Elements of the scattering theory

Elastic scattering

Two colliding (interacting) particles

Particles with masses m_{1} and m_{2}. interacting with potential $V\left(\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right)$

$$
\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}
$$

Coordinate of the center of mass

$$
\mathbf{R}_{\mathrm{cm}}=\left(m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}\right) /\left(m_{1}+m_{2}\right)
$$

In the centre-of-mass frame of reference, the coordinates of the two particles are

$$
\mathbf{r}_{1}^{(\mathrm{cm})}=\frac{m_{2}}{m_{1}+m_{2}} \mathbf{r}, \quad \mathbf{r}_{2}^{(\mathrm{cm})}=-\frac{m_{1}}{m_{1}+m_{2}} \mathbf{r}
$$

If one introduces the reduced mass $\mu \quad \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}$
The Hamilton function becomes

$$
H(p, r)=\frac{\vec{p}^{2}}{2 \mu}+V(r) \text { with } \vec{p}=\mu \frac{\vec{d} r}{d t}
$$

Then, the Hamiltonian operator is $\quad H=\frac{\vec{p}^{2}}{2 \mu}+V(r)$ with $\vec{p}=-\hbar \vec{\nabla}_{r}$

Scattering Amplitude

Schrödinger equation

$$
\left[-\frac{\hbar^{2}}{2 \mu} \Delta+V(\mathbf{r})\right] \psi(\mathbf{r})=E \psi(\mathbf{r}) \quad E=\hbar^{2} k^{2} /(2 \mu)
$$

Boundary conditions for a solution

$$
\psi(\mathbf{r}) \stackrel{r \rightarrow \infty}{\sim} \mathrm{e}^{\mathrm{i} k z}+f(\theta, \phi) \frac{\mathrm{e}^{\mathrm{i} k r}}{r}
$$

Now, we assume that the potential falls off faster than $1 / r^{2}: r^{2} V(\mathbf{r}) \xrightarrow{r \rightarrow \infty} 0$

Current density

The amplitude $f(\theta, \phi)$ depends on the current density, $\boldsymbol{j}(\boldsymbol{r})$.
Classically, $j(\boldsymbol{r})=\boldsymbol{v} n$ is the product of particle density and velocity.
Quantum-mechanical expression is:

$$
\mathbf{j}(\mathbf{r})=\Re\left[\psi^{*}(\mathbf{r}) \frac{\hat{\mathbf{p}}}{\mu} \psi(\mathbf{r})\right]=\frac{\hbar}{2 \mathrm{i} \mu} \psi^{*}(\mathbf{r}) \nabla \psi(\mathbf{r})+\mathrm{cc}
$$

Its value depends on normalization of the incident wave. For example, for

$$
\psi(\mathbf{r}) \stackrel{r \rightarrow \infty}{\sim} \mathrm{e}^{\mathrm{i} k z}+f(\theta, \phi) \frac{\mathrm{e}^{\mathrm{i} k r}}{r}
$$

the current density in the incident wave is $\quad \mathbf{j}_{\text {in }}=\hat{\mathbf{e}}_{z} \hbar k / \mu$
But \boldsymbol{j} in the outgoing wave is

$$
\mathbf{j}_{\text {out }}(\mathbf{r})=\frac{\hbar k}{\mu}|f(\theta, \phi)|^{2} \frac{\hat{\mathbf{e}}_{\mathbf{r}}}{r^{2}}+O\left(\frac{1}{r^{3}}\right)
$$

Cross Section

Number of particles crossing area $d \boldsymbol{s}$ at large r per unit time in the outgoing wave:

$$
\lim _{r \rightarrow \infty} \mathbf{j}_{\text {out }}(\mathbf{r}) \cdot \mathrm{ds}
$$

with $\quad \mathrm{d} \mathbf{s}=\hat{\mathbf{e}}_{\mathrm{r}} r^{2} \mathrm{~d} \Omega \quad \mathrm{~d} \Omega=\sin \theta \mathrm{d} \theta \mathrm{d} \phi$
I.e. the current density in the outgoing wave is $\quad(\hbar k / \mu)|f(\theta, \bar{\phi})|^{2} \mathrm{~d} \Omega$

If one normalizes with respect to the current density $\left|\mathbf{j}_{i n}\right|=\hbar k / \mu$

$$
\mathrm{d} \sigma=|f(\theta, \phi)|^{2} \mathrm{~d} \Omega \quad \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}=|f(\theta, \phi)|^{2}
$$

It is the differential elastic cross section. The integrated elastic cross section is

$$
\sigma=\int \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} \mathrm{~d} \Omega=\int_{0}^{2 \pi} \mathrm{~d} \phi \int_{0}^{\pi} \sin \theta \mathrm{d} \theta|f(\theta, \phi)|^{2}
$$

Cross Section

$$
\mathrm{d} \sigma=|f(\theta, \phi)|^{2} \mathrm{~d} \Omega
$$

$$
\sigma=\int \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} \mathrm{~d} \Omega=\int_{0}^{2 \pi} \mathrm{~d} \phi \int_{0}^{\pi} \sin \theta \mathrm{d} \theta|f(\theta, \phi)|^{2} .
$$

Lippmann-Schwinger Equation

The differential Schrödinger equation

$$
\left(E+\frac{\hbar^{2}}{2 \mu} \Delta\right) \psi(\mathbf{r})=V(\mathbf{r}) \psi(\mathbf{r})
$$

is transformed into an integral equation using the free-particle Green's function

$$
\left(E+\frac{\hbar^{2}}{2 \mu} \Delta_{\mathbf{r}}\right) \mathscr{G}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \quad \mathscr{G}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=-\frac{\mu}{2 \pi \hbar^{2}} \frac{\mathrm{e}^{\mathrm{i} k\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
$$

The wave function obeying

$$
\begin{equation*}
\psi(\mathbf{r})=\mathrm{e}^{\mathrm{i} k z}+\int \mathscr{G}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) V\left(\mathbf{r}^{\prime}\right) \psi\left(\mathbf{r}^{\prime}\right) \mathrm{d} \mathbf{r}^{\prime} \tag{1}
\end{equation*}
$$

Lippmann-Schwinger equation
is also a solution of

$$
\left(E+\frac{\hbar^{2}}{2 \mu} \Delta\right) \psi(\mathbf{r})=V(\mathbf{r}) \psi(\mathbf{r})
$$

The $e^{i k z}$ in (1) can be replaced by any solution of the homogeneous equation

$$
\left[E+\left(\hbar^{2} /(2 \mu)\right) \Delta\right] \psi(\mathbf{r})=0
$$

Born Approximation

When $\quad|\mathbf{r}| \gg\left|\mathbf{r}^{\prime}\right|$

$$
\mathscr{G}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=-\frac{\mu}{2 \pi \hbar^{2}} \frac{\mathrm{e}^{\mathrm{i} k r}}{r}\left[\mathrm{e}^{-\mathrm{i} \mathbf{k}_{\mathbf{r}} \cdot \mathbf{r}^{\prime}}+O\left(\frac{r^{\prime}}{r}\right)\right] .
$$

plugging it in

$$
\begin{gathered}
\psi(\mathbf{r})=\mathrm{e}^{\mathrm{i} k z}+\int \mathscr{G}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) V\left(\mathbf{r}^{\prime}\right) \psi\left(\mathbf{r}^{\prime}\right) \mathrm{d} \mathbf{r}^{\prime} \\
f(\theta, \phi)=-\frac{\mu}{2 \pi \hbar^{2}} \int \mathrm{e}^{-\mathrm{i} \mathbf{k}_{\mathbf{r}} \cdot \mathbf{r}^{\prime}} V\left(\mathbf{r}^{\prime}\right) \psi\left(\mathbf{r}^{\prime}\right) \mathrm{d} \mathbf{r}^{\prime} .
\end{gathered}
$$

It is an exact solution if it converges. It converges if $V(r)$ is less singular than $1 / r^{2}$ at the origin and

$$
r^{2} V(\mathbf{r}) \xrightarrow{r \rightarrow \infty} 0
$$

Born Approximation

Inserting

$$
\psi(\mathbf{r})=\mathrm{e}^{\mathrm{i} k z}+\int \mathscr{G}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) V\left(\mathbf{r}^{\prime}\right) \psi\left(\mathbf{r}^{\prime}\right) \mathrm{d} \mathbf{r}^{\prime}
$$

in

$$
f(\theta, \phi)=-\frac{\mu}{2 \pi \hbar^{2}} \int \mathrm{e}^{-\mathrm{i} \mathbf{k}_{\mathbf{r}} \cdot \mathbf{r}^{\prime}} V\left(\mathbf{r}^{\prime}\right) \psi\left(\mathbf{r}^{\prime}\right) \mathrm{d} \mathbf{r}^{\prime} .
$$

We obtain

$$
\begin{aligned}
f(\theta, \phi)= & -\frac{\mu}{2 \pi \hbar^{2}}\left[\int \mathrm{~d} \mathbf{r}^{\prime} \mathrm{e}^{-\mathrm{i} \mathbf{k}_{\mathbf{r}} \cdot \mathbf{r}^{\prime}} V\left(\mathbf{r}^{\prime}\right) \mathrm{e}^{\mathrm{i} k z^{\prime}}\right. \\
& \left.+\int \mathrm{d} \mathbf{r}^{\prime} \mathrm{e}^{-\mathrm{i} \mathbf{k}_{\mathbf{r}} \cdot \mathbf{r}^{\prime}} V\left(\mathbf{r}^{\prime}\right) \int \mathrm{d} \mathbf{r}^{\prime \prime} \mathscr{G}\left(\mathbf{r}^{\prime}, \mathbf{r}^{\prime \prime}\right) V\left(\mathbf{r}^{\prime \prime}\right) \psi\left(\mathbf{r}^{\prime \prime}\right)\right]
\end{aligned}
$$

Retaining only the first term gives the Born approximation.

$$
\begin{gathered}
f^{\mathrm{Born}}(\theta, \phi)=-\frac{\mu}{2 \pi \hbar^{2}} \int \mathrm{~d} \mathbf{r}^{\prime} \mathrm{e}^{-\mathrm{i} \mathbf{k}_{\mathbf{r}} \cdot \mathbf{r}^{\prime}} V\left(\mathbf{r}^{\prime}\right) \mathrm{e}^{\mathrm{i} k z^{\prime}}=-\frac{\mu}{2 \pi \hbar^{2}} \int \mathrm{~d} \mathbf{r}^{\prime} \mathrm{e}^{-\mathrm{i} \mathbf{q} \cdot \mathbf{r}^{\prime}} V\left(\mathbf{r}^{\prime}\right) \\
\mathbf{q}=k\left(\hat{\mathbf{e}}_{\mathbf{r}}-\hat{\mathbf{e}}_{z}\right) \quad q=2 k \sin (\theta / 2)
\end{gathered}
$$

Angular Momentum: summary

Definition $\hat{\mathbf{L}}=\mathbf{r} \times \hat{\mathbf{p}}$ properties $\left[\hat{L}_{x}, \hat{L}_{y}\right]=\mathrm{i} \hbar \hat{L}_{z}$
Eigenstates and eigenvalues

$$
\begin{aligned}
& \hat{\mathbf{L}}^{2} Y_{l, m}(\theta, \phi)=l(l+1) \hbar^{2} Y_{l, m}(\theta, \phi), \quad l=0,1,2, \ldots \\
& \hat{L}_{z} Y_{l, m}(\theta, \phi)=m \hbar Y_{l, m}(\theta, \phi), \quad m=-l,-l+1, \ldots, l-1, l .
\end{aligned}
$$

