

�e2

2
�

2
3

�
1

2e2 �
4
e

� 1.680

�e2

2
�

1
2e2 � 1.904

�6

3
� 0.816

2

e
� 0.736

�2
2�210

15
�10

5
16
15

�6

3�67�4118�3

�2662�132�65

�101

�97�57

�34�33

A.
xx

AAx � 0

� � cos�1	�6

3 
 � 35.26�

�8, 15�.
��15

17, 8
17��15

17, �
8
17���15, 8��15, �8�

�

2
< � � �0 � � <

�

2

� �
�

2
provided u � 0 and v � 0

54 � ��29�2 � 52

��7, 1, �2��2 � ��3, 4, �2��2 � ��4, �3, 0� �2

 4 � ��2�2 � ��2�2

��2, 0��2 � ��1, �1��2 � ��1, 1� �2

�2 � �2 � 2

��1, 1�� � ���1, 1�� � ��2, 0��
�26 � 4 � �2

��5, 1�� � ��4, 0�� � ��1, 1��
u � v

u � �u � v�
u � v�u � v �

Rn,

Rn,

u � v � 0

v � �r, 0, s, t, w�
v � �t, 4t, s�v � �2t, 3t�

v � �t, 0�
�

2

�

4

�61.87��



Answer Key A39

47. (a)

(b)

49. (a)

(b)

51. (a)

(b)

53. (a)

(b)

55. (a)

(b)

57. (a)

(b)

59. Because

and are orthogonal.

61. The functions and are 
orthogonal because

63. (a) (b)

(c)

65. (a) (b)

(c)

67. (a) (b)

69. (a) (b)

71. 73.

75. 77.

79. (a) False. See the introduction to this section, page
292.

(b) True. See paragraph after “Remark,” page 301.

81. (a) u and v are
orthogonal.

(b)

Not orthogonal in the Euclidean sense

83–89. Proof

1 2 3 4

−2

−1

1

2

x

u = (4, 2)

v = (2, −2)

y

⇒�u, v� � 4�2� � 2�2���2� � 0

projg f � �sin 2xprojg f � 0

projg f �
2ex

e2 � 1
projg f � 0

�0, �
5

46, �
15
46, 15

23��1
2, �

1
2, �1, �1�

�� 5
14, �

15
14, 5

7��0, 5
2, �

5
2�

x

(4, 4)

(−1, 3)
3

5

1−1 3 4

u v

projvuprojuv

y

2

��4
5, 12

5 ��1, 1�

1 2

1

2

x

u = (1, 2)

v = (2, 1)
projuv

projvu

y

�4
5, 8

5��8
5, 4

5�

�
1
2

�x5 � x3��
1

�1
� 0.�

1
2�

1

�1
�5x4 � 3x2� dx

� f, g� � �1

�1
x

1
2

�5x3 � 3x� dx

g�x� �
1
2�5x3 � 3x�f �x� � x

gf

�
1
2

 sin2 x�
�

��
� 0,

� f, g� � ��

��

 cos x sin x dx

�11
6 �

1
2e2 � �1

3 � �1
2e2 �

1
2

�x � ex� � �x� � �ex�
 1 � �1

3 � �1
2e2 �

1
2

�x, ex� � �x � �ex�
�2� � �� � ��

� sin x � cos x � � �sin x � � �cos x �
 0 � ��������

��sin x, cos x�� � �sin x � �cos x �
�77 � �14 � �35

����3
6

4
4��� � �14 � �35

 14 � �14�35
�0��3� � 3�1� � 2�4� � 1�3�� � �14�35

�14 � 2 � �10

�2x � 3x2 � 1 � � �2x � � �3x2 � 1�
 0 � �2���10�

��2x, 3x2 � 1�� � �2x � �3x2 � 1�

�57 � �17 � �42

���4, 4, 5�� � �17 � �42

 1 � �714
��1, 0, 4�� � ��5, 4, 1�� � �17�42

 8�5 � 13 � 5

� �5, 12� � �3, 4�� � ��5, 12�� � ��3, 4��
 63 � �13��5�

���5, 12�, �3, 4��� � ��5, 12�� � (3, 4��



A40 Answer Key

Section 5.3 (page 318)

1. Orthogonal 3. Neither 5. Orthonormal

7. Orthogonal 9. Orthonormal 11. Orthogonal

13. Orthonormal

15. Orthogonal;

17. Orthogonal;

19. The set is orthogonal because

Furthermore, the set is orthonormal because
and

So, is an orthonormal basis for 

21. 23. 25.

27. 29.

31.

33.

35.

37.

39.

41.

43.

45.

47. (a) True. See “Definitions of Orthogonal and
Orthonormal Sets,” page 306.

(b) True. See corollary to Theorem 5.10, page 310.
(c) False. See “Remark,” page 314.

49.

51.

53.

55. Orthonormal 57.

59.

61.

63. Proof 65. Proof

67.

69.

71.

73. Proof

Section 5.4 (page 333)

1. Not orthogonal 3. Orthogonal

5. span 7. span ��
0

0

1

0
�, �

2

�1

0

1
����

0

1

0
��

R�AT � basis: ��1, 0, 1�, �1, 1, 1��
R�A� basis: ��1, 1�, (0, 1�} � R2

N�AT � � ��0, 0��
N�A� basis: ��1, 0, �1��
R�AT � basis: ��1, 1, �1�, �0, 2, 1��
R�A� basis: ��1, 0, 1�, �1, 2, 3��
N�AT � basis: ���1, �1, 1��
N�A� basis: ��3, �1, 2��

	 1

�2
, 0, �

1

�2
, 0
, 	0,

1

�2
, 0, 

1

�2
�
�	 1

�2
, 0, 

1

�2
, 0
, 	0, �

1

�2
, 0, 

1

�2
,

�	2

3
, �

1

3
, 	�2

6
,

2�2

3 
�
� 1

�2
 �x2 � 1�, �

1

�6
�x2 � 2x � 1��

�x2, x, 1�

�	�
3�10

10
,
�10
10

, 0
, 	3�190
190

,
9�190

190
,
�190

19 
�
�	�2

2
, 0, 

�2

2
, 0
, 	�6

6
, 0, �

�6

6
,
�6

3 
�
�	3�10

10
, 0, 

�10

10
, 0
, 	0, �

2�5

5
, 0, 

�5

5 
�

�x2, 1� � �1

�1

x2 dx �
x3

3 �
1

�1
�

2

3

�x, 1� � �1

�1

x dx �
x2

2 �
1

�1
� 0

	�3
3

, �
�3
3

, �
�3
3

, 0
�
�	�6

6
,
�6

3
, �

�6

6
, 0
, 	�3

3
, 0, 

�3

3
,
�3

3 
,

��3
5, 4

5, 0�, �4
5, �

3
5, 0��

�	�
4�2

7
,

3�2

14
,

5�2

14 
�
	�3

3
, �

�3

3
,
�3

3 
��	0,
�2

2
,
�2

2 
,	�6

3
,
�6

6
, �

�6

6 
,

��4
5, �

3
5, 0�, �3

5, 4
5, 0�, �0, 0, 1��

��1
3, �

2
3, 2

3�, �2
3, 2

3, 1
3�, �2

3, �
1
3, �

2
3��
��0, 1�, �1, 0����3

5, 4
5�, �4

5, �
3
5��

�
11

2

15
��

�10
2

�2

�
�10
2

��
4�13

13

7�13
13

�
P3.�1, x, x2, x3�

�x3 � � 1.�x2 � � 1,�x � � 1,�1 � � 1,

�x2, x3� � 0.�x, x3� � 0,�x, x2� � 0,
�1, x3� � 0,�1, x2� � 0,�1, x� � 0,

�1, x, x2, x3�

	�3
3

,
�3
3

,
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2
, 0, 

�2
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,
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Answer Key A41

9. 11.

13. 15.

17.

19.

21. 23. 25.

27. 29.

31.

33. 35.

37. Advanced Auto Parts:

2010: million
Auto Zone:

2010: million

39.

41.
Explanations will vary.

43. (a) False. See discussion after Example 2, page 322.
(b) True. See “Definition of Direct Sum,” page 323.
(c) True. See discussion preceding Example 7, page 328.

45. Proof 47. Proof

49. If A has orthonormal columns, then and the
normal equations become

Section 5.5 (page 350)

1. 3.

5.

7. 9.

11. 13.

15. 17. �5, �4, �3���2, 3, �1�
��1, 12, �2���1, �1, �1�
��8, �14, 54���2, �2, �1�

x

y

z

− j

i � k � �j

x

y

z

i

x

y

z

−k

j � k � ij � i � �k

x � ATb.
ATAx � ATb

ATA � I

y � 2.416t3 � 36.74t2 � 4989.3t � 28,549

y � 36.02t2 � 87.0t � 6425

S � $8126
S � 8.444t3 � 105.48t2 � 578.6t � 4444

S � $6732
S � 2.859t3 � 32.81t2 � 492.0t � 2234

y �
3
7x2 �

6
5x �

26
35y � x2 � x

x

1

2

3

−1
−2 −1 2

(2, 1)

(1, 2)

(0, 1)(−2, 1)

(−1, 2)

y

1

y = 7
5

x

1

2

−1

−2

21−2

(2, 2)

(1, 0)(−1, 0)

(−2, −1)

y
y =    + x3

5
1
4

−3 −2 −1 3

−3

−2

2

3

x

(−1, 1)
(1, 0)

(3, −3)

y = −x + 3
y1

2

x � �
1
3

0
1
3
�x � �

2

�2

1
�x � � 1

�1�

R�AT � basis: ��1, 0, 0, 1�, �0, 1, 1, 1��
R�A� basis: ��1, 0, 1, 1�, �0, 1, 1, 2��
N�AT � basis: ���1, �1, 1, 0�, ��1, �2, 0, 1��
N�A� basis: ���1, �1, 0, 1�, �0, �1, 1, 0��
R�AT � basis: ��1, 2, 3�, �0, 1, 0��
R�A� basis: ��1, 0�, �2, 1�� � R2

N�AT � � ��0, 0��
N�A� basis: ���3, 0, 1��

�
1

�1

2
��

5
3

8
3

13
3

�
�

0
2
3
2
3

2
3

�span��
1

2

0

0
�, �

0

1

0

1
��



A42 Answer Key

19. 21.

