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Outline of the Talk…
• Introduction to Elliptic Curves

• Elliptic Curve Cryptosystems (ECC)

• Implementation of ECC in Binary Fields



Introduction to Elliptic Curves



Lets start with a puzzle…
• What is the number of balls that may be 

piled as a square pyramid and also 
rearranged into a square array?

• Soln: Let x be the height of the pyramid…
Thus, 

We also want this to be a square:
Hence, 
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Graphical Representation

X axis

Y axis

Curves of this nature 
are called ELLIPTIC 

CURVES



Method of Diophantus
• Uses a set of known points to produce new points
• (0,0) and (1,1) are two trivial solutions
• Equation of line through these points is y=x.
• Intersecting with the curve and rearranging terms:

• We know that 1 + 0 + x = 3/2 => 
x = ½ and y = ½

• Using symmetry of the curve we also have (1/2,-1/2) 
as another solution    
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Diophantus’ Method
• Consider the line through (1/2,-1/2) and (1,1) => 

y=3x-2
• Intersecting with the curve we have:

• Thus ½ + 1 + x = 51/2 or x = 24 and y=70

• Thus if we have 4900 balls we may arrange 
them in either way
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Elliptic curves in Cryptography

• Elliptic Curve (EC) systems as applied to 
cryptography were first proposed in 1985 
independently by Neal Koblitz and Victor 
Miller.

• The discrete logarithm problem on elliptic 
curve groups is believed to be more 
difficult than the corresponding problem in 
(the multiplicative group of nonzero 
elements of) the underlying finite field. 



Discrete Logarithms 
in Finite Fields

Alice Bob

Pick secret, random 
X from F

Pick secret, random 
Y from F

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p

Compute k=(gx)y=gxy mod p

Eve has to compute gxy from gx and gy without knowing x and y…
She faces the Discrete Logarithm Problem in finite fields 

F={1,2,3,…,p-1}



Elliptic Curve on a finite set of 
Integers

• Consider y2 = x3 + 2x + 3 (mod 5)

x = 0 ⇒ y2 = 3 ⇒ no solution (mod 5)

x = 1 ⇒ y2 = 6 = 1 ⇒ y = 1,4 (mod 5)
x = 2 ⇒ y2 = 15 = 0 ⇒ y = 0 (mod 5)

x = 3 ⇒ y2 = 36 = 1 ⇒ y = 1,4 (mod 5)
x = 4 ⇒ y2 = 75 = 0 ⇒ y = 0 (mod 5)

• Then points on the elliptic curve are
(1,1) (1,4) (2,0) (3,1) (3,4) (4,0) 
and the point at infinity: ∞
Using the finite fields we can form an Elliptic Curve Group 

where we also have a DLP problem which is harder to solve…



Definition of Elliptic curves
• An elliptic curve over a field  K is a  nonsingular 

cubic curve in two variables, f(x,y) =0 with a  
rational point (which may be a point at infinity). 

• The field  K is usually taken to be the complex 
numbers, reals, rationals, algebraic extensions 
of rationals, p-adic numbers, or a finite field.

• Elliptic curves groups for cryptography are 
examined with the underlying fields of Fp (where 
p>3 is a prime) and F2

m (a binary representation 
with 2m elements). 



General form of a EC
• An elliptic curve is a plane curve defined by an 

equation of the form

baxxy ++= 32

Examples



Weierstrass Equation
• A two variable equation F(x,y)=0, forms a curve 

in the plane. We are seeking geometric 
arithmetic methods to find solutions

• Generalized Weierstrass Equation of elliptic 
curves:

2 2 2
1 3 2 4 6y a xy a y x a x a x a+ + = + + +

Here, A, B, x and y all belong to a field of say rational
numbers, complex numbers, finite fields (Fp) or 

Galois Fields (GF(2n)).