Spherical harmonics $Y_{\mathrm{lm}}(\theta, \phi)$

$$
\begin{aligned}
Y_{l, m}(\theta, \phi) & =\mathrm{e}^{\mathrm{i} m \phi} \sin ^{|m|}(\theta) \mathrm{Pol}_{l-|m|}(\cos \theta) \\
\int Y_{l, m}(\Omega)^{*} Y_{l^{\prime}, m^{\prime}}(\Omega) \mathrm{d} \Omega & =\int_{0}^{2 \pi} \mathrm{~d} \phi \int_{-1}^{+1} \mathrm{~d} \cos \theta Y_{l, m}(\theta, \phi)^{*} Y_{l^{\prime}, m^{\prime}}(\theta, \phi) \\
& =\delta_{l, l^{\prime}} \delta_{m, m^{\prime}},
\end{aligned}
$$

$$
Y_{l, m}(\theta-\pi, \phi+\pi)=Y_{l,-m}(\theta, \phi)=(-1)^{l} Y_{l, m}(\theta, \phi)
$$

for two vectors \mathbf{a}, \mathbf{b}, with $|\mathbf{a}| \leq|\mathbf{b}|$

$$
Y_{l, m=0}(\theta)=\sqrt{\frac{2 l+1}{4 \pi}} P_{l}(\cos \theta)
$$

$$
\int_{-1}^{1} P_{l}(x) P_{l^{\prime}}(x) \mathrm{d} x=\frac{2}{2 l+1} \delta_{l, l^{\prime}} \quad \frac{1}{|\mathbf{a}-\mathbf{b}|}=\sum_{l=0}^{\infty} \frac{|\mathbf{a}|^{l}}{|\mathbf{b}|^{l+1}} P_{l}(\cos \theta)
$$

Partial-Waves Expansion

The solution with boundary conditions

$$
\psi(\mathbf{r}) \stackrel{r \rightarrow \infty}{\sim} \mathrm{e}^{\mathrm{i} k z}+f(\theta, \phi) \frac{\mathrm{e}^{\mathrm{i} k r}}{r}
$$

is usually represented as an expansion over states with a definite angular momentum, so-called partial waves.

$$
\psi(\mathbf{r})=\psi(r, \theta)=\sum_{l=0}^{\infty} \frac{u_{l}(r)}{r} P_{l}(\cos \theta)
$$

From the Schrödinger equation in spherical coordinates

$$
-\frac{\hbar^{2}}{2 \mu} \Delta=-\frac{\hbar^{2}}{2 \mu}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}\right)+\frac{\hat{\mathbf{L}}^{2}}{2 \mu r^{2}}
$$

one obtains the radial Schrödinger equation

$$
\left[-\frac{\hbar^{2}}{2 \mu} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}+\frac{l(l+1) \hbar^{2}}{2 \mu r^{2}}+V(r)\right] u_{l}(r)=E u_{l}(r)
$$

$$
\left\langle u_{l} \mid \tilde{u}_{l}\right\rangle=\int_{0}^{\infty} u_{l}(r)^{*} \tilde{u}_{l}(r) \mathrm{d} r
$$

Scattering Phase Shifts

For free motion, $V(r)=0$, the solutions of

$$
\left[-\frac{\hbar^{2}}{2 \mu} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}+\frac{l(l+1) \hbar^{2}}{2 \mu r^{2}}+V(r)\right] u_{l}(r)=E u_{l}(r)
$$

are obtained from spherical Bessel functions

$$
u_{l}^{(\mathrm{s})}(k r)=k r j_{l}(k r), \quad u_{l}^{(\mathrm{c})}(k r)=-k r y_{l}(k r),
$$

$u_{l}^{(\mathrm{s})}(k r) \stackrel{k r \rightarrow \infty}{=} \sin \left(k r-l \frac{\pi}{2}\right)+O\left(\frac{1}{k r}\right)$.
$u_{l}^{(\mathrm{c})}(k r) \stackrel{k r \rightarrow \infty}{=} \cos \left(k r-l \frac{\pi}{2}\right)+O\left(\frac{1}{k r}\right)$
$u_{l}^{(\mathrm{s})}(k r) \stackrel{k r \rightarrow 0}{\sim} \frac{\sqrt{\pi}(k r)^{l+1}}{2^{l+1} \Gamma\left(l+\frac{3}{2}\right)}\left[1-\frac{(k r)^{2}}{4 l+6}\right] \quad u_{l}^{(s)}$ is a physical or regular solution
$u_{l}^{(\mathrm{c})}(k r) \stackrel{k r \rightarrow 0}{\sim} \frac{2^{l} \Gamma\left(l+\frac{1}{2}\right)}{\sqrt{\pi}(k r)^{l}}\left[1+\frac{(k r)^{2}}{4 l-2}\right] \quad u_{l}^{(c)}$ is an unphysical or irregular solution

Scattering Phase Shifts

When $V(r) \neq 0$, the solutions of

$$
\left[-\frac{\hbar^{2}}{2 \mu} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}+\frac{l(l+1) \hbar^{2}}{2 \mu r^{2}}+V(r)\right] u_{l}(r)=E u_{l}(r)
$$

at large distances are superpositions

$$
u_{l}(r) \stackrel{r \rightarrow \infty}{\propto} A u_{l}^{(\mathrm{s})}(k r)+B u_{l}^{(\mathrm{c})}(k r) \stackrel{r \rightarrow \infty}{\propto} \sin \left(k r-l \frac{\pi}{2}+\delta_{l}\right)
$$

δ_{l} is scattering phase shifts $\quad \tan \delta_{l}=B / A$
The partial-wave expansion $\quad \psi(\mathbf{r})=\psi(r, \theta)=\sum_{l=0}^{\infty} \frac{u_{l}(r)}{r} P_{l}(\cos \theta)$ In $\psi(\mathbf{r}) \stackrel{r \rightarrow \infty}{\sim} \mathrm{e}^{\mathrm{i} k z}+f(\theta, \phi) \frac{\mathrm{e}^{\mathrm{i} k r}}{r} \quad$ the $\mathrm{e}^{i k z}$ term is

$$
\mathrm{e}^{\mathrm{i} k z}=\sum_{l=0}^{\infty}(2 l+1) \mathrm{i}^{l} j_{l}(k r) P_{l}(\cos \theta)
$$

Scattering Phase Shifts

In $\psi(\mathbf{r}) \stackrel{r \rightarrow \infty}{\sim} \mathrm{e}^{\mathrm{i} k z}+f(\theta, \phi) \frac{\mathrm{e}^{\mathrm{i} k r}}{r}$ the second term could be written as
$f(\theta)=\sum_{l=0}^{\infty} f_{l} P_{l}(\cos \theta)$ where f_{l} are called partial-wave scattering amplitudes.

$$
\begin{aligned}
& \psi(\mathbf{r})=\psi(r, \theta)=\sum_{l=0}^{\infty} \frac{u_{l}(r)}{r} P_{l}(\cos \theta) . \quad \mathrm{e}^{\mathrm{i} k z}=\sum_{l=0}^{\infty}(2 l+1) \mathrm{i}^{l} j_{l}(k r) P_{l}(\cos \theta) \\
& u_{l}(r) \stackrel{r \rightarrow \infty}{\sim}{ }_{\mathrm{i}}{ }^{l}\left[\frac{2 l+1}{k} \sin \left(k r-l \frac{\pi}{2}\right)+f_{l} \mathrm{e}^{\mathrm{i}(k r-l \pi / 2)}\right] \\
&=\mathrm{i}^{i}\left[\left(\frac{2 l+1}{k}+\mathrm{i} f_{l}\right) \sin \left(k r-l \frac{\pi}{2}\right)+f_{l} \cos \left(k r-l \frac{\pi}{2}\right)\right]
\end{aligned}
$$

Scattering Phase Shifts

Using

$$
u_{l}(r) \stackrel{r \rightarrow \infty}{\propto} A u_{l}^{(\mathrm{s})}(k r)+B u_{l}^{(\mathrm{c})}(k r) \stackrel{r \rightarrow \infty}{\propto} \sin \left(k r-l \frac{\pi}{2}+\delta_{l}\right)
$$

$$
\tan \delta_{l}=B / A
$$

$$
\begin{aligned}
& u_{l}(r) \stackrel{r \rightarrow \infty}{\sim} \mathrm{i}^{l}\left[\frac{2 l+1}{k} \sin \left(k r-l \frac{\pi}{2}\right)+f_{l} \mathrm{e}^{\mathrm{i}(k r-l \pi / 2)}\right] \\
&=\mathrm{i}^{l}\left[\left(\frac{2 l+1}{k}+\mathrm{i} f_{l}\right) \sin \left(k r-l \frac{\pi}{2}\right)+f_{l} \cos \left(k r-l \frac{\pi}{2}\right)\right] \\
& \cot \delta_{l}=\frac{A}{B} \equiv \frac{2 l+1}{k f_{l}}+\mathrm{i} \quad f_{l}=\frac{2 l+1}{k} \mathrm{e}^{\mathrm{i} \delta_{l}} \sin \delta_{l}=\frac{2 l+1}{2 \mathrm{i} k}\left(\mathrm{e}^{2 \mathrm{i} \delta_{l}}-1\right) \\
& u_{l}(r) \stackrel{r \rightarrow \infty}{\sim} \frac{2 l+1}{k} \mathrm{i}^{l} \mathrm{e}^{\mathrm{i} \delta_{l}} \sin \left(k r-l \frac{\pi}{2}+\delta_{l}\right) \\
& \psi(\mathbf{r}) \stackrel{r \rightarrow \infty}{\sim} \sum_{l=0}^{\infty} \frac{2 l+1}{k r} \mathrm{i}^{l} \mathrm{e}^{\mathrm{i} \delta_{l}} \sin \left(k r-l \frac{\pi}{2}+\delta_{l}\right) P_{l}(\cos \theta)
\end{aligned}
$$

Cross section

Using

$$
\sigma=\int \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} \mathrm{~d} \Omega=\int_{0}^{2 \pi} \mathrm{~d} \phi \int_{0}^{\pi} \sin \theta \mathrm{d} \theta|f(\theta, \phi)|^{2}
$$

$$
\psi(\mathbf{r}) \stackrel{r \rightarrow \infty}{\sim} \sum_{l=0}^{\infty} \frac{2 l+1}{k r} \mathrm{i}^{l} \mathrm{e}^{\mathrm{i} \delta_{l}} \sin \left(k r-l \frac{\pi}{2}+\delta_{l}\right) P_{l}(\cos \theta)
$$

$$
\begin{array}{r}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=|f(\theta)|^{2}=\frac{1}{k^{2}} \sum_{l, l^{\prime}} \mathrm{e}^{\mathrm{i}\left(\delta_{l}-\delta_{l^{\prime}}\right)}(2 l+1) \sin \delta_{l}\left(2 l^{\prime}+1\right) \sin \delta_{l^{\prime}} P_{l}(\cos \theta) P_{l^{\prime}}(\cos \theta) \\
\int_{-1}^{1} P_{l}(x) P_{l^{\prime}}(x) \mathrm{d} x=\frac{2}{2 l+1} \delta_{l, l^{\prime}}
\end{array}
$$

$$
\begin{gathered}
\sigma=\sum_{l=0}^{\infty} \frac{4 \pi}{2 l+1}\left|f_{l}\right|^{2}=\frac{4 \pi}{k^{2}} \sum_{l=0}^{\infty}(2 l+1) \sin ^{2} \delta_{l}=\frac{\pi}{k^{2}} \sum_{l=0}^{\infty}(2 l+1)\left|\mathrm{e}^{2 \mathrm{i} \delta_{l}}-1\right|^{2} \\
\sigma=\sum_{l=0}^{\infty} \sigma_{[l]}, \quad \sigma_{[l]}=\frac{4 \pi}{k^{2}}(2 l+1) \sin ^{2} \delta_{l}
\end{gathered}
$$

Maximum possible cross section, the unitarity limit: $\quad\left(\sigma_{[l]}\right)_{\max }=\frac{4 \pi}{k^{2}}(2 l+1)$

Normalization

For a bound state

$$
\left\langle u_{\mathrm{b}} \mid u_{\mathrm{b}}\right\rangle=\int_{0}^{\infty} u_{\mathrm{b}}(r)^{*} u_{\mathrm{b}}(r) \mathrm{d} r=1
$$

For a continuum state (regular solution of the Schrödinger equation):

$$
\left\langle u_{l}^{(k)} \mid u_{l}^{\left(k^{\prime}\right)}\right\rangle \propto \delta\left(k-k^{\prime}\right)
$$

To find the normalization coefficient, one uses the property:

$$
\left\langle u_{\mathrm{s}}^{(k)} \mid u_{\mathrm{s}}^{\left(k^{\prime}\right)}\right\rangle=\int_{0}^{\infty} \sin (k r) \sin \left(k^{\prime} r\right) \mathrm{d} r=\frac{\pi}{2} \delta\left(k-k^{\prime}\right)
$$

