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Abstract. This paper presents an experimental study of the compo-
nents of the Constrained Success History-Based Adaptive Differential
Evolution with Linear Population Size Reduction (C-LSHADE) algo-
rithm, to clarify its importance in generating good results by solving
two instances of mechatronic optimal design. C-LSHADE has four main
components: (1) a historical memory to adapt CR and F parameters,
(2) a mutation strategy called current-to-pbest, (3) a constraint handling
technique based on feasible rules; and (4) a function that linearly reduces
the population size over generations. Based on the final results, the linear
population size decreasing is the only component that, if omitted, affects
the performance of the algorithm.

Keywords: evolutionary algorithms, differential evolution, dimensional
synthesis, four-bar mechanism.

1 Introduction

A particular problem when designing mechatronic systems is finding the optimal
dimensional synthesis of mechanisms to perform a prescribed task in the best
possible way. The dimensional synthesis is responsible for specifying angular
positions and lengths of each component to find solutions to problems of tra-
jectory, function or movement generation to established specifications [4]. Such
problem is solved by treating it as a numerical optimization problem. There are
different optimization techniques, which could be classified as follows: traditional,
stochastic, statistical and modern or nontraditional techniques [6]. According to
the specialized literature, there is evidence of their usage to solve optimal design
problems: prebil performed a study to find the optimal dimensional synthesis of
a mechanism used as hydraulic support in the mining industry with the help
of a gradient method generalization called Adaptive Grid Refinement algorithm
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(AGR), where the distance between an arbitrary coupler point and a prescribed
path is minimized.

saravanan employed Multi-objective Genetic Algorithm (MOGA), Elitist
Non-dominated Sorting Genetic Algorithm (NSGA-II) and Multi-objective Dif-
ferential Evolution (MODE) to find geometric dimensions of three end effectors,
optimal Pareto front and decrease the computational time involved in solving
the problem. They also make a comparison between the algorithms through
multi-objective performance measures and propose a software package for users
who wish to solve a design problem in any field of study. In [2], the authors
solved the synthesis of an Ackermann Steering Mechanism considering linkage
lengths and distribution of precision points as optimization parameters using
an algorithm inspired on the biological immune system of vertebrates. Zapata
in [14] added a constraint-handling mechanism to the algorithm LSHADE,
originally designed to solve unconstrained optimization problems, obtaining
very competitive results when solving mechanical design problems. However,
as C-LSHADE has different mechanisms within, it is unknown which ones are
responsible of such good performance.

Motivated by the above, this paper proposes an experimental study of the
C-LSHADE algorithm to clarify the importance of its components in obtaining
good results when solving two optimal design problems.

The document is organized as follows: Section 2 presents the dimensional
synthesis of a four-bar mechanism as well as case studies to be solved. Section
3 provides a description of the C-LSHADE algorithm. Section 4 shows the
experimental results achieved as their discussion. Finally, Section 5 presents
conclusions and future work lines.

2 Synthesis of Four-bar Linkage Mechanisms

Let be a four-bar mechanism type crank-rod-rocker shown in Figure 1, built by a
reference bar (r1), an input bar or crank (r2), connecting rod or coupler (r3) and
an output bar or rocker (r4). Two coordinate systems are established, the first
fixed to the real world (O1) and the second one for reference (O2), where (x0, y0)
is the distance between both systems, θ0 corresponds to the mechanism’s angle
movement according to the horizontal axis, angles θ1, θ2, θ3 and θ4 corresponding
to the four bars angles and C(rcx, rcy) point that defines the coupler position [8].

In this work, it is desired to obtain the optimal design of a four-bar mechanism
with the least possible error, that is, the coupler’s point C must proceed as
accurately as possible between the precision points Ci

d and the lowest distance
of calculated points Ci. The suggested objective function is as follows (Eq. 1):

error =

n∑
i=1

[(
Ci

xd − Ci
x

)2
+
(
Ci

yd − Ci
y

)2]
. (1)
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Fig. 1: Four-bar mechanism.