• If Characteristic field is not 2:

• If Characteristics of field is neither 2 nor 3:
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Points on the Elliptic Curve (EC)
• Elliptic Curve over field L

• It is useful to add the point at infinity
• The point is sitting at the top of the y-axis 

and any line is said to pass through the 
point when it is vertical

• It is both the top and at the bottom of the 
y-axis

2 3( ) { } {( , ) | ... ...}E L x y L L y x= ∞ ∪ ∈ × + = +



The Abelian Group

• P + Q = Q + P (commutativity)

• (P + Q) + R = P + (Q + R) (associativity)

• P + O = O + P = P (existence of an identity element) 

• there exists ( − P) such that − P + P = P + ( − P) 
= O (existence of inverses)

Given two points P,Q in E(Fp), there is a third 
point, denoted by P+Q on  E(Fp), and the 
following relations hold for all  P,Q,R in E(Fp)



Elliptic Curve Picture

• Consider elliptic curve
E: y2 = x3 - x + 1

• If P1 and P2 are on E, we 
can define 

P3 = P1 + P2
as shown in picture

• Addition is all we need

P1
P2

P3

x

y



Addition in Affine Co-ordinates
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Doubling of a point
• Let, P=Q

• What happens when P2=∞?
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Why do we need the reflection?

P2=O=∞

P1

y

P1=P1+ O=P1



Sum of two points
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Define for two points P (x1,y1) and     
Q (x2,y2) in the Elliptic curve
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P+P = 2P

Point at infinity   O

As a result of the above case P=O+P

O is called the additive identity of 
the elliptic curve group.

Hence all elliptic curves have an 
additive identity O. 



Projective Co-ordinates
• Two-dimensional projective space     over K

is given by the equivalence classes of triples 
(x,y,z) with x,y z in K and at least one of x, y, 
z nonzero.

• Two triples (x1,y1,z1) and (x2,y2,z2) are said to 
be equivalent if there exists a non-zero 
element λ in K, st:
– (x1,y1,z1) = (λx2, λy2, λz2)
– The equivalence class depends only the ratios 

and hence is denoted by (x:y:z)

2
KP



Projective Co-ordinates
• If z≠0, (x:y:z)=(x/z:y/z:1)
• What is z=0? We obtain the point at infinity.
• The two dimensional affine plane over K:
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There are advantages with projective co-ordinates 
from the implementation point of view



Singularity
• For an elliptic curve y2=f(x), define 

F(x,y)=y2-F(x). A singularity of the EC is a pt 
(x0,y0) such that:

0 0 0 0
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It is usual to assume the EC has no singular points



If Characteristics of 
field is not 3:

1. Hence condition 
for no singularity is 
4A3+27B2≠0

2. Generally, EC 
curves have no 
singularity
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Elliptic Curves in Characteristic 2

• Generalized Equation:

• If a1 is not 0, this reduces to the form:

• If a1 is 0, the reduced form is:

• Note that the form cannot be: 

2 3 2y xy x Ax B+ = + +

2 3 2
1 3 2 4 6y a xy a y x a x a x a+ + = + + +

2 3y Ay x Bx C+ = + +

2 3y x Ax B= + +



Outline of the Talk…
• Introduction to Elliptic Curves

• Elliptic Curve Cryptosystems

• Implementation of ECC in Binary Fields



Elliptic Curve Cryptosystems
(ECC)



Public-Key Cryptosystems

Secrecy: Only B can Decrypt 
the message

Authentication: Only A can 
generate the encrypted message



Public-Key Cryptography



Public-Key Cryptography



What Is Elliptic Curve 
Cryptography (ECC)?

• Elliptic curve cryptography [ECC] is a public-
key cryptosystem just like RSA, Rabin, and El 
Gamal.

• Every user has a public and a private key.
– Public key is used for encryption/signature 

verification.
– Private key is used for decryption/signature 

generation.
• Elliptic curves are used as an extension to other 

current cryptosystems.
– Elliptic Curve Diffie-Hellman Key Exchange
– Elliptic Curve Digital Signature Algorithm



Using Elliptic Curves In 
Cryptography

• The central part of any cryptosystem involving 
elliptic curves is the elliptic group.

• All public-key cryptosystems have some 
underlying mathematical operation.
– RSA has exponentiation (raising the message or 

ciphertext to the public or private values)
– ECC has point multiplication (repeated addition of two 

points).



Generic Procedures of ECC
• Both parties agree to some publicly-known data items

– The elliptic curve equation
• values of a and b
• prime, p

– The elliptic group computed from the elliptic curve equation
– A base point, B, taken from the elliptic group

• Similar to the generator used in current cryptosystems
• Each user generates their public/private key pair

– Private Key = an integer, x, selected from the interval [1, p-1]
– Public Key = product, Q, of private key and base point 

• (Q = x*B)



Example – Elliptic Curve 
Cryptosystem Analog to El Gamal

• Suppose Alice wants to send to Bob an 
encrypted message.
– Both agree on a base point, B.
– Alice and Bob create public/private keys.

