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Preface

These are notes for the course Elementary Real Analysis (MAT 2125) at the University of
Ottawa. We begin with an examination of the real numbers. We review the completeness
properties of the reals, and then discuss the concepts of supremum, infimum, lim sup, and
lim inf. We also explore the topology of Euclidean space Rn, including the concepts of open
sets, closed sets, and compact sets. In particular, we will see the Heine–Borel Theorem,
which characterizes compact subsets of Rn.

The second part of the course will focus on real-valued functions. We will discuss uniform
continuity, the Riemann integral, and the fundamental theorem of calculus. We then focus
on sequences and series of functions and uniform convergence. We conclude the course with
a brief treatment of the subject of Fourier series.

This is a proof-based course. While proofs of some minor statements will be left as
exercises, we will prove almost all the major results in class. The majority of the course
work (assignments, quizzes, and exams) will consist of proving mathematical statements, as
opposed to computation.

We will assume that the reader is familiar with basic notions of sets, simple proof tech-
niques (proof by contraposition, by contradiction, induction, etc.) and basic logic (quanti-
fiers, implications, etc.). Students are strongly encouraged to read through [TBB, Appendix:
Background] as a refresher. The notes [Sava] for the course MAT 1362: Mathematical Rea-
soning & Proofs can also serve as a useful reference for background material.

For the most part, we will follow the notation of [TBB]. The one exception is that we
will always use the symbol ⊆ to denote set inclusion. We will avoid the use of the symbol
⊂, which can cause confusion since it is sometimes used to denote inclusion (i.e. ⊆) and
sometimes used to denote proper inclusion (i.e. ().

Acknowledgements: Portions of these notes follow the handwritten notes of Barry Jessup,
while other portions follow the open access textbooks [TBB, Leb], which are the official
references for the course.

Alistair Savage Ottawa, 2017.

Course website: http://alistairsavage.ca/mat2125
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Chapter 1

The real numbers

In this first chapter, we introduce one of the main ingredients of this course: the real numbers.
We will assume the existence of the real numbers and that they satisfy certain key axioms.
Using these axioms, we will prove some other important properties of the real numbers that
will be used throughout the course. A good reference for the material in this chapter is
[TBB, Ch. 1].

1.1 Algebraic structure: the field axioms

We will assume there is a set, denoted R, with binary operations + (addition) and · (multi-
plication) satisfying the following axioms.

A1 For all a, b ∈ R, we have a+ b = b+ a. (commutativity of addition)

A2 For all a, b, c ∈ R, we have (a+ b) + c = a+ (b+ c). (associativity of addition)

A3 There is a unique element 0 ∈ R such that, for all a ∈ R, a + 0 = 0 + a = a. The
element 0 is called the additive identity .

A4 For any a ∈ R, there exists an element −a ∈ R such that a+(−a) = 0. The elements
−a is called the additive inverse of a.

M1 For all a, b ∈ R, we have a · b = b · a. (commutativity of addition)

M2 For all a, b, c ∈ R, we have (a · b) · c = a · (b · c). (associativity of multiplication)

M3 There is a unique element 1 ∈ R such that a · 1 = 1 ·a = a for all a ∈ R. The element
1 is called the multiplicative identity .

M4 For any a ∈ R, a 6= 0, there exists an element a−1 ∈ R such that aa−1 = 1. The
element a−1 is called the multiplicative inverse of a.

AM1 For any a, b, c ∈ R, we have (a+ b) · c = a · c+ b · c. (distributivity)

1



2 Chapter 1. The real numbers

The elements of R are called real numbers . We will often denote multiplication by juxta-
position. That is, we will write ab instead of a · b. Note that the axiom labels indicate
the operations involved: A1–A4 involve addition, M1–M4 involve multiplication, and AM1
involves both. These axioms are called the field axioms . Any set with two binary operations
satisfying these axioms is called a field . Thus, R is a field.

Remark 1.1. In A3, we do not actually need to assume that the additive identity 0 is unique.
Indeed, if 0 and 0′ are two real numbers with the given property, then

0 = 0 + 0′ = 0′.

Similarly, one does not need to assume that the multiplicative identity is unique. Further-
more, one can show that additive and multiplicative inverses are unique. See Exercise 1.1.1.

We can now define subtraction and division in R. For a, b ∈ R, we define

a− b := a+ (−b).

If we also have b 6= 0, then we define

a

b
= ab−1.

Since addition and multiplication are associative (axioms A2 and M2), we can omit
parentheses when adding or multiplying more than two real numbers. For instance, we can
write expression such as

a+ b+ c+ d and wxyz

and there is no ambiguity since any way of adding in parentheses yields the same result.

Exercises.
For the following exercises, use only axioms A1–AM1.

1.1.1. (a) Show that one does not need the uniqueness assumption in M3. That is, show
that if 1, 1′ ∈ R satisfy the conditions a · 1 = a and a · 1′ = a for all a ∈ R, then 1 = 1′.

(b) Show that additive inverses are unique. That is, show that if a, b, c ∈ R satisfy a+b = 0
and a+ c = 0, then b = c.

(c) Show that multiplicative inverses are unique. That is, show that if a, b, c ∈ R satisfy
ab = 1 and ac = 1, then b = c.

1.1.2 ([TBB, Ex. 1.3.5]). Using only the field axioms, show that

(x+ 1)2 = x2 + 2x+ 1

for all x ∈ R. Would this identity be true in any field (i.e. in any set with two binary
operations + and · satisfying the field axioms)?
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1.1.3 ([TBB, Ex. 1.3.6]). Define operations of addition and multiplication on Z5 = {0, 1, 2, 3, 4}
as follows:

+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Show that Z5 satisfies all the field axioms.

1.1.4 ([TBB, Ex. 1.3.6]). Define operations of addition and multiplication on Z6 = {0, 1, 2, 3, 4, 5}
as follows:

+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

· 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

Which of the field axioms does Z6 fail to satisfy?

1.2 Order structure

In addition to their algebraic structure (coming from addition and multiplication), the real
numbers also have an ordering. In particular, we assume that the following axioms hold.
Here a < b is a statement, which is either true or false.

O1 For any a, b ∈ R, exactly one of the following statements is true:

• a = b

• a < b

• b < a.

O2 For a, b, c ∈ R such that a < b and b < c, we have a < c. (We say that < is transitive.)

O3 For a, b ∈ R such that a < b, we have a+ c < b+ c for all c ∈ R.

O4 For a, b ∈ R such that a < b, we have ac < bc for all c ∈ R satisfying c > 0.

We will also write a > b to indicate that b < a. We write a ≤ b if a < b or a = b and we
write a ≥ b if a > b or a = b.

Together with the field axioms A1–AM1, axioms O1–O4 imply that R is an ordered field.



4 Chapter 1. The real numbers

Lemma 1.2. If a, b ∈ R with a < b, then there exists c ∈ R such that a < c < b.

Proof. We have

a < b =⇒ 2a < a+ b < 2b =⇒ a <
a+ b

2
< b.

Exercises.
For the following exercises, use only axioms O1–O4 (and algebraic properties of R).

1.2.1 ([TBB, Ex. 1.4.1]). Prove that if a < b and c < d, then ad+ bc < ac+ bd.

1.2.2. Suppose a, b, c ∈ R such that a < b and c < 0. Show that ac > bc.

1.2.3. Prove that if a ≤ b and b ≤ a, then a = b.

1.3 Bounds and the completeness axiom

Definition 1.3 (Upper bound, bounded above). Suppose E is a set of real numbers. A real
number M is an upper bound for E if x ≤ M for all x ∈ E. If E has an upper bound, then
we say E is bounded above. Otherwise, we say it is unbounded above.

Definition 1.4 (Lower bound, bounded below). Suppose E is a set of real numbers. A real
number m is an lower bound for E if m ≤ x for all x ∈ E. If E has a lower bound, then we
say E is bounded below . Otherwise, we say it is unbounded below.

A set that is both bounded above and bounded below is said to be bounded .

Definition 1.5 (Maximum/largest element). Suppose E is a set of real numbers. If M ∈ E
satisfies x ≤ M for all x ∈ E, then M is the maximum or largest element of the set E and
we write M = maxE.

Definition 1.6 (Minimum/smallest element). Suppose E is a set of real numbers. If m ∈ E
satisfies m ≤ x for all x ∈ E, then m is the minimum or smallest element of the set E and
we write m = minE.

Example 1.7. The empty set ∅ is bounded above and below by all real numbers, but it has
no maximum or minimum.

Example 1.8. Consider the interval

[−1, 3] = {x : −1 ≤ x ≤ 3}.

We have max[−1, 3] = 3 and min[−1, 3] = −1. Any M ∈ R, M ≥ 3, is an upper bound for
[−1, 3] and any m ∈ R, m ≤ −1, is a lower bound for [−1, 3]. So we see that upper and
lower bounds are far from unique. This interval is bounded.
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Example 1.9. Consider the interval

(−1, 3) = {x : −1 < x < 3}.

This subset of R has no maximum and no minimum. However, any real number greater than
or equal to 3 is an upper bound. Any real number less than or equal to −1 is a lower bound.
In particular, this interval is bounded.

Example 1.10. The set
[3,∞) = {x : 3 ≤ x}

has minimum 3, but no maximum and no upper bound. It is bounded below (by any real
number less than or equal to 3), but not bounded above, hence not bounded.

As noted in Example 1.9, the set (−1, 3) has no maximum, and infinitely many upper
bounds. However, it does have a unique smallest upper bound, namely 3.

Definition 1.11 (Supremum/least upper bound). Suppose E is a nonempty set of real
numbers. If M is an upper bound of E such that M ≤ M ′ for all upper bounds M ′ of E,
we say that M is the supremum or least upper bound of E, and we write M = supE.

Definition 1.12 (Infimum/greatest lower bound). Suppose E is a nonempty set of real
numbers. If m is a lower bound of E such that m′ ≤ m for all lower bounds m′ of E, we say
that m is the infimum or greatest lower bound of E, and we write m = inf E.

In addition to the above two definitions, we also adopt the following conventions:

• We write inf ∅ =∞ and sup∅ = −∞.

• If E is nonempty and unbounded above, we write supE =∞.

• If E is nonempty unbounded below, we write inf E = −∞.

Note that ∞ and −∞ are not real numbers. The above are just notational conventions.
When we write supE =∞, this means, in particular, that E has no supremum.

Example 1.13. If a < b, then the interval (a, b) has no minimum and no maximum. However,

inf(a, b) = a and sup(a, b) = b.

Let us prove that sup(a, b) = b. By definition, we have x < b for all x ∈ (a, b). Thus b is an
upper bound for (a, b). It remains to show that it is the least upper bound. Suppose y < b.
We want to show that y is not an upper bound for (a, b). Since a < b and y < b, we have
max{a, y} < b. By Lemma 1.2, we can find a real number x such that

max{a, y} < x < b.

But then x ∈ (a, b) and y < x. So y is not an upper bound for (a, b), completing the proof.
The proof that inf(a, b) = a is similar (see Exercise 1.3.4).
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We are now ready to state our final axiom for the real numbers.

Axiom 1.14 (Completeness axiom). Every nonempty set of real numbers that is bounded
above has a least upper bound. In other words, if E ⊆ R is nonempty and bounded above,
then supE exists (and is a real number).

We can summarize our axioms for R by stating that R is a complete ordered field. In
fact, it is possible to show that, in some sense, R is the only complete ordered field.

Corollary 1.15. Every nonempty set of real numbers that is bounded below has a greatest
lower bound. In other words, if E ⊆ R is nonempty and bounded below, then inf E exists
(and is a real number).

Proof. The proof of this corollary is left as an exercise (Exercise 1.3.5).

Exercises.

1.3.1 ([TBB, Ex. 1.6.1]). Show that a set E ⊆ R is bounded if and only if there exists an
r ∈ R such that |x| < r for all x ∈ E. (Since Section 1.6 for a discussion of absolute value.)

1.3.2. Prove that maxima and minima are unique if they exist. In other words, show that if
m1 and m2 are minima for a set E, then m1 = m2. Similarly, show that if M1 and M2 are
maxima for a set E, then M1 = M2.

1.3.3. Prove that suprema and infima are unique if they exist.

1.3.4. Suppose a < b. Prove that inf(a, b) = a.

1.3.5. Prove Corollary 1.15. Hint : Suppose E ⊆ R is nonempty and bounded below. Con-
sider the set {−x : x ∈ E}.

1.3.6 ([TBB, Ex. 1.6.2]). For each of the following sets, find the supremum, infimum, maxi-
mum, and minimum, if they exist.

(a) N

(b) Z

(c) Q

(d) R

(e) {−3, 2, 5, 7}

(f) {x ∈ R : x2 < 2}

(g) {x ∈ R : x2 − x− 2 < 0}
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(h) {1/n : n ∈ N}

1.3.7. Suppose E ⊆ R.

(a) Show that if maxE exists, then so does supE, and supE = maxE.

(b) Show that if supE exists and supE ∈ E, then maxE exists and maxE = supE.

In other words, maxima are precisely suprema that are contained in the set.

1.3.8. Suppose A and B are nonempty subsets of R that are bounded above. Show that
A ∪B has a least upper bound, and that

sup(A ∪B) = max{supA, supB}.

1.3.9. Suppose A is a nonempty set of real numbers and r > 0. Let B = {ra : a ∈ A}.
Show that supA exists if and only supB exists. Furthermore, if they exist, show that
supB = r supA.

1.3.10 ([TBB, Ex. 1.6.17]). Suppose A ⊆ R. Show that x is the supremum of A if and only
if a ≤ x for all a ∈ A and for every ε > 0 there is an element a′ ∈ A such that x − ε < a′.
Similarly, show that y is the infimum of A if and only if y ≤ a for all a ∈ A and for every
ε > 0 there is an element a′ ∈ A such that a′ < y + ε.

1.3.11. Suppose A and B are nonempty sets of real numbers, and that supA and supB
exist. Define

C = {a+ b : a ∈ A, b ∈ B}.

Show that supC exists and that supC = supA+ supB.

1.3.12. Suppose A ⊆ R and that inf A and supA both exist. Prove the following:

(a) sup{a− b : a, b ∈ A} = supA− inf A.

(b) inf{a− b : a, b ∈ A} = inf A− supA.

(See Exercise 1.6.7 for a continuation of this exercise.)

1.3.13. Suppose A ⊆ Z is bounded above. Show that maxA exists.

1.4 Natural numbers and induction

The set

N = {1, 2, 3, . . . }

of natural numbers is a subset of R. We will now prove a property of the natural numbers
that seems “obvious”, but whose proof in fact relies on the completeness axiom for the real
numbers.
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Theorem 1.16 (Archimedean property of R). The set of natural numbers N has no upper
bound.

Proof. We prove this result by contradiction. Assume N has an upper bound. Then, by the
completeness axiom, it has a least upper bound. Let x = supN. Then

n ≤ x ∀n ∈ N

since x is an upper bound for N. In addition, since x is the least upper bound for N, the
real number x − 1 is not an upper bound for N. Thus, there exists some m ∈ N such that
m > x−1. But then m+1 ∈ N and m+1 > x. This contradicts the fact that x = supN.

Corollary 1.17. (a) For any x ∈ R, there exists an n ∈ N such that n > x.

(b) Given any x, y ∈ R with x, y > 0, there exists an n ∈ N such that nx > y.

(c) Give any x ∈ R with x > 0, there exists an n ∈ N such that 1
n
< x.

Proof. The proof of this corollary is left as an exercise (Exercise 1.4.1).

In fact, one can show that the archimedean property follows from each of the statements
in Corollary 1.17. Therefore, these statements are actually equivalent to the archimedean
property.

Theorem 1.18 (Well-ordering property). Every nonempty subset of N has a smallest ele-
ment.

Proof. Suppose S ⊆ N and S 6= ∅. Since S is bounded below (say, by 0), α = inf S exists
by Corollary 1.15. If α ∈ S, then α is a smallest element of S and we are done.

It remains to consider the case α /∈ S. Since α is the greatest lower bound, α + 1 is not
a lower bound for S. Therefore, there exists x ∈ S such that x < α + 1. Since α is a lower
bound for S, we have α ≤ x. We cannot have α = x, since we assumed α /∈ S. Thus we have

α < x < α + 1.

Since α < x, the element x is not a lower bound of S. Thus, there exists another y ∈ S with

α < y < x < α + 1.

But then x, y ∈ S ⊆ N and 0 < x−y < 1, which is impossible. This contradiction completes
the proof.

Theorem 1.19 (Principle of induction). Suppose S ⊆ N has the following properties:

• 1 ∈ S,

• if n ∈ S, then n+ 1 ∈ S.

Then S = N.
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Proof. Let E = N \ S. It suffices to show that E = ∅, and we show this by contradiction.
Suppose E 6= ∅. By Theorem 1.18, there is a smallest element α of E. By hypothesis, 1 ∈ S,
so 1 /∈ E and hence α 6= 1. Thus, α − 1 ∈ N. Since α was the smallest element of E, we
have α− 1 /∈ E. Hence α− 1 ∈ S. By hypothesis, it follows that α = (α− 1) + 1 ∈ S. But
this contradicts the fact that α ∈ E. This contradiction completes the proof.

Theorem 1.19 is the basis of a powerful method of proof: proof by induction. See Exer-
cise 1.4.7 for an example. Students who have not seen proof by induction in previous courses
should read [TBB, §A.8].

Exercises.

1.4.1. Prove Corollary 1.17.

1.4.2. Show that the archimedean property follows from Corollary 1.17(c). In other words,
assume Corollary 1.17(c) is true and prove the archimedean property using this assumption.

1.4.3 ([TBB, Ex. 1.7.4]). Let x ∈ R. Show that there is a unique m ∈ Z such that

m ≤ x < m+ 1.

This m is often denoted bxc and is called the integer part of x. The function x 7→ bxc is
called the floor function.

1.4.4. Suppose a, b ∈ R and b − a ≥ 1. Prove that there exists an integer n such that
a < n ≤ b.

1.4.5. Find the infimum and supremum of the set

{3, 5} ∪
{

1

2x
: x ∈ R, x ≥ 1

}
or show that they do not exist. Remember to justify your answer.

1.4.6. Find the infimum and supremum of the set{
3 +

1

n
: n ∈ N

}
or show that they do not exist.

1.4.7. Prove that
n∑
i=1

1

i(i+ 1)
= 1− 1

n+ 1
for all n ∈ N.

1.4.8. Show that every finite nonempty set has a maximum. Hint : Use induction on the size
of the set.
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1.5 Rational numbers

The set
Q =

{a
b

: a, b ∈ Z, b 6= 0
}

of rational numbers is a subset of R. The rational numbers form an ordered field. That is, Q
satisfies axioms A1–AM1 and O1–O4. However, it does not satisfy the completeness axiom
(Axiom 1.14), as we will see below. However, the rationals are dense in the reals, in a sense
that we now make precise.

Definition 1.20 (Dense set). A set E ⊆ R is said to be dense in R if every interval (a, b),
a < b, contains a point of E.

Theorem 1.21. The set Q of rational numbers is dense in R.

Proof. Suppose a < b. We wish to find a rational number in the interval (a, b). By the
archimedean property (Theorem 1.16), there is a natural number n such that

n >
1

b− a
.

Thus nb > na+ 1. By Exercise 1.4.3, we can choose m ∈ Z such that

m ≤ na+ 1 < m+ 1.

It follows that
m− 1 ≤ na < nb− 1 < nb,

and so

a <
m

n
≤ a+

1

n
< b.

So we have found a rational number m
n

in the interval (a, b), as desired.

Theorem 1.21 states that between any two distinct real numbers is a rational number.
Compare this to Lemma 1.2.

A real number that is not rational is said to be irrational . It can be shown that
√

2 is
irrational (Exercise 1.5.1). Consider the set{

x ∈ Q : 0 ≤ x2 < 2
}
.

This set is bounded above by a rational number (say, 3), but has no supremum in Q. This
shows that the rational numbers are not complete (i.e. they do not satisfy the completeness
axiom). Of course, the above set has a supremum in R, namely

√
2.

Exercises.

1.5.1. Prove that
√

2 is irrational. Hint : Assume
√

2 = m
n

, where m,n ∈ Z have no common
divisors (other than ±1) and show that this leads to a contradiction.
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1.6 Absolute value: the metric structure on R
The real numbers have a useful notion of distance, also called a metric, given by absolute
value. We discuss here some of the important properties of this metric.

Definition 1.22 (Absolute value). For x ∈ R, we define the absolute value of x to be

|x| =

{
x if x ≥ 0,

−x if x < 0.

Note that it follows from the definition that |x| = max{x,−x}.

Theorem 1.23 (Properties of absolute value). For all x, y ∈ R, we have

(a) | − x| = |x|,

(b) −|x| ≤ x ≤ |x|,

(c) |xy| = |x| |y|,

(d) |x+ y| ≤ |x|+ |y|, (triangle inequality)

(e) |x| − |y| ≤ |x− y| and |y| − |x| ≤ |x− y|.

Proof. The proof of this theorem is left as an exercise (Exercise 1.6.1).

Definition 1.24 (Distance). The distance between two real numbers x and y is defined to
be

d(x, y) = |x− y|.

Proposition 1.25 (Properties of distance). For all x, y, z ∈ R, we have

(a) d(x, y) ≥ 0, (all distances are nonnegative)

(b) d(x, y) = 0 if and only if x = y, (distinct points are a positive distance apart)

(c) d(x, y) = d(y, x), (distance is symmetric)

(d) d(x, y) ≤ d(x, z) + d(z, y). (triangle inequality)

Exercises.

1.6.1. Prove Theorem 1.23. Hint : Consider cases based on the definition of the absolute
value.

1.6.2 ([TBB, Ex. 1.10.5]). Show that
∣∣|x| − |y|∣∣ ≤ |x− y| for all x, y ∈ R.
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1.6.3 ([TBB, Ex. 1.10.3]). Suppose x, a, ε ∈ R and ε > 0. Show that the inequalities

|x− a| < ε and a− ε < x < a+ ε

are equivalent.

1.6.4. Suppose x ∈ R and |x− 2| < 2. Prove that |x+ 1| > 1.

1.6.5. Suppose x ∈ R and |x| ≤ 1. Prove that |x2 − 4| ≤ 3|x− 2|.

1.6.6 ([TBB, Ex. 1.10.8]). Show that

|x1 + x2 + · · ·+ xn| ≤ |x1|+ |x2|+ · · ·+ |xn|

for all x1, x2, . . . , xn ∈ R.

1.6.7. This exercise is a continuation of Exercise 1.3.12. Suppose A ⊆ R and that inf A and
supA both exist. Prove that

sup{|a− b| : a, b ∈ A} = supA− inf A.

1.7 Constructing the real numbers

In this course, we assume the existence of the real numbers and that they form a complete
ordered field. Some may find this approach unsatisfactory. How do we really know that the
real numbers exist and have these properties? In fact, one can construct the real numbers
and prove that they form a complete ordered field. We will not do so in this course. However,
for the interested student, we outline here how such a construction proceeds. (See also this
Wikipedia page.)

It is impossible to start from nowhere. Mathematics must be built on some axioms that
are assumed to be true. The most common set of axioms are called the ZFC axioms of set
theory. From these axioms, one can construct the natural numbers using set theory. (In any
case, we expect that most students are rather comfortable supposing the existence of the
natural numbers.)

Next, we formally enlarge the set N of natural numbers by including additive inverses.
This results in the set Z of integers. Then we form Q by considering “formal quotients”.
Precisely, we define rational numbers to be pairs of natural numbers (think of the numerator
and denominator of a fraction) modulo a relation that corresponds to equating equivalent
fractions.

The final step is to complete the rational numbers. This can be done in several ways. The
two most common methods proceed via Dedekind cuts or Cauchy sequences (see Section 2.5).
Both procedures are formal ways of “filling in the gaps” that exist in the rational numbers.
The resulting number system can then be shown to be a complete ordered field, and one can
show that any ordered field is “the same as” (more precisely, isomorphic to) this one. We
then call this complete ordered field R.

https://en.wikipedia.org/wiki/Construction_of_the_real_numbers
https://en.wikipedia.org/wiki/Construction_of_the_real_numbers
https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory
https://en.wikipedia.org/wiki/Dedekind_cut


Chapter 2

Sequences

In this chapter, we examine sequences of real numbers. We give the precise definition of
a limit of a sequence and some important properties of limits. We also discuss various
conditions that ensure the convergence of a sequence, and the concepts of lim inf and lim
sup. A good reference for the material in this chapter is [TBB, Ch. 2].

2.1 Limits

Definition 2.1 (Sequence). A sequence of real numbers is a function f : N→ R.

We will often think of a sequence in terms of its image. That is, if we define an = f(n)
for all n ∈ N, then we will call the list

a1, a2, a3, . . .

a sequence. We will often denote such a sequence by {an}n∈N, {an}∞n=1, {an}n≥1, or simply
{an}.

We would now like to give a precise definition for what it means for a sequence to converge
to some real number. The idea is that the sequence {an}n∈N should converge to L if the
terms an get closer to L as n gets larger. The precise definition is as follows.

Definition 2.2 (Limit of a sequence). Suppose {an} is a sequence of real numbers. We say
that {an} converges to L ∈ R if for all ε > 0, there exists N ∈ N such that

|an − L| < ε ∀n ≥ N.

If {an} converges to L, we write

lim
n→∞

an = L

or

an → L as n→∞.

(Sometimes we simply write an → L.) The number L is called the limit of the sequence. If a
sequence converges, we say it is convergent . A sequence that is not convergent is divergent .

13
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Example 2.3. Let an = 6 + 2
n
. Let us show that

lim
n→∞

an = 6.

First note that

|an − 6| =
∣∣∣∣6 +

2

n
− 6

∣∣∣∣ =

∣∣∣∣ 2n
∣∣∣∣ =

2

n
.

Let ε > 0 and choose N ∈ N such that N > 2
ε
. (Note that we are using the archimedean

property here.) Then, for all n ≥ N , we have

|an − 6| = 2

n
≤ 2

N
< ε.

Example 2.4. Let us show that

lim
n→∞

3n2

4n2 + 2
=

3

4
.

First note that∣∣∣∣ 3n2

4n2 + 2
− 3

4

∣∣∣∣ =

∣∣∣∣ 3n2

4n2 + 2
−

3n2 + 3
2

4n2 + 2

∣∣∣∣ =

∣∣∣∣− 3
2

4n2 + 2

∣∣∣∣ =
3

8n2 + 4
≤ 3

8n2
.

Let ε > 0 and choose N ∈ N such that N >
√

3
8ε

. Then, for all n ≥ N , we have∣∣∣∣ 3n2

4n2 + 2
− 3

4

∣∣∣∣ ≤ 3

8n2
≤ 3

8N2
< ε.

Proposition 2.5 (Uniqueness of limits). If

lim
n→∞

an = L1 and lim
n→∞

an = L2,

then L1 = L2.

Proof. Let ε > 0. Then there exist N1, N2 ∈ N such that

|an − L1| < ε ∀n ≥ N1

and
|an − L1| < ε ∀n ≥ N2.

Let N = max{N1, N2}. Then, for all n ≥ N , we have

|L1 − L2| = |L1 − an + an − L2| ≤ |L1 − an|+ |an − L2| < ε+ ε = 2ε.

Since ε was an arbitrary positive real number, this implies that |L1 − L2| = 0, and so
L1 = L2.

There are many ways that a sequence can diverge. One way is that the terms of the
sequence can get arbitrarily large (or large negative).
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Definition 2.6 (Divergence to ±∞). Suppose {an} is a sequence of real numbers. We say
that {an} diverges to ∞ if for all M ∈ N, there exists N ∈ N such that

an ≥M ∀n ≥ N.

In this case we write
lim
n→∞

an =∞
or

an →∞ as n→∞.
Similarly, we say that {an} diverges to −∞ if for all M ∈ N, there exists N ∈ N such

that
an ≤ −M ∀n ≥ N,

and we use similar notation as above, replacing ∞ by −∞.

Examples 2.7. (a) limn→∞ n =∞. (Take N = M in Definition 2.6.)

(b) limn→∞(−n) = −∞. (Take N = M in Definition 2.6.)

(c) The sequence {(−1)n}n∈N diverges, but does not diverge to ±∞. (See Exercise 2.1.3.)

Proposition 2.8. Suppose {an} is a sequence of real numbers and r ∈ N. Then the se-
quence {an}∞n=1 converges if and only if the sequence {an+r}∞n=1 converges. If these sequences
converge, then

lim
n→∞

an = lim
n→∞

an+r.

Proof. The proof of this proposition is left as an exercise (Exercise 2.1.2).

Proposition 2.8 says that we can always ignore some finite number of terms at the be-
ginning of a sequence when computing limits.

Definition 2.9 (Bounded sequence). A sequence is bounded if its image is a bounded set.
(Recall that a sequence is a function N→ R.) In order words, the sequence {an} is bounded
if there exists M ∈ R such that

|an| ≤M ∀n ∈ N.

(See Exercise 1.3.1.)

Proposition 2.10. Every convergent sequence is bounded.

Proof. Suppose {an} converges to L. Taking ε = 1 in the definition of a limit, there exists
N ∈ N such that for all n ≥ N , we have

|an − L| < 1 =⇒ |an| − |L| ≤ |an − L| < 1 =⇒ |an| < |L|+ 1.

Now let
M = max{|a1|, |a2|, . . . , |aN−1|, |L|+ 1},

which exists since the maximum of any finite set exists. Then we have |an| ≤ M for all
n ∈ N, and so the sequence is bounded.
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One of the most useful formulations of Proposition 2.10 is its contrapositive: any sequence
which is not bounded is divergent. This gives us one method of proving that sequences
diverge. Note that the converse of Proposition 2.10 does not hold. For example, the sequence
{(−1)n}n∈N is bounded but divergent.

Exercises.
For the following exercises, you should directly use the definition of a limit (Definition 2.2)

and not any properties of limits you may have learned in other courses.

2.1.1. Show that

lim
n→∞

1√
n

= 0.

2.1.2. Prove Proposition 2.8.

2.1.3. Prove that the sequence {(−1)n}n∈N diverges, but does not diverge to ±∞.

2.1.4. Prove that

lim
n→∞

−n3 − 3n

n2 − 1
= −∞.

2.1.5 ([TBB, Ex. 2.4.12]). Suppose {an} is a sequence of integers. Under what conditions
can such a sequence converge?

2.1.6 ([TBB, Ex. 2.4.14]). Show that the statement “{an} converges to L” is false if and
only if there is a positive number c such that the inequality

|an − L| > c

holds for infinitely many values of n.