Subject to :

g1 (−→p ) = p1 + p2 − p3 − p4 ≤ 0,

g2 (−→p ) = p2 − p3 ≤ 0,

g3 (−→p ) = p3 − p4 ≤ 0,

g4 (−→p ) = p4 − p1 ≤ 0,

(2)

where Ci
d =

[
Ci

xd, C
i
yd

]T
is a precision point that defines the trajectory, a set of them

as Ω = {Ci
d|i ∈ N} where N is the total number of points and Ci =

[
Ci

x, C
i
y

]
, each

generated point expressed in accordance with the input bar and the set of bar lengths
and their parameters x0, y0 and θ0. For all case studies, 200 points Ci were considered.
The kinematics of the mechanism can be found in [14,?].

Eq. 3 is a representation of the design variables vector established to four-bar
mechanisms in this work:

−→p = [p1, p2, p3, p4, p5, p6, p7, p8, p9] ,

= [r1, r2, r3, r4, rcx, rcy, θ0, x0, y0] ,
(3)

where variables r1, r2, r3, r4 correspond to bar lengths, rcx, rcy correspond to coupler
position, θ0 movement angle of the mechanism concerning the horizontal axis of the
second system and O2(x0, y0) starting point of the latter.

2.1 Numerical Optimization Problems

This section presents the optimization problems to be solved. To identify them, each
problem was labeled with the capital letter M, associated with the word “mechanism”;
and an integer, problem’s index in the problem set enumeration.

(M01) Mechanism that follows a vertical linear path. Study case taken
from [10], the dimensional synthesis of a mechanism that follows a vertical linear path
defined by six points of precision with the least possible error is sought. The set of
precision points is:
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Ω = {(20, 20) , (20, 25) , (20, 30) , (20, 35) , (20, 40) , (20, 45)}. (4)

Design variables vector has nine dimensions (Eq. 3). The boundaries defined for each
one of them are:

r1, r2, r3, r4 ∈ [0, 60] ,

rcx, rcy, x0, y0 ∈ [−60, 60] ,

θ0 ∈ [0, 2π] .

(5)

The objective function to this single-objective problem is presented in Eq. 1, subject
to constraints shown in Eq. 2.

(M02) Mechanism that follows a path defined by five precision points.
Problem recovered from [14], the coupler must crosses through five points of precision
that form a curve. The precision points are:

Ω = {(3, 3) , (2.759, 3.363) , (2.372, 3.663) , (1.890, 3.862) , (1.355, 3.943)}. (6)

The design vector has nine variables (Eq. 3). The suggested upper and lower values
for each one of them are:

r1, r2, r3, r4 ∈ [0, 50] ,

rcx, rcy ∈ [−50, 50] ,

x0, y0, θ0 = 0.

(7)

The single-objective problem described in Eq. 1 is considered, subject to the constraints
shown in Eq. 2.

3 Constrained Success History Based Adaptive DE with
Linear Population Size Reduction

Proposed in [14], C-LSHADE is an algorithm focused on solving constrained optimiza-
tion problems. Its components were borrowed from previous proposals: the mutation
strategy was acquired from JADE [15], the historical memory 1.1 and the linear
population size reduction function were inherited from L-SHADE [13]. In order to solve
constrained problems, the Feasibility Rules constraint-handling technique was added
[1]. Its components are briefly detailed, but a full explanation can be found in [14].

Parameter control based on historical memory. A historical memory is
composed of MCR and MF structures of H dimensions for control parameters CR
and F . Parameters CRi and Fi of each individual are calculated by randomly selecting
a memory space with index ri ∈ [1, H] as well as using Eqs. 8 and 9 corresponding to
each one of them:

CRi =

{
0 if MCRri = ⊥
randni(MCRri , 0.1) otherwise,

(8)

Fi = randci (MFri , 0.1) , (9)
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where ⊥ = −1 is a threshold, randni a normal distribution and randci a Cauchy
distribution. If CRi exceeds its limits, it is biased to the nearest. Similarly, when Fi ≥ 1,
is truncated to 1 and if Fi ≤ 0 is regenerated. CRi,g and Fi that produced successful
solutions are stored in SCR and SF structures. In the same way, the difference between
objective functions values is stored in a similar structure. With the stored information,
the memory content is updated as indicated in the Algorithm 1.