• Alice
– Private Key = a
– Public Key = PA = a * B

• Bob
– Private Key = b
– Public Key = PB = b * B

– Alice takes plaintext message, M, and encodes it onto 
a point, PM, from the elliptic group



Example – Elliptic Curve 
Cryptosystem Analog to El Gamal
– Alice chooses another random integer, k from the 

interval [1, p-1]
– The ciphertext is a pair of points

• PC = [ (kB), (PM + kPB) ]

– To decrypt, Bob computes the product of the first 
point from PC and his private key, b

• b * (kB)
– Bob then takes this product and subtracts it from the 

second point from PC
• (PM + kPB) – [b(kB)] = PM + k(bB) – b(kB) = PM

– Bob then decodes PM to get the message, M.



Example – Compare to El Gamal

– The ciphertext is a pair of points 
• PC = [ (kB), (PM + kPB) ] 

– The ciphertext in El Gamal is also a pair.
• C = (gk mod p, mPB

k mod p)

--------------------------------------------------------------------------
– Bob then takes this product and subtracts it from the 

second point from PC
• (PM + kPB) – [b(kB)] = PM + k(bB) – b(kB) = PM

– In El Gamal, Bob takes the quotient of the second 
value and the first value raised to Bob’s private value

• m = mPB
k / (gk)b = mgk*b / gk*b = m



Diffie-Hellman (DH) Key Exchange



ECC Diffie-Hellman
• Public: Elliptic curve and point B=(x,y) on curve
• Secret: Alice’s a and Bob’s b

Alice, A Bob, B

a(x,y)

b(x,y)

• Alice computes a(b(x,y))
• Bob computes b(a(x,y))
• These are the same since ab = ba



Example – Elliptic Curve 
Diffie-Hellman Exchange

• Alice and Bob want to agree on a shared key.
– Alice and Bob compute their public and private keys. 

• Alice
» Private Key = a
» Public Key = PA = a * B

• Bob
» Private Key = b
» Public Key = PB = b * B

– Alice and Bob send each other their public keys.
– Both take the product of their private key and the other user’s 

public key.
• Alice KAB = a(bB)
• Bob KAB = b(aB)
• Shared Secret Key = KAB = abB



Why use ECC?

• How do we analyze Cryptosystems?
– How difficult is the underlying problem that it 

is based upon
• RSA – Integer Factorization
• DH – Discrete Logarithms
• ECC - Elliptic Curve Discrete Logarithm problem

– How do we measure difficulty?
• We examine the algorithms used to solve these 

problems



Security of ECC
• To protect a 128 bit 

AES key it would take 
a:
– RSA Key Size: 3072 

bits
– ECC Key Size: 256 

bits
• How do we 

strengthen RSA?
– Increase the key 

length
• Impractical?



Applications of ECC
• Many devices are small and have limited 

storage and computational power
• Where can we apply ECC?

– Wireless communication devices
– Smart cards
– Web servers that need to handle many encryption 

sessions
– Any application where security is needed but 

lacks the power, storage and computational 
power that is necessary for our current 
cryptosystems



Benefits of ECC

• Same benefits of the other cryptosystems: 
confidentiality, integrity, authentication and 
non-repudiation but…

• Shorter key lengths
– Encryption, Decryption and Signature 

Verification speed up
– Storage and bandwidth savings



Summary of ECC
• “Hard problem” analogous to discrete log

– Q=kP, where Q,P belong to a prime curve
given k,P “easy” to compute Q
given Q,P “hard” to find k

– known as the elliptic curve logarithm problem
• k must be large enough

• ECC security relies on elliptic curve 
logarithm problem
– compared to factoring, can use much smaller key sizes than with RSA 

etc
for similar security ECC offers significant

computational advantages



Outline of the Talk…
• Introduction to Elliptic Curves

• Elliptic Curve Cryptosystems

• Implementation of ECC in Binary Fields



Implementation of ECC in 
Binary Fields



Sub-Topics
1. Scalar Multiplication: LSB first vs MSB first
2. Montgomery Technique of Scalar Multiplication
3. Fast Scalar Multiplication without pre-

computation.
4. Lopez and Dahab Projective Transformation to 

Reduce Inverters
5. Mixed Coordinates
6. Parallelization Techniques
7. Half and Add Technique for Scalar 