Therefore, the regular solution should be normalized as

$$
u_{l}^{(k)}(r) \stackrel{r \rightarrow \infty}{\sim} \sqrt{\frac{2}{\pi}} \sin \left(k r-l \frac{\pi}{2}+\delta_{l}\right) \quad \Longrightarrow \quad\left\langle u_{l}^{(k)} \mid u_{l}^{\left(k^{\prime}\right)}\right\rangle=\delta\left(k-k^{\prime}\right)
$$

Energy normalization:

$$
\overline{\mathrm{u}}_{l}^{(E)}(r) \stackrel{r \rightarrow \infty}{\sim} \sqrt{\frac{2 \mu}{\pi \hbar^{2} k}} \sin \left(k r-l \frac{\pi}{2}+\delta_{l}\right) \quad\left\langle\overline{\mathrm{u}}_{l}^{(E)} \mid \overline{\mathrm{u}}_{l}^{\left(E^{\prime}\right)}\right\rangle=\delta\left(E-E^{\prime}\right)
$$

S-Matrix

We derived $\quad u_{l}(r) \stackrel{r \rightarrow \infty}{\sim} \frac{2 l+1}{k} \mathrm{i}^{l} \mathrm{e}^{\mathrm{i} \delta_{l}} \sin \left(k r-l \frac{\pi}{2}+\delta_{l}\right)$
It can be written as

$$
\begin{aligned}
u_{l}(r) & \sim \frac{2 l+1}{2 k} \mathrm{i}^{l+1}\left[\mathrm{e}^{-\mathrm{i}(k r-l \pi / 2)}-\mathrm{e}^{2 \mathrm{i} \delta_{l}} \mathrm{e}^{+\mathrm{i}(k r-l \pi / 2)}\right] \\
& =\frac{2 l+1}{2 k} \mathrm{i}^{2 l+1}\left[\mathrm{e}^{-\mathrm{i} k r}-(-1)^{l} \mathrm{e}^{2 \mathrm{i} \delta_{l}} \mathrm{e}^{+\mathrm{i} k r}\right] .
\end{aligned}
$$

The quantity $S_{l}=\mathrm{e}^{2 \mathrm{i} \delta_{l}}$ is the scattering matrix.

Example: scattering from a hard sphere

A hard sphere of radius R
For $r<R$ the solution $u_{l}(r)=0$.
For $r>R$ the solution is

$$
A u_{l}^{(\mathrm{s})}(k r)+B u_{l}^{(\mathrm{c})}(k r)
$$

At the boundary:

$$
A u_{l}^{(\mathrm{s})}(k R)+B u_{l}^{(\mathrm{c})}(k R)=0
$$

$\frac{B}{A}=-\frac{u_{l}^{(\mathrm{s})}(k R)}{u_{l}^{(\mathrm{c})}(k R)}=\frac{j_{l}(k R)}{y_{l}(k R)} \quad \delta_{l}=\arctan \left(\frac{j_{l}(k R)}{y_{l}(k R)}\right)$
$\tan \delta_{l}=B / A$
$\delta_{l=0}=-k R$
for $l>0$:

$$
\begin{aligned}
& \delta_{l} \stackrel{k R \rightarrow 0}{\sim}-\frac{\pi}{\Gamma\left(l+\frac{3}{2}\right) \Gamma\left(l+\frac{1}{2}\right)}\left(\frac{k R}{2}\right)^{2 l+1}\left[1-\left(\frac{k R}{2}\right)^{2}\left(\frac{1}{l-\frac{1}{2}}+\frac{1}{l+\frac{3}{2}}\right)\right] \\
& \delta_{l} \stackrel{k R \rightarrow \infty}{\sim}-k R+l \frac{\pi}{2}
\end{aligned}
$$

Scattering phase shifts for the hard sphere

$$
\delta_{l=0}=-k R
$$

$\delta_{l} \stackrel{k R \rightarrow 0}{\sim}-\frac{\pi}{\Gamma\left(l+\frac{3}{2}\right) \Gamma\left(l+\frac{1}{2}\right)}\left(\frac{k R}{2}\right)^{2 l+1}\left[1-\left(\frac{k R}{2}\right)^{2}\left(\frac{1}{l-\frac{1}{2}}+\frac{1}{l+\frac{3}{2}}\right)\right]$
$\delta_{l} \stackrel{k R \rightarrow \infty}{\sim}-k R+l \frac{\pi}{2}$

Low-energy collisions

For small energies, the wave function near the origin is

$$
\begin{aligned}
u_{l}(r) & \stackrel{k r \rightarrow 0}{\propto} u_{l}^{(\mathrm{s})}(k r)+\tan \delta_{l} u_{l}^{(\mathrm{c})}(k r) \\
& \sim \frac{\sqrt{\pi} k^{l+1}}{2^{l+1} \Gamma\left(l+\frac{3}{2}\right)}\left[r^{l+1}+\tan \delta_{l} \frac{2^{2 l+1} \Gamma\left(l+\frac{1}{2}\right) \Gamma\left(l+\frac{3}{2}\right)}{\pi k^{2 l+1} r^{l}}\right]
\end{aligned}
$$

But for small k, the solution $u_{l}(r)$ should be just $A u_{l}^{(s)}(r)$, i.e. expression in the parenthesis should not depend on k. It means that

$$
\tan \delta_{l} \stackrel{k \rightarrow 0}{\sim}-\frac{\pi}{\Gamma\left(l+\frac{1}{2}\right) \Gamma\left(l+\frac{3}{2}\right)}\left(\frac{a_{l} k}{2}\right)^{2 l+1}
$$

a_{l} are some constants depending on details of the interaction $V(r)$. They are called scattering lengths.

At $E \rightarrow 0(k \rightarrow 0)$, the equation gives Wigner's threshold law for various processes.

For elastic scattering

$$
\lim _{k \rightarrow 0} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}=a^{2} \quad \text { and } \quad \lim _{k \rightarrow 0} \sigma=4 \pi a^{2}
$$

Scattering length

$$
\begin{aligned}
u_{l}(r) & \stackrel{k r \rightarrow 0}{\propto} u_{l}^{(\mathrm{s})}(k r)+\tan \delta_{l} u_{l}^{(\mathrm{c})}(k r) \\
& \sim \frac{\sqrt{\pi} k^{l+1}}{2^{l+1} \Gamma\left(l+\frac{3}{2}\right)}\left[r^{l+1}+\tan \delta_{l} \frac{2^{2 l+1} \Gamma\left(l+\frac{1}{2}\right) \Gamma\left(l+\frac{3}{2}\right)}{\pi k^{2 l+1} r^{l}}\right] \quad \tan \delta_{l} \stackrel{k \rightarrow 0}{\sim}-\frac{\pi}{\Gamma\left(l+\frac{1}{2}\right) \Gamma\left(l+\frac{3}{2}\right)}\left(\frac{a_{l} k}{2}\right)^{2 l+1}
\end{aligned}
$$

When $k \rightarrow 0$, the wave function at large r is ($k r$ is small but finite)

$$
u_{l}^{(0)}(r) \stackrel{r \rightarrow \infty}{\propto} r^{l+1}-\frac{a_{l}^{2 l+1}}{r^{l}}
$$

When $a_{l}=0, u_{l}^{(0)}(r)$ is just the regular solution of the radial Schrödinger equation with $V=0$.

When $a_{l}=\rightarrow \infty, u_{l}^{(0)}(r) \sim r^{-l}$, i.e. for $l>0$ it can be normalized to 1 , i.e. it corresponds to a bound state exactly at the threshold.

For the s-wave

$$
u_{l=0}^{(0)} \stackrel{r \rightarrow \infty}{\propto} r-a \propto 1-\frac{r}{a}
$$

Example: square potential well

$$
V(r)=\left\{\begin{array}{ll}
-V_{\mathrm{S}} & \text { for } r \leq L, \\
0 & \text { for } r>L,
\end{array} \quad V_{\mathrm{S}}=\frac{\hbar^{2} K_{\mathrm{S}}^{2}}{2 \mu}\right.
$$

Bound state with $E=0$ when $K_{S} L=\pi / 2$ and V_{s} is

$$
E_{0}=\left(\frac{\pi}{2} \hbar\right)^{2} /\left(2 \mu L^{2}\right)
$$

For this solution, $u_{l=0}(r) \rightarrow=$ constant at $r>L$.

For a slightly larger $V_{S^{\prime}}$ a bound state with $E<0$ appears.

$$
V(r)_{\wedge} \quad \ldots-v_{s}<E_{0}
$$

Scattering length for the square potential well

$V(r) \uparrow$
bound state at $E=0$ if $k L=k \pi+\frac{\pi}{2}$

$$
u_{l=0}^{(0)} \stackrel{r \rightarrow \infty}{\propto} r-a \propto 1-\frac{r}{a}
$$

$$
a=L-\frac{\tan \left(K_{\mathrm{S}} L\right)}{K_{\mathrm{S}}}
$$

Scattering length and weaklybound states

A weakly-bound state

$$
E_{\mathrm{b}}=-\hbar^{2} \kappa_{\mathrm{b}}^{2} /(2 \mu)
$$

$$
u_{l=0}^{\left(\kappa_{\mathrm{b}}\right)}(r) \propto 1-r\left[\kappa_{\mathrm{b}}+O\left(\kappa_{\mathrm{b}}^{2}\right)\right] \quad\left(\kappa_{\mathrm{b}}>0\right)
$$

$$
u_{l=0}^{(0)} \stackrel{r \rightarrow \infty}{\propto} r-a \propto 1-\frac{r}{a}
$$

$$
\frac{1}{a} \stackrel{\kappa_{\mathrm{b}} \rightarrow 0}{\sim} \kappa_{\mathrm{b}}+O\left(\kappa_{\mathrm{b}}^{2}\right)
$$

$$
E_{\mathrm{b}}=-\frac{\hbar^{2} \kappa_{\mathrm{b}}^{2}}{2 \mu} \stackrel{a \rightarrow \infty}{\sim}-\frac{\hbar^{2}}{2 \mu a^{2}}+O\left(\frac{1}{a^{3}}\right)
$$

It corresponds to a large positive scattering length a.

Example: Ultracold cesium gas

FIG. 3: (color online). Binding energy of cesium molecules near three Feshbach resonances as a function of the magnetic field. Zero energy corresponds to two Cs atoms in the absolute hyperfine ground-state sublevel $\left|F=3, m_{F}=3\right\rangle$. The measurements are shown as open circles. The fit (solid line) is based on Eq. ([13), see text. The inset shows an expanded view in the region of the two d - and g-wave narrow resonances. The error bars refer to the statistical uncertainties.

