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CHAPTER 1

PULSE CODE MODULATION

1.1 Digital Versus Analog Communication
Communications can be either analog or digital. We speak of analog communication when the transmitter sends one of a

continuum of possible signals. The transmitted signal could be the output of a microphone. Any tiny variation of the signal can
constitute another valid signal. More likely, in analog communication we use the source signal to vary a parameter of a carrier
signal. As we have seen in earlier courses, two popular ways to do analog communication are amplitude modulation (AM)
and frequency modulation (FM). In AM we let the carrier’s amplitude depend on the source signal. In FM it is the carrier’s
frequency that varies as a function of the source signal.

We speak of digital communication when the transmitted sends one of a finite set of possible signals. For instance, if we
communicate 1000 bits, we are communicating one out of 21000 possible binary sequences of length 1000. To communicate
our choice, we use signals that are appropriate for the channel at hand. No matter which signals we use, the result will be
digital communication. One of the simplest ways to do this is that each bit determines the amplitude of a carrier over a certain
duration of time. So the first bit could determine the amplitude from time 0 to T , the second from T to 2T , etc. This is the
simplest form of pulse amplitude modulation (PAM). There are many sensible ways to map bits to waveforms that are suitable
to channel, and regardless of the choice, it will be a form of digital communication.

It is important to note that the meaning of digital versus analog communication should not be confused with their meaning
in the context of electronic circuits. We can communicate digitally by means of analog or digital electronics and the same is
true for analog communication.

The difference between analog and digital communication might seem to be minimal at this point, but actually it is not. It
all boils down to the fact that in digital communication the receiver has a chance to exactly reconstruct the transmitted signal
because there is a finite number of possibilities to choose from. The signals used by the transmitter are chosen to facilitate the
receiver’s decision. One of the performance criteria is the error probability, and we can design systems that have such a small
error probability that for all practical purposes it is zero. The situation is quite different in analog communications. As there
is a continuum of signals that the transmitter could possible send, there is no chance for the receiver to reconstruct an exact
replica of the transmitted signal from the noisy received signal. It no longer makes sense to talk about error probability. If we
say that an error occurs every time that there is a difference between the transmitted signal and the reconstruction provided by
the receiver, then the error probability is always 1.

Example 1. Consider a very basic transmitter that maps a sequence b0, b1, b2, b3 of numbers into a sequence w(t) of rectangular
pulses of a fixed duration. The i th pulse has amplitude bi . Is this analog or digital communication? It depends on the alphabet
of bi , i = 0 ... , 3. If it is a discrete alphabet, like {−1.3, 0, 9, 2}, then we speak of digital communication. In this case there are
only m4 valid sequences b0, b1, b2, b3, where m is the alphabet size (in this case m = 4), and equal many possibilities for w(t).
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In principle, the receiver can compare the noisy channel output waveform against all these possibilities and choose the most
likely sequence. If the alphabet is R, then the communication is analog. In this case the noise will make it virtually impossible
for the receiver to guess the correct sequence.

The following is an example that illustrates the difference between analog and digital communication. Compare faxing a
text to sending an email over the same telephone line. The fax uses analog technology. It treats the document as a continuum
of gray levels. It does not differentiate between text or images. The receiver prints a degraded version of the original. And if
we repeat the operation multiple times by re-faxing the latest reproduction it will not take long until the result is dismal. Email
on the other hand is a form of digital communication. It is almost certain that the receiver reconstructs an identical replica of
the transmitted text.

1.1.1 Advantages of Digital Communications versus Analog Communications
Digital transmission of information has sufficiently overwhelming advantages that it increasingly dominates communication

systems, and certainly all new designs. In computer-to-computer communication, the information to be transported is inherently
digital. But information that at its source is inherently continuous time and continuous amplitude, like voice, music, pictures, and
video, can be represented, not exactly but accurately, by collection of bits. Some of the advantages of digital communications
over analog communication are listed below:

1. Digital communication transmits signals from finite alphabet, whereas digital communications transmits signals from an
uncountable infinite alphabet.

2. Digital communication is more rugged than analog communication because it can withstand channel noise and distortion
much better as long as the noise and distortion are within limits. Such is not the case with analog messages. Any distortion
or noise, no matter how small, will distort the received signal. In digital communication, we can use error-correction codes
to fight noise.

3. The greatest advantage of digital communication over analog communication, however, is the viability of regenerative
repeaters in the former. In an analog communication system, a message signal, as it travels along the channel, grows
progressively weaker, whereas the channel noise and the signal distortion, being cumulative, become progressively stronger.
Ultimately, the signal, overwhelmed by noise and distortion, is mutilated. Amplification is of little help because it
enhances the signal and the noise in the same proportion. Consequently, the distance over which an analog message can
be transmitted is limited by the transmitted power. If a transmission path is long enough, the channel distortion and
noise will accumulate sufficiently to overwhelm even a digital signal. The trick is to set up repeater stations along the
transmission path a distances short enough to be bale to detect signal pulses before the noise and distortion have a chance
to accumulate sufficiently. At each repeater station, the pulses are detected, and new, clean pulses are transmitted to
the next repeater station, which, in turn, duplicates the same process. If noise and distortion are within limits, pulses
can be detected correctly. This way the digital messages can be transmitted over long distances with greater reliability.
In contrast, analog messages cannot be cleaned up periodically, and the transmission is therefore less reliable. The most
significant error in PCM comes from quantizing.

4. Digital hardware implementation is flexible and permits the use of microprocessors, multiprocessors, digital switching, and
large-scale integrated circuits.

5. Digital signals can be coded to yield extremely low error rates and high fidelity as well. It is also easy to encrypt whereas
analog signals are hard to encrypt.

6. Digital signals are easy to compress, whereas analog signals are hard to compress.

7. It is easier and more efficient to multiplex several digital signals.

8. Digital communication is inherently more efficient than analog in realizing the exchange of SNR for bandwidth.

9. The cost of digital hardware continues to halve every two or three years, while performance or capacity doubles over the
same time period (relentless exponential progress in digital technology).
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1.2 Formatting Textual Data
The goal of the first essential signal-processing step, formatting, is to ensure that the message (or source signal) is compatible

with digital processing. Transmit formatting is a transformation from source information to digital symbols. When data
compression in addition to formatting is employed, the process is termed source coding.

Data already in digital format would bypass the formatting function. Textual information is transformed into binary digits
by use of a coder. Analog information is formatted using three separate processes: sampling, quantization, and coding. In all
cases, the formatting step results in a sequence of binary digits. These digits are to be transmitted through a baseband channel,
such as a pair of wires or a coaxial cable. However, no channel can be used for the transmission of binary digits without first
transforming the digits to waveforms that are compatible with the channel. For baseband channels, compatible waveforms are
pulses. After transmission through the channel, the pulse waveforms are recovered (demodulated) and detected to produce an
estimate of the transmitted digits; the final step, (reverse) formatting, recovers an estimate of the source information.

The original form of most communicated data (except from computer-to-computer transmissions) is either textual or analog.
If the data consists of alphanumeric text, they will be character encoded with one of several standard formats (ASCII, EBCDIC,
etc.). The textual material is thereby transformed into a digital format. Character coding, then, is the step that transforms
text into binary digits (bits).

Textual messages comprise a sequence of alphanumeric characters. When digitally transmitted, the characters are first
encoded into a sequence of bits, called bit stream or baseband signal. Groups of k bits can then be combined to form new
digits, or symbols, from a finite symbol set or alphabet of M = 2k such symbols. A system using a symbol set of size M is
referred to as M-ary system.

Example 2. For k = 1, the system is termed binary, the size of the symbol set is M = 2, and the modulator uses one of the
two different waveforms to represent the binary “one” and the other to represent the binary “zero”. For this example, the bit
rate and the symbol rate is the same.

Example 3. For k = 2, the system is termed quaternary or 4-ary, the size of the symbol set is M = 4, and at each time the
modulator uses one out of 4 different waveforms that represents the symbol.

If the information is analog, it cannot be character encoded as in the case of textual data; the information must first be
transformed into a digital format. The process of transforming an analog waveform into a form that is compatible with digital
communication system starts with sampling the waveform to produce a discrete pulse-amplitude-modulated waveform.

1.3 Analog Pulse Modulation
Pulse modulation involves communication using a train of recurring pulses. The key advantage in pulse modulation is that

one can send multiple signals using Time Division Multiplexing. There are several pulse modulation techniques

1. Pulse Amplitude Modulation (PAM)

2. Pulse Width Modulation (PWM)

3. Pulse Position Modulation (PPM)

4. Pulse Code Modulation (PCM)

1.3.1 Pulse Amplitude Modulation (PAM)
Now that we understand the essence of the sampling process, we are ready to formally define pulse-amplitude modulation

(PAM), which is the simplest and most basic form of analog pulse modulation techniques. In pulse-amplitude modulation
(PAM), the amplitudes of regularly spaced pulses are varied in proportion to the corresponding sample values of a continuous
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message signal; the pulses can be of a rectangular form or some other appropriate shape. Pulse-amplitude modulation as defined
here is somewhat similar to natural sampling, where the message signal is multiplied by a periodic train of rectangular pulses. In
natural sampling, however, the top of each modulated rectangular pulse is permitted to vary with the message signal, whereas
in PAM it is maintained flat. The waveform of a PAM signal is illustrated in Fig.1.1.

Figure 1.1: Flat-top sampling of a message signal.

The dashed curve in this figure depicts the waveform of the message signal and the sequence of amplitude-modulated
rectangular pulses shown as solid lines represents the corresponding PAM signal s(t). There are two operations involved in the
generation of the PAM signal

1. Instantaneous sampling of the message signal every seconds, where the sampling rate is chosen in accordance with the
sampling theorem.

2. Lengthening the duration of each sample, so that it occupies some finite value T .

In digital circuit technology, these two operations are jointly referred to as sample-and-hold. One important reason for inten-
tionally lengthening the duration of each sample is to avoid the use of an excessive channel bandwidth, since bandwidth is
inversely proportional to pulse duration. We will show that by using flat-top samples to generate a PAM signal, we introduce
amplitude distortion as well as a delay of T/2. Hence, we should be careful in how long we make the sample duration T .
The transmission of a PAM signal imposes rather stringent requirements on the amplitude and phase responses of the channel,
because of the relatively short duration of the transmitted pulses. Also, PAM suffers from serious DC component.

Furthermore, it may be shown that the noise performance of a PAM system can never be better than direct transmission
of the message signal. It should be evident from the waveform that a PAM signal has significant dc component and that
the bandwidth required to preserve the pulse shape far exceeds the message bandwidth. Consequently you seldom encounter
a single-channel communication system with PAM or, other analog pulse-modulated methods. But analog pulse modulation
deserves attention for its major role in time-division multiplexing (TDM), data telemetry, and instrumentation systems.

Mathematically, we can represent the PAM wave m(t) in Fig.1.1 as

s(t) =
∞∑

n=−∞
m(nTs)h(t − nTs) (1.1)

where h(t) is a rectangular pulse of unit amplitude and duration T defined as follows

h(t) =


1 0 < t < T

1/2 t = 0, t = T
0 otherwise

The instantaneously sampled version of the input signal m(t) is given by

ms(t) =
∞∑

n=−∞
m(nTs)δ(t − nTs) (1.2)
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Convolving ms(t) with the pulse h(t), we get

ms(t) ? h(t) =
∫ ∞
−∞
ms(τ)h(t − τ)dτ

=
∫ ∞
−∞

∞∑
−∞
m(nTs)δ(τ − nTs)h(t − τ)dτ

=
∞∑
−∞
m(nTs)

∫ ∞
−∞

δ(τ − nTs)h(t − τ)dτ

=
∞∑
−∞
m(nTs)h(t − nTs)

= s(t) (1.3)

Taking the Fourier transform of both sides of Eq. (1.3), we get

S(f ) = Ms(f )H(f ) = fsH(f )
∞∑
−∞
M(f −mfs) (1.4)

Finally, suppose that m(t) is strictly band-limited and that the sampling rate fs is greater than the Nyquist rate. Then, passing
s(t) through a low-pass reconstruction filter, we find that the spectrum of the resulting filter output is equal to M(f )H(f ).
This is equivalent to passing the original analog signal m(t) through a low-pass filter of transfer function H(f ). Since the H(f)
is given by

H(f ) = Tsinc(fT )e−jπfT (1.5)

we can infer that by using PAM to represent an analog message signal, we introduce amplitude distortion as well as delay of
T/2 (multiplication by e−jπfT = e−j2πf (T/2) in frequency domain corresponds to a shift of T/2 in time domain).

1.3.2 Pulse Width Modulation (PWM) and Pulse Position Modulation (PPM)
In pulse-amplitude modulation, pulse amplitude is the variable parameter. Pulse duration is the next logical parameter

available for modulation. In pulse-duration modulation (PDM), the samples of the message signal are used to vary the duration
of the individual pulses. This form of modulation is also referred to as pulse-width modulation (PWM). In Fig.1.2(a), the
modulating signal (a sawtooth signal) indicates the width of each pulse in the corresponding modulated pulse. See Fig.1.2(b).
PDM is wasteful of power, in that long pulses expend considerable power during the pulse while bearing no additional information.

(a)

(b)

(c)

Figure 1.2: Illustration of two different forms of pulse-time modulation for the case of a saw-tooth modulating wave. (a)
Modulating wave and Pulse carrier. (c) PDM wave. (d) PPM wave.

If this unused power is subtracted from PDM, so that only time transitions are essentially preserved, we obtain a more efficient
type of pulse modulation known as pulse-position modulation (PPM). In PPM, the position of a pulse relative to its unmodulated
time of occurrence is varied in accordance with the message signal, as illustrated in Fig.1.2(c).

Like PM and FM CW modulation, PPM has the advantage over PAM and PDM in that it has a higher noise immunity
since all the receiver needs to do is detect the presence of a pulse at the correct time; the duration and amplitude of the
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pulse are not important. Also, it requires constant transmitter power since the pulses are of constant amplitude and duration.
It is widely used in fiber optic communications and deep space communications, but has the disadvantage of depending on
transmitter-receiver synchronization.

In both PDM and PPM the amplitude remains constant, which offers robustness to non-linear amplitude distortion. Thus,
PPM is the best form among the pulse analog modulation techniques. Recall that FM is the best form of continuous wave (CW)
modulation. PPM and FM have a common feature represented by the fact that their noise performance, assessed by calculation
of the figure of merit, is proportional to the square of the transmission bandwidth normalized with respect to the message
bandwidth. The principle of improved noise performance with the increase in transmission bandwidth is called Bandwidth-Noise
trade off. Hence, the square-law is the best we can achieve using CW and analog pulse modulation in terms of Bandwidth-Noise
trade-off. Can an improved law of B-N trade-off be achieved? The answer can be found in pulse code modulation, which can
give an exponential law for B-N trade off.

1.4 Quantization
Discrete sources are a subject of interest in their own right (for text, computer files, etc.) and also serve as the inner layer for

encoding analog source sequences and waveform sources (see Fig.1.3). This section treats coding and decoding for a sequence
of analog values. Source coding for analog values is usually called quantization. Quantization is the process of representing a
large, possibly infinite, set of values with a smaller set.

Example 4. (Real-to-integer conversion)
Consider a source x of real number [−10, 10] which is to be quantized using a quantizer Q(x) = bx+0.5c. Hence, [−10, 10]→
{−10,−9,−8, ... ,−1, 0, 1, ... , 8, 9, 10}.

sampler quantizer discrete
encoder

reliable
binary
channel

discrete
decoder

table
lookup

analog
filter

analog
sequence

symbol
sequence

Figure 1.3: Encoding and decoding of discrete sources, analog sequence sources, and waveform sources.

The second step in digitizing an analog signal is to quantize the amplitude of the sampled signal xs(t). Quantization is the
process of mapping a set of continuous amplitudes (infinite number of levels) into a finite number of discrete values. Obviously,
this is a many-to-one mapping and, thus, in general we cannot recover exactly the analog signal from its quantized version. We
can, however, through appropriate design, minimize this distortion. We will refer to the distortion introduced by quantization
as quantization noise.
Let us assume that the analog signal to be quantized has amplitudes in the range −Vp ≤ V ≤ Vp volts, and that we map all
voltages in [−Vp;Vp] into L discrete levels. The obvious question (which does not in general have an obvious answer) is: how
do we choose these L discrete levels such that the quantization noise is minimized? In general, quantization is of two kinds:
scalar quantization and vector quantization. We will mainly focus on scalar quantization which also consists of two types:
uniform quantization and non-uniform quantization.

1.4.1 Scalar Quantization
A scalar quantizer partitions the set R of real numbers into M subsets R1, ... ,RM , called quantization regions. Assume

that each quantization region is an interval. Each region Rj is then represented by a representation point aj ∈ R. When the
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source produces a number u ∈ Rj , that number is quantized into the point aj . A scalar quantizer can be viewed as a function
{q(u) : R → R} that maps analog real values u into discrete real values q(u) where q(u) = aj for u ∈ Rj . The quantization
function q is a many-to-few, non-linear, irreversible, and deterministic mapping from the input u to the output q(u).

An analog sequence u1, u2, ... of real-valued symbols is mapped by such a quantizer into the discrete sequence q(u1), q(u2), ... .
Taking u1, u2, ... , as sample values of a random sequence U1,U2, ... , the map q(u) generates a random variable Qk for each Uk ;
Qk takes the value aj if Uk ∈ Rj . Thus each quantized output Qk is a discrete random variable with the alphabet {a1, ... , aL}.
The discrete random sequence Q1,Q2, ... , is encoded into binary digits, transmitted, and then decoded back into the same
discrete sequence. For now, assume that transmission is error-free.

We first investigate how to choose the quantization regions R1, ... ,RL , and how to choose the corresponding representation
points. Initially assume that the regions are intervals, ordered as in Figure.1.4, with R1 = (−∞, b1), R2 = (b1, b2),... ,
RL = (bL−1,∞). Thus an L−level quantizer is specified by L− 1 interval endpoints, b1, ... , bL−1, and L representation points,
a1, ... , aL.

3.2. SCALAR QUANTIZATION 65

why this assumption makes sense. Each region Rj is then represented by a representation point
aj ∈ R. When the source produces a number u ∈ Rj , that number is quantized into the point
aj . A scalar quantizer can be viewed as a function {v(u) : R → R} that maps analog real values
u into discrete real values v(u) where v(u) = aj for u ∈ Rj .

An analog sequence u1, u2, . . . of real-valued symbols is mapped by such a quantizer into the
discrete sequence v(u1), v(u2) . . . . Taking u1, u2 . . . , as sample values of a random sequence
U1, U2, . . . , the map v(u) generates an rv Vk for each Uk; Vk takes the value aj if Uk ∈ Rj . Thus
each quantized output Vk is a discrete rv with the alphabet {a1, . . . , aM}. The discrete random
sequence V1, V2, . . . , is encoded into binary digits, transmitted, and then decoded back into the
same discrete sequence. For now, assume that transmission is error-free.

We first investigate how to choose the quantization regions R1, . . . ,RM , and how to choose
the corresponding representation points. Initially assume that the regions are intervals, ordered
as in Figure 3.2, with R1 = (−∞, b1],R2 = (b1, b2], . . . ,RM = (bM−1,∞). Thus an M -level
quantizer is specified by M − 1 interval endpoints, b1, . . . , bM−1, and M representation points,
a1, . . . , aM .

✲✛
b1 b2 b3 b4 b5R1 R2 R3 R4 R5 R6✲ ✲ ✲ ✲ ✲ ✲✛ ✛ ✛ ✛ ✛✛

a1 a2 a3 a4 a5 a6

Figure 3.2: Quantization regions and representation points.

For a given value of M , how can the regions and representation points be chosen to minimize
mean-squared error? This question is explored in two ways:

• Given a set of representation points {aj}, how should the intervals {Rj} be chosen?

• Given a set of intervals {Rj}, how should the representation points {aj} be chosen?

3.2.1 Choice of intervals for given representation points

The choice of intervals for given representation points, {aj ; 1≤j≤M} is easy: given any u ∈ R,
the squared error to aj is (u − aj)

2. This is minimized (over the fixed set of representation
points {aj}) by representing u by the closest representation point aj . This means, for example,
that if u is between aj and aj+1, then u is mapped into the closer of the two. Thus the
boundary bj between Rj and Rj+1 must lie halfway between the representation points aj and

aj+1, 1 ≤ j ≤ M − 1. That is, bj =
aj+aj+1

2 . This specifies each quantization region, and also
shows why each region should be an interval. Note that this minimization of mean-squared
distortion does not depend on the probabilistic model for U1, U2, . . . .

3.2.2 Choice of representation points for given intervals

For the second question, the probabilistic model for U1, U2, . . . is important. For example, if
it is known that each Uk is discrete and has only one sample value in each interval, then the
representation points would be chosen as those sample values. Suppose now that the rv’s {Uk}

Figure 1.4: Quantization regions and representation points.

It needs to be mentioned at this stage that the quantization process introduces noise represented by the error or difference
between the input signal u and the quantized output signal q(u). This error is called quantization noise, and it introduces
distortion. When this error is made sufficiently small, the original message signal and the quantized signal become practically
indistinguishable to the human ear or eye depending on whether u is a voice or picture signal. This means that the analog
message can be approximated by a signal constructed at discrete amplitudes which are selected on a minimum error basis
from an available set. Clearly, the quantization noise can be reduced further by reducing the spacing between the adjacent
quantization levels or step-size. An important question that needs to be answered in order to design a quantizer is the following:
for a given value of L, how can the regions and representation points be chosen to minimize the mean-square quantization
error?

To answer the previous question, the probabilistic model for U1,U2, ... is important. For example, if it is known that each
Uk is discrete and has only one sample value in each interval, then the representation points would be chosen as those sample
values. Suppose now that the random variables {Uk} are i.i.d analog random variables with the pdf fU(u). For a given set of
points {aj}, Q(U) maps each sample value u ∈ Rj into aj . The distortion of the quantization noise is given by the random
variable D = U −Q(U). The mean-square distortion, or mean-squared quantization error (MSQE) is then

MSQE = E [D2] = E
[
(U −Q(U))2] =

∫ ∞
−∞

(u − q(u))2
fU(u)du =

L∑
j=1

∫
Rj
fU(u)(u − aj)2du (1.6)

In order to minimize (1.6) over the set of aj , it is simply necessary to choose aj to minimize the corresponding integral,
assuming that the regions are considered fixed. If the regions are not fixed, then we need to minimize (1.6) over the set of bj
as well.

In order to design an L−level quantizer, it is important to notice that the distortion equation contains in general (2L− 1)
unknowns, L quantization levels aj and (L − 1) quantization interval boundaries bj . Taking the derivatives of the distortion
given by Eq.(1.6) with respect to the (2L − 1) parameters and setting to zero every single equation, we obtain the following
conditions for the optimum quantization levels aj and quantization interval boundaries bj :

The MSQE can be written as

MSQE =
∫ b1

−∞
(u − a1)2

fU(u)du +
L−2∑
j=2

∫ bj+1

bj

(u − ai+1)2
fU(u)du +

∫ +∞

bL−1

(u − aL)2
fU(u)du (1.7)

Differentiating (1.7) with respect to bj yields
∂

∂bj
MSQE = fU(bj)

[
(bj − aj)2 − (bj − aj+1)2] = 0 (1.8)
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which results in
bj = 1

2 (aj + aj+1) (1.9)

To determine the quantized values aj , we differentiate (1.7) with respect to aj and define b0 = −∞ and bL = +∞. Thus, we
obtain

∂

∂aj
MSQE =

∫ bj
bj−1

2(u − aj)fU(u)du = 0 (1.10)

which results in

aj =

bj∫
bj−1

ufU(u)du

bj∫
bj−1

fU(u)du
=

bj∫
bj−1

ufU(u)du

P(bj−1 ≤ X ≤ bj)
=

bj∫
bj−1

ufU(u)du

pi
(1.11)

where pi , P(bj−1 ≤ X ≤ bj).
Thus, for the optimum uniform quantizer, we have:

1. The optimum quantization interval boundaries are at the midpoints of the optimum quantization values

bj = 1
2 (aj + aj+1)

2. The optimum quantization values are the centroids of the quantization intervals

aj =

bj∫
bj−1

ufU(u)du

bj∫
bj−1

fU(u)du

Although the above rules are very simple, they do not result in analytical solutions to the optimal quantizer design. The usual
method of designing the optimal quantizer is to start with a set of quantization regions and then using the second criterion, to
find the quantized values. Then, we design new quantization regions for the new quantized values, and alternating between the
two steps until convergence (when the distortion does not change much from one step to the next). This iterative numerical
method is known as the Max-Lloyd Algorithm. Based on this method, one can design the optimal quantizer for various source
statistics.

The Max-Lloyd algorithm
The Max-Lloyd algorithm is an algorithm for finding the endpoints {bj} and the representation points {aj} to meet the

above necessary conditions. The algorithm is almost obvious given the necessary conditions; the contribution of Lloyd and Max
was to define the problem and develop the necessary conditions. The algorithm simply alternates between the optimizations of
the previous subsections, namely optimizing the endpoints {bj} for a given set of {aj}, and then optimizing the points {aj} for
the new endpoints. The Max-Lloyd algorithm is as follows. Assume that the number M of quantizer levels and the pdf FU(u)
are given.

1. Choose an arbitrary initial set of M representation points a1 < a2 < · · · < aM .

2. For each j ; 1 ≤ j ≤ M − 1, set bj = 1
2 (aj + aj+1).

3. For each j ; 1 ≤ j ≤ M, set aj equal to the conditional mean of U given U ∈ (bj−1, bj) (where b0 and bM are taken to
be −∞ and +∞ respectively).

4. Repeat steps (2) and (3) until further improvement in MSE is negligible; then stop.
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The MSQE decreases (or remains the same) for each execution of step (2) and step (3). Since the MSQE is nonnegative, it
approaches some limit. Thus if the algorithm terminates when the MSE improvement is less than some given ε > 0, then the
algorithm must terminate after a finite number of iterations.

The problem with the Max-Lloyd algorithm is that the algorithm might reach a local minimum of MSQE instead of the
global minimum. This algorithm is a type of hill-climbing algorithm; starting with an arbitrary set of values, these values are
modified until reaching the top of a hill where no more local improvements are possible. A reasonable approach in this sort
of situation is to try many randomly chosen starting points, perform the Max-Lloyd algorithm on each and then take the best
solution. This is somewhat unsatisfying since there is no general technique for determining when the optimal solution has been
found.

1.4.2 Minimum Mean-Square Quantization Error (MMSQE)
Let us now derive an expression for the minimum distortion (MMSQE) incurred by an optimum scalar quantizer. Expanding
the quadratic term in Eq.(1.6) we have

MMSQE =
L∑
j=1

∫
Rj

(u − aj)2
fU(u)du

=
∫ ∞
−∞
u2fU(u)du +

L∑
j=1
a2j ·

∫
Rj
fU(u)du − 2

L∑
j=1
aj ·
∫
Rj
ufU(u)du

= σ2
U +

L∑
j=1
a2j · pj − 2

L∑
j=1
aj ·

∫
Rj ufU(u)du
pj

· pj

= σ2
U −

L∑
j=1
a2j · pj (1.12)

where σ2
U is the variance of U (we are assuming without loss of generality that U is zero-mean), and pj =

∫
Rj fU(u)du is the

probability of quantization values. The discrete random variable Q(U) takes values from the set of L optimum quantization
values with respective probabilities pj . Then, the mean of Q(U) is the same as the mean of U. This can be shown easily:

E [Q(U)] =
L∑
j=1
aj · pj =

L∑
j=1

∫
Rj ufU(u)du
pj

· pj =
∫ ∞
−∞
u · fU(u)du = E [U]

Since U is zero-mean, this means Q(U) is zero-mean and thus the sum in the last equality in (1.12) is in fact the variance of
Q(U); thus the MMSQE (Minimum mean-square quantization error) for the optimum quantizer is

MMSQE = σ2
U − σ2

Q(U) (1.13)

Example 5. (Two-levels optimum scalar quantizer.)
Consider a signal x(t) having a PDF fX (x) = 1− x2 for 0 ≤ x ≤ 2. Design a 2-levels optimum quantizer for x(t) and compute
its minimum MSQE (MMSQE).

Solution.

The dynamic range of the signal is equal to 2 Volts. Let the quantization regions be denoted by R1 = [0, b] and R2 = [1, 2],
with respective quantization values a1 and a2. Hence, we can write the following equations corresponding to the design of an
optimum quantizer

b = a1 + a2
2 , a1 =

b∫
0
x(1− x/2)dx

b∫
0

(1− x/2)dx
, a2 =

2∫
b

x(1− x/2)dx

2∫
b

(1− x/2)dx
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Evaluating a1 and a2, we get

a1 = −2b3 + 6b2

−3b2 + 12b , a2 = 2b3 − 6b2 + 8
3b2 − 12b + 12

Substituting in 2b = a1 + a2, we get the following polynomial in b

b4 − 10b3 + 32b2 − 40b + 16 = 0

The roots of the previous polynomials are: b = 2, b = 3 −
√

5 ' 0.76, b = 3 +
√

5 ' 5.23. The only feasible solution is
b = 3−

√
5, because 0 < b < 2. This value of b yields

a1 = 0.35, a2 = 1.17

As a result, the MMSQE can be computed as follows

MMSQE =
∫ 0.76

0
(x − 0.35)(1− x/2)dx +

∫ 2

0.76
(x − 1.17)(1− x/2)dx = 0.0619

1.4.3 Uniform Quantization
This section analyzes the performance of uniform scalar quantizers. For a uniform scalar quantizer, every quantization

interval Rj has the same length |Rj | = ∆. In other words, R (or the portion of R over which fU(u) > 0), is partitioned into
equal intervals, each of length ∆. See Fig. 1.5.
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Again, this follows from the fact that the log of the joint probability density of independent rv’s
is additive, i.e., − log fUV (u, v) = − log fU (u) − log fV (v).

Thus the differential entropy of a vector rv U n, corresponding to a string of n iid rv’s
U1, U2, . . . , Un, each with the density fU (u), is h[U n] = nh[U ].

3.7 Performance of uniform high-rate scalar quantizers

This section analyzes the performance of uniform scalar quantizers in the limit of high rate.
Appendix A continues the analysis for the nonuniform case and shows that uniform quantizers
are effectively optimal in the high-rate limit.

For a uniform scalar quantizer, every quantization interval Rj has the same length |Rj | = ∆.
In other words, R (or the portion of R over which fU (u) > 0), is partitioned into equal intervals,
each of length ∆.

✲✛ R−1 R0 R1 R2 R3 R4✲ ✲ ✲ ✲ ✲ ✲ ✲✛ ✛ ✛ ✛ ✛ ✛ ✛

a−1 a0 a1 a2 a3 a4

✲✛ ∆

· · ·
· · · · · ·

· · ·

Figure 3.7: Uniform scalar quantizer.

Assume there are enough quantization regions to cover the region where fU (u) > 0. For the
Gaussian distribution, for example, this requires an infinite number of representation points,
−∞ < j < ∞. Thus, in this example the quantized discrete rv V has a countably infinite
alphabet. Obviously, practical quantizers limit the number of points to a finite region R such
that

∫
R fU (u) du ≈ 1.

Assume that ∆ is small enough that the pdf fU (u) is approximately constant over any one
quantization interval. More precisely, define f(u) (see Figure 3.8) as the average value of fU (u)
over the quantization interval containing u,

f(u) =

∫
Rj

fU (u)du

∆
for u ∈ Rj . (3.6)

From (3.6) it is seen that ∆f(u) = Pr(Rj) for all integer j and all u ∈ Rj .

fU (u)
f(u)

Figure 3.8: Average density over each Rj .

The high-rate assumption is that fU (u) ≈ f(u) for all u ∈ R. This means that fU (u) ≈ Pr(Rj)/∆
for u ∈ Rj . It also means that the conditional pdf fU |Rj

(u) of U conditional on u ∈ Rj is

Figure 1.5: Uniform scalar quantizer.

A uniform or linear quantizer has all the quantization levels uniformly distributed in the interval [−Vp;Vp] (except possibly
the two intervals at the boundaries when the range of possible amplitudes is infinite). In other words, the interval [−Vp;Vp]
is subdivided into L quantization intervals, and the quantization amplitudes are assigned at the center of each quantization
interval.