23.

25. 1 27. 29.

31. 1 33. 35. Proof

37. 39. 2 41–49. Proof

51. (a)
(b)

53. (a)
(b)

55. (a)
(b)

57. (a)
(b)

59. (a)
(b)

61. (a)
(b)

63.

65.

67.

69.

71.

73.

75.

Review Exercises – Chapter 5 (page 352)

1. (a) 3. (a)
(b) (b)
(c) 6 (c) 7
(d) (d)

5. (a) 7. (a)
(b) (b)
(c) (c) 6
(d) (d) �2�11

�1
�7�3
�7�6

�6�10

�14�17
�6�5

g�x� � 2	sin x �
sin 2x

2
�

sin 3x

3
� . . . �

sin nx

n 

g�x� � sin 2x

g�x� � �1 � �� � 2 sin x � sin 2x �
2
3 sin 3x

1 � e�4�

20�
�5 � 8 cos x � 4 sin x�g�x� �

g�x� �
1

2�
 �1 � e�2���1 � cos x � sin x�

g�x� �
�2

3
� 4 cos x � cos 2x �

4

9
 cos 3x

g�x� � 2 sin x � sin 2x �
2
3 sin 3x

1

f g

2
π

2
π−

x

y

g�x� � �0.4177x2 � 0.9802

1

x

g

f

π

y

g�x� � �0.0505 � 1.3122x � 0.4177x2

1

1

x

f
g

y

g�x� � 1.5x2 � 0.6x � 0.05

0
0

f

g

2
π

1.5

g�x� � 0.1148 � 0.6644x

10
0

f

g

1

g�x� � �0.812x � 0.8383

f
g

0
0 4.5

3

g�x� �
4

135�25 � 11x�

9�6
2

�1

2�836�5

�1, �5, �3�
�1, �1, �3��2, �1, �1�
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9. ;

11.

13. 15. 17.

19. 21. 23.

25. (a) (b)

27. Triangle Inequality:

Cauchy-Schwarz Inequality:

29. 31.

33.

35.

37. (a)

(b)

(c)

39. (a) (b) (c)

(d)

41.

43.

(The answer is not unique.)

45. (a) 0 (b) Orthogonal
(c) Because , it follows that 

47–53. Proof

55. span

57.

59.

2010: million

61.

63.

65.

67. 69.

71. Proof 73. 2

75. 77.

x
f

g

π
4

2

2

1

1

−

y

x

f

g

2

4

6

1 2

y

g�x� � �
3x
�2 �

3
2�

g�x� �
18
5

x �
8
5

i � j � 2k��2, �1, 1�
y � 151.692x2 � 542.62x � 10,265.4

y � 91.112x2 � 365.26x � 315.0

y � 10.61x � 396.4

y � $3578

y � 1.778t3 � 5.82t2 � 77.9t � 1603

R�AT � basis: ��0, 1, 0�, �1, 0, 1��
R�A� basis: ��0, 0, 1�, �1, �3, 0��
N�AT� � ��3, 1, 0��
N�A� basis: ��1, 0, �1��

�� 2
�1

3
��

�� f, g�� � � f � �g �.� f, g� � 0

�	�
1

�2
, 0, 

1

�2 
, 	�
1

�6
,

2

�6
, �

1

�6 
�
� 2�x2

2
�

x4

4 �
1

�1
� 0

� �1

�1

2x�1 � x2� dx � 2�1

�1

�x � x3� dx

� f, g� � �1

�1

�1 � x2 2x�1 � x2 dx

��3x,�5�4x2 � 3x��

1

�30

1

�5

1

4

�3	 1

�3
, �

1

�3
, �

1

�3 

��1, 4, �2� � 3�2	0,

1

�2
, �

1

�2 
 �

�	0,
1

�2
, �

1

�2 
, 	 1

�3
, �

1

�3
, �

1

�3 
�
��1, 4, �2� � 2�0, 2, �2� � �1, 0, �2�

��0, 3
5, 4

5�, �1, 0, 0�, �0, 4
5, �

3
5��

�	 1

�2
,

1

�2 
, 	�
1

�2
,

1

�2 
�
�2r � 2s � t, r, s, t��s, 3t, 4t�

 2 � �15
2 �53

4 � 9.969

� ���2, �
1
2, 1��� ���3

2, 2, �1���
���2, �

1
2, 1�, �3

2, 2, �1���

�67
2

� �15
2

��53
4

� ���2, �
1
2, 1��� � ���3

2, 2, �1���
���2, �

1
2, 1� � �3

2, 2, �1���

3�11

2
�2

�18
29, 12

29, 24
29��24

29, 60
29��� 9

13, 45
13�

�
�

12
�

2

	 1
�6

, �
1
�6

,
2
�6
u ��v � � �6;

u � 	 5

�38
,

3

�38
, �

2

�38
�v � � �38
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79.

81.
83. (a) True. See note following Theorem 5.17, page 338.

(b) True. See Theorem 3.18, page 339.
(c) True. See discussion on pages 346 and 347.

Cumulative Test—Chapters 4 and 5 (page 359)

1. (a)

(b)

(c)

2. 3. Proof

4. Yes 5. No 6. Yes

7. (a) A set of vectors is linearly independ-
ent if the vector equation 
has only the trivial solution.

(b) Linearly dependent

8. The dimension is 6. One basis is

9. (a) A set of vectors in a vector space V is
a basis for V if the set is linearly independent and
spans V.

(b) Yes

10. 11.

12.

13. (a) (b) (c) 4
(d) 1.0723 radians; 

14.

15.

16.

v = (−3, 2) u = (1, 2)

projvu
=    (−3, 2)1

13

−3 −2 −1 1

−2

1

2

x

y

1
13��3, 2�

��1, 0, 0�, 	0,
�2

2
,
�2

2 
, 	0, �
�2

2
,
�2

2 
�
11
12

�61.45��
�11�5

�
0
2

�1

1
0

�1

�1
1
1�

�
�4

6

�5
���

1

�1

0

0
�, �

0

0

1

�1
��

�v1, . . . , vn�

�
0

0

0

0

1

0

0

0

0
�, �

0

0

0

0

0

1

0

1

0
�, �

0

0

0

0

0

0

0

0

1
��.

��
1

0

0

0

0

0

0

0

0
�, �

0

1

0

1

0

0

0

0

0
�, �

0

0

1

0

0

0

1

0

0
�,

c1v1 � . . . � cnvn � 0
�v1, . . . , vn�

w � 3v1 � v2 �
2
3v3

−4−8

−8
−12
−16
−20

16
20

x

y

4w = (8, −20)

2v − 4w = (−6, 16)

2v = (2, −4)

��6, 16�

−1 6 7

−2
−3
−4
−5
−6
−7

1

v = (1, −2)

3v = (3, −6)

x

y�3, �6�

−1 7 8
−2
−3
−4
−5
−6
−7
−8

1

v = (1, −2)

w = (2, −5)

v + w = (3, −7)

x

y�3, �7�

g�x� � 2 sin x � sin 2x

0
0

6

4

f (x)

y

y � 0.3274x2 � 1.459x � 2.12
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17.

18.

19–21. Proof

22.

23. (a) 3
(b) One basis consists of the first three rows of 
(c) One basis consists of columns 1, 3, and 4 of 

(d) � � (e) No

(f) No (g) Yes (h) No

24. Proof

Chapter 6

Section 6.1 (page 371)

1. (a) (b)

3. (a) (b)

5. (a) (b)

7. (a) (b) 

9. Not linear 11. Linear 13. Not linear

15. Not linear 17. Linear 19. Linear

21. Linear 23. 25.

27. 29. 31.

33. 35.

37. (a) (b)
(c) The system represented by

is inconsistent.

39. (a) (b) 

41. (a) (b)

(c)

43. True. is a linear transformation and preserves addition
and scalar multiplication.

45. False, because sin for all .

47. 49.

51. (a) (b) (c)

53. 55.

57. (a) True. See discussion before “Definition of a Linear
Transformation,” page 362.

(b) False, because 

(c) True. See discussion following Example 10,
page 370.

59. (a) (b) Projection onto the x-axis

61. (a) (b)

(c) Proof (d) Proof

63.

65. (a) Assume that and are not both zero. Because

it follows that is not a linear transformation.
(b)

T�5, 4� � �3, 5�
T�2, �1� � �0, 0�
T�0, 0� � ��2, 1�

T
T�0, 0� � �0 � h, 0 � k� � ��h, �k� � �0, 0�,

kh

� �
1
2x �

1
2y

1
2x �

1
2y� � T�u�Au � �

1
2
1
2

1
2
1
2��x

y�

�5
2, 5

2��1
2�x � y�, 1

2�x � y��
�x, 0�

cos�x1 � x2� � cos x1 � cos x2.

T�0, 2� � �1, �1�
x2 � 3x � 5T�1, 0� � �1

2, 1
2�

�41
12�1

g�x� � �cos x � Cg�x� � x2 � x � C

x2x � 2 sin x

Dx

	�
5

2
,

5�3

2 

�2�3 � 2,  2�3 � 2��0, 4�2 �

��1, 1, 12, 1���1, 1, 2, 1�

�
1

�2

�2

2

4

2
� �v1

v2
� � �

1

1

1
�

��1, 0��10, 12, 4�
T: R2 → R2T: R5 → R2

T: R4 → R3�2, 5
2, 2��5, 0, 1�

�0, �6, 8��3, 11, �8�

��6, 4��0, 2, 1�
�1, 1, t���14, �7�
�5, �6, t��1, 5, 4�
�11, �8���1, 7�

�
2
1
0
0
0
0

� , �
�3

0
5

�1
1
0

� , �
�2

0
3

�7
0
1

�
A.