Current-to-pbest mutation strategy. It includes information of the best in-
dividual with the aim to improve the convergence by varying the diversity of the
population; and a p parameter that limits the selection space to control the convergence
of the method during the search process. A representation of such operator is the
expressed in Eq. 10:

vi,g = xi,g + Fi ·
(
xpBestg

− xi,g
)

+ Fi · (xr1,g − xr2,g) , (10)

where xpBestg
is randomly selected from the 100p% of the population and p ∈ [0, 1].

Survivor Selection. C-LSHADE uses a constraint-handling technique called Fea-
siblility Rules, which is composed of the following three conditions:

– Between two infeasible individuals, the one with the smallest sum of constraint
violation (SVR or φx) is selected. SVR is expressed in Eq. 11.

– A feasible individual is preferable over an infeasible one.
– Between two feasible individuals, the one with the best objective function value is

preferred.

φx =

m∑
j=1

max(0, gj(x)). (11)

Update of historical memory spaces. The updating of the averages contained
in the memory is performed by Algorithm 1. In this, the index k ∈ [1, H] is associated
with the memory space to be updated. At the beginning k = 1, this is increased when
update memory is performed and restored if k > H. Moreover, meanWL is remitted
to the Lehmer’s weighted average (Eq. 12) where wk refers to the difference between
fitness functions values in order to provide information on the adaptation of parameters.

meanWL(SF ) =

∑|SF |
k=1 wk · S

2
F,k∑|SF |

k=1 wk · SF,k

, wk =
∆fx∑|SF |

k=1 ∆fx
,

∆fk = |f(uk,g)− f(xk,g)|.
(12)

Linear Population Size Reduction (LPSR). It linearly reduces the population
size with respect to the number of evaluations of the objective function, where its initial
size isNinit and at the end isNmin. The population size for each generation is calculated
according to Eq. 13:

NPG+1 = round

[(
Nmin −Ninit

MAX NFE

)]
∗NFE +Ninit, (13)
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Algorithm 1 Memory Update 1.1

1: if SCR 6= ∅ ySF 6= ∅ then
2: if MCR,k,g = ⊥ ormax (SCR) = 0 then
3: MCR,k,g+1 = ⊥;
4: else
5: MCR,k,g+1 = meanWL (SCR) ;
6: end if
7: MF,k,g+1 = meanWL (SF ) ;
8: k + +;
9: if k > H then
10: k = 1;
11: end if
12: else
13: MCR,k,g+1 = MCR,k,g;
14: MF,k,g+1 = MF,k,g;
15: end if

where MAX NFE is the maximun number of evaluations, and NFE is the current
number of evaluations of the objective function. This mechanism is activated when
NPG+1 < NPG, where NPG corresponds to number of individuals in the current
population.

Algorithm 2 is a general representation of C-LSHADE.

Algorithm 2 C-LSHADE
Require: H, p,Ninit, Nmin

Ensure: P (x)
1: Begin
2: NP = D ∗Ninit

3: Create P (xi,0) where i = 1,...,NP and evaluatef(xi,0)
4: Set the content of MCR,i,MF,i(i = 1, ..., H) = 0.5
5: g = 0, k = 1
6: while stop criteria not met do
7: Create SF = ∅, SCR = ∅, SDIF = ∅
8: Sort population indexes ascendingly
9: for i=1 to NP do
10: ri = randi (1, H)
11: Compute CRi,g y Fi,g based on the Eqs. 8 and 9
12: Create ui,g based on current-to-pbest/1/bin (Eq. 10)
13: if f(ui,g) < f(xi,g) based on Factible Rules then
14: xi,g+1 = ui,g

15: SCR = SCR ∪ CRi

16: SF = SF ∪ Fi

17: SDIF = SDIF ∪ |f (ui,g)− f (xi,g) |
18: end if
19: end for
20: Update memory based on the Algorithm 1
21: Compute NPg+1 according to Eq. 13
22: if NPg+1 < NP then
23: Sort population indexes ascendingly giving priority to the SVR and then to the fitness.
24: Delete worse NP −NPg+1.
25: end if
26: g + +
27: end while

4 Results and Analysis

To study the C-LSHADE components, the following configurations were proposed:
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– Constraint handling technique: Instead of the Feasibility Rules by ε-
Constrained [11] and Stochastic Ranking [7] methods were adopted.