Example 6. (Uniform quantizer)
Consider a 4-level quantization (L = 4). For a uniform quantizer, the quantization intervals and their corresponding quantized
amplitudes are as shown in Fig. 1.6. Any amplitude x within a quantization interval is assigned to the voltage in the middle of
that interval (except again possibly for the boundary intervals).

Thus, the input-output characteristic of a uniform quantizer is a stair case type characteristic and the spacing between two
adjacent quantization levels ak−1 and ak is called a “quantum” or “step-size”, and is denoted by ∆. A look at non-uniform
quantization will be taken later.

Definition 1. (Quantizer Bit-rate)
If the number of possible quantizer’s outputs is L (L-level quantizer), then the quantizer bit rate is R = dlog2 Le. Alternatively,
we refer to the L−level quantizer as an R−bit quantizer.

Uniform quantizers are usually of two types:
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Figure 1.6: 4-Level uniform quantization.

1. Midrise quantizer : zero is not an output level. See Fig. 1.7(a).

2. Midtread quantizer (Dead-Zone quantizer): zero is an output level. See Fig. 1.7(b).

Figure 1.7: (a) Midrise uniform quantizer. (b) Midtread uniform quantizer

1.4.4 Quantization Noise
An important performance measure for quantizers is the signal-to-quantization noise ratio (SQNR), defined by

SQNR = PU
D

(1.14)

where for stationary stochastic processes U(t): PU = E [U2] and D = E [(U − Q(U))2]. The previous definitions can be
extended to non-stationary processes:

PU = lim
T→∞

1
T

∫ T/2
−T/2

E [U2(t)]dt

D = lim
T→∞

1
T

∫ T/2
−T/2

E
{

[U(t)−Q(U(t))]2
}
dt

For the optimum quantizer of a zero-mean source (PU = σ2
U), the SQNR becomes:

SQNR = σ2
U

σ2
U − σ2

Q(U)
(1.15)

Example 7. (SQNR for a uniform quantizer)
Let the input x(t) be a sinusoid of amplitude V volts. It can be argued that all amplitudes in [−V ,V ] are equally likely. Then,
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if the step size of a uniform quantizer is ∆, the quantization error d(x) = x − x̂ can be argued to be uniformly distributed in
the interval

(
−∆

2 , ∆
2
)
. Then,

D = E [d2(X )] = 1
∆

∫ ∆/2

−∆/2
y2dy = ∆2

12 (1.16)

Also, for a sinusoidal signal

PX = V
2

2
Assuming we have an N-bit quantizer, then we have L = 2N quantization intervals that partition the 2V amplitude range. Thus,

∆ = 2V
2N

and the SQNR in dB units is

SQNR = 10 log10

(
PX
D

)
= 10 log10

(
3× 4N

2

)
= 6.02N + 1.76dB. (1.17)

Therefore, it can be seen here that to reduce the quantization noise, ∆ needs to be reduced. With the assumption that the
quantization levels need to cover the entire dynamic range of the analog message, the reduction of ∆ is equivalent to an increase
in the number of quantization levels. Also, for every additional bit of quantization, we improve the SQNR performance by about
6 dB (not a small amount).
It needs to be noted here that each quantization level is to be represented by a binary codeword formed by a specific number
of binary digits, or bits. This representation permits the transmission of the quantization levels in binary form. Let R be the
number of bits per sample used in the construction of the binary code. Then, we can write: L = 2R , under the assumption of
a fixed length coding.
Also, the average power of the quantization noise; i.e., E (d2) = ∆2

12 , becomes:

E (d2) = 4V 2

12L2 = 1
3V

22−2R ⇒ SQNR = 3PX22R

V 2

Example 8. Consider an audio signal m(t) = 3 cos(500πt). How many bits of quantization are needed to achieve an SQNR
of at least 40 dB?

Solution.
SQNR = P

(∆2/12) = 12× 4.5
∆2 = 54

∆2

Since SQNR ≥ 104, hence ∆ ≤ 7.35 × 10−2. Since ∆ = 6
2N , then 2N > 81.6. Choosing N = 7 will achieve an SQNR of at

least 40 dB.

Example 9. (Darkening and contouring effect of image quantization.)

1.4.5 Non-Uniform Quantization/Companding
As long as the statistics of the input signal are close to the uniform distribution, uniform quantization works fine. However, in

coding for certain signals such as speech, the input distribution is far from being uniformly distributed. For a speech waveform,
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Figure 1.8: The effect of increasing the quantization levels on reconstructing an image.

in particular, there exists a higher probability for smaller amplitudes and lower probability for larger amplitudes. If we use a
uniform quantizer for such signals, the distortion will be high. In fact, speech signals are modeled as having a Gamma or
Laplacian distribution, peaking about zero (that does not mean that 0 Volt has the peak highest probability).

Therefore, it makes sense to design a quantizer with more quantization regions at lower amplitudes and less quantization
regions at larger amplitudes. The resulting quantizer will be a nonuniform quantizer having quantization regions of various
sizes. See Fig. 1.9.

Figure 1.9: 3-bit non-uniform quantizer. (a) Laplacian pdf. (b) Input-output characteristic.

For example, the range of voltages covered by voice signals, from the peaks of loud talk to the weak passages of weak talk,
is on the order of 1000 to 1. By using a non-uniform quantizer with the feature that the step size increases as the separation
from the origin of the input-output amplitude characteristic is increased, the large end-step of the quantizer can take care of
possible excursions of the voice signal into the large amplitude ranges that occur relatively infrequently. In other words, the weak
passages that need more protection are favored at the expense of the loud passages. In this way, a nearly uniform percentage
precision is achieved throughout the greater part of the amplitude range of the input signal, with the result that fewer steps
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are needed than would be the case if a uniform quantizer were used. Fig. 1.10 illustrates a comparison between uniform and
non-uniform quantization for a speech voltage signal.

Figure 1.10: Comparison between uniform and non-uniform quantization for a speech voltage signal.

We saw above that uniform quantizers are easy to built and implement. However, their performance can be poor for practical
sources. Non-uniform, optimum quantizers on the other hand have optimum performance, but their optimality assumes perfect
knowledge of the source statistics and they are not robust to variations in these statistics. In many practical systems, the
need for robustness and good performance (although not optimal) can be met by pre-distorting the source signals through an
invertible non-linearity in order to make the amplitudes at the output of the non-linearity be more uniform. In this case, a simple
uniform quantizer can be used. The process of pre-distorting the signal at the transmitter is known as (signal) compression
and is performed using a compressor. To restore the reconstructed quantized and compressed signal to its correct amplitude
levels, a device, called an expander, is used at the receiver. The expander law is the inverse of the compressor law. The two
operations together are typically referred to as companding.

Figure 1.11: Companding of voice signal.

The use of a nonuniform quantizer is equivalent to passing the message signal through a compressor and then applying the
compressed signal to a uniform quantizer. A particular form of compression law that is used in practice is the so called µ-law
defined by

|v | = ln(1 + µ|m|)
ln(1 + µ) (1.18)

where the logarithm is the natural logarithm; m and v are respectively the normalized input and output voltages, and µ is
a positive constant. For convenience of presentation, the input to the quantizer and its output are both normalized so as to
occupy a dimensionless range of values from zero to one, as shown in Fig.1.12(a); here we have plotted the µ-law for varying µ.
Practical values of µ tend to be in the vicinity of 255. The case of uniform quantization corresponds to µ = 0. For a given µ,
the reciprocal slope of the compression curve, which defines the quantum steps, is given by the derivative of |m| which respect
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to |v |; that is,
d |m|
d |v |

= ln(1 + µ)
µ

(1 + µ|m|) (1.19)

We see therefore that the µ-law is neither strictly linear nor strictly logarithmic, but it is approximately linear at low input levels
corresponding to µ|m| << 1, and approximately logarithmic at high input levels corresponding to µ|m| >> 1.

The µ-law used for signal compression is used in the United States, Canada, and Japan. In Europe, another compression
law known as the A-law is used for signal compression. The A-law is defined by

|v | =
{

A|m|
1+lnA 0 ≤ |m| ≤ 1

A
1+ln(A|m|)

1+lnA
1
A
≤ |m| ≤ 1

(1.20)

which is shown in Fig.1.12(b). Typical values of A used in practice tend to be in the vicinity of 100. The case of uniform
quantization corresponds to A = 1. The reciprocal slope of this second compression curve is given by the derivative of |m| with
respect to |v |, as shown by

d |m|
d |v |

=
{ 1+lnA

A
0 ≤ |m| ≤ 1

A

(1 + lnA)|m| 1
A
≤ |m| ≤ 1 (1.21)

To restore the reconstructed quantized and compressed signal to its correct amplitude levels, a device, called an expander, is
used at the receiver. The expander law is the inverse of the compressor law.

Note that the µ−law is used in T1 digital telephony systems (using twisted cables) that achieve a bit rate of 1.544 Mbits/s,
and the A−law is used in E1 digital telephony systems (using coaxial cables or twisted cables) that achieve a bit rate of 2.048
Mbits/s.

Figure 1.12: The µ-law and the A-law.

Example 10. Consider a message signal m(t) with a dynamic range between 2 and 8 volts.The signal m(t) is inputed to a
compressor using the µ-law with µ = 255. Assume that the number of quantization levels used without compression is 64.
Determine the improvement in SQNR that is made available by the use of the compressor assuming that the message signal
average power prior to and after the use of the compressor did not change.

Solution. The normalized input signal, |m|, is between (2/8) = 0.25 and (8/8) = 1 volts. The normalized output is between
|v | = ln(1+255×0.25)

ln(1+255) = 0.752 and |v | = 1. Before compression, (SQNR)i = Pi
(∆2/12) = 12Pi

(0.75/64)2 . After compression,
(SQNR)0 = 12P0

(0.248/64)2 . Since Pi = P0, then the improvement in the SQNR is:

10 log10
(SQNR)0

(SQNR)i
= 9.6dB
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Example 11. Consider a 16-level uniform quantizer designed for a signal with dynamic range ±10 Volts. Consider an input
signal of 1.2 V.

1. Find the step size ∆.

2. Find the minimum quantization error.

3. Find the quantization error for the input signal.

4. Assume the use of a µ−law compander. Take µ = 255.

(a) Find the compressor’s output.
(b) Find the uniform quantizer’s output.
(c) Find the quantization error for the input signal.

Solution.
L = 16, 2A = 10

1. ∆ = 20
16 = 1.25

2. −∆/2 = −0.625

3. d = m̂ −m = 1.25
2 − 1.2 = −0.575

4. (a) m = 1.2, hence the normalized input is |m| = 1.2
10 = 0.12

|v | = ln(1 + 255(0.12))
ln(1 + 255) = 0.6227 ' 0.623

Hence, the input to the uniform quantizer is 10(0.623) = 6.23.
(b) The uniform quantizer output is now 4.5∆ = 4.5(1.25) = 5.625.
(c) 5.625 is now at the input of the expander:

1
255

[
(1 + 255) 5.625

10 − 1
]

= 0.0848

Multiplying back by the normalization factor, we get 0.084 × 10 = 0.848. Hence, the quantization error is e =
0.848− 1.2 = −0.352.

1.5 Pulse Code Modulation (PCM)
With the sampling and quantization processes at our disposal, we are now ready to describe pulse-code modulation (PCM),

which is the most basic form of digital pulse modulation. In PCM, a message signal is represented by a sequence of coded
pulses, which is accomplished by representing the signal in discrete form in both time and amplitude.The basic operations
performed in the transmitter of a PCM system are sampling, quantization,and encoding, as shown in Fig.1.13; the low-pass
filter prior to sampling is included merely to prevent aliasing of the message signal. The quantizing and encoding operations
are usually performed in the same circuit, which is called an analog-to-digital converter. The analog message is sampled and
quantized to one of L levels; then each quantized sample is digitally encoded into an `-bit (` = log2 L) codewords. For baseband
transmission, the codeword bits will then be transformed to pulse waveforms. The essential features of binary PCM are shown
in Fig.1.14. Assume that an analog signal x(t) is limited in its excursions to the range −4 to +4. The step size between
quantization levels has been set at 1 V. Thus, eight quantization levels are employed; these are located at −3.5,−2.5, · · ·, +3.5
V. We assign the code number 0 to the level at −3.5 V, the code number 1 to the level at −2.5 V, and so on, until the level at
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Figure 1.13: Basic steps in a PCM transmitter.

Figure 1.14: Natural sampling, uniform quantization and PCM

3.5 V, which is assigned the code number 7. Each code number has its representation in binary arithmetic, ranging from 000
for code number 0 to 111 for code number 7. Why have the voltage levels been chosen in this manner, compared with using
a sequence of consecutive integers, 1, 2, 3, ...? The choice of voltage levels is guided by two constraints. First, the quantile
intervals between the levels should be equal; and second, it is convenient for the levels to be symmetrical about zero.

Note that each sample is assigned to one of eight levels or three-bit PCM sequence. Suppose that the analog signal is
a musical passage, which is sampled at the Nyquist rate. And, suppose that when we listen to the music in digital form, it
sounds terrible. What would we do to improve the fidelity? Increasing the number of levels will reduce the quantization noise.
If we double the number of levels to 16, what are the consequences? In that case, each analog sample will be represented as a
four-bit sequence. Will that cost anything? In a real-time communication system, the messages must not be delayed. Hence,
the transmission time for each sample must be the same, regardless of how many bits represent the sample. Hence, when there
are more bits per sample, the bits must move faster; in other words, they must be replaced by “skinnier” bits. The data rate is
thus increased, and the cost is a greater transmission bandwidth. This explains how one can generally obtain better fidelity at
the cost of more transmission bandwidth. Be aware, however, that there are some communication applications where delay is
permissible. For example, consider the transmission of planetary images from spacecraft. The Galileo project, launched in 1989,
was on such a mission to photograph and transmit images of the planet Jupiter. The Galileo spacecraft arrived at its Jupiter
destination in 1995. The journey took several years; therefore, any excess signal of several minutes (or hours or days) would
certainly not be a problem. In such cases, the cost of more quantization levels and greater fidelity need not be bandwidth; it
can be time delay.

1.5.1 Regenerative Repeaters
The most important feature of a PCM system lies in the ability to control the effects of distortion and noise produced by

transmitting a PCM signal over a channel. This capability is accomplished by reconstructing the PCM signal by means of a
chain of regenerative repeaters located at sufficiently close spacing along the transmission route. Three basic functions are
performed by a regenerative repeater: equalization, timing, and decision making.
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The equalizer shapes the received pulses so as to compensate for the effects of amplitude and phase distortions produced by
the transmission characteristics of the channel. The timing circuitry provides a periodic pulse train, derived from the received
pulses; this is done for renewed sampling of the equalized pulses at the instants of time where the signal-to-noise ratio is a
maximum. The sample so extracted is compared to a predetermined threshold in the decision-making device. In each bit
interval, a decision is then made on whether the received symbol is a 1 or 0 on the basis of whether the threshold is exceeded
or not. If the threshold is exceeded, a clean new pulse representing symbol 1 is transmitted to the next repeater. Otherwise,
another clean new pulse representing symbol 0 is transmitted. In this way, the accumulation of distortion and noise in a repeater
span is removed, provided the disturbance is not too large to cause an error in the decision-making process. Ideally, except for
delay, the regenerated signal is exactly the same as the information-bearing signal that was originally transmitted.

The repeater is formed by a matched filter followed by a sampler and a decision-making device. In fact, this combination
of devices is also used at the front end of the PCM decoder. The matched filter has the role of maximizing the output signal-
to-noise ratio. It will be studied in the next chapter. The sampler, which is supplied with a timing circuit, samples the matched
filter output at the time instants where the signal-to-noise ratio is maximum.

Example 12. Consider the following bit stream received at the front end of a receiver:

1011001010110100110001001100001010110101

Assume that the bit 1 on the right-hand side of the sequence is the first received bit. Let also, the digit on the right of the
codeword be transmitted first. Hence, the binary sequence is to be decoded as follows with R = 8:

10110101→ 1× 27 + 0× 26 + 1× 25 + 1× 24 + 0× 23 + 1× 22 + 0× 21 + 1× 20 = 181

11000010 → 194; 11000100 → 196; 10110100 → 180; 10110010 → 178. The regeneration of the quantized signal can be
shown as below (generating a PAM signal):

1.6 Baseband Modulation
It was shown in previous section how analog waveforms are transformed into binary digits via the use of PCM. There is nothing
“physical” about the digits resulting from this process. Digits are just abstractions- a way to describe the message information.
Thus, we need something physical that will represent or “carry” the digits.

We will represent the binary digits with electrical pulses in order to transmit them through a baseband channel. See Fig.1.15.
The sequence of electrical pulses having the pattern shown in Fig.1.15(b) can be used to transmit the information in the PCM
bit stream, and hence the information in the quantized samples of a message.

The presence or absence of a pulse is a symbol. A particular arrangement of symbols used in a code to represent a single
value of the discrete set is called a codeword. In a binary code, each symbol may be either of two distinct values, such as a
negative pulse or positive pulse. The two symbols of the binary code are customarily denoted as 0 and 1. In practice, a binary
code is preferred over other codes (e.g., ternary code) for two reasons:

1. The maximum advantage over the effects of noise in a transmission medium is obtained by using a binary code, because
a binary symbol withstands a relatively high level of noise.

2. The binary code is easy to generate and regenerate.

Suppose that, in a binary code, each code word consists of R bits (the bit is an acronym for binary digit). Then R denotes the
number of bits per sample. Hence, by using such a code, we represent a total of 2R distinct numbers. For example, a sample
quantized into one of 256 levels may be represented by an 8-bit code word.

1.6.1 PCM Waveforms Types
When pulse modulation is applied to a binary symbol, the resulting binary waveform is called a PCM waveform. There are

several types of PCM waveforms that are described and illustrated in Fig.1.16; in telephony applications, these waveforms are
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Figure 1.15: Example of waveform representation of binary digits. (a) PCM sequence. (b) Pulse representation of PCM. (c)
Pulse wave-form

often called line codes. When pulse modulation is applied to non-binary symbol, the resulting waveform is called an M-ary pulse
waveform, of which there are several types.The PCM waveforms fall into the following four groups:

1. Non-return to zero (NRZ)

2. Return to Zero (RZ)

3. Phase encoded

4. Multilevel binary

The NRZ group is probably the most commonly used PCM waveform. It can be partitioned into the following subgroups:
NRZ-L (L for level), NRZ-M (M for mark), and NRZ-S (S for space). A binary one is represented by one voltage level and a
binary zero is represented by another voltage level. There is a change in level whenever the data change from a one to a zero or
from a zero to a one. With NRZ-M, the one, or mark, is represented by a change in level, and the zero, or space, is represented
by no change in level. NRZ-L is used in digital logic circuits, NRZ-M is used primarily in magnetic tape recording.

The RZ waveforms consist of unipolar-RZ, bipolar-RZ, and RZ-AMI. These codes find application in baseband data trans-
mission and in magnetic recording. With unipolar-RZ, a one is represented by a half-bit-wide pulse, and a zero is represented
by the absence of a pulse. With bipolar-RZ, the ones and zeros are represented by opposite-level pulses that are one-half bit
wide. There is a pulse present in each bit interval. RZ-AMI (“alternate mark inversion”) is a signaling scheme used in telephone
systems. The ones are represented by equal-amplitude alternative pulses. The zeros are represented by the absence of pulses.

The phase-encoded group consists of bi-φ-L (bi-phase-level), better known as Manchester coding ; bi-φ-M (bi-phase-mark);
bi-φ-S (bi-phase-space); and delay modulation (DM), or Miller coding. The phase-encoding schemes are used in magnetic
recording systems and optical communications and in some satellite telemetry links. With bi-φ-L, a one is represented by a
half-bit-wide pulse positioned during the first half of the bit interval; a zero is represented by half-bit-wide pulse positioned
during the second half of the bit interval. With bi-φ-M, a transition occurs at the beginning of every bit interval. A one is
represented by a second transition one-half bit interval later; a zero is represented by no second transition. With bi-φ-S, a
transition also occurs at the beginning of every bit interval. A one is represented by no second transition; a zero is represented
by a second transition one-half bit interval later. With delay modulation, a one is represented by a transition at the mid-point
of the interval. A zero is represented by no transition, unless it is followed by another zero. In this case, a transition is placed at
the end of the bit interval of the first zero. The previously shown line codes differ not only in their time domain representations
but also in their power spectra as to whether they contain DC components represented by impulse functions (RZ contains
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Figure 1.16: Various PCM Line Codes

DC components which cause a loss of power). Also, the line spectra differ in the required transmission bandwidth. Since the
transmission bandwidth is inversely proportional to the bit duration, then RZ needs twice the bandwidth required for NRZ.

1.6.2 Bit Rate, Bit Duration and Bandwidth in PCM
The bit rate in PCM depends on the sampling rate, 1/Ts , the number of quantization levels L, and the numbers of bits per

sample R. The bit rate is given by
Rb = R

Ts
(1.22)

For a fixed length binary code, L = 2R . Hence, R = log2 L and Rb = log2 L
Ts

. The bit duration is the inverse of the bit rate:

Tb = 1
Rb

= Ts
R

(1.23)

For the case of NRZ line codes, the transmission bandwidth is:

BT = 1
Tb

= R

Ts
(1.24)

For the case of RZ line codes, the transmission bandwidth is twice as much:

BT = 2R
Ts

(1.25)
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Of course the bandwidth computed as above considers the baseband binary transmission case without the involvement of a
modulation carrier. Also, the bandwidth is defined by accounting for the significant frequency components of the different line
codes. These components are assumed contained between 0 and the first or second zero crossing of the power spectra of the
line codes with the frequency axis.

Example 13. Consider an analog message of bandwidth 4KHz. The message is sampled at a rate equal to the Nyquist rate
and quantized to 256 levels. Determine the bit rate, bit duration and the required transmission bandwidth under the use of
binary ON-OFF (Unipolar RZ) baseband transmission technique.

Solution. Rb = log2 L/Ts = 2 × 4 × log2(256) = 64 Kbits/s. Bit duration is Tb = 1/Rb = 1/64000 = 15.6µs. The
transmission bandwidth is BT = 128 KHz.

Example 14. A sinusoidal signal m(t) band-limited to 3 KHz is sampled at a rate 33.33% higher than the Nyquist rate. The
maximum quantization error is 0.5% of the peak amplitude. The quantized samples are binary coded. Find the minimum
bandwidth of the channel required to transmit the encoded binary signal.

Solution. The Nyquist rate is fN = 2 × 3000 = 6 KHz. The sampling rate is fs = 6000 × 1.33 = 8 KHz. The quantization
step is ∆, and the maximum quantization error is ∆/2. Therefore, ∆/2 = mp/L = (0.5/100)mp. Hence, L = 200.
For binary coding, L must be a power of 2. Therefore, the next higher value of L that is a power of 2 is L = 256 = 2n, giving
n = 8 bits per sample. We require to transmit a total of 8× 8000 = 64 Kbits/s.
Noiseless channels of bandwidth B Hz can transmit a signal of bandwidth B Hz. To reconstruct the signal, we need a minimum
of 2B samples (Nyquist rate). Thus, a channel of B Hz can transmit 2B pieces of information, i.e., 2 pieces of information per
Hz. Hence, in binary we can send 2 bits/s per Hz of bandwidth. Therefore, we require a minimum transmission bandwidth of
64/2 = 32KHz .

1.7 Virtues, Limitations and Modifications of PCM
The following advantages can be noted for PCM systems:

1. Good performance in the presence of channel noise and interference.

2. Efficient regeneration of the coded signal along the transmission path.

3. Efficient exchange of increased channel bandwidth for improved signal- to-noise ratio obeying an exponential law.

4. A uniform format for the transmission of different kinds of baseband signals. This allows the integration of these signals
in a common network.

These advantages, however, are attained at the cost of increased system complexity and channel bandwidth. For instance, if
we desire to to send a 4 KHz voice signal using PCM (µ−law), it requires 8000 samples/sec times 8 bits/s sample or 64000
bits/sec. Hence, depending upon the type of line coding and pulse shaping used, the digitized voice signal could require a
bandwidth of roughly 64 KHz, or 16 times that of the analog signal. Although certain advantages accrue with this bandwidth
expansion, engineers began to wonder if this bit rate could be reduced without affecting the quality and intelligibility of the
speech. Therefore, we will examine techniques for reducing the bit rate required to represent speech, images, or other messages,
with some minimum or acceptable loss in fidelity. Signals such as speech and images are called sources, and the methods
employed for bit rate reduction are variously said to be performing redundancy removal, entropy reduction, data compression,
source coding, or source coding with a fidelity criterion. In the next sections we present DPCM and DM compression techniques
which permit the removal of redundancies which are usually present in a PCM signal and this leads to a reduction in the bit
rate of the transmitted data without a serious degradation in system performance.

In fact, the use of data compression techniques adds to the system complexity and, thus, to the cost of implementation. But,
this cost increase is traded off for a reduced bit rate and therefore reduced bandwidth requirement. Although PCM involves the
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use of complex operations, today they can be implemented using commercially available VLSI chips. If, however, the simplicity
of implementation is desired, then Differential Pulse Code Modulation (DPCM) or Delta Modulation (DM) can be used as
alternatives to PCM. In DPCM and DM, an intentional oversampling of the message signal is performed to allow for the use of
a simple quantization strategy. The increase in transmission bandwidth was a reason for concern in the past. Today, however,
it is not a real concern for two reasons: the first is the availability of wideband communication channels. This has been made
possible by the deployment of communications satellites for broadcasting and ever increasing use of fiber optics for networking.
The second is the use of data compression techniques.

1.8 Differential Pulse-Code Modulation (DPCM)
Differential Pulse-Code Modulation is a data compression technique aimed at reducing the bit rate as compared to PCM

while maintaining the same signal quality. When a voice or video signal is sampled at a rate slightly higher than the Nyquist
rate, the resulting sampled signal is found to exhibit high correlation between adjacent samples. The exception is the case when
the spectrum of the process is flat within its bandwidth. The meaning of this high correlation is that, in an average sense, the
signal does not change rapidly from one sample to the next. When these highly correlated samples are encoded, as in standard
PCM system, the resulting encoded signal contains redundant information. Actually, some number of adjacent samples could
be quantized to the same level and this leads to the generation of the same codeword in successive sampling intervals. This
means that symbols that are not absolutely essential to the transmission of information are generated as a result of the encoding
process. By removing this redundancy before encoding, we obtain a more efficient coded signal.

Now, if we know a sufficient part of a redundant signal, we may infer the rest, or at least make the most probable estimate.
In particular, if we know the past behavior of a signal up to a certain point in time, it is possible to make some inference about
its future values; such a process is commonly called prediction. Suppose that a message signal m(t) is sampled at the rate
1/Ts to produce a sequence of correlated samples Ts seconds apart; which is denoted by {m(kTs)} (we will drop the Ts term
in the following analysis just to simplify the notations). The fact that it is possible to predict future values of the signal m(t)
provides motivation for the differential quantization scheme shown in Fig.1.17.
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Figure 1.17: DPCM System. (a) Transmitter. (b) Receiver.

In DPCM, we do not transmit the present sample m[k ], but d [k ] (the difference between m[k ] and its predicted value m̂[k ]).
At the receiver, we generate m̂[k ] from the past samples values to which the received d [k ] is added to generate m[k ]. There
is; however, one difficulty in this scheme. In order to estimate m̂[k ] at the receiver, we should have m[k − 1], m[k − 2], ...

as well as d [k ], but instead, we have their quantized versions mq [k − 1], mq [k − 2], ... (because of the quantization before
transmission).Hence, we cannot determine m̂[k ], but we can determine m̂q [k ], the estimate of the quantized sample mq [k ]. For
sure this will increase the error in reconstruction.

In order to handle this issue, a better strategy is to determine m̂q [k ] (instead of m[k ]) at the transmitter from the quantized
samples mq [k − 1], mq [k − 2], ... . The difference d [k ] = mq [k ]− m̂q [k ] is now transmitted using PCM instead of transmitting
m[k ]− m̂[k ]. At the receiver, we can generate m̂q [k ], and given d [k ], we can reconstruct mq [k ], and finally get m[k ].

At the transmitter, for the predictor output to be m̂q [k ], the predictor input should be mq [k ]. How would we achieve that?
Since the the difference d [k ] = m[k ]− m̂q [k ] is quantized to yield dq [k ], then

dq [k ] = Q (d [k ])
= Q (m[k ]− m̂q [k ])
= m[k ] + q[k ]− m̂q [k ]
= d [k ] + q[k ]
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where q[k ] is the quantization error. The predictor output m̂q [k ] is fed back to its input so that the predictor input mq [k ] is

mq [k ] = m̂q [k ] + d [k ] + q[k ]
= m[k ]− d [k ] + dq [k ]
= m[k ] + q[k ]

This shows that mq [k ] is a quantized version of m[k ]. The quantized signal dq [k ] is now transmitted over the channel. The
receiver shown in Fig.1.17 is identical to the dotted portion of the transmitter. The inputs in both cases are also the same,
viz., dq [k ]. Therefore, the predictor output must be m̂q [k ] (the same as the predictor output at the transmitter). Hence, the
receiver output (which is the predictor input) is the also the same, viz., mq [k ] = m[k ] + q[k ]. This shows that we are able to
to receive the desired signal m[k ] plus the quantization noise q[k ]. This is the quantization noise associated with the difference
signal d [k ], which is generally smaller than m[k ].
SQNR Improvement
To determine the improvement in DPCM over PCM, let mp and dp be the peak amplitudes of m(t) and d(t), respectively.
If we use the same value of L in both cases, the quantization step ∆ in DPCM is reduced by the factor dp/mp. Because the
quantization noise power is ∆2/12, the quantization noise in DPCM reduces by the factor (dp/dm)2, and the SQNR increases
by the same factor. Moreover, the signal power is proportional to its peak value squared. Therefore, the processing gain Gp
(SQNR improvement due to prediction) is

Gp = Pm
Pd

where Pm and Pd are the powers of m(t) and d(t), respectively. Now, for a given message signal, the average power Pm is
fixed, so that Gp is maximized by minimizing the average prediction error power Pd . Accordingly, our objective should be to
design the prediction filter so as to minimize Pd .

In the case of voice signals, it has been found that the improvement in DPCM over PCM can be as high as 25 dB. Alternately,
for the same SQNR, the bit rate for DPCM could be lower than that for PCM by 3 to 4 bits per sample. Thus, telephone
systems using DPCM can often operate at 32 kbits/s or even 24 kbits/s.

Example 15. In a DPCM system, it is assumed that the dynamic range of the quantizer input has been reduced to 1/20 of
the dynamic range of the message signal. Determine the relationship between the SQNR (in dB) in DPCM and PCM if both
techniques use the same number of quantization levels.

Solution.
∆PCM = 2V

L
⇒ (SQNR)PCM = PM

∆2
PCM/12 = 12PML2

4V 2 = 3PML2

V 2

∆DPCM = 2V /12
L

⇒ (SQNR)DPCM = PM
∆2
DPCM/12 = 12PML2

4V 2 × 400 = 3PML2

V 2 × 400

Hence,
(SQNR)DPCM = 400× (SQNR)PCM

10 log10(SQNR)DPCM − 10 log10(SQNR)PCM = 26dB

1.9 Linear Prediction
The linear predictor used in DPCM to obtain the predicted value of the sample m(n) using past p sample values or past

quantized sample values is as shown in Fig.1.18. The predictor is formed by p unit delay elements, a set of multipliers involving
the filter coefficients w1, w2,...,wp and an adder to sum the coefficients-multiplied delayed inputs m(n−1), m(n−2),...,m(n−p)
to provide the output m̂(n) .
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Figure 1.18: Tapped-delay linear prediction filter of order p.