A.

1 2 3 4 5 6 7 8 9−1
−2
−3
−4
−5
−6
−7

1
2
3

(2, 0)

(5, −5)

y = 2.7 − 1.5x

(1, 1)

x

y

y �
36
13 �

20
13x

span��
�1

�1

1
��

R�AT � basis: ��0, 1, 1, 0�, ��1, 0, 0, 1�, �1, 1, 1, 1��
R�A� � R3

N�AT� � ��0, 0, 0��
N�A� basis: ��0, 1, �1, 0��
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(c) If then 
and which contradicts the assumption that 
and are not both zero. Therefore, has no fixed
points.

67. Let be given by Then,
if is any set of vectors in the set

is linearly dependent.

69–73. Proof

Section 6.2 (page 385)

1. 3.

5. are real

7. 9.

11. (a) 13. (a)
(b) (b)

15. (a) (b)

17. (a)
(b)

19. (a) (b) 0 (c) (d) 2

21. (a) (b) 0
(c) and are real
(d) 2

23. (a) is real
(b) 1 (c) (d) 2

25. (a) is real (b) 1
(c) is real (d) 1

27. (a) and are real
(b) 2
(c) is real
(d) 1

29. (a) and are real
(b) 2
(c) and are real
(d) 3

31. 33.
Kernel: a line Kernel:
Range: a plane Range:

35.
Kernel:
Range:

37.
Kernel: (plane)
Range:

39. 2 41. 4

Zero Standard Basis

43. (a)

(b)

(c)

(d)

(e)

45. The set of constant functions:

47. (a)

(b)

49. Because the homogeneous equation
has only the trivial solution. So, ker
and is one-to-one (by Theorem 6.6).

Furthermore, because

T is onto (by Theorem 6.7).

51. Because the homogeneous equation
has only the trivial solution. So, ker

and is one-to-one (by Theorem 6.6).
Furthermore, because 

is onto (by Theorem 6.7).

53. (a) False. See “Definition of Kernel of a Linear 
Transformation,” page 374.

(b) False. See Theorem 6.4, page 378.
(c) True. See discussion before Theorem 6.6, page 382.
(d) True. See discussion before “Definition of 

Isomor-phism,” page 384.

55. (a) (b) Rank < nRank � n

T
� 3 � 0 � 3 � dim�R3�

rank�T � � dim�R3� � nullity�T�

T��0, 0, 0��
�T� �Ax � 0

�A� � �1 � 0,

� 2 � 0 � 2 � dim�R2�
rank�T� � dim�R2� � nullity�T�

T��0, 0��
�T� �Ax � 0

�A� � �1 � 0,

��1, 0, �2�, �1, 2, 0��
nullity � 2Rank � 1,

p�x� � a0

�0, 0, 1, 0, 0�, �0, 0, 0, 1, 0��
��1, 0, 0, 0, 0�, �0, 1, 0, 0, 0�,�0, 0, 0, 0, 0�
�1, x, x2, x3�p�x� � 0

��1

0

0

0�, �0

0

1

0�, �0

1

0

0�, �0

0

0

1��0

0

0

0�

��
1

0

0

0
�, �

0

1

0

0
�, �

0

0

1

0
�, �

0

0

0

1
���

0

0

0

0
�

�0, 0, 1, 0�, �0, 0, 0, 1��
��1, 0, 0, 0�, �0, 1, 0, 0�,�0, 0, 0, 0�

��t, 2t, 2t�, t is real� �line)
��x, y, z�: x � 2y � 2z � 0�

Nullity � 2

R3

��0, 0, 0��
Nullity � 0

��0, 0, 0��
R3

Nullity � 3Nullity � 1

�tr, s,��7r, 7s, 7t, 8r � 20s � 2t�:

�ts��2s � t, t, 4s, �5s, s�:

�t��2t, �2t, t�:

�ts��s � t, s, �2t�:
�t��3t, t�:
�t��t, �3t�:

R2

�t���11t, 6t, 4t�:

�ts��4s, 4t, s � t�:
��0, 0��

R2��0, 0��
��1, 0, �1, 0�, �0, 1, �1, 0�, �0, 0, 0, 1��
���1, 1, 1, 0��

��1, �1, 0�, �0, 0, 1����0, 0��
��1, 0�, �0, 1����1, 0�, �0, 1��
���4, �2, 1����0, 0��

��0, 0���a0: a0 is real�
��a1x � a2x

2 � a3x
3: a1, a2, a3

��0, 0, 0, 0��R3

T�v2�, T�v3�� � �0, 0, 0��T�v1�,
R3,�v1, v2, v3�

T�x, y, z� � �0, 0, 0�.T: R3 → R3

Tk
hk � 0,

h � 0T�x, y� � �x � h, y � k� � �x, y�,
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57. 59. Proof

61. Although they are not the same, they have the same 
dimension (4) and are isomorphic.

Section 6.3 (page 397)

1. 3.

5. 7.

9. 11.

13. 15.

17. (a)

(b)

(c)

19. (a)

(b)

(c)

21. (a) (b)

(c)

23. (a) (b)

(c)

25. (a) (b)

(c)

27. (a) (b) �1, �2, �1��
1
0
0

0
�1

0

0
0
1�

yx

v(3, 2, 2)

(3, 2, −2)

1 2

2

33 44

z

T(v)

�3, 2, �2��
1

0

0

0

1

0

0

0

�1
�

x

1

1 2

2
(1, 2)

(                        )
v

−60°

1 + 2 3 2 − 3
2 2,

y

T(v)

	1
2

� �3, 1 �
�3
2 
�

1

2

�
�3

2

�3

2

1

2
�

−6 −4 −2 4

−4

−2

2

4

6

x

(4, 4)

v

(−4 2, 0)

y

2

T(v)

��4�2 , 0���
�2
2

�2
2

�
�2
2

�
�2

   2
�

−1−2−3 1 2 3

−2

1

vT(v)

x

y

(−2, −3) (2, −3)

��2, �3�

��1
0

0
1�

−4 −2 4

−4

2

4

x

v

(3, 4)

(−3,−4)

y

2
T(v)

��3, �4�

��1

0

0

�1�
�0, 0��0, 6, 6, �6�

�35, �7��
0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0
�

�0

4

�2

0

3

11��
1

1

�1

1

�1

0

0

0

1
�

�
2

1

�4

�3

�1

1
��1

1

2

�2�

mn � jk
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(c)

29. (a) (b)

(c)

31. (a) (b)

(c)

33. (a) (b)

(c)

35. (a) (b)

37. (a) (b)

39.

41.

43.

45.

47.

49. is not invertible. 51. is not invertible.

53.

55.

57. 59.

61. 63.

65. 67.

69.

71. (a) (b)

73. (a) True. See discussion under “Composition of Linear
Transformations,” pages 390–391.

(b) False. See Example 3, page 392.

(c) False. See Theorem 6.12, page 393.

6x � x2 �
3
4x4�

0

1

0

0

0

0

0
1
2

0

0

0

0

0
1
3

0

0

0

0

0
1
4

�
3 � 2ex � 2xex

�
0

0

0

0

1

0

0

0

0

0

1

0

0

0

1

1
��

0

1

0

0

0

0

1

0

0

0

0

1
�

�9, 16, �20��2, �4, �3, 3�
��1, 5��9, 5, 4�

� �x1 � 2x2, x2, x4, x3 � x4�T�1�x1, x2, x3, x4�

T�1�x, y� � 	x

5
,

y

5

TT

T�1�x1, x2, x3� � �x1, �x1 � x2, �x2 � x3�

T�1�x, y� � 	x � y

2
,

x � y

2 


A
 � �
5

4

�2

3

�3

�3

2

1

�1
�A � ��4

�2

�1

5�,

A
 � �
0

1

0

0

0

0

0

0

0
�A � �

0

1

0

0

0

0

0

0

0
�,

A
 � �0

7

2

�3�A � � 2

�1

�4

�5�,

�
1
1
2

�1
��

1
0
1
0

�1
0
2
0

0
1
0
0

0
0

�1
1
�

�
9
5

�1��
2

3

2

3

0

�1

�1

�2

1
�

−1 3 4 5

−3

−2

1

2

3

4

x

(1, 4)

v

( (,16 13
5 5

−

y

T(v)

�16
5 , �

13
5 ��

4
5
3
5

3
5

�
4
5
�

−1 1 2 3

1

2

3

4

x

(1, 4)

v

( (,21 7
10 10

y

T(v)

�21
10, 7

10��
9

10
3
10

3
10
1
10
�

1 2 3

1

3

v

T(v)

(( 3

x

y

(1, 2)

1
2

+3
2

−1,

	�3
2

� 1, �3 �
1
2
�

�3
2
1
2

�
1
2

�3
2

�
yx

T(v) v
1 2

2

3 44

z

(1, −2, −1)

(1, 2, −1)



Answer  Key A49

75.

77. Proof

79. Sometimes it is preferable to use a nonstandard basis.
For example, some linear transformations have diagonal
matrix representations relative to a nonstandard basis.