2.1.7 ([TBB, Ex. 2.4.15]). If {an} is a sequence of positive numbers converging to 0, show
that {√an} also converges to 0.

2.1.8 ([TBB, Ex. 2.4.16]). If {an} is a sequence of positive numbers converging to L, show
that {√an} converges to

√
L.

2.1.9 ([TBB, Ex. 2.5.5]). Prove that if an →∞, then (an)2 →∞ as well.

2.1.10 ([TBB, Ex. 2.5.6]). Prove that if xn → ∞, then the sequence
{

xn
1+xn

}
converges. Is

the converse true?

2.1.11 ([TBB, Ex. 2.5.7]). Suppose {an} is a sequence of positive numbers converging to 0.
Show that limn→∞ 1/an =∞. Is the converse true?

2.1.12 ([TBB, Ex. 2.6.1]). Which of the following statements are true?
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(a) If {an} is unbounded, then either limn→∞ an =∞ or limn→∞ an = −∞.

(b) If {an} is unbounded, then limn→∞ |an| =∞.

(c) If {an} and {bn} are both bounded, then so is {an + bn}.

(d) If {an} and {bn} are both unbounded, then so is {an + bn}.

(e) If {an} and {bn} are both bounded, then so is {anbn}.

(f) If {an} and {bn} are both unbounded, then so is {anbn}.

(g) If {an} is bounded, then so is {1/an}.

(h) If {an} is unbounded, then {1/an} is bounded.

2.1.13 ([TBB, Ex. 2.6.2]). Prove that if {an} is bounded, then {an/n} converges.

2.1.14. Prove that the converse of Proposition 2.10 does not hold.

2.1.15. (a) Use the fact that n =
(
1 + ( n

√
n− 1)

)n
and the binomial theorem to prove that

n ≥ n(n− 1)

2
( n
√
n− 1)2.

(b) Prove that limn→∞
n
√
n = 1.

2.2 Properties of limits

Proposition 2.11 (Arithmetic of limits). Suppose limn→∞ an = A, limn→∞ bn = B, and
c ∈ R. (Here A,B ∈ R.)

(a) limn→∞ c = c.

(b) limn→∞(can) = cA.

(c) limn→∞(an + bn) = A+B.

(d) limn→∞(anbn) = AB.

(e) If A 6= 0, then limn→∞
1
an

= 1
A

.

Proof. You should try to prove these statements yourself. To check your proofs, you can
compare to [TBB, Th. 2.14–2.17].

Proposition 2.12. Suppose {an} and {bn} are convergent sequences and that

an ≤ bn ∀n ∈ N.

Then
lim
n→∞

an ≤ lim
n→∞

bn.
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Proof. Let A = limn→∞ an and B = limn→∞ bn and suppose ε > 0. Then there exist
N1, N2 ∈ N such that

|an − A| <
ε

2
∀n ≥ N1

and
|bn −B| <

ε

2
∀n ≥ N2.

Let N = max{N1, N2}. Then, for all n ≥ N , we have

0 ≤ bn−an = B−A+(bn−B)+(A−an) ≤ B−A+|bn−B|+|an−A| < B−A+
ε

2
+
ε

2
= B−A+ε.

Thus
A−B < ε.

This this holds for all positive real numbers ε, we must have A − B ≤ 0, and so A ≤ B as
desired.

Remark 2.13. Note that the condition an < bn for all n ∈ N does not necessarily imply that
lim an < lim bn. See Exercise 2.2.1.

Corollary 2.14. Suppose {an} is a convergent sequence and that

m ≤ an ≤M ∀n ∈ N.

Then
m ≤ lim

n→∞
an ≤M.

Proof. Consider the constant sequences {m}n∈N and {M}n∈N and apply Proposition 2.12.

Theorem 2.15 (Squeeze Theorem). Suppose that {an} and {bn} are convergent sequences,
that

lim
n→∞

an = lim
n→∞

bn,

and that
an ≤ xn ≤ bn ∀n ∈ N.

Then the sequence {xn} is also convergent and

lim
n→∞

xn = lim
n→∞

an = lim
n→∞

bn.

Proof. Let L = limn→∞ an = limn→∞ bn. Let ε > 0 and choose N1, N2 ∈ N such that

|an − L| < ε ∀n ≥ N1

and
|bn − L| < ε ∀n ≥ N2.

Let N = max{N1, N2}. For all n ≥ N , we have

−ε < an − L ≤ xn − L ≤ bn − L < ε.

Therefore, for all n ≥ N, we have

−ε < xn − L < ε =⇒ |xn − L| < ε.
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Example 2.16. For all n ∈ N, we have −1 ≤ cosn ≤ 1. Thus

− 1

n
≤ cosn

n
≤ 1

n
.

Since − 1
n
→ 0 and 1

n
→ 0 as n→∞, we have

cosn

n
→ 0 as n→∞.

Example 2.17 (Geometric sequence). Let r ∈ R and consider the geometric sequence {rn}∞n=1.
Using the binomial theorem (or induction), one can show that

(1 + x)n > nx for n ∈ Z, x > 0.

If r > 1, then r = 1 + x for x = r − 1 > 0. Thus

rn = (1 + x)n > nx→∞ as n→∞.

If r ≤ −1, then the series certainly diverges. If r = 1, then {rn} is a constant sequence, so
it converges to 1.

Finally, we will show that

lim
n→∞

rn = 0 if − 1 < r < 1.

If 0 < r < 1, then

r =
1

1 + x
, where x =

1

r
− 1 > 0,

and so

0 < rn =
1

(1 + x)n
<

1

nx
→ 0 as n→∞.

If −1 < r < 0, then r = −t for 0 < t < 1. Thus

−tn ≤ rn ≤ tn.

Since we know from above that tn → 0, we can conclude from the Squeeze Theorem that
rn → 0. The final remaining case is when r = 0, when it is clear that rn → 0.

Exercises.

2.2.1. Give an example of two sequences {an} and {bn} such that an < bn for all n, but such
that limn→∞ an = limn→∞ bn.

2.2.2. Suppose |an| ≤ bn for all n ∈ N and that bn → 0. Prove that an → 0.

2.2.3 ([TBB, Ex. 2.7.5]). Which of the following statements are true?
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(a) If {an} and {bn} are both divergent, then so is {an + bn}.

(b) If {an} and {bn} are both divergent, then so is {anbn}.

(c) If {an} and {an + bn} are both convergent, then so is {bn}.

(d) If {an} and {anbn} are both convergent, then so is {bn}.

(e) If {an} is convergent, then so is {1/an}.

(f) If {an} is convergent, then so is {(an)2}.

(g) If {(an)2} is convergent, then so is {an}.

2.2.4 ([TBB, Ex. 2.8.2]). Suppose {an} is a sequence all of whose values lie in the interval
[a, b]. Prove that {an/n} is convergent.

2.2.5 ([TBB, Ex. 2.8.6]). Suppose {an} and {bn} are sequences of positive numbers, an →∞,
and

lim
n→∞

an
bn

= α

for some α ∈ R. What can you conclude?

2.3 Monotonic convergence criterion

Definition 2.18 (Increasing, decreasing, monotonic). Suppose {an} is a sequence of real
numbers. We say that {an} is (weakly) increasing if

an ≤ an+1 ∀n ∈ N,

and is strictly increasing if
an < an+1 ∀n ∈ N.

We say that {an} is (weakly) decreasing if

an ≥ an+1 ∀n ∈ N,

and is strictly decreasing if
an > an+1 ∀n ∈ N.

We say that {an} is monotonic if it is either increasing or decreasing.

Theorem 2.19 (Monotonic Convergence Theorem). A monotonic sequence converges if and
only if it is bounded. More specifically, we have the following:

(a) If {an} is increasing, then either {an} is bounded and converges to sup{an} or else
{an} is unbounded and an →∞.

(b) If {an} is decreasing, then either {an} is bounded and converges to inf{an} or else {an}
is unbounded and an → −∞.
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Proof. We will prove part (a) since the proof of part (b) is similar. By Proposition 2.10,
any unbounded sequence diverges. Thus, it remains to prove that if {an} is bounded and
increasing, then it converges to sup{sn}.

Suppose {an} is increasing and bounded. Then

L = sup{an}

exists by the completeness axiom (Axiom 1.14). Thus an ≤ L for all a. Let ε > 0. Then
there exists N ∈ N such that

L− ε < aN ≤ L

(see Exercise 1.3.10). Then, for all n ≥ N , we have

L− ε < aN ≤ an ≤ L < L+ ε.

Thus, for all n ≥ N ,

|an − L| < ε.

So an → L as desired.

Example 2.20. Consider the sequence {an} with an = 1/
√
n. This sequence is decreasing

and bounded below by 0. Therefore it converges. To find the limit, we need to do some more
work. (See Exercise 2.1.1.)

Proposition 2.21 (Nested interval property). Suppose a set of intervals {[an, bn] : n ∈ N}
satisfies

• [an+1, bn+1] ⊆ [an, bn] for all n ∈ N (i.e. the intervals are nested) and

• limn→∞(bn − an) = 0.

Then there exists L ∈ R, such that an → L, bn → L, and

∞⋂
n=1

[an, bn] = {L}.

Proof. The sequence {an} is increasing and is bounded above by b1. Similarly, {bn} is
decreasing and bounded below by a1. Therefore, by Theorem 2.19,

an → a := sup{an : n ≥ 1} and bn → b := inf{bn : n ≥ 1}.

Now, by Proposition 2.11, we have

b− a = lim
n→∞

bn − lim
n→∞

an = lim
n→∞

(bn − an) = 0.

Therefore a = b. Let L = a and note that

an ≤ a = L = b ≤ bn ∀n ∈ N.
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So

L ∈
∞⋂
n=1

[an, bn].

Since L = a = sup{an}, for any x < L, we have x < am for some m. Thus x /∈ [am, bm], and
so x /∈

⋂∞
n=1[an, bn]. Similarly, for any x > L, we have x /∈

⋂∞
n=1[an, bn]. So

∞⋂
n=1

[an, bn] = {L}.

Exercises.

2.3.1. Suppose {an} and {bn} are sequences such that {an} is increasing, and an ≤ bn for all
n.

(a) Show that if {bn} converges, then {an} converges.

(b) Show that if {an} diverges, then {bn} diverges.

2.3.2 ([TBB, Ex. 2.9.2]). Define a sequence {tn} recursively by setting t1 = 1 and

tn =
√
tn−1 + 1 for n ≥ 2.

Does this sequence converge? If so, to what?

2.4 Subsequences

Definition 2.22. Suppose
a1, a2, a3, . . .

is a sequence. A subsequence of {an} is a sequence of the form

an1 , an2 , an3 , . . . where n1 < n2 < n3 < · · · .

In terms of a functions, a subsequence of a sequence f : N → R is a composition f ◦ g,
where g : N→ N is a strictly increasing function. (The relationship to the above is that g is
the function defined by g(k) = nk.)

Remark 2.23. It is important to understand the notation for subsequences. A subsequence
of {an}n∈N is usually written as {ank

}k∈N. This is really a function

N→ R, k 7→ ank
.

So it is k (not nk, for instance) that ranges over the natural numbers in the subsequence.
So, for example, the limit of the subsequence should be written limk→∞ ank

.
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Example 2.24. The sequence

1,−1, 2,−2, 3,−3, 4,−4, 5,−5, . . .

has a subsequence
−1,−2,−3,−4,−5, . . . .

Here n1 = 2, n2 = 4, n3 = 6, etc.

Example 2.25. Suppose an = 1
n

for n ∈ N. Consider the strictly increasing function

N→ N, k 7→ nk := 2k.

Then we have the corresponding subsequence

{ank
}∞k=1 =

{
1

2k

}∞
k=1

of {an}∞n=1 =

{
1

n

}∞
n=1

.

Example 2.26. Suppose an = n
n+1

for n ∈ N. Consider the strictly increasing functions

N→ N, k 7→ nk := k! and

N→ N, k 7→ mk := k + 1.

Then we have the corresponding subsequences

{ank
}∞k=1 =

{
k!

k! + 1

}∞
k=1

and {amk
}∞k=1 =

{
k + 1

k + 2

}∞
k=1

.

Proposition 2.27 (Existence of monotonic subsequences). Every sequence contains a mono-
tonic subsequence.

Proof. We call the m-th element xm of a sequence {xn} a turn-back point if

xm ≥ xn ∀n > m.

If there is an infinite subsequence of turn-back points xm1 , xm2 , xm3 , . . . (with m1 ≤ m2 ≤
m3 ≤ · · · ), then these form a decreasing sequence since

xm1 ≥ xm2 ≥ xm3 ≥ · · · .

It remains to consider the case where there are only finitely many turn-back points. In
this case, let xM be the last turn-back point, so that xn is not a turn-back point for any
n > M . Thus, we have xm > xn for some m > n. So we can choose m1 > M + 1 such
that xm1 > xM+1, then m2 > m1 such that xm2 > xm1 , etc. This yields a strictly increasing
subsequence

xM+1 < xm1 < xm2 < xm3 < · · · .

Theorem 2.28 (Bolzano–Weierstrass Theorem). Every bounded sequence contains a con-
vergent subsequence.
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Proof. Suppose {an} is a bounded sequence. By Proposition 2.27, it contains a monotonic
subsequence, which is also bounded. By Theorem 2.19, this subsequence converges.

Note that, for the Bolzano–Weierstrass Theorem, it is important that we are working
within the real numbers. For example, it is not true that every bounded sequence of rational
numbers has a subsequence that converges to a rational number. To see this, consider the
sequence

1, 1.4, 1.41, 1.414, 1.4142, . . . (2.1)

formed by truncating the decimal expansion of
√

2. This is a sequence in Q. But no
subsequence converges to a rational number, since any subsequence converges in R to

√
2,

which is not rational.

Exercises.

2.4.1. Prove that if a sequence converges to L, then all of its subsequences also converge to
L.

2.4.2 ([TBB, Ex. 2.11.3]). If {snk
} is a subsequence of {sn} and {tmk

} is a subsequence of
{tn}, then is it necessarily true that {snk

+ tmk
} is a subsequence of {sn + tn}?

2.4.3 ([TBB, Ex. 2.11.6]). Which of the following statements are true?

(a) A sequence is convergent if and only if all of its subsequences are convergent.

(b) A sequence is bounded if and only if all of its subsequences are bounded.

(c) A sequence is monotonic if and only if all of its subsequences are monotonic.

(d) A sequence is divergent if and only if all of its subsequences are divergent.

2.4.4 ([TBB, Ex. 2.11.7]). Which of the following statements are true?

(a) If all monotonic subsequences of sequence {sn} are convergent, then {sn} is bounded.

(b) If all monotonic subsequences of sequence {sn} are convergent, then {sn} is convergent.

(c) If all convergent subsequences of a sequence {sn} converge to 0, then {sn} converges
to 0.

(d) If all convergent subsequences of a sequence {sn} converge to 0 and {sn} is bounded,
then {sn} converges to 0.

2.4.5 ([TBB, Ex. 2.11.8]). Where possible find subsequences that are monotonic and subse-
quences that are convergent for the following sequences:
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(a) {(−1)nn}

(b) {sin(nπ/8)}

(c) {n sin(nπ/8)}

(d)
{
n+1
n

sin(nπ/8)
}

(e) {1 + (−1)n}

2.4.6 ([TBB, Ex. 2.11.11]). Give an example of a sequence that contains subsequences con-
verging to every natural number (and no other numbers).

2.4.7 ([TBB, Ex. 2.11.14]). Show that if {an} has no convergent subsequences, then |an| → ∞
as n→∞.

2.5 Cauchy sequences

It would be useful to have a characterization of convergence that does not involve the limit.
Such a characterization should involve some sort of notion of the terms in a sequence be-
coming arbitrarily close together.

Definition 2.29 (Cauchy sequence). A sequence {an} is a Cauchy sequence if for all ε > 0,
there exists N ∈ N such that

|an − am| < ε ∀n,m ≥ N.

Theorem 2.30 (Cauchy convergence criterion). A sequence {an} is convergent if and only
if it is a Cauchy sequence.

Proof. First suppose that {an} converges to L. Let ε > 0. Then there exists N ∈ N such
that

|ak − L| <
ε

2
∀ k ≥ N.

Thus, if m,n ≥ N , we have

|an − am| ≤ |an − L|+ |L− am| <
ε

2
+
ε

2
= ε,

and so {an} is a Cauchy sequence.
Now suppose {an} is a Cauchy sequence. First we show that {an} is bounded. Taking

ε = 1 in the definition of a Cauchy sequence (Definition 2.29), there exists N ∈ N such that

|an − am| < 1 ∀n,m ≥ N.

Thus, for all n ≥ N , we have

|an| ≤ |aN |+ |an − aN | ≤ |aN |+ 1.
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Thus, if we set

M = max{|a1|, |a2|, . . . , |aN |, |aN |+ 1},

we have |an| ≤ M for all n ∈ N. So {an} is bounded. (Compare this argument to the proof
of Proposition 2.10.)

Now, by the Bolzano–Weierstrass Theorem (Theorem 2.28), {an} has a convergent sub-
sequence {ank

}k∈N. Let L = limk→∞ ank
. We will show that an → L also. Let ε > 0. Since

{an} is a Cauchy sequence, we can choose N such that

|an − am| <
ε

2
∀m,n ≥ N.

We can also choose K such that

|ank
− L| < ε

2
∀ k ≥ K.

Now suppose n ≥ N . Choose k ≥ K such that nk ≥ N . (We can do this since the function
k 7→ nk is strictly increasing.) Then

|an − L| ≤ |an − ank
|+ |ank

− L| ≤ ε

2
+
ε

2
= ε.

Thus, an → L as n→∞.

Remark 2.31. There is a very general setting, that of a metric space, where one has a notion
of convergence. In any metric space, convergent sequences are Cauchy sequences. But there
are metric spaces with Cauchy sequences that do not converge. For instance, this is true
in Q: the sequence (2.1) is a Cauchy sequence in Q but it does not converge in Q. So,
in general, convergence is stronger than the Cauchy property. Theorem 2.30, which says
that the two notions are equivalent for sequences in R, relies on the completeness axiom
(Axiom 1.14).

Exercises.

2.5.1 ([TBB, Ex. 2.12.1]). Show directly that the sequence {1/n} is a Cauchy sequence.

2.5.2 ([TBB, Ex. 2.12.2]). Show directly that if {an} is a Cauchy sequence and r ∈ R, then
{ran} is a Cauchy sequence.

2.5.3 ([TBB, Ex. 2.12.3]). Show directly that if {an} and {bn} are Cauchy sequences, then
so is {an + bn}.

2.5.4. Show directly that if {an} and {bn} are Cauchy sequences, then so is {anbn}.
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2.5.5 ([TBB, Ex. 2.12.4]). Consider the following condition:

∀ ε > 0, ∃N ∈ N such that ∀n ≥ N, |an+1 − an| < ε.

Show that every Cauchy sequence satisfies this condition. Find a sequence that satisfies this
condition that is not a Cauchy sequence.

2.5.6 ([TBB, Ex. 2.12.7]). Show directly that if {an} is a Cauchy sequence, then so is {|an|}.

2.6 Limit inferior and limit superior

Definition 2.32 (Limit superior). The limit superior of a sequence {an} is defined to be

lim sup
n→∞

an = inf{β : ∃N such that an < β ∀n ≥ N}.

(Intuitively, the limit superior is the infimum of the set of all β such that the sequence is
eventually less than β.)

Definition 2.33 (Limit inferior). The limit inferior of a sequence {an} is defined to be

lim inf
n→∞

an = sup{α : ∃N such that α < an ∀n ≥ N}.

(Intuitively, the limit inferior is the supremum of the set of all α such that the sequence is
eventually greater than α.)

Remark 2.34. In Definitions 2.32 and 2.33, we use the notational conventions introduced in
Section 1.3 for suprema and infima of empty or unbounded sets. In particular,

lim sup
n→∞

an =∞ ⇐⇒ {β : ∃N such that an < β ∀n ≥ N} = ∅

⇐⇒ {an} has no upper bound

and
lim sup
n→∞

an = −∞ ⇐⇒ an → −∞.

Similarly

lim inf
n→∞

an = −∞ ⇐⇒ {α : ∃N such that α < an ∀n ≥ N} = ∅

⇐⇒ {an} has no lower bound

and
lim inf
n→∞

an =∞ ⇐⇒ an →∞.

Proposition 2.35. For any sequence {an}, we have

lim inf
n→∞

an ≤ lim sup
n→∞

an.
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Proof. If lim infn→∞ an = −∞ or lim supn→∞ an =∞, the result is trivial. Otherwise, choose
α, β ∈ R such that

lim sup
n→∞

an ≤ β and α ≤ lim inf
n→∞

an.

Then, by definition, there exists N,M ∈ N such that

an ≤ β ∀n ≥ N and α ≤ an ∀n ≥M.

Thus α ≤ β. Since this is true for all β ≥ lim supn→∞ an, this implies that

α ≤ lim sup
n→∞

an.

And since this holds for all α ≤ lim infn→∞ an, we have

lim inf
n→∞

an ≤ lim sup
n→∞

an.

The following proposition explains the notation “lim sup” and “lim inf”.

Proposition 2.36. If {xn} is a sequence of real numbers, then

lim sup
n→∞

xn = lim
n→∞

sup{xn, xn+1, xn+2, . . . }

and
lim inf
n→∞

xn = lim
n→∞

inf{xn, xn+1, xn+2, . . . }.

Proof. We will prove the statement for lim infs, since the statement for lim sups is similar,
and can be found in [TBB, Th. 2.47].

Let
zn = inf{xn, xn+1, xn+2, . . . }.

Then zn ≤ xn for all n and so, by Exercise 2.6.4 we have

lim inf
n→∞

zn ≤ lim inf
n→∞

xn.

But since zn is a increasing sequence, by Exercise 2.6.5 we have

lim inf
n→∞

zn = lim
n→∞

zn.

Thus
lim
n→∞

inf{xn, xn+1, xn+2, . . . } ≤ lim inf
n→∞

xn.

It remains to show the reverse inequality. If lim infn→∞ xn = −∞, then the sequence is
unbounded below. Therefore, for all n, we have

inf{xn, xn+1, xn+2, . . . } = −∞,

and thus
lim inf
n→∞

xn = lim
n→∞

inf{xn, xn+1, xn+2, . . . }
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holds.
If

lim inf
n→∞

xn > −∞,

then choose α ∈ R such that α ≤ lim infn→∞ xn. By definition, there exists N ∈ N such that
α ≤ xn for all n ≥ N . Thus

α ≤ lim
n→∞

inf{xn, xn+1, xn+2, . . . }.

Since this holds for all α ≤ lim infn→∞ xn, we have

lim inf
n→∞

xn ≤ lim
n→∞

inf{xn, xn+1, xn+2, . . . },

proving the other inequality.

Theorem 2.37. Suppose {xn} is a sequence of real numbers. Then {xn} is convergent if
and only if lim supn→∞ xn = lim infn→∞ xn and these are finite. In this case,

lim sup
n→∞

xn = lim inf
n→∞

xn = lim
n→∞

xn.

Proof. First suppose that lim supn→∞ xn = lim infn→∞ xn = L ∈ R. Let ε > 0. Then there
exist N1, N2 such that

xn < L+ ε ∀n ≥ N1

and
xn > L− ε ∀n ≥ N2.

Let N = max{N1, N2}. Then, for all n ≥ N , we have

L− ε < xn < L+ ε.

Therefore limn→∞ xn = L.
Conversely, suppose limn→∞ xn = L. Let ε > 0. Then there exists an N such that

L− ε < xn < L+ ε ∀n ≥ N.

Therefore
L− ε ≤ lim inf

n→∞
xn ≤ lim sup

n→∞
xn ≤ L+ ε.

Since ε was an arbitrary positive real number, this implies that

L = lim inf
n→∞

xn = lim sup
n→∞

xn,

as required.

Exercises.
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2.6.1 ([TBB, Ex. 2.13.2]). Compute lim sup and lim inf for the following sequences:

(a) {(−1)nn}

(b) {sin(nπ/8)}

(c) {n sin(nπ/8)}

(d) {1 + (−1)n}

2.6.2 ([TBB, Ex. 2.13.3]). Give examples of sequences of rational numbers {an} with

(a) upper limit
√

2 and lower limit −
√

2,

(b) upper limit +∞ and lower limit
√

2,

(c) upper limit π and lower limit e.

2.6.3 ([TBB, Ex. 2.13.3]). Show that

lim sup
n→∞

(−xn) = − lim inf
n→∞

xn.

2.6.4 ([TBB, Ex. 2.13.5]). If two sequences {an} and {bn} satisfy the inequality an ≤ bn for
all sufficiently large n (i.e. for n ≥ N for some fixed N), show that

lim sup
n→∞

an ≤ lim sup
n→∞

bn and lim inf
n→∞

an ≤ lim inf
n→∞

bn.

2.6.5 ([TBB, Ex. 2.13.8]). Show that if {an} is a monotonic sequence, then

lim sup
n→∞

an = lim inf
n→∞

an = lim
n→∞

an

(including the possibility of infinite limits).

2.6.6 ([TBB, Ex. 2.13.9]). Show that for any bounded sequences {an} and {bn},

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn.

Give an example to show that the equality need not occur.



Chapter 3

Series

In this chapter, we discuss infinite sums, known as series. We begin with the precise definition
of a series. The definition is in terms of limits of sequences and so we can use the properties
of sequences we learned in Chapter 2 to deduce properties of series. We then discuss various
tests that can be used to conclude that a series is convergent. Finally, we discuss the notion of
absolute convergence, which is stronger than convergence. A good reference for the material
of this chapter is [TBB, Ch. 3].

3.1 Definition and basic properties

The ordered sum of a sequence is called a series and we use the notation

∞∑
k=1

ak = a1 + a2 + a3 + · · · .

Of course, one cannot in practice actually add an infinite number of real numbers. So we
need to define precisely what we mean by such a sum.

Definition 3.1. Let {ak}∞k=1 be a sequence of real numbers. We write

∞∑
k=1

ak = c

and say that the series converges , with sum c, if the sequence {sn}∞n=1, where

sn =
n∑
k=1

ak

(called the sequence of partial sums of the series) converges to c. If the series does not
converge, it is said to diverge.

Definition 3.1 says that
∞∑
k=1

ak := lim
n→∞

n∑
k=1

ak.

31
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Since series are defined in terms of sequences, the results of Chapter 2 immediately imply
certain results about series.

Proposition 3.2. If a series
∑∞

k=1 ak converges, then the sum is unique.

Proof. The proof of this proposition is left as an exercise.

Proposition 3.3. If the series
∑∞

k=1 ak and
∑∞

k=1 bk both converge, and c ∈ R, then the
series

∞∑
k=1

(ak + bk) and
∞∑
k=1

cak

both converge and

∞∑
k=1

(ak + bk) =
∞∑
k=1

ak +
∞∑
k=1

bk and
∞∑
k=1

cak = c
∞∑
k=1

ak.

Proof. The proof of this proposition is left as an exercise.

Proposition 3.4. If the series
∑∞

k=1 ak and
∑∞

k=1 bk both converge and ak ≤ bk for all k,
then

∞∑
k=1

ak ≤
∞∑
k=1

bk.

Proof. The proof of this proposition is left as an exercise.

Proposition 3.5. Let r ∈ N. The series

∞∑
k=1

ak = a1 + a2 + a3 + · · ·

converges if and only if the series

∞∑
k=r+1

ak =
∞∑
k=1

ak+r = ar+1 + ar+2 + ar+3 + . . .

converges.

Proof. The proof of this proposition is left as an exercise.

Example 3.6 (Telescoping series). Consider the series

∞∑
k=1

1

k(k + 1)
.

Note that
1

k(k + 1)
=

1

k
− 1

k + 1
.
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Thus, the n-th partial sum is

sn =
n∑
k=1

1

k(k + 1)
=

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

n
− 1

n+ 1

)
= 1− 1

n+ 1
.

(See Exercise 1.4.7.) Therefore

∞∑
k=1

1

k(k + 1)
= lim

n→∞

(
1− 1

n(n+ 1)

)
= 1.

This is an example of a telescoping series .

Example 3.7 (Harmonic series). Consider the harmonic series

∞∑
k=1

1

k
= 1 +

1

2
+

1

3
+ . . . .

One can show (Exercise 3.1.7) that

s2n =
2n∑
k=1

1

k
≥ 1 +

n

2
∀n.

Thus limn→∞ sn =∞, and so the harmonic series diverges.

Proposition 3.8. If the series
∑∞

k=1 ak converges, then ak → 0.

Proof. If sn is the n-th partial sum of a convergent series
∑∞

k=1 ak = c, then

lim
n→∞

an = lim
n→∞

(sn − sn−1) = lim
n→∞

sn − lim
n→∞

sn−1 = c− c = 0.

The contrapositive of Proposition 3.8 gives us a method of proving that a series diverges.
If the terms of a series do not approach zero, then the series diverges. Note, however, that
the converse of Proposition 3.8 does not hold. For example, the terms of the harmonic series
(Example 3.7) approach zero, but the series diverges.

Example 3.9 (Geometric series). When r 6= 1, we have

1 + r + r2 + · · ·+ rn =
1− rn+1

1− r
.

By Example 2.17, we know that the sequence {rn} converges to zero when |r| < 1. Therefore

∞∑
k=0

rk = lim
n→∞

n∑
k=0

rk = lim
n→∞

1− rn+1

1− r
=

1

1− r

when |r| < 1. For |r| ≥ 1, the series
∑∞

k=0 r
k diverges by Proposition 3.8 since rk 6→ 0. The

series
∑∞

k=1 r
k is called a geometric series .
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Exercises.

3.1.1. Prove Propositions 3.2–3.5.

3.1.2 ([TBB, Ex. 3.4.3]). If
∑∞

k=1(ak + bk) converges, what can you say about the series

∞∑
k=1

ak and
∞∑
k=1

bk ?

3.1.3 ([TBB, Ex. 3.4.4]). If
∑∞

k=1(ak + bk) diverges, what can you say about the series

∞∑
k=1

ak and
∞∑
k=1

bk ?

3.1.4 ([TBB, Ex. 3.4.5]). If the series
∑∞

k=1(a2k + a2k−1) converges, what can you say about
the series

∑∞
k=1 ak?

3.1.5 ([TBB, Ex. 3.4.6]). If the series
∑∞

k=1 ak converges, what can you say about the series∑∞
k=1(a2k + a2k−1)?

3.1.6 ([TBB, Ex. 3.4.9]). If {sn} is a strictly increasing sequence of positive numbers, show
that it is the sequence of partial sums of some series with positive terms.