FIG. 4: (color online) Scattering length of $\left|F=3, m_{F}=3\right\rangle$ cesium atoms in the magnetic field range where three Feshbach resonances overlap. The solid curve shows the result of this work while the dashed curve represents the prediction from a previous multi-channel calculation [17].

$$
E_{\mathrm{b}}=-\frac{\hbar^{2} \kappa_{\mathrm{b}}^{2}}{2 \mu} \stackrel{a \rightarrow \infty}{\sim}-\frac{\hbar^{2}}{2 \mu a^{2}}+O\left(\frac{1}{a^{3}}\right)
$$

Potential (shape) Resonances

Consider a solution of the Schrödinger equation, which behaves asymptotically

$$
u_{l}(r) \stackrel{r \rightarrow \infty}{\sim} \mathrm{e}^{-\mathrm{i}(k r-l \pi / 2)}-\mathrm{e}^{2 \mathrm{i} \delta_{l}} \mathrm{e}^{+\mathrm{i}(k r-l \pi / 2)}
$$

Consider the time-dependent Schrödinger equation. Its solution is

$$
u^{(k)}(r, t)=u(r) \mathrm{e}^{-\mathrm{i} \omega t} \quad \omega(k)=\frac{\hbar k^{2}}{2 \mu}
$$

Consider now a wave packet (a superposition) of solutions of the stationary equation

$$
u(r, t)=\int_{0}^{\infty} u^{(k)}(r, t) \phi(k) \mathrm{d} k
$$

$\phi(k)$ is a narrow function of k such that

$$
\omega(k) \approx \bar{\omega}+\bar{v}(k-\bar{k}), \quad \bar{\omega}=\omega(\bar{k}), \quad \bar{v}=\left.\frac{\mathrm{d} \omega}{\mathrm{~d} k}\right|_{\bar{k}}=\frac{\hbar \bar{k}}{\mu}
$$

Potential (shape) Resonances

$$
\omega(k) \approx \bar{\omega}+\bar{v}(k-\bar{k}), \quad \bar{\omega}=\omega(\bar{k}), \bar{v}=\left.\frac{\mathrm{d} \omega}{\mathrm{~d} k}\right|_{\bar{k}}=\frac{\hbar \bar{k}}{\mu}
$$

The lower limit of the integral can be extended to $-\infty$. The first term in

$$
u(r, t)=\int_{0}^{\infty} u^{(k)}(r, t) \phi(k) \mathrm{d} k \quad u_{l}(r)^{r \rightarrow \infty} \mathrm{e}^{-\mathrm{i}(k r-l \pi / 2)}-\mathrm{e}^{2 \mathrm{i} \delta_{l}} \mathrm{e}^{+\mathrm{i}(k r-l \pi / 2)}
$$

can be written as

$$
\begin{aligned}
u^{\mathrm{in}}(r, t) & =\int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{i}(k r+\omega t-l \pi / 2)} \phi(k) \mathrm{d} k \\
& \approx \mathrm{e}^{-\mathrm{i} \bar{k} r-\mathrm{i} \bar{\omega} t} \mathrm{i}^{l} \int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{i}(k-\bar{k})(r+\bar{v} t)} \tilde{\phi}(k-\bar{k}) \mathrm{d}(k-\bar{k})
\end{aligned}
$$

or in the form

$$
u^{\mathrm{in}}(r, t)=\mathrm{e}^{-\mathrm{i} \bar{k} r-\mathrm{i} \bar{\omega} t} \Psi(r+\bar{v} t)
$$

For example:

$$
\tilde{\phi}(q) \propto \mathrm{e}^{-B^{2} q^{2} / 2} \quad \Longrightarrow \Psi(x) \propto \mathrm{e}^{-x^{2} /\left(2 B^{2}\right)}
$$

Potential (shape) Resonances

For the outgoing wave in $u_{l}(r) \stackrel{r \rightarrow \infty}{\sim} \mathrm{e}^{-\mathrm{i}(k r-l \pi / 2)}-\mathrm{e}^{2 \mathrm{i} \delta_{l}} \mathrm{e}^{+\mathrm{i}(k r-l \pi / 2)}$
in the small interval of $k \delta_{l}(k) \approx \delta_{l}(\bar{k})+\left.(k-\bar{k}) \frac{\mathrm{d} \delta_{l}}{\mathrm{~d} k}\right|_{\bar{k}}$
the integral

$$
u(r, t)=\int_{0}^{\infty} u^{(k)}(r, t) \phi(k) \mathrm{d} k
$$

is approximated

$$
\begin{aligned}
& u^{\mathrm{out}}(r, t)=-\int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i}(\underline{\mathrm{i}} r-\omega t-l \pi / 2)} \mathrm{e}^{2 \mathrm{i} \delta_{l}} \phi(k) \mathrm{d} k \\
& \approx-\mathrm{e}^{\mathrm{i} \mathrm{i} \bar{k} r-\mathrm{i} \bar{\omega} t} \mathrm{e}^{2 \mathrm{i} \delta(\bar{k})}(-\mathrm{i})^{l} \int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{i}(k-\bar{k})[-(r-\bar{v} t+\Delta r)]} \tilde{\phi}(k-\bar{k}) \mathrm{d}(k-\bar{k}) \\
& \Delta r=\left.2 \frac{\mathrm{~d} \delta_{l}}{\mathrm{~d} k}\right|_{\bar{k}}
\end{aligned}
$$

The integral can be expressed in terms of the same function Ψ

$$
u^{\text {out }}(r, t)=\mathrm{e}^{+\mathrm{i} \bar{k} r-\mathrm{i} \bar{\omega} t} \mathrm{e}^{2 \mathrm{i} \delta_{l}(\bar{k})}(-1)^{l} \Psi[-(r-\bar{v} t+\Delta r)]
$$

Wigner time-delay

Incoming wave in

$$
u^{\mathrm{in}}(r, t)=\mathrm{e}^{-\mathrm{i} \bar{k} r-\mathrm{i} \bar{\omega} t} \Psi(r+\bar{v} t)
$$

Outgoing wave $u^{\text {out }}(r, t)=\mathrm{e}^{+\mathrm{i} \bar{k} r-\mathrm{i} \bar{\omega} t} \mathrm{e}^{2 \mathrm{i} \delta_{l}(\bar{k})}(-1)^{l} \Psi[-(r-\bar{v} t+\Delta r)]$

$$
\Delta r=\left.2 \frac{\mathrm{~d} \delta_{l}}{\mathrm{~d} k}\right|_{\bar{k}}
$$

For a free wave (scattering with $V=0$), $\Delta r=0$.
Therefore, Δr is the space delay due to the potential.
The time delay is $\quad \Delta t=\frac{\Delta r}{\bar{v}}=\left.2 \frac{\mu}{\hbar \bar{k}} \frac{\mathrm{~d} \delta_{l}}{\mathrm{~d} k}\right|_{\bar{k}}=\left.2 \hbar \frac{\mathrm{~d} \delta_{l}}{\mathrm{~d} E}\right|_{\bar{E}} \quad \bar{E}=\hbar^{2} \bar{k}^{2} /(2 \mu)$
Time delay could be positive, zero, or negative.

$$
\begin{gathered}
\delta_{l=0}=-k R \\
\delta_{l} \stackrel{k R \rightarrow \infty}{\sim}-k R+l \frac{\pi}{2}
\end{gathered}
$$

For example, for the hard sphere:

$$
\Delta r=-2 R \text { for } l=0 \quad \Delta r \stackrel{k R \rightarrow \infty}{\sim}-2 R \text { for } l>0
$$

Resonances ans phase shifts

If at certain energy E time delay becomes large, one calls this situation a resonance at energy $E_{r^{\prime}}$

A resonance is characterized by its energy E_{r} and time delay Δt_{r} or its widths $\Gamma=4 \hbar / \Delta t_{r}$.

FIG. 3. Potentials of $\mathrm{Li}_{2}(2 p+2 s)$. Full line: $B{ }^{1} \Pi_{u}$ (Ref. [9]); dashed line: $1{ }^{1} \Pi_{g}$ (Ref. [15]).

FIG. 4. The wave function (real part) of the $v^{\prime}=16, J^{\prime}=1$ level of ${ }^{6} \mathrm{Li}^{7} \mathrm{Li}$. The dissociation rate is $k=8670 \times 10^{6} \mathrm{~s}^{-1}$, corresponding to a lifetime $\tau=115 \mathrm{ps}$. The inset shows the long-range part responsible for the decay due to tunneling through the barrier.

A resonance could also be viewed as a (almost) bound state, which decays with time.

Time-dependent vs timeindependent picture

The asymptotic behavior of a solution of TISE is

$$
u_{l}(r) \stackrel{r \rightarrow 0}{\sim} \frac{2 l+1}{2 k} \mathrm{i}^{l+1}\left[\mathrm{e}^{-\mathrm{i}(k r-l \pi / 2)}-\mathrm{e}^{2 \mathrm{i} \delta_{l}} \mathrm{e}^{\mathrm{i}(k r-l \pi / 2)}\right]
$$

The formula can be used to obtain energies of bound states (k would be imaginary). For a bound state with $\mathscr{E}<0: \quad \mathrm{e}^{-\mathrm{i} \delta_{l}(\mathscr{E})}=0$.

Now, we apply the same idea for positive energies (analytical continuation). If there is a solution of

$$
\mathrm{e}^{-\mathrm{i} \delta_{l}(\mathscr{E})}=0
$$

Then the energy \mathscr{E} is a complex number $\mathscr{E}=E_{\mathrm{re}}+\mathrm{i} E_{\mathrm{im}}$ with negative $\mathscr{E}_{\mathrm{im}}$, such that the norm of the wave function decays with time as

$$
\left|u_{l}\right|^{2} \propto \mathrm{e}^{2 E_{\mathrm{im}} t / \hbar}
$$

Near $\mathscr{E} \quad \mathrm{e}^{-\mathrm{i} \delta_{l}(E)} \approx C(E-\mathscr{E})$ because $\delta_{l}(E)$ is an analytical function near \mathscr{E} For real $E \quad \mathrm{e}^{+\mathrm{i} \delta_{l}(E)}=\left[\mathrm{e}^{-\mathrm{i} \delta_{l}(E)}\right]^{*} \approx C^{*}\left(E-\mathscr{E}^{*}\right)$

$$
\mathrm{e}^{-\mathrm{i} \delta_{l}(\mathscr{E})}=0
$$

Time-dependent vs timeindependent picture

$$
\begin{gathered}
\mathrm{e}^{-\mathrm{i} \delta_{l}(E)} \approx C(E-\mathscr{E}) \\
\mathrm{e}^{+\mathrm{i} \delta_{l}(E)}=\left[\mathrm{e}^{-\mathrm{i} \delta_{l}(E)}\right]^{*} \approx C^{*}\left(E-\mathscr{E}^{*}\right) \\
S_{l}=\mathrm{e}^{+\mathrm{i} \delta_{l}(E)} / \mathrm{e}^{-\mathrm{i} \delta_{l}(E)} \\
S_{l}=\frac{C^{*}}{C} \frac{E-E_{\mathrm{r}}+\mathrm{i} E_{\mathrm{im}}}{E-E_{\mathrm{re}}-\mathrm{i} E_{\mathrm{im}}} \\
2 \delta_{l}=-2 \arg (C)+2 \arctan \left(\frac{E_{\mathrm{im}}}{E-E_{\mathrm{re}}}\right) \\
\tau_{\mathrm{R}}=\frac{\hbar}{\Gamma} \\
\left|u_{l}\right|^{2} \propto \mathrm{e}^{2 E_{\mathrm{im}} t / \hbar} \mathrm{e}^{2}+\mathrm{C}_{3} \mathrm{~N} \text { collisions }
\end{gathered}
$$

Breit-Wigner formula

The l-wave cross section

$$
\sigma_{[l]}=\frac{4 \pi}{k^{2}}(2 l+1) \sin ^{2} \delta_{l}=\frac{4 \pi}{k^{2}} \frac{2 l+1}{1+\cot ^{2} \delta_{l}}=\frac{4 \pi}{k^{2}} \frac{(2 l+1)(\Gamma / 2)^{2}}{\left(E-E_{\mathrm{R}}\right)^{2}+(\Gamma / 2)^{2}}
$$

$2 \delta_{l}=-2 \arg (C)+2 \arctan \left(\frac{E_{\mathrm{im}}}{E-E_{\mathrm{re}}}\right)$
It is Breit-Wigner formula for the cross section near a resonance.