The predictor output is given by

m̂(n) =
p∑
k=1
wkm(n − k) (1.26)

The number of delay elements is called the prediction order (p). The difference e(n) = m(n) − m̂(n) is called the predictor
error. The objective in the design of the predictor is to choose the filter coefficients so as to minimize the mean-square value of
the error e(n). Thus, the performance index J = σ2

E = E [e2(n)], which represents the average power of the error signal, needs
to be minimized. If this is achieved, then the processing gain Gp in DPCM, which is equal to σ2

M/σ
2
E is maximized. This leads

to SQNR improvements over a PCM system using the same number of quantization levels. The following is a derivation of the
performance index

σ2
E = E

[
(m(n)− m̂(n))2

]
= E

(m(n)−
p∑
k=1
wkm(n − k)

)2


= E
[
m2(n)

]
− 2

p∑
k=1
wkE [m(n)m(n − k)] + E

 p∑
k=1
wkm(n − k)

p∑
j=1
wjm(n − j)


= E

[
m2(n)

]
− 2

p∑
k=1
wkE [m(n)m(n − k)] +

p∑
j=1

p∑
k=1
wjwkE [m(n − j)m(n − k)]

= σ2
M − 2

p∑
k=1
wkRM(k) +

p∑
j=1

p∑
k=1
wjwkRM(k − j) (1.27)

where σ2
M is the average power of the message signal m(t) (assumed to be zero-mean), and RM is the autocorrelation function

of the m(t). Taking the partial derivative of Eq.(1.27) with respect to the coefficients wk and equating to zero

∂σ2
E

∂wk
= −2RM(k) + 2

p∑
j=1
wjRM(k − j) = 0 for every wk

Hence,
p∑
j=1
wjRM(k − j) = RM(k), k = 1, 2, ..., p (1.28)

The set of p linear equations in (1.28), having p unknowns w1,w2, ...,wp, are known as the Yule-Walker equations. A
matrix form can also be used for the linear equations. Let

¯
w0 =

[
w1 w2 ... wp

]T , which is a p × 1 coefficient vector,
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¯
rM =

[
RM(1) RM(2) ...RM(p)

]T which is a p × 1 autocorrelation vector, and

RM =



RM(0) RM(1) · · · RM(p − 1)
RM(1) RM(0) · · · RM(p − 2)
· · · · · ·
· · · · · ·
· · · · · ·

RM(p − 1) RM(p − 2) · · · RM(0)


which is a p × p autocorrelation matrix.
Hence, the matrix form representation of the Yule-Walker equations is

RM¯
w0 =

¯
rM (1.29)

Assume that matrix RM is non-singular, then R−1
M exists. Then,

¯
w0 = R−1

M ¯
rM (1.30)

Replacing Eq.(1.28) in Eq.(1.27) gives the minimum value of σ2
E ; i.e., σ2

E ,min

σ2
E ,min = σ2

M − 2
p∑
k=1
wkRM(k) +

p∑
k=1
wk

p∑
j=1
wjRM(k − j)

= σ2
M − 2

p∑
k=1
wkRM(k) +

p∑
k=1
wkRM(k)

= σ2
M −

p∑
k=1
wkRM(k) (1.31)

Using the vector forms we re-write Eq.(1.31) as

σ2
E ,min = σ2

M − ¯
wT0 ¯
rM (1.32)

Using Eq.(1.30),

σ2
E ,min = σ2

M −
[
R−1
M ¯
rM
]T

¯
rM

= σ2
M −¯
rM
TR−1
M

T

¯
rM

= σ2
M −¯
rM
TR−1
M ¯
rM (1.33)

The quantity
¯
rTMR

−1
M ¯
rM is always positive and less than σ2

M . As a result, σ2
E ,min < σ2

M , i.e., the processing gain Gp = σ2
M/σ

2
E ,

in DPCM is always greater than 1.

Example 16. Consider a second order linear predictor, such that RM(0) = 2, RM(1) = 1.5 and RM(2) = 1. The message
signal is assumed to be stationary and of zero-mean. Find the predictor coefficients and the ratio σ2

E ,min/σ
2
M .

Solution. Using Eq.(1.30), we write
[
RM(0) RM(1)
RM(1) RM(0)

] [
w1
w2

]
=
[
RM(1)
RM(2)

]
⇒
[

2 1.5
1.5 2

] [
w1
w2

]
=
[
1.5
1

]
This corresponds to

solving the following system of equations
{

2w1 + 1.5w2 = 1.5
1.5w1 + 2w2 = 1

Thus, w1 = 0.857 and w2 = −0.142.

Using Eq.(1.33), σ2
E ,min = RM(0)−

[
1.5 1

] [ 2 1.5
1.5 2

]−1 [1.5
1

]
= 2− 1.1428 = 0.8572.

Hence, σ2
E

σ2
M

= 0.8572
2 = 0.4286.
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1.10 Delta Modulation (DM)
The exploitation of signal correlations in DPCM suggests the further possibility of oversampling a message signal (typically

4 times the Nyquist rate) to purposely increase the correlation between adjacent samples of the signal. This would permit the
use of a simple quantization strategy for constructing the encoded signal. Delta Modulation (DM), which is the one-bit (two
level) version of DPCM, is precisely such a scheme. In DM, we use a first-order predictor, which, as seen earlier, is just a time

⌃ Quantizer

⌃

Delay

m[k] d[k] dq[k]

mq[k]

+
+

+

�

to channel
⌃

dq[k]

Delay

+

mq[k]

(a) (b)

mq[k � 1]
mq[k � 1]

Figure 1.19: Delta Modulation. (a)Transmitter. (b) Receiver.

delay of Ts . Thus, the DM transmitter and receiver are identical to those of the DPCM, with a time delay for the predictor.
See Fig. 1.19. From this figure, we obtain mq [k ] = mq [k − 1] + dq [k ]. Hence, mq [k − 1] = mq [k − 2] + dq [k − 1] which yields

mq [k ] = mq [k − 2] + dq [k ] + dq [k − 1]

Proceeding iteratively in this manner, and assuming zero initial condition, that is, mq [0] = 0, yields

mq [k ] =
k∑
m=0
dq [m] (1.34)

This shows that the receiver (demodulator) is an accumulator (adder). If the output dq [k ] is represented by impulses, then the
accumulator may be realized by an integrator because its output is the sum of the strengths of the input impulses (sum of the
areas under the impulses). We may also replace the feedback portion of the modulator (which is identical to the demodulator)
by an integrator. The demodulator output is mq [k ], which when passed through a LPF yields the desired signal reconstructed
from the quantized samples.

Fig. 1.20 shows a practical implementation of the delta modulator and demodulator.
The first-order predictor is replaced by a low-cost integrator circuit (such as an RC integrator). The modulator (Fig. 1.20a)

consists of a comparator and a sampler in the direct path and an integrator-amplifier in the feedback path. Let us see how this
delta modulator works.

The analog signal m(t) is compared with the feedback signal (which serves as a predicted signal) m̂q(t). The error signal
m(t) = m(t)− m̂q(t) is applied to a comparator. If d(t) is positive, the comparator’s output is a constant signal of amplitude
E (or ∆), and if d(t) is negative, the comparator’s output is −E (or −∆). Thus, the difference is a binary signal (L = 2) that
is needed to generate a 1-bit DPCM sequence. The comparator’s output is sampled by a sampler at a rate of fs samples per
second, where fs is typically much higher than the Nyquist rate. The sampler thus produces a train of narrow pulses dq [k ] (to
simulate impulses) with a positive pulse when m(t) > m̂q(t) and a negative pulse when m(t) < m̂q(t). Note that each pulse
is coded by a single binary pulse (1-bit DPCM), as required. The pulse train dq [k ] is the delta-modulated pulse train signal
(Fig. 1.20d), which tries to follow m(t).

To understand how this works, we note that each pulse in dq [k ] at the input of the integrator gives rise to a step function
(positive or negative, depending on the pulse polarity) in m̂q(t). If, for example, m(t) > m̂q(t), a positive pulse is generated in
dq [k ], which gives rise to a positive step in m̂q(t), trying to equalize m̂q(t) to m(t) in small steps at every sampling instant, as
shown in Fig. 1.20c). It can be seen that m̂q(t) is a kind of staircase approximation of m(t). When m̂q(t) is passed through a
low-pass filter, the coarseness of the staircase in m̂q(t) is eliminated, and we get a smoother and better approximation to m(t).

The difference between the input m(t) and the approximation m̂q(t), as seen in Fig. 1.20c, is quantized into only two
representation levels, namely ±∆, corresponding to positive and negative differences. Thus, if the approximation falls below the
signal at any sampling epoch, it is increased by ∆. If, on the other hand, the approximation lies above the signal, it is diminished
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Figure 1.20: Practical Implementation of Delta Modulation.

by ∆. Provided that the signal does not change too rapidly from sample to sample, we find that the staircase approximation
remains within ±∆ of the input signal.

1.10.1 Quantization Noise
Delta modulation is subject to two types of quantization error:

1. slope overload distortion

2. granular noise

We first discuss the cause of slope overload distortion and then granular noise. We observe that dq [k ] = mq [k ] − mq [k − 1]
is the digital equivalent of integration in the sense that it represents the accumulation of positive and negative increments of
magnitude ∆: mq [k ] = mq [k − 1] ± ∆. Hence, between one sample and the next, m(t) increases or decreases by an amount
equal to |m[k ]−m[k − 1]|, whereas m̂q(t) increases or decreases by an amount equal to ∆. Hence, in order that m̂q(t) varies
as fast as m(t), we need ∆ or ∆/Ts to be of the order of |m[k ]−m[k − 1]| or |m[k ]−m[k − 1]|/Ts . This ratio is the average
slope of m(t) between the time instants (k − 1)Ts and kTs . Generally, if we consider a region of high slope for m(t), then in
this region we can require that ∆/Ts be of the order of the average derivative of m(t) in this region. Or, to be on the safe
side, ∆/Ts needs to be of the order of the maximum value of the derivative of m(t) in the region. This condition is usually
written as

∆

Ts
≥ max

∣∣∣∣dm(t)
dt

∣∣∣∣ (1.35)

If the above condition is not observed, then ∆ is considered too small to make m̂q(t) follow a steep segment of m(t). The
result of this phenomenon is called slope overload distortion, and is represented in the front end of Fig.1.21.

Note that since the maximum slope of the staircase approximation mq(t) is fixed by the step size ∆, increases and decreases
in mq(t) tend to occur along straight lines, as illustrated in the front end of Fig.1.21. For this reason, a delta modulator using
a fixed value for the step size ∆ is often referred to as a linear delta modulator.
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Figure 1.21: Illustration of quantization errors, slope-overload distortion and granular noise, in delta modulation.

In contrast to slope-overload distortion, granular noise occurs when the step size is too large relative to the local slope
characteristic of the original message signal m(t). This second situation causes the staircase approximation mq(t) to oscillate
around a relatively flat segment of m(t) which is illustrated in the back end of Fig.1.21. Granular noise in delta modulation
may be viewed as the analog of quantization noise in pulse-code modulation.

So, it appears here that a large step size ∆, is needed to accommodate large variations in m(t) and a small step size is
needed for small variations in the message signal m(t). Hence, the choice of the optimum size leads to the minimization of
the mean-square value of the quantization noise should be obtained by a compromise between slope overload distortion and
granular noise. This is to be done if we want to use fixed step size. Another solution is to make the delta modulator adaptive.
That is, to make the step size varies in accordance with the variation of the input signal. The principle used in adaptive delta
modulation (ADM) algorithms is as follows:

1. If successive errors en are of opposite polarity, then the DM is operating in its granular mode. The step-size should be
reduced.

2. If successive errors en are of the same polarity, then the DM is operating in its slope-overload mode. The step-size should
be increased.

Example 17. Consider a sinusoidal message signal m(t) = 3 cos(4000πt). The signal is sampled at 4 times the Nyquist rate.
Determine the step-size ∆ required so that if m(t) is applied to a DM, no slope overload distortion would occur. Repeat the
calculation for a signal sampled at 8 times the Nyquist rate.

Solution. The condition for no slope overload distortion is

∆

Ts
= ∆× fs ≥

∣∣∣∣dm(t)
dt

∣∣∣∣ = max |12000π sin(4000πt| ⇒ ∆fs ≥ 12000π ⇒ ∆ ≥ 12000π
16000 = 2.356V

If we sample at fs = 8× 4000 = 32 KHz, then ∆ ≥ 1.178 V.

Of course , the approximation of the message can be improved if we sample faster. So, as it can be seen in the previous
example, that the optimum depends on the sampling frequency fs and also on the signal m(t); i.e., its amplitude and frequency.
For a general message signal that is not sinusoidal, the optimum ∆ would depend on the message frequency components and
their corresponding amplitudes. Alternatively, given a message signal with a specific bandwidth, and sampled at a specific rate
(much higher than the Nyquist rate), the problem becomes on of finding the maximum amplitude of the message that results
in no slope overload distortion. Of course a specific ∆ needs to be adopted.

For a sinusoidal signal m(t) = A cos(2πfct), Amax can be determined using ∆ ≥ 2πfcA
fs

, which gives A ≤ ∆fs
2πfc . Hence,

Amax = ∆fs
2πfc . We conclude that for a given ∆, fs , and f , the smaller signal amplitude the better the fight against slope overload

distortion would be. Also, for a given ∆, and fs , when f increases there is a need for a smaller amplitude combat slope overload
distortion. Fortunately, voice signals have a decreasing amplitude spectrum with increasing frequency.
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1.11 Time-Division Multiplexing (TDM)
Definition 2. Time-division multiplexing (TDM) is the time interleaving of samples from several sources so that the information
from these sources can be transmitted serially over a single communication channel.

Fig. 1.22 illustrates the TDM concept as applied to three analog sources that are multiplexed over a PCM system. For
convenience, natural sampling is shown together with the corresponding gated TDM PAM waveform. In practice, an electronic
switch (commutator) is used for the commutation (sampler). In this example, the pulse width of the TDM PAM signal is
Ts/3 = 1/(3fs), and the pulse width of the TDM PCM signal is Ts/(3n), where n is the number of bits used in the PCM
word. Here fs = 1/Ts denotes the frequency of rotation for the commutator, and fs satisfies the Nyquist rate for the analog
source with the largest bandwidth. In some applications in which the bandwidth of the sources is markedly different, the larger
bandwidth sources may be connected to several switch positions on the sampler so that they will be sampled more often than
the smaller bandwidth sources.
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Figure 3–35 Three-channel TDM PCM system.
Figure 1.22: Three-channel TDM PCM system

We will start first by assuming all messages to have the same bandwidth. Usually anti-aliasing filters are applied to each
message before sampling. The function of the commutator is twofold: (1) to take a narrow sample of each of the N input
messages at a rate that is slightly higher than 2W , where W is the cutoff frequency of the anti-aliasing filter, and (2) to
sequentially interleave these N samples inside the sampling interval Ts . Indeed, this latter function is the essence of the time-
division multiplexing operation. It is clear that the use of time-division multiplexing introduces a bandwidth expansion factor
N, because the scheme must squeeze N samples derived from N independent message sources into a time slot equal to one
sampling interval.

At the receiver, the decommutator (sampler) has to be synchronized with the incoming waveform so that the PAM samples
corresponding to source 1, for example, will appear on the channel 1 output. This is called frame synchronization. Low-pass
filters are used to reconstruct the analog signals from the PAM samples. Inter-Symbol-Interference (ISI) (to be discussed later)
resulting from poor channel filtering would cause PCM samples from one channel to appear on another channel, even though
perfect bit and frame synchronization were maintained. Feedthrough of one channel?s signal into another channel is called
crosstalk.
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Example 18. (TDM using PAM)
Consider time division multiplexing of 40 messages using PAM. These signals are to be transmitted over a channel having a
bandwidth equal to 200 KHz. The channel bandwidth is assumed to be defined by the multiplexed PAM pulse duration. Find
the maximum sampling rate that can be used so that the multiplexed PAM signal can be transmitted over the channel.

Solution. The duration of each pulse in the multiplexed signal is Ts/40, where Ts is the sampling period. Hence, 40fs is the
required transmission bandwidth. Since 40fs ≤ 200KHz ⇒ fs ≤ 5KHz .

Example 19. (TDM using PCM)
Consider time division multiplexing of 5 messages using PCM. Each message has a bandwidth of 2 KHz and is sampled at
Nyquist rate. After sampling, each sample is coded as 3 bits. Find the transmission bandwidth.

Solution. The number of bits in the sampling period is 5× 3 = 15bits. Hence, the bit duration is Ts/15 ⇒ BW = 15/Ts =
15fs = 15× 2× 2 = 60KHz .

1.11.1 Frame Synchronization
Frame synchronization is needed at the TDM receiver so that the received multiplexed data can be sorted and directed to

the appropriate output channel. The frame sync can be provided to the receiver demultiplexer (demux) circuit either by sending
a frame sync signal from the transmitter over a separate channel or by deriving the frame sync from the TDM signal itself.
Because the implementation of the first approach is obvious, we will concentrate on that of the latter approach, which is usually
more economical, since a separate sync channel is not needed. As illustrated in Fig. 1.23, frame sync may be multiplexed along
with the information words in an N-channel TDM system by transmitting a unique K−bit sync word at the beginning of each
frame. Baseband Pulse and Digital Signaling Chap. 3208

each frame. As illustrated in Fig. 3–37, the frame sync is recovered from the corrupted TDM
signal by using a frame synchronizer circuit that cross-correlates the regenerated TDM signal
with the expected unique sync word s = (s1, s2, ... , sK). The elements of the unique sync word
vector s, denoted by s1, s2, ... sj, ... sk, are binary 1’s or 0’s (which, for TTL logic would repre-
sent +5 V or 0 V, respectively). The current bit of the regenerated TDM signal is clocked into
the first stage of the shift register and then shifted to the next stage on the next clock pulse
so that the most immediate K bits are always stored in the shift register. The sj’s within the
triangles below the shift register denote the presence or absence of an inverter. That is, if sj is a
binary 0, then there is an inverter in the jth leg. If sj is a binary 1, there is no inverter. The
coincident detector is a K-input AND gate.

If the unique sync word happens to be present in the shift register, all the inputs to the
coincident detector will be binary 1’s, and the output of the coincident detector will be a binary
1 (i.e., a high level). Otherwise, the output of the coincident detector is a binary 0 (i.e., a low
level). Consequently, the coincident detector output will go high only during the Tb-s interval
when the sync word is perfectly aligned in the shift register. Thus, the frame synchronizer
recovers the frame sync signal.

False sync output pulses will occur if K successive information bits happen to match the
bits in the sync word. For equally likely TDM data, the probability of this false sync occurring
is equal to the probability of obtaining the unique sync word, which is

(3–90)

In frame synchronizer design, this equation may be used to determine the number of
bits, K, needed in the sync word so that the false lock probability will meet specifications.
Alternatively, more sophisticated techniques such as aperture windows can be used to sup-
press false lock pulses [Ha, 1986]. The information words may also be encoded so that they
are not allowed to have the bit strings that match the unique sync word.

Since the output of the coincident detector is a digitized crosscorrelation of the sync
word with the passing K-bit word stored in the shift register, the sync word needs to be
chosen so that its autocorrelation function, Rs(k), has the desirable properties: Rs(0) = 1 and
R(k) ≈ 0 for k 0. The PN codes (studied in Sec. 5–13) are almost ideal in this regard. For
example, if Pf = 4 × 10-5 is the allowed probability of false sync, then, from Eq. (3–90), a
(K = 15)-bit sync word is required. Consequently, a 15-stage shift register is needed for
the frame synchronizer in the receiver. The 15-bit PN sync word can be generated at the
transmitter using a four-stage shift register.

Z

Pf = a1
2
bK

= 2-K

s1 s2 sK s1 s2
Channel N

data

Information
words

Sync word Sync word

Frame

Information words

Channel 1
data

Channel 2
data

Channel N
data

• • • • • • • • •• • •

Figure 3–36 TDM frame sync format.Figure 1.23: TDM frame sync format.

The frame sync is recovered from the corrupted TDM signal by using a frame synchronizer circuit that cross-correlates the
regenerated TDM signal with the expected unique sync word.

Example 20. (Design of a Time-Division Multiplexer)
Design a time-division multiplexer that will accommodate 11 sources. Assume that the sources have the following specifications:
Source 1: Analog, 2 KHz bandwidth, Source 2: Analog, 4 KHz bandwidth, Source 3: Analog, 2 KHz bandwidth, Source
4− 11: Digital, synchronous at 7200 bits/s. Suppose that the analog sources will be converted into 4-bit PCM words and, for
simplicity, that frame sync will be provided via a separate channel and synchronous TDM lines are used. Design a TDM system
to accommodate the 11 sources.

Solution. To satisfy the Nyquist rate for the analog sources, sources 1, 2, and 3 need to be sampled at 4, 8, and 4 KHz,
respectively. As shown in Fig. 1.24, this can be accomplished by rotating the first commutator at f1 = 4 KHz and sampling

36



source 2 twice on each revolution. This produces a 16 ksamples/s TDM PAM signal on the commutator output. Each of
the analog sample values is converted into a 4-bit PCM word, so that the rate of the TDM PCM signal on the ADC output
is 64 Kbits/s. The digital data on the ADC output may be merged with the data from the digital sources by using a second
commutator rotating at f2 = 8 KHz and wired so that the 64 kbits/s PCM signal is present on 8 of 16 terminals. This
arrangement provides an effective sampling rate of 64 kbits/s. On the other eight terminals, the digital sources are connected
to provide a data transfer rate of 8 Kbits/s for each source. Since the digital sources are supplying a 7.2 kbit/s data stream,
pulse stuffing is used to raise the source rate to 8 kbits/s.

Baseband Pulse and Digital Signaling Chap. 3212

The preceding example illustrates the main advantage of TDM: It can easily accom-
modate both analog and digital sources. Unfortunately, when analog signals are converted
to digital signals without redundancy reduction, they consume a great deal of digital system
capacity.

From source 1

2 kHz, analog

From source 2

4 kHz, analog

From source 3

2 kHz, analog

From source 4

From source 5

From source 11

7.2 kb/s, digital

7.2 kb/s, digital

7.2 kb/s, digital

Pulse
stuffing

Pulse
stuffing

Pulse
stuffing

4 bit
A/D

TDM
PAM signal

16 ksamples/s 64 kb/s

128 kb/s

f2 = 8 kHz

f1 = 4 kHz

f1

f2

8 kb/s

8 kb/s

8 kb/s

TDM
PCM signal

TDM PCM
Output signal

Figure 3–39 TDM with analog and digital inputs as described in Example 3–17.

Now suppose that the analog sources will be converted into 4-bit PCM words and, for simplicity,
that frame sync will be provided via a separate channel and synchronous TDM lines are used. To
satisfy the Nyquist rate for the analog sources, sources 1, 2, and 3 need to be sampled at 4, 8, and
4 kHz, respectively. As shown in Fig. 3–39, this can be accomplished by rotating the first
commutator at f1 = 4 kHz and sampling source 2 twice on each revolution. This produces a 
16-ksamples!s TDM PAM signal on the commutator output. Each of the analog sample values is
converted into a 4-bit PCM word, so that the rate of the TDM PCM signal on the ADC output is
64 kbits!s. The digital data on the ADC output may be merged with the data from the digital
sources by using a second commutator rotating at f2 = 8 kHz and wired so that the 64-kbits!s
PCM signal is present on 8 of 16 terminals. This arrangement provides an effective sampling rate
of 64 kbits!s. On the other eight terminals, the digital sources are connected to provide a data
transfer rate of 8 kbits!s for each source. Since the digital sources are supplying a 7.2-kbit!s data
stream, pulse stuffing is used to raise the source rate to 8 kbits!s.

Figure 1.24: TDM with analog and digital inputs.
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CHAPTER 3

INFORMATION THEORY

3.1 Introduction
So far, the sampler and quantizer have reduced the analog source into a discrete source whose output consists of sequences

of quantization levels taking a discrete set of values. The next step in efficiently digitizing the analog signal is to map each
quantization level at the output of the quantizer into a unique binary sequence. This is done by a source encoder, whose purpose
is to assign to each quantized sample x̂i a binary sequence bi . The source encoder converts the sequence of symbols from the
source to a sequence of binary digits, preferably using as few binary digits per symbol as possible. The source decoder performs
the inverse operation. Initially, in the spirit of source/channel separation, we ignore the possibility that errors are made in the
channel decoder and assume that the source decoder operates on the source encoder output.

One way to accomplish the mapping into a sequence of binary digits is to assign to each of the L possible quantized outputs
a distinct binary sequence of length N = log2(L) bits. In case L is not a power of 2, in which case N is not an integer, we must
instead use the next integer N ′ greater than N. The resulting encoder is referred to as a fixed-length encoder, and its rate is
N ′ bits/sample. Fixed-length encoders, although easy to implement, are not in general efficient. If we allow the length of a
binary sequence assigned to a quantized sample to be variable, we can usually achieve rates less that N ′ bits/sample. These
source encoders, to be studied next, are know as variable-length encoders. Variable-length encoders can achieve a smaller
average number of encoded bits per source symbol (quantized value), which is desirable since this leads to a smaller bit-rate
to communicate the source. A smaller bit-rate, in turn, means a smaller required channel bandwidth for transmission. If
the source bandwidth is W Hz, and an N−bit quantizer is used, then the bandwidth, B, required to transmit the source is
(assuming approximately that signaling bandwidth equals the inverse of the signaling rate): B ' N × fs ≥ 2WN, where W
is the bandwidth of the analog source. Clearly, bandwidth requirements increase linearly with N thus the need to keep N as
small as possible. To summarize, the goal of this chapter is to represent a source with the fewest possible bits such that best
recovery of the source from the compressed data can be achieved. Before we can analyze variable-length source encoders, we
need some information-theory background.

3.2 Measures of Information
In everyday life, events can surprise us. Usually, the more likely or unexpected an event is, the more surprising it is. Thus,

the more information it conveys when it happens. As we saw above, an analog source can be converted into a discrete source
through sampling and quantization. Consider a discrete source which produces outputs that belong to a set of L possible
symbols xi , i = 1, 2...,L (in our particular case, for example, quantization levels). Each of the L outputs from the source occurs
with some probability pi , i = 1, 2, ...,L The source can be modeled as a discrete random variable X which takes values from
the set of possible source outputs with a given probability pi , i.e., Pr(X = xi ) = pi .

Definition 3. (Self-information) If xi is an event produced by a discrete source X , the amount of information gained after
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observing xi is called self-information and is given by

I (xi ) = log2
1
pi
bits (3.1)

Note that a bit is now a unit of information. Equivalently, I (xi ) is the amount of uncertainty that we have about whether
xi will occur, before an output occurs. Thus, I (xi ) can be thought of either as the amount of uncertainty about xi before
it occurs, or the amount of information that we receive when we actually observe xi . Clearly uncertainty and information go
hand-in-hand and they are related to the probabilities of occurrence of the various symbols produced by the source.

Example 21. Considering tossing a fair dice. The probability density function is given by pi = 1/6 for i = 1, ..., 6. Hence,
I (xi ) = log2 6 = 2.585 bits. Thus, the occurrence of say, a 5, conveys 2.585 bits of information, as would the occurrence of
any other symbol in this case.

Self-information has the following properties:

1. Events which are certain to occur, i.e., pi = 1, have I (xi ) = 0, thus zero surprise and no informations.

2. Events which are impossible, that is, pi = 0, have I (xi ) =∞, thus infinite surprise.

3. I (xi ) ≥ 0, that is the occurrence of an event either provides some or no information, but never brings about a loss of
information.

4. I (xk) > I (xi ) for pk < pi , that is the less probable an event is, the more information we get when it occurs.

5. I (xixk) = I (xi ) + I (xk), given that the occurrence of xi is independent of xk .

A natural question that might arises is: Why do we use Log function to define a metric that measures information? Given a
set of independent events A1,A2, ... ,An with PMF pi = P(Ai ), we want the definition of information measure to satisfy:

1. A small change in pi should cause small change in information.

2. If pi = 1/n, for all i , then information should be a monotonically increasing function of n.

3. Dividing the outcome of a source into several groups does not change the information.

Claude Shannon showed that the only way all these condition could be satisfied was if the measure is H = −k
∑
pi log pi ,

where k is an arbitrary positive constant. This measure is called the entropy.

Definition 4. (Entropy) The entropy, H(X ), of a source is the average amount of self-information produced by the source,
i.e.,

H(X ) = E [I (X )] = E
[
log2

1
p(x)

]
(3.2)

The entropy of s discrete source is always non-negative; H(X ) ≥ 0.

Example 22. Consider a source with symbols from the set {x1, x2, x3, x4}. Let p1 = 1/2, p2 = 1/4, p3 = 1/8, p4 = 1/8.
Then, H(x) =

∑4
i=1 pi log2(pi ) = 1.75 bits. Suppose we want to determine the value of X with the minimum number of binary

questions (Yes/No). An efficient first question is: is X = a? If the answer is no, the second question can be:is X = b?. If the
answer is no, the third question can be: is X = c?, and so on. The resulting expected number of binary questions required is
1.75 bits. We show later that the minimum expected number of binary questions required to determine X lies between H(X )
and H(X ) + 1.

So, the entropy can be thought of as a measure of the following things about X :
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1. The average length of the shortest description of the random variable

2. The amount of information provided by an observation of X

3. Our uncertainty about X

4. The randomness of X

When the random variable X has only two possible outcomes, one with probability p and the other with probability (1 − p),
then

H(X ) = H(p, 1− p) , h(p) = −p log2 p − (1− p) log2(1− p) (3.3)

where h(p) is the binary entropy function shown in Fig.3.1.

Figure 3.1: Binary entropy function.

Definition 5. As we can see from Fig.3.1, the maximum uncertainty, H(X ) = 1, occurs whenp = 1/2 (maximum confusion),
and H(X ) = 0 when p = 0 or 1 (i.e., X is deterministic). Also, it is important to note that h(p) is a concave function of p.
This can be easily proven since h′′(p) = − 1

p2−p , which is negative for all 0 < p < 1.
If the source outputs symbols at a fixed rate of Rs symbols per second, then the information rate of the source is: Rb = H(X )Rs
bits/s

Theorem 1. (Bounds on the Entropy of a discrete random variable)
For a source producing |X | symbols,

0 ≤ H(X ) ≤ log2(|X |) (3.4)

with the upper bound being achieved if and only if pi = 1/|X |), i = 1, 2, ..., |X |) (uniform distribution), and the lower bound
achieved for X being deterministic.

Proof. Since − log pX (x) is always nonnegative for all x ∈ X , it follows that H(X ) ≥ 0. We write H(X ) as follows

H(X ) =
∑
x∈X
pX (x) log 1

pX (x) =
∑
x∈X
pX (x) log 1/|X |

pX (x) · 1/|X |

=
∑
x∈X
pX (x) log 1

1/|X | +
∑
x∈X
pX (x) log 1/|X |

pX (x)

= log |X |+
∑
x∈X
pX (x) log 1/|X |

pX (x)
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Assuming for now that the logarithm has base e. Using the fact that lnx ≤ x − 1, we can bound H(X ) by

H(X ) ≤ ln|X |+
∑
x∈X
pX (x)

(
1/|X |
pX (x) − 1

)
= ln|X |+

∑
x∈X
pX (x)

(
1
|X |
− pX (x)

)
= ln|X |+ 1− 1 = ln|X |

The bound lnx ≤ x − 1 holds with equality if and only if x = 1. In the derivation above, we see that H(X ) = ln|X | if and only
if pX (x) = 1/|X | for all x ∈ X , i.e, the symbols are equally likely. Finally, if the logarithm has base 2, then we can use the
bound log2 x = ln x

ln 2 ≤
x−1
ln 2 to show that H(X ) ≤ log2 |X |.

Definition 6. (Joint Entropy) The joint entropy H(X ,Y ) of a pair of discrete random variables (X ,Y ) with a joint distribution
p(x , y) is defined as

H(X ,Y ) = −
∑
x∈X

∑
y∈Y
p(x , y) log p(x , y) = −E [log p(x , y)] (3.5)

We also define the conditional entropy of a random variable given another as the expected value of the entropies of the
conditional distributions, averaged over the conditioning random variable.

Definition 7. (Conditional Entropy) If (X ,Y ) ∼ p(x , y), the conditional entropy H(Y |X ) is defined as

H(Y |X ) =
∑
x∈X
p(x)H(Y |X = x) (3.6)

= −
∑
x∈X
p(x)

∑
y∈Y
p(y |x) log p(y |x) (3.7)

= −
∑
x∈X

∑
y∈Y
p(x , y) log p(y |x) (3.8)

= −E [log p(Y |X )] (3.9)

Theorem 2. (Entropy Chain Rule)
H(X ,Y ) = H(X ) + H(Y |X ) (3.10)

Proof.