3.1.7. If

sn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
,

show that s2n ≥ 1 + n/2 for all n. (See Example 3.7.)

3.1.8 ([TBB, Ex. 3.4.15]). Does the series

∞∑
k=1

log

(
k + 1

k

)
converge or diverge?

3.1.9 ([TBB, Ex. 3.4.16]). Show that

1

r − 1
=

1

r + 1
+

2

r2 + 1
+

4

r4 + 1
+

8

r8 + 1
+ · · ·

for all r > 1. Hint : Note that

1

r − 1
− 1

r + 1
=

2

r2 − 1
.
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3.1.10 ([TBB, Ex. 3.4.18]). Find the sum of the series

∞∑
k=1

1

k(k + 2)(k + 4)
.

3.1.11 ([TBB, Ex. 3.4.20]). Find all values of x for which the following series converges and,
in the cases where in converges, determine the sum:

x+
x

1 + x
+

x

(1 + x)2
+

x

(1 + x)3
+

x

(1 + x)4
+ · · · .

3.2 Convergence tests

A sum whose terms alternate between being nonnegative and nonpositive is called an alter-
nating series .

Proposition 3.10 (Alternating series test). Suppose {an} is a decreasing sequence of positive
real numbers converging to zero. Then

∞∑
k=1

(−1)k−1ak

converges and the sum of the series lies between any two consecutive partial sums.

Proof. Since the ak are nonnegative and decrease, we have

a1 − a2 = s2 ≤ s4 ≤ s6 ≤ · · · ≤ s5 ≤ s3 ≤ s1 = a1. (3.1)

So the subsequences of even and odd partial sums are bounded monotonic sequences. So

lim
n→∞

s2n and lim
n→∞

s2n−1

exist. Since
s2n − s2n−1 = −a2n → 0,

we can conclude that limn→∞ sn = L exists. It is clear from the inequalities (3.1) that the
sum of the series lies between any two consecutive partial sums.

Example 3.11 (Alternating harmonic series). Consider the alternating harmonic series

∞∑
k=1

(−1)k−1
1

k
= 1− 1

2
+

1

3
− 1

4
+ · · · .

By Proposition 3.10, this series converges and the sum is somewhere between s1 = 1 and
s2 = 1/2. We could get better approximations by computing further partial sums.

Proposition 3.12 (Boundedness criterion). Supose {an} is a sequence of nonnegative real
numbers. Then the series

∑∞
k=1 ak converges if and only if its partial sums are bounded.
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Proof. Since ak ≥ 0 for all k ∈ N, the partial sums form an increasing sequence. Thus, the
result follows from Theorem 2.19.

Proposition 3.13 (Cauchy convergence criterion). The series
∑∞

k=1 ak converges if and only
if for all ε > 0 there exists N ∈ N such that∣∣∣∣∣

m∑
k=n

ak

∣∣∣∣∣ < ε for all N ≤ n < m <∞.

Proof. Let sn =
∑n

k=1 ak be the n-th partial sum of the series. Then, by Theorem 2.30, we
have that {sn} converges if and only if for all ε > 0 there exists N ∈ N such that,

|sk − s`| < ε for all k, ` ≥ N − 1

⇐⇒

∣∣∣∣∣
m∑
k=n

ak

∣∣∣∣∣ = |sm − sn−1| < ε for all N ≤ n < m <∞.

Proposition 3.14 (Comparison test). Suppose {an} and {bn} are two sequences and that
there exists N such that 0 ≤ an ≤ bn for all n ≥ N .

(a) If
∑∞

k=1 bk converges, then
∑∞

k=1 ak converges.

(b) If
∑∞

k=1 ak diverges, then
∑∞

k=1 bk diverges.

Proof. By Proposition 2.8, we may assume that 0 ≤ an ≤ bn for all n ∈ N.

(a) If
∑∞

k=1 bk converges, then its partial sums are bounded above by some M , by Propo-
sition 3.12. Since 0 ≤ an ≤ bn for all n, the partial sums of

∑∞
k=1 ak are also bounded

above by M . Therefore, by Proposition 3.12, the series
∑∞

k=1 ak converges.

(b) The proof of this part is left as an exercise (Exercise 3.2.2).

Example 3.15. Consider the series

∞∑
n=1

1

(n+ 1)2
. (3.2)

Since

0 ≤ 1

(n+ 1)2
≤ 1

n(n+ 1)
for all n ∈ N,

and we know
∞∑
n=1

1

n(n+ 1)

converges by Example 3.7, we can conclude that (3.2) converges by the comparison test
(Proposition 3.14). It then follows that

1 +
∞∑
n=1

1

(n+ 1)2
=
∞∑
n=1

1

n2
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converges. Then, by the comparison test again, the series
∞∑
n=1

1

nk

converges for all k ≥ 2.

Remark 3.16. Note that, in the setup of Proposition 3.14, we cannot conclude anything if
we only know that

∑∞
k=1 ak converges or

∑∞
k=1 bk diverges.

Proposition 3.17 (Ratio test). Suppose {an} is a sequence of positive real numbers.

(a) If

lim sup
n→∞

an+1

an
< 1,

then
∑∞

n=1 an converges.

(b) If

lim inf
n→∞

an+1

an
> 1,

then
∑∞

n=1 an diverges.

Proof. (a) Suppose

lim sup
n→∞

an+1

an
= q < 1.

Let r = q+1
2

, so that q < r < 1. There there are only finitely many n such that
an+1/an > r. Hence there exists N such that

an+1

an
≤ r ∀n ≥ N.

Then, for n ≥ N , we have

an =
an
an−1

an−1
an−2

· · · aN+1

aN
aN = rn−NaN .

Then, by the comparison test (Proposition 3.14), comparing to the sequence

∞∑
n=1

aN
rN
rn =

aN
rN

∞∑
n=1

rn,

which converges by Example 3.9, we see that
∑∞

n=1 an converges.

(b) Suppose

lim inf
n→∞

an+1

an
= q > 1.

Then, as above, there exists r > 1 and N ∈ N such that

an+1

an
≥ r > 1 ∀n ≥ N.

Then an+1 > an for all n ≥ N , and so an 6→ 0. Thus
∑∞

n=1 an diverges by Proposi-
tion 3.8.
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Remark 3.18. Note that Proposition 3.17 says nothing in the case where

lim
n→∞

an+1

an
= 1.

For example
∞∑
n=1

1

n(n+ 1)
converges, and

an+1

an
=

n

n+ 2
→ 1,

while
∞∑
n=1

1

n
diverges, and

an+1

an
=

n

n+ 1
→ 1.

Proposition 3.19 (Root test). Suppose {an} is a sequence of positive real numbers.

(a) If
lim sup
n→∞

n
√
an < 1,

then
∑∞

n=1 an converges.

(b) If
lim inf
n→∞

n
√
an > 1,

then
∑∞

n=1 an diverges.

Sketch of proof. (a) Suppose
lim sup
n→∞

n
√
an = r < 1.

Then, as in the proof of Proposition 3.17, there exists s < 1 and N ∈ N such that

0 ≤ n
√
an ≤ s < 1 ∀n ≥ N.

Then compare to the series
∑∞

n=1 s
n.

(b) The proof of this part is similar.

Remark 3.20. As for the ratio test (Proposition 3.17), Proposition 3.19 says nothing in the
case where

lim
n→∞

n
√
an = 1.

For example,
∞∑
n=1

1

n2
converges, and

n

√
1

n2
=

1

n2/n
→ 1,

while
∞∑
n=1

1

n
diverges, and

n

√
1

n
→ 1.
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Exercises.

3.2.1. Prove that the series
∞∑
n=1

(−1)nn2

n3 + 1

converges.

3.2.2. Prove Proposition 3.14(b).

3.2.3 ([TBB, Ex. 3.5.1]). Suppose that
∑∞

k=1 ak is a convergent series of positive terms. Show
that

∑∞
k=1 a

2
k is convergent. Does the converse hold?

3.2.4. Suppose s > 0, and consider the series

∞∑
k=1

1

ks
.

When s = 1, this is the harmonic series, which diverges (Example 3.7).

(a) Show that the series diverges when s < 1.

(b) Let sn be the n-th partial sum of the series. Show that

s2n+1−1 <
n∑
j=0

(
1

2s−1

)j
.

(c) Show that the series
∑∞

k=1
1
ks

converges when s > 1.

3.2.5 ([TBB, Ex. 3.4.7]). If the series
∑∞

k=1 ak and
∑∞

k=1 bk both converge, what can you say
about the series

∑∞
k=1 akbk?

3.2.6 ([TBB, Ex. 3.4.21]). Determine whether the series

∞∑
k=1

1

a+ kb

converges or diverges, where a and b are positive real numbers.

3.2.7. Which of the following series converge?

(a)
∞∑
n=1

n(n+ 1)

(n+ 2)2

(b)
∞∑
n=1

2 + sin3(n+ 1)

2n + n2
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(c)
∞∑
n=1

1

2n − 1 + cos2 n3

(d)
∞∑
n=1

n+ 1

n2 + 1

(e)
∞∑
n=1

n+ 1

n3 + 1

(f)
∞∑
n=1

n!

nn

(g)
∞∑
n=1

n!

5n

(h)
∞∑
n=1

nn

31+2n

(i)
∞∑
n=1

(
5n+ 3n3

7n3 + 2

)n

3.3 Absolute convergence

Proposition 3.21. If the series
∑∞

k=1 |ak| converges, then so does the series
∑∞

k=1 ak.

Proof. Suppose
∑∞

k=1 |ak| converges. Then, by the Cauchy convergence criterion (Proposi-
tion 3.13), for every ε > 0, there exists N such that

m∑
k=n

|ak| < ε for all N ≤ n < m <∞.

But then ∣∣∣∣∣
m∑
k=n

ak

∣∣∣∣∣ ≤
m∑
k=n

|ak| < ε for all N ≤ n < m <∞.

Therefore, again by the Cauchy convergence criterion, the series
∑∞

k=1 ak is convergent.

Definition 3.22 (Absolutely convergent, nonabsolutely convergent). The series
∑∞

n=1 an is
absolutely convergent (or converges absolutely) if

∑∞
n=1 |an| converges. If

∑∞
n=1 an converges,

but
∑∞

n=1 |an| does not, we say that the series
∑∞

n=1 an is nonabsolutely convergent .

Examples 3.23. (a) Any geometric series
∑∞

n=1 r
n is absolutely convergent if |r| < 1 and

divergent if |r| ≥ 1, by Example 3.9.

(b) The alternating harmonic series
∑∞

n=1
(−1)n−1

n
is nonabsolutely convergent by Exam-

ples 3.7 and 3.11.
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Definition 3.24 (Rearrangement). A rearrangement of the series
∑∞

n=1 an is a series of the
form

∑∞
n=1 af(n) for some bijection f : N→ N.

Proposition 3.25. (a) If a series is absolutely convergent, then every rearrangement is
convergent, with the same sum.

(b) If a series is nonabsolutely convergent, then for all s ∈ R, there exists a rearrangement
of the series that converges to s.

Proof. We will not prove this proposition in class. A proof can be found in [TBB, §3.7].

Proposition 3.25 tells us that the order of the terms in a series is very important, unless
the series is absolutely convergent.

Exercises.

3.3.1 ([TBB, Ex. 3.5.3]). Suppose that the series
∑∞

k=1 ak and
∑∞

k=1 bk are both absolutely
convergent. Show that the series

∑∞
k=1 akbk is also absolutely convergent. Does the converse

hold?

3.3.2 ([TBB, Ex. 3.5.4]). Suppose that the series
∑∞

k=1 ak and
∑∞

k=1 bk are both nonabso-
lutely convergent. Show that it does not follow that the series

∑∞
k=1 akbk is convergent.

3.3.3 ([TBB, Ex. 3.5.11]). Show that a series
∑∞

k=1 ak is absolutely convergent if and only if
every subseries

∑∞
k=1 ank

converges.



Chapter 4

Topology of Rd

In this chapter will we consider the topology of Rd. In particular, we will discuss the idea
of a norm, which replaces the absolute value on R and allows us to define convergence in
Rd. We will then examine the concepts of open sets, closed sets, and compact sets. These
concepts will be crucial in our later study of continuity. Many of the topics discussed in this
chapter can be found in [TBB, Ch. 4], but that reference only considers the one-dimensional
setting d = 1.

4.1 Norms

Recall that, for d ∈ N,

Rd = {(x1, x2, . . . , xd) : x1, . . . , xd ∈ R}.

When we write x ∈ Rd we will usually denote its components by x1, . . . , xd. That is, we will
implicitly assume that x = (x1, . . . , xd).

We have a binary operation of vector addition on Rd:

(x1, . . . , xd) + (y1, . . . , yd) = (x1 + y1, . . . , xd + yd).

This addition is associative and commutative, with additive identity

0 = (0, 0, . . . , 0).

Note that we use the notation 0 to denote the real number zero as well as the element 0 ∈ Rd.
The context should make it clear which one we mean.

We also have the operation of scalar multiplication

α(x1, . . . , xd) = (αx1, . . . , αxd), (x1, . . . , xd) ∈ Rd, α ∈ R,

and scalar multiplication is distributive over addition.

Definition 4.1. A norm on Rd is a function

‖ · ‖ : Rd → R+ := [0,∞)

having the following properties:

42
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N1 For x ∈ Rd, ‖x‖ = 0 if and only if x = 0.

N2 We have ‖λx‖ = |λ| · ‖x‖ for all x ∈ Rd and λ ∈ R.

N3 We have ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ Rd (triangle inequality).

Definition 4.2 (Euclidean norm). The euclidean norm on Rd is defined by

‖(x1, x2, . . . , xd)‖ =
√
x21 + x22 + · · ·+ x2d.

Note that ‖x‖ =
√
x · x, where x · y denotes the dot product of x, y ∈ Rd. Also note that,

when d = 1, we have ‖x‖ = |x| for x ∈ R1 = R.

Of course, we have not yet proved that the euclidean norm is actually a norm in the sense
of Definition 4.1. To prove this, we first need an important result.

Proposition 4.3 (Cauchy–Schwarz inequality). For all x, y ∈ Rd, we have

|x · y| ≤ ‖x‖ ‖y‖, (4.1)

where ‖ · ‖ denotes the euclidean norm.

Proof. Consider the quadratic function

q(t) = ‖x+ ty‖2 = (x+ ty) · (x+ ty) = (x · x) + 2t(x · y) + t2(y · y), t ∈ R.

Since q(t) ≥ 0 for all t ∈ R, its discriminant must be less than or equal to zero. Thus

4(x · y)2 − 4(x · x)(y · y) ≤ 0 =⇒ |x · y| ≤ ‖x‖ ‖y‖.

Proposition 4.4. The euclidean norm satisfies conditions N1–N3.

Proof. We will leave the verification of N1 and N2 as an exercise (Exercise 4.1.1). To prove
that that N3 is satisfied, note that, for x, y ∈ Rd,

‖x+ y‖2 = (x+ y) · (x+ y) = x · x+ 2x · y + y · y ≤ ‖x‖2 + 2‖x‖ ‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2,

where the inequality follows from the Cauchy–Schwarz inequality (4.1). Taking square roots
then yields N3.

The euclidean norm will be our default norm on Rd. Unless otherwise specified, this is
the norm that we use. However, there are other norms on Rd.

Example 4.5 (`∞-norm). The `∞-norm on Rd is given by

‖x‖∞ = max{|x1|, |x2|, . . . , |xd|}.

We leave it as an exercise to verify that this satisfies N1–N3, and so is indeed a norm
(Exercise 4.1.2).
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Example 4.6 (`1-norm). The `1-norm on Rd is given by

‖x‖1 = |x1|+ |x2|+ · · ·+ |xd|.

We leave it as an exercise to verify that this satisfies N1–N3, and so is indeed a norm
(Exercise 4.1.3).

Proposition 4.7. Suppose ‖ · ‖ and ‖ · ‖′ are two norms on Rd. Then there are positive real
numbers α and β such that

α‖x‖ ≤ ‖x‖′ ≤ β‖x‖ ∀x ∈ Rd.

Proof. We will not prove this proposition in this course. It is typically done (in the more
general setting of finite-dimensional vector spaces) in MAT 3120. A proof can be found in
[Savb, Th. 5.3.11].

Although there are many norms on Rd, Proposition 4.7 says that, in a certain sense, they
are all equivalent. For example, it will follow from Proposition 4.7 that a sequence converges
with respect to one norm if and only if it converges with respect to another, and a set is open
with respect to one norm if and only if it is open with respect to another. See Remarks 4.15
and 4.28. However, for infinite-dimensional vector spaces, different norms can lead to vastly
different properties.

Exercises.

4.1.1. Show that the euclidean norm (Definition 4.2) satisfies conditions N1 and N2 (see
Proposition 4.4).

4.1.2. Show that the `∞-norm, as defined in Example 4.5, satisfies N1–N3.

4.1.3. Show that the `1-norm, as defined in Example 4.6, satisfies N1–N3.

4.1.4. Suppose ‖ · ‖ is an arbitrary norm on Rd and α ∈ R, α > 0. Prove that ‖ · ‖′, defined
by

‖x‖′ = α‖x‖, x ∈ Rd,

is also a norm on Rd.

4.1.5. Suppose ‖ · ‖ and ‖ · ‖′ are two arbitrary norms on Rd. Prove that ‖ · ‖′′, defined by

‖x‖′′ = ‖x‖+ ‖x‖′, x ∈ Rd,

is also a norm on Rd.
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4.2 Convergence in Rd

We can now define convergence of sequences in Rd just as we did for sequences in R, replacing
the absolute value by the euclidean norm (or any other norm).

Definition 4.8 (Convergence in Rd). Let {xk}∞k=1 be a sequence in Rd. We say that {xk}∞k=1

converges to y ∈ Rd, and write limk→∞ xk = y or xk → y, if

∀ ε > 0, ∃N ∈ N such that ∀ k ≥ N, ‖xk − y‖ < ε.

Equivalently,
lim
k→∞

xk = y ⇐⇒ lim
k→∞
‖xk − y‖ = 0.

(Note that the statement limk→∞ ‖xk − y‖ = 0 is a statement about limits of sequences of
real numbers, since ‖xk − y‖ is a real number for each k.) If this condition is satisfied, we
say that y is the limit of the sequence.

Example 4.9. Consider the sequence {xn}∞n=1 in R4 given by

xn =

(
1

n
, 2− 1

n
, 1 +

1

n
,

1

n2

)
.

We have

‖xn − (0, 2, 1, 0)‖ =

√(
1

n

)2

+

(
−1

n

)2

+

(
1

n

)2

+

(
1

n2

)2

=

√
3

n2
+

1

n4

≤
√

4

n2
=

2

n
→ 0.

Thus xn → (0, 2, 1, 0).

If {xk}∞k=1 is a sequence in Rd, then each xk ∈ Rd is of the form

xk = (xk,1, xk,2, . . . , xk,d), xk,i ∈ R, i ∈ {1, . . . , d}.

So, for i ∈ {1, . . . , d}, we have the corresponding sequence of i-th components {xk,i}∞k=1,
which is a sequence of real numbers.

Proposition 4.10. A sequence {xk}∞k=1 in Rd converges to y = (y1, . . . , yd) if and only if
the sequence of real numbers {xk,i}∞k=1 converges to yi for each i ∈ {1, . . . , d}.

Proof. Suppose the sequence {xk}∞k=1 converges to y ∈ Rd. Let i ∈ {1, . . . , d}. Then

|xk,i − yi| =
√

(xk,i − yi)2 ≤
√

(xk,1 − y1)2 + · · ·+ (xk,d − yd)2 = ‖xk − y‖ → 0. (4.2)

Thus, |xk,i − yi| → 0 as k → 0 by the Squeeze Theorem (Theorem 2.15). So xk,i → yi as
k →∞.
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Now suppose that, for each i ∈ {1, . . . , d}, the sequence {xk,i}∞k=1 converges to some
yi ∈ R. Thus

|xk,i − yi| → 0 as k →∞ ∀ i ∈ {1, . . . , d}.

Let y = (y1, . . . , yd) ∈ Rd. Then, by the arithmetic of limits (Proposition 2.11), we have

(xk,1 − y1)2 + · · ·+ (xk,d − yd)2 → 0 as k →∞.

Thus, by Exercise 2.1.8, we have

‖xk − y‖ =
√

(xk,1 − y1)2 + · · ·+ (xk,d − yd)2 → 0.

Hence xk → y.

Proposition 4.10 says that a sequence in Rd converges if and only if its components
converge. So it reduces the notion of convergence in Rd to convergence in R.

Definition 4.11 (Cauchy sequence in Rd). A sequence {xk}∞k=1 in Rd is a Cauchy sequence
if

∀ ε > 0, ∃N ∈ N such that ∀m,n ≥ N, ‖xm − xn‖ < ε.

The following theorem is a higher dimensional analogue of Theorem 2.30.

Theorem 4.12 (Cauchy convergence criterion for Rd). A sequence in Rd converges if and
only if it is a Cauchy sequence.

Proof. Suppose {xk}∞k=1 is a Cauchy sequence in Rd. Let ε > 0. Then there exists N ∈ N
such that

‖xm − xn‖ < ε ∀m,n ≥ N.

Then, for each i ∈ {1, . . . , d}, we have (as in (4.2))

|xm,i − xni
| ≤ ‖xm − xn‖ < ε ∀m,n ≥ N.

Thus, {xk,i}∞k=1 is a Cauchy sequence in R for each i. Therefore, by Theorem 2.30, each such
sequence converges. Thus {xk}∞k=1 converges by Proposition 4.10.

Now suppose {xk}∞k=1 is a convergent sequence in Rd. Then, by Proposition 4.10, the
sequence of components {xk,i}∞k=1 is a convergent sequence of real numbers for each i ∈
{1, . . . , d}. So, by Theorem 2.30, {xk,i}∞k=1 is a Cauchy sequence for each i. Let ε > 0. Then,
for each i, we can choose Ni such that

|xm,i − xn,i| < ε/
√
d ∀n,m ≥ Ni.

Let N = max{N1, N2, . . . , Nd}. Then, for all n,m ≥ N , we have

‖xm − xn‖ =
√

(xm,1 − xn,1)2 + · · ·+ (xm,d − xn,d)2 < ε.

Therefore {xk}∞k=1 is a Cauchy sequence.
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Definition 4.13 (Bounded subset of Rd). A subset E ⊆ Rd is bounded if there exists M ∈ N
such that

‖x‖ ≤M ∀x ∈ E.

Note that there is no natural notion of bounded above or bounded below for Rd since we
have no natural order on Rd.

The following theorem is a higher dimensional analogue of Theorem 2.28.

Theorem 4.14 (Bolzano–Weierstrass Theorem for Rd). Every bounded sequence in Rd has
a convergent subsequence.

Proof. Suppose {xn}∞n=1 is a bounded sequence in Rd. So there exists M ∈ N such that

‖xn‖ ≤M ∀n ∈ N.

For each i ∈ {1, . . . , d}, we have

|xn,i| ≤ ‖xn‖ ≤M ∀n ∈ N.

Thus, the sequences {xn,i}∞n=1 of i-th coordinates are bounded.
By the Bolzano–Weierstrass Theorem for R (Theorem 2.28), we can pick a subsequence

{xnk,1}∞k=1 of {xn,1}∞n=1 that converges. So {xnk
}∞k=1 is a subsequence of {xn}∞n=1 whose first

coordinates converge. Repeating the above argument, we can now choose of subsequence of
{xnk
} whose second coordinates converge. Continuing in this manner, we obtain a subse-

quence of {xn} such that the sequence of i-th coordinates converges for all i ∈ {1, . . . , d}.
By Proposition 4.10, this subsequence converges in Rd.

Remark 4.15. We can modify Definition 4.8 by replacing the euclidean norm by any other
norm. However, it follows from Proposition 4.7 that a sequence in Rd converges to y with
respect to one norm if and only if it converges to y with respect to any other norm. So our
notion of convergence is independent of our choice of norm. See Exercise 4.2.1.

Exercises.

4.2.1. Suppose {xk}∞k=1 is a sequence in Rd and that ‖ · ‖′ is an arbitrary norm on Rd. Prove
that {xk}∞k=1 converges to y ∈ Rd if and only if

∀ ε > 0, ∃N ∈ N such that ∀ k ≥ N, ‖xk − y‖′ < ε.

4.2.2. Suppose {xn}∞n=1 and {yn}∞n=1 are convergent sequences in Rd with limits w and z,
respectively. Let α ∈ R.

(a) Prove that the sequence {xn + yn}∞n=1 converges to w + z.

(b) Prove that the sequence {αxn}∞n=1 converges to αw.
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4.2.3. Suppose {xn}∞n=1 is a sequence in Rd converging to y. Prove that limn→∞ ‖xn‖ = ‖y‖.

4.2.4. Prove that every convergent sequence in Rd is bounded.

4.2.5. Prove that limits in Rd are unique.

4.3 Open and closed sets

Definition 4.16 (Open ball). Let a ∈ Rd and r ∈ R with r > 0. The open ball with centre
a and radius r is

B(a, r) = {x ∈ Rd : ‖x− a‖ < r}.

Example 4.17. If d = 1, then

B(a, r) = {x ∈ R : |x− a| < r} = (a− r, a+ r)

is an open interval. If d = 2, then B(a, r) is an open disc.

•
a

r

If d = 3, then B(a, r) is what you would normally think of as an open “ball”. This is where
the terminology “open ball” comes from.

•
a
r

If A is a subset of Rd, its complement is

A{ := {x ∈ Rd : x /∈ A}.

Examples 4.18. (a) B(a, r){ = {x ∈ Rd : ‖x− a‖ ≥ r}.

(b) [0, 4){ = (−∞, 0) ∪ [4,∞).

(c) For any A ⊆ Rd, we have
(
A{
){

= A.

Definition 4.19 (Open set, closed set). A set U ⊆ Rd is open if

∀x ∈ U, ∃ r > 0 such that B(x, r) ⊆ U.

A set F ⊆ Rd is closed if F { is open.
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Example 4.20 (The open ball is open). Let a ∈ Rd and r ∈ R, r > 0. We will show that
the open ball B(a, r) is open, justifying the name “open ball”. Indeed, let x ∈ B(a, r).
Thus, by definition, ‖x − a‖ < r. Let s = r − ‖x − a‖. So s > 0. It suffices to show that
B(x, s) ⊆ B(a, r). Let y ∈ B(x, s). Thus ‖y − x‖ < s. Then, by the triangle inequality,

‖y − a‖ ≤ ‖y − x‖+ ‖x− a‖ < s+ ‖x− a‖ = r.

So y ∈ B(x, s), as required.

Any open interval (a, b), a < b, is an open ball since

(a, b) = B

(
a+ b

2
,
b− a

2

)
.

Thus, it follows from Example 4.20 that open intervals are open.

Remark 4.21. Most sets are neither open nor closed. This is very important. Do not fall into
the trap of thinking that if a set is not open, then it is closed, or vice versa. For instance,
the sets

[a, b), a < b,

are neither open nor closed (Exercise 4.3.4).

Proposition 4.22. (a) ∅ is open.

(b) Rd is open.

(c) If Ui, i ∈ I, are open subsets of Rd (here I is some arbitrary index set), then
⋃
i∈I Ui

is open. In other words, arbitrary unions of open sets are open.

(d) If U1, . . . , Un are open subsets of Rd, then
⋂n
i=1 Ui is open. In other words, finite

intersections of open sets are open.

Proof. We will prove part (c) and leave the other parts as an exercise (Exercise 4.3.5).
Suppose I is an index set and Ui ⊆ Rd is open for each i ∈ I. Let x ∈

⋃
i∈I Ui. Then, x ∈ Uj

for some j ∈ I. Since Uj is open, there exists some r > 0 such that B(x, r) ⊆ Uj ⊆
⋃
i∈I Ui.

Thus
⋃
i∈I Ui is open.

Example 4.23. Suppose a ∈ R. Then

(a,∞) =
∞⋃
n=1

(a, a+ n).

Since each open interval (a, a+ n) is open, it follows from Proposition 4.22(c) that (a,∞) is
open. Similarly, (−∞, a) is open.

Example 4.24. Note that it is very important in Proposition 4.22(d) that the intersection is
finite. For example,

∞⋂
n=1

(
−1

n
, 1

)
= [0, 1),

which is not open (or closed).
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Example 4.25 (Closed intervals). Suppose a, b ∈ R, a < b. Then

[a, b]{ = (−∞, a) ∪ (b,∞),

which is open by Example 4.23 and Proposition 4.22(c). Thus [a, b] is closed.

Proposition 4.26. (a) ∅ is closed.

(b) Rd is closed.

(c) If F1, . . . , Fn are closed subsets of Rd, then
⋃n
i=1 Fi is closed. In other words, finite

unions of closed sets are closed.

(d) If Fi, i ∈ I, are closed subsets of Rd (here I is some arbitrary index set), then
⋂
i∈I Fi

is closed. In other words, arbitrary intersections of closed sets are closed.

Proof. We will prove part (d) and leave the other parts as an exercise (Exercise 4.3.6).
Suppose Fi, i ∈ I, are closed subsets of Rd. Then each F {i is open. Hence(⋂

i∈I

Fi

){
=
⋃
i∈I

F {i

is open by Proposition 4.22(c). Therefore
⋂
i∈I Fi is closed.

Remark 4.27. By Propositions 4.22 and 4.26, the sets ∅ and Rd are both open and closed.

Remark 4.28. We can modify the definition of an open ball by replacing the euclidean norm
by any other norm. However, it follows from Proposition 4.7 that this would not change the
definition of open sets. See Exercise 4.3.8.

Remark 4.29 (Topology). If X is a nonempty set, then a topology on X is a collection T of
subsets of X such that

• ∅ ∈ T ,

• X ∈ T ,

• arbitrary unions of elements of T are again elements of T ,

• finite intersections of element so T are again elements of T .

Thus, Proposition 4.22 implies that the collection of open sets of Rd form a topology on Rd.
A pair (X, T ), where T is a topology on X is called a topological space.

Theorem 4.30. A set F ⊆ Rd is closed if and only if every sequence in F that converges
(to some element of Rd) has its limit in F .
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Proof. First suppose that F is closed. Let {xn}∞n=1 be a sequence in F and suppose xn → y.
We wish to show that y ∈ F , which we will do by contradiction. Suppose y /∈ F . Thus y is
in F {, which is open since F is closed. Therefore, there exists ε > 0 such that B(y, ε) ⊆ F {.
Since xn → y, there exists N ∈ N such that

‖xn − y‖ < ε ∀n ≥ N.