For the Wigner time delay near a resonance

$$
\Delta t=2 \hbar \frac{\mathrm{~d} \delta_{l}}{\mathrm{~d} E}=\frac{\hbar \Gamma}{\left(E-E_{\mathrm{R}}\right)^{2}+(\Gamma / 2)^{2}}
$$

$\mathrm{C}_{3} \mathrm{~N}+\mathrm{e}^{-}$example

$$
\sigma_{[l]}=\frac{4 \pi}{k^{2}}(2 l+1) \sin ^{2} \delta_{l}=\frac{4 \pi}{k^{2}} \frac{2 l+1}{1+\cot ^{2} \delta_{l}}=\frac{4 \pi}{k^{2}} \frac{(2 l+1)(\Gamma / 2)^{2}}{\left(E-E_{\mathrm{R}}\right)^{2}+(\Gamma / 2)^{2}}
$$

Inelastic scattering

Several internal states of colliding particles

In the two particles after a collision could be in states different than their states before the collision, the total wave function should be written as

$$
\boldsymbol{\Psi}(\mathbf{r}, \xi)=\sum_{j} \psi_{j}(\mathbf{r}) \Upsilon_{j}(\xi)
$$

ξ refers to all internal degrees of freedom of projectile and target.

$$
\hat{H}_{\xi} \Upsilon_{i}(\xi)=E_{i} \Upsilon_{i}(\xi)
$$

The internal states Υ_{i} define channels for the scattering process. Wave functions $\Psi_{i}(r)$ are channel wave functions.
The Schrödinger equation

$$
\begin{gathered}
{\left[-\frac{\hbar^{2}}{2 \mu} \Delta+\hat{H}_{\xi}+\hat{W}(\mathbf{r}, \xi)\right] \boldsymbol{\Psi}(\mathbf{r}, \xi)=E \boldsymbol{\Psi}(\mathbf{r}, \xi)} \\
-\frac{\hbar^{2}}{2 \mu} \Delta \psi_{i}(\mathbf{r})+\sum_{i} V_{i, j} \psi_{j}(\mathbf{r})=\left(E-E_{i}\right) \psi_{i}(\mathbf{r}) \quad \quad V_{i, j}=\left\langle\Upsilon_{i}\right| \hat{W}\left|\Upsilon_{j}\right\rangle_{\xi}
\end{gathered}
$$

Scattering amplitude

Open and closed channels, channel thresholds E_{j}

$$
\boldsymbol{\Psi}(\mathbf{r}, \xi)=\sum_{j} \psi_{j}(\mathbf{r}) \Upsilon_{j}(\xi)
$$

The description of a scattering process starts with

$$
\boldsymbol{\Psi}(\mathbf{r}, \xi) \stackrel{r \rightarrow \infty}{\sim} \mathrm{e}^{\mathrm{i} k_{i} z} \Upsilon_{i}(\xi)+\sum_{j \text { open }} f_{i, j}(\theta, \phi) \frac{\mathrm{e}^{\mathrm{i} k_{j} r}}{r} \Upsilon_{j}(\xi)
$$

Total energy E is conserved, kinetic energy $E-E_{j}$ changes if the internal state changes (inelastic scattering)

Open channel

$$
E-E_{j}=\frac{\hbar^{2} k_{j}^{2}}{2 \mu}>0, \quad k_{j}=\frac{1}{\hbar} \sqrt{2 \mu\left(E-E_{j}\right)}
$$

Closed channel

$$
E-E_{j}=-\frac{\hbar^{2} \kappa_{j}^{2}}{2 \mu}<0, \quad \kappa_{j}=\frac{1}{\hbar} \sqrt{2 \mu\left(E_{j}-E\right)}
$$

Coupled-channel equations

$$
\boldsymbol{\Psi}(\mathbf{r}, \xi) \stackrel{r \rightarrow \infty}{\sim} \mathrm{e}^{\mathrm{i} k_{i} z} \Upsilon_{i}(\xi)+\sum_{j \text { open }} f_{i, j}(\theta, \phi) \frac{\mathrm{e}^{\mathrm{i} k_{j} r}}{r} \Upsilon_{j}(\xi)
$$

$$
\psi_{j}(\mathbf{r}) \stackrel{r \rightarrow \infty}{\sim} \mathrm{e}^{\mathrm{i} k_{i} z} \delta_{i, j}+f_{i, j}(\theta, \phi) \frac{\mathrm{e}^{\mathrm{i} k_{j} r}}{r}
$$

Current density in channel j

$$
\mathbf{j}_{j}(\mathbf{r})=\frac{\hbar k_{j}}{\mu}\left|f_{i, j}(\theta, \phi)\right|^{2} \frac{\hat{\mathbf{e}}_{\mathbf{r}}}{r^{2}}+O\left(\frac{1}{r^{3}}\right)
$$

The incoming current density is $\left|j_{i}\right|=\hbar k_{i} / \mu$.
The differential cross section for scattering from the incident channel i to the outgoing channel j is

$$
\frac{\mathrm{d} \sigma_{i \rightarrow j}}{\mathrm{~d} \Omega}=\frac{k_{j}}{k_{i}}\left|f_{i, j}(\theta, \phi)\right|^{2}
$$

Integrated cross section is

$$
\sigma=\sum_{j \text { open }} \sigma_{i \rightarrow j}, \quad \sigma_{i \rightarrow j}=\int \frac{\mathrm{d} \sigma_{i \rightarrow j}}{\mathrm{~d} \Omega} \mathrm{~d} \Omega=\frac{k_{j}}{k_{i}} \int\left|f_{i, j}(\theta, \phi)\right|^{2} \mathrm{~d} \Omega
$$

Multichannel Green's function

Multi-channel Schrödinger equation

$$
-\frac{\hbar^{2}}{2 \mu} \Delta \psi_{i}(\mathbf{r})+\sum_{i} V_{i, j} \psi_{j}(\mathbf{r})=\left(E-E_{i}\right) \psi_{i}(\mathbf{r})
$$

in a vector form

$$
\left(\hat{E}+\frac{\hbar^{2}}{2 \mu} \Delta\right) \Psi=\hat{V} \Psi
$$

Multi-channel Green's function

$$
\begin{gathered}
{\left[\hat{E}+\frac{\hbar^{2}}{2 \mu} \Delta\right] \hat{G}=\mathbf{1}} \\
{\left[E-E_{j}+\frac{\hbar^{2}}{2 \mu} \Delta\right] \mathscr{G}_{j, j}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}
\end{gathered}
$$

If Ψ is a solution then it satisfies $\quad \Psi=\Psi^{\text {hom }}+\hat{G} \hat{V} \Psi: \quad\left[\hat{E}+\frac{\hbar^{2}}{2 \mu} \Delta\right] \Psi^{\text {hom }}=0$
Free-particle Green's function is

$$
\mathscr{G}_{j, j}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=-\frac{\mu}{2 \pi \hbar^{2}} \frac{\mathrm{e}^{\mathrm{i} k_{j}\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}|\mathbf{r}| \ggg \mathbf{r}^{\prime}| |-\frac{\mu}{2 \pi \hbar^{2}} \frac{\mathrm{e}^{\mathrm{i} k_{j} r}}{r} \mathrm{e}^{-\mathrm{i} \mathbf{k}_{j} \cdot \mathbf{r}^{\prime}} \quad \mathbf{k}_{j}=k_{j} \hat{\mathbf{e}}_{\mathbf{r}}
$$

Multichannel Lippmann-Schwinger equation

Multi-channel Lippmann-Schwinger equation

$$
\Psi=\Psi^{\mathrm{hom}}+\hat{G} \hat{V} \Psi
$$

Accounting for boundary conditions in

$$
\begin{aligned}
& \boldsymbol{\Psi}(\mathbf{r}, \xi) \stackrel{r \rightarrow \infty}{\sim} \mathrm{e}^{\mathrm{i} k_{i} z} \Upsilon_{i}(\xi)+\sum_{j \text { open }} f_{i, j}(\theta, \phi) \frac{\mathrm{e}^{\mathrm{i} k_{j} r}}{r} \Upsilon_{j}(\xi) \\
& \psi_{i}^{\mathrm{hom}}(\mathbf{r})=\mathrm{e}^{\mathrm{i} k_{i} z}, \quad \psi_{j}^{\text {hom }}(\mathbf{r}) \equiv 0 \quad \text { for } j \neq i
\end{aligned}
$$

Lippmann-Schwinger equation becomes

$$
\psi_{j}(\mathbf{r})=\mathrm{e}^{\mathrm{i} k_{i} z} \delta_{i, j}+\int \mathscr{G}_{j, j}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \sum_{n} V_{j, n} \psi_{n}\left(\mathbf{r}^{\prime}\right) \mathrm{d} \mathbf{r}^{\prime}
$$

Multichannel Scattering amplitude

Asymptotically, the equation

$$
\psi_{j}(\mathbf{r})=\mathrm{e}^{\mathrm{i} k_{i} z} \delta_{i, j}+\int \mathscr{G}_{j, j}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \sum_{n} V_{j, n} \psi_{n}\left(\mathbf{r}^{\prime}\right) \mathrm{d} \mathbf{r}^{\prime}
$$

could be written as

$$
\mathscr{G}_{j, j}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=-\frac{\mu}{2 \pi \hbar^{2}} \frac{\mathrm{e}^{\mathrm{i} k_{j}\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \stackrel{|\mathbf{r}| \gg\left|\mathbf{r}^{\prime}\right|}{\sim}-\frac{\mu}{2 \pi \hbar^{2}} \frac{\mathrm{e}^{\mathrm{i} k_{j} r}}{r} \mathrm{e}^{-\mathrm{i} \mathbf{k}_{j} \cdot \mathbf{r}^{\prime}}
$$

$$
\psi_{j}(\mathbf{r}) \stackrel{r \rightarrow \infty}{\sim} \mathrm{e}^{\mathrm{i} k_{i} z} \delta_{i, j}-\frac{\mu}{2 \pi \hbar^{2}} \frac{\mathrm{e}^{\mathrm{i} k_{j} r}}{r} \sum_{n} \int \mathrm{e}^{-\mathrm{i} \mathbf{k}_{j} \cdot \mathbf{r}^{\prime}} V_{j, n} \psi_{n}\left(\mathbf{r}^{\prime}\right) \mathrm{d} \mathbf{r}^{\prime}
$$

Comparing with

$$
\boldsymbol{\Psi}(\mathbf{r}, \xi) \stackrel{r \rightarrow \infty}{\sim} \mathrm{e}^{\mathrm{i} k_{i} z} \Upsilon_{i}(\xi)+\sum_{j \text { open }} f_{i, j}(\theta, \phi) \frac{\mathrm{e}^{\mathrm{i} k_{j} r}}{r} \Upsilon_{j}(\xi)
$$

the amplitudes can be written as

$$
f_{i, j}(\theta, \phi)=-\frac{\mu}{2 \pi \hbar^{2}} \sum_{n} \int \mathrm{e}^{-\mathrm{i} \mathbf{k}_{j} \cdot \mathbf{r}^{\prime}} V_{j, n}\left(\mathbf{r}^{\prime}\right) \psi_{n}\left(\mathbf{r}^{\prime}\right) \mathrm{d} \mathbf{r}^{\prime}
$$

Multichannel Born approximation

If one substitutes $\Psi^{\text {hom }}$ instead of ψ_{n} in the incoming wave

$$
f_{i, j}(\theta, \phi)=-\frac{\mu}{2 \pi \hbar^{2}} \sum_{n} \int \mathrm{e}^{-i \mathbf{k}_{j} \cdot \mathbf{r}^{\prime}} V_{j, n}\left(\mathbf{r}^{\prime}\right) \psi_{n}\left(\mathbf{r}^{\prime}\right) \mathrm{d} \mathbf{r}^{\prime}
$$

one obtains the amplitude in the Born approximation

$$
f_{i, j}^{\mathrm{Born}}(\theta, \phi)=-\frac{\mu}{2 \pi \hbar^{2}} \int \mathrm{e}^{-\mathrm{i}\left(\mathbf{k}_{j}-k_{i} \hat{\mathbf{e}}_{z}\right) \cdot \mathbf{r}^{\prime}} V_{j, i}\left(\mathbf{r}^{\prime}\right) \mathrm{d} \mathbf{r}^{\prime}
$$

It looks as a Fourier transform of $V_{j, i}$
The Born scattering amplitude is a function of momentum transfer:

$$
\mathbf{q}=\mathbf{k}_{j}-k_{i} \hat{\mathbf{e}}_{z}=k_{j} \hat{\mathbf{e}}_{r}-k_{i} \hat{\mathbf{e}}_{z}
$$

Feshbach resonances

A shape resonance is trapped by a potential barrier.
Feshbach resonance is trapped by a closed channel

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 \mu} \Delta \psi_{i}(\mathbf{r})+\sum_{i} V_{i, j} \psi_{j}(\mathbf{r})=\left(E-E_{i}\right) \psi_{i}(\mathbf{r}) V(r) \\
& {\left[-\frac{\hbar^{2}}{2 \mu} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}+V_{1}(r)\right] u_{1}(r)+V_{1,2} u_{2}(r)=E u_{1}(r) E_{0}-} \\
& {\left[-\frac{\hbar^{2}}{2 \mu} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}+V_{2}(r)\right] u_{2}(r)+V_{2,1} u_{1}(r)=E u_{2}(r) E_{1}-} \\
& \hline
\end{aligned}
$$