H(X ,Y ) = −
∑
x∈X

∑
y∈Y
p(x , y) log p(x , y)

= −
∑
x∈X

∑
y∈Y
p(x , y) log p(x)p(y |x)

= −
∑
x∈X

∑
y∈Y
p(x , y) log p(x)−

∑
x∈X

∑
y∈Y
p(x , y) log p(y |x)

= −
∑
x∈X
p(x) log p(x)−

∑
x∈X

∑
y∈Y
p(x , y) log p(y |x)

= H(X ) + H(Y |X )

Corollary 1.
H(X ,Y |Z ) = H(X |Z ) + H(Y |X ,Z ) (3.11)

Example 23. Let (X ,Y ) have the following joint distribution:
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Y

X 1 2 3 4

1 1
8

1
16

1
32

1
32

2 1
16

1
8

1
32

1
32

3 1
16

1
16

1
16

1
16

4 1
4 0 0 0

Find H(X ), H(Y ), and H(X |Y ), and H(X ,Y ).

Solution. The marginal distribution of X is
( 1

2 , 1
4 , 1

8 , 1
8
)

and the marginal distribution of Y is
( 1

4 , 1
4 , 1

4 , 1
4
)
, and hence H(X ) =

7/4 bits and H(Y ) = 2 bits.

H(X |Y ) =
4∑
i=1
p(Y = i)H(X |Y = i)

= 1
4H
(

1
2 ,

1
4 ,

1
8 ,

1
8

)
+ 1

4H
(

1
4 ,

1
2 ,

1
8 ,

1
8

)
+ 1

4H
(

1
4 ,

1
4 ,

1
4 ,

1
4

)
+ 1

4H (1, 0, 0, 0)

= 1
4 ×

7
4 + 1

4 ×
7
4 + 1

4 × 2 + 1
4 × 0

= 11
8 bits

Similarly, H(Y |X ) = 13/8 bits and H(X ,Y ) = H(X |Y ) + H(Y ) = 27/8 bits.

Theorem 3. (Conditioning Reduces Entropy)(Information can’t hurt)

H(X |Y ) ≤ H(X ) (3.12)

with equality if and only if X and Y are independent.

Proof. We first rewrite H(X |Y ) as follows

H(X |Y ) =
∑
x∈X

∑
y∈Y
p(x , y) log 1

pX |Y (x |y)

=
∑
x∈X

∑
y∈Y
p(x , y) log pX (x)

pX |Y (x |y)pX (x)

=
∑
x∈X

∑
y∈Y
p(x , y) log 1

pX (x) +
∑
x∈X

∑
y∈Y
p(x , y) log pX (x)

pX |Y (x |y)

= H(X ) +
∑
x∈X

∑
y∈Y
p(x , y) log pX (x)pY (y)

pX ,Y (x , y)

Assuming the natural logarithm, we can use a fundamental inequality on the natural log function; ln a ≤ a−1 to bound H(X |Y )
by

H(X |Y ) ≤ H(X ) +
∑
x∈X

∑
y∈Y
p(x , y)

(
pX (x)pY (y)
pX ,Y (x , y) − 1

)
= H(X ) +

∑
x∈X
pX (x)

∑
y∈Y
pY (y)−

∑
x∈X

∑
y∈Y
p(x , y)

= H(X ) + 1− 1 = H(X )
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Note that the equality H(Y |X ) = H(X ) holds if and only if the logarithm argument is equal to1 while applying ln x ≤ x − 1.
This happens when pXY (x , y) = pX (x)pY (y), i.e., X and Y are independent.

Intuitively, the theorem says that knowing another random variable Y can only reduce the uncertainty in X . Note that this
is true only on the average. Specifically, H(X |Y = y) may be greater than or less than or equal to H(X ), but on the average
H(X |Y ) =

∑
y p(y)H(X |Y = y) ≤ H(X ). For example, in a court case, specific new evidence might increase uncertainty, but

on the average evidence decreases uncertainty.

Corollary 2. Let X1, X2,. . . ,Xn be drawn according to p(x1, x2, ... , xn). Then,

H(X1,X2, ... ,Xn) =
n∑
i=1
H(Xi |Xi−1, ... ,X1) (3.13)

Theorem 4. (Independence bound on entropy)
Let X1, X2,. . . ,Xn be drawn according to p(x1, x2, ... , xn). Then,

H(X1,X2, ... ,Xn) ≤
n∑
i=1
H(Xi ) (3.14)

with equality if and only if the Xi are independent.

Proof. By the chain rule for entropies,

H(X1,X2, ... ,Xn) =
n∑
i=1
H(Xi |Xi−1, ... ,X1)

≤
n∑
i=1
H(Xi )

where the last inequality follows from the result that conditioning reduces entropy. We have equality if and only if Xi is
independent of Xi−1, ... ,X1 for all i (i.e., if and only if the Xi ’s are independent).

An essential parameter in measuring the amount of information shared between two points in a communication system (two
random variables X and Y ) is the mutual information defined as follows.

Definition 8. (Mutual Information)
If (X ,Y ) ∼ p(x , y), the mutual information between X and Y is defined as

I (X ;Y ) = E(X ,Y )

[
log p(X ,Y )
p(X )p(Y )

]
(3.15)
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Mutual information measures how much knowing one of the random variables reduces uncertainty about the other. For
example, if X and Y are independent, then knowing X does not give any information about Y and vice versa, so their mutual
information is zero. At the other extreme, if X is a deterministic function of Y and Y is a deterministic function of X then
all information conveyed by X is shared with Y : knowing X determines the value of Y and vice versa. As a result, in this
case the mutual information is the same as the uncertainty contained in Y (or X ) alone, namely the entropy of Y (or X ).
Moreover, this mutual information is the same as H(X ) and as H(Y ). (A very special case of this is when X and Y are the
same random variable.) As seen from the definition, mutual information is a measure of the inherent dependence expressed
in the joint distribution of X and Y relative to the joint distribution of X and Y under the assumption of independence (the
product of marginals). Mutual information therefore measures dependence in the following sense: I (X ;Y ) = 0 if and only if X
and Y are independent random variables. The aforementioned is concretized in the following properties and theorems.

Corollary 3.
I (X ;Y ) = H(X ) + H(Y )− H(X ,Y ) = H(X )− H(X |Y ) (3.16)

Proof.

I (X ;Y ) = E(X ,Y )

[
log p(X ,Y )
p(X )p(Y )

]
= E(X ,Y )

[
log 1
p(X )

]
+ E(X ,Y )

[
log 1
p(y)

]
− E(X ,Y )

[
log 1
p(X ,Y )

]
= EX

[
log 1
p(X )

]
+ EY

[
log 1
p(Y )

]
− H(X ,Y )

= H(X ) + H(Y )− H(X ,Y )
= H(X ) + H(Y )− (H(Y ) + H(X |Y ))
= H(X )− H(X |Y )

Hence, I (X ;Y ) measures the amount of information that Y carries about X .

Note that I (X ;X ) = H(X )− H(X |X ) = H(X )− 0 = H(X ). So, entropy is also called self-information.
Properties of I (X ;Y )

1. The Non-negativity of mutual information: I (X ;Y ) ≥ 0 (although this is pretty intuitive, the proof of this result is beyond
the scope of this course)

2. Mutual information is symmetric: I (X ;Y ) = I (Y ;X )

3.3 Source Codes
Entropy as a measure of information is not only intuitively satisfying but also appears universally in characterizing the

fundamental limits of communication systems:

• Data compression

• Communication over (point-to-point) noisy channels

• Wireless uplink and downlink communication

• Coding for computer networks

This chapter treats first the problem of data compression (or source coding) and then treats the problem of channel capacity.

Definition 9. A discrete source is memoryless if successive symbols, X1,X2, ..., produced by the source are independent of one
another;

p({xi}ni=1) =
n∏
i=1
p(xi )
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Suppose we assign binary codewords to each symbol or to groups of source symbols:

• LI = input word length (source symbols)

• LO = output code word length (code bits)

• R = LO/LI bits/source symbol is the code rate of the source code

The source-coding theorem is one of the three fundamental theorems of information theory introduced by Shannon (1948).
The source-coding theorem establishes a fundamental limit on the rate at which the output of an information source can be
compressed without causing a large error probability. We have seen already that the entropy of an information source is a
measure of the uncertainty or, equivalently, the information content of the source. Therefore, it is natural that in the statement
of the source-coding theorem, the entropy of the source plays a major role.

Theorem 5. (Source Coding Theorem: Shannon’48)
If a discrete source has an entropy of H(X ) bits/source symbol, it can be encoded with some lossless source code of rate
R, provided that R > H(X ). Furthermore, if R < H(X ) then a lossless representation of the source is not possible. The
smallest average number, L, of bits per source symbol that any source encoder can achieve equals the entropy of the source,
i.e., L ≥ H(X ).

This theorem indicates the fundamental nature of H(X ) in that no source encoder can achieve a rate less than H(X ). In
fact, most practical encoders can only hope to approach H(X ).

From the source coding theorem we observe that the entropy H gives a sharp bound on the rate at which a source can be
compressed for reliable reconstruction. This means that at rates above the entropy, it is possible to design a code with an error
probability as small as desired, whereas at rates below entropy, such a code does not exist. This important result; however,
does not provide specific algorithms to design codes approaching this bound. In this section, we will introduce algorithms that
perform very close to the entropy bound, and that achieves that bound under particular cases.

First, we need to investigate some desired features that these codes should satisfy. We start by defining a fixed-length code
and a variable-length code.

3.3.1 Fixed-Length Codes
The simplest approach to encoding a discrete source into binary digits is to create a code C that maps each symbol x of

the alphabet X into a distinct codeword C (x), where C (x) is a block of binary digits. Each such block is restricted to have
the same block length L, which is why such a code is called a fixed-length code. For example, if the alphabet X consists of the
7 symbols {a, b, c , d , e, f , g}, then the following fixed-length code of block length L = 3 could be used.

C (a) = 000
C (b) = 001
C (c) = 010
C (d) = 011
C (e) = 100
C (f ) = 101
C (g) = 110

The source output, x1, x2,..., would then be encoded into the encoded output C (x1)C (x2)... and thus the encoded output
contains L bits per source symbol. For the above example the source sequence bad ... would be encoded into 001000011....
Note that the output bits are concatenated.

There are 2L different combinations of values for a block of L bits. Thus, if the number of symbols in the source alphabet,
M = |X |, satisfies M ≤ 2L, then a different binary L-tuple maybe be assigned to each symbol. Assuming that the decoder
knows where the beginning of the encoded sequence is, the decoder can segment the sequence into L− bit blocks and then
decode each block into the corresponding source symbol.

In summary, if the source alphabet has size M, then this coding method requires L = dlog2Me bits to encode each source
symbol. Thus, log2M ≤ L < log2M + 1. The lower bound, log2M, can be achieved with equality if and only if M is a power
of 2.
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This method is non-probabilistic; it takes no account of whether some symbols occur more frequently than others, and it
works robustly regardless of the symbol frequencies. But if it is known that some symbols occur more frequently than others,
then the rate L of coded bits per source symbol can be reduced by assigning shorter bit sequences to more common symbols
in a variable-length source code.

3.3.2 Variable-Length Codes
Data compression can be achieved by assigning short descriptions to the most frequent outcomes of the data source, and

necessarily longer descriptions to the less frequent outcomes.

Definition 10. The expected length, L, of a source code C (x) for a random variable X with probability mass function p(x) is
given by

L =
∑
x∈X
p(x)`(x) (3.17)

where `(x) is the length of the codeword associate with X .

Example 24. Let us assume that there are only four quantization levels: ±0.75, ±0.25. Moreover, let us assume that levels
±0.25 occur with probability 3/8 each, and levels ±0.75 with probability 1/8 each. Now consider the following source code:

+0.25 ⇔ 0
−0.25 ⇔ 11
+0.75 ⇔ 100
−0.75 ⇔ 101

The average number of bits per source symbol (expected length), L, is

L = 1× 3
8 + 2× 3

8 + 3× 1
8 + 3× 1

8 = 1.875bits/source symbol

With a fixed-length code, L = 2bits/symbol > 1.875. We will see that, in general, larger improvements can be expected than
above. The smallest average number of bits per source symbol is actually 1.8113 bits/source symbol.

Definition 11. (Non-Singular Code) A code is said to be non-singular if for different symbols, we have different codeword
representation: x1 6= x2 ⇒ C (x1) 6= C (x2)

Definition 12. (Code Extension) The extension of a code is a concatenation of the codeword representation of many symbols:
C (x1x2...xn) = C (x1)C (x2)...C (xn)

Definition 13. (Uniquely Decodable Codes) A code is called uniquely decodable (U.D) if its extension is non-singular. In other
words, if the original symbols can be recovered uniquely from sequences of encoded symbols. However, one may have to look
at the entire string to determine even the first symbol in the corresponding source string.

Example 25. Consider the following scenarios

1.

`1 ⇔ 00
`2 ⇔ 00 Not uniquely decodable
`3 ⇔ 11
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2.

`1 ⇔ 0
`2 ⇔ 1 Not uniquely decodable
`3 ⇔ 11

For example, the sequence ...011001... can be decoded either as ...`1`3`1`1`2... or ...`1`2`2`1`1`2... (not unique)

3.

`1 ⇔ 00
`2 ⇔ 01 Uniquely decodable
`3 ⇔ 11

Definition 14. (Prefix-Free Codes) A prefix-free code is one in which no codeword is a prefix to any other codeword

Example 26.

`1 ⇔ 0
`2 ⇔ 11
`3 ⇔ 100 Code is prefix-free
`4 ⇔ 101

Theorem 6. A sufficient condition for a code to be uniquely decodable is that it be prefix-free. In other words, all prefix-free
codes are uniquely decodable, but not all uniquely decodable codes are necessarily prefix-free.

Example 27.

`1 ⇔ 1
`2 ⇔ 10 Code is U.D. but not prefix-free
`3 ⇔ 100

Prefix-free codes are also called instantaneous codes because a symbol can be decoded by the time the last bit is reached.
Notice that the code in the previous example is not instantaneous, since we have to wait and see what the first bit in the next
symbol is before we can decode the previous symbol.

In a uniquely decodable code which is not instantaneous, we may have to wait a long time before we know the identity of the
first symbol. There is a testing procedure that can always be used to determine whether or not a code is uniquely decodable.
We explain this test through an example.

Example 28. Consider a code: {a, c , ad , abb, bad , deb, bbcde}, and we want to test whether is it U.D. or not. We start by
constructing a sequence of sets S0, S1, ..., as follows:
Let S0 be the original set of codewords. To form S1, we look at all pairs of codewords in S0. If a codeword wi is a prefix of
another codeword wj ; wj = wiA, we place the suffix A in S1. In our case S1 = {d , bb}. In general, to form Sn, n > 1, we
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compare S0 to Sn−1. If a codeword w ∈ S0 is a prefix of a sequence A = wB ∈ Sn−1, the suffix B is placed in Sn, and if a
sequence A′ ∈ Sn−1 is a prefix of a codeword w ′ = A′B ′ ∈ S0, we place the suffix B ′ in Sn. We get the following

S0 = {a, c , ad , abb, bad , deb, bbcde}
S1 = {a, bb}
S2 = {eb, cde}
S3 = {de}
S4 = {b}
S5 = {ad , bcde}
S6 = {d}
S7 = {eb}

A code is uniquely decodable if and only if none of the sets S1, S2,...,S7 contains a codeword that is a member of S0.
Hence, our code is uniquely decodable. In fact, the sequence abbcdebad is ambiguous, having the two possible interpretations:
a, bbcde, bad or abb, c , deb, ad .

We wish now to construct instantaneous codes of minimum expected length to describe a given source. It is clear that
we cannot assign short codewords to all source symbols and still be prefix-free. The set of codewords lengths possible for
instantaneous codes is limited by the following inequality.

Theorem 7. (Kraft Inequality) For any instantaneous code over the binary alphabet, the codewords length `1, `2, ..., `m must
satisfy the inequality

m∑
i

2−`i ≤ 1

Conversely, given a set of codeword lengths that satisfy the inequality, there exists an instantaneous code with these word
lengths.

Definition 15. (Optimal Code) A code having the minimum expected length L and which is subject to Kraft inequality is called
optimal code

Theorem 8. (The Lossless Coding Theorem) The expected length L of a prefix-free code for a random variable X is greater
than or equal to the entropy H(X ), L ≥ H(X ), with equality if and only if pi = 2−`i .

Definition 16. The merit of any code is measured by its average length in comparison to H(X ). The code efficiency η is
defined as

η = H(X )
L

(3.18)

where L is the average length of the code. The redundancy γ is defined as

γ = 1− η (3.19)

3.4 Huffman Coding Algorithm
An optimal prefix code for a given distribution can be constructed by a simple algorithm discovered by Huffman. Any other

code for the same alphabet cannot have a lower expected length than the code constructed by this algorithm. Huffman code
is an optimal code, but not the optimal. Huffman code archives Kraft inequality with equality. The Huffman code is a variable
length, prefix-free (and thus U.D.) code that can asymptotically achieve an average length as close to the entropy of the source
as desired. The price we pay for getting closer to the entropy is complexity. Huffman code is optimum for memoryless sources
with known probabilities. Construction of Huffman codes is based on two ideas:

• In an optimum code, symbols with higher probability should have shorter codewords
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• In an optimum prefix code, the two symbols that occur least frequently will have the same length

The following algorithm results in a Huffman code:

1. List the message symbols (source symbols) vertically and in such a way that symbols higher on the list are more probable
than symbols following. On a parallel vertical column, list the corresponding probability of each symbol.

2. Assign to the two least probable symbols one a“0” and the other a “1” (it doesn’t matter which). Add the probabilities
of the two least-probable symbols, and consider the new list of probabilities.

3. Repeat part b) until only two probabilities are left (that should add up to one). Assign to one a “0” and to the other a
“1”.

4. Trace the branches of the resulting binary tree and read off the binary sequence corresponding to each branch. Assign
this sequence to the symbol at the end of the branch.

Example 29. Consider a random variable X taking values in the set X = {1, 2, 3, 4, 5} with probabilities 0.25, 0.25, 0.2, 0.15,
0.15, respectively. This code has an average length:

L = 2× 0.25 + 2× 0.25 + 2× 0.2 + 3× 0.15 + 3× 0.15 = 2.3 bits

The entropy of X is: H(X ) = 2.285 < 2.3. The code efficiency is η = 2.285
2.3 = 0.9934. The redundancy γ = 1 − 0.9934 =

0.00652.

Remark 1. For Huffman code, the redundancy is zero when the probabilities are negative powers of two.

Remark 2. When more than two “symbols” in a Huffman tree have the same probability, different merge orders produce
different Huffman codes. Although the average length could be the same, the length variances are different.

A similar procedure is used to find an optimal M-ary Huffman code. In this case we arrange the messages in descending
order of probability, combine the last r messages into one message, and rearrange the new set (reduced set) in the order of
descending probability. We repeat the procedure until the final set reduces to M messages. Each of these messages is not
assigned one of the M numbers 0, 1, 2, ... ,M − 1. We now regress in exactly the same way as in the binary case until each of
the original messages is assigned a code.

Example 30. Consider a ternary code for the same random variable as before. Now we combine the three least likely symbols
into one supersymbol and obtain the following table: This code has an average length: L = 1 × 0.25 + 1 × 0.25 + 2 × 0.2 +
2× 0.15 + 2× 0.15 = 1.5 ternary digits.

For an M-ary code, we will have exactly M messages left in the last reduced set if, and only if, the total number of original
messages is equal to M + k(M − 1), where k is an integer. This is because each reduction decreases the number of messages
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by M − 1. Hence, if there is a total of k reductions, the total number of original messages must be M + k(M − 1). In case the
original messages do not satisfy this condition, we must add some dummy messages with zero probability of occurrence until
this condition is fulfilled. For example, if M = 4 and the number of messages is 6, then we must add one dummy message with
zero probability of occurrence to make the total number of messages 7, that is [4 + 1(4− 1)], and proceed as usual.

3.5 Tunstall Codes
The Huffman code was the first variable length code that we looked at in this chapter. It encodes letters from the source

alphabet using codewords with varying numbers of bits: codewords with fewer bits for letters that occur more frequently and
codewords with more bits for letters that occur less frequently. The Tunstall code is an important exception. In the Tunstall
code, all codewords are of equal length. However, each codeword represents a different number of letters. An example of a
2-bit Tunstall code for an alphabet {A,B} is shown below. The main advantage of a Tunstall code is that errors in codewords
do not propagate, unlike Huffman codes, in which an error in one codeword will cause a series of errors to occur.

Example 31. Let’s encode the sequence AAABAABAABAABAAA using the code in the following table.
Starting at the left, we can see that the string AAA occurs in our codebook and has a code of 00. We then code B as 11,

AAB as 01, and so on. We finally end up with coded string 001101010100.

The Tunstall coding algorithm is as follows:
Suppose we want an n-bit Tunstall code for a source that generates i.i.d letters from an alphabet of size N. The number of
codewords is 2n. We start with the N letters of the source alphabet in our codebook. Remove the entry in the codebook
that has the highest probability and add the N strings obtained by concatenating this letter with every letter in the alphabet
(including itself). This will increase the size of the codebook from N to N + (N − 1). The probabilities of the new entries
will be the product of the probabilities of the letters concatenated to form the new entry. Now look through the N + (N − 1)
entries in the codebook and find the entry that has the highest probability, keeping in mind that the entry with the highest
probability may be a concatenation of symbols. Each time we perform this operation we increase the size of the codebook by
N − 1. Therefore, this operation can be performed K times, where N + K (N − 1) ≤ 2n.

Example 32. Let us design a 3−bit Tunstall code for a memoryless source with the following alphabet: {A,B,C} with
probabilities given in the following table.
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We start out with the codebook and associated probabilities. Since the letter A has the highest probability, we remove it
from the list and add all two-letter strings beginning with A as shown below.

After one iteration we have 5 entries in our codebook. Going through one more iteration will increase the size of the
codebook by 2, and we will have 7 entries, which is still less than the final codebook size. Going through another iteration after
that would bring the codebook size to 10, which is greater than the maximum size of 8. Therefore, we will go through just one
more iteration. The find 3−bit Tunstall code is shown in the table below.

3.6 Lempel-Ziv Coding Algorithm
Huffman coding has two important drawbacks. First, the source statistics are used to design a Huffman code. If one only

has access to the source outputs, the design procedure requires two passes through the data, one to estimate the statistics
of the source, and a second one for encoding. To overcome this, one can use adaptive Huffman codes where the code is
updated dynamically to match the statistics of the sequence as it is observed. This is a problem because one must jointly
encode multiple symbols to take advantage of source memory and reduce length rounding loss. In this case, one finds that the
complexity increases exponentially with the number of symbols that are encoded together. Also, Tunstall codes depends on
source statistics. To provide a partial solution to these drawbacks, we study an example of universal source-coding algorithms,
namely the Lempel- Ziv algorithm. This type of universal data compression is the basis for standard file compression algorithms
(e.g., winzip, gzip, unix compress).

In many applications, the output of the source consists of recurring patterns. A classic example is a text source in which
certain patterns or words recur constantly. Also, there are certain patterns that simply do not occur, or if they do, occur with
great rarity. For example, we can be reasonably sure that the word Limpopo1 occurs in a very small fraction of the text sources
in existence.

A very reasonable approach to encoding such sources is to keep a list, or dictionary, of frequently occurring patterns. When
these patterns appear in the source output, they are encoded with a reference to the dictionary. If the pattern does not appear

51



in the dictionary, then it can be encoded using some other, less efficient, method. In effect we are splitting the input into
two classes, frequently occurring patterns and infrequently occurring patterns. For this technique to be effective, the class
of frequently occurring patterns, and hence the size of the dictionary, must be much smaller than the number of all possible
patterns.The most widely used dictionary compression techniques (also called adaptive dictionary) are the Lempel-Ziv family of
codes.

The basic idea behind the Lempel-Ziv algorithm is to parse the input sequence into non-overlapping strings of different
lengths while constructing a dictionary of the strings seen thus far. There are many versions of this algorithm and we discuss
the variant known as LZ78 (It was the algorithm of the widely used Unix file compression utility compress, and is used in the
GIF image format) that was described in a 1978 paper by Lempel and Ziv. The encoding algorithm works as follows. First,
initialize the dictionary to contain all strings of length one and set the input pointer to the beginning of the string. Then, apply
the following iterative procedure

1. Starting at the input pointer, find the longest substring w that is already in the dictionary.
2. Concatenate w with the next symbol y in the string and add wy to the first empty location in the dictionary.
3. Encode the pair by sending the dictionary index of w and the value of y .
4. Set the input pointer to the symbol after y .

There are a number of practical variants of this algorithm that improve performance and/or reduce the implementation
complexity.

Decompression works in the reverse fashion. Each received index and symbol can be immediately decoded and used to build
a copy of the dictionary at the receiver. In this fashion, one can resolve the input without ambiguity.

Example 33. Suppose that we are to use a Lempel-Ziv algorithm with dictionary size 23 = 8. The dictionary is initialized to
contain 0 and 1 in the first two positions. Then, the source sequence is sequentially parsed into strings that have not appeared
so far. For example,

10110101000101...→ 10, 11, 01, 010, 00, 101

The dictionary table at this point has eight elements.
Each phrase (the bit string contained between two commas) is coded by giving the location of its prefix in the dictionary

table, and the value of the additional bit. This results in the coded sequence

10, 11, 01, 010, 00, 101→ (001, 0)(001, 1)(000, 1)(100, 0)(000, 0)(010, 1)

where the first number of each pair gives the index of the prefix in the table and the second number gives the last bit of the new
phrase. When applied to sequences generated by any stationary ergodic source, the Lempel-Ziv coding algorithm asymptotically
achieves the optimal encoding rate (known as the entropy rate). Most readers will notice that this algorithm, as stated, requires
prior knowledge of the total number of phrases in the dictionary. In fact, this problem can be solved easily and the solution
actually requires fewer transmitted bits. The key point is that both the transmitter and receiver know the number of phrases
currently in the dictionary. Let M be the current number of phrases in the dictionary. Then, the transmitter can be simply send
the dlog2Me least significant bits of the index. Since the receiver also knows M, there will be no confusion. In this case, the
encoded sequence will be

10, 11, 01, 010, 00, 101→ (1, 0)(01, 1)(00, 1)(100, 0)(000, 0)(010, 1)

3.7 Channel Coding
We shift gears now and turn our attention to the fundamental limits of communication across a noisy channel. Consider

the following discrete channel p(y |x) between X and Y depicting noisy communication between a transmitter and a receiver.
An important question to address here is: What is the maximum rate of reliable information transfer between X and Y and

how to achieve this maximum? To answer this question, we need the following definitions.
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p(y|x)X Y

Definition 17. (Information Capacity) The information capacity between two random variables X and Y is defined as the
maximum mutual information I (X ;Y ) over all probability distribution on the input X

C = max
p(x)
I (X ;Y ) (3.20)

Definition 18. (Code Rate)
The rate of a code is defined as R = log2M

n
, where M is the number of messages and n is the number of channel use. Intuitively,

R is the ratio between how many bits of messages are transmitted and how many bits are used for encoding.

Definition 19. (Reliable Communication)
A communication is said to be reliable is the probability of transmission error is ideally zero.

Definition 20. (Achievable Rate)
A rate R is achievable if there exists a code (inducing a probability distribution p(x)) of rate R that can be used to reliably
transmit M messages across the channel p(y |x).

Definition 21. (Operational Capacity)
The operational capacity between two random variables X and Y is defined as the maximum of all achievable rates for the
channel p(y |X ).

Theorem 9. (Shannon Channel Coding Theorem.)
The Shannon theorem states that given a noisy channel p(y |x) with information capacity C and information transmitted at a
rate R, if R < C there exist codes that allow the probability of error at the receiver to be made arbitrarily small. This means
that, theoretically, it is possible to transmit information nearly without error at any rate below a limiting rate, C . Also, If
R > C , an arbitrarily small probability of error is not achievable. All codes will have a probability of error greater than a certain
positive minimal level, and this level increases as the rate increases. So, information cannot be guaranteed to be transmitted
reliably across a channel at rates beyond the channel capacity. Intuitively, the theorem shows that the operational capacity and
the information capacity are equal.

Example 34. Let X ∈ X = {0, 1} be a Ber(α) random variable, and let Y be generated from X via a binary channel with
crossover probabilities p(y |x) as shown below

1. Assume that p = q (i.e., a binary symmetric channel (BSC)). Find the channel capacity C and the capacity achieving
distribution in terms of p.
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X Y

0 0

1 1

p

q

1 � q

1 � p

2. Let p = 1/3 and q = 1/4. Find the channel capacity C and the capacity achieving distribution.

Solution

1. Let P(X = 0) = α and P(X = 1) = 1 − α. Then, P(Y = 0) = α + p − 2αp and P(Y = 1) = 1 − α − p + 2αp. The
mutual information I (X ;Y ) is

I (X ;Y ) = H(Y )− H(Y |X )
= H(Y )− P(X = 0)H(Y |X = 0)− P(X = 1)H(Y |X = 1)
= H(Y )− αh(p)− (1− α)h(p)
= H(Y )− h(p)

Since p is a constant (related to channel modeling), then I (X ;Y ) is maximized by maximizing H(Y ). Since H(Y ) is a
binary entropy, then it attains the maximum (which is equal to 1) when P(Y = 0) = P(Y = 1) = 1/2. Since Y is induced
by X through p(y |x), we need to make sure that there exists a probability distribution on the input X that produces a
Ber(1/2) distribution at the channel’s output Y . Solving P(Y = 0) = α + p − 2αp = 1/2, we get α = 1/2. Hence,
X ∼ Ber(1/2) is the capacity achieving distribution, because the resulting distribution at the output Y ∼ Ber(1/2)
maximizes H(Y ) and in turn maximizes I (X ;Y ). Therefore, the capacity is C = 1− h(p) bits/channel use.

2. P(Y = 0) = 5α
12 + 1

4 , P(Y = 1) = − 5α
12 + 3

4 .

I (X ;Y ) = H(Y )− H(Y |X )

= h

(
5α
12 + 1

4

)
− P(X = 0)H(Y |X = 0)− P(X = 1)H(Y |X = 1)

= h

(
5α
12 + 1

4

)
− αh

(
1
3

)
− (1− α)h

(
1
4

)
I (X ;Y ) is a function of α. In order to find the capacity, we need to find the maximum of I (X ;Y ) with respect to α.

dI (X ;Y )
da

= 5
12 log2

5α
12 + 1

4
− 5α

12 + 3
4
− h

(
1
3

)
+ h

(
1
4

)
= 5

12 log2
5α+ 3
−5α+ 9 − h

(
1
3

)
+ h

(
1
4

)
Setting the derivative equal to zero

5
12 log2

5α+ 3
−5α+ 9 = h

(
1
3

)
− h

(
1
4

)
⇒ log2

5α+ 3
−5α+ 9 = 12

5 (0.91− 0.81) = 0.24

Hence, 5α+3
−5α+9 = 20.24 = 1.18, giving α = 0.7. Thus, the capacity achieving distribution is X ∼ Ber(0.7) and the

capacity is

C = h

(
5(0.7)

12 + 1
4

)
− 0.7h

(
1
3

)
− 0.3h

(
1
4

)
= h(0.54)− 0.7h

(
1
3

)
− 0.3h

(
1
4

)
= 0.995− (0.7)(0.91)− (0.3)(0.81) = 0.115 bits/channel use
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3.7.1 Capacity of Bandlimited Channels
A common model for communication over a radio network or a telephone line is a bandlimited channel with white noise.

This is a continuous-time channel. The output os such a channel can be described as the convolution

Y (t) = (X (t) + Z (t)) ? h(t) (3.21)

where X (t) is the signal waveform, Z (t) is the waveform of the white Gaussian noise, and h(t) is the impulse response of
an ideal bandpass filter of bandwidth W . If the noise has power spectral density N0/2 W/Hz, we can derive the capacity of
such a channel, as given in the following theorem. This theorem is considered one of the most important results in digital
communications.

Theorem 10. (Capacity of AWGN Channel)
For an AWGN channel of bandwidth W and received power P, the channel capacity is given by the formula

C =W log2

(
1 + P

N0W

)
bit/s (3.22)

Proof. The proof of this theorem is beyond the scope of this course.

Example 35. Find the minimum signal-to-noise ratio (in dB) that can be tolerated in order to reliably transmit a digital bit
stream at a rate of 1.544 Mbps over a 96 KHz band-limited channel.