In particular, ‖xN − y‖ < ε, and so

xN ∈ B(y, ε) ⊆ F {.

But this contradicts the fact that xN ∈ F .
Now suppose that every convergent sequence in F has its limit in F . We wish to show

that F is closed, which we do by contradiction. Suppose F is not closed. (Remember that
this does not mean that F is open! See Remark 4.21.) Thus F { is not open. Therefore,
there exists y ∈ F { such that

∀ r > 0, B(y, r) 6⊆ F {.

That is,
∀ r > 0, B(y, r) ∩ F 6= ∅.

Therefore, for each n ∈ N, we can choose xn ∈ B(y, 1/n) ∩ F . Then {xn}∞n=1 is a sequence
in F and

‖xn − y‖ <
1

n
→ 0.

Therefore xn → y /∈ F , which contradicts our assumption on F .

Example 4.31. The interval (0, 2) is not closed since {1/n}∞n=1 is a sequence in (0, 1) con-
verging to 0 /∈ (0, 2).

Definition 4.32 (Interior point, isolated point, accumulation point, boundary point). Sup-
pose A ⊆ Rd.

(a) A point x ∈ A is an interior point of A if there exists some r > 0 such that

B(x, r) ⊆ A.

(b) A point x ∈ A is an isolated point of A if there exists some r > 0 such that

B(x, r) ∩ A = {x}.

(c) A point x ∈ Rn is an accumulation point of A if, for all r > 0, the intersection

B(x, r) ∩ A

contains infinitely many points. (Note that we do not require that x ∈ A.)

(d) A point x ∈ Rn is a boundary point of A if, for all r > 0, the open ball B(x, r) contains
at least one point of A and one point of A{. (Note that we do not require that x ∈ A.)
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Examples 4.33. (a) A set U is open if and only if every point of U is an interior point of
U .

(b) In the open interval (a, b), a < b:

• Every point of (a, b) is an interior point.

• No point is an isolated point.

• The set of accumulation points is [a, b].

• The points a and b are the only boundary points.

(c) In the closed interval [a, b], a < b:

• The interior points are those x ∈ R satisfying a < x < b.

• No point is an isolated point.

• Every point of [a, b] is an accumulation point.

• The points a and b are the only boundary points.

(d) In Q:

• No point is an interior point.

• No point is an isolated point.

• Every point is an accumulation point.

• Every point is a boundary point.

(e) In N:

• No point is an interior point.

• Every point of N is an isolated point.

• No point is an accumulation point.

• Every point of N is a boundary point.

(f) Suppose a ∈ Rd, r > 0. Consider the open ball B(a, r) and the closed ball Bcl(a, r) =
{x ∈ Rd : ‖x− a‖ ≤ r}. In both:

• The interior points are the elements of B(a, r).

• No points of B(a, r) are isolated points.

• The accumulation points are the points of Bcl(a, r).

• The boundary points are the elements of the hypersphere

{x ∈ Rd : ‖x− a‖ = r}.
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Exercises.

4.3.1. Prove that a subset of Rd is bounded if and only if it is contained in some open ball.
(For the reverse implication, remember that the ball need not be centred at the origin.)

4.3.2. (a) Prove that singletons {x}, x ∈ Rd, are closed.

(b) Prove that finite sets are closed.

4.3.3. Let a ∈ Rd and r > 0. The closed ball with centre a and radius r is

Bcl(a, r) = {x ∈ Rd : ‖x− a‖ ≤ r}.

Prove that closed balls are closed.

4.3.4. Let a, b ∈ R with a < b. Using the definition of open and closed sets directly, prove
that the interval [a, b) is neither open nor closed.

4.3.5. Complete the proof of Proposition 4.22.

4.3.6. Complete the proof of Proposition 4.26.

4.3.7. Prove that the intervals [a,∞) and (−∞, a] are closed for all a ∈ R.

4.3.8. Let ‖ · ‖′ be an arbitrary norm on Rd and, for a ∈ Rd, r > 0, define

B′(a, r) = {x ∈ Rd : ‖x− a‖′ < r}

(a) Given an example of d ∈ N, a norm ‖ · ‖′, a ∈ Rd, and r > 0, such that B(a, r) 6=
B′(a, r).

(b) Show that changing Definition 4.19 by replacing B(x, r) by B′(x, r) does not change
the concept of an open set. More precisely, prove that a set U ⊆ Rd is open in the
modified definition if and only if it is open in the original definition. See Remark 4.28.

4.3.9. Find all the interior points, isolated points, accumulation points, and boundary points
of the set {

1

n
: n ∈ N

}
.

4.3.10. Suppose {xn}∞n=1 is a sequence in Rd converging to y. Show that y is the only
accumulation point of the sequence.

4.3.11 ([TBB, Ex. 4.4.10]). Write the closed interval [0, 1] as an intersection of open sets.
Can it also be expressed as a union of open sets?

4.3.12 ([TBB, Ex. 4.4.11]). Write the open interval (0, 1) as a union of closed sets. Can it
also be expressed as an intersection of closed sets?
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4.3.13. Suppose that, for each i ∈ {1, . . . , d}, Ai ⊆ R is closed. Prove that

A1 × A2 × · · · × Ad := {(x1, . . . , xd) ∈ Rd : xi ∈ Ai ∀ i ∈ {1, . . . , d}}

is a closed subset of Rd.

4.4 Compact sets

In this section, we will discuss the notion of a compact set. We will see later that compact
sets behave nicely under continuous functions.

Definition 4.34 (Open cover). If A ⊆ Rd, a collection U = {Uα : α ∈ I} of open sets
Uα ⊆ Rd is called an open cover of A if

A ⊆
⋃
α∈I

Uα = {x ∈ Rd : x ∈ Uα for some α ∈ I}.

Examples 4.35. (a)

{(
1

n
, 1

)
: n ∈ N

}
is an open cover of (0, 1).

(b)

{(
1

n
, 2

)
: n ∈ N

}
is an open cover of (0, 1).

(c) {(−x, x) : x > 0} is an open cover of R.

(d) If a ∈ Rd, then {B(a, r) : r > 0} is an open cover of Rd.

Definition 4.36 (Compact set). A set K ⊆ Rd is compact if for every open cover U = {Uα :
α ∈ I} of K, there exists n ∈ N and α1, . . . , αn ∈ I such that

K ⊆ Uα1 ∪ Uα2 ∪ · · · ∪ Uαn .

The collection {Uαi
: i = 1, . . . , n} is called a finite subcover of U .

Example 4.37 (Finite sets are compact). Suppose K is a finite subset of Rd. Let U be an
open cover of K. Then, for each x ∈ K, there is some Ux ∈ U such that x ∈ Ux. Then

{Ux : x ∈ K}

is a finite subcover of K. So K is compact. Hence finite sets are compact. (Note that the
empty set ∅ is also compact.)

Example 4.38. The set R is not compact. Indeed, the open cover

{(−x, x) : x > 0}

has no finite subcover. Note, however that {(−x, x) : x > 0} ∪ {R} is an open cover that
does have a finite subcover, namely {R}. So it is important to remember that, in order for
a set to be compact, every open cover must have a finite subcover.
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Proposition 4.39. A closed subset of a compact set is compact.

Proof. Suppose K is a closed subset of a compact set T ⊆ Rd. Let U be an open cover of
K. Since K is closed, K{ is open. Thus

U ∪ {K{}

is an open cover of T . Since T is compact, it has a finite subcover U ′. Then U ′ \ {K{} is a
finite subcover of K.

Theorem 4.40 (Heine–Borel Theorem). A set K ⊆ Rd is compact if and only if it is closed
and bounded.

Proof. Compact ⇒ (closed + bounded): Suppose that K is compact. Then the open cover

{B(0, n) : n ∈ N}

of K has a finite subcover. So there exist n1, . . . , nk ∈ N such that

K ⊆ B(0, n1) ∪ · · · ∪B(0, nk).

Let M = max{n1, . . . , nk}. Then
K ⊆ B(0,M),

and so K is bounded.
We now show that K is closed by showing that K{ is open. Let x ∈ K{. (Note that

K{ 6= ∅ since K is bounded.) For all y ∈ K, we have y 6= x. Thus, we have

B(x, ry) ∩B(y, ry) = ∅, where ry =
1

2
‖x− y‖ > 0.

The collection
{B(y, ry) : y ∈ K}

is an open cover of K. Since K is compact, it has a finite subcover:

K ⊆ B(y1, ry1) ∪ · · · ∪B(yn, ryn).

Now let r = min{ry1 , . . . , ryn} > 0. Then

B(x, r) ∩B(yi, ryi) = ∅ ∀ i ∈ {1, . . . , n}.

Thus
B(x, r) ∩K = ∅ =⇒ B(x, r) ⊆ K{.

This proves that K{ is open, hence K is closed.

(Closed + bounded)⇒ compact : Now suppose K is closed and bounded. Since K is bounded
there exists M > 0 such that ‖x‖ ≤M for all x ∈ K. Thus K is contained in a box:

K ⊆ T0 := [−M,M ]d = {(x1, . . . , xd) ∈ Rd : −M ≤ xi ≤M ∀ i ∈ {1, . . . , d}}.
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Since K is closed, it follows from Proposition 4.39 that it suffices to show that T0 is compact.
We do this by contradiction.

Assume that T0 is not compact. Then there is an open cover U of T0 that has no finite
subcover. Bisecting each side of the box T0, we can break it up into 2d sub-boxes, each of
which has side-length equal to half the side-length of T0.

If each sub-box had a finite subcover, the union of these finite subcovers would be a finite
subcover of T0, which is a contradiction. Thus, we can choose one sub-box T1 that does not
have a finite subcover.

Again bisecting the sides of T1, we can find a sub-box T2 that does not have a finite
subcover. Continuing in this manner, we obtain a sequence of nested sub-boxes:

T0 ⊇ T1 ⊇ T2 ⊇ T3 ⊇ · · · ,

where the side length of Tk is 2M/2k, which tends to zero as k → ∞. For each k, choose
xk ∈ Tk. The sequence {xk}∞k=1 is Cauchy (since the side-lengths of the boxes tend to zero),
so it must converge to some limit L. Since each Tn is closed by Exercise 4.3.13 and the
sequence is eventually in Tn (precisely, xk ∈ Tn for all k ≥ n), we see that L ∈ Tn for all n.

Since U covers T0 and L ∈ T0, there is some U ∈ U such that L ∈ U . Since U is open,
there exists some r > 0 such that B(L, r) ⊆ U . For large enough k, we have

Tk ⊆ B(L, r) ⊆ U.

But then {U} ⊆ U is a finite subcover of Tk, which is a contradiction. Thus T0 is compact.

Example 4.41. (a) The interval [a, b], a < b, is closed and bounded. Hence it is compact.

(b) The interval (a, b], a < b, is not closed. Hence it is not compact.

(c) The interval [a,∞), a ∈ R, is not bounded. Hence it is not compact.

(d) For a ∈ Rd and r > 0, the closed ball Bcl(a, r) is closed (Exercise 4.3.3) and bounded.
Hence it is compact.

Definition 4.42 (Sequentially compact). A subset K ⊆ Rd is sequentially compact if every
sequence in K has an accumulation point in K. Equivalently, K is sequentially compact if
every sequence in K has a subsequence that converges to point in K. (See Exercise 4.4.4.)

Example 4.43. The set

A =

{
1

n
: n ∈ N

}
is not sequentially compact. Indeed, consider the sequence {1/n}∞n=1. This sequence con-
verges to 0, hence every subsequence also converges to 0. Since 0 6∈ A, the set A is not
compact.



4.4. Compact sets 57

Theorem 4.44. Suppose K ⊆ Rd. The following statements are equivalent:

(a) K is compact.

(b) K is sequentially compact.

(c) K is closed and bounded.

Proof. By Theorem 4.40 it suffices to show that K is sequentially compact if and only if it
is closed and bounded

First suppose K is closed and bounded. Let {xn}∞n=1 be a sequence in K. By the Bolzano–
Weierstrass Theorem (Theorem 4.14), there is a convergent subsequence {xnk

}∞k=1. Since K
is closed, it then follows from Theorem 4.30 that the limit of this subsequence is an element
of K. Hence K is sequentially compact.

For the reverse implication, we will prove the contrapositive. That is, we will show that if
K is not closed or not bounded, then K is not sequentially compact. First consider the case
where K is not closed. Then, as in the proof of Theorem 4.30, we can construct a sequence
in K that converges to some point y ∈ K{. But then every subsequence also converges to
y /∈ K. So K is not sequentially compact.

Now consider the case where K is not bounded. Thus, for all n ∈ N, we can choose
xn ∈ K such that ‖xn‖ > n. Then every subsequence of {xn}∞n=1 is unbounded, and hence
cannot converge. So K is not sequentially compact.

In light of Theorem 4.44, we will use the terms compact and sequentially compact inter-
changeably.

Proposition 4.45. (a) Finite unions of compact sets are compact. That is, a union of a
finite number of compact sets is compact.

(b) Arbitrary intersections of compact sets are compact.

Proof. We leave the proof of this proposition as an exercise (Exercise 4.4.2).

Remark 4.46. In a general topological space (see Remark 4.29), compact is not the same as
sequentially compact. In fact, neither property implies the other.

Exercises.

4.4.1. Give an open cover of the interval (0, 2] with no finite subcover.

4.4.2. Prove Proposition 4.45.

4.4.3. Prove directly that a finite set is sequentially compact (without using the fact that a
set is compact if and only if it is sequentially compact or that a set is compact if and only
if it is closed and bounded).
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4.4.4. Justify the use of the word “equivalently” in Definition 4.42. That is, show that if
K ⊆ Rd then a sequence in K has an accumulation point in K if and only if it has a
subsequence that converges to a point in K.

4.4.5. Give an example of an infinite collection of compact sets whose union is not compact.

4.4.6. Suppose K1, . . . , Kd are compact subsets of R. Prove that

K1 ×K2 × · · · ×Kd := {(x1, . . . , xd) ∈ Rd : xi ∈ Ki ∀ i ∈ {1, . . . , d}}

is a compact subset of Rd. Hint : Use Exercise 4.3.13.



Chapter 5

Continuity

In this chapter we discuss the important concept of continuity of functions. We begin with the
definition of a limit of a function at a point. We then give the precise definition of continuity
and prove various properties of continuous functions. We conclude with a treatment of the
stronger property of uniform continuity.

We suppose throughout this chapter that A ⊆ Rd.

5.1 Limits

Definition 5.1 (Limit). Let f : A→ Rm be a function. Suppose that a is an accumulation
point of A and L ∈ Rm. We write

lim
x→a

f(x) = L

if for all ε > 0, there exists δ > 0 such that

∀x ∈ A
(
0 < ‖x− a‖ < δ =⇒ ‖f(x)− L‖ < ε

)
.

Note that the condition 0 < ‖x − a‖ in Definition 5.1 forces x 6= a. So the value of the
function at a is completely irrelevant when computing the limit of f(x) as x → a. In fact,
we do not even require that a ∈ A, as long as a is an accumulation point of A. So f may
not even be defined at a!

Example 5.2. Consider the function

g : R→ R, g(x) = x2.

We will show that, for any a ∈ R, limx→a g(x) = a2. Let a ∈ R and ε > 0. First note that

|g(x)− a2| = |x2 − a2| = |x+ a| · |x− a|.

We can force |x− a| to be small, but what about |x+ a|? Note that, if |x− a| < 1, then

|x+ a| ≤ |x− a|+ |2a| < 1 + 2|a|.

Thus, let

δ = min

{
1,

ε

1 + 2|a|

}
.

59
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Then,

|x− a| < δ =⇒ |g(x)− a2| = |x+ a| · |x− a| < (1 + 2|a|) ε

1 + 2|a|
= ε.

Thus limx→a g(x) = a2.

The following theorem gives an alternative characterization of limits in terms of sequences.

Theorem 5.3. Let f : A → Rm be a function and suppose that a is an accumulation point
of A. Then

lim
x→a

f(x) = L

if and only if for every sequence {xn}∞n=1 in A \ {a}, with xn → a as n→∞, we have

lim
n→∞

f(xn) = L.

Proof. Suppose first that

lim
x→a

f(x) = L

and that {xn}∞n=1 is a sequence in A \ {a}, with xn → a as n → ∞. Let ε > 0. Then there
exists δ > 0 such that

0 < ‖x− a‖ < δ =⇒ ‖f(x)− L‖ < ε.

Since xn → a and xn 6= a for all n, we can choose N ∈ N such that

0 < ‖xn − a‖ < δ ∀n ≥ N.

It follows that

‖f(xn)− L‖ < ε ∀n ≥ N.

Thus f(xn)→ L.

Now suppose that

lim
x→a

f(x) 6= L.

We will find a sequence of points {xn} in A \ {a} converging to a such that f(xn) does not
converge to L. Since limx→a f(x) 6= L, there exists some ε > 0 such that for all δ > 0 there
are points x ∈ A with

0 < ‖x−a‖ < δ and ‖f(x)− L‖ ≥ ε.

In particular, taking δ = 1/n, n ∈ N, we obtain a sequence of points xn ∈ A such that, for
all n ∈ N,

0 < ‖xn − a‖ <
1

n
and ‖f(xn)− L‖ ≥ ε.

So xn → a but f(xn) 6→ L.
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Example 5.4. Consider the function f : R→ R given by

f(x) =

{
0 if x 6= 0,

1 if x = 0.

So the graph of f looks like:

Let {xn}∞n=1 be a sequence in R \ {0}. Then f(xn) = 0 for all n ∈ N. So {f(xn)}∞n=1 is the
constant zero sequence, which converges to zero. Thus

lim
x→0

f(x) = 0.

Suppose f : A→ Rm. Then the function f is given by

f(x) = (f1(x), f2(x), . . . , fm(x)) , x ∈ A,

for some component functions f1, . . . , fm : A→ R. In this case, we write f = (f1, . . . , fm).

Proposition 5.5. If f = (f1, . . . , fm) : A→ Rm and a is an accumulation point of A, then
limx→a f(x) exists if and only if

lim
x→a

fi(x) exists for all i ∈ {1, . . . ,m}.

If these limits exist, then

lim
x→a

f(x) =
(

lim
x→a

f1(x), . . . , lim
x→a

fm(x)
)
.

Proof. For y = (y1, . . . , ym) ∈ Rm, we have

lim
x→a

f(x) = y ⇐⇒ lim
n→∞

f(xn) = y for all sequences xn → a (Th. 5.3)

⇐⇒ lim
n→∞

fi(xn) = yi for all xn → a and i ∈ {1, . . . ,m} (Prop. 4.10)

⇐⇒ lim
x→a

fi(x) = yi for all i ∈ {1, . . . ,m}. (Th. 5.3)

Proposition 5.6. Let f, g : A→ Rm and suppose that a is an accumulation point of A. If

lim
x→a

f(x) and lim
x→a

g(x)

both exist, then
lim
x→a

(
(f(x) + g(x)

)
= lim

x→a
f(x) + lim

x→a
g(x).
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Proof. Let {xn}∞n=1 be a sequence in A \ {a} with xn → a. Then, by Proposition 2.11 and
Theorem 5.3, we have

lim
n→∞

(
f(xn) + g(xn)

)
= lim

n→∞
f(xn) + lim

n→∞
g(xn) = lim

x→a
f(x) + lim

x→a
g(x).

Thus, by Theorem 5.3, the proposition follows.

Proposition 5.7. Let f : A→ R, g : A→ Rm, and suppose that a is an accumulation point
of A. If

lim
x→a

f(x) and lim
x→a

g(x)

both exist, then

lim
x→a

f(x)g(x) =
(

lim
x→a

f(x)
)(

lim
x→a

g(x)
)
.

Proof. We leave the proof of this proposition as an exercise (Exercise 5.1.3).

Proposition 5.8. Let f : A → R and suppose that a is an accumulation point of A. If
limx→a f(x) exists and is nonzero, then there exists r > 0 such that f(x) 6= 0 for all x ∈
B(a, r) ∩ A, and

lim
x→a

(
1

f(x)

)
=

1

limx→a f(x)
.

Proof. Suppose limx→a f(x) = L 6= 0. Choose r > 0 such that

‖x− a‖ < r =⇒ |f(x)− L| < |L|
2
.

Then

|L| ≤ |L− f(x)|+ |f(x)| =⇒ |f(x)| ≥ |L| − |L− f(x)| ≥ |L| − |L|
2

=
|L|
2
.

Therefore, f(x) 6= 0 for x ∈ B(a, r) ∩ A.
Now let ε > 0. Choose δ > 0 such that δ < r and

0 < |x− a| < δ =⇒ |f(x)− L| < ε|L|2

2
.

Then, for all x satisfying 0 < |x− a| < δ, we have∣∣∣∣ 1

f(x)
− 1

L

∣∣∣∣ =

∣∣∣∣L− f(x)

Lf(x)

∣∣∣∣ =
|L− f(x)|
|L| · |f(x)|

≤ 2|f(x)− L|
|L|2

< ε.

Consider the step function

f(x) =

{
1 if x > 0,

0 if x ≤ 0.
(5.1)
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So the graph of f looks like

It is not hard to see that limx→0 f(x) does not exist. However, if we restrict f to (−∞, 0]
then the limit does exist, and is equal to 0. On the other hand, if we restrict f to [0,∞), then
the limit also exists, and is equal to 1. This inspires the following definitions of one-sided
limits .

Definition 5.9 (Right-hand limit). Suppose E ⊆ R, f : E → R, and a is an accumulation
point of E ∩ (a,∞). Then we write

lim
x→a+

f(x) = L

if for all ε > 0 there exists δ > 0 such that

x ∈ E, a < x < a+ δ =⇒ |f(x)− L| < ε.

In this case, we say that L is the right-hand limit of f at a.

Definition 5.10 (Left-hand limit). Suppose E ⊆ R, f : E → R, and a is an accumulation
point of E ∩ (−∞, a). Then we write

lim
x→a−

f(x) = L

if for all ε > 0 there exists δ > 0 such that

x ∈ E, a− δ < x < a =⇒ |f(x)− L| < ε.

In this case, we say that L is the left-hand limit of f at a.

Example 5.11. If f is the step function of (5.1), then

lim
x→0−

f(x) = 0 and lim
x→0+

f(x) = 1.

Exercises.

5.1.1. Define

f : (0,∞)→ R, f(x) =
x+ 2

x+ 1
, x ∈ (−1,∞).

Prove that limx→1 f(x) = 3/2 directly using the definition of a limit.
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5.1.2. Prove that

lim
x→0

|x|
x

does not exist.

5.1.3. Prove Proposition 5.7.

5.1.4. Suppose f, g : A → Rm and that a is an accumulation point of A. Show that if
limx→a f(x) and limx→a g(x) exist, then

lim
x→a

(
f(x) · g(x)

)
=
(

lim
x→a

f(x)
)
·
(

lim
x→a

g(x)
)
,

where · denotes the dot product on Rm.

5.1.5 ([TBB, Ex. 5.1.5]). Suppose that in Definition 5.1 we do not require that a is accumu-
lation point of A. Show that then the limit statement limx→−2

√
x = L would be true for

every real number L.

5.1.6. Prove that the limit limx→0
1
x

does not exist.

5.1.7. Consider the Dirichlet function

f : R→ R, f(x) =

{
1 if x ∈ Q,
0 if x /∈ Q.

For which real numbers a does limx→a f(x) exist?

5.1.8. Suppose E ⊆ R, f : E → R, and a is an interior point of E. Prove that limx→a f(x)
exists if and only if the two one-sided limits limx→a+ f(x) and limx→a− f(x) exist and are
equal.

5.2 Definition of continuity

Definition 5.12 (Continuous). The function f : A → Rm is continuous at a ∈ A provided
that a is an isolated point of A or else that a is an accumulation point of A and

lim
x→a

f(x) = f(a).

Equivalently, f is continuous at a if for all ε > 0 there exists δ > 0 such that

x ∈ A, ‖x− a‖ < δ =⇒ ‖f(x)− f(a)‖ < ε. (5.2)

If f is not continuous at a, we say it is discontinuous at a. The function f is continuous on
A (or simply continuous) if it is continuous at all a ∈ A.

Remark 5.13. (a) If a ∈ A is an isolated point, then there exists some δ > 0 such that
B(a, δ) ∩ A = {a}. Then we trivially have

x ∈ A, |x− a| < δ =⇒ x = a =⇒ |f(x)− f(a)| = 0 < ε.
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(b) We will often write (5.2) as

|x− a| < δ =⇒ |f(x)− f(a)| < ε,

leaving it implied that we only consider x ∈ A. (Otherwise f(x) is not even defined.)

Recall that if f : A→ Rm and S ⊆ A, then the image of S under f is

f(S) := {f(x) : x ∈ S}.

(The image of f is f(A).) Using this concept, we see that f is continuous at a if and only if
for all ε > 0, there exists δ > 0 such that

f (B(a, δ) ∩ A) ⊆ B(f(a), ε).

Example 5.14. Fix λ ∈ R and b ∈ Rd and consider the function

f : Rd → Rd, f(x) = λx+ b.

We will show that this function is continuous. We split the proof into two cases: λ = 0 and
λ 6= 0.

If λ = 0, then, for all a ∈ Rd,

‖f(x)− f(a)‖ = ‖b− b‖ = ‖0‖ = 0,

and so f is clearly continuous at a.
Now assume λ 6= 0. Let a ∈ Rd and ε > 0. Set δ = ε/|λ|. Then, for all x ∈ Rd satisfying

‖x− a‖ < δ, we have

‖f(x)− f(a)‖ = ‖(λx+ b)− (λa− b)‖ = ‖λ(x− a)‖ = |λ| · ‖x− a‖ ≤ |λ| · ε
|λ|

= ε.

Thus f is continuous at a. Since a was arbitrary, f is continuous.

Example 5.15. Consider the function

g : R→ R, g(x) = x2.

By Example 5.2, for any a ∈ R, we have

lim
x→a

g(x) = a2 = g(a).

Thus g is continuous.

Example 5.16. Consider the step function of (5.1). We leave it as an exercise to show that
f is continuous at a if a 6= 0 (Exercise 5.2.1). We will show that f is not continuous at 0.
Negating the condition in Definition 5.12, we see that we need to show

∃ ε > 0 such that ∀ δ > 0, ∃x such that
(
|x| < δ and |f(x)| ≥ ε

)
.

Let ε = 1 and δ > 0. Then, choosing x = δ/2, we have

|x| < δ and |f(x)| = |f(δ/2)| = |1| ≥ 1.
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Theorem 5.17. A function f : A → Rm is continuous at a ∈ A if and only if for all
sequences {an}∞n=1 in A with an → a, we have f(an)→ f(a).

Proof. This follows immediately from Theorem 5.3.

Theorem 5.17 gives another characterization of continuous functions. Namely, continuous
functions are those functions that take convergent sequences to convergent sequences.

Example 5.18. Consider the square root function

f : [0,∞)→ R, f(x) =
√
x.

We could show that f is continuous using Definition 5.12. Alternatively, by Theorem 5.17, it
is enough to show that if {an}∞n=1 is a sequence converging to L, then {√an}∞n=1 converges to√
L. But we already did this in Exercise 2.1.8. Thus, the square root function is continuous.

Theorem 5.17 is often useful when we want to show that a function is not continuous, as
the next example illustrates.

Example 5.19. Consider the function

f : [0,∞)→ R, f(x) =

{
0 if x = 0,

sin 1
x

if x > 0.

x

sin(1/x)

To prove that this function is discontinuous at 0, it suffices, by Theorem 5.17, to find a
sequence {an}∞n=1 in [0,∞) converging to 0, such that {f(an)}∞n=1 does not converge. For
n ∈ N, define

an =
2

(2n− 1)π
> 0.

Then

f(an) = sin

(
(2n− 1)π

2

)
= (−1)n−1.

Thus, the sequence {f(an)}∞n=1 diverges, as required.

Exercises.
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5.2.1. Prove that the step function of Example 5.16 is continuous at a if a 6= 0.

5.2.2. Let

A =

{
1

n
: n ∈ N

}
∪ {0}.

(a) Define f : A→ R by

f(x) =

{
(−1)n if x = 1/n for some n ∈ N,
0 if x = 0.

Prove that f is discontinuous at 0.

(b) Define g : A→ R by

g(x) =

{
(−1)n
n

if x = 1/n for some n ∈ N,
0 if x = 0.

Prove that g is continuous at 0.

5.2.3. Suppose f : Rd → Rm. The preimage of a subset B ⊆ Rm under f is

f−1(B) = {a ∈ A : f(a) ∈ B}.

Prove that f is continuous if and only if the preimage of every open subset of Rm is an open
subset of Rd. Prove also that f is continuous if and only if the preimage of every closed
subset of Rm is a closed subset of Rd.

5.2.4. Prove that the set
D = {(x, y) ∈ R2 : x2 + y4 ≤ 1}

is compact.

5.2.5. At which a ∈ R is the function f of Exercise 5.1.7 continuous?

5.2.6. If f : R→ R, we can define the function |f | : R→ R by |f |(x) = |f(x)| for all x ∈ R.
If |f | is continuous, does it follow that f is continuous?

5.3 Properties of continuous functions

The following result says that if a function f is continuous at a, then it is bounded near a.

Proposition 5.20. If f : A → Rm is continuous at a ∈ A, then there exists r > 0 and
M > 0 such that

‖f(x)‖ ≤M ∀x ∈ B(a, r) ∩ A.

Proof. Taking ε = 1 in the definition of continuity, there exists some δ > 0 such that, for all
x ∈ B(a, δ) ∩ A, we have

‖f(x)‖ ≤ ‖f(x)− f(a)‖+ ‖f(a)‖ ≤ 1 + ‖f(a)‖.

So we can take M = 1 + ‖f(a)‖.
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Recall that if f, g : A→ Rm, then we can define the function

f + g : A→ Rm, (f + g)(x) = f(x) + g(x).

If f : A→ R, g : A→ Rm, then we can define

fg : A→ Rm, (fg)(x) = f(x)g(x).

If f : A→ R and f(x) 6= 0 for all x ∈ A, then we can define

1

f
: A→ R,

(
1

f

)
(x) =

1

f(x)
.

If f : A→ Rm and B ⊆ A, then we can define the restriction

f |B : B → Rm, f |B(x) = x ∀x ∈ B.

Sometimes we simply denote the restriction again by f when this should cause no confusion.

Proposition 5.21. (a) If f, g : A→ Rm are continuous at a ∈ A, then f+g is continuous
at a.

(b) If f : A→ R and g : A→ Rm are continuous at a ∈ A, then fg is continuous at a.