Section 6.4 (page 405)

1. (a)

(b)

3. (a)

(b)

5. (a)

(b)

7. (a)

(b)

9. (a) (b)

(c)

(d)

11. (a)

(b)

(c)

(d)

13. (a)

(b)

(c)

(d)

15. Proof 17. Proof 19. In

��1
5�

P�1 � ��1
4
9
8

1
4

�
5
8�A
 � ��7

27

�2

8�,

�T�v��B � �5

1��v�B � � 3

�1�,

�5
9

2
2�

�
1

0

�3
�

P�1 � �
1
1
0

1
0
1

0
1
1�A
 � �

1

0

0

0

2

0

0

0

3
�,

�T�v��B � �
2

�1

�2
��v�B � �

1

0

�1
�,

�
1
2
1
2

�
1
2

1
2

�
1
2
1
2

�
1
2
1
2
1
2
�

��
8
3

5�
P�1 � ��

1
3
3
4

1
3

�
1
2
�A
 � �0

9

�
4
3

7�,

�T�v��B � � 4

�4��v�B � � 2

�1�,�6

9

4

4�

�
1

0

1

0

2

2

1

2

0
�

A
 � �
2
3

�
1
3
1
3

�
1
3
1
6
1
3

1
3
1
3

�
1
3
� �1

2

1

�1

1

2

2

�1

1
�

A
 � ��
7
3

�
1
6

�2
3

�
10
3

�
4
3

�
4
3

�
1
3

�
8
3

�
2
3
�

�
1

1

0

1

0

1

0

1

1
�

A
 � �
1
2
1
2

�
1
2

1
2

�
1
2
1
2

�
1
2
1
2
1
2
� �1

0

0

0

1

0

0

0

1
�

A
 � �
1

0

0

0

1

0

0

0

1
�

A
 � ��
1
3

�
1
3

�
1
3

�
4
3
� �1

0

1

4� �
�4

1

1

�1�

A
 � � �
1
3

�
13
3

4
3

16
3
�

A
 � �1
2
3

0
1
3
� � 2

�1

�1

1� �
1

�2

0

3�

A
 � �4
5
3

�3

�1�

�
1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

�
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21–27. Proof

29. The matrix for relative to B and is the square matrix
whose columns are the coordinates of 
relative to the standard basis. The matrix for relative to

or relative to is the identity matrix.

31. (a) True. See discussion, page 399–400, and note that

(b) False. Unless it is a diagonal matrix; see Example 5,
pages 403–404.

Section 6.5 (page 413)

1. (a) (b) (c)
(d) (e) (f)

3. (a) (b) (c)
(d) (e) (f)

5. (a) (b) Reflection in the line 

7. (a) Vertical contraction
(b)

9. (a) Horizontal expansion
(b)

11. (a) Horizontal shear
(b)

13. (a) Vertical shear
(b)

15. t is real 17.

19. t is real 21.

23. 25.

27. 29.

31. 33.

1

2

3

x

y

1 2 3

(2, 2) (3, 2)

1

1

x

y

(0, 1) (1, 1)

1

2

x

y

−1−2

(−1, 2)

(−1, 0)

1

2

x

y

1 2 3

−1

(2, 1) (3, 1)

1

1

x

y

1
2 , 1( (

1
2 , 0( (

1
x

y

−1
(0, −1) (1, −1)

��t, 0�: t is real����t, 0�:
��t, t�: t is real����0, t�:

1

2

3

x

y

1 2 3

(x, y)

(x, 2x + y)

x

y

(x, y) (x + 3y, y)

x

1

2

3

4

y

1 2 3 4

(x, y) (4x, y)

x

y

(x, y)

x, y
2( (

y � x�y, x�
��g, f ��d, �c��b, 0�
�0, a��3, �1��1, 0�
� f, g���c, �d��0, �b�
�a, 0��2, 1��3, �5�

P�1AP ⇒ PA�P�1 � PP�1APP�1 � A.A� �

B�,B,
I
v1, . . . , vn

B�I
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35. (a) (b)

37. (a) (b)

39.

41. Horizontal expansion

43. Reflection in the line 

45. Reflection in the x-axis followed by a vertical expansion

47. Vertical shear followed by a horizontal expansion

49. 51.

53.

55.

57. about the -axis 59. about the -axis

61. about the -axis

63.

Line segment from 

65.

Line segment from 

Review Exercises – Chapter 6 (page 416)

1. (a) (b)

3. (a) (b)

5. Linear, 7. Linear,

9. Not linear

11. Linear,

13.

15.

17.

19.

21. (a) (b)

(c) is real

23. (a) (b) 5

(c)

25. (a) 27. (a)
(b) (b)
(c) (c) �1, �1��2, 2, 2�

�8, 10, 4���2, �4, �5�
T: R2 → R3T: R3 → R3

��4 � t, t�: t is real�
T: R2 → R1

�t���5
2, 3 � 2t, t�:

�3, �12�T: R3 → R2

A3 � �cos 3�

sin 3�

�sin 3�

cos 3��
A2 � I

T�0, �1� � ��1, �2�

T�0, 1� � �1, 1�T�1, 1� � � 3
2, 3

2�,

�
1

0

�1

�1

1

0

0

�1

1
�

� 1
�1

�2
2�� 1

�1
2

�1�
��t � 3, 5 � t, t�: t is real.���0, �1, 7�
�4, 4��2, �4�

��3�3 � 1�4, �1 � �3�2, ��3 � 1�4��
�0, 0, 0� to

�
�3
  4

1
2

�
3
4

�
1

   4

�3
2
�3
4

�3
2

0

1
2

�
�0, 0, 0� to �1, �1, �1�

�
0

0

�1

1

0

0

0

�1

0
�

z90�

y180�x90�

��1 � �3�2, 1, �1 � �3�2��
���3 � 1�2, ��3 � 1�2, 1��

�
1
2
0

�
�3
2

0

1

0

�3
2
0
1
2

��
�3

2
1

2
0

�
1

2
�3

2
0

0

0

1

�

y � x

−1 2 4

1

2

3

4

5

6

x

(2, 2)

(4, 6)

y

1 3 5

T�1, 0� � �2, 0�, T�0, 1� � �0, 3�, T�2, 2� � �4, 6�

2 4 6 8 10 12

1

2

3

4

5

(0, 0)

(0, 3) (12, 3)

(12, 0)
x

y

2 4 6 8 10 12

1

2

3

4

5

(0, 0)

(2, 1)

(6, 3)

(10, 1)
(12, 0)

x

y

2 4 6 8 10 12

2
4
6
8

10
12

x

y

(0, 0)

(6, 0)

(12, 6)(6, 6)

42

2

4

6

8

x

y

(9, 6)

(0, 0) (6, 0)

(7, 2)
(3, 2)
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29. (a)
(b)

31. (a) (b)

33. (a) (b)
(c) (d)

35. (a) (b)
(c) (d)

37. 3 39. 2

41.

43.

45. has no inverse. 47. has no inverse.

49.

51.

53. (a) One-to-one (b) Onto (c) Invertible

55. (a) One-to-one (b) Onto (c) Invertible

57.

59

61. (a) (b) Answers will vary.
(c) Answers will vary.

63. Answers will vary. 65. Proof

67. (a) Proof (b)

(c)

69.

71.

73. (a) Vertical expansion
(b)

75. (a) Vertical shear

(b)

77. (a) Horizontal shear

(b)

79. 81.

2 3

−1

1

2

x

(0, 0)
(3, 1)

(1, 0)

y

1

−1

x

(0, −1)

(1, 0)(0, 0)

y

x

(x, y) (x + 2y, y)

y

x
(x, y)

(x, y + 3x)
y

x

(x, y)

(x, 2y)
y

mn � pq

Nullity � dim�V� � 1
Rank � 1
Range � R
Ker�T � � �v: �v, v0� � 0�

�1 � x, 1 � x2, 1 � x3�
nullity � 3Rank � 1,

�
0

0

0

0
1
5
2
5

0
2
5
4
5
�

A
 � P�1AP � �
1
2
1
2

�
1
2
1
2
� � 1

�1

�3

1� �
1

�1

1

1�

A
 � �3

1

�1

�1�,

�0, 1, 1�

−6 −4 −2
−2

2

6

8

x

(−5, 3)

(−3, 5)
(0, 3)

(3, 0)

(5, 3)

(3, 5)

y

6

A 
 � �0

1

0

1�A � �
0

0

0

0

1

1

0

0

0
�,

TT

A�1 � � cos �

�sin �

sin �

cos ��A � �cos �

sin �

�sin �

cos � � ,

A�1 � �
1
2

0

0

1�A � �2
0

0
1�,

Nullity � 1Rank � 2
��1, 0, �1�, �0, 1, 2�����3, 3, 1��
Nullity � 0Rank � 2
��1, 0, 12�, �0, 1, �1

2����0, 0��
��1, 0, 1�, �0, 1, �1����1, �1, 1��

��5, 0, 4�, �0, 5, 8��
���2, 1, 0, 0�, �2, 0, 1, �2��
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83. Reflection in the line followed by a horizontal 
expansion

85.

87. ,

89.

91.

93.

95.

97. (a) False. See “Elementary Matrices for Linear 
Transformations in the Plane,” page 407.

(b) True. See “Elementary Matrices for Linear 
Transformations in the Plane,” page 407.

(c) True. See discussion following Example 4, page 411.

99. (a) False. See “Remark,” page 364.

(b) False. See Theorem 6.7, page 383.

(c) True. See discussion following Example 5, page 404.

Chapter 7

Section 7.1 (page 432)

1.

3.

5.

7.