Multiplication



ECC operations: Hierarchy

ECC

Point
multiplication:

kP

Group operation: 
point add/double

Finite field arithmetic: multiplication,
addition, subtraction, inversion, …

Parallelize 
the 
architectures

Level 0

Level 1

Level 2

Level 3



Scalar Multiplication: MSB first

• Require k=(km-1,km-2,…,k0)2, km=1
• Compute Q=kP

– Q=P
– For i=m-2 to 0

• Q=2Q
• If ki=1 then

– Q=Q+P
• End if

– End for
– Return Q

Sequential Algorithm 

Requires m point doublings and 
(m-1)/2 point additions on the 
average



Example

• Compute 7P:
– 7=(111)2

– 7P=2(2(P)+P)+P=> 2 iterations are required
– Principle: First double and then add 

(accumulate)
• Compute 6P:

– 6=(110)2

– 6P=2(2(P)+P)



Scalar Multiplication: LSB first

• Require k=(km-1,km-2,…,k0)2, km=1
• Compute Q=kP

– Q=0, R=P
– For i=0 to m-1

• If ki=1 then
– Q=Q+R

• End if
• R=2R

– End for
– Return Q

Can Parallelize…

What you are doubling and what 
you are accumulating are 
different…

On the average m/2 point 
Additions and m/2 point 
doublings



Example

• Compute 7P, 7=(111)2, Q=0, R=P
– Q=Q+R=0+P=P, R=2R=2P
– Q=P+2P=3P, R=4P
– Q=7P, R=8P

• Compute 6P, 6=(110)2, Q=0, R=P
– Q=0, R=2R=2P
– Q=0+2P=2P, R=4P
– Q=2P+4P=6P, R=8P



Compute 31P…

1. Q=2P
2. Q=3P
3. Q=6P
4. Q=7P
5. Q=14P
6. Q=15P
7. Q=30P
8. Q=31P

1. Q=P, R=2P
2. Q=3P, R=4P
3. Q=7P, R=8P
4. Q=15P, R=16P
5. Q=31P, R=32P

31=(11111)2
MSB First LSB First



Weierstrass Point Addition

• Let, P=(x1,y1) be a point on the curve. 
• -P=(x1,x1+y1)
• Let, R=P+Q=(x3,y3)

2 3 2 ,  ( , ) (2 ) (2 )m my xy x ax b x y GF GF+ = + + ∈ ×
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1. Point addition and doubling 
each require 1 inversion 
& 2 multiplications

2.  We neglect the costs of 
squaring and addition

3.  Montgomery noticed that the 
x-coordinate of 2P does not 
depend on the y-coordinate of 
P



Montgomery’s method to perform scalar 
multiplication

• Input: k>0, P
• Output: Q=kP
1. Set k<-(kl-1,…,k1,k0)2

2. Set P1=P, P2=2P
3. For i from l-2 to 0 

If ki=1, 
Set P1=P1+P2, P2=2P2

else 
Set P2=P2+P1, P1=2P1

4. Return Q=P1

Invariant Property:
P=P2-P1

Question: How to implement the 
Operation efficiently?



Example
Compute 7P
• 7=(111)2

• Initialization: 
P1=P; P2=2P

• Steps:
– P1=3P, P2=4P
– P1=7P, P2=8P

Compute 6P
• 7=(110)2

• Initialization: 
P1=P; P2=2P

• Steps:
– P1=3P, P2=4P
– P2=7P, P1=6P



Fast Multiplication on EC 
without pre-computation



Result-1
• Let P1 = (x1,y1) and P2=(x2,y2) be elliptic points. 