Solution. C = 1.544 Mbps, W = 96 KHz . Since

C

W
= log2

(
1 + P
N

)
⇒ P
N

= 65586⇒ SNRmin = 48.4 dB
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CHAPTER 4

RECEIVER DESIGN FOR AWGN BASEBAND COMMUNICATION

4.1 Introduction
In the case of baseband signaling, the received waveforms are already in a pulse-like form. One might ask, why then, is

a demodulator needed to recover the pulse waveforms? The answer is that the arriving baseband pulses are not in the form
of ideal pulse shapes, each one occupying its own symbol interval. The filtering at the transmitter and the channel typically
cause the received pulse sequence to suffer from inter-symbol interference (ISI) and thus appear as an amorphous “smeared”
signal, not quite ready for sampling and detection. The goal of the demodulator (receiving filter) is to recover a baseband pulse
with the best possible signal-to-noise ratio (SNR), free of any ISI. Equalization, is a technique used to help accomplish this
goal. The equalization process is not required for every type of communication channel. However, since equalization embodies
a sophisticated set of signal-processing techniques, making it possible to compensate for channel-induced interference, it is an
important area of many systems.

The bandpass model of the detection process (to be covered in the next chapter) is virtually identical to the baseband model
considered in this chapter. That is because a received bandpass waveform is first transformed to a baseband waveform before
the final detection step takes place. For linear systems, the mathematics of detection is unaffected by a shift in frequency. In
fact, we can define an equivalence theorem as follows: Performing bandpass linear signal processing followed by heterodyning
(frequency conversion or mixing that yields a spectral shift) the signal to baseband, yields the same results as heterodyning
the bandpass signal to baseband, followed by baseband linear signal processing. As a result of this equivalence theorem, all
linear signal-processing simulations can take place at baseband (which is preferred for simplicity) with the same results as at
bandpass. This means that the performance of most digital communication systems will often be described and analyzed as if
the transmission channel is a baseband channel.

The task of the detector is to retrieve the bit stream from the received waveform, as error free as possible, notwithstanding
the impairments to which the signal may have been subjected. There are two primary causes for error-performance degradation.
The first is the effect of filtering at the transmitter, channel, and receiver (causing smearing and ISI), and the second is the
noise effect produced by a variety of sources, such as galactic and atmospheric noise, switching transients, intermodulation
noise, as well as interfering signals from other sources. With proper precautions, much of the noise and interference entering
a receiver can be reduced in intensity or even eliminated. However, there is one noise source that cannot be eliminated, and
that is the noise caused by the thermal motion of electrons in any conducting media. This motion produces thermal noise in
amplifiers and circuits, and corrupts the signal in an additive fashion. The primary statistical characteristic of thermal noise is
that the noise amplitudes are distributed according to a normal or Gaussian distribution. It can be seen that the most probable
noise amplitudes are those with small positive or negative values. In theory, the noise can be infinitely large, but very large
noise amplitudes are rare. Using quantum mechanics, we can show that thermal noise is white, i.e., has a constant spectral
density given by N0/2. Since thermal noise is present in all communication systems and it the predominant noise source for
many systems, the thermal noise characteristics (additive, white, and Gaussian, giving rise to the name AWGN) are most often
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used to model the noise in the detection process and in the design of receivers. Fig. 4.1 shows a typical scenario of baseband
pulses being affected by Gaussian noise and causing detection errors to occur at the receiver.

Figure 4.1: Baseband pulses affected by Gaussian noise.

4.2 Hypothesis Testing
Hypothesis testing refers to the problem of guessing the outcome of a random variable H that takes values in a finite

alphabet H = {0, 1, ... ,m − 1}, based on the outcome of a random variable Y called observable.
This problem comes up in various applications under different names. Hypothesis testing is the terminology used in statistics.

A receiver does hypothesis testing, but communication people call it decoding. An alarm system such as a smoke detector also
does hypothesis testing, but people would call it detection. A more appealing name for hypothesis testing is decision making.
Hypothesis testing, decoding, detection, and decision making are all synonyms.

In communication, the hypothesis H is the message to be transmitted and the observable Y is the channel output (or a
sequence of channel outputs). The receiver guesses the realization of H based on the realization of Y . Unless stated otherwise,
we assume that, for all i ∈ H, the system designer knows PH(i) (called thea priori probability) and fY |H(·|i)1.

The receiver’s decision will be denoted by î and the corresponding random variable Ĥ ∈ H. If we could, we would
ensure that Ĥ = H, but this is generally not possible. The goal is to devise a decision strategy that maximizes the probability
Pc = Pr{Ĥ = H} that the decision is correct. An equivalent goal is to minimize the error probability Pe = Pr{Ĥ 6= H} = 1−Pe .

Hypothesis testing is at the heart of the communication problem. As described by Claude Shannon, “The fundamental
problem of communication is that of reproducing at one point either exactly or approximately a message selected at another
point”.

4.2.1 MAP Decision Rule
From PH and fY |H , via Baye’s rule, we obtain

PH|Y (i |y) =
PH(i)fY |H(y |i)
fY (y)

where fY (y) =
∑
i PH(i)fY |H(y |i). In the above expression PH|Y (i |y) is a posteriori probability of H give Y . If the decision is

Ĥ = i , the probability that it is the correct decision is the probability that H = i , i.e., PH|Y (i |y). As our goal is to maximize
the probability of being correct, the optimum decision rule, also known as Maximum A Posteriori (MAP) decision rule is

Ĥ(y) = argmax
i∈H
PH|Y (i |y) = argmax

i∈H
PH(i)fY |H(y |i) (4.1)

1We assume that Y is a continuous random variable. If it is discrete, then we use PY |H(·|i) instead of fY |H(·|i)
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where argmaxi g(i) stands for “one of the arguments i for which the function g(i) achieves its maximum”. In case of ties, i.e.,
if PH|Y (j |y) equals PH|Y (k |y) equals maxi PH|Y (i |y), then it does not matter if we decide for Ĥ = j or for Ĥ = k . In either
case, the probability that we have decided correctly is the same.

Because the MAP rule maximizes the probability of being correct for each observation y , it also maximizes the unconditional
probability Pc of being correct. The former is PH|Y (Ĥ(y)|y). If we plug in the random variable Y instead of y , then we obtain
a random variable. The expected value of this random variable is the unconditional probability of being correct, i.e.,

Pc = E
[
PH|Y (Ĥ(y)|y)

]
=
∫
y

PH|Y (Ĥ(y)|y)fY (y)dy (4.2)

4.2.2 ML Decision Rule
There is an important special case, namely when H is uniformly distributed . In this case PH|Y (i |y), as a function of i ,

is proportional to fY |H(y |i). Therefore, the argument that maximizes PH|Y (i |y) also maximizes fY |H(y |i). Then, the MAP
decision rule is equivalent to the following Maximum Likelihood (ML) decision rule2.

Ĥ(y) = argmax
i∈H
fY |H(y |i) (4.3)

Notice that the ML decision rule is defined even if we do not know PH . Hence, it is the solution of choice when the prior is not
known.

4.2.3 Binary Hypothesis Testing
The special case in which we have to make a binary decision, i.e., H = {0, 1}, is both instructive and of practical relevance.

As there are only two alternatives to be tested, the MAP test may now be written as

PH(1)fY |H(y |1)
Ĥ1
≷
Ĥ0

PH(0)fY |H(y |0)⇒ Λ(y) ,
fY |H(y |1)
fY |H(y |0)

Ĥ1
≷
Ĥ0

PH(0)
PH(1) , η

The above test is depicted in Fig. 4.2 assuming y ∈ R. This is a very important figure that helps us visualize what goes on
and, as we will see, will be helpful to compute the probability of error. The left side of the above test is called the likelihood
ratio, denoted by Λ(y), whereas the right side is the threshold η.

14 Chapter 2.

fY |H(y|0)PH(0) fY |H(y|1)PH(1)

R0 R1

y

Figure 2.3: Binary MAP Decision. The decision regions R0 and R1 are the values of y
(abscissa) on the left and right of the dashed line (threshold), respectively.

fY |H(y|0)PH(1) . This results in the following binary MAP test:

⇤(y) =
fY |H(y|1)

fY |H(y|0)

Ĥ = 1
�
<

Ĥ = 0

PH(0)

PH(1)
= ⌘. (2.4)

The left side of the above test is called the likelihood ratio, denoted by ⇤(y) , whereas the
right side is the threshold ⌘ . Notice that if PH(0) increases, so does the threshold. In
turn, as we would expect, the region {y : Ĥ(y) = 0} becomes bigger.

When PH(0) = PH(1) = 1/2 the threshold ⌘ becomes unity and the MAP test becomes
a binary ML test:

fY |H(y|1)

Ĥ = 1
�
<

Ĥ = 0

fY |H(y|0).

A function Ĥ : Y ! H is called a decision function (also called decoding function). One
way to describe a decision function is by means of the decision regions Ri = {y 2 Y :
Ĥ(y) = i} , i 2 H . Hence Ri is the set of y 2 Y for which Ĥ(y) = i .

To compute the probability of error it is often convenient to compute the error probability
for each hypothesis and then take the average. When H = 0, we make an incorrect
decision if Y 2 R1 or, equivalently, if ⇤(y) � ⌘ . Hence, denoting by Pe(i) the probability
of making an error when H = i ,

Pe(0) = Pr{Y 2 R1|H = 0} =

Z

R1

fY |H(y|0)dy (2.5)

= Pr{⇤(Y ) � ⌘|H = 0}. (2.6)

Whether it is easier to work with the right side of (2.5) or that of (2.6) depends on whether
it is easier to work with the conditional density of Y or of ⇤(Y ) . We will see examples
of both cases.

Figure 4.2: Binary MAP decision.

When PH(0) = PH(1) = 1/2, then η = 1 and the MAP test becomes a binary ML test:

fY |H(y |1)
Ĥ1
≷
Ĥ0

fY |H(y |0)

The ML decision rule has a straightforward graphical interpretation. If the curve corresponding to the likelihood fY |H(y |1) is
above the curve corresponding to the likelihood fY |H(y |0), then decide in favor of H1, otherwise decide in favor of H0. The
MAP rule does not have this simple graphical interpretation because η 6= 1.

2The name stems from the fact that fY |H(y |i), as a function of i , is called the likelihood function
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Example 36. (Optimal Decision Rules)
Consider the following two likelihoods corresponding to hypotheses H1 and H0

fY |H(y |1) = e−yU(y)
fY |H(y |0) = 2e−2yU(y)

1. Find the ML decision rule.

2. Find the MAP decision rule with PH(0) = 2PH(1).

Solution.

1. The ML decision rule is Ĥ(y) = argmaxi∈H fY |H(y |i) for i = 0 and i = 1. In order to find the ML decision rule, we need
to compare between the likelihoods fY |H(y |1) and fY |H(y |0), and find for what values of y one is larger than the other:

fY |H(y |1)
Ĥ1
≷
Ĥ0

fY |H(y |0)⇒ e−y
H1
≷
Ĥ0

2e−2y ⇒ ey
Ĥ1
≷
Ĥ0

2⇒ y
Ĥ1
≷
Ĥ0

ln(2)

This implies that under the ML decision rule, if y > ln(2), then decide in favor of hypothesis H1 and if 0 < y < ln(2),
decide in favor of hypothesis H0.

2. The MAP decision rule is Ĥ(y) = argmaxi∈H PH(i)fY |H(y |i) for i = 0 and i = 1. In order to find the MAP decision
rule, we need to compare PH(0)fY |H(y |0) to PH(1)fY |H(y |1):

PH(1)fY |H(y |1)
Ĥ1
≷
Ĥ0

PH(0)fY |H(y |0)⇒
fY |H(y |1)
fY |H(y |0)

Ĥ1
≷
Ĥ0

PH(0)
PH(1) ⇒

ey

2
Ĥ1
≷
Ĥ0

2⇒ y
Ĥ1
≷
Ĥ0

ln(4)

This implies that under the MAP decision rule, if y > ln(4), then decide in favor of hypothesis H1 and if 0 < y < ln(4),
decide in favor of hypothesis H0.

4.2.4 Performance Measure: Probability of Error
A function Ĥ : Y → H = {0, ... ,m − 1} is called a decision function (also called decoding function). One way to describe

a decision function is by means of the decision regions Ri = {u ∈ Y : Ĥ(y) = i}, i ∈ H. Hence, Ri is the set of y ∈ Y for
which Ĥ(y) = i .

To compute the probability of error, it is often convenient to compute the error probability for each hypothesis and then
take the average. When H = 0, the decision is incorrect if Y ∈ R1, or equivalently, if Λ(y) ≥ η. Hence, denoting by Pe(i) the
error probability when H = i ,

Pe(0) = Pr{Y ∈ Ri |H = 0} = Pr{Λ(Y ) ≥ η} =
∫
R1

fY |H(y |0)dy (4.4)

Similar expressions hold for the probability of error conditioned on H = 1, denoted by Pe(1). Using the total law of probability,
we obtain the unconditional error probability

Pe = Pe(1)PH(1) + Pe(0)PH(0)
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Example 37. (Probability of Error for a MAP Decision Rule)
Consider the following two likelihoods corresponding to hypotheses H1 and H0

fY |H(y |1) = e−yU(y)
fY |H(y |0) = 2e−2yU(y)

Find the probability of error corresponding to the MAP decision rule with PH(0) = 2PH(1).

Solution. The MAP decision rule was previously derived and found to be

y
Ĥ1
≷
Ĥ0

ln(4)

Hence, R0 = (0, ln 4) and R1 = (ln 4,∞). The conditional probability of error Pe(1) = Pr{Y ∈ R0|H = 1} can be computed
as follows

Pe(1) =
∫
R0

fY |H(y |1)dy =
∫ ln 4

0
e−ydy = 3

4

The conditional probability of error Pe(0) = Pr{Y ∈ R1|H = 0} can be computed as follows

Pe(0) =
∫
R1

fY |H(y |0)dy =
∫ ∞

ln 4
2e−2ydy = 1

16

Since PH(0) = 2PH(1) and PH(0) + PH(1) = 1, then PH(0) = 2
3 and PH(1) = 1

3 . As a result,

Pe = 2
3 ×

1
16 + 1

3 ×
3
4 = 7

24

4.3 Demodulation and Detection for the AWGN Channel
During a given interval T , a binary baseband system will transmit one of two waveforms, denoted s1(t) and s0(t). Then,

for any binary channel, the transmitted signal over a symbol interval (0,T ) is given by

si (t) =
{
s1(t), 0 ≤ t ≤ T for a binary 1
s0(t), 0 ≤ t ≤ T for a binary 0

The received signal r(t), degraded by noise n(t) and possibly degraded by the impulse response of the channel hc(t), is

r(t) = si (t) ∗ hc(t) + n(t), i=1,...,M (4.5)

where n(t) is assumed to be a zero mean (additive White and Gaussian noise) AWGN process. For binary transmission over an
ideal distortionless channel, the representation for r(t) simplifies to

r(t) = si (t) + n(t), i=1,...,M (4.6)

We define demodulation as recovery of a waveform (to an undistorted baseband pulse), and we define detection to mean
the decision-making process of selecting the digital meaning of that waveform. If error-correcting coding is not present, the
detector output consists of estimates of message symbols (or bits), m̂i (also called hard decisions). If error-correction coding
is used, the detector output consists of estimates of channel symbols (or coded bits) ûi , which can take the form of hard or
soft decisions. For brevity, the term detection is occasionally used loosely to encompass all the receiver signal-processing steps
through the decision making step. Fig.4.3 shows the two basic steps in demodulation and detection of digital signals.

Within the demodulator and sample block of Fig.4.3 is the receiving filter (essentially the demodulator), which performs
waveform recovery in preparation for the next important step−detection. The frequency down-conversion is meant for bandpass

60



+ Frequency
down-conversion

Receiving
filter

Equalizing
filter

Threshold
Detectorsi(t)

n(t)

r(t)

y(t) y(T )

m̂i

ûi

or

Sample
at t=T

Demodulator and  Sample Block

Figure 4.3: Basic steps in demodulation/detection of digital signals

signals. The filtering at the transmitter and the channel typically cause the received pulse sequence to suffer from ISI, and thus
it is not quite ready for sampling and detection. The goal of the receiving filter is to recover a baseband pulse with the best
possible SNR, free of any ISI. The optimum receiving filter for accomplishing this is called a matched filter or correlator. An
optional equalizing filter follows the receiving filter; it is only needed for those systems where channel-induced ISI can distort
the signals. The receiving filter and equalizing filter are shown as two separate blocks in order to emphasize their separate
functions. In most cases, however, when an equalizer is used, a single filter would be designed to incorporate both functions and
thereby compensate for the distortion caused by both the transmitter and the channel. Such a composite filter is sometimes
referred to simply as the equalizing filter.

In this chapter, we will only focus on baseband communication and thus the down-conversion and equalization blocks will
not be considered in our present treatment of demodulation and detection. Hence, we will consider the simplified block diagram
shown in Fig. 4.4.

+ Receiving
filter

Threshold
Detectorsi(t)

n(t)

r(t)

y(t) y(T )

m̂i

ûi

or

Sample
at t=T

Figure 4.4: Demodulation/detection of baseband signals

4.3.1 The Matched Filter
The matched filter is a linear filter designed to provide the maximum SNR at its output for a given transmitted symbol

waveform. Consider that a known signal s(t) plus AWGN n(t) is the input to a linear, time-invariant (receiving) filter followed
by a sampler, as shown in Fig.4.4. We will determine the optimum receiver (matched filter) for detecting the known pulse s(t)
of duration T . The pulse shape is assumed to be known by the receiver. Hence, the only source of uncertainty is the noise.
The AWGN noise process n(t) is assumed to be zero-mean and of spectral height N0/2. The received signal at the filter input
is

r(t) = s(t) + n(t), 0 ≤ t ≤ T

The signal s(t) is modeled as a deterministic signal and the noise n(t) is a AWGN process, which results in the signal r(t)
being modeled as a Gaussian process as well. The filter’s output y(t) can be written as

y(t) = s(t) ∗ h(t)︸ ︷︷ ︸
,x(t)

+ n(t) ∗ h(t)︸ ︷︷ ︸
,w(t)

= x(t) + w(t)

where h(t) denotes the impulse response of the receiving filter, assumed to be LTI. The signal s(t) processed by an LTI system
produces the signal x(t) (a deterministic signal) and the random noise process n(t) processed by an LTI system produces a
Gaussian noise process w(t) of zero-mean and of variance σ2

w . At the sampler’s output, we get

y(T ) = x(T ) + w(T )
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where x(T ) is a constant and w(T ) is a Gaussian random variable of zero-mean and of variance σ2
w . For simplicity, we will

drop the T , and denote the threshold detector’s in Fig. 4.3 by

Y = x +W (4.7)

The receiver output signal-to-noise ratio SNR at time t = T can be expressed as

SNR = Px
E [W 2(T )] (4.8)

Since the spectrum of x(t) is X (f ) = S(f )H(f ), then x(t) can be expressed using the inverse Fourier transform as follows

x(t) =
∫ ∞
−∞
S(f )H(f )e j2πftdf

The average power of the signal, sampled at time T , at the output of the filter can be expressed as

Px = |X |2 =
∣∣∣∣∫ ∞
−∞
S(f )H(f )e j2πfTdf

∣∣∣∣2 (4.9)

The average power of the noise w(t) at the filter output is

E
[
w2(t)

]
= N0

2

∫ ∞
−∞
|H(f )|2 df (4.10)

Replacing Eq.(4.9) and Eq.(4.10) in Eq.(4.8)

SNR =

∣∣∣∣∣ ∞∫−∞ H(f )S(f )e j2πfTdf

∣∣∣∣∣
2

N0
2

∞∫
−∞
|H(f )|2 df

≤

∞∫
−∞
|H(f )|2 df

∞∫
−∞
|S(f )|2 df

N0
2

∞∫
−∞
|H(f )|2 df

(4.11)

≤ 2
N0

∞∫
−∞

|S(f )|2 df (4.12)

where Eq.(4.11) is due to Schwarz’s inequality which states the following∣∣∣∣∫ ∞
−∞
f (a)g(a)da

∣∣∣∣2 ≤ ∫ ∞
−∞
|f (a)|2 da

∫ ∞
−∞
|g(a)|2 da

with equality if f (a) = kg∗(a), where k is an arbitrary constant and ∗ denotes the complex conjugate. The right-hand side of
Eq.(4.12) represents the maximum value that can be assumed by the receiver output SNR. To achieve this maximum value,
we use the condition under which Schwarz’s inequality is satisfied with equality. Let f (a) , H(f ) and g(a) , S(f )e j2πfT , we
obtain

H(f )opt = k S∗(f )e−j2πfT (4.13)

Under this condition,
SNR = 2

N0

∫ ∞
−∞
|S(f )|2 df

and the filter is called optimum filter. To obtain the impulse response of the optimum filter, we use the inverse Fourier transform

hopt(t) = k
∫ ∞
−∞
S∗(f )e−j2πfT e j2πftdf = k

∫ ∞
−∞
S∗(f )e−j2πf (T−t)df
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Assume that s(t) is a real valued signal, then S∗(f ) = S(−f ). Hence,

hopt(t) =
∫ ∞
−∞
S(−f )e−j2πf (T−t)df =

∫ ∞
−∞
S(f )e j2πf (T−t)df

Thus,
hopt(t) = k s(T − t) (4.14)

the constant k can be set to 1 or it can be considered as a normalization constant used to make the energy of hopt(t) equal
to 1. The optimum filter is called a matched filter because hopt(t) is a time reversed and delayed version of s(t); that is, it is
“matched” to the input signal s(t). In general the delay can be a time t0 of the peak signal output, i.e., hopt(t) = s(t0 − t).

We finally note that the maximum value of the output SNR can be expressed in the following manner

(SNR)max = 2
N0

∫ ∞
−∞
|S(f )|2 df = 2E

N0
(4.15)

where E is the energy of the pulse present at the input of the receiver (due to Plancherel’s theorem). The use of the matched
filter removes the dependence on the shape of the input signal s(t), in the sense that all signals s(t) having the same energy E
produce the same output signal-to-noise ratio irrespective of their shapes. This is, of course, true provided that for each signal
shape a corresponding matched filter is used. In conclusion, if a signal s(t) is corrupted by AWGN, the filter with an impulse
response matched to s(t) maximizes the output SNR.

Example 38. Consider a matched filter receiver with input s(t) = A, 0 ≤ t ≤ T under AWGN. The filter has an impulse
response that is normalized in [0,T ] and matched to s(t). Determine the maximum value of the matched filter output and the
time instant at which this maximum is reached.

Solution. Let h(t) be the impulse response of the matched filter. Since it is matched to s(t) = A, then h(t) = k A, 0 ≤ t ≤ T .
The matched filter’s power is normalized to 1, hence k2A2T = 1⇒ k = 1/A

√
T . The matched filter output is y(t) = s(t)∗h(t)

(the convolution of two rect functions):

y(t) =
∫ ∞
−∞
s(τ)h(t − τ)dτ =

{
A√
T
t, 0 ≤ t ≤ T

− A√
T
t + 2A

√
T , T ≤ t ≤ 2T

Sampling the output y(t) at t = T , we get the maximum value y(T ) = A
√
T , which occurs at t = T .

Example 39. Suppose that the known signal is the rectangular pulse

s(t) =
{

1, t1 ≤ t ≤ t2
0, otherwise

The duration is T = t2 − t1. Then, for the case of White noise, the impulse response required for the matched filter is

h(t) = s(t0 − t)

It is obvious that for the matched filter to be causal we need t0 ≥ t2. In order to minimize the time that we have to wait before
the maximum signal level occurs at the filter’s output, we should pick t0 = t2. Hence, h(t) = s(t2 − t).

4.3.2 Threshold Detector and Error Probability
In this section, we derive a formula that can be used to compute the bit error rate (BER) (or bit probability of error) that

results from the detection process that needs to be implemented at the receiver. Consider a transmitter which uses the polar
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non-return to zero (PNRZ) signaling technique, and that the additive noise process at the receiver input is a zero-mean white
and Gaussian process with a spectral height equal to N0/2. The pulse shape used in the PNRZ is considered rectangular with
positive pulse amplitude representing the bit 1 and negative pulse amplitude representing the bit 0. The pulse shape is known
at the receiver. However, due to the presence of the corruptive noise process, the polarity of the pulse during each signaling
interval (bit duration, T ) is unknown. It is this polarity that needs to be determined or decided upon. This leads to a decision
about the transmitted bit (a binary decision-making).The PNRZ binary data plus noise is present at the input of a receiver,
which is chosen to be matched filter since the noise is white. The output of the matched filter is sampled at t = T . The
sampled output y(T ) is fed to a decision device to decide on the polarity of the transmitted bit.

In general, we can represent the matched filter’s input r(t) as:

r(t) =
{
s1 + n(t), 0 ≤ t ≤ T ← bit 1 is sent
s0 + n(t), 0 ≤ t ≤ T ← bit 0 is sent

Hence, the filter’s output yields

Y =
{
x1 +W , 0 ≤ t ≤ T ← bit 1 is sent
x0 +W , 0 ≤ t ≤ T ← bit 0 is sent (4.16)

where xi is the desired signal component, and W is the noise component. The noise component n0 is a zero mean Gaussian
random variable, and thus Y is a Gaussian random variable with a mean of either x0 or x1 depending on whether a binary one
or a binary zero was sent. The variance of Y is equal to the variance of W :

σ2
Y = σ2

W = N0

2 Eh (4.17)

where Eh is the energy of the matched filter.
For the AWGN channel, the problem of detection can be re-formulated as the following binary hypothesis testing problem

H1 : Y ∼ N (x1,σ2
W ) (4.18)

H0 : Y ∼ N (x0,σ2
W ) (4.19)

As a result, the output statistic for each hypothesis is

fY |H(y |0) = 1√
2πσ2

W

exp

{
− (y − x0)2

2σ2
W

}
(4.20)

fY |H(y |1) = 1√
2πσ2

W

exp

{
− (y − x1)2

2σ2
W

}
(4.21)

Assuming the optimal detector used in a MAP detector, we can compute the likelihood ratio

Λ(y) =
fY |H(y |1)
fY |H(y |0) = exp

{
y
x1 − x0
σ2
W

+ x
2
0 − x2

1
2σ2
W

}
The threshold is

η = PH(0)
PH(1) = p0

p1

Now we have all the ingredients to derive the MAP detection rule. Instead of comparing Λ(y) to the threshold η, we can
compare ln Λ(y) (the log likelihood function) to ln η. Hence, for the binary AWGN channel, the MAP detection rule can be
expressed as

y
x1 − x0
σ2
W

+ x
2
0 − x2

1
2σ2
W

Ĥ1
≷
Ĥ0

ln η (4.22)

Without loss of generality, assume x1 > x0. Then we can divide both sides by x1−x0
σ2
W

(which is positive) without changing
the outcome of the above comparison. We can further simplify by moving the constants to the right. The result is the simple
test

ĤMAP(y) =
{

1, y ≥ θ
0, y < θ

(4.23)
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where
θ = σ2

W

x1 − x0
ln η + x0 + x1

2 (4.24)

Assuming now that the optimal detector used is an ML detector (p0 = p1 = 1/2, i.e., η = 1). The threshold θ becomes the
midpoint x0+x1

2 . See Fig. 4.5. This threshold is the optimum threshold for minimizing the probability of making an incorrect
decision for this important special case of ML detection.

fY |H(y|0)

x0

fY |H(y|1)

x1✓ y

Figure 4.5: For the ML detector, the decision threshold θ is the midpoint between x0 and x1.

We now determine the probability of error. For the binary decision-making depicted in Fig.4.5, there are two ways errors
can occur. The first type of error results from deciding that s0(t) was transmitted, while s1(t) was the transmitted signal (i.e.,
s1(t) was sent, and the channel noise results in Y being less than θ). The second type of error results from deciding that s1(t)
was transmitted, while s0(t) was the transmitted signal (i.e., s0(t) was sent, and the channel noise results in Y being greater
than θ).

Pe = Pe(0)PH(0) + Pe(1)PH(1)
= Pe(0)p0 + Pe(1)p1
= Pr{Y > θ|H = 0}p0 + Pr{Y < θ|H = 1}p1

= p0

∫ ∞
θ

fY |H(y |0)dy + p1
∫ θ

−∞
fY |H(y |1)dy

= p0Q

(
θ − x0
σW

)
+ p1Q

(
x1 − θ
σW

)
(4.25)

For the case of equal priors (ML detection), θ = x0+x1
2 , and the probability of error is reduced to

Pe = Q
(
x1 − x0
2σW

)
(4.26)

As we can see, the probability of error depends on the difference (x1 − x0). The bigger this difference, the smaller the error
probability pe (the Q function is non-increasing). There is a nice geometrical interpretation for this result. The difference
(x1 − x0) represents the distance between the two signal s1(t) and s0(t), the bigger this difference is, the less we can confuse
between them, hence, the smaller the probability of error, and vice versa. But how big can we make this distance?

4.3.3 Optimizing the Error Performance
To optimize Pe in the context of AWGN channel and the receiver in Fig. 4.4, we need to select the optimum receiving filter

and the optimum decision threshold. For the binary case, the optimum decision threshold has been derived, and it was shown
that this threshold results in Pe = Q[(x1− x0)/2σW ]. Next, for minimizing Pe , it is necessary to choose the matched filter that
maximizes the argument of Q(·). Thus, we need to determine the linear filter that maximizes (x1 − x0)/2σW , or equivalently,
that maximizes

(x1 − x0)2

σ2
W

(4.27)

where (x1 − x0) is the difference between the desired signal components at the filter output at time t = T , and the square of
this difference signal is the instantaneous power of the difference signal.
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Since a matched filter maximizes the output SNR for a given known signal, here we view the optimum filter as one that
maximizes the difference between two possible signal outputs. From Equation.(4.15), it was shown that a matched filter achieves
the maximum possible output SNR equal to 2E/N0. Consider that the filter is matched to the input difference [s1(t)− s0(t)];
thus we can write an output SNR at time t = T as(

S

N

)
T

= (x1 − x0)2

σ2
W

= 2Ed
N0

(4.28)

where N0/2 is the two-sided power spectral density and Ed is the energy of the difference signal at the filter input given by

Ed =
∫ T

0
[s1(t)− s0(t)]2dt (4.29)

By maximizing the output SNR as shown in Equation.(4.28), the matched filter provides the maximum distance (normalized
by noise) between the two candidate outputs.

Next, combining Eq. (4.25) and Eq. (4.28) yields

Pe = Q
(√

Ed
2N0

)
(4.30)

Returning to Eq. (4.29), we can expand it as follows

Ed =
∫ T

0
[s1(t)− s2(t)]2dt

=
∫ T

0
s21 (t)dt +

∫ T
0
s22 (t)dt − 2

∫ T
0
s1(t)s2(t)dt

= Eb + Eb − 2
∫ T

0
s1(t)s2(t)dt

= 2Eb − 2
∫ T

0
s1(t)s2(t)dt (4.31)

where Eb is the bit energy (energy of si (t), i = 1, 2).
Here we distinguish between two general class of signals; antipodal signaling and orthogonal signaling.
Antipodal Signaling
Antipodal signals are signals which are mirror images to each other, i.e., s1(t) = −s2(t). In this case, Eq. (4.31) becomes

Ed = 2Eb + 2
∫ T

0
s21dt = 4Eb (4.32)

Replacing Eq. (4.32) in Eq. (4.30) yields

Pe = Q
(√

2Eb
N0

)
(4.33)

Orthogonal Signaling
Orthogonal signals are signals satisfying ∫ T

0
s1(t)s2(t)dt = 0

Replacing in Eq.(4.31) we get
Ed = 2Eb (4.34)

Replacing Eq.(4.34) in Eq.(4.30) yields

Pe = Q
(√
Eb
N0

)
(4.35)

As we can see by comparing Eq. (4.33) and Eq. (4.35), antipodal signaling requires a factor of 2 increase in energy compared
to orthogonal signaling. Since 10 log10(2) ' 3 dB, we say that antipodal signaling offers a 3 dB better error performance than
orthogonal signaling. This result is illustrated in Fig. 4.6.
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Figure 4.6: Error probability comparison between Antipodal and orthogonal signaling.