9. (a)

(b)

11. (a) No (b) Yes (c) Yes (d) No

13. (a) Yes (b) No (c) Yes (d) Yes

15. (a) 17. (a)

(b) (b)

19. (a)
(b) ; ;

21. (a)
(b) ; ;

23. (a)
(b) ; 	 � 3, �1, 0, �1�, �1, 1, 0�	 � �3, �1, 1, 3�

�	 � 3��	 � 3�2 � 0
	 � 1, ��1, 1, 1�

	 � 2, �1, 0, 0�	 � 4, �7, �4, 2�
�	 � 2��	 � 4��	 � 1� � 0

	 � 3, �0, 1, 0�	 � 2, �1, 0, 0�	 � 1, �1, 2, �1�
�	 � 2��	 � 3��	 � 1� � 0

	 �
1
2, �3, 1�	 � 7, �3, �1�

	 � �
1
2, �1, 1�	 � 0, �1, 2�

	2 �
1
4 � 0	�	 � 7� � 0

�1

1

1

1� �
c

c� � �2c

2c� � 2�c

c�
�1

1

1

1� �
c

�c� � 0� c

�c�

�
0
0
1

1
0
0

0
1
0��

1
1
1� � 1�

1
1
1�

�
2

0

0

3

�1

0

1

2

3
� �

5

1

2
� � 3�

5

1

2
�

�
2

0

0

3

�1

0

1

2

3
� �

1

�1

0
� � �1�

1

�1

0
�,

�
2

0

0

3

�1

0

1

2

3
� �

1

0

0
� � 2�

1

0

0
�,

�1

1

1

1� �
1

�1� � 0� 1

�1�, �1

1

1

1� �
1

1� � 2�1

1�
�1

0
0

�1� �
0
1� � �1�0

1��1
0

0
�1� �

1
0� � 1�1

0�,

	0,
�1 � �3

2
,

1 � �3
2 
	1,

�1 � �3
2

,
1 � �3

2 
,

	1, �
1
2

,
�3
2 
,	0, �

1
2

,
�3
2 
,

	1,
�3
2

,
1
2
, 	0,

�3
2

,
1
2
,�0, 0, 0�, �1, 0, 0�,

�0, �2 , 1�, 	�
�2

2
,
�2

2
, 1


	��2

2
,
�2

2
, 0
, �0, 0, 1�, 	�2

2
,
�2

2
, 1
,

�0, 0, 0�, 	�2

2
,
�2

2
, 0
, �0, �2 , 0�,

�
�64
�64
�12

��22
�22

0

�24
�24
�32�

�
�32

12
0

�14
�34
�32

�34
�34

12�
�1, ��1 � �3�2, ���3 � 1�2�

�
1
0
0

0
12

�32

0
��32

12�
��2 , 0, 1��

�22
�22

0

��22
�22

0

0
0
1�

y � x
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25. (a)
(b) ;

27. (a)
(b) ;

;

29. 31. 33.

35. 37. 39.

41. 43.

45. 47.

49. Determinant
Exercise Trace of A of A

15 7 0

17 0

19 6 6
21 7 8
23 3
25 8
27 7 0

51. Proof

53. Assume that is an eigenvalue of with corresponding
eigenvector Because is invertible (from Exercise
52), Then, implies that 

which in turn implies that 
So, is an eigenvector of and its corre-

sponding eigenvalue is 

55. Proof 57. Proof

59.

61. (a) False.

(b) True. See discussion before Theorem 7.1, page 424.

(c) True. See Theorem 7.2, page 426.

63. 65.

67.

69. ;

71. ;

73. The only possible eigenvalue is 0.

75. Proof

Section 7.2 (page 444)

1.

3.

5.

7.

9. There is only one eigenvalue, and the dimension
of its eigenspace is 1. The matrix is not diagonalizable.

11. There is only one eigenvalue, and the dimension
of its eigenspace is 1. The matrix is not diagonalizable.

13. There are two eigenvalues, 1 and 2. The dimension of
the eigenspace for the repeated eigenvalue 1 is 1. The
matrix is not diagonalizable.

15. There are two repeated eigenvalues, 0 and 3. The 
eigenspace associated with 3 is of dimension 1. The
matrix is not diagonalizable.

17. The matrix is diagonalizable.

19. Insufficient number of eigenvalues to 
guarantee diagonalizability

21. (The answer is not unique.)

23. (The answer is not unique.)

25. (The answer is not unique.)

27. (The answer is not unique.)P � �
1

1

3

�1

0

1

1

1

0
�

P � �
7

�4

2

1

0

0

�1

1

1
�

P � �3

1

1

1�

P � �1

2

3

�1�

	 � 0, 2

	 � 0, 2

	 � 1,

	 � 0,

P�1AP � �
4

0

0

0

2

0

0

0

3
�P�1 � �1

0

0

�
1
2
1
2

0

5
2

�
1
2

1
�,

P�1AP � �
5

0

0

0

3

0

0

0

�1
�P�1 � �

2
3

0

�
1
3

�
2
3
1
4
1

12

1

0

0
�,

P�1 � �
1
5

�
1
5

4
5
1
5�, P�1AP � �2

0
0

�3�

P�1 � � 1

�1

�4

3�, P�1AP � �1

0

0

�2�

	 � 3, � 1

�2

0

0�	 � 0, �1

1

0

0�, �1

0

1

�1�
	 � 6, �1 � 2x

	 � 4, �5 � 10x � 2x2;	 � �2, 3 � 2x

T�ex� �
d

dx
�ex� � ex � 1�ex�

Dim � 1Dim � 3

a � 0, d � 1 or a � 1, d � 0

1	.
A�1,xA�1x.

�1	�x �A�1	x � 	 A�1x,
x � A�1Ax �Ax � 	x	 � 0.

Ax.
A,	

�48
�27

�
1
4

	3 � 5	2 � 15	 � 27	3 � 2	2 � 	 � 2

	2 � 7	 � 12	2 � 6	 � 8

	 � 0, 0, 0, 21	 � 0, 3	 � �1, 4, 4

	 � 4, �
1
2, 1

3	 � 5, 5	 � �2, 1

	 � 0, �0, 0, 0, 1�	 � 3, �0, 0, 3, 4�
	 � 2, �1, 0, 0, 0�, �0, 1, 0, 0�
	�	 � 3��	 � 2�2 � 0

	 � 6, �1, �2, 0�
	 � 4, �5, �10, �2�	 � �2, �3, 2, 0�

�	 � 4��	 � 6��	 � 2� � 0
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29. (The answer is not unique.)

31. A is not diagonalizable.

33. (The answer is not unique.)

35. 37.

39. (a) and (b) Proof 41.

43.

45. (a) True. See the proof of Theorem 7.4,
pages 436–437.

(b) False. See Theorem 7.6, page 442.

47. Yes, the order of elements on the main diagonal may
change.

49–55. Proof

57. The eigenvector for the eigenvalue is By
Theorem 7.5, the matrix is not diagonalizable because it
does not have two linearly independent vectors.

Section 7.3 (page 456)

1. Symmetric 3. Not symmetric

5. Symmetric 7.

9. 11.

13.

15. Orthogonal 17. Not orthogonal

19. Orthogonal 21. Orthogonal

23.

(The answer is not unique.)

25.

(The answer is not unique.)

27. (The answer is not unique.)

29.

(The answer is not unique.)

31.

(The answer is not unique.)

33. (a) True. See Theorem 7.10, page 453.

(b) True. See Theorem 7.9, page 452.

35. Proof 37. Proof

39.

41. Proof

Section 7.4 (page 472)

1.

3. 5.

7. 9.

11. x2 � �
900

60

50
�, x3 � �

2200

540

30
�

x2 � �
960

90

30
�, x3 � �

2340

720
45
2
�x � t�

8

4

1
�

x � t�2

1�x2 � �
84

12

6
�, x3 � �

60

84

6
�

x2 � �20

5�, x3 � �10

10�

� � cos �

�sin �

sin �

cos �� � AT

A�1 � 	 1

cos2 � � sin2 �
 �
cos �

�sin �

sin �

cos ��

P � �
�22

��22

0

0

0

0
�22

��22

�22
�22

0

0

0

0
�22
�22

�

�
��33
��33
�33

��22
�22

0

�66
�66
�63�

P � �
�2

3
1
3
2
3

�
1
3
2
3

�
2
3

2
3
2
3
1
3

�

P � � �33

��63

�63
�33 �

P � � �22

��22

�22
�22 �

	 � 1 � �2, dim � 1
	 � 1 � �2, dim � 1
	 � �1, dim � 1

	 � �4, dim � 1	 � 3, dim � 1
	 � �2, dim � 2	 � 2, dim � 2

	 � 4, dim � 1
	 � 2, dim � 1

�0, 0�.	 � k

�
384

�384

�128

256

�512

�256

�384

1152

640
�

��188

126

�378

253�

���1 � x�, x���1, �1�, �1, 1��

P � �
4

4

4

1

0

0

3

1

0

�2

1

1

0

0

0

1
�

P � �
3

2

0

�1

2

0

�5

10

2
�
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13. 15. 17.

19. 21.

23.

25.

27. 29.

31. 33. 35.

37. 39.

41.

43. Ellipse,

45. Hyperbola,

47. Parabola,

49. Hyperbola,

51.

53.

55. Let be a orthogonal matrix such

that Define as follows.

(i) If , then and so let 
(ii) If , then and so let

(iii) If and let arccos
(iv) If and let arccos

(v) If and let arccos

(vi) If and let arccos

In each of these cases, confirm that

Review Exercises – Chapter 7 (page 474)

1. (a) (b)

(c) A basis for is and a basis for
is

3. (a) (b)

(c) A basis for is and a basis for
is

5. (a)

(b)

(c) A basis for is a basis for 
is and a basis for is 

7. (a) (b)

(c) A basis for is 
and a basis for is 

9. Not diagonalizable

11. (The answer is not unique.)P � �
1

0

1

0

1

0

1

0

�1
�

��1, 1, 0, 0�, �0, 0, 1, 1��.	 � 3
��1, �1, 0, 0�, �0, 0, 1, �1��	 � 1

	 � 1, 	 � 3�	 � 1�2�	 � 3�2 � 0

�0, 1, 0�.	 � 3�1, 0, 0�,
	 � 2�1, 2, �1�,	 � 1

	 � 1, 	 � 2, 	 � 3

�	 � 2��	 � 3��	 � 1� � 0

�4, �1, 0�, �3, 0, 1�.	 � 8
�1, �2, �1�	 � 4

	 � 8	 � 4,�	 � 4��	 � 8�2 � 0

�1, 1�.	 � 3
�1, �5�	 � �3

	 � 3	 � �3,	2 � 9 � 0

P � �a

c

b

d� � �cos �

sin �

�sin �

cos ��.

� < � � 3�2.
�a�,2� �� �c < 0,a � 0

�2 � � < �.
�a�,� �c > 0,a � 0

3�2 � � < 2�.
�a�,2� �� �c < 0,a 
 0

0 < � � �2.�a�,� �c > 0,a 
 0
� � �.

d � �1,b � 0,c � 0,a � �1
� � 0.d � 1,b � 0,c � 0,a � 1

� 	 �0, 2���P� � 1.