Then the x-coordinate of P1+P2, x3 can be 
computed as: 

2 2
1 2 2 1 1 2 2 1

3 2
1 2( )

x y x y x x x xx
x x

+ + +
=

+

Hint: Remember that the field has a characteristic 2 
and that P1 and P2 are points on the curve 



Result-2
• Let P=(x,y), P1 = (x1,y1) and P2=(x2,y2) be 

elliptic points. Let P=P2-P1 be an invariant.
Then the x-coordinate of P1+P2, x3 can be 
computed in terms of the x-coordinates
as: 

2

1 1
1 2
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x
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Result-3
Let P=(x,y), P1=(x1,y1) and P2=(x2,y2) be 

elliptic points. Assume that P2-P1=P and x is 
not 0. Then the y-coordinates of P1 can be 
expressed in terms of P, and the                     
x-coordinates of P1 and P2 as follows:

2
1 1 1 2( ){( )( ) }/y x x x x x x x y x y= + + + + + +



Final Algorithm
Input: k>0, P=(x,y)
Output: Q=kP
1. If k=0 or x=0 then output(0,0)
2. Set k = (kl-1,kl-2,…,k0)2
3. Set x1=x, x2=x2+b/x2

4. For i from l-2 to 0
1. Set t=x1/(x1+x2)
2. If ki=1, 

x1=x+t2+t, x2=x2
2+b/x2

2

else 
x1=x1

2+b/x1
2, x2=x+t2+t

5. r1=x1+x, r2=x2+x
6. y1=r1(r1r2+x2+y)/x+y
7. Return Q=(x1,y1)

• #INV:2(l-2)+1;
• #MULT: 2(l-2)+4
• #ADD: 4(l-2)+6
• #SQR: 2(l-2)+2 



How to reduce inversions?
1. In affine coordinates Inverses are very 

expensive
2. For           each inversion requires around 7 

multipliers (in hardware designs)
3. Lopez Dahab Projective coordinates:

• (X,Y,Z), Z≠0, maps to (X/Z,Y/Z2)
• Motivation is to replace inversions by the 

multiplication operations and then perform one 
inversion at the end (to obtain back the affine 
coordinates)

128n≥



Doubling
• Remember:

• In Projective Coordinates:
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=
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• 2 inverses
• 1 general field

multiplication
• 4 additions
• 2 squarings

• 0 inverses
• 4 general field

multiplications
• 3 additions
• 5 squarings



Montgomery Algorithm
• Input: k>0, P=(x,y)
• Output: Q=kP
• Set k<-(kl-1,…,k1,k0)2

• Set X1=x, Z1=1; X2=x4+b, Z2=x2

• For i from l-2 to 0 
– If ki =1, 

Madd(X1,Z1,X2,Z2), Mdouble(X2,Z2)
else 

Madd(X2,Z2,X1,Z1), Mdouble(X1,Z1)
• Return Q=(Mxy(X1,Y1,X2,Y2))



Mxy: Projective to Affine
3 1 1

2 1
3 1 1 1 1 2 2 1 2 1 2

/

( / )[( )( ) ( )( )]( )

x X Z

y x X Z X xZ X xZ x y Z Z xZ Z y−

=

= + + + + + +

Requires 10 multiplications and one inverse operation



Final Comparison
Affine Coordinates

Inv:  2logk + 1
Mult: 2logk + 4
Add: 4logk + 6
Sqr: 2logk + 2

Projective Coordinates

Inv:   1
Mult: 6logk + 10
Add: 3logk + 7
Sqr: 5logk + 3

Hence, final decision depends upon the I:M ratio of the finite field operators



Addition in Mixed Coordinates

• Theorem: Let P1=(X1/Z1,Y1/Z1
2) and 

P2=(X2/Z2,Y2/Z2
2) be two points on the curve. 

If Z1=1, then P1+P2=(X3/Z3,Y3/Z3
2) st.

Number of multiplications are further reduced.
Squaring is increased a bit, but they are cheap in GF(2n)

Improvement by 10 % if a≠0, otherwise 12 %...
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Parallel Strategies for Scalar Point 
Multiplication

• Point Doubling
– Cycle 1: T=X1

2, M=cZ1
2, Z2=T.Z1

2

– Cycle 1a: X2=T2+M2

• Point Addition
– Cycle 1: t1=(X1.Z2); t2=(Z1.X2)
– Cycle 1a: M=(t1+t2), Z1=M2

– Cycle 2: N=t1.t2, M=xZ1

– Cycle 2a: X1=M+N

1 multiplier

2 multipliers

We assume that squarings and multiplications with constants can be 
performed without multipliers…



Parallelizing Montgomery Algorithm

1. Input: k>0, P=(x,y)
2. Output: Q=kP
3. Set k<-(kl-1,…,k1,k0)2

4. Set X1=x, Z1=1; X2=x4+b, Z2=x2

5. For i from l-2 to 0 
If ki =1, 
5a)   Madd(X1,Z1,X2,Z2), Mdouble(X2,Z2)
else

5b)  Madd(X2,Z2,X1,Z1), Mdouble(X1,Z1)
6. Return Q=(Mxy(X1,Y1,X2,Y2))
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Parallelizing Strategies
• Parallelize level 1: If we allocate one multiplier 

to each of  Madd and Mdouble, then we can 
parallelize steps 5a and 5b. Thus 4 clock cycles 
are required for each iteration. Total time is 
nearly 4l.