– Linear population Size Reduction function: Deactivate it.
– Parameter adaptation scheme: Replace historical memory update algorithm

1.1 by version 1.0 proposed in [12], and compute CR per individual and F at
each generation.

Different variants of the algorithm were generated, grouped by the studied component
and denoted as follows: (1) corresponds to versions that have different constraint-
handling technique: LSHADE with ε-Constrained Method, ε-LSHADE, and LSHADE
with Stochastic Ranking, SR-LSHADE; (2) variants without the population reduction
mechanism: C-SHADE, ε-SHADE, and SR-SHADE; (3) variants with the historical
memory version 1.0: C-LSHADE 0, ε-LSHADE 0, and SR-LSHADE 0; and (4) variants
that compute CR and F dynamically: C-LDE, ε-LDE, and SR-LDE. A statistical
comparison among the C-LSHADE variants was carried out to achieve the purpose of
this study. The Kruskal-Wallis and the post-hoc Bonferroni tests were used. Each test
was applied with 95% confidence. The experiments were performed on a computer with
an Intel Core i7 - 2.5 GHz processor, 8 GB of RAM and 64-bit Windows 10 operating
system. The algorithms and statistical analysis were developed in the M language using
the MATLAB 2018a IDE. For all algorithms, 31 independent runs were performed to
solve both optimization problems and the parameters recommended in [14] were used:
H = 6, p = 0.11, Ninit = 18 and Nmin = 4. Likewise, the parameter values of the
constraint handling techniques were taken from [7,?]: for Stochastic Ranking Pf = 0.45
and for ε-Constrained cp = 0.5, θ0 = 0.2, Tc = 0.2MAX NFE. The stop criterion was
set at 400,000 maximun number of evaluations of the objective function (MAX NFE)
for M01 and 15,000 for M02. Case studies are treated as single-objective numerical
optimization problems subject to constraints (Eq. 2) with the aim to minimize the
trajectory tracking error. The complexity of the studies cases is high due to the amount
of precision points that the coupler’s point C must pass and the effort required to
find a combination of design variables that allow a successful solution compared to
the most known state-of-the-art algorithms. In general, all studied algorithms found
feasible solutions in every independent run. Figure 2 shows the Bonferroni test results
for the two test problems. There was significant differences in performance among
the algorithm variants with different constraint-handling techniques (C-LSHADE, ε-
LSHADE and SR-LSHADE) and those variants without the parameter adaptation
scheme (C-LDE, ε-LDE and SR-LDE), of which the latter obtained better results
for the M01 problem, see Figure 2a. Regarding this problem M01, all C-LSHADE
mechanisms were removed and the good performance was still present by using any
constraint-handling technique adopted in this paper. Concerning M02, those variants
without a population reduction mechanism (C-SHADE, ε-SHADE and SR-SHADE)
had a worse behavior, see Figure 2b. In contrast, the variants of group 4 (C-LDE, ε-
LDE and SR-LDE) demonstrated better performance than the rest. Regarding problem
MO2, the linear reduction is the only required mechanism by the algorithm to provide
better results.

5 Conclusions and Future Work

This work proposed an empirical study of the C-LSHADE algorithm in order to deter-
mine the importance of its components in solving two mechatronic design optimization
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(a) (b)

Fig. 2: Bonferroni post-hoc test based on final results. There are significant differences when the
confidence intervals do not overlap. A variant is considered with a better performance when its
confidence interval is closer to zero.

problems. The constraint-handling technique, the population size reduction and the
historical memory version for parameter adaptation were the mechanisms under study.
The overall results indicate that the only mechanism that must be present in the
algorithm to provide competitive results, particularly for the second test problem, is
the linear decreasing mechanism of the population size. In fact, a simplified version
of the algorithm could successfully resolve the first test problem. As future work, the
linear function for the population size reduction will be further analyzed and other case
studies will be solved.
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