2 � 2P � �a
c

b
d�

�x� �2 � �y� �2 � 3�z� �2 � 1 � 0

A � �
1

0

0

0

2

1

0

1

2
�,

2�x� �2 � 4�y� �2 � 8�z� �2 � 16 � 0

A � �
3

�1

0

�1

3

0

0

0

8
�,

1
2 ���x� �2 � �y� �2 � 3�2x� � �2y� � 6� � 0

4�y� �2 � 4x� � 8y� � 4 � 0

�25�x� �2 � 15�y� �2 � 50 � 0

5�x� �2 � 15�y� �2 � 45 � 0

P � �
3
5
4
5

�4
5
3
5
�	1 � 0, 	2 � 25,A � � 16

�12

�12

9�,

P � �
1
2

�
�3

2

�3
2

1
2

�P � �
1

�10
3

�10

�
3

�10
1

�10
�

	1 � 4, 	2 � 16,	1 � �
5

2
, 	2 �

5

2
,

A � � 13
3�3

3�3
7   �,A � � 2

�
3

2

�
3

2

�2�,

�0

5

5

�10��9

5

5

�4��1

0

0

1�
y3� � �4y2

y2� � y3y2� �  y2

y1� � y2y1� �  y1 � y2

y3 �          2C3e
3t

y2 �      C2e
2t � 8C3e

3t
y1 � C1e

t � 2C2e
2t � 7C3e

3t

y3 �      2C2e
4t     

y2 � 2C1e
�2t � 10C2e

4t � 2C3e
6t

y1 � 3C1e
�2t � 5C2e

4t � C3e
6t

y2 � �C1e
�t � C2e

3ty2 � C2e
2t

y1 � C1e
�t � C2e

3ty1 � C1e
t � 4C2e

2t

y3 � C3e
ty3 � C3e

t
y2 � C2e

�ty2 � C2e
6ty2 � C2e

t
y1 � C1e

2ty1 � C1e
�ty1 � C1e

2t



13. The characteristic equation of

is The roots of this equation
are If then

which implies that is
imaginary.

15. has only one eigenvalue, and the dimension of
its eigenspace is 1. So, the matrix is not diagonalizable.

17. has only one eigenvalue, and the dimension of
its eigenspace is 2. So, the matrix is not diagonalizable.

19.

21. Because the eigenspace corresponding to of
matrix has dimension 1, while that of matrix has 
dimension 2, the matrices are not similar.

23. Both orthogonal and symmetric

25. Symmetric 27. Neither

29. (The answer is not unique.)

31.

(The answer is not unique.)

33. 35. 37.

39. 41. Proof

43.

45.

47. (a) and (b) Proof 49. Proof

51.

53. (a)

(b)
if exactly one is 0.
if exactly two are 0.

55. (a) True. See “Definitions of Eigenvalue and
Eigenvector,” page 422.

(b) False. See Theorem 7.4, page 436.

(c) True. See “Definition of a Diagonalizable Matrix,”
page 435.

57.

59.

61.

63. 65.

67.

5�x� �2 � �y��2 � 6

P � �
   1  
�2

   1  
�2

�
   1  
�2

   1  
�2

� −2

−2

2

x

x' y'

y

2

A � �1

3

2

3

2

1�
y3 � C3

y2 � C1e
t � C2e

�ty2 � C1

y1 � C1e
t � C2e

�ty1 � �2C1 � C2e
t

x2 � �
1440

108

90
�, x3 � �

6588

1296

81
�

x2 � �
4500

300

50
�, x3 � �

1500

4500

50
�, x � t�

24

12

1
�

x2 � �100

25�, x3 � �25

25�, x � t �2

1�

Dim � 3
Dim � 2
Dim � 1 if a � 0, b � 0, c � 0.

a � b � c � 0

P � �
  1
�2

  1 
�2

�
  1 
�2

  1 
�2

�

A2 � �56

20

�40

�4�, A3 � �368

152

�304

�88�

A � �0

0

1
9
4
�, 	1 � 0, 	2 �

9
4

� 4
16, 5

16, 7
16�

� 1
4, 1

2, 1
4��3

5, 2
5�� 3

5, 2
5�

P � �
   1  
�2

0

�
   1  
�2

0

1

0

   1  
�2

0

   1  
�2

�
P � �

2
�5

   1  
�5

�
   1  
�5

   2  
�5

�

BA
	 � 1

P � �0

1

1

0�

	 � 3,A

	 � 0,A

�cos2 � � 1�1 < cos � < 1,
0 < � < �,	 � cos � ± �cos2 � � 1.

	2 � �2 cos ��	 � 1 � 0.

A � �cos �

sin �

�sin �

cos ��

Answer Key A57
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69.

Cumulative Test – Chapters 6 and 7 (page 479)

1. Yes, is a linear transformation.

2. No, is not a linear transformation.

3. (a) (b)

4.

5. (a)
(b)
(c)

6.

7.

8.

9.

10. (a) (b)

(c) (d)

(e)

11.

12. (three times),

13. (The answer is not unique.)

14.

15.

16.

17.

18.

19.

20. is an eigenvalue of if there exists a nonzero vector 
such that is called an eigenvector of If
is an matrix, then can have eigenvalues,

possibly complex and possibly repeated.

21. P is orthogonal if The possible eigenvalues of
the determinant of an orthogonal matrix are 1 and 

22–26. Proof

27. 0 is the only eigenvalue.

�1.
P�1 � PT.

nAn � nA
A.xAx � 	x.x

A	

x2 � �
1800
120
60�, x3 � �

6300
1440

48�
� 4

�4
�4

4�
y2 � C2e

3t

y1 � C1e
t

�
   1  
�3
   1  
�3
   1  
�3

   1  
�2

0

�
   1  
�2

   1  
�6

�
   2  
�6
   1  
�6

�
�

   1  
�2

�
   1  
�2

   1  
�2
   1  
�2

�
��0, 1, 0�, �1, 1, 1�, �2, 2, 3��

P � �3

1

1

1�

�
1

0

0
�	 � 1

	 � 1, �
1

0

0
�; 	 � 0, �

�1

�1

3
�; 	 � 2, �

1

1

�1
�

�v�B � � 1

�1�, �T�v��B � � 3

�3�
� 9

�6�A� � ��7

6

�15

12�

P � �1

1

1

2�A � �1

1

�2

4�

�
�1

0

2

�2

1

1
�, T�0, 1� � �1, 0, 1�

T �1�x, y� � � 1
3x �

1
3y, �

2
3x �

1
3y�

�
1
2

�
1
2

�
1
2
1
2
�, T�1, 1� � �0, 0�, T��2, 2� � ��2, 2�

�
1

0

1

1

1

0

0

1

�1
�

Rank � 2, nullity � 2
Span��1, 0�, �0, 1��
Span��0, �1, 0, 1�, �1, 0, �1, 0��

��s, s, �t, t�: s, t are real�
�5, t��1, �1, 0�

T

T

�x� �2 � �y� �2 � 4

P � �
   1  
�2

   1  
�2

�
   1  
�2

   1  
�2

� 2

1

2

3

x

x' y'

y

3

A � �0

1

2

1

2

0�



A
Abstraction, 191
Addition

of matrices, 48
of vectors, 180, 182, 191

Additive identity
of a matrix, 62
of a vector, 186, 191

properties of, 182, 185, 186
Additive inverse

of a matrix, 62
of a vector, 186, 191

properties of, 182, 185, 186
Adjoining two matrices, 75
Adjoint of a matrix, 158
Age distribution vector, 458
Age transition matrix, 459
Algebra of matrices, 61
Algebraic properties of the cross 

product, 338
Angle between two vectors, 282, 286, 296
Approximation

Fourier, 346, 348
least squares, 342, 345
nth-order Fourier, 347

Area of a triangle in the xy-plane, 164
Associative property

of matrix addition, 61
of scalar multiplication, 182, 191
of vector addition, 182, 191

Augmented matrix, 15
Axioms for vector space, 191

B
Back-substitution, 6, 19
Bases and linear dependence, 225
Basis, 221

change of, 252
coordinates relative to, 249
orthogonal, 307
orthonormal, 307
standard, 222, 223, 224
tests for, 229

Basis for the row space of a matrix, 234
Bessel’s Inequality, 353
Block multiply two matrices, 60

C
Cancellation properties, 82

Cauchy, Augustin-Louis (1789–1857), 285
Cauchy-Schwarz Inequality, 285, 299
Cayley-Hamilton Theorem, 175, 433
Change of basis, 252
Characteristic equation of a matrix, 153,

426
Characteristic polynomial of a matrix, 175,

426
Closed economic system, 106
Closure

under scalar multiplication, 182, 185,
191

under vector addition, 182, 185, 191
Coded row matrix, 102
Codomain of a mapping function, 361
Coefficient, 2, 55

leading, 2
Coefficient matrix, 15
Cofactor, 124

expansion by, 126
matrix of, 158
sign patterns for, 124

Column
matrix, 47
of a matrix, 14
space, 233
subscript, 14
vector, 47, 232

Column-equivalent, 135
Commutative property

of matrix addition, 61
of vector addition, 182, 185, 191

Companion matrix, 475
Component of a vector, 180
Composition of linear transformations,

390, 391
Condition for diagonalization, 437
Conditions that yield a zero 

determinant, 136
Conic, 265, 266, 267

rotation, 269
Consistent system of linear equations, 5
Constant term, 2
Contraction, 408
Coordinate matrix of a vector, 249
Coordinates

relative to an orthonormal basis, 310
of a vector relative to a basis, 249

Counterexample, A6

Cramer’s Rule, 162, 163
Cross product of two vectors, 336

algebraic properties of, 338
geometric properties of, 339

Cryptogram, 102
Cryptography, 102

D
Determinant, 122, 123, 125

evaluation by elementary column 
operations, 136

evaluation by elementary row 
operations, 134

expansion by cofactors, 126
of an inverse matrix, 146
of an invertible matrix, 145
of a matrix product, 143
properties of, 142
of a scalar multiple of a matrix, 144
of a transpose, 148
of a triangular matrix, 129
of a matrix, 123
zero, 136