(c) If f : A→ R is continuous at a and f(a) 6= 0, then there exists r > 0 such that f(x) 6= 0
for all x ∈ B(a, r) ∩ A, and 1

f
is continuous at a.

Proof. (a) This follows from Proposition 5.6.

(b) This follows from Proposition 5.7.

(c) This follows from Proposition 5.8.

Theorem 5.22. If K ⊆ Rd is compact and f : K → Rm is continuous on K, then f(K) is
compact.

Proof. Suppose K ⊆ Rd is compact and f : K → Rm is continuous on K. Let {yn}∞n=1

be a sequence in f(K). Then, for all n ∈ N, there exists xn ∈ K such that f(xn) = yn.
Since K is compact, the sequence {xn}∞n=1 in K has a convergent subsequence {xnk

}∞k=1. Let
z = limk→∞ xnk

. Since f is continuous at z, we have

lim
k→∞

ynk
= lim

k→∞
f (xnk

) = f(z) ∈ f(K).

Therefore {ynk
}∞k=1 is a subsequence of {yn}∞n=1 that converges to a point of f(K). Hence

f(K) is compact.

Theorem 5.23 (Intermediate Value Theorem). Let f : [a, b] → R be continuous. Then for
every c between f(a) and f(b), there exists z ∈ [a, b] such that f(z) = c.
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Proof. We assume f(a) < f(b). (If f(b) < f(a), just consider the function −f .) If c = f(a),
take z = a, and if c = f(b), take z = b. Therefore, we assume f(a) < c < f(b). Let

X = {s ∈ [a, b] : ∀x ∈ [a, s], f(x) < c}.

Since a ∈ X, we have X 6= ∅. Also, X is bounded above by b. Thus, z = supX exists by
the completeness axiom (Axiom 1.14).

Suppose f(z) < c. Then c−f(z) > 0. Thus, since f is continuous at z, there exists δ > 0
such that

|x− z| < δ =⇒ |f(x)− f(z)| < c− f(z) =⇒ f(x)− f(z) < c− f(z) =⇒ f(x) < c.

In particular, we have
f(x) < c ∀x ∈ [z, z + δ/2].

But then z + δ/2 ∈ X, which contradicts the fact that z = supX.
Now suppose that f(z) > c. Then f(z)− c > 0. Thus, since f is continuous at z, there

exists δ > 0 such that

|x− z| < δ =⇒ |f(x)− f(z)| < f(z)− c =⇒ f(z)− f(x) < f(z)− c =⇒ f(x) > c.

In particular, f(z − δ/2) > c, which contradicts the fact that z = supX.
Since the assumptions f(z) < c and f(z) > c both lead to contradictions, we must have

f(z) = c, as required.

Example 5.24. We can use the Intermediate Value Theorem to prove that certain polynomials
have roots. For example, consider the polynomial

g(x) = x5 − 15x− 1.

Then g(0) = −1 < 1 = g(2). Since g is continuous (see Exercise 5.3.1), it follows from the
Intermediate Value Theorem that g(a) = 0 for some a ∈ (0, 2).

Corollary 5.25. For all α ∈ R+ and n ∈ N, n
√
α exists. That is, there is some β ∈ R such

that βn = α.

Proof. If n = 1, then n
√
α = α. So we assume n > 1. If α = 0, we can take β = 0. If α = 1,

we can take β = 1. So we assume α 6= 0, 1. Consider the function

f(x) = xn − α.

Since f is a polynomial, it is continuous (see Exercise 5.3.1)
If 0 < α < 1, then

f(α) < 0 < f(1),

and so, by the Intermediate Value Theorem, there exists β ∈ (α, 1) such that βn = α.
On the other hand, if α > 1, then

f(1) < 0 < f(α)

(since αn > α if α > 1 and n > 1). Thus, by the Intermediate Value Theorem, there exists
β ∈ (1, α) such that βn = α.
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Corollary 5.26. For all r ∈ Q and α ∈ R+, αr exists.

Proof. We leave the proof of this corollary as an exercise (Exercise 5.3.2).

Definition 5.27 (Bounded function). A function f : A → Rm is bounded on A if its image
f(A) is a bounded subset of Rm. That is, f is bounded if there exists M > 0 such that

‖f(x)‖ ≤M ∀x ∈ A.

Theorem 5.28 (Maximum Theorem). Suppose K is a compact subset of Rd and f : K → R
is continuous on K. Then we have the following.

(a) The function f is bounded on K.

(b) There exist xmin, xmax ∈ K such that

f(xmin) ≤ f(x) ≤ f(xmax) ∀x ∈ K.

In other words f attains a maximum and minimum.

Proof. (a) Since K is compact, Theorem 5.22 implies that f(K) is a compact subset of R.
By the Heine–Borel Theorem (Theorem 4.40), f(K) is therefore bounded.

(b) Since the image of f is bounded,

M := sup f(K)

exists. By the definition of supremum, for each n ∈ N we can choose xn ∈ K such that

M − 1

n
< f(xn) ≤M.

Then {xn}∞n=1 is a sequence in K, which is compact. Therefore, it has a subsequence
{xnk
}∞k=1 converging to some xmax ∈ K. Then, since f is continuous, we have

f(xmax) = f
(

lim
k→∞

xnk

)
= lim

n→∞
f(xnk

) = M,

by the Squeeze Theorem. A similar argument shows that there is some xmin ∈ K such
that f(xmin) = inf f(K).

Proposition 5.29. If a < b and f : [a, b]→ R is continuous, then f([a, b]) = [c, d] for some
c < d.

Proof. Since the interval [a, b] is compact, it follows from the Maximum Theorem (Theo-
rem 5.28) that there exist xmin, xmax ∈ [a, b] such that

f(xmin) ≤ f(x) ≤ f(xmax) ∀x ∈ [a, b].
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Let c = f(xmin) and d = f(xmax). Thus

f([a, b]) ⊆ [c, d].

Now suppose, y ∈ [c, d]. Then, by the Intermediate Value Theorem, there exists x in between
xmin and xmax such that f(x) = y. So, in fact,

f([a, b]) = [c, d].

Example 5.30. Since polynomials are continuous (Exercise 5.3.1), every polynomial attains
a maximum and minimum on a closed interval [a, b], a < b.

Remark 5.31. (a) It is crucial that the domain K in the Maximum Theorem (Theo-
rem 5.28) be compact. For instance, the functions

f : R→ R, f(x) = x

and

g : (0, 1)→ R, g(x) =
1

x
,

do not attain a maximum or minimum.

(b) The condition that the function be continuous is also necessary. For instance, the
function f : [0, 1]→ R defined by

f(x) =

{
1
x

if 0 < x ≤ 1,

0 if x = 0,

does not attain a maximum.

(c) Even if a function is bounded, it need not attain a maximum. For instance, the
functions

f : (0, 1)→ R, f(x) = x,

and

g : [0,∞)→ R, g(x) =
−1

1 + x2
,

are bounded but do not attain a maximum.

Theorem 5.32 (Composition of continuous functions is continuous). Let A ⊆ Rd, B ⊆ Rm,
and

f : A→ Rm, g : B → Rp,

be functions such that f(A) ⊆ B. Suppose f is continuous at a ∈ A and g is continuous at
f(a). Then the composition

g ◦ f : A→ Rp, (g ◦ f)(x) = g(f(x)), x ∈ A,

is continuous at a. If f is continuous on A and g is continuous on f(A), then g ◦ f is
continuous on A.
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Proof. Let ε > 0. Since g is continuous at f(a), there exists δ1 > 0 such that

y ∈ B, ‖y − f(a)‖ < δ1 =⇒ ‖g(y)− g(f(a))‖ < ε.

Since f is continuous at a, there exists δ > 0 such that

x ∈ A, ‖x− a‖ < δ =⇒ ‖f(x)− f(a)‖ < δ1.

Therefore, for all x ∈ A, we have

‖x−a‖ < δ =⇒ ‖f(x)−f(a)‖ < δ1 =⇒ ‖(g◦f)(x)−(g◦f)(a)‖ = ‖g(f(x))−g(f(a))‖ < ε.

Thus g ◦ f is continuous at a. The final statement of the theorem follows immediately.

Remark 5.33. The proof of Theorem 5.32 can easily be modified to prove that if A ⊆ Rd,
B ⊆ Rm,

f : A→ Rm, g : B → Rp,

are functions such that f(A) ⊆ B, a is an accumulation point of A and b := limx→a f(x) is
an accumulation point of B, then

lim
x→a

(g ◦ f)(x) = lim
y→b

g(y).

See Exercise 5.3.6.

Exercises.

5.3.1. Recall that a polynomial function is a function p : R→ R of the form

p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n,

for some n ∈ N and a0, a1, . . . , an ∈ R. Prove that all polynomial functions are continuous.

5.3.2. Prove Corollary 5.26.

5.3.3. Suppose K is a compact subset of Rd and, for all k1, k2 ∈ K, there exists a continuous
function p : [0, 1] → K such that p(0) = k1 and p(1) = k2. (A set with this property is said
to be path connected .) Let f : K → R be continuous on K. Prove that there exist kmin

and kmax such that f(K) = [f(kmin), f(kmax)]. Hint : If p : [0, 1] → K and f : K → R are
continuous, then the composition f ◦ p : [0, 1]→ R is continuous.

5.3.4. Give an example of functions f, g : R→ R such that

lim
x→0

f(g(x)) and f
(

lim
x→0

g(x)
)

both exist but are not equal.
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5.3.5. Suppose you know that the function f : R → R, f(x) = ex, is continuous at some
point a. Prove that it is continuous on R. Hint : Use the fact that ex+y = exey for all
x, y ∈ R.

5.3.6. Prove the statement made in Remark 5.33.

5.4 Inverse functions

Recall that a function f : X → Y is injective (or is an injection) if, for all x1, x2 ∈ X,

f(x1) = f(x2) =⇒ x1 = x2.

It is surjective (or is a surjection) if

∀ y ∈ Y, ∃x ∈ X such that f(x) = y.

It is bijective (or is a bijection) if it is both injective and surjective.
Let A ⊆ R. Recall that a function f : A→ R is strictly increasing if, for all x1, x2 ∈ R,

x1 < x2 =⇒ f(x1) < f(x2).

It is strictly decreasing if, for all x1, x2 ∈ R,

x1 < x2 =⇒ f(x1) > f(x2).

Lemma 5.34. If f : [a, b]→ R is continuous and injective, then f is either strictly increasing
or strictly decreasing.

Proof. If a = b, there is nothing to prove. So we assume a < b. Since f is injective, we must
have f(a) 6= f(b). First assume that f(a) < f(b).

Suppose a < x1 < x2 < b and define

p : [0, 1]→ [a, x1], p(t) = (1− t)a+ tx1,

q : [0, 1]→ [x2, b], q(t) = (1− t)b+ tx2.

Note that
p(t) ≤ x1 < x2 ≤ q(t) ∀ t ∈ [0, 1]. (5.3)

•
a

•
x1

•
x2

•
b

p(t) q(t)

Since both p and q are continuous, and their codomains are contained in [a, b], the function

k : [0, 1]→ R, k(t) = f(q(t))− f(p(t))

is continuous on [0, 1]. Note that

k(0) = f(q(0))− f(p(0)) = f(b)− f(a) > 0, and
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k(1) = f(q(1))− f(p(1)) = f(x2)− f(x1).

Since x1 6= x2 and f is injective, we have k(1) 6= 0. So either k(1) > 0 or k(1) < 0.
If k(1) < 0 then, by the Intermediate Value Theorem (Theorem 5.23) applied to k, there

exists c ∈ [0, 1] such that
0 = k(c) = f(q(c))− f(p(c)).

But since q(c) > p(c) by (5.3), this contradicts the fact that f is injective. Hence k(1) > 0,
which implies that f(x2) > f(x1). So f is strictly increasing.

The proof in the case f(a) > f(b), where one concludes that f is strictly decreasing, is
analogous.

Recall that an inverse to a function f : X → Y is a function f−1 : Y → X such that

f ◦ f−1(y) = y ∀ y ∈ Y and f−1 ◦ f(x) = x ∀x ∈ X.

A function f has an inverse function if and only if f is bijective. The inverse of f , if it exists,
is unique.

Corollary 5.35. If f : [a, b] → R is continuous and injective, then there exist c, d ∈ R,
c ≤ d, such that f : [a, b] → [c, d] is a bijection. Hence, there exists an inverse function
f−1 : [c, d]→ [a, b].

Proof. Suppose f : [a, b] → R is continuous and injective. By Lemma 5.34, f is strictly
increasing or strictly increasing. If f is strictly increasing, take c = f(a) and d = f(b). If f
is strictly increasing, take c = f(b) and d = f(a).

Theorem 5.36. If f : [a, b]→ [c, d] is a continuous bijection, then f−1 : [c, d]→ [a, b] is also
a continuous bijection.

Proof. Suppose f : [a, b] → [c, d] is a continuous bijection. By Lemma 5.34, f is strictly
increasing or strictly decreasing. We will assume f is strictly increasing, since the case
where f is strictly decreasing is analogous (or one can consider −f).

We leave it as an exercise to prove that f−1 is also strictly increasing and bijective
(Exercise 5.4.1). It remains to show that f−1 is continuous on [c, d].

Let y0 ∈ [c, d], x0 = f−1(y0). We will show that f−1 is continuous at y0. Let ε > 0, and
set

δ = min{f(x0 + ε)− y0, y0 − f(x0 − ε)}.

f(x0 − ε)

x0 − ε

y0 = f(x0)

x0

f(x0 + ε)

x0 + εa b
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Since f is increasing and ε > 0, we have that δ > 0. We also have

δ ≤ f(x0 + ε)− f(x0) ⇐⇒ y0 + δ ≤ f(x0 + ε), and

δ ≤ f(x0)− f(x0 − ε) ⇐⇒ f(x0 − ε) ≤ y0 − δ.

Therefore,

|y − y0| < δ =⇒ f(x0 − ε) ≤ y0 − δ < y < y0 + δ ≤ f(x0 + ε).

In particular,

|y − y0| < δ =⇒ f(x0 − ε) < y < f(x0 + ε).

Applying f−1 to the terms of the right-hand inequality, and using the fact that f−1 is
increasing, we have

|y − y0| < δ =⇒ x0 − ε < f−1(y) < x0 + ε =⇒ |f−1(y)− x0| < ε.

So f−1 is continuous at y0.

Example 5.37. Let p, n ∈ N and define

f : [0, n]→ [0, np], f(x) = xp.

Then f is continuous and bijective (Exercise 5.4.2). Hence

f−1 : [0, np]→ [0, n],

which is the function f−1(x) = p
√
x, is continuous. Since n ∈ N was arbitrary, f−1 : [0,∞)→

[0,∞) is continuous on [0,∞).

Exercises.

5.4.1. Suppose f : [a, b] → [c, d] is a strictly increasing bijective function with inverse f−1.
Prove that f−1 is also strictly increasing and bijective.

5.4.2. Let p, n ∈ N. Prove that the function

f : [0, n]→ [0, np], f(x) = xp.

is continuous and bijective.
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5.5 Uniform continuity

Recall (Definition 5.12) that f : A→ Rm is continuous on A if

∀ a ∈ A, ∀ ε > 0, ∃ δ > 0 such that ∀x ∈ A,
(
‖x− a‖ < δ =⇒ ‖f(x)− f(a)‖ < ε

)
.

Note here that δ can depend on both ε and a. That is, given an a ∈ A and ε > 0, we need
a δ satisfying a certain condition. Different ε and a could require different δ to satisfy the
condition. However, sometimes, given an ε > 0, the same δ works for all a ∈ A.

Example 5.38. Consider the function

f : R→ R, f(x) = 2x.

Let ε > 0. Set δ = ε/2. Then, for any a ∈ A, we have

|x− a| < δ =⇒ |f(x)− f(a)| = |2x− 2a| = 2|x− a| < 2δ = ε.

Note that the choice of δ does not depend on a.

Definition 5.39 (Uniformly continuous). A function f : A → Rm is uniformly continuous
on A if

∀ ε > 0, ∃ δ > 0 such that ∀x, y ∈ A
(
‖x− y‖ < δ =⇒ ‖f(x)− f(y)‖ < ε

)
.

Remark 5.40. It is immediate from the definitions that uniformly continuous functions are
continuous.

Taking the negation of the condition in Definition 5.39, we see that to prove that a
function f : A→ Rm is not uniformly continuous, we need to prove

∃ ε > 0 such that ∀ δ > 0, ∃x, y ∈ R
(
‖x− y‖ < δ and ‖f(x)− f(y)‖ ≥ ε

)
. (5.4)

Example 5.41. Consider the function

g : R→ R, g(x) = x2.

This function is continuous but not uniformly continuous on R. Indeed let us prove that
(5.4) is satisfied. Let ε = 1 and δ > 0. Choose

x =
1

δ
and y =

1

δ
+
δ

2
.

Then

|x− y| = δ

2
< δ and

|g(x)− g(y)| = |x2 − y2| = |x+ y| · |x− y| =
(

2

δ
+
δ

2

)
δ

2
= 1 +

δ2

4
> 1 = ε.
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Example 5.42. The function
h : [a, b]→ R, g(x) = x2

is uniformly continuous on [a, b]. Indeed, let K = max{|a|, |b|}. Then

|x| ≤ K ∀x ∈ [a, b].

Let ε > 0. Choose δ = ε/2K. Then, for all x, y ∈ [a, b] such that |x− y| < δ, we have

|x2 − y2| = |x+ y| · |x− y| ≤ (|x|+ |y|) |x− y| < 2Kδ = ε.

So the function x 7→ x2 is uniformly continuous on [a, b] for any a, b ∈ R, even though it is
not uniformly continuous on R by Example 5.41.

The key difference between Examples 5.41 and 5.42 is that [a, b] is compact, while R is
not. This leads us to the following important theorem.

Theorem 5.43. If K ⊆ Rd is compact and f : K → Rm is continuous on K, then f is
uniformly continuous on K.

Proof. Suppose K ⊆ Rd is compact and f : K → Rm is continuous on K. Let ε > 0. Since
f is continuous on K, for each k ∈ K, there exists δk > 0 such that

x ∈ K, ‖x− k‖ < 2δk =⇒ ‖f(x)− f(k)‖ < ε

2
,

or equivalently that
f
(
K ∩B(k, 2δk)

)
⊆ B

(
f(k), ε/2

)
. (5.5)

Consider the open cover
{B(k, δk) : k ∈ K}

of K. Since K is compact, it has a finite subcover. So there exists k1, . . . , kN ∈ K such that

K ⊆ B(k1, δk1) ∪ · · · ∪B(kN , δkN ).

Let δ = min{δk1 , . . . , δkN}.
Now suppose x, y ∈ K and ‖x− y‖ < δ. Since x ∈ K, we have

x ∈ B(kj, δkj) for some j ∈ {1, . . . , N}.

Moreover,

‖kj − y‖ = ‖kj − x+ x− y‖ ≤ ‖kj − x‖+ ‖x− y‖ < δkj + δ ≤ 2δkj .

Therefore both points x, y ∈ B(kj, 2δkj). Therefore, by (5.5),

‖f(x)− f(y)‖ ≤ ‖f(x)− f(kj)‖+ ‖f(kj)− f(y)‖ < ε

2
+
ε

2
= ε.

So we have proven that

‖x− y‖ < δ =⇒ ‖f(x)− f(y)‖ < ε,

as required.
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Exercises.

5.5.1. Generalize Example 5.38 by showing that all linear functions from R to R are uniformly
continuous. That is, if a, b ∈ R, show that the function

f : R→ R, f(x) = ax+ b,

is uniformly continuous.

5.5.2. Suppose that X is a finite subset of Rd. Show that every function f : X → Rm is
uniformly continuous.

5.5.3 ([TBB, Ex. 5.6.8]). Let f : A→ Rm be a uniformly continuous function. Show that if
{xn}∞n=1 is a Cauchy sequence in A then {f(xn)}∞n=1 is a Cauchy sequence in f(A). Show
that this need not be true if f is continuous but not uniformly continuous.

5.5.4 ([TBB, Ex. 5.6.11]). Give an example of a function f that is continuous on R and a
sequence of compact intervals X1, X2, . . . , on each of which f is uniformly continuous, but
for which f is not uniformly continuous on X =

⋃∞
i=1Xi.

5.5.5 ([TBB, Ex. 5.7.6]). Let f : R → R be a continuous function that is periodic in the
sense that, for some real number p > 0, f(x + p) = f(x) for all x ∈ R. Show that f has an
absolute maximum and absolute minimum.

5.5.6. Suppose {Uα : α ∈ I} is an open cover of a compact set K. Prove that there exists
δ > 0 such that

∀x ∈ K, ∃α ∈ I such that B(x, δ) ∩K ⊆ Uα.

The number δ (which is not unique, of course) is called a Lebesgue number for the open
cover. This idea was used in the proof of Theorem 5.43.

5.5.7. A function f : A → Rm is said to be Lipschitz if there is a positive number M such
that

‖f(x)− f(y)‖ ≤M‖x− y‖ ∀x, y ∈ A.

(a) Show that a Lipschitz function must be uniformly continuous.

(b) Show that the function
h : [0, 1]→ R, h(x) =

√
x,

is uniformly continuous on [0, 1], but is not Lipschitz.



Chapter 6

Differentiation

In this chapter we explore one of the fundamental concepts in calculus: the derivative.
We begin with the definition of the derivative and then deduce some computational rules,
including the product rule, quotient rule, and chain rule. We will then investigate the
relationship between the derivative and local extrema, as well as the Mean Value Theorem.

Many of the concepts in this chapter you will have seen in previous calculus courses.
However, we will focus less on computations and applications, and more on understanding
the underlying concepts and why the properties you have learned in calculus hold. A good
reference for the material in this chapter is [TBB, Ch. 7].

Throughout this chapter, we will only consider real-valued functions of a single variable.
That is, all functions will be of the form f : A→ R for some subset A ⊆ R. Often A will be
a closed interval [a, b].

6.1 Definition of the derivative

We will use the term interval to mean any subset of R of the form

[a, b], (a, b], [a, b), (a, b), (−∞, b], (−∞, b), [a,∞), (a,∞), (−∞,∞) = R, where a < b.

Throughout this section, I and J will denote intervals.

Definition 6.1 (Derivative). Suppose f : I → R and x0 ∈ I. The derivative of f at x0 is

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
= lim

h→0

f(x0 + h)− f(x0)

h
, (6.1)

provided that this limit exists or is infinite. If f ′(x0) is finite, we say f is differentiable at
x0. If f is differentiable at every point of a subset E ⊆ I, we say that f is differentiable on
E. If f is differentiable at every point of I, we say that f is a differentiable function.

As you have learned in calculus, the derivative f ′(x0) is the slope of the tangent line to
the graph of f at the point (x0, f(x0)).

If f : I → R is differentiable, then the derivative yields another function f ′ : I → R. We
will sometimes denote this function by

d

dx
f(x).

79
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Example 6.2. Let
f : R→ R, f(x) = x2

and choose x0 ∈ R. Then

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
= lim

x→x0

x2 − x20
x− x0

= lim
x→x0

(x− x0)(x+ x0)

x− x0
= lim

x→x0
(x+ x0) = 2x0,

where, in the last equality, we used the fact the polynomial function x 7→ x + x0 is con-
tinuous. Note that we were also able to assume that x 6= x0 in our manipulation of the
expression above since we are taking the limit x→ x0 and so we never consider x = x0 (see
Definition 5.1).

Note that if f : [a, b] → R and x0 = a or x0 = b, then the limit in (6.1) is a one-sided
limit. Of course, it is also possible that x0 is an interior point and the one-sided versions of
(6.1) exist but are not equal.

Definition 6.3 (Right-hand derivative, left-hand derivative). Suppose f : I → R. The
right-hand derivative of f at x0 is

f ′+(x0) = lim
x→x0+

f(x)− f(x0)

x− x0
,

provided that this one-sided limit exists or is infinite. Similarly, the left-hand derivative of
f at x0 is

f ′−(x0) = lim
x→x0−

f(x)− f(x0)

x− x0
,

provided that this one-sided limit exists or is infinite.

Note that, if x0 is an interior point of I, then f ′(x0) exists if and only if f ′+(x0) = f ′−(x0).
(See Exercise 5.1.8.)

Example 6.4. Consider the absolute value function f : R → R, f(x) = |x|. So the graph of
f looks like:

Let us compute the two one-sided derivatives at x0 = 0. We have

f(x)− f(0)

x− 0
=
|x|
x

=

{
1 if x < 0,

−1 if x > 0.

Thus

f ′+(0) = lim
x→0+

|x|
x

= 1 and f ′−(0) = lim
x→0−

|x|
x

= −1.

Since the one-sided derivatives are not equal, the function f is not differentiable at 0.
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Since the absolute value function is continuous, Example 6.4 shows that a function may
be continuous at a point, but not differentiable at that point. However, the following theorem
states that differentiability implies continuity.

Proposition 6.5. Suppose f : I → R and x0 ∈ I. If f is differentiable at x0, then f is
continuous at x0.

Proof. To prove that f is continuous at x0, it suffices to show that

lim
x→x0

(
f(x)− f(x0)

)
= 0.

For x 6= x0, we have

f(x)− f(x0) =
f(x)− f(x0)

x− x0
(x− x0).

Thus,

lim
x→x0

(
f(x)− f(x0)

)
= lim

x→x0

(
f(x)− f(x0)

x− x0
(x− x0)

)
=

(
lim
x→x0

f(x)− f(x0)

x− x0

)(
lim
x→x0

(x− x0)
)

= f ′(x0) · 0 = 0,

as required.

Remark 6.6. Note that it is not necessarily true that the derivative is a continuous function.
For example, consider the function f : R→ R defined by

f(x) =

{
x2 sinx−1 if x 6= 0,

0 if x = 0.

This function is differentiable at every point. However, the derivative f ′ is discontinuous at
0. See [TBB, §7.4] for details.

Example 6.7. Consider the function g : [0, 1]→ R defined by

g(x) =

{
0 if x ∈ [0, 1] \Q or x = 0,
1
q2

if x = p
q
, gcd(p, q) = 1.

Then g is discontinuous at every rational number in (0, 1]. However, g′(0) exists! To see
this, note that 0 ≤ g(x) ≤ x2 for all x ∈ [0, 1]. Thus∣∣∣∣g(x)− g(0)

x− 0
− 0

∣∣∣∣ =
|g(x)|
|x|

≤ x ∀x ∈ (0, 1].

So taking δ = ε in the definition of a limit (Definition 5.1), we see that

g′(0) = lim
x→0

g(x)− g(0)

x− 0
= lim

x→0+

g(x)− g(0)

x− 0
= 0.

It follows from Proposition 6.5 that g is continuous at 0. (It is also not so hard to see directly
from the definition of continuity that g is continuous at 0.)
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If a function f is differentiable and the derivative f ′ is also differentiable, then we say
that f is twice differentiable. We denote the derivative of f ′ by f ′′. The function f ′′ is called
the second derivative of f . More generally, we define the n-th derivative f (n) of f inductively
by

f (0) = f, f (n) =
(
f (n−1))′ , n ∈ N.

Exercises.

6.1.1 ([TBB, Ex. 7.2.3]). Check the differentiability of each of the functions below at x0 = 0.

(a) f(x) = x|x|.

(b) f(x) =

{
x sinx−1, x 6= 0,

0, x = 0.

(c) f(x) =

{
x2 sinx−1, x 6= 0,

0, x = 0.

(d) f(x) =

{
x2 if x is rational,

0, if x is irrational.

6.1.2 ([TBB, Ex. 7.2.4]). Let

f(x) =

{
x2 if x ≥ 0,

ax if x < 0.

(a) For which values of a is f differentiable at x = 0?

(b) For which values of a is f continuous at x = 0?

6.1.3 ([TBB, Ex. 7.2.5]). For which p ∈ N is the function f(x) = |x|p differentiable at 0?

6.1.4 ([TBB, Ex. 7.2.11]). Give an example of a function with an infinite derivative at some
point. Give an example of a function f with f ′+(x0) = ∞ and f ′−(x0) = −∞ at some point
x0.

6.1.5 ([TBB, Ex. 7.2.14]). Let f be strictly increasing and differentiable on an interval. Does
this imply that f ′(x) ≥ 0 on that interval? Does this imply that f ′(x) > 0 on that interval?

6.1.6 ([TBB, Ex. 7.2.17]). Suppose that a function has both a right-hand and a left-hand
derivative at a point. What, if anything, can you conclude about the continuity of that
function at that point?
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6.2 Computing derivatives

We now deduce some rules of differentiation that you learned in calculus.

Proposition 6.8 (Algebraic rules for differentiation). Suppose f, g : I → R and x0 ∈ I. If
f and g are differentiable at x0, then f + g and fg are differentiable at x0. If, in addition,
g(x0) 6= 0, then f/g is differentiable at x0. Furthermore, we have the following equalities:

(a) (cf)′(x0) = cf ′(x0) for any c ∈ R,

(b) (f + g)′(x0) = f ′(x0) + g′(x0),

(c) (fg)′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0),

(d)

(
f

g

)′
(x0) =

f ′(x0)g(x0)− f(x0)g
′(x0)

g(x0)2
if g(x0) 6= 0.

Proof. We leave the proofs of parts (a) and (b) as exercises (Exercise 6.2.1).
To prove part (c), we compute

lim
x→x0

f(x)g(x)− f(x0)g(x0)

x− x0
= lim

x→x0

f(x)g(x)− f(x)g(x0) + f(x)g(x0)− f(x0)g(x0)

x− x0

= lim
x→x0

(
f(x)

g(x)− g(x0)

x− x0
+
f(x)− f(x0)

x− x0
g(x0)

)
= f(x0)g

′(x0) + f ′(x0)g(x0),

where we have used Propositions 5.6 and 5.7, and the fact that limx→x0 f(x) = f(x0) since
the differentiability of f at x0 implies, by Proposition 6.5, that f is also continuous at x0.

To prove part (d), we let h = f/g and compute

h(x)− h(x0)

x− x0
=

1

g(x)g(x0)

(
f(x)− f(x0)

x− x0
g(x0)− f(x)

g(x)− g(x0)

x− x0

)
→ f ′(x0)g(x0)− f(x0)g

′(x0)

g(x0)2
as x→ x0.

Example 6.9. Let
f(x) = (2x4 + 2x)2.

Then f(x) = 4x8 + 8x5 + 4x2, and so, by Exercise 6.2.3 and Proposition 6.8, parts (a) and
(b), we have

f ′(x) = 32x7 + 40x4 + 8x.