4.3.4 Correlation Realization of the Matched Filter
Eq. (4.14) illustrates the matched filter’s basic property: the impulse response h(t) of the filter is a delayed version of the

mirror image of the signal s(t), i.e., h(t) = s(T − t). Let the received input waveform r(t) = s(t) + n(t) be at the input of
the matched filter and denote by y(t) its output. Then, we can write

y(t) = r(t) ∗ h(t) =
∫ t

0
r(τ)h(t − τ)dτ (4.36)

Substituting h(t) = s(T − t) into h(t − τ) in Eq.(4.36) we get

y(t) =
∫ t

0
r(τ)s[T − (t − τ)]dτ =

∫ t
0
r(τ)s(T − t + τ)dτ (4.37)

When t = T , we can write Eq.(4.37) as

y(T ) =
∫ T

0
r(τ)s(τ)dτ = 〈r , s〉 (4.38)

The operation of Eq. (4.38), the product integration of the received signal r(t) with a replica of the transmitted waveform
s(t) over one symbol interval, is the correlation of r(t) with s(t). Consider that a received signal r(t) is correlated with each
prototype signal si (t) (i = 1, ...,M), using a bank of M correlators. See Fig.4.7. The signal si (t) whose product integration
or correlation with r(t) yields the maximum output zi (T ) is the signal that matches r(t) better than all the other sj(t), j 6= i .
We will subsequently use this correlation characteristic for the optimum detection of signals.
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Figure 4.7: Bank of Correlators.
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CHAPTER 5

BANDPASS COMMUNICATION

In baseband data transmission an incoming serial data stream is represented in the form of a discrete pulse-amplitude
modulated wave that can be transmitted over a low-pass channel (e.g., a coaxial cable). What if the requirement is to transmit
the data stream over a band-pass channel, exemplified by wireless and satellite channels? In applications of this kind, we usually
resort to the use of a modulation strategy configured around a sinusoidal carrier whose amplitude, phase, or frequency is varied
in accordance with the information-bearing data stream. Digital modulation/demodulation techniques dealing with band-pass
data transmission are studied in this chapter.

The primary aim of the chapter is to describe some important digital band-pass modulation techniques used in practice. In
particular, we describe three basic modulation schemes: namely, amplitude-shift keying (ASK), phase-shift keying (PSK), and
frequency-shift keying (FSK), followed by some of their variants. Another issue that will receive particular attention is that of
coherent versus non-coherent detection. A digital communication system is said to be coherent if the receiver is synchronized
to the transmitter with respect to carrier phase; otherwise, the system is said to be non-coherent. Naturally, a non-coherent
system offers the practical advantage of reduced complexity but at the cost of degraded performance.

5.1 Introduction
Given a binary source that emits symbols 0 and 1, the modulation process involves switching or keying the amplitude, phase,

or frequency of a sinusoidal carrier wave between a pair of possible values in accordance with symbols 0 and 1. To be more
specific, consider the sinusoidal carrier

c(t) = Ac cos(2πfct + φc) (5.1)

where Ac is the carrier amplitude, fc is the carrier frequency, and fc is the carrier phase. Given these three parameters of the
carrier c(t), we may now identify three distinct forms of binary modulation:

1. Binary amplitude shift-keying (BASK), in which the carrier frequency and carrier phase are both maintained constant,
while the carrier amplitude is keyed between the two possible values used to represent symbols 0 and 1.

2. Binary phase-shift keying (BPSK), in which the carrier amplitude and carrier frequency are both maintained constant,
while the carrier phase is keyed between the two possible values (e.g., 0◦ and 180◦) used to represent symbols 0 and 1.

3. Binary frequency-shift keying (BFSK), in which the carrier amplitude and carrier phase are both maintained constant,
while the carrier frequency is keyed between the two possible values used to represent symbols 0 and 1.

In light of these definitions, we see that BASK, BPSK, and BFSK are special cases of amplitude modulation, phase modulation,
and frequency modulation, respectively. Figure.5.1 illustrates these three basic forms of binary signaling.
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Input binary
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0 0 1 1 0 1 1 0 0 1

(b) t

(c)

(a)

t

(d) t

A property of BASK that is immediately apparent from Fig. 7.1(b), which depicts the
BASK waveform corresponding to the incoming binary data stream of Fig. 7.1(a), is the non-
constancy of the envelope of the modulated wave. Accordingly, insofar as detection of the
BASK wave is concerned, the simplest way is to use an envelope detector, exploiting the non-
constant-envelope property of the BASK signal.

! COMPUTER EXPERIMENT I: SPECTRAL ANALYSIS OF BASK

Consider a binary data stream that consists of a square wave, the amplitude of which
alternates between the constant levels and zero every seconds. The square wave
is centered on the origin for convenience of the presentation. The objective of the exper-
iment is twofold:

(i) To investigate the effect of varying the carrier frequency on the power spectrum of
the BASK signal assuming that the square wave is fixed. Recall that the power
spectrum of a signal (expressed in decibels) is defined as 10 times the logarithm (to
base 10) of the squared magnitude (amplitude) spectrum of the signal.

(ii) To investigate the effect of varying the frequency of the square wave on the spectrum
of the BASK signal, assuming that the sinusoidal carrier wave is fixed.

For the purpose of computer evaluation, we set the carrier frequency where n is
an integer. This choice of the carrier frequency permits the simulation of a band-pass
system on a digital computer without requiring the only restriction on the
choice is to make sure that spectral overlap is avoided. (We follow this practice when
performing computer experiments as we go forward in the study of other digital modula-
tion schemes.)

fc W 1>Tb ;
fc

fc ! n>Tb

s1t2, fc

Tb2Eb

FIGURE 7.1 The three basic forms of signaling binary information. (a) Binary data
stream. (b) Amplitude-shift keying. (c) Phase-shift keying. (d) Frequency-shift keying
with continuous phase.

Figure 5.1: The three basic forms of signaling binary information. (a) Binary data stream. (b) Amplitude-shift keying. (c)
Phase-shift keying. (d) Frequency-shift keying with continuous phase.

In the digital communications literature, the usual practice is to assume that the carrier c(t) has unit energy measured over
one symbol (bit) duration. Specifically, the carrier amplitude expressed in terms of the bit duration Tb is

Ac =
√

2
Tb

(5.2)

We may thus express the carrier c(t) in the equivalent form

c(t) =
√

2
Tb

cos(2πfct + φc) (5.3)

One lesson learned from the material covered in previous chapters is the fact that the transmission bandwidth requirement of
an angle-modulated wave is greater than that of the corresponding amplitude-modulated wave. In light of that lesson, we may
say that the transmission bandwidth requirement of BFSK is greater than that of BASK for a given binary source. However,
the same does not hold for BPSK, as we shall see from the material presented in this chapter. This is one of many differences
that distinguish digital modulation from analog modulation.

The spectrum of a digitally modulated wave, exemplified by BASK, BPSK and BFSK, is centered on the carrier frequency
fc , implicitly or explicitly. Moreover, as with analog modulation, it is normal practice to assume that the carrier frequency fc is
large compared with the “bandwidth” of the incoming binary data stream that acts as the modulating signal. This band-pass
assumption has certain implications, as discussed next. To be specific, consider a linear modulation scheme for which the
modulated wave is defined by

s(t) = b(t)c(t) (5.4)

where b(t) denotes an incoming binary wave. Then, setting the carrier phase φc = 0 for convenience of presentation, we may
express s(t) as

s(t) =
√

2
Tb
b(t) cos(2πfct) (5.5)

Under the assumption fc � W , where W is the bandwidth of the binary wave b(t), there will be no spectral overlap in
the generation of s(t) (i.e., the spectral content of the modulated wave for positive frequencies is essentially separated from
its spectral content for negative frequencies). Another implication of the band-pass assumption is that we may express the
transmitted signal energy per bit as

Eb =
∫ Tb

0
|s(t)|2dt = 1

Tb

∫ Tb
0
|b(t)|2dt + 1

Tb

∫ Tb
0
|b(t)|2 cos(4πfct)dt︸ ︷︷ ︸

'0

' 1
Tb

∫ Tb
0
|b(t)|2dt (5.6)
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5.2 Bandpass Modulation Schemes
5.2.1 Binary Amplitude-Shift Keying (ASK)

Binary amplitude-shift keying (BASK) is one of the earliest forms of digital modulation used in radio telegraphy at the
beginning of the twentieth century. To formally describe BASK, consider a binary data stream b(t) which is of the ON-OFF
signaling variety. That is, b(t) is defined by

b(t) =
{ √

Eb, for binary symbol 1
0, for binary symbol 0 (5.7)

Then, multiplying b(t) by the sinusoidal carrier wave c(t) with the phase φc set equal to zero for convenience of presentation,
we get the BASK wave

s(t) =
{ √

Eb
Tb

cos(2πfct), for binary symbol 1
0, for binary symbol 0

(5.8)

The carrier frequency fc may have an arbitrary value, consistent with transmitting the modulated signal anywhere in the
electromagnetic radio spectrum, so long as it satisfies the band-pass assumption.

A property of BASK that is immediately apparent from Fig.5.1(b), which depicts the BASK waveform corresponding to the
incoming binary data stream of Fig.5.1(a), is the non-constancy of the envelope of the modulated wave. Accordingly, insofar as
detection of the BASK wave is concerned, the simplest way is to use an envelope detector, exploiting the non-constant-envelope
property of the BASK signal.

5.2.2 Binary Phase-Shift Keying (PSK)
In the simplest form of phase-shift keying known as binary phase-shift keying (BPSK), the pair of signals s1(t) and s2(t)

used to represent symbols 1 and 0, respectively, are defined by

si (t) =


√

2Eb
Tb

cos(2πfct), for symbol 1 corresponding to i = 1√
2Eb
Tb

cos(2πfct + π) = −
√

2Eb
Tb

cos(2πfct), for symbol 0 corresponding to i = 2
(5.9)

where 0 ≤ t ≤ Tb. See Figure.5.1(c) for a representation example of BPSK. The pair of sinusoidal waves, s1(t) and s2(t),
which differ only in a relative phase-shift of π are antipodal signals. We see that BPSK is a special case of double-sideband
suppressed-carried (DSB-SC) modulation. BPSK differs from BASK in an important respect: the envelope of the modulated
signal s(t) is maintained constant for all time t. This property has two important consequences:

• The transmitted energy per bit, Eb is constant; equivalently, the average transmitted power is constant.

• Demodulation of BPSK cannot be performed using envelope detection; rather, we have to look to coherent detection.

5.2.3 Quadriphase-Shift Keying (QPSK)
An important goal of digital communication is the efficient utilization of channel bandwidth. This goal is attained by

a bandwidth-conserving modulation scheme known as quadriphase-shift keying, which builds on the same idea as that of
quadrature-carrier multiplexing. In quadriphase-shift keying (QPSK), as with BPSK, information carried by the transmitted
signal is contained in the phase of a sinusoidal carrier. In particular, the phase of the sinusoidal carrier takes on one of four
equally spaced values, such as π/4, 3π/4, 5π/4, and 7π/4. For this set of values, we define the transmitted signal as

si (t) =
{ √

2E
T

cos
[
2πfct + (2i − 1)π4

]
, 0 ≤ t ≤ T

0, elsewhere
(5.10)

where i = 1, 2, 3, 4; E is the transmitted signal energy per symbol and T is the symbol duration. Each one of the four equally
spaced phase values corresponds to a unique pair of bits called a dibit. For example, we may choose the foregoing set of phase
values to represent the Gray encoded set of dibits: 10, 00, 01, and 11. In this form of encoding, we see that only a single bit is
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changed from one dibit to the next. Note that the symbol duration (i.e., the duration of each dibit) is twice the bit duration,
as shown by

T = 2Tb
Using a well-known trigonometric identity, we may recast the transmitted signal in the interval 0 ≤ t ≤ T in the expanded
form

si (t) =
√

2E
T

cos
[
(2i − 1)π4

]
cos(2πfct)−

√
2E
T

sin
[
(2i − 1)π4

]
sin(2πfct) (5.11)

In fact, the QPSK signal consists of the sum of two BPSK signals.
The QPSK receiver consists of an in-phase (I)-channel and quadrature (Q)-channel with a common input, as depicted in

Fig.5.2. Each channel is itself made up of a product modulator, low-pass filter, sampler, and decision-making device. Under
ideal conditions, the I− and Q−channels of the receiver, respectively, recover the demultiplexed components a1(t) and a2(t)
responsible for modulating the orthogonal pair of carriers in the transmitter. Accordingly, by applying the outputs of these two
channels to a multiplexer (consisting of a parallel-to-serial converter), the receiver recovers the original binary sequence. The
design of the QPSK receiver builds on the strategy described for the coherent BPSK receiver. Specifically, each of the two
low-pass filters in the coherent QPSK receiver of Fig.5.2 must be assigned a bandwidth equal to or greater than the reciprocal
of the symbol duration T for satisfactory operation of the receiver.
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FIGURE 7.7 Block diagrams of (a) QPSK transmitter and (b) coherent QPSK receiver; for the two synchronous
samplers, integer i ! 0, "1, "2, Á .

Symbols 1 and 0 are thereby represented by and where The
resulting binary wave is next divided by means of a demultiplexer (consisting of a ser-
ial-to-parallel converter) into two separate binary waves consisting of the odd- and even-
numbered input bits of These two binary waves, referred to as the demultiplexed
components of the input binary wave, are denoted by and In any signaling
interval, the amplitudes of and are determined in accordance with columns
3 and 4 of Table 7.1, depending on the particular dibit that is being transmitted. The
demultiplexed binary waves and are used to modulate the pair of quadrature
carriers—namely, and Finally, the two BPSK sig-
nals are subtracted to produce the desired QPSK signals, as depicted in Fig. 7.7(a).

(ii) Detection
The QPSK receiver consists of an in-phase (I)-channel and quadrature (Q)-channel with
a common input, as depicted in Fig. 7.7(b). Each channel is itself made up of a product
modulator, low-pass filter, sampler, and decision-making device. Under ideal conditions,

22>T sin12pfct2.22>T cos12pfct2 a21t2a11t2 a21t2a11t2 a21t2.a11t2b1t2.
Eb ! E>2.#2Eb ,2Eb

Figure 5.2: Block diagram of a QPSK receiver.

5.2.4 Binary Frequency-Shift Keying (FSK)
In the simplest form of frequency-shift keying known as binary frequency-shift keying (BFSK), symbols 0 and 1 are distin-

guished from each other by transmitting one of two sinusoidal waves that differ in frequency by a fixed amount. A typical pair
of sinusoidal waves is described by

si (t) =


√

2Eb
Tb

cos (2πf1t) , for symbol 1 corresponding to i = 1√
2Eb
Tb

cos (2πf2t) , for symbol 0 corresponding to i = 2
(5.12)

When the frequencies f1 and f2 are chosen in such a way that they differ from each other by an amount equal to the
reciprocal of the bit duration Tb, the BFSK signal is referred to as Sunde’s BFSK after its originator. This modulated signal is
a continuous-phase signal in the sense that phase continuity is always maintained, including the inter-bit switching times.

Fig. 5.3 plots the waveform of Sunde’s BFSK produced by the input binary sequence 0011011001 for a bit duration Tb = 1 s.
Part (a) of the figure displays the waveform of the input sequence, and part (b) displays the corresponding waveform of the
BFSK signal. The latter part of the figure clearly displays the phase-continuous property of BFSK.
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Moreover, comparing the power spectral plots of Fig. 7.9 for QPSK with those of Fig.
7.6 for BPSK, we observe that QPSK occupies a bandwidth equal to one half that of BPSK.

! Drill Problem 7.3 Although QPSK and OQPSK signals have different waveforms, their
magnitude spectra are identical; but their phase spectra differ by a linear phase component.
Justify the validity of this two-fold statement. "

7.4 Frequency-Shift Keying

# BINARY FREQUENCY-SHIFT KEYING (BFSK)

In the simplest form of frequency-shift keying known as binary frequency-shift keying (BFSK),
symbols 0 and 1 are distinguished from each other by transmitting one of two sinusoidal waves
that differ in frequency by a fixed amount. A typical pair of sinusoidal waves is described by

(7.18)

where is the transmitted signal energy per bit. When the frequencies and are cho-
sen in such a way that they differ from each other by an amount equal to the reciprocal of
the bit duration the BFSK signal is referred to as Sunde’s BFSK after its originator. This
modulated signal is a continuous-phase signal in the sense that phase continuity is always
maintained, including the inter-bit switching times.

# COMPUTER EXPERIMENT IV: SUNDE’S BFSK

(i) Waveform
Figure 7.11 plots the waveform of Sunde’s BFSK produced by the input binary
sequence 0011011001 for a bit duration Part (a) of the figure displays the
waveform of the input sequence, and part (b) displays the corresponding waveform

Tb ! 1 s.

Tb ,

f2f1Eb

si1t2 ! e B2Eb

Tb
 cos12pf1t2, for symbol 1 corresponding to i ! 1

B2Eb

Tb
 cos12pf2t2, for symbol 0 corresponding to i ! 2

Input
binary
sequence

0 0 1 1 0 1 1 0 0 1

t(a)

t(b)

FIGURE 7.11 (a) Binary sequence and its non-return-to-zero level-encoded waveform. 
(b) Sunde’s BFSK signal.Figure 5.3: (a) Binary sequence and its non-return-to-zero level-encoded waveform. (b) Sunde’s BFSK signal.

5.3 M-ary Digital Modulation Schemes
By definition, in an M-ary digital modulation scheme, we send any one of M possible signals s1(t), s2(t),... , sM(t) during

each signaling (symbol) interval of duration T . In almost all applications, M = 2m where m is an integer. Under this condition,
the symbol duration T = mTb , where Tb is the bit duration. M-ary modulation schemes are preferred over binary modulation
schemes for transmitting digital data over band-pass channels when the requirement is to conserve bandwidth at the expense of
both increased power and increased system complexity. In practice, we rarely find a communication channel that has the exact
bandwidth required for transmitting the output of an information-bearing source by means of binary modulation schemes. Thus,
when the bandwidth of the channel is less than the required value, we resort to an M-ary modulation scheme for maximum
bandwidth conservation.

5.3.1 M-ary Phase-Shift Keying
To illustrate the capability of M-ary modulation schemes for bandwidth conservation, consider first the transmission of

information consisting of a binary sequence with bit duration Tb. If we were to transmit this information by means of binary
PSK, for example, we would require a channel bandwidth that is inversely proportional to the bit duration Tb. However, if
we take blocks of m bits to produce a symbol and use an M-ary PSK scheme with M = 2m and symbol duration T = mTb,
then the bandwidth required is proportional to 1/(mTb). This simple argument shows that the use of M-ary PSK provides a
reduction in transmission bandwidth by a factor m = log2(M) over binary PSK.

In M-ary PSK, the available phase of 2π radians is apportioned equally and in a discrete way among the M transmitted
signals, as shown by the phase-modulated signal

si (t) =
√

2E
T

cos
(

2πfct + 2π
M
i

)
, i = 0, 1, 2, ... ,M − 1, 0 ≤ t ≤ T (5.13)

We can express si (t) in terms of the in-phase and quadrature components

si (t) =
[√
E cos

(
2π
M
i

)][√
2E
T

cos(2πfct)
]
−
[√
E sin

(
2π
M
i

)][√
2E
T

sin(2πfct)
]

(5.14)

The discrete coefficients
√
E cos

( 2π
M
i
)

and −
√
E sin

( 2π
M
i
)

are respectively the in-phase and quadrature components of the
M-ary PSK signal si (t). We can easily verify that the envelope of si (t) is a constant equal to

√
E for all M. The modulation

strategy of QPSK discussed earlier is an example of M-ary PSK with the number of phase levels M = 4.
The previous discussion leads to an insightful geometric portrayal of M-ary PSK. To explain, suppose we construct a two-

dimensional diagram with the horizontal and vertical axes respectively defined by the following pair of orthonormal functions
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(also called basis):

φ1(t) =
√

2
T

cos(2πfct), 0 ≤ t ≤ T (5.15)

φ2(t) =
√

2
T

sin(2πfct), 0 ≤ t ≤ T (5.16)

where the band-pass assumption implies orthogonality; the scaling factor
√

2
T

assures unit energy over the interval T for both
φ1(t) and φ2(t). On this basis, we may represent the in-phase and quadrature components for i = 0, 1, 2, ... ,M − 1 as a set
of points in this two-dimensional diagram, as illustrated in Fig.5.4 for M = 8. Such a diagram is referred to as signal-space
diagram or signal constellation.
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The discrete coefficients and are respectively referred to as the
in-phase and quadrature components of the M-ary PSK signal We now recognize that

(7.37)

Accordingly, M-ary PSK modulation has the unique property that the in-phase and quad-
rature components of the modulated signal are interrelated in such a way that the dis-
crete envelope of the signal is constrained to remain constant at the value for all M.
The modulation strategy of QPSK discussed in Section 7.3 is an example of M-ary PSK with
the number of phase levels 

Signal-Space Diagram

The result described in Eq. (7.37), combined with the fact that the in-phase and quad-
rature components of M-ary PSK are discrete, leads to an insightful geometric portrayal of
M-ary PSK. To explain, suppose we construct a two-dimensional diagram with the hori-
zontal and vertical axes respectively defined by the following pair of orthnormal functions:

(7.38)

and

(7.39)

where the band-pass assumption implies orthogonality; the scaling factor assures
unit energy over the interval T for both and On this basis, we may rep-
resent the in-phase component and quadrature component
for as a set of points in this two-dimensional diagram, as illus-
trated in Fig. 7.19 for Such a diagram is referred to as a signal-space diagram.M ! 8.
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FIGURE 7.20 Signal-space diagram of 8-PSK.Figure 5.4: Signal-space diagram of 8-PSK.

Figure.5.4 leads us to make three important observations:

1. M-ary PSK is described in geometric terms by a constellation of M signal points distributed uniformly on a circle of radius√
E .

2. Each signal point in the figure corresponds to the signals si (t) for a particular value of the index i .

3. The squared length from the origin to each signal point is equal to the signal energy E .

In light of these observations, we may now formally state that the signal-space-diagram of Figure.5.4 completely sums up
the geometric description of M-ary PSK in an insightful manner. Note that the 3-bit sequences corresponding to the 8 signal
points are Gray-encoded, with only a single bit changing as we move along the constellation in the figure from one signal point
to an adjacent one.

5.3.2 M-ary Quadrature Amplitude Modulation (QAM)
Suppose next that the constraint that the envelope of si (t) is a constant for all M is removed. Then, the in-phase and

quadrature components of the resulting M-ary modulated signal are permitted to be independent of each other. Specifically,
the mathematical description of the new modulated signal assumes the form

si (t) =
√

2E0

T
ai cos(2πfct)−

√
2E0

T
bi sin(2πfct), i = 0, 1, ... ,M − 1, 0 ≤ t ≤ T (5.17)

where the level parameter ai in the in-phase component and the level parameter bi in the quadrature component are independent
of each other for all i . This new modulation scheme is called M-ary quadrature amplitude modulation (QAM). Note also that the
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constant E0 is the energy of the signal pertaining to a particular value of the index i for which the amplitude of the modulated
signal is the lowest.

M-ary QAM is a hybrid form of M-ary modulation, in the sense that it combines amplitude-shift keying and phase-shift
keying. It includes two special cases:

1. If bi = 0 for all i , the modulated signal si (t) reduces to

si (t) =
√

2E0

T
ai cos(2πfct), i = 0, 1, 2 ... ,M − 1

which defined M-ary amplitude-shift keying (M-ary ASK)

2. If E0 = E and the constraint (Ea2i +Eb2
i )1/2 =

√
E for all i is satisfied, then the modulated signal si (t) reduces to M-ary

PSK.

Figure.5.5 portrays the signal-space representation of M-ary QAM for M = 16, with each signal point being defined by
a pair of level parameters ai and bi , where i = 1, 2, 3, 4. This time, we see that the signal points are distributed uniformly
on a rectangular grid. The rectangular property of the signal-space diagram is testimony to the fact that the in-phase and
quadrature components of M-ary QAM are independent of each other. Moreover, we see from Figure.5.5 that, unlike M-ary
PSK, the different signal points of M-ary QAM are characterized by different energy levels, and so they should be. Note also
that each signal point in the constellation corresponds to a specific quadbit, which is made up of 4 bits. Assuming the use
of Gray encoding, only one bit is changed as we go from each signal point in the constellation horizontally or vertically to an
adjacent point, as illustrated in Figure.5.5.298 CHAPTER 7 ! DIGITAL BAND-PASS MODULATION TECHNIQUES

! M-ARY FREQUENCY-SHIFT KEYING

However, when we consider the M-ary version of frequency-shift keying, the picture is
quite different from that described for M-ary PSK or M-ary QAM. Specifically, in one form
of M-ary FSK, the transmitted signals are defined for some fixed integer n as follows:

(7.41)

The M transmitted signals are all of equal duration T and equal energy E. With the indi-
vidual signal frequencies separated from each other by hertz, the signals in Eq.
(7.41) are orthogonal; that is, they satisfy the condition

(7.42)

Like M-ary PSK, the envelope of M-ary FSK is constant for all M, which follows directly
from Eq. (7.41). Hence, both of these M-ary modulation strategies can be used over non-
linear channels. On the other hand, M-ary QAM can only be used over linear channels
because its discrete envelope varies with the index i (i.e., the particular signal point chosen
for transmission).

Signal-Space Diagram

To develop a geometric representation of M-ary FSK, we start with Eq. (7.41). In
terms of the signals defined therein, we introduce a complete set of orthonormal
functions:

(7.43)

Unlike M-ary PSK and M-ary QAM, we now find that M-ary FSK is described by an
M-dimensional signal-space diagram, where the number of signal points is equal to the
number of coordinates. The visualization of such a diagram is difficult beyond 
Figure 7.22 illustrates the geometric representation of M-ary FSK for M ! 3.

M ! 3.

fi1t2 !
12E

si1t2 i ! 0, 1, Á , M " 1
0 # t # T

si1t2

L
T

0
si1t2sj1t2 dt ! bE for i ! j

0 for i $ j

1>12T2
si1t2 ! A2E

T
cos cp

T
1n % i2t d , i ! 0, 1, Á , M " 1

0 # t # T

!2

!1
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–1
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FIGURE 7.21 Signal-space diagram of Gray-
encoded M-ary QAM for M ! 16.

Figure 5.5: Signal-space diagram of Gray-encoded M-ary QAM for M = 16.

5.3.3 M-ary Frequency-Shift Keying
When we consider the M-ary version of frequency-shift keying, the picture is quite different from that described for M-ary

PSK or M-ary QAM. Specifically, in one form of M-ary FSK, the transmitted signals are defined for some fixed integer n as
follows:

si (t) =
√

2E
T

cos
[ π
T

(n + i)t
]

, i = 0, 1, ... ,M − 1, 0 ≤ t ≤ T (5.18)
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The M transmitted signals are all of equal duration T and equal energy E . With the individual signal frequencies separated
from each other by 1/(2T ) hertz, the signals si (t) are orthogonal. Like M-ary PSK, the envelope of M-ary FSK is constant
for all M. Hence, both of these M-ary modulation strategies can be used over non-linear channels. On the other hand, M-ary
QAM can only be used over linear channels because its discrete envelope varies with the index i (i.e., the particular signal point
chosen for transmission).

To develop a geometric representation of M-ary FSK, we start with Eq.5.18. In terms of the signals si (t) defined therein,
we introduce a complete set of orthonormal functions:

φi (t) = 1√
E
si (t), i = 0, 1, ... ,M − 1, 0 ≤ t ≤ T (5.19)

Unlike M-ary PSK and M-ary QAM, we now find that M-ary FSK is described by an M-dimensional signal-space diagram, where
the number of signal points is equal to the number of coordinates. The visualization of such a diagram is difficult beyond
M = 3. Figure.5.6 illustrates the geometric representation of M-ary FSK for M = 3.7.8 Mapping of Digitally Modulated Waveforms Onto Constellations of Signal Points 299

!2
0

!3

!1

/E/E

/E

FIGURE 7.22 Signal constellation for M-ary FSK
for M ! 3.

!1

t

s2

Tb

s2(t)

0

0

s1

t

Tb

s1(t)

0

/Eb /Eb

FIGURE 7.23 Mapping of BPSK
signal onto a one-dimensional 
signal-space diagram.

! Drill Problem 7.9 Starting with Eq. (7.41), prove the orthogonality property of Eq. (7.42)
that characterizes M-ary FSK. "

7.8 Mapping of Digitally Modulated Waveforms
Onto Constellations of Signal Points

The idea of signal-space diagrams mentioned at various points in Section 7.7 is of pro-
found importance in statistical communication theory. In particular, it provides the math-
ematical basis for the geometric representation of energy signals, exemplified by digitally
modulated waveforms. For a specific method of digital modulation, the geometric repre-
sentation is pictured in the form of a constellation of points in the signal-space diagram,
which is unique to that method.

The purpose of this section is to do two things:

! Consolidate the idea of a signal-space diagram pictorially.
! Discuss what this idea teaches us in the analysis of noise in digital communication sys-

tems, which we treat later in the book.

With consolidation in mind, Fig. 7.23 on BPSK shows the way in which the two
waveforms and respectively representing binary symbols 1 and 0, are mapped
onto the transmitted signal points and The key question is: how is the mappings2.s1

s21t2,s11t2

Figure 5.6: Signal constellation for M-ary FSK for M = 3.

5.4 Discrete Data Detection
In practice, the channel output waveform y(t) is not equal to the modulated signal x(t). In many cases, the “essential”

information of the channel output y(t) is captured by a finite set of vector components, i.e. a vector
¯
y generated by the

demodulation described earlier. Specific important examples appear later in this chapter, but presently the analysis shall
presume the existence of the vector

¯
y and proceed to study the detector for the channel. The detector decides which of the

discrete channel input vectors xi , i = 1, ... ,M was transmitted based on the observation of the channel output vector
¯
y .

5.4.1 The Vector Channel Model
The vector channel model appears in Figure.5.7. This model suppresses all continuous-time waveforms, and the channel

produces a discrete vector output given a discrete vector input. The detector chooses a message mi from among the set of M

Discrete Modulator DecisionChannel

Figure 5.7: Vector Channel Model

possible messages {mi}, i = 1, ... ,M transmitted over the vector channel. The encoder formats the messages for transmission
over the vector channel by translating the message mi into xi , an N−dimensional real data symbol chosen from a signal
constellation. The encoders of this text are one-to-one mappings between the message set and the signal-constellation vectors.
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The channel-input vector
¯
x corresponds to a channel-output vector

¯
y , an N−dimensional real vector. (Thus, the transformation

of y(t)→
¯
y is here assumed to occur within the channel.) The conditional probability of the output vector

¯
y given the input

vector
¯
x , p

¯
y |

¯
x , completely describes the discrete version of the channel. The decision device then translates the output vector

¯
y into an estimate of the transmitted message ˆ

¯
x . A decoder (which is part of the decision device) reverses the process of the

encoder and converts the detector output ˆ
¯
x into the message decision m̂.

The particular message vector corresponding to mi is xi , and its nth component is xin. The nth component of
¯
y is denoted

yn, n = 1, ... ,N. In the vector channel,
¯
x is a random vector, with discrete probability mass function p

¯
x (i), i = 1, ... ,M. The

output random vector
¯
y may have a continuous probability density or a discrete probability mass function p

¯
y (¯
v), where

¯
v is a

dummy variable spanning all the possible N−dimensional outputs for
¯
y . This density is a function of the input and channel

transition probability density functions:

p
¯
y (¯
v) =

M∑
i=1
p
¯
y |

¯
x (¯
v |i).p

¯
x (i) (5.20)

The average energy of the channel input symbols is

E
¯
x =

M∑
i=1
||xi ||2.p

¯
x (i) (5.21)

The corresponding average energy for the channel-output vector is

E
¯
y =

∑
v

||
¯
v ||2.p

¯
y (v) (5.22)

An integral replaces the sum in (5.22) for the case of a continuous density function p
¯
y (¯
v). As an example, consider the simple

additive noise channel
¯
y =

¯
x +

¯
n. In this case p

¯
y |

¯
x = p

¯
n(

¯
y −

¯
x), where p

¯
n(·) is the noise density, when

¯
n is independent of the

input
¯
x .