Diagonal matrix, 128
Diagonalizable, 435
Diagonalization

condition for, 437
problem, 435
sufficient condition for, 442

Difference of two vectors, 181, 184
Differential operator, 370
Dimension

of the solution space, 241
of a vector space, 227

Direct sum of subspaces, 276, 323
Directed line segment, 180
Distance between two vectors, 281, 282,

296
Distributive property, 63

of scalar multiplication, 182, 185, 191
Domain of a mapping function, 361
Dot product of two vectors, 282

properties of, 283
Dynamical systems, 477

E
Eigenspace, 424, 431
Eigenvalue, 152

of a linear transformation, 431

2 � 2

INDEX
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of a matrix, 421, 422, 426
multiplicity of, 428
of a symmetric matrix, 447
of a triangular matrix, 430

Eigenvalue problem, 152, 421
Eigenvector, 152

of a linear transformation, 431
of a matrix, 421, 422, 426

Electrical network, 35
Elementary column operations, 135

used to evaluate a determinant, 136
Elementary matrices are invertible, 90
Elementary matrices for linear 

transformations in the plane, 407
Elementary matrix, 87
Elementary row operations, 15

used to evaluate a determinant, 134
Elimination

Gaussian, 7
with back-substitution, 19

Gauss-Jordan, 22
Ellipse, 266
Ellipsoid, 469
Elliptic

cone, 470
paraboloid, 470

Encoded message, 102
Entry of a matrix, 14
Equality

of two matrices, 47
of two vectors, 180, 183

Equivalent
conditions, 93
conditions for a nonsingular matrix, 147
systems of linear equations, 7

Euclidean
inner product, 293
n-space, 283

Existence of an inverse transformation,
393

Expansion, 408
by cofactors, 126

External demand matrix, 106

F
Fibonacci, Leonard (1170–1250), 478
Fibonacci sequence, 478
Finding eigenvalues and eigenvectors, 427

Finding the inverse of a matrix by 
Gauss-Jordan elimination, 76

Finite dimensional vector space, 221
Fixed point of a linear transformation, 373
Forward substitution, 95
Fourier

approximation, 346, 348
coefficients, 311, 348
series, 349

Fourier, Jean-Baptiste Joseph (1768–1830),
308, 347

Free variable, 3
Fundamental subspace, 326

of a matrix, 326, 327
Fundamental Theorem of Symmetric

Matrices, 453

G
Gaussian elimination, 7

with back-substitution, 19
Gauss-Jordan elimination, 22
General solution of a differential 

equation, 263
Geometric properties of the cross product,

339
Gram, Jorgen Pederson (1850–1916), 312
Gram-Schmidt orthonormalization process,

312
alternative form, 316

H
Homogeneous

linear differential equation, 262
solution of, 262, 263

system of linear equations, 24
Householder matrix, 87
Hyperbola, 266
Hyperbolic paraboloid, 470
Hyperboloid

of one sheet, 469
of two sheets, 469

I
i, j, k notation, 279
Idempotent matrix, 98, 435
Identically equal to zero, 264
Identity matrix, 65

of order n, 65
properties of, 66

Identity transformation, 364
Image of a vector after a mapping, 361
Inconsistent system of linear 

equations, 5
Induction hypothesis, A2
Inductive, 125
Infinite dimensional vector space, 221
Initial point of vector, 180
Inner product space, 293
Inner product of vectors, 292

Euclidean, 292
properties of, 293

Input, 105
Input-output matrix, 105
Intersection of two subspaces is a 

subspace, 202
Inverse

of a linear transformation, 392
of a matrix, 73

algorithm for, 76
determinant of, 146
given by its adjoint, 159
of a product of two matrices, 81
properties of, 79

of a product, 81
of a transition matrix, 253

Invertible
linear transformation, 392
matrix, 73

determinant of, 145
property of, 91

Isomorphic, 384
Isomorphic spaces and dimension, 384
Isomorphism, 384

J
Jacobian, 173
Jordan, Wilhelm (1842–1899), 22

K
Kernel, 374
Kernel is a subspace of V, 377
Kirchhoff’s Laws, 35

L
Lagrange’s Identity, 351
Leading

coefficient, 2
one, 18
variable, 2
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Least squares
approximation, 342, 345
problem, 321
regression analysis, 108
regression line, 109, 321

Legendre, Adrien-Marie (1752–1833), 316
Lemma, 254
Length

of a scalar multiple, 279
of a vector, 277
of a vector in 278

Leontief input-output model, 105
Leontief, Wassily W. (1906–1999), 105
Linear combination, 55, 186, 207
Linear dependence, 212, 213

test for, 214
Linear differential equation, 262, 461

homogeneous, 262
nonhomogeneous, 262
solution of, 262, 263

Linear equation
in n variables, 2
solution of, 2
system of, 4

equivalent, 7
in three variables, 2
in two variables, 2

Linear independence, 212, 213
test for, 214
Wronskian test for, 264

Linear operator, 363
Linear transformation, 362

composition of, 390, 391
contraction, 408
eigenvalue, 421, 422, 426, 431
eigenvector, 421, 422, 426, 431
expansion, 408
fixed point of, 373
given by a matrix, 367
identity, 364
inverse of, 392
isomorphism, 384
kernel of, 374
magnification, 414
nullity of, 380
nullspace of, 377
one-to-one, 382, 383
onto, 383

in the plane, 407
projection, 369
properties of, 364
range of, 378
rank of, 380
reflection, 407, 419
rotation, 369
shear, 409
standard matrix for, 388
zero, 364

Lower triangular matrix, 93, 128
LU-factorization, 93

M
224

standard basis for, 224
Magnification, 414
Magnitude of a vector, 277, 278
Main diagonal, 14
Map, 361
Matrix, 14

addition of, 48
adjoining, 76
adjoint of, 158
age transition, 459
algebra of, 61
augmented, 15
block multiply two, 60
characteristic equation of, 426
characteristic polynomial of, 426
coefficient, 15
cofactor of, 124
of cofactors, 158
column of, 14
companion, 475
coordinate, 249
determinant of, 122, 123, 125
diagonal, 128
diagonalizable, 435
eigenvalue of, 152, 421, 422, 426
eigenvector of, 152, 421, 422, 426
elementary, 87, 407
entry of, 14
equality of, 47
external demand, 106
fundamental subspaces of, 326, 327
householder, 87
idempotent, 98, 435

identity, 65
identity of order n, 65
input-output, 105
inverse of, 73
invertible, 73
for a linear transformation, 388
lower triangular, 93, 128
main diagonal, 14
minor of, 124
multiplication of, 49
nilpotent, 121, 435
noninvertible, 73
nonsingular, 73
nullspace, 239
operations with, 46
orthogonal, 151, 358, 449
output, 106
partitioned, 54
product of, 50
of the quadratic form, 464
rank of, 238
real, 14
reduced row-echelon form, 18
row of, 14
row-echelon form of, 18
row-equivalent, 90
row space, 233
scalar multiple of, 48
similar, 402, 435
singular, 73
size, 14
skew-symmetric, 72, 151
spectrum of, 447
square of order n, 14
state, 100
stochastic, 99
symmetric, 68, 446
trace of, 58, 434
transition, 252, 399
transpose of, 67
triangular, 128
upper triangular, 93, 128
zero, 62

Matrix form for linear regression, 111
Matrix of T relative to the bases B and

394, 396
Matrix of transition probabilities, 99
Method of least squares, 109

B�,

Mm,n,

Rn,
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Minor, 124
Multiplication of matrices, 49
Multiplicity of an eigenvalue, 428

N
Negative of a vector, 181, 184
Network

analysis, 33
electrical, 35

Nilpotent
of index k, 121
matrix, 121, 435

Noncommutativity of matrix 
multiplication, 64

Nonhomogeneous linear differential 
equation, 262

Noninvertible matrix, 73
Nonsingular matrix, 73
Nontrivial solution, 212
Norm of a vector, 278, 296
Normal equation, 328
Normalized Legendre polynomial, 316
Normalizing a vector, 280
n-space, 183
nth-order Fourier approximation, 347
Nullity

of a linear transformation, 380
of a matrix, 239

Nullspace, 239, 377
Number of solutions

of a homogeneous system, 25
of a system of linear equations,

6, 67
Number of vectors in a basis, 226

O
One-to-one linear transformation, 382, 383
Onto linear transformation, 383
Open economic system, 106
Operations that lead to equivalent 

systems of equations, 7
Operations with matrices, 46
Opposite direction parallel vectors, 279
Ordered n-tuple, 183
Ordered pair, 180
Orthogonal, 287, 296, 306

basis, 307
complement, 322

diagonalization of a symmetric matrix,
454

matrix, 151, 358, 449
property of, 450

projection, 301, 373
projection and distance, 302, 326
sets are linearly independent, 309
subspaces, 321

properties of, 323
vectors, 287, 296

Orthogonally diagonalizable, 453
Orthonormal, 306

basis, 307
Output, 105
Output matrix, 106
Overdetermined linear system, 45

P
193, 194

standard basis for, 223
Parabola, 267
Parallel vectors, 279
Parameter, 3
Parametric representation, 3
Parseval’s equality, 319
Partitioned matrix, 54
Plane, linear transformations in, 407
Polynomial curve fitting, 29
Preimage of a mapped vector, 361
Preservation of operations, 362
Principal Axes Theorem, 465
Principle of Mathematical Induction, A2
Product

cross, 336
dot, 282

properties of, 283
inner, 292
triple scalar, 350, 355
of two matrices, 50

Projection onto a subspace, 324
Projection in 369
Proof by contradiction, A4
Proper subspace, 200
Properties of

additive identity and additive 
inverse, 186

the cross product
algebraic, 338

geometric, 339
the dot product, 283
inner products, 295
inverse matrices, 79
linear transformations, 364
matrix addition and scalar 

multiplication, 61
matrix multiplication, 63
orthogonal subspaces, 323
scalar multiplication, 195
similar matrices, 402
transposes, 68
vector addition and scalar 

multiplication, 182, 185
zero matrices, 62

Property
of invertible matrices, 91
of linearly dependent sets, 217
of orthogonal matrices, 450
of symmetric matrices, 452