Feshbach resonances

If there is no coupling between the channels, $V_{1,2}=V_{2,1}=0$

$$
\left[-\frac{\hbar^{2}}{2 \mu} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}+V_{2}(r)\right] u_{0}(r)=E_{0} u_{0}(r), \quad\left\langle u_{0} \mid u_{0}\right\rangle=1, E_{1}<E_{0}<E_{2}
$$

If there is a weak coupling, $u_{0}(r)$ would not be $\left[-\frac{\hbar^{2}}{2 \mu} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}+V_{1}(r)\right] u_{1}(r)+V_{1,2} u_{2}(r)=E u_{1}(r)$ modified significantly.

$$
\left[-\frac{\hbar^{2}}{2 \mu} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}+V_{2}(r)\right] u_{2}(r)+V_{2,1} u_{1}(r)=E u_{2}(r)
$$

The two component solution can then be written as

$$
U \equiv\binom{u_{1}(r)}{A u_{0}(r)}
$$

From the second equation we

$$
V_{2,1}(r) u_{1}(r)=A\left(E-E_{0}\right) u_{0}(r)
$$

or

$$
A\left(E-E_{0}\right)=\left\langle u_{0}\right| V_{2,1}\left|u_{1}\right\rangle
$$

Feshbach resonances

The first equation is

$$
\left[E+\frac{\hbar^{2}}{2 \mu} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}-V_{1}(r)\right] u_{1}(r)=A V_{1,2} u_{0}(r) .
$$

$$
\begin{aligned}
& {\left[-\frac{\hbar^{2}}{2 \mu} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}+V_{1}(r)\right] u_{1}(r)+V_{1,2} u_{2}(r)=E u_{1}(r)} \\
& {\left[-\frac{\hbar^{2}}{2 \mu} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}+V_{2}(r)\right] u_{2}(r)+V_{2,1} u_{1}(r)=E u_{2}(r)}
\end{aligned}
$$

Again, a Green's function is introduced

$$
\begin{gathered}
{\left[E+\frac{\hbar^{2}}{2 \mu} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}-V_{1}(r)\right] \mathscr{G}\left(r, r^{\prime}\right)=\delta\left(r-r^{\prime}\right)} \\
\mathscr{G}\left(r, r^{\prime}\right)=-\pi \overline{\mathrm{u}}_{1}^{(\mathrm{reg})}\left(r_{<}\right) \overline{\mathrm{u}}_{1}^{(\mathrm{irr})}\left(r_{>}\right) \\
\overline{\mathrm{u}}_{1}^{(\mathrm{reg})}(r) \stackrel{r \rightarrow \infty}{\sim} \sqrt{\frac{2 \mu}{\pi \hbar^{2} k}} \sin \left(k r+\delta_{\mathrm{bg}}\right) \\
\overline{\mathrm{u}}_{1}^{\text {(irr) }}(r) \stackrel{r \rightarrow \infty}{\sim} \sqrt{\frac{2 \mu}{\pi \hbar^{2} k}} \cos \left(k r+\delta_{\mathrm{bg}}\right) .
\end{gathered}
$$

Feshbach resonances

From the Green's function and the first equation
$\left[E+\frac{\hbar^{2}}{2 \mu} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}-V_{1}(r)\right] \mathscr{G}\left(r, r^{\prime}\right)=\delta\left(r-r^{\prime}\right) \quad\left[E+\frac{\hbar^{2}}{2 \mu} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}-V_{1}(r)\right] u_{1}(r)=A V_{1,2} u_{0}(r)$
we obtain $\quad \Psi=\Psi^{\text {hom }}+\hat{G} \hat{V} \Psi$

$$
\begin{aligned}
& u_{1}(r)=\overline{\bar{u}}_{1}^{(\mathrm{reg})}(r)+A \int_{0}^{\infty} \mathscr{G}\left(r, r^{\prime}\right) V_{1,2}\left(r^{\prime}\right) u_{0}(\prime) \mathrm{d} r^{\prime} \\
& \left.\quad r \rightarrow \infty \overline{\mathrm{u}}_{1}^{(\mathrm{reg})}(r)-\pi A\left\langle\overline{\mathrm{u}}_{1}^{(\mathrm{reg})}\right| V_{1,2} \mid u_{0}\right) \overline{\mathrm{u}}_{1}^{(\mathrm{irrr})}(r) . \\
& \qquad \mathscr{G}\left(r, r^{\prime}\right)=-\pi \overline{\mathrm{u}}_{1}^{(\mathrm{reg})}\left(r_{<}\right) \overline{\mathrm{u}}_{1}^{(\mathrm{irr})}\left(r_{>}\right)
\end{aligned}
$$

introducing $\delta_{\text {res }}$ as $-\pi A\left(\bar{u}_{1}^{(\mathrm{reg})}\left|V_{1,2}\right| u_{0}\right\rangle=\tan \delta_{\text {res }}$

$$
\begin{aligned}
u_{1}(r) & \stackrel{r \rightarrow \infty}{\sim} \sqrt{\frac{2 \mu}{\pi \hbar^{2} k}}\left[\sin \left(k r+\delta_{\mathrm{bg}}\right)+\tan \delta_{\mathrm{res}} \cos \left(k r+\delta_{\mathrm{bg}}\right)\right] \\
& =\frac{1}{\cos \left(\delta_{\mathrm{res}}\right)} \sqrt{\frac{2 \mu}{\pi \hbar^{2} k}} \sin \left(k r+\delta_{\mathrm{bg}}+\delta_{\mathrm{res}}\right) .
\end{aligned}
$$

Feshbach resonances

We had $\quad A\left(E-E_{0}\right)=\left\langle u_{0}\right| V_{2,1}\left|u_{1}\right\rangle$

$$
\begin{aligned}
& u_{1}(r)=\overline{\mathrm{u}}_{1}^{(\mathrm{reg})}(r)+A \int_{0}^{\infty} \mathscr{G}\left(r, r^{\prime}\right) V_{1,2}\left(r^{\prime}\right) u_{0}(\prime) \mathrm{d} r^{\prime} \\
& r \rightarrow \infty \\
&{ }_{\sim}^{(\mathrm{u}}{ }_{1}^{(\mathrm{reg})}(r)-\pi A\left\langle\overline{\mathrm{u}}_{1}^{(\mathrm{reg})}\right| V_{1,2}\left|u_{0}\right\rangle \overline{\mathrm{u}}_{1}^{(\mathrm{irr})}(r)
\end{aligned}
$$

we obtain

$$
\begin{aligned}
A\left(E-E_{0}\right) & =\left\langle u_{0}\right| V_{2,1}\left|\overline{\mathrm{u}}_{1}^{(\mathrm{reg})}\right\rangle+A\left\langle u_{0}\right| V_{2,1} \hat{G} V_{1,2}\left|u_{0}\right\rangle \\
\Longrightarrow A & =\frac{\left\langle u_{0}\right| V_{2,1}\left|\overline{\mathrm{u}}_{1}^{(\mathrm{reg})}\right\rangle}{E-E_{0}-\left\langle u_{0}\right| V_{2,1} \hat{G} V_{1,2}\left|u_{0}\right\rangle} .
\end{aligned}
$$

For $\delta_{\text {res }}$ we had $\quad-\pi A\left\langle\overline{\mathrm{u}}_{1}^{(\mathrm{reg})}\right| V_{1,2}\left|u_{0}\right\rangle=\tan \delta_{\text {res }}$

$$
\tan \delta_{\mathrm{res}}=-\frac{\left.\pi\left|\left\langle u_{0}\right| V_{2,1}\right| \overline{\mathrm{u}}_{1}^{(\mathrm{reg})}\right\rangle\left.\right|^{2}}{E-E_{0}-\left\langle u_{0}\right| V_{2,1} \hat{G} V_{1,2}\left|u_{0}\right\rangle}
$$

Feshbach resonances

We had

$$
\tan \delta_{\mathrm{res}}=-\frac{\pi \mid\left\langle u_{0}\right| V_{2,1} \mid \overline{\left.\mathrm{u}_{1}^{(\mathrm{reg})}\right\rangle\left.\right|^{2}}}{E-E_{0}-\left\langle u_{0}\right| V_{2,1} \hat{G} V_{1,2}\left|u_{0}\right\rangle}
$$

Introducing notations:

$$
\begin{gathered}
E_{\mathrm{R}}=E_{0}+\left\langle u_{0}\right| V_{2,1} \hat{G} V_{1,2}\left|u_{0}\right\rangle \\
\left.\Gamma=2 \pi\left|\left\langle u_{0}\right| V_{2,1}\right| \overline{\mathrm{u}}_{1}^{-\mathrm{reg})}\right\rangle\left.\right|^{2}
\end{gathered}
$$

position of the resonance
width of the resonance

The tangent can be written as $\quad \tan \delta_{\text {res }}=-\frac{\Gamma / 2}{E-E_{\mathrm{R}}}$
It is useful to compare Γ with the Fermi golden rule

$$
\left.P_{\mathrm{in} \rightarrow \mathrm{fin}}=\frac{2 \pi}{\hbar}\left|\left\langle\Psi_{\mathrm{in}}\right| \hat{W}\right| \Psi_{\mathrm{fin}}\right\rangle\left.\right|^{2} \rho_{\mathrm{fin}}(E)
$$

Landau-Zener model

Non-adiabatic coupling

The time dependent Schrödinger equation for a diatomic molecule

$$
i \hbar \frac{\partial \Psi}{\partial t}=H \Psi=\left[\sum_{\alpha} T_{\alpha}+H_{\mathrm{el}}\right] \Psi
$$

Adiabatic electronic functions

$$
H_{\mathrm{el}}(\boldsymbol{r}, \boldsymbol{R}) \varphi_{l}(\boldsymbol{r}, \boldsymbol{R})=E_{l}(\boldsymbol{R}) \varphi_{l}(\boldsymbol{r}, \boldsymbol{R})
$$

and adiabatic basis set

$$
\Phi_{l n}(r, R, t)=\varphi_{l}(r, R) \chi_{l n}(R) \exp \left(-\frac{i}{\hbar} E_{l n} t\right)
$$

The Schrödinger equation takes the form

$$
\left[\sum_{\alpha} T_{x}+E_{l}(R)\right] \chi_{\ln }(\boldsymbol{R})=E_{\ln } \chi_{\ln }(\boldsymbol{R})
$$

For a truncated adiabatic basis set, the system of equations could be solved numerically.

Semi-classical treatment

For nuclei, we introduce a trajectory $\boldsymbol{R}=\boldsymbol{R}(t)$

$$
H_{\mathrm{cl}}(\boldsymbol{r}, \boldsymbol{R}) \Psi(\boldsymbol{r}, t)=i \hbar \frac{\partial \Psi(r, t)}{\partial t}
$$

$H_{\mathrm{el}}(\boldsymbol{r}, \boldsymbol{R})$ depends on time t because of $\boldsymbol{R}(t)$.
The solution Ψ is now represented as

$$
\Psi=\sum_{I} a_{l}(t) \varphi_{l}(\boldsymbol{r}, \boldsymbol{R}(t)) \exp \left[-\frac{i}{\hbar} \int^{t} E_{l}(\boldsymbol{R}) d t\right]
$$

Inserting into the Schrödinger equation

$$
i \hbar \dot{a}_{l}=\sum_{l^{\prime}} a_{l^{\prime}}\left\langle\varphi_{l^{*}}\left(-i \hbar \frac{\partial}{\partial t}\right) \varphi_{l^{\prime}}\right\rangle \exp \left[-\frac{i}{\hbar} \int^{t}\left(E_{l^{\prime}}-E_{l}\right) d t\right]
$$

Semi－classical treatment

Comparing with the formula for transition amplitudes in the time－ dependent perturbation theory

$$
i \hbar \dot{a}_{l}=\sum_{l^{\prime}} a_{l^{\prime}}\left\langle\varphi_{l^{*}}\left(-i \hbar \frac{\partial}{\partial t}\right) \varphi_{l^{\prime}}\right\rangle \exp \left[-\frac{i}{\hbar} \int^{t}\left(E_{l^{\prime}}-E_{l}\right) d t\right]
$$

We conclude that

$$
W=-i \hbar \frac{\partial}{\partial t}
$$

$$
a_{k n}^{(1)}=-\frac{\tilde{i}}{\hbar} \int W_{k n} e^{i \omega_{k n} t} d t
$$

$$
\omega_{m k}=\frac{E_{m}^{(0)}-E_{k}^{(0)}}{\hbar}
$$

$$
W_{l l^{\prime}}=\left(-i \hbar \frac{\partial}{\partial t}\right)_{l l^{\prime}}=-i ⿱ 亠 䒑 \cdot\left\langle\varphi \varphi_{l}^{*} \frac{\partial \varphi_{l^{\prime}}}{\partial R}\right\rangle
$$

Let us call $\left|\left\langle\varphi_{l}^{*} \frac{\partial \varphi_{l}}{\partial \boldsymbol{R}}\right\rangle\right\rangle^{-\mathbf{1}}$ as δR（characteristic length）$\quad W_{l l} \approx \dot{\sim} v / \delta R$ ．
The applicability condition of the perturbation approach

$$
\left|W_{l l^{\prime}}\right| \ll\left|E_{l}-E_{l^{\prime}}\right|=\Delta E_{l l^{\prime}} \quad \text { or } \quad \Delta E_{l l^{\prime}} \cdot \delta R / \hbar v \gg 1
$$

Two-state approximation

Adiabatic functions φ_{1} and φ_{2}.
They correspond to solid potential curves.