Alternatively, we can use Proposition 6.8(c) to compute

f ′(x) =

(
d

dx
(2x4 + 2x)

)
(2x4 + 2x) + (2x4 + 2x)

d

dx
(2x4 + 2x)

= (8x3 + 2)(2x4 + 2x) + (2x4 + 2x)(8x3 + 2) = 32x740x4 + 8x.



84 Chapter 6. Differentiation

Proposition 6.10 (The chain rule). Suppose f : I → R, g : J → R, x0 ∈ I, and f(I) ⊆ J .
If f is differentiable at x0 and g is differentiable at f(x0), then the composite function g ◦ f
is differentiable at x0 and

(g ◦ f)′(x0) = g′(f(x0))f
′(x0).

Proof. Let {an}∞n=1 be a sequence in I \ {x0} such that an → x0. For n ∈ N, let

bn =
g(f(an))− g(f(x0))

an − x0
.

We split the proof into two cases.

Case 1 : There exists N ∈ N such that f(an) 6= f(x0) for n ≥ N . Then, for n ≥ N , we
have

bn =
g(f(an))− g(f(x0))

f(an)− f(x0)

f(an)− f(x0)

an − x0
. (6.2)

Since f is differentiable at x0, it is continuous at x0. Thus f(an)→ f(x0). Therefore

bn → g′(f(x0))f
′(x0).

Case 2 : f(an) = f(x0) for infinitely many values of n. Then, by Exercise 6.2.4, f ′(x0) = 0.
We have that bn = 0 for those n satisfying f(an) = f(x0) and bn is given by (6.2) otherwise.
Thus,

bn → 0 = g′(f(x0))f
′(x0).

In both cases, we have

bn → g′(f(x0))f
′(x0).

Then the result follows from Theorem 5.3.

Proposition 6.11 (Derivative of an inverse function). Suppose f : I → J is bijective and dif-
ferentiable at x0 ∈ I with f ′(x0) 6= 0. Then the inverse function f−1 : J → I is differentiable
at f(x0) and (

f−1
)′

(f(x0)) =
1

f ′(x0)
.

Proof. Let y0 = f(x0), so that x0 = f−1(y0). We know f−1 is continuous by Theorem 5.36.
We wish to compute (

f−1
)′

(y0) = lim
k→0

f−1(y0 + k)− f−1(y0)
k

.

Define

h(k) = f−1(y0 + k)− f−1(y0)→ 0 as k → 0.

Then

f
(
x0 + h(k)

)
= f

(
f−1(y0 + k)

)
= y0 + k,

and so

k = y0 − f
(
x0 + h(k)

)
= f(x0)− f

(
x0 + h(k)

)
.
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Thus
f−1(y0 + k)− f−1(y0)

k
=

h(k)

f(x0)− f
(
x0 + h(k)

) =
1

f(x0)−f(x0+h(k))
h(k)

Now,

lim
k→0

h(k) = 0 and lim
y→0

f(x0 + y)− f(x0)

y
= f ′(y0).

Thus, by Remark 5.33,(
f−1
)′

(y0) = lim
k→0

f−1(y0 + k)− f−1(y0)
k

= lim
k→0

1
f(x0)−f(x0+h(k))

h(k)

=
1

f ′(x0)
.

Note, that part of the conclusion in Proposition 6.11 is that the derivative of the inverse
exists. If we already knew that this derivative existed, then we could easily derive the given
formula using the chain rule

f−1(f(x)) = x =⇒
(
f−1
)′

(f(x0))f
′(x0) = 1 =⇒

(
f−1
)′

(f(x0)) =
1

f ′(x0)
.

Exercises.

6.2.1. Prove parts (a) and (b) of Proposition 6.8.

6.2.2 ([TBB, Ex. 7.3.4]). Prove that

d

dx
(f(x))2 = 2f(x)f ′(x)

using Proposition 6.8 and also directly from the definition of the derivative.

6.2.3. Prove by induction that

d

dx
xn = nxn−1, n ∈ N.

6.2.4 ([TBB, Ex. 7.3.11]). Show that if for each open interval U containing x0 there exists
x ∈ U , x 6= x0, for which f(x) = f(x0), then either f ′(x0) does not exist or else f ′(x0) = 0.

6.2.5. Suppose the functions f, g : R→ R are twice differentiable at a point x0. Prove that

(fg)′′(x0) = f ′′(x0)g(x0) + 2f ′(x0)g
′(x0) + f(x0)g

′′(x0).

6.2.6 ([TBB, Ex. 7.3.15]). State and prove a theorem that gives a formula for f ′(x0) when

f = fn ◦ fn−1 ◦ · · · ◦ f2 ◦ f1.

Be sure to state all the hypotheses that you need.
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6.2.7 ([TBB, Ex. 7.3.17]). If we restrict the domain of sinx to [−π/2, π/2], then it is invert-
ible. Find a formula for the derivative of the function sin−1 x assuming that

d

dx
sinx = cosx.

6.2.8 ([TBB, Ex. 7.3.18]). If we restrict the domain of tan x to (−π/2, π/2), then it is in-
vertible. Find a formula for the derivative of the function tan−1 x assuming that

d

dx
tanx = sec2 x.

6.3 Local extrema

One of the important uses of the derivative is to find maximum or minimum values of
functions. We examine this technique in this section.

Definition 6.12 (Local maximum, local minimum). Suppose f : I → R and x0 is an interior
point of I. We say f has a local maximum at x0 if there exists δ > 0 such that

[x0 − δ, x0 + δ] ⊆ I and f(x) ≤ f(x0) ∀x ∈ [x0 − δ, x0 + δ].

We say f has a local minimum at x0 if there exists δ > 0 such that

[x0 − δ, x0 + δ] ⊆ I and f(x) ≥ f(x0) ∀x ∈ [x0 − δ, x0 + δ].

If f has a local maximum or a local minimum at x0, then we say it has a local extremum at
x0.

Theorem 6.13. Suppose f : I → R. If f has a local extremum at an interior point x0 of I
and f is differentiable at x0, then f ′(x0) = 0.

Proof. Suppose f has a local minimum at an interior point x0 of I. (The proof for a local
maximum is similar and can be found at [TBB, Th. 7.18].) Then there exists δ > 0 such
that

[x0 − δ, x0 + δ] ⊆ I and f(x) ≥ f(x0) ∀x ∈ [x0 − δ, x0 + δ].

Thus
f(x)− f(x0)

x− x0
≥ 0 for x ∈ (x0, x0 + δ) (6.3)

and
f(x)− f(x0)

x− x0
≤ 0 for x ∈ (x0 − δ, x0). (6.4)

If f ′(x0) exists, then

f ′(x0) = lim
x→x+0

f(x)− f(x0)

x− x0
= lim

x→x−0

f(x)− f(x0)

x− x0
.

The right-hand limit is ≥ 0 by (6.3) and the left-hand limit is ≤ 0 by (6.4). Therefore,
f ′(x0) = 0.
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It follows from Theorem 6.13 that if f : [a, b]→ R is continuous, then f must achieve its
maximum (or minimum) at one or more of the following types of points:

• Points x0 ∈ (a, b) such that f ′(x0) = 0.

• Points x0 ∈ (a, b) at which f is not differentiable.

• The points a or b.

Exercises.

6.3.1 ([TBB, Ex. 7.5.1]). Give an example of a differentiable function f : R → R for which
f ′(0) = 0, but 0 is not a local maximum or minimum of f .

6.3.2 ([TBB, Ex. 7.5.2]). Let

f(x) =

{
x4(2 + sin x−1) if x 6= 0,

0 if x = 0.

(a) Prove that f is differentiable on R.

(b) Prove that f has an absolute minimum at x = 0.

(c) Prove that f ′ takes on both positive and negative values in every neighbourhood of 0.
That is, prove that, for every ε > 0, f ′ takes on both positive and negative values in
the interval (−ε, ε).

6.4 The Mean Value Theorem

Theorem 6.14 (Rolle’s Theorem). Suppose f : [a, b]→ R is continuous on [a, b] and differ-
entiable on (a, b). If f(a) = f(b), then there exists c ∈ (a, b) such that f ′(c) = 0.

Proof. If f is constant on [a, b], then f ′(x) = 0 for all x ∈ (a, b), so we can take c to be any
point of (a, b).

Now suppose that f is not constant. Since f is continuous on the compact interval [a, b],
it attains a maximum value M and a minimum value m on [a, b] by Theorem 5.28. Because
f is not constant, at least one of the values M or m is different from f(a) and f(b). Suppose
m < f(a). (The case M > f(a) is similar.) Choose c ∈ [a, b] such that f(c) = m. Since
m < f(a) = f(b), we have c 6= a and c 6= b. Thus c ∈ (a, b). By Theorem 6.13, f ′(c) = 0.
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Note that, in Rolle’s Theorem, we do not require that f be differentiable at the end
points a and b. For example, the theorem applies to the function f : [0, 1/π]→ R given by

f(x) =

{
x sinx−1 if x ∈ (0, 1/π],

0 if x = 0.

This function is not differentiable at zero, but it is continuous on [0, 1/π] and differentiable
on (0, 1/π]. It has an infinite number of points in the interval (0, 1/π) where the derivative
is zero.

Theorem 6.15 (Cauchy Mean Value Theorem). Suppose f, g : [a, b]→ R are continuous on
[a, b] and differentiable on (a, b). Then there exists c ∈ (a, b) such that(

f(b)− f(a)
)
g′(c) =

(
g(b)− g(a)

)
f ′(c).

Proof. Let
h(x) =

(
f(b)− f(a)

)
g(x)−

(
g(b)− g(a)

)
f(x).

Then h is continuous on [a, b] and differentiable on (a, b). Furthermore,

h(a) = f(b)g(a)− f(a)g(b) = h(b).

By Rolle’s Theorem, there exists c ∈ (a, b) such that

0 = h′(c) =
(
f(b)− f(a)

)
g′(c)−

(
g(b)− g(a)

)
f ′(c).

The theorem follows.

Corollary 6.16 (Mean Value Theorem). Suppose that f : [a, b] → R is continuous on [a, b]
and differentiable on (a, b). Then there exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

f(a)

a

f(b)

b

f(c)

c
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Proof. Define
g : [a, b]→ R, g(x) = x.

Then, by the Cauchy Mean Value Theorem, there exists c ∈ (a, b) such that(
f(b)− f(a)

)
g′(c) = (b− a)f ′(c).

Since g′(c) = 1, the result follows.

Note that the Mean Value Theorem is a generalization of Rolle’s Theorem. If f(a) = f(b),
then the Mean Value Theorem becomes precisely Rolle’s Theorem.

Exercises.

6.4.1 ([TBB, Ex. 7.6.1]). Apply Rolle’s Theorem to the function f(x) =
√

1− x2 on [−1, 1].
Observe that f fails to be differentiable at the endpoints of the interval.

6.4.2. Use Rolle’s Theorem to explain why the cubic equation

x3 + αx+ β = 0

cannot have more than one solution whenever α > 0.

6.4.3 ([TBB, Ex. 7.6.4]). Suppose that f ′(x) > c > 0 for all x ∈ [0,∞). Show that
limx→∞ f(x) = ∞. In other words, show that for all M > 0, there exists N > 0 such
that

x > N =⇒ f(x) > M.

6.4.4 ([TBB, Ex. 7.6.5]). Suppose f : R → R and both f ′ and f ′′ exist everywhere. Show
that if f has three zeros, then there must be some point x0 ∈ R such that f ′′(x0) = 0.

6.4.5 ([TBB, Ex. 7.6.8]). A real-valued function is said to satisfy a Lipschitz condition on
an interval [a, b] if there exists M > 0 such that

|f(x)− f(y)| ≤M |x− y| ∀ x, y ∈ [a, b].

Show that if f is assumed to be continuous on [a, b] and differentiable on (a, b), then this
condition is equivalent to the derivative f ′ being bounded on (a, b). Hint : First show directly
from the definition that the Lipshitz condition will imply a bounded derivative. Then use
the Mean Value Theorem to get the converse, that is, apply the Mean Value Theorem to f
on the interval [x, y] for any a ≤ x < y ≤ b.

6.4.6 ([TBB, Ex. 7.6.11]). Give an example to show that the conclusion of the Mean Value
Theorem can fail if we drop the requirement that f be differentiable at every point in (a, b).
Give an example to show that the conclusion can fail if we drop the requirement of continuity
at the endpoints of the interval.
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6.4.7. Suppose f : [a, b]→ R is differentiable and that f ′(x) = 0 for all x ∈ [a, b]. Prove that
f is a constant function.

6.4.8. Suppose f, g : [a, b] → R are differentiable and that f ′(x) = g′(x) for all x ∈ [a, b].
Prove that there exists some k ∈ R such that f(x) = g(x) + k for all x ∈ [a, b].



Chapter 7

Integration

In this chapter we discuss the Riemann integral. After defining the integral and the notion of
integrability, we prove some properties of the integral that should be familiar from calculus,
including the important Fundamental Theorem of Calculus. We conclude with a treatment
of improper integrals. A good reference for the material in this section is [Leb, Ch. 5].

7.1 The Riemann Integral

In calculus, you have considered the integral. The intuitive idea was to compute the area
under the graph of a function f : [a, b]→ R (with area below the x-axis counted as negative).
This was done by approximating the region by rectangles. To do this, we divide the interval
[a, b] into subintervals, and the height of the rectangles are given by the value of the function
at some point in each subinterval. The sum of the areas of these rectangles (with rectangles
below the x-axis counted as negative) is called a Riemann sum for f (see Definition 7.9).
We then take the limit as the width of the rectangles goes to zero.

x0 ξ0 x1 ξ1 x2 ξ2 x3 ξ3 x4

Figure 7.1: Riemann sum

We now make this idea precise. Throughout this section, we will assume that all functions
are bounded. When we write the interval [a, b], we will always assume a < b.

A partition of an interval [a, b], a < b, is a set

P = {x0, x1, . . . , xn} ⊆ [a, b]

91
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such that

a = x0 < x1 < · · · < xn = b.

If P = {x0, . . . , xn} is a partition of [a, b] and f : [a, b] → R is a bounded function, then we
define

mi(P, f) = inf{f(x) : x ∈ [xi−1, xi]},
Mi(P, f) = sup{f(x) : x ∈ [xi−1, xi]}.

(These exist since f is bounded.)

Definition 7.1 (Upper and lower Darboux sums). Suppose f : [a, b] → R is bounded and
P = {x0, x1, . . . , xn} is a partition of [a, b]. The lower Darboux sum of f for P is

L(P, f) =
n∑
i=1

mi(P, f)(xi − xi−1).

The upper Darboux sum of f for P is

U(P, f) =
n∑
i=1

Mi(P, f)(xi − xi−1).

x0 x1 x2 x3 x4

Figure 7.2: Upper and lower Darboux sums

It is clear from the definitions that

L(P, f) ≤ U(P, f)

for any f and P .

A partition P ′ is a refinement of a partition P if P ⊆ P ′.

Lemma 7.2. If P ′ is a refinement of P , then for any bounded function f : [a, b] → R, we
have

L(P, f) ≤ L(P ′, f) ≤ U(P ′, f) ≤ U(P, f).
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Proof. Let P = {x0, . . . , xn}. We first consider the case where P ′ = P ∪ {y}, y ∈ [a, b] \ P .
Then there exists k ∈ {1, . . . , n} such that y ∈ (xk−1, xk). We have

mk(P, f) = inf{f(x) : x ∈ [xk−1, xk]} ≤ inf{f(x) : x ∈ [xk−1, y]} and

mk(P, f) = inf{f(x) : x ∈ [xk−1, xk]} ≤ inf{f(x) : x ∈ [y, xk]}.

Thus,

L(P, f) =
n∑
i=1

mi(P, f)(xi − xi−1)

=
k−1∑
i=1

mi(P, f)(xi − xi−1) +mk(P, f)(xk − xk−1) +
n∑

i=k+1

mi(P, f)(xi − xi−1)

≤
k−1∑
i=1

mi(P, f)(xi − xi−1) + inf{f(x) : x ∈ [xk−1, y]}(y − xk−1)

+ inf{f(x) : x ∈ [y, xk]}(xk − y) +
n∑

i=k+1

mi(P, f)(xi − xi−1)

= L(P ′, f).

The proof that U(P ′, f) ≤ U(P, f) is similar.
Now consider an arbitrary refinement P ′ of P . Thus P ′ = P ∪ {y1, . . . , ym} for some

pairwise distinct y1, . . . , ym /∈ P . By the above, we have

L(P, f) ≤ L(P ∪ {y1}, f) ≤ L(P ∪ {y1, y2}, f) ≤ · · · ≤ L(P ′, f)

≤ U(P ′, f) ≤ U(P ∪ {y1, . . . , ym−1}, f) ≤ · · · ≤ U(P, f).

Corollary 7.3. If f : [a, b]→ R is bounded and P1, P2 are partitions of [a, b], then

L(P1, f) ≤ U(P2, f).

Proof. Let P = P1 ∪ P2. Then P is refinement of both P1 and P2. Thus, by Lemma 7.2, we
have

L(P1, f) ≤ L(P, f) ≤ U(P, f) ≤ U(P2, f).

Definition 7.4 (Integrable function). A bounded function f : [a, b] → R is integrable (or
Riemann integrable) if

sup{L(P, f) : P a partition of [a, b]} = inf{U(P, f) : P a partition of [a, b]}.

If f is integrable, we denote this common value by∫ b

a

f or

∫ b

a

f(t) dt.

If A ⊆ R, f : A → R, and the restriction of f to [a, b] ⊆ A is integrable, we say that f is
integrable on [a, b]. If f is integrable on [a, b], we define∫ a

b

f := −
∫ b

a

f.

We also define
∫ a
a
f = 0.
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We will often write

sup
P
{L(P, f)} instead of sup{L(P, f) : P a partition of [a, b]}, and

inf
P
{U(P, f)} instead of inf{U(P, f) : P a partition of [a, b]}.

Remark 7.5. By Corollary 7.3, any lower Darboux sum is a lower bound for {U(P, f) :
P a partition of [a, b]}, so infP{U(P, f)} exists. Similarly supP{L(P, f)} exists. Moreover,

sup
P
{L(P, f)} ≤ inf

P
{U(P, f)}.

Example 7.6. Consider the function f : [a, b]→ R given by

f(x) =

{
0 x ∈ [a, b] ∩ (R \Q),

1 x ∈ [a, b] ∩Q.

Let P = {x0, . . . , xn} be a partition of [a, b]. For each i ∈ {1, . . . , n}, the interval [xi, xi−1]
contains rational and irrational numbers. Thus mi(P, f) = 0 and Mi(P, f) = 1. Hence

L(P, f) =
n∑
i=1

mi(P, f)(xi − xi−1) = 0 and

U(P, f) =
n∑
i=1

mi(P, f)(xi − xi−1) =
n∑
i=1

(xi − xi−1) = b− a 6= 0.

Therefore, f is not integrable.

Example 7.7. Consider the function f : [−1, 1]→ R defined by

f(x) =


0 if x < 0,

2 if x = 0,

1 if x > 0.

We will show that f is Riemann integrable and
∫ 1

−1 f = 1.
Let ε satisfy 0 < ε < 1. Consider the partition

P = {−1,−ε, ε, 1}.

Then

m1(P, f) = inf{f(x) : x ∈ [−1,−ε]} = 0, M1(P, f) = sup{f(x) : x ∈ [−1,−ε]} = 0,

m2(P, f) = inf{f(x) : x ∈ [−ε, ε]} = 0, M2(P, f) = sup{f(x) : x ∈ [−ε, ε]} = 2,

m2(P, f) = inf{f(x) : x ∈ [ε, 1]} = 1, M2(P, f) = sup{f(x) : x ∈ [ε, 1]} = 1.
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Thus

L(P, f) =
3∑
i=1

mi(P, f)(xi − xi−1) = 0 · (1− ε) + 0 · 2ε+ 1 · (1− ε) = 1− ε,

U(P, f) =
3∑
i=1

Mi(P, f)(xi − xi−1) = 0 · (1− ε) + 2 · 2ε+ 1 · (1− ε) = 1 + 3ε.

Therefore,

inf
Q
{U(Q, f)} − sup

Q
{L(Q, f)} ≤ U(P, f)− L(P, f) = (1 + 3ε)− (1− ε) = 4ε.

By Remark 7.5, we have infQ{U(Q, f)}−supQ{L(Q, f)} ≥ 0. Since ε was arbitrary, we have
infQ{U(Q, f)} = supQ{L(Q, f)}. So f is integrable. Finally,

1− ε = L(P, f) ≤
∫ 1

−1
f ≤ U(P, f) = 1 + 3ε.

Therefore,

−ε ≤
(∫ 1

−1
f

)
− 1 ≤ 3ε.

Since ε was arbitrary, we have
∫ 1

−1 f = 1. Note that we would obtain the same value for the
integral so matter what f(0) is defined to be. See Exercise 7.1.6.

We extract part of the argument in Example 7.7 as a proposition, since it is a useful
criterion for integrability.

Proposition 7.8. A bounded function f : [a, b]→ R is integrable if and only if for all ε > 0,
there exists a partition P of [a, b] such that U(P, f)− L(P, f) < ε.

Proof. Suppose that for all ε > 0, there exists a partition P of [a, b] such that U(P, f) −
L(P, f) < ε. Fix ε > 0 and choose such a partition. By Remark 7.5, we have

0 ≤ inf
Q
{U(Q, f)} − sup

Q
{L(Q, f)} ≤ U(P, f)− L(P, f) ≤ ε.

Since ε was arbitrary, we have infQ{U(Q, f)} = supQ{L(Q, f)}, and so f is integrable.

Definition 7.9 (Riemann sum). Let f : [a, b]→ R be bounded and let P = {x0, . . . , xn} be
a partition of [a, b]. For each i ∈ {1, . . . , n}, let ξi ∈ [xi−1, xi]. Let ξ = {ξ1, . . . , ξn}. Then

R(P, f, ξ) =
n∑
i=1

f(ξi)(xi − xi−1)

is a Riemann sum for f . See Figure 7.1.
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If f : [a, b] → R is bounded and P = {x0, . . . , xn} is a partition of [a, b], then for all
i ∈ {1, . . . , n}, we have

mi(P, f) ≤ f(ξi) ≤Mi(P, f).

Thus,
L(P, f) ≤ R(P, f, ξ) ≤ U(P, f),

for any collection ξ of points in the subintervals of the partition P .
Let ε > 0. If f is integrable, then by Proposition 7.8 there exists a partition P such

that U(P, f) − L(P, f) < ε. Then, for any collection ξ of points in the subintervals of the
partition P , we have ∣∣∣∣R(P, f, ξ)−

∫ b

a

f

∣∣∣∣ ≤ U(P, f)− L(P, f) < ε.

In other words, we can force the Riemann sums to be arbitrarily close to the integral by
choosing an appropriate partition.

Theorem 7.10. If f : [a, b]→ R is continuous, then it is integrable.

Proof. Since f is continuous on [a, b], which is compact, f is uniformly continuous on [a, b]
by Theorem 5.43. Let ε > 0 and choose δ > 0 such that

|x− y| < δ =⇒ |f(x)− f(y)| < ε

2(b− a)
.

Now choose a partition P = {x0, . . . , xn} such that

xi − xi−1 < δ ∀ i ∈ {1, . . . , n}.

Then, for all i ∈ {1, . . . , n}, by Exercise 1.6.7 we have

Mi(P, f)−mi(P, f) = sup{|f(x)− f(y)| : x, y ∈ [xi−1, xi]} ≤
ε

2(b− a)
.

Hence

U(P, f)−L(P, f) =
n∑
i=1

(
Mi(P, f)−mi(P, f)

)
(xi−xi−1) ≤

ε

2(b− a)

n∑
i=1

(xi−xi−1) =
ε

2
< ε.

Thus f is integrable by Proposition 7.8.

Remark 7.11. The converse of Theorem 7.10 is false. For example, the function g of Exam-
ple 7.7 is integrable but not continuous. For another example, see Exercise 7.1.5.

Exercises.
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7.1.1 ([Leb, Ex. 5.1.1]). Let f : [0, 1]→ R be defined by f(x) = x3, and let P = {0, 0.1, 0.4, 1}.
Compute L(P, f) and U(P, f).

7.1.2. Suppose c ∈ R. Directly using the definition of the integral, show that
∫ b
a
c = c(b−a).

7.1.3. Directly using the definition of the integral, show that the function

f : [1, b]→ R, f(x) =
1

x
,

is integrable for all b > 1. Hint : Use uniform partitions (i.e. xi = 1 + i(b − 1)/n) and
Proposition 7.8.

7.1.4. Suppose f : [a, b]→ R is bounded, P is a partition of [a, b], and c ∈ R. Prove that

U(P, cf) = cU(P, f) and L(P, cf) = cL(P, f).

7.1.5. Consider the function g : [0, 1]→ R given by

g(x) =

{
0 x = 0 or x is irrational,
1
q

x = p/q, p, q ∈ N, gcd(p, q) = 1.

Prove that g is integrable and that
∫ 1

0
g = 0. Hint : Fix ε > 0 and choose N ∈ N, N > 2/ε.

Consider the finite set

A = {p/q : 0 ≤ p ≤ q, 1 ≤ q ≤ N} ⊆ [0, 1].

Choose a partition P = {x0, . . . , xn} of [0, 1] containing the points of A in the interiors of
subintervals of length ≤ ε/2N2. Prove that U(P, g) < ε.

7.1.6. Suppose that f : [a, b]→ R is integrable and that g : [a, b]→ R has the property that
f(x) = g(x) for all but finitely many x in the interval [a, b]. Prove that g is integrable and∫ b
a
f =

∫ b
a
g.

7.1.7 ([Leb, Ex. 5.1.10]). Let f : [0, 1]→ R be a bounded function. Let Pn = {x0, x1, . . . , xn}
be a uniform partition of [0, 1], that is, xi = i/n. Is {L(Pn, f)}∞n=1 always monotonic? Prove
or find a counterexample.

7.2 Properties of the integral

We now prove some important properties of the integral.

Proposition 7.12. If f : [a, b]→ R is integrable and c ∈ (a, b), then f is integrable on [a, c]
and [c, b], and ∫ b

a

f =

∫ c

a

f +

∫ b

c

f. (7.1)

Conversely, if f is integrable on [a, c] and [c, b], then it is also integrable on [a, b] and (7.1)
holds.



98 Chapter 7. Integration

Proof. Suppose f is integrable on [a, b] and c ∈ (a, b). Let ε > 0. By Proposition 7.8, there
exists a partition P = {x0, . . . , xn} of [a, b] such that U(P, f) − L(P, f) < ε. Adding the
point c if necessary, we may assume that c = xj for some j ∈ {1, . . . , n− 1}. Then

P ′ = {x0, . . . , xj} and P ′′ = {xj, . . . , xn}

are partitions of [a, c] and [c, b], respectively. We have

L(P, f) = L(P ′, f) + L(P ′′, f) and U(P, f) = U(P ′, f) + U(P ′′, f).

Thus (
U(P ′, f)− L(P ′, f)

)
+
(
U(P ′′, f)− L(P ′′, f)

)
= U(P, f)− L(P, f) < ε.

Since each of the summands in parentheses is nonnegative, both are less than ε. Since ε > 0
was arbitrary,

∫ c
a
f and

∫ b
c
f both exist by Proposition 7.8. Moreover,

L(P, f) = L(P ′, f) + L(P ′′, f) ≤
∫ c

a

f +

∫ b

c

f ≤ U(P ′, f) + U(P ′′, f) = U(P, f).

Since this is true for all partitions P (containing c), (7.1) holds.
The proof of the converse is left as an exercise (Exercise 7.2.1).

Proposition 7.13. Suppose f, g : [a, b] → R are integrable and c ∈ R. Then cf + g is also
integrable on [a, b] and ∫ b

a

(cf + g) = c

∫ b

a

f +

∫ b

a

g.

Proof. The case c = 0 is trivial. First assume c > 0. We leave it as an exercise (Exercise 7.2.2)
to show that, for any partition P = {x0, . . . , xn} and i ∈ {1, . . . , n},

cmi(P, f)+mi(P, g) ≤ mi(P, cf+g) and Mi(P, cf+g) ≤ cMi(P, f)+Mi(P, g). (7.2)

Thus

cL(P, f) + L(P, g) ≤ L(P, cf + g) and U(P, cf + g) ≤ cU(P, f) + U(P, g).

Therefore, we have

cL(P, f) + L(P, g) ≤ L(P, cf + g) ≤ U(P, cf + g) ≤ cU(P, f) + U(P, g). (7.3)

Let ε > 0. Since f and g are integrable on [a, b], by Proposition 7.8, there exist partitions
P ′ and P ′′ such that

U(P ′, f)− L(P ′, f) <
ε

2c
and U(P ′′, g)− L(P ′′, g) <

ε

2
.

The left-hand inequality implies that

cU(P ′, f)− cL(P ′, f) <
ε

2
.
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Let P = P ′ ∪ P ′′. Then, by Lemma 7.2,

cU(P, f)− cL(P, f) <
ε

2
and U(P, g)− L(P, g) <

ε

2
.

Hence

cU(P, f) + U(P, g)−
(
cL(P, f) + L(P, g)

)
< ε,

and so, by (7.3), we have

U(P, cf + g)− L(P, cf + g) < ε.

So cf + g is integrable by Proposition 7.8.
By the above, for any partition P , we have

cL(P, f) +L(P, g) ≤ L(P, cf + g) ≤
∫ b

a

(cf + g) ≤ U(P, cf + g) ≤ cU(P, f) +U(P, g). (7.4)

And by the integrality of f and g, we have

cL(P, f) + L(P, g) ≤ c

∫ b

a

f +

∫ b

a

g ≤ cU(P, f) + U(P, g). (7.5)

Let ε > 0. By Proposition 7.8, we can choose partitions P ′ and P ′′ such that

U(P ′, f)− L(P ′, f) <
ε

2c
and U(P ′′, f)− U(P ′′, g) <

ε

2
.

Setting P = P ′ ∪ P ′′, (7.4) and (7.5) then imply that∣∣∣∣∫ b

a

(cf + g)−
(
c

∫ b

a

f+

∫ b

a

g

)∣∣∣∣ < ε.

Since this holds for all ε > 0, we have∫ b

a

(cf + g) = c

∫ b

a

f +

∫ b

a

g.

We leave the case c < 0 as an exercise.

Remark 7.14. It follows from Proposition 7.13 that the set of all integrable functions is a
vector subspace of the vector space of all functions from [a, b] to R. Furthermore, the integral
is a linear map from this vector space to R.