Pythagorean Theorem, 289, 299

Q
QR-factorization, 312, 356
Quadratic form, 464

R
183

coordinate representation in, 249
scalar multiplication, 183
standard basis for, 222
standard operations in, 183
subspaces of, 202
vector addition, 183

Range
of a linear transformation, 378
of a mapping function, 361

Rank
of a linear transformation, 380
of a matrix, 238

Real matrix, 14
Real Spectral Theorem, 447
Reduced row-echelon form of a matrix, 18
Reflection, 407, 419
Representing elementary row 

operations, 89
Rotation

of a conic, 269
in 369R2,

Rn,

R3,

Pn,
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Row
matrix, 47
of a matrix, 14
space, 233
subscript, 14
vector, 47, 232

Row and column spaces have equal 
dimensions, 237

Row-echelon form
of a matrix, 18
of a system of linear equations, 6

Row-equivalent, 16
Row-equivalent matrices, 90
Row-equivalent matrices have the same

row space, 233

S
Same direction parallel vectors, 279
Scalar, 48
Scalar multiple, length of, 279
Scalar multiplication, 48, 181, 191

associative property, 182, 191
closure, 182, 185, 191
distributive property, 182, 185, 191
identity, 182, 185, 191
properties of, 182, 185, 195
in 183

Schmidt, Erhardt (1876–1959), 312
Schwarz, Hermann (1843–1921), 285
Shear, 409
Sign pattern for cofactors, 124
Similar matrices, 402, 435

properties of, 402
Similar matrices have the same 

eigenvalues, 436
Singular matrix, 73
Size of a matrix, 14
Skew-symmetric matrix, 72, 151
Solution of

a homogeneous system, 239
a linear differential equation, 262
a linear equation, 2
a linear homogeneous differential 

equation, 263
a nonhomogeneous linear system, 243
a system of linear equations, 4, 244

trivial, 24
Solution set, 3

Solution space, 240
dimension of, 241

Span
of 211
of a set, 211

Span (S) is a subspace of V, 211
Spanning set, 209
Spectrum of a symmetric matrix, 447
Square of order n, 14
Standard

forms of equations of conics, 266, 267
matrix for a linear transformation, 388
operations in 183
spanning set, 210
unit vector, 279

Standard basis
for 224
for 223
for 222

State matrix, 100
Steady state, 101, 174
Steady state probability vector, 475
Steps for diagonalizing an square

matrix, 439
Stochastic matrix, 99
Subspace(s)

direct sum of, 276, 323
proper, 200
of 202
sum of, 276
test for, 199
of a vector space, 198
zero, 200

Subtraction of vectors, 181, 184
Sufficient condition for 

diagonalization, 442
Sum

of rank and nullity, 380
of two subspaces, 276
of two vectors, 180, 183

Sum of squared error, 109
Summary

of equivalent conditions for square 
matrices, 246

of important vector spaces, 194
Symmetric matrix, 68, 446

eigenvalues of, 447
Fundamental Theorem of, 453

orthogonal diagonalization of, 454
property of, 452

System of
equations with unique solutions, 83
first-order linear differential 

equations, 461
linear equations, 4

consistent, 5
equivalent, 7
inconsistent, 5
number of solutions, 6, 67
row-echelon form, 6
solution of, 4, 244

m linear equations in n variables, 4

T

Terminal point of a vector, 180
Test for

collinear points in the xy-plane, 165
coplanar points in space, 167
linear independence and linear 

dependence, 214
a subspace, 199

Tetrahedron, volume of, 166
Three-point form of the equation of a

plane, 167
Trace

of a matrix, 58, 434
of a surface, 468

Transformation matrix for nonstandard
bases, 394

Transition matrices, 399
Transition matrix, 252

from to 255
inverse of, 253

Translation, 373
Transpose of a matrix, 67

determinant of, 148
properties of, 68

Triangle Inequality, 287, 288, 299
Triangular matrix, 128

determinant, 129
eigenvalues for, 430
lower, 93, 128
upper, 93, 128

Triple scalar product, 350, 355
Trivial solution, 24, 212

B�,B

Rn,

n � n

Rn,
Pn,
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Rn,
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Rn,
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Two-point form of the equation of a line,
165

U
Underdetermined linear system, 45
Uniqueness of basis representation, 224
Uniqueness of an inverse matrix, 73
Unit vector, 278, 296

in the direction of a vector, 280, 296
standard, 279

Upper triangular matrix, 93, 128

V
Variable

free, 3
leading, 2

Vector, 180, 183, 191
addition, 180, 182, 185, 191
additive identity, 186, 191
additive inverse, 186, 191
age distribution, 458
angle between, 282, 286, 296
column, 47, 233
component of, 180
cross product, 336
distance between, 282, 296

dot product, 282
equality of, 180, 183
initial point of, 180
length of, 277
linear combination of, 186, 207
magnitude of, 277
negative of, 181, 184
norm, 278, 296
orthogonal, 287, 296
parallel, 279
in the plane, 180
row, 47, 232
scalar multiplication, 181, 182, 183, 191
standard unit, 279
steady state probability, 475
subtraction, 181, 184
terminal point of, 180
unit, 278, 280, 296
zero, 180, 184

Vector addition, 180, 182, 183, 191
associative property, 182, 185, 191
closure, 182, 185, 191
commutative property, 182, 185, 191
properties of, 182, 185
in 183

Vector addition and scalar 
multiplication in 185

Vector space, 191
basis for, 221
finite dimensional, 221
infinite dimensional, 221
isomorphic, 384
spanning set of, 209
subspace of, 198
summary of, 194

Volume of a tetrahedron, 166

W
Weights of the terms in an inner 

product, 294
Wronski, Josef Maria (1778–1853), 264
Wronskian, 263

test for linear independence, 264

Z
Zero

matrix, 62
properties of, 62

subspace, 200
transformation, 364
vector, 180, 184

Rn,

Rn,



Properties of Matrix Addition and Scalar Multiplication

If A, B, and C are matrices and c and d are scalars, then the following properties 
are true.
1. Commutative property of addition

2. Associative property of addition

3.
4.
5. Distributive property

6. Distributive property

Properties of Matrix Multiplication

If A, B, and C are matrices (with orders such that the given matrix products are defined)
and c is a scalar, then the following properties are true.
1. Associative property of multiplication

2. Distributive property

3. Distributive property

4.

Properties of the Identity Matrix

If A is a matrix of order then the following properties are true.
1.
2.

Properties of Vector Addition and Scalar Multiplication

Let u, v, and w be vectors in and let c and d be scalars.
1. is a vector in 6. cu is a vector in 
2. 7.
3. 8.
4. 9.
5. 10.

Summary of Equivalent Conditions for Square Matrices

If A is an matrix, then the following conditions are equivalent.
1. A is invertible.
2. has a unique solution for any matrix b.
3. has only the trivial solution.
4. A is row equivalent to 
5.
6. Rank
7. The n row vectors of A are linearly independent.
8. The n column vectors of A are linearly independent.

�A� � n
�A� � 0

In.
Ax � 0

n � 1Ax � b

n � n

1�u� � uu � ��u� � 0
c�du� � �cd�uu � 0 � u
�c � d�u � cu � du�u � v� � w � u � �v � w�
c�u � v� � cu � cvu � v � v � u

Rn.Rn.u � v
Rn,

ImA � A
AIn � A

m � n,

c�AB� � �cA�B � A�cB�
�A � B�C � AC � BC
A�B � C� � AB � AC
A�BC� � �AB�C

�c � d�A � cA � dA
c�A � B� � cA � cB
1A � A
�cd�A � c�dA�
A � �B � C� � �A � B� � C
A � B � B � A

m � n



Properties of the Dot Product

If u, v, and w are vectors in and c is a scalar, then the following properties are true.
1.
2.
3.
4.
5. and if and only if 

Properties of the Cross Product

If u, v, and w are vectors in and c is a scalar, then the following properties are true.
1. 4.
2. 5.
3. 6.

Types of Vector Spaces

set of all real numbers
set of all ordered pairs
set of all ordered triples
set of all n-tuples
set of all continuous functions defined on the real line
set of all continuous functions defined on a closed interval 
set of all polynomials
set of all polynomials of degree
set of all matrices
set of all square matrices

Finding Eigenvalues and Eigenvectors*

Let A be an matrix.
1. Form the characteristic equation It will be a polynomial equation of

degree n in the variable 
2. Find the real roots of the characteristic equation. These are the eigenvalues of A.
3. For each eigenvalue find the eigenvectors corresponding to by solving the 

homogeneous system This requires row-reducing an matrix.
The resulting reduced row-echelon form must have at least one row of zeros.

*For complicated problems, this process can be facilitated with the use of technology.

n � n�	i I � A� x � 0.
	 i	 i,

	.
�	 I � A� � 0.

n � n

n � nMn,n �
m � nMm,n �

� nPn �
P �

�a, b�C �a, b� �
C���, �� �

Rn �
R3 �
R2 �
R �

u � �v � w� � �u � v� � wc�u � v� � cu � v � u � cv
u � u � 0u � �v � w� � �u � v� � �u � w�
u � 0 � 0 � u � 0u � v � ��v � u�

R3

v � 0.v � v � 0v � v 
 0,
v � v � �v�2
c�u � v� � �cu� � v � u � �cv�
u � �v � w� � u � v � u � w
u � v � v � u

Rn
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