In the basis of φ_{1} and φ_{2}

Diabatic basis

$$
H_{\mathrm{el}}(p)=\left(\begin{array}{cc}
E_{1}(R) & 0 \\
0 & E_{2}(R)
\end{array}\right)
$$

Another pair φ_{1}^{0} and φ_{2}^{0} of electronic functions is introduced as a linear combination:

$$
\begin{aligned}
& \varphi_{1}=\varphi_{1}^{0} \cos \chi+\varphi_{2}^{0} \sin \chi \\
& \varphi_{2}=-\varphi_{1}^{0} \sin \chi+\varphi_{2}^{0} \cos \chi
\end{aligned}
$$

In the basis of φ_{1}^{0} and φ_{2}^{0}

$$
H_{\mathrm{cl}}\left(\varphi^{0}\right)=\left(\begin{array}{l}
H_{11} H_{12} \\
H_{21}
\end{array} H_{22}\right)
$$

H_{12} and H_{21} as well as φ_{1}^{0} and φ_{2}^{0} depend weakly on R.

Two-state approximation

$$
H_{\mathrm{el}}(\varphi)=\left(\begin{array}{cc}
E_{1}(R) & 0 \\
0 & E_{2}(R)
\end{array}\right) \quad H_{\mathrm{el}}\left(\varphi^{0}\right)=\left(\begin{array}{ll}
H_{11} & H_{12} \\
H_{21} & H_{22}
\end{array}\right)
$$

We want that $\varphi_{1,2}=\varphi_{1,2}^{0}$ far from the region of the strong coupling

$$
F_{12}(R) /\left[H_{11}(R)-H_{22}(R)\right] \rightarrow 0
$$

We use approximation

$$
\begin{aligned}
H_{12}(R) & =H_{12}\left(R_{p}\right)+H_{12}^{\prime}\left(R_{p}\right)\left(R-R_{p}\right)+\cdots \\
H_{11}-H_{22} & =\Delta H(R)=\Delta H\left(R_{p}\right)+\Delta H^{\prime}\left(R_{p}\right)\left(R-R_{p}\right)+\cdots
\end{aligned}
$$

where R_{p} is defined as

$$
\Delta H\left(R_{p}\right)=0
$$

Two-state approximation

$$
x=B=R_{p}
$$

$$
\left.\begin{array}{c}
H_{e l}(\varphi)=\left(\begin{array}{ll}
H_{11} & H_{12} \\
H_{21} & H_{22}
\end{array}\right) \approx\left(\begin{array}{cc}
E_{0}+k_{1} x & a \\
a & E_{0}+k_{2} x
\end{array}\right)= \\
\left(E_{0}+\frac{\left(k_{1}+k_{2}\right)}{2} x+\frac{\left(k_{1}-k_{2}\right)}{2} x\right.
\end{array} \begin{array}{cc}
a & E_{0}+\frac{\left(k_{1}+k_{2}\right)}{2} x-\frac{\left(k_{1}-k_{2}\right)}{2} x
\end{array}\right)=
$$

$$
E_{0}=H_{11}\left(R_{p}\right)=H_{22}\left(R_{p}\right), a=H_{12}\left(R_{p}\right) \text { and } \Delta F=-\left.\frac{\partial}{\partial R}\left(H_{11}-H_{22}\right)\right|_{R=R_{p}}
$$

Eigenvalues are $E_{1,2}=E_{0}+F x \mp \frac{1}{2} \sqrt{(\Delta F x)^{2}+4 a^{2}} \quad \chi=\frac{\mathbf{1}}{2} \operatorname{arctg} \frac{2 a}{\Delta F \boldsymbol{x}}$ $\varphi_{1,2}=\varphi_{1,2}^{0}$ far from the region of the strong coupling

$$
\varphi_{1}=\quad \varphi_{1}^{0} \cos \chi+\varphi_{2}^{0} \sin \chi
$$

$$
\varphi_{2}=-\varphi_{1}^{0} \sin \chi+\varphi_{2}^{0} \cos \chi
$$

Non-adiabatic functions

Two-component wave function $\Psi(t)$ is

$$
\begin{aligned}
\Psi(t)=a_{1}(t) \varphi_{1} \exp & {\left[-\frac{i}{\hbar} \int^{t} E_{1} d t\right]+a_{2}(t) \varphi_{2} \exp \left[-\frac{i}{\hbar} \int^{t} E_{2} d t\right] } \\
\Psi(t)=b_{1}(t) \varphi_{1}^{0} \exp & {\left[-\frac{i}{\hbar} \int^{t} H_{11} d t\right]+b_{2}(t) \varphi_{2}^{0} \exp \left[-\frac{i}{b} \int^{t} H_{22} d t\right] } \\
i \dot{a}_{1} & =i \dot{\chi} \exp \left[-\frac{i}{\hbar} \int^{t}\left(E_{2}-E_{1}\right) d t\right] a_{2} \\
i \dot{a}_{2} & =-i \dot{\chi} \exp \left[\frac{i}{\hbar} \int^{t}\left(E_{2}-E_{1}\right) d t\right] a_{1} \\
\dot{b} i \dot{b}_{1} & =a \exp \left[-\frac{i}{b} \int^{t}\left(H_{22}-H_{11}\right) d t\right] b_{1} \\
\text { bi } \dot{b}_{2} & =a \exp \left[\frac{i}{\hbar} \int^{t}\left(H_{22}-H_{11}\right) d t\right] b_{1}
\end{aligned}
$$

In the region of interaction (R withing δR) we have either
(a) adiabatic non-crossing potentials E_{1} and E_{2} plus non-adiabatic coupling
(b) crossing zero-order potentials H_{11} and H_{22} plus adiabatic coupling

Transition probability

We assume a to be small and start with $t=-\infty$ and R far from R_{p} and end up with $t=\infty$ and R again far from R_{p}.

$$
\begin{aligned}
& \text { bi } \dot{b}_{1}=a \exp \left[-\frac{i}{\hbar} f\left(H_{22}-H_{11}\right) d t\right] b_{1} \\
& \dot{b} i \dot{b}_{2}=a \exp \left[\frac{i}{\hbar} \int\left(H_{22}-H_{11}\right) d t\right] b_{1}
\end{aligned}
$$

Initially, the system is in state $\varphi_{1}^{0} \quad b_{1}(-\infty)=1, b_{2}(-\infty)=0$
At the end $\left|b_{2}(+\infty)\right|^{2}$ give the probability $P^{0}{ }_{12}$ of transition from state φ_{1}^{0} to φ_{1}^{0}.

$$
b_{2}(+\infty)=\int_{-\infty}^{\infty} \frac{a}{i \hbar} \exp \left[-\frac{i \Delta F}{2 \hbar} v t^{2}\right] d t=\frac{a}{\hbar i}\left[\pi /-\frac{i \Delta F_{v}}{2 \hbar}\right]^{1 / 2}
$$

Therefore, $\quad P_{12}^{0}=2 \pi a^{2} / \Delta F$ 方 v, if $P_{12}^{0} \ll 1$

Landau-Zener probability

When a is large the treatment is not good, $P^{0}{ }_{12}$ could be become comparable or larger than 1.

$$
\begin{aligned}
& i \dot{a}_{1}=i \dot{\chi} \exp \left[-\frac{i}{j} \int^{t}\left(E_{2}-E_{1}\right) d t\right] a_{2} \\
& i \dot{a}_{2}=-i \dot{\chi} \exp \left[\frac{i}{\hbar} \int^{t}\left(E_{2}-E_{1}\right) d t\right] a_{1}
\end{aligned}
$$

Solving the system of equations, one obtains $\quad P_{12}=\exp \left[-\frac{2 \pi a^{2}}{\Delta F \hbar v}\right]=1-P_{12}^{0}$ In atomic collisions nuclei go through the coupling region twice. Then the total probability for transition from 1 to 2 would be

$$
P=2 P_{12}\left(1-P_{12}\right)=2\left(1-P_{12}^{0}\right) P_{12}^{0}
$$

$$
P=2 \exp \left(-\frac{2 \pi a^{2}}{\Delta F \hbar v}\right)\left[1-\exp \left(-\frac{2 \pi a^{2}}{\Delta F \hbar v}\right)\right]
$$

Few-body bound and

 scattering states at low energies (near dissociation)
3-body collisions

* Quantum-mechanical description of three interacting particles
* Nuclear physics
* Chemical reactions $\mathrm{A}+\mathrm{B}+\mathrm{C} \rightarrow \mathrm{AB}+\mathrm{C}$ at low energies
* Many experiments observing three-body (and few-boby) quantum effects (Efimov states)
* Symmetry of particles should be accounted for if only a few quantum states are populated.

Hyper-spherical coordinates

Three inter-particle distances are represented by two hyperangles and the hyper-radius.

Changing hyperangles

Changing hyper-radius

Jacobi coordinates

* Three different arrangements: three sets of coordinates

Arrangement j

Arrangement i

Space-fixed "SF"

Mass-weighted Jacobi coordinates

$$
\vec{R}_{C M}=\vec{R}_{C M, 0} \quad \vec{r}^{k}=d_{k}^{-1} \vec{r}_{0}^{k} \quad \vec{R}^{k}=d_{k} \vec{R}_{0}^{k}
$$

Space-fixed "SF"

Hyperspherical coordinates

$$
\vec{R}_{C M}=\vec{R}_{C M, 0} \quad \vec{r}^{k}=d_{k}^{-1} \vec{r}_{0}^{k} \quad \vec{R}^{k}=d_{k} \vec{R}_{0}^{k}
$$

$$
\rho^{2}=\left(r_{X}^{k}\right)^{2}+\left(r_{Y}^{k}\right)^{2}+\left(r_{Z}^{k}\right)^{2}+\left(R_{X}^{k}\right)^{2}+\left(R_{Y}^{k}\right)^{2}+\left(R_{Z}^{k}\right)^{2}
$$

$$
\begin{aligned}
& r_{1}(\rho, \theta, \phi)=\frac{d_{1} \rho}{\sqrt{2}} \sqrt{1+\sin \theta \sin \left(\phi+\epsilon_{1}\right)} \\
& r_{2}(\rho, \theta, \phi)=\frac{d_{2} \rho}{\sqrt{2}} \sqrt{1+\sin \theta \sin \left(\phi+\epsilon_{2}\right)} \\
& r_{3}(\rho, \theta, \phi)=\frac{d_{3} \rho}{\sqrt{2}} \sqrt{1+\sin \theta \sin \left(\phi+\epsilon_{3}\right)}
\end{aligned}
$$

$$
0 \leq \rho<\infty, \quad 0 \leq \theta \leq \frac{\pi}{2} \quad \text { et } \quad 0 \leq \phi<2 \pi
$$

$$
\begin{aligned}
\epsilon_{3} & =2 \arctan \left(\frac{m_{2}}{\mu}\right) \\
\epsilon_{2} & =-2 \arctan \left(\frac{m_{3}}{\mu}\right)
\end{aligned}
$$

Symmetry

* If two or three particles are identical, one has to account for bosonic or fermionic nature of the particles.
* Hyperspherical coordinates are well adapted for it.