If f : [a, b]→ R is bounded, then so is the function

|f | : [a, b]→ R, |f |(x) = |f(x)|, x ∈ [a, b].

Lemma 7.15. If f : [a, b]→ R is integrable, then so is |f |.
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Proof. Suppose f : [a, b]→ R is integrable. For any partition P = {x0, . . . , xn}, we have

Mi(P, f)−mi(P, f) = sup{|f(x)− f(y)| : x, y ∈ [xi−1, xi]} (by Exercise 1.6.7)

≥ sup{
∣∣|f(x)| − |f(y)|

∣∣ : x, y ∈ [xi−1, xi]} (by Exercise 1.6.2)

= Mi(P, |f |)−mi(P, |f |). (by Exercise 1.6.7)

Hence
U(P, |f |)− L(P, |f |) ≤ U(P, f)− L(P, f).

It follows from Proposition 7.8 that |f | is integrable.

Note that the converse of Lemma 7.15 is not true. See Exercise 7.2.4.

Proposition 7.16. If f, g : [a, b]→ R are integrable and f(x) ≤ g(x) for all x ∈ [a, b], then∫ b

a

f ≤
∫ b

a

g.

Proof. We leave the proof of this proposition as an exercise (Exercise 7.2.5).

Corollary 7.17. If f : [a, b]→ R is integrable, then∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∫ b

a

|f |.

Proof. It follows from Proposition 7.16 and the fact that

−|f(x)| ≤ f(x) ≤ |f(x)| ∀x ∈ [a, b]

that

−
∫ b

a

|f | ≤
∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∫ b

a

|f |.

The result follows.

Corollary 7.18. If f : [a, b]→ R is integrable and m ≤ f(x) ≤M for all x ∈ [a, b], then

m(b− a) ≤
∫ b

a

f ≤M(b− a).

Proof. This follows from Proposition 7.16 and Exercise 7.1.2.

Suppose f : [a, b] → R is integrable. By Proposition 7.12, f is integrable on [a, x] for all
x ∈ [a, b].

Theorem 7.19. If f : [a, b]→ R is integrable and we define

F : [a, b]→ R, F (x) =

∫ x

a

f,

then F is continuous on [a, b].
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Proof. Since f is bounded (we defined integrability only for bounded functions), there exists
M > 0 such that

|f(x)| ≤M ∀, x ∈ [a, b].

Let ε > 0 and choose δ = ε/M . Suppose x, y ∈ [a, b] and |x− y| < δ.
First consider the case x < y. By Corollary 7.18,

−M(y − x) ≤
∫ y

x

f ≤M(y − x).

We also have ∫ x

a

+

∫ y

x

f =

∫ y

a

f,

and so ∫ y

x

f =

∫ y

a

f −
∫ x

a

= F (y)− F (x).

Therefore,
−M(y − x) ≤ F (y)− F (x) ≤M(y − x),

and so
|F (y)− F (x)| ≤M |x− y| < Mδ = ε.

The case y < x is analogous (just interchange x and y everywhere in the above argument).

Theorem 7.20 (Mean Value Theorem for Integrals). If f : [a, b]→ R is continuous on [a, b],
then there exists c ∈ (a, b) such that∫ b

a

f = f(c)(b− a).

Proof. By the Maximum Theorem (Theorem 5.28), there exists xmin, xmax ∈ [a, b] such that

f(xmin) ≤ f(x) ≤ f(xmax) ∀x ∈ [a, b].

Thus, by Corollary 7.18, we have

f(xmin)(b− a) ≤
∫ b

a

f ≤ f(xmax)(b− a).

Thus

f(xmin) ≤ 1

b− a

∫ b

a

f ≤ f(xmax).

By the Intermediate Value Theorem, there exists a c between xmin and xmax such that

1

b− a

∫ b

a

f = f(c).

The result then follows after multiplying both sides by b− a.
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Exercises.

7.2.1. Complete the proof of Proposition 7.12.

7.2.2. Prove (7.2).

7.2.3. Complete the proof of Proposition 7.13 by treating the case c < 0.

7.2.4. Give an example of a function f : [a, b] → R, such that |f | is integrable, but f is not
integrable.

7.2.5. Prove Proposition 7.16.

7.2.6. Find another solution to Exercise 7.1.6, this time using Proposition 7.12.

7.2.7 ([Leb, Ex. 5.2.5]). Suppose f : [a, b]→ R is continuous, f(x) ≥ 0 for all x ∈ [a, b], and∫ b
a
f = 0. Prove that f(x) = 0 for all x ∈ [a, b].

7.2.8 ([Leb, Ex. 5.2.6]). Suppose f : [a, b]→ R is continuous and
∫ b
a
f = 0. Prove that there

is a c ∈ [a, b] such that f(c) = 0.

7.2.9 ([Leb, Ex. 5.2.7]). Suppose f, g : [a, b] → R is continuous and
∫ b
a
f =

∫ b
a
g. Prove that

there is a c ∈ [a, b] such that f(c) = g(c).

7.2.10. Prove that if f : [a, b] → R is increasing, then it is integrable. Hint : Use a uniform
partition, where each subinterval has the same length.

7.3 Fundamental Theorem of Calculus

We now prove one of the most important theorems in calculus.

Theorem 7.21 (Fundamental Theorem of Calculus). Suppose f : [a, b] → R is continuous
and define

F : [a, b]→ R, F (x) =

∫ x

a

f.

If f is continuous at c ∈ [a, b], then F is differentiable at c and F ′(c) = f(c).

Proof. Suppose f is continuous at c. Let ε > 0. Then we can choose δ > 0 such that, for
x ∈ [a, b],

|x− c| < δ =⇒ |f(x)− f(c)| < ε =⇒ f(c)− ε ≤ f(x) ≤ f(c) + ε.

Thus, if x > c, we have(
f(c)− ε

)
(x− c) ≤

∫ x

c

f ≤
(
f(c) + ε

)
(x− c).
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When x > c, the inequalities are reversed. Therefore, if c 6= x, we have

f(c)− ε ≤
∫ x
c
f

x− c
≤ f(c) + ε.

Since

F (x)− F (c) =

∫ x

a

f −
∫ c

a

f =

∫ x

c

f,

we have ∣∣∣∣F (x)− F (c)

x− c
− f(c)

∣∣∣∣ ≤ ε.

Since the absolute value function is continuous, this yields

|F ′(c)− f(c)| = lim
x→c

∣∣∣∣F (x)− F (c)

x− c
− f(c)

∣∣∣∣ ≤ ε.

Since ε > 0 was arbitrary, it follows that F ′(c) = f(c).

Theorem 7.22. Suppose F : [a, b]→ R is differentiable and F ′ is continuous on [a, b]. Then∫ b

a

F ′ = F (b)− F (a).

Proof. Define

G : [a, b]→ R, G(x) =

∫ x

a

F ′.

Then, by the Fundamental Theorem of Calculus (Theorem 7.21), for all x ∈ [a, b], we have

F ′(x) = G′(x).

By Exercise 6.4.8, there exists a C ∈ R such that F (x) = G(x) + C for all x ∈ [a, b]. Since
G(a) = 0, this implies∫ b

a

F ′ = G(b) = G(b)−G(a) = G(b) + C − (G(a) + C) = F (b)− F (a).

Of course, Theorem 7.22 is the basis of the method of computation of integrals you
learned in calculus. To compute the integral

∫ b
a
f , you find an antiderivative. That is, you

find a function F such that F ′ = f . Then
∫ b
a
f = F (b) − F (a). Of course, this method

only works if f is continuous and has an antiderivative. However, using the definition of the
integral directly, we can sometimes compute the integrals of discontinuous functions. See
Example 7.7 and Exercise 7.1.5.

Exercises.
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7.3.1. Suppose f : [a, b]→ R is continuous. Prove that

d

dx

∫ b

x

f = −f(x).

7.3.2 ([Leb, Ex. 5.3.1]). Compute
d

dx

∫ x

−x
et

2

dt.

7.3.3 ([Leb, Ex. 5.3.2]). Compute
d

dx

∫ x2

0

sin(t2) dt.

7.3.4 ([Leb, Ex. 5.3.3]). Suppose F : [a, b]→ R is continuous and differentiable on [a, b] \ S,
where S is a finite set. Suppose that there exists an integrable function f : [a, b] → R such

that f(x) = F ′(x) for all x ∈ [a, b] \ S. Prove that
∫ b
a
f = F (b)− F (a).

7.3.5 ([Leb, Ex. 5.3.3]). Prove integration by parts . That is, suppose F and G are continu-
ously differentiable functions on [a, b] (that is, they are differentiable, and their derivatives
are continuous). Prove that∫ b

a

F (x)G′(x) dx = F (b)G(b)− F (a)G(a)−
∫ b

a

F ′(x)G(x) dx.

7.3.6 ([Leb, Ex. 5.3.3]). Suppose f : [a, b]→ R is continuous and
∫ x
a
f =

∫ b
x
f for all x ∈ [a, b].

Show that f(x) = 0.

7.4 Improper integrals

So far we have only discussed the integral of bounded functions. What should we mean by
integrals such as ∫ 1

0

1√
x
dx ?

Even if we define the function at the point zero (the particular value is irrelevant—see
Exercise 7.1.6), the function 1/

√
x is not bounded on (0, 1]. However, it is bounded on every

interval of the form [δ, 1], 0 < δ < 1. For such δ, since 2
√
x is an antiderivative of 1/

√
x,

Theorem 7.22 allows us to compute∫ 1

δ

1√
x
dx = 2

√
1− 2

√
δ = 2− 2

√
δ.

We therefore define∫ 1

0

1√
x
dx = lim

δ→0+

∫ 1

δ

1√
x
dx = lim

δ→0+

(
2− 2

√
δ
)

= 2.

Definition 7.23. Let f : [a, b] → R be a function that is Riemann integrable on [a + δ, b]
and unbounded in the interval (a, a+ δ) for every 0 < δ < b− a. Then we define∫ b

a

f = lim
δ→0+

∫ b

a+δ

f
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if this limit exists, and in this case the integral is said to be convergent.
Similarly, suppose g : [a, b]→ R is a function that is Riemann integrable on [a, b− δ] and

unbounded in the interval (b− δ, b) for every 0 < δ < b− a. Then we define∫ b

a

g = lim
δ→0+

∫ b−δ

a

g

if this limit exists, and in this case the integral is said to be convergent.

Using a similar technique, we can extend the Riemann integral from bounded intervals
to bounded ones. But first we need a definition.

Definition 7.24 (Limit at ±∞). Suppose A ⊆ R is unbounded above and f : A → R. We
say

lim
x→∞

f(x) = L

if for all ε > 0 there exists an N ∈ R such that

x > N =⇒ |f(x)− L| < ε.

Similarly, suppose B ⊆ R is unbounded below and g : B → R. We say

lim
x→−∞

g(x) = L

if for all ε > 0 there exists an N ∈ R such that

x < N =⇒ |f(x)− L| < ε.

Example 7.25. Define f : [1,∞)→ R by f(x) = 1/x for all x ∈ [1,∞). Let ε > 0 and choose
N = 1/ε. Then, for x > N , we have

|f(x)− 0| = 1

x
<

1

N
≤ ε.

So

lim
x→∞

1

x
= 0.

Now, how should we define the integral∫ ∞
1

1

x2
dx ?

Note that −1/x is an antiderivative for 1/x2. Thus, for any b > 1, we have∫ b

1

1

x2
dx =

−1

b
− −1

1
= 1− 1

b
.

We therefore define ∫ ∞
1

1

x2
dx = lim

b→∞

∫ b

1

1

x2
dx = lim

b→∞

(
1− 1

b

)
= 1.
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Definition 7.26. Let f be a function on an interval [a,∞) that is Riemann integrable on
every interval [a, b] for a < b <∞. Then we define∫ ∞

a

f = lim
b→∞

∫ b

a

f

if this limit exists, and in this case the integral is said to be convergent.
Similarly, suppose g : (−∞, b] → R is a function that is Riemann integrable on every

interval [a, b] for −∞ < a < b. Then we define∫ b

−∞
g = lim

a→−∞

∫ b

a

g

if this limit exists, and in this case the integral is said to be convergent.

Remark 7.27. We can also define integrals where both limits of integration are infinite by
choosing c ∈ R and defining ∫ ∞

−∞
f =

∫ c

−∞
f +

∫ ∞
c

f,

provided both integrals on the right-hand side converge. It follows from Proposition 7.12
that the definition does not depend on the choice of c.

The integrals defined in Definitions 7.23 and 7.26 are called improper integrals.

Exercises.

7.4.1. Suppose f : R → R is continuous and limx→∞ f(x) and limx→−∞ f(x) both exist.
Prove that f is bounded.

7.4.2. For which values of s does the improper integral
∫ 1

0
xs dx converge? You may use the

antiderivatives of xs, s ∈ R, that you learned in calculus.

7.4.3. For which values of s does the improper integral
∫∞
1
xs dx converge? You may use the

antiderivatives of xs, s ∈ R, that you learned in calculus.

7.4.4 ([Leb, Ex. 5.5.5]). Can you interpret∫ 1

−1

1√
|x|

dx

as an improper integral? If so, compute its value.

7.4.5. Suppose f : [0,∞) → R is integrable on every interval [0, b], b > 0. Show that
∫∞
0
f

converges then for every ε > 0 there exists an M such that

M ≤ a < b =⇒
∣∣∣∣∫ b

a

f

∣∣∣∣ < ε.

(The converse is also true.)
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7.4.6 ([Leb, Ex. 5.5.9]). Suppose f : [0,∞)→ R is nonnegative and decreasing.

(a) Show that if
∫∞
0
f converges, then limx→∞ f(x) = 0.

(b) Show that the converse does not hold.



Chapter 8

Sequences and series of functions

In this chapter we consider sequences and series of functions. We begin with the most
naive definition of convergence: pointwise convergence. We consider several examples that
illustrate that this type of convergence is not very well behaved. We then introduce the
concept of uniform convergence and prove that this convergence behaves well with respect
to continuity, differentiation, and integration. A good reference for the material in this
chapter is [TBB, Ch. 9].

Although most of the examples we will consider involve functions from intervals to R, we
will state the main theorems in greater generality, for functions from some subset of Rd to
Rm. Throughout this chapter, A ⊆ Rd.

8.1 Pointwise convergence

We begin with the most naive definition of the convergence of functions.

Definition 8.1 (Pointwise convergence of a sequence of functions). Suppose {fn}∞n=1 is a
sequence of functions with fn : A → Rm for all n ∈ N, and f : A → Rm. We say that the
sequence {fn} converges pointwise to f on A if

lim
n→∞

fn(x) = f(x) ∀x ∈ A.

In this case, we write

lim
n→∞

fn = f or fn → f.

Definition 8.2 (Pointwise convergence of a series of functions). Suppose {fk}∞k=1 is a se-
quence of functions with fk : A→ Rm for all n ∈ N, and f : A→ Rm. For n ∈ N and x ∈ A,
let

Sn(x) =
n∑
k=1

f(x).

We say that the series
∑∞

k=1 fk converges pointwise to f at x if

lim
n→∞

Sn(x) = f(x).

108
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If
∑∞

k=1 fk converges pointwise to f at all x ∈ A, we say that the series
∑∞

k=1 fk converges
pointwise to f on A. In this case, we write

f(x) =
∞∑
k=1

fk(x) = lim
n→∞

n∑
k=1

fk(x).

Example 8.3. For n ∈ {0, 1, 2, . . . }, define

fn(x) = xn.

For |x| < 1, the series
∞∑
n=0

fn(x) =
∞∑
n=0

xn =
1

1− x

converges. It diverges for |x| ≥ 1. Thus
∑∞

n=0 fn converges pointwise on (−1, 1) to the
function f given by f(x) = 1

1−x .

In the remainder of this section, we will see that pointwise convergence is not very well
behaved with respect to some of the properties of functions we have discussed in this course:
continuity, differentiability, and integrability.

Example 8.4 (A discontinuous limit of continuous functions). For each n ∈ N and x ∈ [0, 1],
let

fn(x) = xn.

See Figure 8.1. Each fn is continuous on [0, 1]. For x = 0, it is clear that limn→∞ fn(0) = 0.

x

xn

Figure 8.1: Graphs of xn on [0, 1] for n = 1, 2, 3, 5, 10, 20

Similarly, for x = 1, it is clear that limn→∞ fn(1) = 1. Now suppose 0 < x < 1. Let ε > 0
and set N > (ln ε)/(lnx). Then xN < ε. Hence,

n ≥ N =⇒ |fn(x)− 0| = xn ≤ xN < ε.

Thus,

lim
n→∞

fn(x) =

{
0 if 0 ≤ x < 1,

1 if x = 1.

Therefore, the pointwise limit f of the sequence of continuous functions {fn}∞n=1 is discon-
tinuous at x = 1. So a pointwise limit of continuous functions is not necessarily continuous.
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Example 8.5 (The derivative of the limit need not be the limit of the derivative). For n ∈ N,
define

fn : [0, 1]→ R, f(x) =
xn

n
.

Then fn → 0 on [0, 1]. By Example 8.4, we have

lim
n→∞

f ′n(x) = lim
n→∞

xn−1 =

{
0 if 0 ≤ x < 1,

1 if x = 1.

Since the derivative of the limit function is zero everywhere on [0, 1], we have

lim
n→∞

d

dx
fn(x) 6= d

dx

(
lim
n→∞

fn(x)
)

at x = 1.

So the derivative of a pointwise limit of functions is not necessarily the limit of the derivatives.

Example 8.6 (The integral of the limit need not be the limit of the integrals). For each
n ∈ N, define fn : [0, 1]→ R by

fn =


4n2x if 0 ≤ x ≤ 1/2n,

4n− 4n2x if 1/2n < x ≤ 1/n,

0 if 1/n < x ≤ 1.

See Figure 8.2. It is easy to see that fn → 0 on [0, 1] (Exercise 8.1.1). Now, for each n ∈ N,

1
2n

1
n

1

2n

Figure 8.2: Graph of fn(x) on [0, 1] in Example 8.6

∫ 1

0

fn(x) dx = 1.

However, ∫ 1

0

(
lim
n→∞

fn(x)
)
dx =

∫ 1

0

0 dx = 0.

Thus

lim
n→∞

∫ 1

0

fn(x) dx 6=
∫ 1

0

(
lim
n→∞

fn(x)
)
dx.

So the integral of a pointwise limit of functions is not necessarily the limit of the integrals.
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Exercises.

8.1.1. If fn is defined as in Example 8.6, prove that fn → 0 on [0, 1].

8.1.2 ([TBB, Ex. 9.2.1]). Examine the pointwise limiting behaviour of the sequence of func-
tions

fn : R \ {−1} → R, fn(x) =
xn

1 + xn
.

8.1.3 ([TBB, Ex. 9.2.3]). The rational numbers are countable. In particular, there is a
sequence {xn}∞n=1, such that Q ∩ [0, 1] = {x1, x2, . . . }. Let

fn(x) =

{
1 if x ∈ {x1, . . . , xn},
0 otherwise,

and let

f(x) =

{
1 if x ∈ Q,
0 otherwise.

Show that fn converges pointwise to f on [0, 1], but
∫ 1

0
fn(x) dx = 0 for all n ∈ N, while f

is not integrable on [0, 1].

8.1.4 ([TBB, Ex. 9.2.4]). For n ∈ N, let

fn(x) =
sin(nx)√

n
.

Show that limn→∞ fn = 0, but limn→∞ f
′
n(0) =∞.

8.1.5 ([TBB, Ex. 9.2.7]). Suppose fn → f on the interval [a, b]. Which of the following
statements is true?

(a) If each fn is strictly increasing on [a, b], then so is f .

(b) If each fn is weakly increasing on [a, b], then so is f .

(c) If each fn is bounded on [a, b], then so is f .

(d) If each fn is everywhere discontinuous on [a, b], then so is f .

(e) If each fn is constant on [a, b], then so is f .

(f) If each fn is strictly positive on [a, b], then so is f .

(g) If each fn is linear on [a, b], then so is f .
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8.2 Uniform convergence

We have seen in Section 8.1 that pointwise convergence does not always behave nicely with
respect to continuity, differentiation, and integration. Note that we can reformulate Defini-
tion 8.1 by saying that fn → f if

∀x ∈ A, ∀ ε > 0, ∃N ∈ N such that ∀n ≥ N, ‖fn(x)− f(x)‖ < ε.

Thus, the choice of N can depend on both ε and x. We now formulate a stronger notion
of convergence, where the N depends only on ε. Compare this to the difference between
continuity (Definition 5.12) and uniform continuity (Definition 5.39).

Definition 8.7 (Uniform convergence). Suppose {fn}∞n=1 is a sequence of functions with
fn : A → Rm for all n ∈ N, and f : A → Rm. We say that the sequence {fn}∞n=1 converges
uniformly to f on A if, for all ε > 0, there exists N ∈ N such that

‖fn(x)− f(x)‖ < ε for all n ≥ N and x ∈ A.

In this case, we write
fn ⇒ f.

We say that the series
∑∞

k=1 fk converges uniformly to f if the sequence of partial sums
{
∑n

k=1 fk}∞n=1 converges uniformly to f .

Note that it follows immediately from the definitions that if {fn}∞n=1 converges uniformly
to f , then {fn}∞n=1 also converges pointwise to f .

Example 8.8. Let us modify the functions of Example 8.4 by restricting the domain of the
functions. Fix 0 < η < 1 and, for n ∈ N, define

fn : [0, η]→ R, fn(x) = xn.

We will show that fn ⇒ 0. Indeed, for 0 ≤ x ≤ η, we have 0 ≤ xn ≤ ηn. Let ε > 0. Since
limn→∞ η

n = 0, there exists N ∈ N such that

n ≥ N =⇒ 0 < ηn < ε.

Thus, for all n ≥ N , we have
0 ≤ xn ≤ ηn < ε.

Note that our choice of N works for all x ∈ [0, η] (it does not depend on x).

When discussing convergence of sequences in Rd, we had the Cauchy criterion that told
us whether or not a sequence converged, without explicitly referring to a limit point. We
have a similar criterion for the uniform convergence of sequences of functions.

Definition 8.9 (Uniformly Cauchy). Suppose {fn}∞n=1 is a sequence of functions with
fn : A → Rm for all n ∈ N. We say this sequence is uniformly Cauchy on A if for all
ε > 0 there exists N ∈ N such that

‖fm(x)− fn(x)‖ < ε for all n,m ≥ N and x ∈ A.
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Theorem 8.10 (Cauchy convergence criterion for uniform convergence). Suppose {fn}∞n=1

is a sequence of functions with fn : A → Rm for all n ∈ N. Then this sequence converges
uniformly to some f : A→ Rm on A if and only if {fn}∞n=1 is uniformly Cauchy.

Proof. The proof of this theorem is left as an exercise (Exercise 8.2.1).

Example 8.11. Consider the geometric series
∑∞

n=0 x
n on (−1, 1). We will use Theorem 8.10

to prove by contradiction that this series does not converge uniformly on (−1, 1). Suppose it
converged uniformly, and let fn(x) =

∑∞
k=0 x

k be the n-th partial sum. Then, taking ε = 1
in Theorem 8.10, there exists N ∈ N such that, for N ≤ m < n and x ∈ (−1, 1), we have

1 > |fn(x)− fm(x)| =
n∑

k=m+1

xk =
xm+1(1− xn−m)

1− x
=
xm+1 − xn+1

1− x
.

Thus, for all x ∈ (−1, 1), we have

xm+1

1− x
= lim

n→∞

xm+1 − xn+1

1− x
≤ 1.

But we know that

lim
x→1−

xm+1

1− x
=∞,

which contradicts the above inequality.

When we are interested in the uniform convergence of a series of functions, there is a
useful simple test, which we now describe.

Theorem 8.12 (Weierstrass M -test). Suppose {fk}∞k=1 is a sequence of functions with
fk : A→ Rm for all k ∈ N, and let {Mk}∞k=1 be sequence of positive real numbers. If

∞∑
k=0

Mk <∞

(i.e. this series converges) and

‖fk(x)‖ ≤Mk for all x ∈ A, k ∈ N,

then the series
∑∞

k=1 fk converges uniformly on A.

Proof. Let Sn =
∑n

k=1 fk be the n-th partial sum of the series. We will show that the
sequence {Sn}∞n=1 is uniformly Cauchy on A. Let ε > 0. For m < n and x ∈ A, we have

Sn(x)− Sm(x) = fm+1(x) + · · ·+ fn(x).

Thus
‖Sn(x)− Sm(x)‖ ≤Mm+1 + · · ·+Mn.

Since the series
∑∞

k=1Mk converges by hypothesis, by the Cauchy convergence criterion
for Rm, there exists N ∈ N such that

Mm+1 + · · ·+Mn < ε.
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Thus

‖Sn(x)− Sm(x)‖ < ε for all n > m ≥ N and x ∈ A.

Hence, the sequence {Sn}∞n=1 is uniformly convergent on A. Thus, the series
∑∞

k=1 fk is
uniformly convergent on A.

Example 8.13. Fix 0 < a < 1 and consider the geometric series
∑∞

n=0 x
n on the interval

[−a, a]. Then

|xk| ≤ ak for all k ∈ {0, 1, 3, . . . , }, x ∈ [−a, a].

Since
∑∞

k=0 a
k converges, the series

∑∞
k=0 xk converges uniformly on [−a, a] by the Weier-

strass M -test. Compare this to Example 8.11.

Exercises.

8.2.1. Prove Theorem 8.10.

8.2.2. For n ∈ N, define

fn(x) =
xn

1 + xn
.

Prove that the sequence {fn}∞n=1 converges uniformly on intervals of the form (−∞,−c] and
[c,∞) for c > 1 and on intervals of the form [−d, d] for 0 < d < 1.

8.2.3 ([TBB, Ex. 9.3.3]). Prove that if {fn}∞n=1 converges pointwise to f on a finite set A,
then the convergence is uniform.

8.2.4 ([TBB, Ex. 9.3.4]). Prove that if fn ⇒ f on a set A1 and also on a set A2, then fn ⇒ f
on A1 ∪ A2.

8.2.5 ([TBB, Ex. 9.3.5]). Prove or disprove that if fn ⇒ f on each set A1, A2, . . . , then
fn ⇒ f on the union

⋃∞
k=1Ak.

8.2.6. Prove or disprove that if fn ⇒ f on [a, b] for all a < b, then fn ⇒ f on R.

8.2.7 ([TBB, Ex. 9.3.8]). Prove or disprove that if fn ⇒ f on each closed interval [a, b]
contained in an open interval (c, d), then fn ⇒ f on (c, d).

8.2.8 ([TBB, Ex. 9.3.8]). Prove that if {fn}∞n=1 and {gn}∞n=1 both converge uniformly on A,
then so too does the sequence {fn + gn}∞n=1.

8.2.9 ([TBB, Ex. 9.3.12]). Prove that fn ⇒ f on A of and only if

lim
n→∞

sup
x∈A
‖fn(x)− f(x)‖ = 0.
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8.2.10. Prove that
∞∑
k=1

kxk−1

converges uniformly on [a, b] for all −1 < a < b < 1.

8.2.11 ([TBB, Ex. 9.3.20]). Prove that the series

∞∑
k=0

xk

k

converges uniformly on [0, b] for every b ∈ [0, 1), but does not converge uniformly on [0, 1).

8.3 Properties of uniform convergence

In Example 8.4 we saw that a pointwise limit of continuous functions may be discontinuous.
However, we now see that a uniform limit of continuous functions is continuous.

Theorem 8.14 (Uniform limit theorem). Suppose {fn}∞n=1 is a sequence of functions with
fn : A → Rm for all n ∈ N, and that this sequence converges uniformly to the function
f : A → Rm. If fn is continuous at x0 for all n ∈ N, then f is also continuous at x0. In
particular, if fn is continuous on A for all n ∈ N, then f is also continuous on A.

Proof. Let ε > 0. For each x ∈ A and n ∈ N, we have

‖f(x)− f(x0)‖ ≤ ‖f(x)− fn(x)‖+ ‖fn(x)− fn(x0)‖+ ‖fn(x0)− f(x0)‖.

Since fn converges to f uniformly, there exists N ∈ N such that

‖fn(x)− f(x)‖ < ε

3
for all x ∈ A, n ≥ N.

In addition, since fN is continuous at x0, there exists δ > 0 such that

x ∈ A, ‖x− x0‖ < δ =⇒ ‖fN(x)− fN(x0)‖ <
ε

3
.

Thus, for all x ∈ A with |x− x0| < δ, we have

‖f(x)− f(x0)‖ ≤ ‖f(x)− fN(x)‖+ ‖fN(x)− fN(x0)‖+ ‖fN(x0)− f(x0)‖ <
ε

3
+
ε

3
+
ε

3
= ε.

Hence f is continuous at x0.

Corollary 8.15. If
∑∞

k=1 fk converges uniformly to f on A, and each of the functions fk is
continuous on A, then f is continuous on A.

Proof. If each fk is continuous, then the partial sums
∑n

k=1 fk are continuous. Then the
result follows from Theorem 8.14.
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Example 8.16. Fix a ∈ (0,∞). Then, for all x ∈ [−a, a], we have∣∣∣∣xnn!

∣∣∣∣ ≤ an

n!
.

Since the series
∑∞

0=1
an

n!
converges (Exercise 8.3.2), the series

∞∑
n=0

xn

n!

converges uniformly on [−a, a] by the Weierstrass M -test (Theorem 8.12). Thus, by Theo-
rem 8.14, the function

ex :=
∞∑
n=0

xn

n!

is continuous on [−a, a]. Since a was arbitrary, ex is continuous on R.

In Example 8.6, we saw that the integral of a pointwise limit is not necessarily the limit
of the integrals. We now see that this problem is resolved by requiring uniform convergence.

Theorem 8.17. Suppose {fn}∞n=1 is a sequence of continuous functions with fn : [a, b]→ R
for all n ∈ N, and that this sequence converges uniformly to the function f : [a, b]→ R. Then∫ b

a

f(x) dx = lim
n→∞

∫ b

a

fn(x) dx.

Proof. Since f is continuous by Theorem 8.14, the integral
∫ b
a
f(x) dx exists by Theorem 7.10.

Let ε > 0. We have∣∣∣∣∫ b

a

fn(x) dx−
∫ b

a

f(x) dx

∣∣∣∣ =

∣∣∣∣∫ b

a

(
fn(x)− f(x)

)
dx

∣∣∣∣
≤
∫ b

a

|fn(x)− f(x)| dx (by Cor. 7.17)

≤ (b− a)

(
max
x∈[a,b]

|fn(x)− f(x)|
)

(by Cor. 7.18).