5.4.2 The MAP and ML Detectors
Definition 22. (Probability of Error) The probability of error is defined as the probability that the decoded message m̂ is not
equal to the message that was transmitted

Pe , Pr{m̂ 6= m}

The optimum data detector chooses m̂ to minimize Pe , or equivalently, to maximize P(c); the probability of correct decision.

The MAP Detector
Here we consider the first design problem mentioned earlier in the chapter, that of optimally deciding which of M signals is
transmitted from some set of received data represented by received stochastic vector

¯
Y . The case when the received data is

instead a stochastic process, Y (t), will be dealt with in the sequel. Let
¯
Xi , i = 1, 2. ... ,M be the set of M modulation signals.

Presumably, the received vector
¯
Y depend statistically on which of the M signals is transmitted. The receiver design problem

is fundamentally one of partitioning the space of all received vector
¯
Y into M decision regions Ci , i = 1, 2, ... ,M, such that

when a received vector
¯
Y is in Ci , the receiver decides that

¯
Xi was sent. An optimal partition is one that minimizes the

average error probability, or, equivalently, maximizes the average probability of a correct decision P(c). Figure.5.8 illustrates
the partitioning concept.
We have

p(c) =
M∑
i=1
p(c |

¯
xi )p(¯

xi ) =
M∑
i=1

∫
Ci

f
¯
Y (

¯
y |

¯
xi )p(¯

xi )d
¯
y

where
¯
y is a realization of the received random vector

¯
Y and f

¯
Y (

¯
y |

¯
xi ) is the conditional density of the received random vector

¯
Y given that

¯
Xi was sent. Since the integrand in the expression above is non-negative, clearly the average probability of correct

decision is maximized when we place in Ci all received vectors
¯
y for which f

¯
Y (

¯
y |

¯
xi )p(¯

xi ) is largest, for i = 1, 2, ... ,M. Thus,
the optimum (minimum error probability) detector implements

x̂MAP = arg max
i=1,2,...,M

f
¯
Y (

¯
y |

¯
xi )p(¯

xi ) (5.23)
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Figure 5.8: Illustration of decision regions for M = 4.

Equivalently, it implements
x̂MAP = arg max

i=1,2,...,M
p(

¯
Xi |¯
Y =

¯
y) (5.24)

in view of Baye’s rule

p(
¯
Xi |¯
Y =

¯
y) =

f
¯
Y (

¯
y |

¯
xi )p(¯

xi )
f
¯
Y (

¯
y) (5.25)

where f
¯
Y (

¯
y |

¯
xi ) and f

¯
Y (

¯
y) are, respectively, the conditional and unconditional density functions of the received data

¯
Y ; p(

¯
xi ) is

the a priori probability of transmitting signal
¯
Xi and p(

¯
Xi |¯
Y =

¯
y) is the a posteriori probability of transmitting signal

¯
Xi ; thus,

the name maximum a posteriori receiver (MAP).
The ML Detector
If the a priori probabilities are equal, the the MAP receiver coincides with the maximum likelihood (ML) receiver that implements

x̂ML = arg max
i=1,2,...,M

f
¯
Y (

¯
y |

¯
xi ) (5.26)

As with the MAP detector, the ML detector also chooses an index i for each possible received vector
¯
Y , but this index now

only depends on the channel transition probabilities and is independent of the input distribution. This type of detector only
minimizes pe when the input data symbols have equal probability of occurrence. As this requirement is often met in practice,
ML detection is often used. Even when the input distribution is not uniform, ML detection is still often employed as a detection
rule, because the input distribution may be unknown and thus assumed to be uniform. The Minimax Theorem sometimes
justifies this uniform assumption:

Theorem 11. (Minimax Theorem) The ML detector minimizes the maximum possible average probability of error when the
input distribution is unknown, if the conditional probability of error Pr(error|mi was sent) is independent of i .

The condition of symmetry imposed by the above theorem is not always satisfied in practical situations; but the likelihood of an
application where both the inputs are nonuniform in distribution and the ML conditional error probabilities are not symmetric
is rare. Thus, ML receivers have come to be of nearly ubiquitous use in place of MAP receivers.
The function Li = f

¯
Y (

¯
y |

¯
xi ) is known as the likelihood function. In general, instead of maximizing the likelihood function, it

is simpler to maximizes its logarithm, `i = ln f
¯
Y (

¯
y |

¯
xi ), referred to as the log-likelihood function.

5.4.3 Decision Regions
In the case of either the MAP or the ML rules, each and every possible value for the channel output

¯
y maps into one

of the M possible transmitted messages. Thus, the vector space for
¯
y is partitioned into M regions corresponding to the M

possible decisions. Simple communication systems have well-defined boundaries (to be shown later), so the decision regions
often coincide with intuition. Nevertheless, in some well-designed communications systems, the decoding function and the
regions can be more difficult to visualize.

Definition 23. (Decision Region) The decision region using a MAP detector for each message mi , i = 1, ... ,M is defined as

Di , {¯
v |p

¯
Y |

¯
X (

¯
v |i) · p

¯
X (i) ≥ p

¯
Y |

¯
X (

¯
v |j) · p

¯
X (j) ∀j 6= i} (5.27)
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With uniformly distributed input messages, the decision regions reduce to

Di , {¯
v |p

¯
Y |

¯
X (

¯
v |i) ≥ p

¯
Y |

¯
X (

¯
v |j) ∀j 6= i} (5.28)

In Figure.5.8, each of the four different two-dimensional transmitted vectors
¯
Xi (corresponding to the messages mi ) has a

surrounding decision region in which any received value for
¯
Y =

¯
v is mapped to the message mi . In general, the regions need

not be connected, and although such situations are rare in practice, they can occur.

5.5 Gaussian Random Vectors
In this section, we present basic definitions pertaining to the theory of Gaussian random vectors, which will prove to be

handy for the upcoming sections.

Definition 24 (Vector Gaussian PDF). The joint Gaussian PDF for a vector of n random variables
¯
X , with mean vector µ

¯
X ,

and covariance matrix K
¯
X

¯
X is given by:

f
¯
X (

¯
x) = 1√

(2π)ndet(K
¯
X

¯
X )
exp

[
−1

2(
¯
x − µ

¯
X )TK−1

¯
X

¯
X (

¯
x − µ

¯
X )
]

(5.29)

Example 40. For n = 1,

f
¯
X (

¯
x) = 1

(2π)1/2σ
exp

[
−1
2 (

¯
x −

¯
µ)T 1

σ2 (
¯
x −

¯
µ)
]

= 1√
2πσ2

exp
{
−1

2

(
x − µx
σ

)2
}

Example 41. For n = 2,
¯
X = (X1,X2)T and the covariance matrix K

¯
X

¯
X is defined by

K
¯
X

¯
X =

[
σ2
X1

Cov(X1,X2)
Cov(X1,X2) σ2

X2

]
=
[

σ2
X1

ρσX1σX2

ρσX1σX2 σ2
X2

]

det(K
¯
X

¯
X ) = σ2

X1
σ2
X2
− ρ2σ2

X1
σ2
X2

= (1− ρ2)σ2
X1
σ2
X2

Hence,
fX1X2(x1, x2) = 1

(2π)σX1σX2

√
1− ρ2

exp
[
−1

2(1− ρ2)β
]

,

Where,

β =
(
x1 − µX1

σX1

)2
− 2ρ

(
x1 − µX1

σX1

)(
x2 − µX2

σX2

)
+
(
x2 − µX2

σX2

)2

Example 42. Let X ,Y ,Z be three zero-mean jointly Gaussian random variables with the following covariance matrix

K =

 1 0.2 0.3
0.2 1 0.3
0.3 0.2 1

 ,

Find the PDF of fX ,Z (x , z).
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Solution. From the given information, X and Z are jointly Gaussian and KXZ =
[

1 0.3
0.3 1

]
. From KXZ we know that:

σX = σZ = 1
Cov [XZ ] = 0.3

}
⇒ ρ = 0.3

1 = 0.3.

Therefore,
fXZ (x , z) = 1

(2π)
√

0.91
exp

[
−1

2(0.91)
(
x2 − 0.6xz + z2)].

Example 43. Find the expression for the PDF of the N-dimensional Gaussian vector consisting of mutually uncorrelated
vectors.Verify that uncorrelated jointly Gaussian random variables are independent.

Solution. Two vectors are mutually uncorrelated, hence, Cov(Xi ,Xi ) = 0 for all i 6= j . Thus, K
¯
X

¯
X is a diagonal matrix

K
¯
X

¯
X =


σ2

1 0 ... 0
0 σ2

2 ... 0
0 0 ... 0
...

...
. . .

...
0 0 ... σ2

n

⇒ K−1

¯
X

¯
X =


σ−2

1 0 ... 0
0 σ−2

2 ... 0
0 0 ... 0
...

...
. . .

...
0 0 ... σ−2

n


det(K

¯
X

¯
X ) =

n∏
i=1

σ2
i

(
¯
x − µ

¯
X )TK−1

¯
X

¯
X (

¯
x − µ

¯
X ) =

n∑
i=1

(
xi − µi
σi

)2

Hence,

f
¯
X (

¯
x) = 1√

(2π)n
∏n
i=1 σ

2
i

exp

[
n∑
i=1

(xi − µi )2

2σ2
i

]
=

n∏
i=1

1√
2πσ2

i

exp

(
− (xi − µi )2

2σ2
i

)
=

n∏
i=1
fXi (xi )

So uncorrelated Gaussian random variables are independent.

5.6 The Vector AWGN Channel
Additive white Gaussian noise (AWGN) is a basic noise model used in communication theory to mimic the effect of many

random processes that occur in nature. In this section we consider the detection problem for a vector AWGN channel, where
the problem can be cast as an m-ary hypotheses testing problem based on n−tuple observations.

We will assume that the noise vector
¯
W is an n−dimensional Gaussian random vector with zero mean, equal-variance σ2,

and with uncorrelated components in each dimension. The noise distribution is

f
¯
W (

¯
w) = (πN0)− n2 · e−

1
N0
||

¯
w ||2 = (2πσ2)− n2 · e−

1
2σ2 ||¯

w ||2

The vector channel is described as follows

¯
Y =

¯
Xi + ¯

W , i = 1, 2 ... ,m (5.30)

where
¯
Xi is an is an n−dimensional signal vector derived from an m−ary set (a set of m messages), independent from the noise
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vector, and
¯
Y is an n−dimensional vector representing the received (observed) signal. Alternatively, we can write Eq. (5.30) as

H1 :
¯
Y =

¯
X1 +

¯
W ∼ N (x1,σ2In)⇒ f

¯
Y |H(

¯
y |1) = 1

(2πσ2)n/2
exp

{
−
||
¯
y −

¯
x1||2

2σ2

}
H2 :

¯
Y =

¯
X2 +

¯
W ∼ N (x2,σ2In)⇒ f

¯
Y |H(

¯
y |2) = 1

(2πσ2)n/2
exp

{
−
||
¯
y −

¯
x2||2

2σ2

}
...

Hm :
¯
Y =

¯
Xm +

¯
W ∼ N (xm,σ2In)⇒ f

¯
Y |H(

¯
y |m) = 1

(2πσ2)n/2
exp

{
−
||
¯
y −

¯
xm||2

2σ2

}
where In is the n−dimensional identity matrix.

To apply the MAP detection rule, we need to compute

ĤMAP = arg max
i=1,2,...,m

Li

where Li = f
¯
Y |H(

¯
y |

¯
xi )p(Hi ). Taking the logarithm of Li , we get the log-likelihood function

`i = ln f
¯
Y |H(

¯
y |

¯
xi ) + ln p(Hi )

Substituting with f
¯
Y |H(

¯
y |

¯
xi ), we get

`i = ln
[

1
(2πσ2)n/2

exp

{
−
||
¯
y −

¯
xi ||2

2σ2

}]
+ ln p(Hi )

= −n2 ln(2πσ2)− 1
2σ2 ||¯

y −
¯
xi ||2 + ln p(Hi )

= −
n∑
j=1

[
1
2 ln(2πσ2 + 1

2σ2 (yj − xij)2
]

+ ln p(Hi ) (5.31)

Dropping terms which are irrelevant in maximizing `i from Eq. (5.31), we get

`i = −
n∑
j=1

(yj − xij)2 + ln p(Hi ) (5.32)

Expanding the square, dropping the quadratic term that does not affect the maximization and dividing the result by 2,
Eq. (5.32) becomes

`i =
N∑
j=1

(
yjxij −

1
2x

2
ij

)
+ ln p(Hi ) = 〈

¯
y ,

¯
xi 〉 −

1
2 ||¯
xi ||2 + ln p(Hi )

Hence, the MAP detector for the considered vector AWGN channel is

ĤMAP = arg max
i=1,2,...,m

{
〈
¯
y ,

¯
xi 〉 −

1
2 ||¯
xi ||2 + ln p(Hi )

}
(5.33)

From the MAP decision rule, we can easily derive the ML decision rule for the vector AWGN channel, where we assume that
all hypotheses are equiprobable, i.e., p(Hi ) = 1

m
, ∀i = 1, 2 ... ,m. This yields the following ML rule

ĤML = arg max
i=1,2,...,m

{
〈
¯
y ,

¯
xi 〉 −

1
2 ||¯
xi ||2

}
(5.34)

If we assume that all messages have the same energy, then the ML rule is further simplified to the following

ĤML = arg max
i=1,2,...,m

〈
¯
y ,

¯
xi 〉 (5.35)
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The ML detector for the AWGN channel has the intuitively appealing physical interpretation that the decision ˆ
¯
X =

¯
Xi

corresponds to choosing the data symbol
¯
Xi that is closest, in terms of the Euclidean distance, to the received vector channel

output
¯
Y . To see this, consider the equiprobable transmission of two data symbols

¯
X1 and

¯
X2, then the ML decision rule is

−||
¯
y −

¯
x1||2

Ĥ1
≷
Ĥ2

−||
¯
y −

¯
x2||2 ⇒ ||

¯
y −

¯
x1||2

Ĥ2
≷
Ĥ1

||
¯
y −

¯
x2||2 ⇒ d(

¯
y ,

¯
x1)

Ĥ2
≷
Ĥ1

d(
¯
y ,

¯
x2)

This rule implies that the detector decides in favor of
¯
X1 if the received vector

¯
y is closest to

¯
X1 and in favor of

¯
X2 if the

received vector
¯
y is closest to

¯
X2.

Without noise, the received vector is
¯
Y =

¯
Xi the transmitted symbol, but the additive Gaussian noise results in a received

symbol most likely in the neighborhood of
¯
Xi . The Gaussian shape of the noise implies the probability of a received point

decreases as the distance from the transmitted point increases.

Example 44. (Optimal decision rule)
Consider the reception of either of the following signals in additive zero-mean white and Gaussian noise process with spectral
height N0/2.

s1(t) =
√

2E
T

cos(2πfct), 0 ≤ t ≤ T

s2(t) = 2
√

2E
T

cos(2πfct), 0 ≤ t ≤ T

s3(t) =
√

2E
T

sin(2πfct), 0 ≤ t ≤ T

where fc = n
T

, with n being a positive integer.

1. Determine the optimal decision rule that needs to be implemented by the vector receiver. Let x1 and x2 be the outputs
of the correlators used in the detection of the signals.

2. Based on the developed decision rule, what would the decision be if the received signal is
√
E [cos(2πfct)− sin(2πfct)]?

Solution.

1. By inspection, ϕ1(t) =
√

2
T

cos(2πfct), 0 ≤ t ≤ T and ϕ2(t) =
√

2
T

sin(2πfct), 0 ≤ t ≤ T . From the previous
example, the vector receiver implements the following:

arg max
i=1,2,3

{
¯
x ·

¯
si −

1
2Ei
}

Given the chosen basis functions,
¯
s1 = [

√
E 0]T ,

¯
s2 = [2

√
E 0]T ,

¯
s3 = [0

√
E ]T . Hence,

¯
x ·

¯
s1 −

1
2E1 =

√
Ex1 −

E

2

¯
x ·

¯
s2 −

1
2E2 = 2

√
Ex1 − 2E

¯
x ·

¯
s3 −

1
2E3 =

√
Ex2 −

E

2

The decision rule is then,

max
{
x1 −

√
E

2 , 2x1 − 2
√
E , x2 −

√
E

2

}
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2. The received signal can be written as
√
TE
2 ϕ1(t)−

√
TE
2 ϕ2(t). Hence, the received vector is

[x1 x2]T =
[√
TE

2 −
√
TE

2

]T
We compute

x1 −
√
E

2 =
√
TE

2 −
√
E

2
2x1 − 2

√
E =

√
TE − 2

√
E

x2 −
√
E

2 = −
√
TE

2 −
√
E

2

The decision reduces to√
TE

2 −
√
E

2
Decide s1(t)
≷

Decide s2(t)

√
TE − 2

√
E ⇒ 1−

√
2

2
√
T + 3

4
Decide s1(t)
≷

Decide s2(t)
0⇒

√
T

Decide s2(t)
≷

Decide s1(t)

3
2(
√

2− 1)

Hence, if T > 13.11, decide that the signal is s2(t), otherwise, decide that the signal is s1(t).

5.6.1 Interpretation of the Optimum Detector for the AWGN Channel
The log-likelihood function in the waveform domain is

`i =
∫ T

0
Y (t)Xi (t)dt −

1
2

∫ T
0
X 2
i (t)dt, i = 1, 2, ... ,M (5.36)

Another equivalent form of the log-likelihood function that gives further insight into the detection problem is obtained by
subtracting half the energy of Y (t) on the right hand side (which does not affect the detection problem), completing the
squares and then multiplying the result by −2, converts the maximization into a minimization. Thus, we can equivalently
minimize

`i =
∫ T

0
[Y (t)− Xi (t)]2dt (5.37)

The likelihood function corresponding to the log-likelihood function in (5.36) (obtained by taking the logarithms and dropping
some constant terms) is

Li = exp
[

2
N0

∫ T
0
Y (t)Xi (t)dt −

1
N0

∫ T
0
X 2
i (t)dt

]
(5.38)

We will make use of the log-likelihood function above to derive optimal detectors for channels that are perturbed by additive
Gaussian noise. If the modulation signals have equal energy, then

`i =
∫ T

0
Y (t)Xi (t)dt, i = 1, 2, ... ,M

For obvious reasons, the resulting receiver is referred to as the correlation receiver. In other words, when the modulation
signals have equal energy, the most likely transmitted signal is one that is maximally correlated with the received signal. A
block diagram of the correlation receiver is shown in Figure 5.9. It consists of a bank of correlators followed by samplers that
periodically sample the correlator output every T seconds to obtain the M log-likelihood statistics that are then used to make
a decision by finding the largest. Note that it is crucial that the sampling of the correlator outputs be done synchronously both
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0
(·) dt
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Choose
Largest

`1

`2

`M

Figure 5.9: Binary ML detector

in frequency (i.e. every T seconds) and at the correct timing phase. In practice this timing information must be extracted at
the receiver; it is the function of the timing-synchronization subsystem to provide timing information to the detector. Clearly,
any error in timing will result in performance loss. In this chapter we will assume that time-synchronization already exists and
is in fact perfect.

5.6.2 The Matched-Filter Receiver
Since the log-likelihood statistics `1, `2, ... `M are obtained from the received data y(t) through a linear operation (correlation),
it should be possible to also compute them by passing the data y(t) through a linear filter of some appropriate impulse response
and then sampling the output of this filter instead. To find the impulse-response of the filter, we have∫ ∞

−∞
y(t) · xi (t)dt =

∫ ∞
−∞
y(t) · hi (T − t)dt ⇒ hi (t) = xi (T − t) (5.39)

Thus, the i−th impulse-response is a time-reversed and translated version of the i−th signal. We say that the impulse-response
is matched to the i−th signal and refer to the corresponding receiver as the matched-filter receiver. The matched-filter
receiver is not a new receiver but simply a different implementation of the optimum correlation receiver that offers a number
of implementation advantages: it does not require a multiplier or signal generator, but only a linear filter, the design of which
is a well studied problem. Figure 5.10 shows the matched-filter receiver. Note that the timing for the sampling operation is
provided again by a timing-synchronizer. The matched filters shown satisfy the SNR maximization property.

t = T

t = T

t = T

Choose
Largest

`1

`2

`M

X1(T � t)

X2(T � t)

XM (T � t)

Y (t)

Figure 5.10: Matched Filter Receiver
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Example 45. (Error Performance for 6-ary PAM)
Consider the transmission of 6 signals using a Pulse Amplitude Modulation (PAM) scheme (a 6-ary source) over an AWGN
channel, where the noise is of zero-mean and variance σ2. The situation could be cast as a mapping from H = {0, 1, 2, 3, 4, 5}
to S = {s0, s1, s2, s3, s4, s5}, where si are real valued for i = 0, 1, ... , 5. Let si+1 − si = d for any i = 0, 1, ... , 4.

1. Draw the signal constellation and specify the decision regions corresponding to the ML decoder at high SNR.

2. Evaluate the probability of error as a function of d .

Solution.

1. The signals are elements of R, and the ML decoder chooses according to the minimum-distance rule. LetRi , i = 0, 1 ... , 5,
denote the decision regions corresponding to the received signals y = si + w , where w is the AWGN noise of zero-mean
and variance σ2. At high SNR, the a certain hypothesis could be decoded wrong by one of its adjacent neighbors. Using
the minimum-distance decision rule, the thresholds between adjacent decision regions are the perpendicular bisectors that
separate those regions; represented by dashed lines in Fig. 5.11.

2. When the hypothesis is H = 0, the receiver makes the wrong decision if the observation u ∈ R falls outside the decoding
region R0. This is the case if the noise w ∈ R is larger than d/2. Thus,

Pe(0) = Pr{w > d/2} = Q
(
d

2

)
By symmetry, Pe(5) = Pe(0). For i ∈ {1, 2, 3, 4}, the probability of error when H = i is the probability that the event
{w ≥ d/2}∪{w < −d/2} occurs. This event is the union of disjoint events. Its probability is the sum of the probabilities
of the individual events. Hence,

Pe(i) = Pr{{w ≥ d/2} ∪ {w < −d/2}} = 2Pr{w ≥ d/2} = 2Q
(
d

2σ

)
, i ∈ {1, 2, 3, 4}

Finally,

Pe = 2
6Q

(
d

2σ

)
+ 4

6Q
(
d

2σ

)
= 5

3Q
(
d

2σ

)

24 Chapter 2.

- ys s s s s s
s0 s1 s2 s3 s4 s5

R0 R1 R2 R3 R4 R5

� -d

Figure 2.6: PAM signal constellation.

When the hypothesis is H = 0 , the receiver makes the wrong decision if the observation
y 2 R falls outside the decoding region R0 . This is the case if the noise Z 2 R is larger
than d/2 , where d = si � si�1 , i = 1, . . . , 5 . Thus

Pe(0) = Pr
�
Z >

d

2

 
= Q

� d

2�

�
.

By symmetry, Pe(5) = Pe(0) . For i 2 {1, 2, 3, 4} , the probability of error when H = i
is the probability that the event {Z � d

2
} [ {Z < �d

2
} occurs. This event is the union

of disjoint events. Its probability is the sum of the probability of the individual events.
Hence

Pe(i) = Pr

⇢n
Z � d

2

o
[
n

Z < �d

2

o�
= 2Pr

n
Z � d

2

o
= 2Q

⇣ d

2�

⌘
, i 2 {1, 2, 3, 4}.

Finally,

Pe =
2

6
Q
⇣ d

2�

⌘
+

4

6
2Q

⇣ d

2�

⌘
=

5

3
Q
⇣ d

2�

⌘
.

2

Example 6. (4-ary QAM) Figure 2.7 shows the signal set {s0, s1, s2, s3} for 4-ary
Quadrature Amplitude Modulation (QAM). We may consider signals as points in R2

or in C . We choose the former since we don’t know how to deal with complex valued
noise yet. The noise is Z ⇠ N (0,�2I2) and the observable, when H = i , is Y = si + Z .
We assume that the receiver implements a ML decision rule, which for the AWGN channel
means minimum-distance decoding. The decoding region for s0 is the first quadrant, for
s1 the second quadrant, etc. When H = 0 , the decoder makes the correct decision if
{Z1 > �d

2
} \ {Z2 � �d

2
} , where d is the minimum distance among signal points. This

is the intersection of independent events. Hence the probability of the intersection is the
product of the probability of each event, i.e.

Pc(0) =


Pr

n
Zi � �

d

2

o�2

= Q2
⇣
� d

2�

⌘
=


1�Q

⇣ d

2�

⌘�2

.

By symmetry, for all i , Pc(i) = Pc(0) . Hence,

Pe = Pe(0) = 1� Pc(0) = 2Q
⇣ d

2�

⌘
�Q2

⇣ d

2�

⌘
.

Figure 5.11: 6-ary PAM Constellation

Example 46. (Error Performance for 4-QAM) Consider the transmission of the following 4 signals using a Quadrature Amplitude
Modulation (QAM) scheme (a 4-ary source) over an AWGN channel

si (t) =
√

2E
T

cos
(

2πfct + π

4 (2i + 1)
)

, 0 ≤ t ≤ T , i = 0, 1, 2, 3
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The signals are mapped into a 2-dimensional signal space spanned by the following orthonormal basis

ϕ1(t) =
√

2
T

cos(2πfct), 0 ≤ t ≤ T

ϕ2(t) = −
√

2
T

sin(2πfct), 0 ≤ t ≤ T

The received signal y(t), projected on the signal space is represented by the sector
¯
y = [y1 y2]T give by

¯
y =

¯
si + ¯
w , i = 0, 1, 2, 3

where
¯
w = [w1 w2]T is a Gaussian random vector of independent components, each of zero-mean and variance σ2

1. Express {si (t)}4i=1 in terms of ϕ1(t) and ϕ2(t).

2. Draw the signal constellation in the specified signal space. Draw and specify the decision regions corresponding to the
ML decoder at high SNR.

3. For the signal constellation, compute the average energy per symbol as a function of E .

4. Assume the signals are encoded using a Gray code. Specify T such that the given scheme can convey a bit rate of
2 Mbps.

5. Compute the probability of error in terms of d , where d =
√

2E .

Solution.

1.

s0(t) =
√

2E
T

cos
(

2πfct + π

4

)
=
√
E

T
cos (2πfct)−

√
E

T
sin (2πfct) =

√
E

2 ϕ1(t) +
√
E

2 ϕ2(t)

s1(t) =
√

2E
T

cos
(

2πfct + 3π
4

)
= −

√
E

T
cos (2πfct)−

√
E

T
sin (2πfct) = −

√
E

2 ϕ1(t) +
√
E

2 ϕ2(t)

s2(t) =
√

2E
T

cos
(

2πfct + 5π
4

)
= −

√
E

T
cos (2πfct) +

√
E

T
sin (2πfct) = −

√
E

2 ϕ1(t)−
√
E

2 ϕ2(t)

s3(t) =
√

2E
T

cos
(

2πfct + 7π
4

)
=
√
E

T
cos (2πfct) +

√
E

T
sin (2πfct) =

√
E

2 ϕ1(t)−
√
E

2 ϕ2(t)

2. The signals {si (t)}, i = 0, 1, 2, 3 are represented in the signal space as the following vectors

¯
s0 =

[√
E

2

√
E

2

]T

¯
s1 =

[
−
√
E

2

√
E

2

]T

¯
s2 =

[
−
√
E

2 −
√
E

2

]T

¯
s3 =

[√
E

2 −
√
E

2

]T

The resulting signal constellation is shown in Fig. 5.12. Since the ML detector is the minimum distance decoder, then at
high SNR the decision regions corresponds to the 4 quadrants in the signal space. See Fig. 5.13.
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3. The energy for each of the signals is:

E =
(√
E

2

)2

+
(√
E

2

)2

= E

The average energy per symbol of the constellation is

Eavg = 1
4E + 1

4E + 1
4E + 1

4E = E

4. The bit rate is given by
Rb = log2 4

T
= 2
T

= 2× 106

Hence, T = 10−6s = 1 µs.

5. The decoding region for
¯
s0 is the first quadrant represented by R0, for

¯
s1 is the second quadrant represented by R1, etc.

When H = 0, the decoder makes the correct decision if {w1 > − d2}∩{w2 ≥ − d2} (this is the intersection of independent
events). Hence,

Pc(0) = Pr
{
w1 > −

d

2

}
Pr

{
w2 ≥ −

d

2

}
= Q2

(
− d2σ

)
=
[
1−Q

(
d

2σ

)]2

By symmetry, for all i , Pc(i) = Pc(0). Hence,

Pe = Pe(0) = 1− Pc(0) = 2Q
(
d

2σ

)
−Q2

(
d

2σ

)

p
2E

s2 s3

s1 s0

Figure 5.12: 4-ary QAM Constellation

s2 s3

s1 s0

R0R1

R2 R3

Figure 5.13: Decision region for ML detector.
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CHAPTER 6

COMMUNICATION THROUGH BANDLIMITED AWGN CHANNELS

In the preceding chapter, we considered digital communication over an AWGN channel and evaluated the probability of error
performance of the optimum receiver for baseband signals. However, we have assumed that the channel introduced no distortion.
In this chapter, we treat digital communication over a channel that is modeled as a linear filter with a bandwidth limitation.
Bandlimited channels most frequently encountered in practice are telephone channels, microwave LOS radio channels, satellite
channels, and underwater acoustic channels.

In general, a linear filter channel imposes more stringent requirements on the design of modulation signals. Specifically, the
transmitted signals must be designed to satisfy the bandwidth constraint imposed by the channel. The bandwidth constraint
generally precludes the use of rectangular pulses at the output of the modulator. Instead, the transmitted signals must be
shaped to restrict their bandwidth to that available on the channel. The design of bandlimited signals is one of the topics
treated in this chapter.

We will see that a linear filter channel distorts the transmitted signal. The channel distortion results in intersymbol
interference at the output of the demodulator and leads to an increase in the probability of error at the detector. Devices or
methods for correcting or undoing the channel distortion, called channel equalizers, are then described.

6.1 Digital Transmission Through Bandlimited Channels.
A bandlimited channel such as a telephone wireline is characterized as a linear filter with impulse response c(t) and frequency

response C (f ), where

C (f ) =
∫ ∞
−∞
c(t)e−j2πftdt (6.1)

If the channel is a baseband channel that is bandlimited to Bc Hz, then C (f ) = 0 for |f | > Bc . Any frequency components
at the input to the channel that are higher than Bc Hz will not be passed by the channel. For this reason, we consider the
design of signals for transmission through the channel that are bandlimited to W = Bc Hz, as shown in Fig. 6.1. Henceforth,
W will denote the bandwidth limitation of the signal and the channel. Now, suppose that the input to a bandlimited channel
is a signal waveform gT (t). Then, the response of the channel is the convolution of gT (t) with c(t); i.e.,

h(t) =
∫ ∞
−∞
c(τ)gT (t − τ)dτ = c(t) ? gT (t) (6.2)

or, when expressed in the frequency domain, we have

H(f ) = C (f )GT (f ) (6.3)

where GT (f ) is the spectrum of the signal gT (t) and H(f ) is the spectrum of h(t). Thus, the channel alters or distorts the
transmitted signal gT (t).
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Figure 8.1 Magnitude and phase
responses of bandlimited channel.

If the channel is a baseband channel that is bandlimited to Bc Hz, then C( f ) = 0 for
| f | > Bc. Any frequency components at the input to the channel that are higher than
Bc Hz will not be passed by the channel. For this reason, we consider the design of
signals for transmission through the channel that are bandlimited to W = Bc Hz, as
shown in Figure 8.1. Henceforth, W will denote the bandwidth limitation of the signal
and the channel.

Now, suppose that the input to a bandlimited channel is a signal waveform gT (t).
Then, the response of the channel is the convolution of gT (t) with c(t); i.e.,

h(t) =
∫ ∞

−∞
c(τ )gT (t − τ ) dτ = c(t) " gT (t) (8.1.2)

or, when expressed in the frequency domain, we have

H( f ) = C( f )GT ( f ) (8.1.3)

where GT ( f ) is the spectrum (Fourier transform) of the signal gT (t) and H( f ) is the
spectrum of h(t). Thus, the channel alters or distorts the transmitted signal gT (t).

Let us assume that the signal at the output of the channel is corrupted by AWGN.
Then, the signal at the input to the demodulator is of the form h(t) + n(t), where n(t)
denotes the AWGN. Recall from the preceding chapter that in the presence of AWGN,

Figure 6.1: Magnitude and phase responses of bandlimited channel.