$C_{3 v} / D_{3} / S_{3}$ symmetry group

* Group of permutation of three identical particles, S_{3} :

$$
S_{3}=\{\mathrm{E},(12),(23),(13),(123),(132)\}
$$

* S_{3} is isomorphic to the group of rotations of a triangular prism

$$
D_{3}=\left\{\mathrm{E}, C_{2 a}, C_{2 b}, C_{2 c}, C_{3 d}, C_{3 d}^{2}\right\}
$$

* and to the molecular point group $C_{3 v}$ of

$$
* C_{3 v}=\left\{E, C_{3}, C_{3}^{2}, 3 \sigma_{v}\right\}
$$

Types of wave functions Irreducible representations

* A_{1} is a totally symmetric wave function
* A_{2} changes sign under any binary permutation
* E is a 2-dimensional irrep.

$$
\begin{aligned}
& \text { (123) } E_{ \pm}^{\prime}=\mathrm{e}^{\mathrm{i} \omega} E_{ \pm}^{\prime} \\
& \text { (12) } E_{ \pm}^{\prime}=E_{\mp}^{\prime}, \quad \omega=2 \pi / 3
\end{aligned}
$$

$C_{3 v}$		E	$2 C_{3}$	$3 \sigma_{v}$
	D_{3}	E	$2 C_{3}$	$3 U_{2}$
$A_{1} ; z$	A_{i}	1	1	1
A_{2}	$A_{2} ; z$	1	1	-1
$E ; x, y$	$E ; x, y$	2	-1	0

A_{1}, A_{2}, and E states

* A_{1} is totally symmetric wave function.
* A_{2} changes sign under any binary permutation.
* E is a 2-dimensional irrep.

Schrödinger equation in hyperspherical coordinates

* Hamiltonian

$$
H=T_{\rho}+H_{\mathrm{ad}}
$$

$$
\begin{aligned}
T_{\rho}=- & \frac{1}{2 \mu} \frac{\partial^{2}}{\partial \rho^{2}} \quad H_{\mathrm{ad}}=\frac{\Lambda^{2}+15 / 4}{2 \mu \rho^{2}}+V \\
\Lambda^{2}= & -\frac{4}{\sin (2 \theta)} \frac{\partial}{\partial \theta} \sin (2 \theta) \frac{\partial}{\partial \theta}-\frac{4}{\sin ^{2}(\theta)} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{2 J_{X}^{2}}{1-\sin \theta} \\
& +\frac{2 J_{Z}^{2}}{1+\sin \theta}+\frac{J_{Y}^{2}}{\sin ^{2} \theta}+\frac{4 i \cos \theta J_{Y}}{\sin ^{2} \theta} \frac{\partial}{\partial \phi}
\end{aligned}
$$

How to solve it

* Adiabatic separation of the hyper-radius and hyperangles

$$
\begin{gathered}
H=T_{\rho}+H_{\mathrm{ad}} \\
H_{\mathrm{ad}}^{\rho=\rho_{j}} \varphi_{a, j}(\omega)=U_{a}\left(\rho_{j}\right) \varphi_{a, j}(\omega) \\
H_{\mathrm{ad}}=\frac{\Lambda^{2}+15 / 4}{2 \mu \rho^{2}}+V
\end{gathered}
$$

* An idea similar to the Born-Oppenheimer separation of electronic and nuclear coordinates

$$
\left[\hat{T}(\rho)+U_{a}(\rho)\right] \psi_{a, n}(\rho)=E_{n}^{v i b} \psi_{a, n}(\rho)
$$

H_{3}

$\mathrm{H}_{3}{ }^{-}$

Hyperspherical adiabatic approximation is inaccurate

* Non-adiabatic couplings between $U_{a}\left(\varphi_{a}\right)$ should be accounted for.
* The vibrational wave function $\psi(\rho, \theta, \phi)$ as the expansion

$$
\psi(\rho, \theta, \phi)=\sum_{k} y_{k}(\rho, \theta, \phi) c_{k}
$$

* in the basis of non-orthogonal basis functions

$$
\begin{aligned}
y_{k}(\rho, \theta, \phi) & =\pi_{j}(\rho) \varphi_{a, j}(\theta, \phi) \\
k & \equiv\{a, j\}
\end{aligned}
$$

* where $\pi_{\mathrm{j}}(\rho)$ are some convenient basis functions and $\varphi_{\mathrm{a}, \mathrm{j}}(\theta, \phi)$ are hyperspherical adiabatic states calculated at fixed hyper-radii ρ_{j}, with the corresponding eigenvalue $U_{n}\left(\rho_{\mathrm{i}}\right) ; V(\rho, \theta, \phi)$ is the molecular (three-body) potential. $\sum_{i^{\prime}, a^{\prime}}\left[\left\langle\pi_{i}\right| \hat{T}(\rho)\left|\pi_{i^{\prime}}\right\rangle \mathcal{O}_{i a, i^{\prime} a^{\prime}}+\left\langle\pi_{i}\right| U_{a}(\rho)\left|\pi_{i^{\prime}}\right\rangle \delta_{a a^{\prime}}\right] c_{i^{\prime} a^{\prime}}$

$$
=E \sum_{i^{\prime}, a^{\prime}}\left\langle\pi_{i} \mid \pi_{i^{\prime}}\right\rangle \mathcal{O}_{i a, i^{\prime} a^{\prime}} c_{i^{\prime} a^{\prime}},
$$

$$
\mathcal{O}_{i a, i^{\prime} a^{\prime}}=\left\langle\varphi_{a}\left(\rho_{i} ; \theta, \phi\right) \mid \varphi_{a^{\prime}}\left(\rho_{i^{\prime}} ; \theta, \phi\right)\right\rangle
$$

$\mathrm{H}_{2} \mathrm{D}^{-}$and $\mathrm{D}_{2} \mathrm{H}^{-}$

$\mathbf{H}+\mathbf{H}+\mathbf{H} \rightarrow \mathbf{H}_{2}+\mathbf{H}$ recombination

Diabatic 2-channel 3-body potential for H_{3}.

$$
\begin{gathered}
V_{H_{3}}(\rho, \theta, \phi)=\left(\begin{array}{cc}
A & C e^{i f} \\
C e^{-i f} & A
\end{array}\right) \\
A(\rho, \theta, \phi)=\left[V_{1}(\rho, \theta, \phi)+V_{2}(\rho, \theta, \phi)\right] / 2 \\
C(\rho, \theta, \phi)=\left[V_{1}(\rho, \theta, \phi)-V_{2}(\rho, \theta, \phi)\right] / 2
\end{gathered}
$$

Obtained from ab initio calculation of $1^{2} \mathrm{~A}^{\prime}\left(V_{1}\right)$ and $2^{2} \mathrm{~A}^{\prime}\left(V_{2}\right)$ electronic states of H_{3}.

$$
V(E h)
$$

Hyperspherical adiabatic energies obtained for the uncoupled and coupled H_{3} two-channel potential. Crossings in the above figure turn into avoided crossings below.

H_{3} resonances

$\left\{v_{1}, v_{2}^{l_{2}}\right\}$	$E_{r}, \tau ;$ this work	$E_{r}, \tau ;$ Ref. [8]	$E_{r}, \tau ;$ Ref. [9]
$\left\{0,0^{0}\right\}$	$-3.85,13$	\ldots	$-3.79, \sim 3$
$\left\{1,0^{0}\right\}$	$-3.11,13$	\ldots	$-3.05, \sim 3$
$\left\{2,0^{0}\right\}$	$-2.4,14$	\ldots	$-2.37, \ldots$
$\left\{3,0^{0}\right\}$	$-1.8,14$	\ldots	$-1.75, \ldots$
$\left\{4,0^{0}\right\}$	$-1.2,16$	$-1.24, \sim 15$	$-1.19, \ldots$
$\left\{5,0^{0}\right\}$	$-0.7,18$	$-0.47, \sim 17$	$-0.70, \ldots$
$\left\{0,2^{0}\right\}$	$-0.2,130$	\ldots	$-0.26, \sim 4.5$

On Efimov states (1970)

ЯДЕРНАЯ ФИЗИКА JOURNAL OF NUCLEAR PHYSICS т. 12, вып. 5, 1970
$\tan \delta_{l} \stackrel{k \rightarrow 0}{\sim}-\frac{\pi}{\Gamma\left(l+\frac{1}{2}\right) \Gamma\left(l+\frac{3}{2}\right)}\left(\frac{a_{l} k}{2}\right)^{2 l+1}$
СЛАБОСВЯЗАННЬIE СОСТОЯНИЯ ТРЕХ РЕЗОНАНСНО ВЗАИМОДЕИСТВУЮЩИХ ЧАСТИЦ
в. и. ЕФимов

$$
k / \tan \left(\delta_{0}\right)=-1 / a+r_{0} k^{2} / 2
$$

* r_{0} - effective range of 2-body potential, a - 2-body scattering length. If $r_{0} « a$, the wave function in the region $r_{0} « r « a$ does not depend on r_{0} or a.
* Effective 3-body potential in the region is $\sim 1 / r^{2}$. Thus, 3body bound states may exist even if there is no 2-body bound states. When $a \rightarrow+\infty$, the number of 3-body bound states $\rightarrow \infty$

On Efimov states (1970)

When $a=\infty$, the hyper-radial equation is

$$
\left(-\frac{d^{2}}{d R^{2}}-\frac{1}{R} \frac{d}{d R}+\frac{s_{i}^{2}}{R^{2}}\right) F_{s_{i}}(R)=E F_{s_{i}}(K)
$$

s_{i} is a transcendental constant. The lowest $s_{\text {. is }} s_{\wedge}=1.00624 i$.
Spectrum for s_{0} is $\quad E_{N}=-\frac{1}{R_{0}^{2}} e^{-2 \pi N_{/}\left|\infty_{0}\right| \exp } \frac{2}{\left|s_{0}\right|}\left[\operatorname{arcctg} \frac{\Lambda R_{0}}{\left|s_{0}\right|}-\Delta\right]$

When $a \neq \infty$, the spectrum:
g is the interaction
parameter, such that at
$g=1, a=\infty$
SOVIET JOURNAL OF NUCLEAR PHYSICS VOLUME 12, NUMBER 5589

Observation of Efimov states

No direct observation. Kramer et al. see the increase of the 3-body recombination rate very close to 3-body dissociation limit as predicted by theory (Esry, Greene). This is an indirect evidence for Efimov states.

Observation of Efimov states:

More than three particles

Jacobi coordinates for four particles \rightarrow hyperspherical coordinates

Collisions between Tunable Halo Dimers: Exploring an Elementary Four-Body Process

 with Identical BosonsF. Ferlaino, ${ }^{1}$ S. Knoop, ${ }^{1}$ M. Mark, ${ }^{1}$ M. Berninger, ${ }^{1}$ H. Schöbel, ${ }^{1}$ H.-C. Nägerl, ${ }^{1}$ and R. Grimm ${ }^{1,2}$
${ }^{1}$ Institut für Experimentalphysik and Zentrum für Quantenphysik, Universität Innsbruck, 6020 Innsbruck, Austria ${ }^{2}$ Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria (Received 28 March 2008; published 9 July 2008)

We study inelastic collisions in a pure, trapped sample of Feshbach molecules made of bosonic cesium atoms in the quantum halo regime. We measure the relaxation rate coefficient for decay to lower-lying molecular states and study the dependence on scattering length and temperature. We identify a pronounced loss minimum with varying scattering length along with a further suppression of loss with decreasing temperature. Our observations provide insight into the physics of a few-body quantum system that consists of four identical bosons at large values of the two-body scattering length.

Another example

Complex absorbing

 potential is placed at large hyper-radius to absorb the dissociating outgoing wave flux.

$$
U_{a}(\rho) \rightarrow U_{a}(\rho)-i A\left(\rho-\rho_{l}\right)^{2}
$$