Since fn ⇒ f , there exists N ∈ N such that

max
x∈[a,b]

|fn(x)− f(x)| < ε

b− a
∀n ≥ N.

(See Exercise 8.2.9.) Thus, for n ≥ N , we have∣∣∣∣∫ b

a

fn(x) dx−
∫ b

a

f(x) dx

∣∣∣∣ < (b− a)
ε

b− a
= ε,

as required.
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Corollary 8.18. If an infinite series of continuous functions
∑∞

k=1 fk converges uniformly
to a function f on an interval [a, b], then f is also continuous and∫ b

a

f(x) dx =
∞∑
k=1

∫ b

a

fk(x) dx. (8.1)

Proof. This follows from applying Theorem 8.17 to the partial sums of the series.

Example 8.19. By Example 8.13, the geometric series

1

1− t
=
∞∑
k=0

tk

converges uniformly on the interval [0, x] for all 0 < x < 1. Thus, by Theorem 8.17, we have∫ x

0

1

1− t
dt =

∞∑
k=0

∫ x

0

tk dt =
∞∑
k=0

xk+1

k + 1
.

Remark 8.20. In Theorem 8.17, we assumed that the functions fn are continuous. In fact,
this hypothesis can be weakened. We need only assume that the fn are integrable to conclude
that f is integrable and (8.1) holds. See [TBB, §9.5.2].

We can now also prove that uniform convergence behaves well with respect to derivatives.

Theorem 8.21. Let {fn}∞n=1 be a sequence of functions, each with a continuous derivative
on an interval [a, b]. If the sequence {f ′n}∞n=1 of derivatives converges uniformly on [a, b] and
the sequence {fn}∞n=1 converges pointwise to a function f , then f is differentiable on [a, b]
and

f ′(x) = lim
n→∞

f ′n(x) for all x ∈ [a, b].

Proof. Let g = limn→∞ f
′
n. Since each f ′n is continuous and the f ′n converge uniformly to g,

the function g is continuous by Theorem 8.14. By Theorem 8.17, we have∫ x

a

g(t) dt = lim
n→∞

∫ x

a

f ′n(t) dt for all x ∈ [a, b].

By Theorem 7.22, we see that, for all n ∈ N,∫ x

a

f ′n(t) dt = fn(x)− fn(a) for all x ∈ [a, b].

Thus ∫ x

a

g(t) dt = lim
n→∞

(
fn(x)− fn(a)

)
= f(x)− f(a).

Therefore,

f(x) =

∫ x

a

g(t) dt+ f(a).

Since g is continuous, it follows from the Fundamental Theorem of Calculus (Theorem 7.21)
that f is differentiable and that

f ′(x) = g(x) for all x ∈ [a, b].
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Corollary 8.22. Let {fk}∞k=1 be a sequence of functions each with a continuous derivative
on [a, b], and suppose f =

∑∞
k=1 fk on [a, b]. If the series

∑∞
k=1 f

′
k converges uniformly on

[a, b], then f ′ =
∑∞

k=1 f
′
k on [a, b].

Proof. We apply Theorem 8.21 to the partial sums.

Example 8.23. Fix a ∈ (0,∞). For each n ∈ {0, 1, 2, . . . }, let fn(x) = xn/n!. Then each
fn has a continuous derivative on [−a, a]. As shown in Example 8.16, ex =

∑∞
n=0 fn(x)

converges (uniformly) on [−a, a]. Now

∞∑
n=0

f ′n(x) =
∞∑
n=1

xn−1

(n− 1)!
=
∞∑
k=0

xk

k!
,

where we let k = n−1 in the last equality. By Example 8.16,
∑∞

k=0 x
k/k! converges uniformly

to ex on [−a, a]. Therefore, by Corollary 8.22, we have

d

dx
ex = ex

on [−a, a]. Since a was arbitrary, this equality holds for all x ∈ R.

Exercises.

8.3.1 ([TBB, Ex. 9.4.1]). Can a sequence of discontinuous functions converge uniformly on
a interval to a continuous function?

8.3.2. Prove that, for all a ∈ R, the series
∑∞

n=0 a
n/n! converges.

8.3.3 ([TBB, Ex. 9.5.1]). Prove that

lim
n→∞

∫ π

π/2

sin(nx)

nx
dx = 0.

8.3.4 ([TBB, Ex. 9.5.3]). Show that if fn ⇒ f on [a, b], and each fn is continuous, then the
sequence of functions

Fn(x) =

∫ x

a

fn(t) dt

also converges uniformly on [a, b].

8.3.5. Prove that
1

(1− x)2
=
∞∑
k=1

kxk−1

for all x ∈ (−1, 1). Hint : Use Corollary 8.22 and the formula for the sum of a geometric
series.
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8.3.6 ([TBB, Ex. 9.6.2]). Verify that the function

y(x) =
∞∑
k=0

x2k

k!

is a solution of the differential equation y′ = 2xy on (−∞,∞) without first finding an explicit
formula for y(x).



Chapter 9

Power series

In this final chapter, we investigate some important examples of series of functions. Namely,
we examine power series and Fourier series. A good reference for the material in this section
is [TBB, Ch. 10].

9.1 Convergence of power series

Definition 9.1 (Power series). Let {ak}∞k=0 be a sequence of real numbers and let c ∈ R. A
series of the form

∞∑
k=0

ak(x− c)k = a0 + a1(x− c) + a2(x− c)2 + · · ·

is called a power series centred at c. The numbers ak are called the coefficients of the power
series.

A power series clearly converges at the center x = c. We now consider some examples
that illustrate various possibilities for the sets on which a power series converges.

Example 9.2. The series
∞∑
k=1

kkxk

diverges whenever x 6= 0 since the terms (xk)k do not tend to zero when k →∞. (For large
enough k, we have xk ≥ 1.) Thus, this power series converges only at its center.

Example 9.3. We know that the geometric series

∞∑
k=0

xk

converges precisely on the interval (−1, 1).

120
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Example 9.4. Consider the series
∞∑
k=1

xk

k
.

We have

lim sup
k→∞

k

√
|x|k
k

= lim sup
k→∞

|x|
k
√
k

= |x|,

where we used Exercise 2.1.15 in the last equality. Therefore, by the root test (Proposi-
tion 3.19), the series converges on (−1, 1) and diverges for |x| > 1. For x = 1, the series is
the harmonic series, which diverges. For x = −1, it is the alternating harmonic series, which
converges. Thus, the series converges precisely on the interval [−1, 1).

Example 9.5. Consider the series
∞∑
k=1

xk

k2
.

For |x| ≤ 1, we have ∣∣∣∣xkk2
∣∣∣∣ ≤ 1

k2
,

and thus the series converges for these values of x. If |x| > 1, the terms |xk/k2| → ∞, and
so the series diverges. Hence the series converges precisely on the interval [−1, 1].

Example 9.6. We have seen in Exercise 8.3.2 that the series

∞∑
n=0

xn

n!

converges for all x ∈ R = (−∞,∞).

In all of the above examples, the series converges on an interval centred at the centre of
the series (0 in all the examples above). This, of course, explains the terminology centre.
We will see that this is always the case.

Definition 9.7 (Radius of convergence). Let
∑∞

k=0 ak(x− c)k be a power series. Then

R =
1

lim supk→∞
k
√
|ak|

is called the radius of convergence of the series. Here we interpretR =∞ if lim supk→∞
k
√
|ak| =

0 and R = 0 if lim supk→∞
k
√
|ak| =∞.

Theorem 9.8. Let
∑∞

k=0 ak(x− c)k be a power series with radius of convergence R.

(a) If R = 0, then the series converges only at x = c.

(b) If R =∞, then the series converges absolutely for all x.
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(c) If 0 < R < ∞, then the series converges absolutely for all x ∈ (c − R, c + R) and
diverges for all x /∈ [c−R, c+R].

Proof. For x 6= c, we have

lim sup
k→∞

k
√
|ak||x− c|k = |x− c| lim sup

k→∞

k
√
|ak| =


∞ if R = 0,

0 if R =∞,
|x−c|
R

if 0 < R <∞.

The result then follows from the root test.

By Theorem 9.8, the set of convergence of a power series
∑∞

k=0 akx
k with a finite radius

of convergence must be one of the four intervals

(−R,R), [−R,R], (−R,R], [−R,R).

We saw in Chapter 8 that, in order to differentiate and integrate series of functions term-
by-term, we need uniform convergence. However, Theorem 9.8 says nothing about uniform
convergence. We therefore need the following result.

Theorem 9.9. Let
∑∞

k=0 ak(x− c)k be a power series with radius of convergence R.

(a) If R = 0, then the series converges only at x = c.

(b) If R =∞, then the series converges absolutely and uniformly on any compact interval
[a, b].

(c) If 0 < R <∞, then the series converges absolutely and uniformly on any interval [a, b]
contained entirely inside the interval (c−R, c+R).

Proof. The case (a) is the same as in Theorem 9.8. To prove cases (b) and (c), choose ρ
satisfying 0 < ρ < R so that the interval [a, b] ⊆ (c− ρ, c+ ρ). Fix ρ0 such that ρ < ρ0 < R.
Then

lim sup
k→∞

k
√
|ak| =

1

R
<

1

ρ0
.

Thus, there exists N ∈ N such that

k
√
|ak| <

1

ρ0
for all k ≥ N. (9.1)

Then, for k ≥ N and x ∈ (c− ρ, c+ ρ), we have∣∣ak(x− c)k∣∣ ≤ |ak|ρk < ( ρ

ρ0

)k
,

where the last inequality follows from (9.1). Since ρ/ρ0 < 1, the series

∞∑
k=0

(
ρ

ρ0

)k
converges. Therefore, by the Weierstrass M -test (Theorem 8.12), the given power series
converges absolutely on (c− ρ, c+ ρ), hence also on the subset [a, b].
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Example 9.10. Consider the geometric series
∑∞

n=0 x
n, with radius of convergence R = 1.

This series converges on (−1, 1) (see Example 9.3), but does not converge uniformly on all
of (−1, 1) (see Example 8.11). However, it does converge uniformly on any [a, b] ⊆ (−1, 1).

Theorem 9.9 is sufficient for examining the interior of the interval of convergence. How-
ever, when we wish to make statements about the endpoints of intervals of convergence of
the form [c−R, c+R], (c−R, c+R], or [c−R, c+ r), we need something further.

Theorem 9.11. Suppose that the power series
∑∞

k=0 ak(x − c)k has a finite and positive
radius of convergence R and an interval of convergence I.

(a) If I = [c−R, c+R], then the series converges uniformly (but not necessarily absolutely)
on I.

(b) If I = (c−R, c+R], then the series converges uniformly (but not necessarily absolutely)
on any interval [a, c+R] for all c−R < a < c+R.

(c) If I = [c−R, c+R), then the series converges uniformly (but not necessarily absolutely)
on any interval [c−R, b] for all c−R < b < c+R.

(d) If I = (c−R, c+R), then the series converges uniformly and absolutely on any interval
[a, b] for all c−R < a < b < c+R.

Proof. Note that part (d) is a repeat of Theorem 9.9(c). The method of proof of the other
statements can be found in [TBB, Th. 10.10].

Exercises.

9.1.1. Find the radius of convergence for each of the following series.

(a)
∞∑
k=0

(−1)kx2k.

(b)
∞∑
k=0

kxk.

(c)
∞∑
k=0

k!xk. Hint : Note that in the expression n! = n(n− 1)(n− 2) · · · 2 · 1, at least n/2

terms are greater than n/2.

9.1.2 ([TBB, Ex. 10.2.8]). Give an example of a power series
∑∞

k=0 akx
k with interval of

convergence exactly [−
√

2,
√

2).

9.1.3 ([TBB, Ex. 10.2.10]). If the coefficients {ak}∞k=0 of a power series
∑∞

k=0 akx
k form a

bounded sequence, show that the radius of convergence is at least 1.
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9.1.4 ([TBB, Ex. 10.2.11]). If the power series
∑∞

k=0 akx
k has radius of convergence Ra, the

power series
∑∞

k=0 bkx
k has radius of convergence Rb, and |ak| ≤ |bk| for all sufficiently large

k, what relation must hold between Ra and Rb?

9.1.5 ([TBB, Ex. 10.2.12]). If the power series
∑∞

k=0 akx
k has radius of convergence R, what

is the radius of convergence of the series
∑∞

k=0 akx
2k?

9.1.6 ([TBB, Ex. 10.2.15]). Let {ak}∞k=0 be a sequence of real numbers, and let x0 ∈ R.
Suppose there exists M > 0 such that |akxk0| ≤ M for all k ∈ {0, 1, 2, . . . }. Prove that∑∞

k=0 akx
k converges absolutely for all x satisfying |x| < |x0|. What can you say about the

radius of convergence of the series?

9.1.7 ([TBB, Ex. 10.3.2]). Show that if
∑∞

k=0 akx
k converges absolutely at a point x0 > 0,

then the convergence of the series is uniform on [−x0, x0].

9.2 Properties of power series

We now investigate the properties of functions represented by power series. In particular,
we will be concerned with their continuity, differentiability, and integrability.

Proposition 9.12 (Continuity of power series). A function f represented by a power series

f(x) =
∞∑
k=0

ak(x− c)k

is continuous on its interval of convergence.

Proof. Let R be the radius of convergence. If R = 0, then the interval of convergence
is a single point and there is nothing to prove. Suppose R > 0 and x is in the interval
of convergence. By Theorem 9.11 (in the case R < ∞) and Theorem 9.9(b) (in the case
R =∞), we can find a compact interval [a, b], contained in the interval of convergence, such
that x ∈ [a, b]. Then, by Corollary 8.15, f is continuous at x.

Example 9.13. The series
∞∑
k=1

xk

k

converges on the interval [−1, 1) (see Example 9.4). Thus it is continuous on this interval.

Proposition 9.14 (Integration of power series). Let f be a function represented by a power
series

f(x) =
∞∑
k=0

ak(x− c)k,

with interval of convergence I. Then, for every point x ∈ I, the function f is integrable on
[c, x] (if x ≥ c) or [x, c] (if x < c) and∫ x

c

f(t) dt =
∞∑
k=0

ak
k + 1

(x− c)k+1.
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Proof. Let x be a point in the interval of convergence. By Theorem 9.11, the series converges
uniformly on [c, x] (if x ≥ c) or [x, c] (if x < c), so the series can be integrated term-by-term
(Theorem 8.17).

Example 9.15. The geometric series

1

1− x
=
∞∑
k=0

xk

has radius of convergence 1. Thus, on the interval (−1, 1), we can integrate term-by-term.
Therefore,

− log(1− x) =

∫ x

0

1

1− t
dt =

∞∑
k=0

xk+1

k + 1
for all − 1 < x < 1.

Now, the series
∑∞

k=0 x
k+1/(k + 1) converges at x = −1 by the alternating series test. Since

− log(1−x) is continuous at x = −1, it follows from Proposition 9.12 that the above equality
holds on [−1, 1). In particular,

log 2 = −
∞∑
k=0

(−1)k+1

k + 1
=
∞∑
n=0

(−1)n

n
.

So we have computed the sum of the alternating harmonic series!

Proposition 9.16 (Differentiation of power series). Let f be a function represented by a
power series

f(x) =
∞∑
k=0

ak(x− c)k,

with radius of convergence R > 0. Then f is differentiable on (c−R, c+R) and

f ′(x) =
∞∑
k=1

kak(x− c)k−1 for all x ∈ (c−R, c+R).

Proof. Let R′ be the radius of convergence of the differentiated series
∑∞

k=1 kak(x − c)k−1.
Since k

√
k → 1 as k →∞ (see Exercise 2.1.15), we have

R′ =

(
lim sup
k→∞

k
√
|kak|

)−1
=

(
lim sup
k→∞

k
√
|ak|
)−1

= R.

Thus, by Theorem 9.9, the differentiated series converges uniformly on any interval [a, b] ⊆
(c − R, c + R). Since each x ∈ (c − R, c + R) lies inside such an interval, the proposition
follows from Corollary 8.22.

Exercises.
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9.2.1 ([TBB, Ex. 10.4.2]). Obtain power series expansions for

x

1 + x2
and

x

(1 + x2)2
.

9.2.2 ([TBB, Ex. 10.4.3]). Obtain power series expansions for

x

1 + x3
and

x2

1 + x3
.

9.2.3 ([TBB, Ex. 10.4.4]). Find a power series expansion about x = 0 for the function

f(x) =

∫ 1

0

1− e−sx

s
ds.

9.3 Taylor series

Note that, in the setting of Proposition 9.16, we have

f(c) = a0, f ′(c) = a1.

This can be generalized as follows.

Proposition 9.17. Suppose
∑∞

k=0 ak(x − c)k has radius of convergence R > 0. Then the
function

f(x) =
∞∑
k=0

ak(x− c)k

has derivatives of all orders. Furthermore,

ak =
f (k)(c)

k!
.

Proof. This proof by induction is left as an exercise (Exercise 9.3.1).

Corollary 9.18 (Uniqueness of power series). Suppose two power series

f(x) =
∞∑
k=0

ak(x− c)k and g(x) =
∞∑
k=0

bk(x− c)k

agree on some interval centred at c, that is f(x) = g(x) for x ∈ (c−ρ, c+ρ) and some ρ > 0.
Then ak = bk for all k ∈ {0, 1, 2, . . . }.

Proof. By Proposition 9.17, for k ∈ {0, 1, 2, . . . }, we have

ak =
f (k)(c)

k!
=
g(k)(c)

k!
= bk.
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It follows from the above that if a power series
∑∞

k=0 ak(x− c)k converges on an interval
I (of nonzero length), then the series yields a function f that has derivatives of all orders
and

f(x) =
∞∑
k=0

f (k)(c)

k!
(x− c)k for all x ∈ I.

This is called the Taylor series for f about the point c.

Example 9.19. From the geometric series, we see that

1

1 + x2
=
∞∑
k=0

(−1)kx2k = 1− x2 + x4 − x6 + · · · .

Note that this is valid only for −1 < x < 1, even though the function on the left side is
defined for all value of x. (This has something to do with the fact that it is not defined at
the complex numbers x = ±i, which are a distance 1 from the centre of the series. But that
is beyond the scope of this course.) So the Taylor series for f(x) = 1/(1 + x2) represents f
only on the interval (−1, 1), and not on the full domain of f . There can be no power series
that represents f on all of R since that series would have to agree with the above one on
(−1, 1) and hence must be the same series by Corollary 9.18.

Example 9.20. The function

f(x) =

{
0 if x = 0,

e−1/x
2

if x 6= 0.

One can show that this function is infinitely differentiable on R and that f (k)(0) = 0 for
k ∈ N. (See Exercise 9.3.3.) Thus the Taylor series for f about x = 0 is

∞∑
k=0

0xk.

This series converges to the zero function on all of R, but it does not represent f , except at
the origin.

Definition 9.21 (Analytic). A function f whose Taylor series converges to f in a neigh-
bourhood of c (i.e. an interval (c− δ, c+ δ) for some δ > 0) is said to be analytic at c.

As we see from Example 9.20, to know that a function is analytic, it is not enough to
show that the Taylor series has a positive radius of convergence. It is possible for the Taylor
series to converge everywhere but not agree with the function, so that the function is not
analytic.

Exercises.
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9.3.1. Prove Proposition 9.17.

9.3.2 ([TBB, Ex. 10.4.6]). Suppose

f(x) =
∞∑
k=0

akx
k

has a positive radius of convergence. If the function f is even (i.e., if it satisfies f(−x) = f(x)
for all x), what can you deduce about the coefficients ak? What can you deduce if the function
is odd (i.e., if f(−x) = −f(x) for all x)?

9.3.3. Consider the function f defined in Example 9.20.

(a) For k ∈ N, show that f (k)(x) is of the form R(x−1)e−1/x
2

for x 6= 0, where R is a
polynomial.

(b) Show that

lim
x→0

1

xn
e−1/x

2

= 0

for all n ∈ N.

(c) Conclude that

lim
x→0

f (k)(x) = 0

for all k ∈ N.

9.3.4 ([TBB, Ex. 10.5.8]). Show that if f and g are analytic functions at each point of an
interval (a, b), then so too is any linear combination αf + βg, for α, β ∈ R.

9.4 Fourier series

In this section, we briefly discuss another way of representing functions. Instead of repre-
senting them as series of powers of x, we represented them as trigonometric series.

Theorem 9.22. Suppose that, for some a0, a1, a2, . . . ∈ R and b1, b2, b3, . . . ∈ R, we have

f(t) =
1

2
a0 +

∞∑
j=1

(
aj cos(jt) + bj sin(jt)

)
,

with uniform convergence on [−π, π]. Then the function f is continuous and

aj =
1

π

∫ π

−π
f(t) cos(jt) dt and bj =

1

π

∫ π

−π
f(t) sin(jt) dt,

for all j.
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Proof. Fix j ≥ 1, choose n > j, and consider the partial sum

sn(t) =
1

2
a0 +

n∑
j=1

(
ak cos(kt) + bk sin(kt)

)
.

Using Exercise 9.4.1, we have∫ π

−π
sn(t) cos(jt) dt =

∫ π

−π
aj cos2(jt) dt = ajπ for n > j ≥ 1. (9.2)

Since sn converges to f uniformly and

|sn(t) cos(jt)− f(t) cos(jt)| = |sn(t)− f(t)| · | cos(jt)| ≤ |sn(t)− f(t)|,

it follows that sn(t) cos(jt) converges uniformly to f(t) cos(jt) for t ∈ [−π, π]. Therefore, by
Theorem 8.17, we have∫ π

−π
f(t) cos(jt) dt = lim

n→∞

∫ π

−π
sn(t) cos(jt) dt = ajπ,

where the last equality follows from (9.2). The proofs of the formulas for a0 and bj, j ≥ 1,
are analogous.

Definition 9.23 (Fourier series). Let f : [−π, π]→ R be continuous, and let

aj =
1

π

∫ π

−π
f(t) cos(jt) dt and bj =

1

π

∫ π

−π
f(t) sin(jt) dt,

for j ∈ {0, 1, 2, . . . }. Then the series

1

2
a0 +

∞∑
j=1

(
aj cos(jt) + bj sin(jt)

)
is called the Fourier series of f . The aj and bj are called the Fourier coefficients of f .

Every continuous function f has a Fourier series. The issue of whether/how this Fourier
series converges to f is somewhat subtle and beyond the scope of this course. One example
of a result in this direction is that if f : [−π, π]→ R is continuous and

fn(t) =
1

2
a0 +

n∑
j=1

(
aj cos(jt) + bj sin(jt)

)
is the n-th truncation of the Fourier series, then

lim
n→∞

∫ π

−π

(
f(t)− fn(t)

)2
dt = 0.

One says that the Fourier series converges to f in the L2-norm. You can learn more about
this in MAT 3120 (see [Savb]). See [TBB, Th. 10.36] for another statement about the
convergence of Fourier series.

http://alistairsavage.ca/mat3120/
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Example 9.24. Consider the function

f : [−π, π]→ R, f(t) = t2.

Then

a0 =
1

π

∫ π

−π
t2 dt =

t3

3

∣∣∣∣π
−π

=
2π2

3
,

and, for j ∈ N, we have

aj =
1

π

∫ π

−π
t2 cos(jt) dt =

1

π

(
2

j2
t cos(jt) +

(
t2

j
− 2

j3

)
sin(jt)

)∣∣∣∣π
−π

= (−1)j
4

j2
.

(See Exercise 9.4.2.) Furthermore, for j ∈ N, we have

bj =
1

π

∫ π

−π
t2 sin(jt) dt = 0,

since, as you learned in calculus, the integral of an odd function over an interval centred
about zero is equal to zero. Thus, the Fourier series for f is

π2

3
+
∞∑
j=1

(−1)j
4

j2
cos(jt).

Note that the function

f(t) =
1

2
a0 +

∞∑
j=1

(
aj cos(jt) + bj sin(jt)

)
,

has the property that f(t+ 2π) = f(t) for all t ∈ R. Thus, if some function f : R→ R with
this property is equal to its Fourier series on [−π, π], then it is equal to its Fourier series on
all of R.

Example 9.25. Consider the sawtooth wave function s : R→ R given by

s(x+ 2kπ) =
x

π
, for x ∈ [−π, π), k ∈ Z.

−π π 3π−3π

1

−1

Even though this function is not continuous, we can still compute its Fourier coefficients.
They are given by

an =
1

π

∫ π

−π

x

π
cos(nx) dx = 0, n ≥ 0,
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bn =
1

π

∫ π

−π

x

π
sin(nx) dx =

1

π2

(
− 1

n
x cos(nx) +

1

n2
sin(nx)

)∣∣∣∣π
−π

=
2(−1)n+1

nπ
, n ≥ 1,

where, for the computation of the an, the integral is zero since we integrate an odd function
over an interval centred about 0. It can be proven that the Fourier series converges to s(x)
at every point where s is differentiable. Therefore, we have

s(x) =
2

π

∞∑
n=1

(−1)n+1

n
sin(nx), for x /∈ {π + 2nπ : n ∈ N}.

When x = π, the Fourier series converges to 0, which is the half-sum of the two one-sided
limits of s at x = π. See https://en.wikipedia.org/wiki/Fourier_series for some nice
animations of the partial Fourier series of s(x).

Fourier series have many important applications. For example, in music, they correspond
to decomposing an arbitrary sound wave into pure tones.

Exercises.

9.4.1. Show that, for j, k ∈ Z, we have∫ π

−π
cos(jt) sin(kt) dt = 0,∫ π

−π
sin(jt) sin(kt) dt =

{
0 if j 6= k,

π if j = k,∫ π

−π
cos(jt) cos(kt) dt =

{
0 if j 6= k,

π if j = k,

9.4.2. Show that

d

dt

(
2

j2
t cos(jt) +

(
t2

j
− 2

j3

)
sin(jt)

)
= t2 cos(jt).

(One obtains this antiderivative via integration by parts.)

https://en.wikipedia.org/wiki/Fourier_series
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bxc, 9
fn ⇒ f , 112
fn → f , 108

absolute value, 11
absolutely convergent, 40
accumulation point, 51
addition, 1
additive identity, 1
additive inverse, 1
alternating harmonic series, 35
alternating series, 35
alternating series test, 35
analytic, 127
antiderivative, 103
arithmetic of limits, 17
associativity

of addition, 1
of multiplication, 1

ball, open, 48
bijection, 73
bijective, 73
Bolzano–Weierstrass Theorem, 23

for Rd, 47
bound

lower, 4
upper, 4

boundary point, 51
bounded, 4, 47

above, 4
below, 4
function, 70
sequence, 15

boundedness criterion, 35

Cauchy convergence criterion, 25, 36
for uniform convergence, 113

in Rd, 46
Cauchy sequence, 25

in Rd, 46
Cauchy–Schwarz inequality, 43
center of a power series, 120
chain rule, 84
closed, 48
closed ball, 52, 53
closed interval, 50
commutativity

addition, 1
of addition, 1

compact, 54
comparison test, 36
complement, 48
completeness axiom, 6
component functions, 61
composition, 71
continuous, 64
converge, 13

in Rd, 45
pointwise, 108
uniformly, 112

convergence in Rd, 45
convergent, 13

integral, 105, 106
series, 31

Darboux sum, 92
decreasing, 73
decreasing sequence, 20
dense, 10
derivative, 79
differentiable, 79
Dirichlet function, 64
discontinuous, 64
distance, 11
distributivity, 1
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diverge to ±∞, 15
divergent, 13

series, 31
dot product, 43

euclidean norm, 43
even function, 128

field, 2
field axioms, 2
finite subcover, 54
floor function, 9
Fourier coefficients, 129
Fourier series, 129
Fundamental Theorem of Calculus, 102

geometric sequence, 19
geometric series, 33
greatest lower bound, 5

harmonic series, 33
Heine–Borel Theorem, 55
hypersphere, 52

identity
additive, 1
multplicative, 1

image, 65
improper integral, 104, 106
increasing, 73
increasing sequence, 20
induction, 9
infimum, 5
injection, 73
injective, 73
integer part, 9
integrable, 93
integration by parts, 104
interior point, 51
interval, 79
inverse, 74

additive, 1
multiplicative, 1

irrational number, 10
isolated point, 51

juxtaposition, 2

`1-norm, 44
`∞-norm, 43
largest element, 4
least upper bound, 5
Lebesgue number, 78
left-hand derivative, 80
left-hand limit, 63
limit, 45, 59

at infinity, 105
limit inferior, 27
limit superior, 27
limits

arithmetic, 17
Lipschitz, 78, 89
local extremum, 86
local maximum, 86
local minimum, 86
lower bound, 4
lower Darboux sum, 92

maximum, 4
Maximum Theorem, 70
Mean Value Theorem, 88

for integrals, 101
metric, 11
metric space, 26
Mi(P, f), 92
mi(P, f), 92
minimum, 4
monotonic, 20
Monotonic Convergence Theorem, 20
multiplication, 1
multiplicative identity, 1
multiplicative inverse, 1

N, 7
natural numbers, 7
nested interval property, 21
nonabsolutely convergent, 40
norm, 42

odd function, 128
one-sided limit, 63
open, 48
open ball, 48
open cover, 54
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partition, 91
path connected, 72
periodic function, 78
pointwise convergence

sequence, 108
series, 108

polynomial function, 72
power series, 120

center, 120
continuity, 124
differentiation, 125
integration, 124
uniqueness, 126

preimage, 67

Q, 10

R, 1
R+, 42
radius of convergence, 121
ratio test, 37
rational numbers, 10
Rd, 42
real numbers, 2
rearrangement, 41
refinement, 92
restriction, 68
Riemann integrable, 93
Riemann sum, 91, 95
right-hand derivative, 80
right-hand limit, 63
Rolle’s Theorem, 87
root test, 38

sawtooth wave, 130
scalar multiplication, 42
second derivative, 82
sequence, 13
sequence of partial sums, 31
series, 31
smallest element, 4
Squeeze Theorem, 18
step function, 62, 65
strictly decreasing, 73
strictly decreasing sequence, 20
strictly increasing, 73

strictly increasing sequence, 20
subsequence, 22
supremum, 5
surjection, 73
surjective, 73

Taylor series, 127
telescoping series, 33
topological space, 50
topology, 50
transitive, 3
triangle inequality, 43
twice differentiable, 82

unbounded
above, 4
below, 4

uniform convergence, 112
uniform limit theorem, 115
uniformly Cauchy, 112
uniformly continuous, 76
upper bound, 4
upper Darboux sum, 92

vector addition, 42

Weierstrass M -test, 113
well-ordering property, 8
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