Assume now that the signal at the output of the channel is corrupted by AWGN. Then, the signal at the input to the
demodulator is of the form h(t) + n(t), where n(t) denotes the AWGN. Recall from the preceding chapter that in the presence
of AWGN, a demodulator that employs a filter which is matched to the signal h(t) maximizes the SNR at its output. Therefore,
let us pass the received signal h(t) + n(t) through a filter that has a frequency response

GR(f ) = H∗(f )e−j2πft0 (6.4)

where t0 is some nominal time delay at which we sample the filter output. The signal component at the output of the matched
filter at the sampling instant t = t0 is

ys(t0) =
∫ ∞
−∞
|H(f )|2df = Eh (6.5)

which is the energy in the channel output h(t). The noise component at the output of the matched filter has a zero mean and
a power-spectral density

Sn(f ) = N0

2 |H(f )|2 (6.6)

Hence, the noise power at the output of the matched filter has a variance

σ2
n =

∫ ∞
−∞
Sn(f )df = N0

2

∫ ∞
−∞
|H(f )|2df = N0Eh

2 (6.7)

The SNR at the output of the matched filter is

SNR0 =
(
S

N

)
0

= E2
h

N0Eh/2
= 2Eh
N0

(6.8)

This is the result for the SNR at the output of the matched filter that was obtained in the previous chapter except that the
received signal energy Eh has replaced the transmitted signal energy Es . Compared to the previous result, the major difference
in this development is that the filter impulse response is matched to the received signal h(t) instead of the transmitted signal.
Note that the implementation of the matched filter at the receiver requires that h(t) or, equivalently, the channel impulse
response c(t) must be known to the receiver.

Example 47. The signal pulse gT (t) = 1
2
[
1 + cos 2π

T

(
t − T2

)]
, 0 ≤ t ≤ T is transmitted through a baseband channel with

frequency-response characteristic as shown in Fig. 6.2(a). The signal pulse is illustrated in Fig. 6.2(b). The channel output
is corrupted by AWGN with power-spectral density N0/2. Determine the matched filter to the received signal and the output
SNR.
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Solution. This problem is most easily solved in the frequency domain. First, the spectrum of the signal pulse is

GT (f ) = T

2
sin(πfT )

πfT (1− f 2T 2 e
−jπfT

= T

2
sinc(πfT )
(1− f 2T 2 e

−jπfT

The spectrum of |GT (f )|2 is shown below.
Hence,

H(f ) = C (f ) = GT (f ) =
{
GT (f ), |f | <W

0 otherwise

Then, the signal component at the output of the filter matched to H(f ) is

Eh =
∫ W
−W
|GT (f )|2df

= 1
(2π)2

∫ W
−W

(sin(πfT ))2

f 2(1− f 2T 2)2 df

= T

(2π)2

∫ WT
−WT

sin2(πα)
α2(1− α2)2 dα

The variance of the noise component is

σ2
n = N0

2

∫ W
−W
|GT (f )|2df = N0Eh

2
Hence, the output SNR is

(SNR)0 = 2Eh
N0

In this example, we observe that the signal at the input to the channel is not bandlimited. Hence, only a part of the transmitted
signal energy is received. The amount of signal energy at the output of the matched filter depends on the value of the channel
bandwidth W when the signal pulse duration is fixed. The maximum value of Eh, obtained as W →∞, is

maxEh =
∫ ∞
−∞
|GT (t)|2df =

∫ T
0
g2
T (t)dt

In the above development, we considered the transmission and reception of only a single signal waveform gT (t) through a
bandlimited channel with impulse response c(t). We observed that the performance of the system is determined by Eh, the
energy in the received signal h(t). To maximize the received SNR, we have to make sure that the power-spectral density of the
transmitted signal matches the frequency band of the channel. To this end we must study the power-spectral density of the
input signal. The impact of the channel bandwidth limitation is felt when we consider the transmission of a sequence of signal
waveforms. This problem is treated in the following section.

6.2 Digital PAM Transmission Through Bandlimited Baseband Channels.
Let us consider the baseband PAM communication system illustrated by the functional block diagram in Fig. 6.3.
The system consists of a transmitting filter having an impulse response gT (t), the linear filter channel with AWGN, a

receiving filter with impulse response gR(t), a sampler that periodically samples the output of the receiving filter, and a symbol
detector. The sampler requires the extraction of a timing signal from the received signal (for synchronization reasons). This
timing signal serves as a clock that specifies the appropriate time instants for sampling the output of the receiving filter.

First we consider digital communications by means of M-ary PAM. Hence, the input binary data sequence is subdivided into
k-bit symbols and each symbol is mapped into a corresponding amplitude level that amplitude modulates the output of the
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Figure 8.2 The signal pulse in (b) is transmitted through the ideal bandlimited
channel shown in (a). The spectrum of gT (t) is shown in (c).

Solution This problem is most easily solved in the frequency domain. First, the spectrum
of the signal pulse is

GT ( f ) = T
2

sinπ f T
π f T (1 − f 2T 2)

e− jπ f T

= T
2

sincπ f T
(1 − f 2T 2)

e− jπ f T

The spectrum |GT ( f )|2 is shown in Figure 8.2(c). Hence,

H( f ) = C( f )GT ( f )

=
{

GT ( f ), | f | ≤ W

0, otherwise

Figure 6.2: The signal pulse in (b) is transmitted through the ideal bandlimited channel shown in (a).
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Figure 8.2 The signal pulse in (b) is transmitted through the ideal bandlimited
channel shown in (a). The spectrum of gT (t) is shown in (c).

Solution This problem is most easily solved in the frequency domain. First, the spectrum
of the signal pulse is

GT ( f ) = T
2

sinπ f T
π f T (1 − f 2T 2)

e− jπ f T

= T
2

sincπ f T
(1 − f 2T 2)

e− jπ f T

The spectrum |GT ( f )|2 is shown in Figure 8.2(c). Hence,

H( f ) = C( f )GT ( f )

=
{

GT ( f ), | f | ≤ W

0, otherwise

transmitting filter. The baseband signal at the output of the transmitting filter (the input to the channel) may be expressed as

v(t) =
∞∑

n=−∞
angT (t − nT ) (6.9)

where T = k/Rb is the symbol interval (1/T = Rb/k is the symbol rate), Rb is the bit rate, and {an} is a sequence of
amplitude levels corresponding to the sequence of k−bit blocks of information bits. The channel output, which is the received
signal at the demodulator, may be expressed as

r(t) =
∞∑

n=−∞
anh(t − nT ) + n(t) (6.10)

where h(t) is the impulse response of the cascade of the transmitting filter and the channel; i.e., h(t) = c(t) ? gT (t), c(t) is
the impulse response of the channel, and n(t) represents the AWGN.

The received signal is passed through a linear receiving filter with impulse response gR(t) and frequency response GR(f ).If
gR(t) is matched to h(t),then its output SNR is a maximum at the proper sampling instant. The output of the receiving filter
may be expressed as

y(t) =
∞∑

n=−∞
anx(t − nT ) + v(t) (6.11)

where x(t) = h(t) ? gR(t) = gT (t) ? c(t) ? gR(t) and v(t) = n(t) ? gR(t) denotes the additive noise at the output of the
receiving filter.

To recover the information symbols {an}, the output of the receiving filter is sampled periodically, every T seconds. Thus,
the sampler produces

y(mT ) =
∞∑

n=−∞
anx(mT − nT ) + v(mT ) (6.12)
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Figure 8.3 Block diagram of digital PAM system.

First we consider digital communications by means of M-ary PAM. Hence, the
input binary data sequence is subdivided into k-bit symbols and each symbol is mapped
into a corresponding amplitude level that amplitude modulates the output of the trans-
mitting filter. The baseband signal at the output of the transmitting filter (the input to
the channel) may be expressed as

v(t) =
∞∑

n=−∞
angT (t − nT ) (8.1.9)

where T = k/Rb is the symbol interval (1/T = Rb/k is the symbol rate), Rb is the bit
rate, and {an} is a sequence of amplitude levels corresponding to the sequence of k-bit
blocks of information bits.

The channel output, which is the received signal at the demodulator, may be
expressed as

r(t) =
∞∑

n=−∞
anh(t − nT ) + n(t) (8.1.10)

where h(t) is the impulse response of the cascade of the transmitting filter and the
channel; i.e., h(t) = c(t) ! gT (t), c(t) is the impulse response of the channel, and n(t)
represents the AWGN.

The received signal is passed through a linear receiving filter with impulse re-
sponse gR(t) and frequency response G R( f ). If gR(t) is matched to h(t), then its output
SNR is a maximum at the proper sampling instant. The output of the receiving filter
may be expressed as

y(t) =
∞∑

n=−∞
anx(t − nT ) + ν(t) (8.1.11)

where x(t) = h(t) ! gR(t) = gT (t) ! c(t) ! gR(t) and ν(t) = n(t) ! gR(t) denotes the
additive noise at the output of the receiving filter.

To recover the information symbols {an}, the output of the receiving filter is
sampled periodically, every T seconds. Thus, the sampler produces

y(mT ) =
∞∑

n=−∞
anx(mT − nT ) + ν(mT ) (8.1.12)

Figure 6.3: Block diagram of digital PAM system.

or, equivalently,

ym =
∞∑

n=−∞
anxm−n + vm

= x0am +
∑
n 6=m
anxm−n + vm (6.13)

where xm = x(mT ), vm = v(mT ), and m = 0,±1,±2, ... . A timing signal extracted from the received signal is used as a
clock for sampling the received signal (covered in synchronization).

The first term on the right-hand side (RHS) of Eq.(6.13) is the desired symbol am , scaled by the gain parameter x0. When
the receiving filter is matched to the received signal h(t), the scale factor is

x0 =
∫ ∞
−∞
h2(t)dt =

∫ ∞
−∞
|H(f )|2df =

∫ W
−W
|GT (f )|2|C (f )|2df = Eh (6.14)

The second term on the RHS of Equation Eq.(6.13) represents the effect of the other symbols at the sampling instant t = mT
, called the intersymbol interference (ISI). In general, ISI causes a degradation in the performance of the digital communication
system. Finally, the third term, vm, that represents the additive noise, is a zero-mean Gaussian random variable with variance
σ2
v = N0Eh/2.

By appropriate design of the transmitting and receiving filters, it is possible to satisfy the condition xn = 0 for n 6= 0, so
that the intersymbol interference (ISI) term vanishes. In this case, the only term that can cause errors in the received digital
sequence is the additive noise. The design of transmitting and receiving filters is considered in the next sections.

6.3 The Power Spectrum of Digitally Modulated Signals.
We will derive the power spectrum of a baseband signal. As shown above, the equivalent baseband transmitted signal for a

digital PAM signal is represented in the general form as

v(t) =
∞∑

n=−∞
angT (t − nT ) (6.15)

where {an} is the sequence of values selected from a PAM constellation corresponding to the information symbols from the
source, and gT (t) is the impulse response of the transmitting filter. Since the information sequence {an} is random, v(t) is
a sample function of a random process V (t). In this section we evaluate the power-density spectrum of V (t). Our approach
is to derive the autocorrelation function of V (t) and then to determine its Fourier transform in order to find the PSD of v(t)
using Wiener-Khinchin-Einestein Theorem.

First, the mean value of v(t) is

E [V (t)] =
∞∑

n=−∞
E (an)gT (t − nT )

= ma

∞∑
n=−∞

gT (t − nT ) (6.16)
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where ma is the mean value of the random sequence {an}. Note that although ma is a constant, the term
∑
n gT (t − nT ) is

a periodic function with period T . Hence, the mean value of V (t) is periodic with period T . The autocorrelation function of
V (t) is

RV (t, t + τ) = E [V (t)V (t + τ)] =
∞∑

n=−∞

∞∑
m=−∞

E (anam)gT (t − nT )gT (t + τ −mT ) (6.17)

In general, we assume that the information sequence {an} is wide-sense stationary with autocorrelation sequence

Ra(n) = E [anan+m] (6.18)

Hence, Eq. (6.17) may be expressed as

RV (t, t + τ) =
∞∑

n=−∞

∞∑
m=−∞

Ra(m − n)gT (t − nT )gT (t + τ −mT )

=
∞∑

m=−∞
Ra(m)

∞∑
n=−∞

gT (t − nT )gT (t + τ − nT −mT ) (6.19)

We observe that the second summation in Eq. (6.19) is periodic with period T . Consequently, the autocorrelation function
RV (t + τ , t) is periodic in the variable t; i.e.,

RV (t + T + τ , t + T ) = RV (t + τ , t)

Therefore, the random process V (t) has a periodic mean and a periodic autocorrelation. Such a random process is cylcosta-
tionary.

The power-spectral density of a cyclostationary process can be determined by first averaging the autocorrelation function
RV (t + τ , t) over a single period T and then computing the Fourier transform of the average autocorrelation function. Thus,
we have

R̄V (τ) = 1
T

∫ T/2
−T/2

RV (t + τ , t)dt

=
∞∑

m=−∞
Ra(m)

∞∑
n=−∞

1
T

∫ T/2
−T/2

gT (t − nT )gT (t + τ − nT −mT )dt

=
∞∑

m=−∞
Ra(m)

∞∑
n=−∞

1
T

∫ nT+T/2

nT−T/2
gT (t)gT (t + τ −mT )dt

= 1
T

∞∑
m=−∞

Ra(m)
∫ ∞
−∞
gT (t)gT (t + τ −mT )dt (6.20)

We interpret the integral in Eq. (6.20) as the time-autocorrelation function of gT (t) and define it as

Rg(τ) =
∫ ∞
−∞
gT (t)gT (t + τ)dt (6.21)

With this definition, the average autocorrelation function of V (t) becomes

R̄V (τ) = 1
T

∞∑
m=−∞

Ra(m)Rg(τ −mT ) (6.22)

Hence, the Fourier transform of the previous equation is

SV (f ) =
∫ ∞
−∞
R̄V (τ)e−j2πf τdτ

= 1
T

∞∑
m=−∞

Ra(m)
∫ ∞
−∞
Rg(τ −mT )e−j2πf τdτ

= |GT (f )|2

T

∞∑
m=−∞

Ra(m)e−j2πf τ = |GT (f )|2

T
Sa(f ) (6.23)
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where Sa(f ) is the power spectrum of the information sequence {an}. This result illustrates the dependence of the power-
spectral density SV (f ) of the transmitted signal on the spectral characteristics GT (f ) of the transmitting filter and the spectral
characteristics Sa(f ) of the information sequence {an}. Both GT (f ) and Sa(f ) can be designed to control the shape and form
of the power spectral density of the transmitted signal.

Example 48. Consider a binary sequence {bn}, from which we form the symbols

an = bn + bn−1

The {bn} are assumed to be uncorrelated binary valued (±1) random variable, each having a zero-mean and a unit variance.
Determine the power-spectral entity of the transmitted signal.

Solution. The autocorrelation function of the sequence {an} is

Ra(m) = E [anan+m]
= E [(bn + bn−1)(bn+m + bn+m−1]

=


2 m = 0
1 m = ±1
0 otherwise

(6.24)

Hence, the PSD of the input sequence is

Sa(f ) = 2(1 + cos 2πfT ) = 4 cos2 πfT

and the corresponding PSD for the modulated signal is

SV (f ) = 4
T
|GT (f )|2 cos2 πfT

As demonstrated in this example, the transmitted signal spectrum can be shaped by having a correlated sequence {an} as the
input to the modulator.

6.4 Signal Design For Bandlimited Channels
Recall from previous sections that the output of the transmitting filter in a digital PAM may be expressed as

v(t) =
∞∑

n=−∞
angT (t − nT ) (6.25)

and the output of the channel, which is the received signal at the demodulator, may be expressed as

r(t) =
∞∑

n=−∞
amh(t − nT ) + n(t) (6.26)

where h(t) = c(t) ? gT (t), c(t) is the impulse response of the channel, gT (t) is the impulse response of the transmitting filter,
and n(t) is a sample function of an additive, white Gaussian noise process.

In this section, we consider the problem of designing a bandlimited transmitting filter. The design will be done first under
the condition that there is no channel distortion. Later, we consider the problem of filter design when the channel distorts
the transmitted signal. Since H(f ) = C (f )GT (f ), the condition for distortion-free transmission is that the frequency response
characteristic C (f ) of the channel have a constant magnitude and a linear phase over the bandwidth of the transmitted signal;
i.e.,

C (f ) =
{
C0e

−j2πft0 , |f | ≤W
0 otherwise

(6.27)

where W is the available channel bandwidth, t0 represents an arbitrary finite delay, which we set to zero for convenience, and
C0 is a constant gain factor which we set to unity for convenience. Thus, under the condition that the channel is distortion-free,
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H(f ) = GT (f ) for |f | ≤ W and zero for |f | > W .Consequently, the matched filter has a frequency response H∗(f ) = G∗T (f )
and its output at the periodic sampling times t = mT has the form

y(mT ) = x(0)am +
∑
n 6=m
anx(mT − nT ) + v(mT ) (6.28)

or, more simply,
ym = x0am +

∑
n 6=m
anxm−n + vm (6.29)

where x(t) = gT (t) ? gR(t) and v(t) is the output response of the matched filter to the AWGN process n(t).
The middle term on the RHS of Eq.(6.29) represents the ISI. The amount of ISI and noise that is present in the received

signal can be viewed on an oscilloscope. Specifically, we may display the received signal on the vertical input with the horizontal
sweep rate set at 1/T . The resulting oscilloscope display is called an eye pattern because of its resemblance to the human eye.
Examples of two eye patterns, one for binary PAM and the other for quaternary (M = 4) PAM, are illustrated in Fig. 6.4. The
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Figure 8.7 Eye patterns. (a) Examples of eye patterns for binary and quaternary
amplitude-shift keying (or PAM) and (b) Effect of ISI on eye opening.

of its resemblance to the human eye. Examples of two eye patterns, one for binary PAM
and the other for quaternary (M = 4) PAM, are illustrated in Figure 8.7(a).

The effect of ISI is to cause the eye to close, thereby reducing the margin for
additive noise to cause errors. Figure 8.7(b) illustrates the effect of ISI in reducing the
opening of the eye. Note that ISI distorts the position of the zero crossings and causes
a reduction in the eye opening. As a consequence, the system is more sensitive to a
synchronization error and exhibits a smaller margin against additive noise.

Below we consider the problem of signal design under two conditions, namely,
(1) that there is no ISI at the sampling instants and (2) that a controlled amount of ISI
is allowed.

Figure 6.4: Eye patterns

effect of ISI is to cause the eye to close, thereby reducing the margin for additive noise to cause errors. Fig. 6.5 illustrates the
effect of ISI in reducing the opening of the eye. Note that ISI distorts the position of the zero crossings and causes a reduction
in the eye opening. As a consequence, the system is more sensitive to a synchronization error and exhibits a smaller margin
against additive noise. Below we consider the problem of signal design with no ISI at the sampling instants.
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of its resemblance to the human eye. Examples of two eye patterns, one for binary PAM
and the other for quaternary (M = 4) PAM, are illustrated in Figure 8.7(a).

The effect of ISI is to cause the eye to close, thereby reducing the margin for
additive noise to cause errors. Figure 8.7(b) illustrates the effect of ISI in reducing the
opening of the eye. Note that ISI distorts the position of the zero crossings and causes
a reduction in the eye opening. As a consequence, the system is more sensitive to a
synchronization error and exhibits a smaller margin against additive noise.

Below we consider the problem of signal design under two conditions, namely,
(1) that there is no ISI at the sampling instants and (2) that a controlled amount of ISI
is allowed.

Figure 6.5: Effect of ISI on eye opening.

6.4.1 Design of Bandlimited Signals for Zero ISI − The Nyquist Criterion
As indicated above, in a general digital communication system that transmits through a bandlimited channel, the Fourier

transform of the signal at the output of the receiving filter is given by X (f ) = GT (f )C (f )GR(f ) where GT (f ) and GR(f )
denote the transmitter and receiver filters frequency responses and C (f ) denotes the frequency response of the channel. We
have also seen that the output of the receiving filter, sampled at t = mT is given by

ym = x(0)am +
∞∑

n=−∞,n 6=m
x(mT − nT )an + v(mT ) (6.30)
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To remove the effect of ISI, it is necessary and sufficient that x(mT − nT ) = 0 for n 6= m and x(0) 6= 0, where without
loss of generality we can assume x(0) = 1 (The choice of x(0) is equivalent to the choice of a constant gain factor in the
receiving filter. This constant gain factor has no effect on the overall system performance since it scales both the signal and
the noise.).This means that the overall communication system has to be designed such that

x(nT ) =
{

1, n = 0
0 n 6= 0 (6.31)

Now, we derive the necessary and sufficient condition for X (f ) in order for x(t) to satisfy the above relation. This condition is
known as the Nyquist pulse-shaping criterion or Nyquist condition for zero ISI and is stated in the following theorem.

Theorem 12 (Nyquist Pulse-Shaping Criterion). A necessary and sufficient condition for x(t) to satisfy

x(nT ) =
{

1, n = 0
0 n 6= 0 (6.32)

is that its Fourier transform X (f ) satisfy
∞∑

m=−∞
X
(
f + m
T

)
= T (6.33)

Proof. In general, x(t) is the inverse Fourier transform of X (f ). Hence,

x(t) =
∫ ∞
−∞
X (f )e j2πftdf

At the sampling instants t = nT , this relation becomes

x(nT ) =
∫ ∞
−∞
X (f )e j2πfnTdf (6.34)

Let us break up the integral in Eq. (6.4.1) into integrals covering the finite range of 1/T . Thus, we obtain

x(nT ) =
∞∑

m=−∞

∫ (2m+1)/2T

(2m−1)/2T
X (f )e j2πfnTdf

=
∞∑

m=−∞

∫ −1/2T

1/2T
X
(
f + m
T

)
e j2πfnTdf

=
∫ −1/2T

1/2T

[ ∞∑
m=−∞

X
(
f + m
T

)]
e j2πfnTdf

=
∫ −1/2T

1/2T
Z (f )e j2πfnTdf (6.35)

where Z (f ) is defined by

Z (f ) =
∞∑

m=−∞
X
(
f + m
T

)
(6.36)

Obviously, Z (f ) is a periodic function with period 1/T , and therefore it can be expanded in terms of its Fourier series coefficients
{zn} as

Z (f ) =
∞∑

m=−∞
zne

j2πnfTdf (6.37)

where

zn = T
∫ −1/2T

1/2T
Z (f )e−j2πnfTdf (6.38)
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Comparing Eq. (6.35) and Eq.(6.38), we obtain
zn = Tx(−nT ) (6.39)

Therefore, the necessary and sufficient conditions for Eq. (6.32) to be satisfied is that

zn =
{
T , n = 0
0 n 6= 0 (6.40)

which, when substituted into Eq.(6.37), yields
Z (f ) = T (6.41)

or, equivalently,
∞∑

m=−∞
X
(
f + m
T

)
= T (6.42)

This concludes the proof of the theorem.

Now, suppose that the channel has a bandwidth of W . Then C (f ) ≡ 0 for |f | >W and consequently, X (f ) = 0 for |f | >W .
We distinguish three cases:

1. T < 1
2W , or equivalently, 1

T
> 2W . Since Z (f ) =

∑∞
n=−∞ X

(
f + n

T

)
consists of non overlapping replicas of X (f ),

separated by 1
T

as show in Fig. 6.6, there is no choice for X (f ) to ensure Z (f ) ≡ T in this case, and there is no way
that we can design a system with no ISI.
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Now, suppose that the channel has a bandwidth of W . Then C( f ) ≡ 0 for
| f | > W and consequently, X ( f ) = 0 for | f | > W . We distinguish three cases:

1. T < 1
2W , or equivalently, 1

T > 2W . Since Z( f ) =
∑+∞

n=−∞ X ( f + n
T ) consists of

nonoverlapping replicas of X ( f ), separated by 1
T as shown in Figure 8.8, there

is no choice for X ( f ) to ensure Z( f ) ≡ T in this case, and there is no way that
we can design a system with no ISI.

2. T = 1
2W , or equivalently, 1

T = 2W (the Nyquist rate). In this case, the replications
of X ( f ), separated by 1

T , are about to overlap as shown in Figure 8.9. It is clear
that in this case there exists only one X ( f ) that results in Z( f ) = T , namely,

X ( f ) =
{

T | f | < W
0, otherwise

(8.3.20)

or, X ( f ) = T!( f
2W ), which results in

x(t) = sinc
(

t
T

)
(8.3.21)

This means that the smallest value of T for which transmission with zero ISI is
possible is T = 1

2W and for this value, x(t) has to be a sinc function. The difficulty
with this choice of x(t) is that it is noncausal and therefore nonrealizable. To
make it realizable, usually a delayed version of it; i.e., sinc( t−t0

T ) is used and t0 is
chosen such that for t < 0, we have sinc( t−t0

T ) ≈ 0. Of course with this choice of

Figure 6.6: Plot of Z (f ) for the case T < 1
2W .

2. T = 1
2W , or equivalently, 1

T
= 2W (Nyquist rate). In this case, the replications of X (f ), separated by 1

T
, are about to

overlap as shown in Fig. 6.7.
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Now, suppose that the channel has a bandwidth of W . Then C( f ) ≡ 0 for
| f | > W and consequently, X ( f ) = 0 for | f | > W . We distinguish three cases:

1. T < 1
2W , or equivalently, 1

T > 2W . Since Z( f ) =
∑+∞

n=−∞ X ( f + n
T ) consists of

nonoverlapping replicas of X ( f ), separated by 1
T as shown in Figure 8.8, there

is no choice for X ( f ) to ensure Z( f ) ≡ T in this case, and there is no way that
we can design a system with no ISI.

2. T = 1
2W , or equivalently, 1

T = 2W (the Nyquist rate). In this case, the replications
of X ( f ), separated by 1

T , are about to overlap as shown in Figure 8.9. It is clear
that in this case there exists only one X ( f ) that results in Z( f ) = T , namely,

X ( f ) =
{

T | f | < W
0, otherwise

(8.3.20)

or, X ( f ) = T!( f
2W ), which results in

x(t) = sinc
(

t
T

)
(8.3.21)

This means that the smallest value of T for which transmission with zero ISI is
possible is T = 1

2W and for this value, x(t) has to be a sinc function. The difficulty
with this choice of x(t) is that it is noncausal and therefore nonrealizable. To
make it realizable, usually a delayed version of it; i.e., sinc( t−t0

T ) is used and t0 is
chosen such that for t < 0, we have sinc( t−t0

T ) ≈ 0. Of course with this choice of

Figure 6.7: Plot of Z (f ) for the case T = 1
2W .

It is clear that in this case there exists only one X (f ) that results in Z (f ) = T , namely,

X (f ) =
{
T , |f | <W
0 otherwise

(6.43)

or, X (f ) = Trect
(
f

2W
)
, which results in

x(t) = sinc
(
t

T

)
This means that the smallest value of T for which transmission with zero ISI is possible is T = 1

2W and for this value,
x(t) has to be a sinc function. The difficulty with this choice of x(t) is that it is non causal and therefore nonrealizable.
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To make it realizable, usually a delay version of it; i.e., sinc( t−t0
T

) is used and t0 is chosen such that for t < 0, we
have sinc( t−t0

T
) ' 0. Of course with this choice of x(t), the sampling time must also be shifted to mT + t0. A second

difficulty with this pulse shape is that its rate of convergence to zero is slow. The tails of x(t) decay as 1/t, consequently,
a small mistiming error in sampling the output of the matched filter at the demodulator results in an infinite series of ISI
components. Such a series is not absolutely summable because of the 1/t rate of decay of the pulse and, hence, the sum
of the resulting ISI does not converge.

3. For T < 1
2W , Z (f ) consists of overlapping replications of X (f ) separated by 1

T
, as shown in Fig. 6.8. In this case, there

exist numerous choices of X (f ), such that Z (f ) ≡ T .
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Figure 8.10 Plot of Z( f ) for the case T > 1/2W .

x(t), the sampling time must also be shifted to mT + t0. A second difficulty with
this pulse shape is that its rate of convergence to zero is slow. The tails of x(t)
decay as 1/t , consequently, a small mistiming error in sampling the output of the
matched filter at the demodulator results in an infinite series of ISI components.
Such a series is not absolutely summable because of the 1/t rate of decay of the
pulse and, hence, the sum of the resulting ISI does not converge.

3. For T > 1
2W , Z( f ) consists of overlapping replications of X ( f ) separated by

1
T , as shown in Figure 8.10. In this case, there exist numerous choices for X ( f ),
such that Z( f ) ≡ T .

A particular pulse spectrum, for the T > 1
2W case, that has desirable spectral properties

and has been widely used in practice is the raised cosine spectrum. The raised cosine
frequency characteristic is given as (see Problem 8.11)

Xrc( f ) =





T, 0 ≤ | f | ≤ (1 − α)/2T
T
2

[
1 + cos πT

α

(
| f | − 1−α

2T

)]
, 1−α

2T ≤ | f | ≤ 1+α
2T

0, | f | > 1+α
2T

(8.3.22)

where α is called the rolloff factor, which takes values in the range 0 ≤α≤ 1. The
bandwidth occupied by the signal beyond the Nyquist frequency 1

2T is called the excess
bandwidth and is usually expressed as a percentage of the Nyquist frequency. For exam-
ple, when α= 1

2 , the excess bandwidth is 50%, and when α= 1 the excess bandwidth
is 100%. The pulse x(t) having the raised cosine spectrum is

x(t) = sinπ t/T
π t/T

cos(παt/T )

1 − 4α2t2/T 2

= sinc(t/T )
cos(παt/T )

1 − 4α2t2/T 2
(8.3.23)

Note that x(t) is normalized so that x(0) = 1. Figure 8.11 illustrates the raised cosine
spectral characteristics and the corresponding pulses for α = 0, 1/2, 1. We note that

Figure 6.8: Plot of Z (f ) for the case T > 1
2W .

A particular pulse spectrum, for the T > 1
2W case, that has desirable spectral properties and has been widely used in practice

is the raised cosine spectrum. The raised cosine frequency characteristic is given as

Xrc(f ) =


T , 0 ≤ |f | < (1− α)/2T

T
2
[
1 + cos πTα

(
|f | − 1−α

2T
)]

, 1−α
2T ≤ |f | ≤

1+α
2T

0, |f | > 1+α
2T

(6.44)

where α is called the rolloff factor, which takes values in the range 0 ≤ α ≤ 1. The bandwidth occupied by the signal beyond
the Nyquist frequency 1

2T is called the excess bandwidth and is usually expressed as a percentage of the Nyquist frequency. For
example, when α = 1/2 , the excess bandwidth is 50%, and when α = 1 the excess bandwidth is 100%. The pulse x(t) having
the raised cosine spectrum is

x(t) = sin(πt/T )
πt/T

cos(παt/T )
1− 4α2t2/T 2 = sinc(t/T ) cos(παt/T )

1− 4α2t2/T 2 (6.45)

Note that x(t) is normalized so that x(0) = 1. Fig. ?? illustrates the raised cosine spectral characteristics and the corresponding
pulses for α = 0, 1/2, 1. We note that for α = 0, the pulse reduces to x(t) = sinc(t/T ), and the symbol rate 1/T = 2W .
When α = 1, the symbol rate is 1/T = W . In general, the tails of x(t) decay as 1/t3 for α > 0. Consequently, a mistiming
error in sampling leads to a series of intersymbol interference components that converges to a finite value.

Due to the smooth characteristics of the raised cosine spectrum, it is possible to design practical filters for the transmitter
and the receiver that approximate the overall desired frequency response. In the special case where the channel is ideal with
C (f ) = rect

(
f

2W
)
,we have

Xrc(f ) = GT (f )GR(f ) (6.46)

In this case, if the receiver filter is matched to the transmitter filter we have Xrc(f ) = GT (f )GR(f ) = |GT (f )|2. Ideally,

GT (f ) =
√
|Xrc(f )|e−j2πft0 (6.47)

and GR(f ) = G∗T (f ), where t0 is some nominal delay that is required to assure physical realizability of the filter. Thus, the
overall raised cosine spectral characteristic is split evenly between the transmitting filter and the receiving filter. We should also
note that an additional delay is necessary to ensure the physical realizability of the receiving filter.
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