• Parallelize level 2: If we can parallelize the 
underlying Madd and Mdouble, then we cannot 
parallelize level 1, if we have constraint of 2 
multipliers. So, we have a sequential step 5a 
and 5b. Total time is 3l.  



Parallelizing Strategies

• Parallelize both the levels: Total time is 
2l clock cycles.  Require 3 multipliers.

• Thus Montgomery algorithm is highly 
parallelizable

• Helpful in high performance designs (low 
power, high thoughput etc)



Point Halving

• In 1999 Scroeppel and Knudsen proposed 
further speed up

• Idea is to replace point doubling by halving
• Point Halving is three times as fast than 

doubling
• The scalar k, has to be expressed in the 

negative powers of 2



Computing the Half
• Problem: Let E be the Elliptic Curve, defined 

by the equation: 
• Let Q=(u,v)=2P
• Compute P=(x,y)
• Remember :
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Halving (contd.)

• Thus, we have to solve the above 
equations

• λ-representation: (x, λx)
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Trace of a point

• Define:
• Properties of Trace:

– Tr(c)=Tr(c2)=Tr(c)2, Tr(c) can be 0 or 1
– Tr(c+d)=Tr(c)+Tr(d)
– NIST Curves : Tr(a)=1
– If x,y belongs to the Elliptic Curve, Tr(x)=Tr(a)

12 2( ) ...
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Tr C C C C
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Computing λ
• The roots of                     are λ1= λ or λ+1
• Theorem:

2 u aλ λ+ = +

2

Let,  ( , ), ( , ) , . 2  
ˆand denote / . Let  be a solution 
ˆto  and . Suppose that 

ˆ( ) 1. Then  if and only if ( ) 0.
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Halving Algorithm
• Input: (u,v) , Output: (x,y)
1. Solve              for λ. Let the root be 
2. Compute 
3. If Tr(t)=0, then λP=     , x=(t+u)1/2

else λP=    +1,x=(t)1/2

4.   Return (x,λP)

2 u aλ λ+ = + λ̂

ˆt v uλ= +

λ̂

λ̂



Implementation of Trace
• Trace :

• Can be evaluated in O(1) time
• Example: GF(2163), with reduction polynomial 

p(x)=x163+x7+x6+x3+1, Tr(xi)=1, iff i=0 or 159.
• Thus, the implementation is only one xor gate 

to add the 0th and the 159th bits of the register 
storing C.
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Solving a Quadratic over GF(2m)

• Solve x2+x=c+Tr(c), c is an element of GF(2m)
• Define Half Trace:
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H(C) gives a root for the quadratic equation. A simple method to find 
H(C) requires storage for m elements and m/2 field additions on an average 



Obtaining Square Root
• Field squaring in binary field is linear
• Hence squaring can be rephrased as:

– C=MA=A2

• We require to compute D st. D2=A
• Let, D=M-1A=> A=MD
• D2=MD (as M is the squaring matrix)

=M(M-1A)=A
• Hence, D=(A)1/2



An Example
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Compute: 763R ,  where order of R 1013
10

2 (763) 651(mod  1013) (1010001011)
1 1 1 1763 ( 1) mod(1013)
2 2 2 2

763  may be computed using the following steps:
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Step 3: Similarly continue...



Half and Add Algorithm
1. Input: 0<k<n, P=(x,y)
2. Output: Q=kP
3. Compute:               , k1=(2t-1k)mod n
4. Q=O
5. for i=0 to m-1 do

1. Q=[1/2]Q
2. If, k1

i=1, then Q=Q+P

6. return Q   

2t= log 1n +⎢ ⎥⎣ ⎦

No method is currently known to perform point halving in projective 
Coordinates. Keep Q in affine coordinates and P in Projective 
Coordinates. Then step 5.2 is a mixed operation, giving further 
efficiency.
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