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Many applications of mathematics depend on properties of smooth degree-2 curves: for
example, Galileo showed that planets move in elliptical orbits and modern car headlights
are more efficient because they use parabolic reflectors (see Exercise 1). In the last 30
years smooth degree-3 curves have been at the heart of significant theoretical and practical
applications. Smooth degree-3 curves, known as elliptic curves, were used in Andrew
Wiles’s proof of Fermat’s Last Theorem [11]. The points on elliptic curves form a group
with a nice geometric description. Hendrick Lenstra [5] exploited this group structure
to show that elliptic curves can be used to factor large numbers with a relatively small
divisor. At one time this was thought to offer a serious challenge to RSA cryptography,
which depends on the difficulty of factoring large numbers to secure communication. The
Diffie-Helman protocol is another cryptographic scheme which is increasingly popular.
While the Diffie-Helman protocol can be used with any group, recent implementations
using elliptic curves seem to be very efficient. In this packet of course notes, we’ll explore
the mathematics underlying elliptic curves and their use in cryptography.

1 Elliptic Curves
The definition of an elliptic curve hides a lot of details:

An elliptic curve is a smooth degree-3 plane curve.

The first subtlety is that the curve lives in the projective plane rather than the usual
xy-plane. In the projective plane P2 the points are tuples of ratios (X : Y : Z) 6= (0 : 0 : 0)
under the equivalence relation

(X : Y : Z) = (λX : λY : λZ) for λ 6= 0.

A point (X : Y : Z) with Z 6= 0 can be written in the form (X/Z : Y/Z : 1) and
corresponds to the point (x, y) with x = X/Z and y = Y/Z in two-space. Points (X :
Y : Z) with Z = 0 are said to be points “at infinity”. Every curve defined by a polynomial
equation in the usual plane can be extended to a curve in the projective plane. If f(x, y) = 0
is the equation of the curve in the xy-plane then we write x = X/Z and y = Y/Z and
clear denominators by multiplying by Zdeg(f) to obtain an equation F (X, Y, Z) = 0 in the

1The development of these course notes was financially supported by the Defense Information Assurance
Program funded by the National Security Agency.



variables of P2. The polynomial F is said to be homogenized since all its terms have the
same degree. The value of the homogenized polynomial F (X, Y, Z) at a point (X : Y : Z)
in projective space is not well-defined since F (λX, λY, λZ) = λdeg(F )F (X, Y, Z) but it
does make sense to talk about the collection V(F ) of points (X : Y : Z) ∈ P2 where
F (X, Y, Z) = 0. Note that if (X : Y : Z) = (x : y : 1) then F (X, Y, Z) = 0 if and only
if f(x, y) = 0, so V(F ) contains points in P2 corresponding to the points on the original
curve f(x, y) = 0 but V(F ) also contains some points at infinity.

Example 1. Consider the line y − x + 1 = 0 in two-space. Its homogenization is Y −
X + Z = 0. Every point (x, y) on the original line gives a point (x : y : 1) on the
homogenization. The homogenization also contains a point at infinity: when Z = 0 we see
that the homogenization equation reduces to Y −X = 0, which determines a single point
(X : X : 0) = (1 : 1 : 0) in P2. That is,

V(Y −X + Z) = {(x : y : 1) | y − x+ 1 = 0} ∪ {(1 : 1 : 0)}.

The line y − x − 2 = 0 has homogenization Y − X − 2Z = 0 and so if Z = 0 then we
again get the point (1 : 1 : 0) lying on the line at infinity.

In fact, all parallel lines intersect at the

Figure 1: Parallel lines meet at infinity.

same point at infinity (see Exercise 2). So
we think of the curve Z = 0 as defining the
horizon, “at infinity”. There is one point at
infinity for each possible slope. It is much
easier to describe the intersections of curves
in projective space: for example, every pair
of distinct lines meets in exactly one point,
even if the lines are parallel. Étienne Bézout,
working at the French Naval Academy, dis-
covered a generalization of this result.

Theorem 2 (Bézout’s Theorem). If two curves determined by homogeneous polynomials
of degrees d1 and d2, respectively, do not share a common component, then they meet in
precisely d1d2 points in the projective plane if we count the points appropriately.

The theorem requires that the two curves not share a common component, i.e. that
the two defining polynomials do not share a common polynomial divisor. As well, we are
instructed to count points appropriately. To do so we must allow complex coordinates,
count points at infinity, and count points with multiplicity. To describe the computation of
multiplicity rigorously requires advanced algebraic concepts, but we can get an accurate
idea of how to count with multiplicity by looking at Figure 2.



Figure 2: P is a point of multiplicity 1 (left), 2 (middle), 3 (right).

If a point P lies on two curves with distinct tangents at P then the point P counts
with multiplicity one. If the tangent lines to the curves coincide at P then we move one
of the curves slightly; the multiplicity at P is the number of points in the intersection that
approach P as the moving curve approaches the original curve. In Figure 2 the moving
curve is drawn with a dashed line and it approaches the horizontal line.

Let’s return to our definition: an elliptic curve is a smooth projective plane curve of
degree 3. That is, the curve is defined by an polynomial equation F (X, Y, Z) = 0 of
degree 3. The curve is smooth if every point on the curve has a unique tangent line. We
can find the tangent line using the gradient. If P (X0 : Y0 : Z0) is a point on the curve
F (X, Y, Z) = 0 then P is a smooth point of the curve if

∇F (X0, Y0, Z0) = 〈fX(X0, Y0, Z0), fY (X0, Y0, Z0), fZ(X0, Y0, Z0)〉 6= 〈0, 0, 0〉.

If P is a point on the curve that is not smooth we say that P is a singular point of the curve.
The curve itself is said to be smooth if each of its points is smooth. If P is smooth point of
the curve, then the tangent line at P is given by the equation

∇F (X0, Y0, Z0) · 〈X −X0, Y − Y0, Z − Z0〉 = 0.

Try Exercise 3 to get a feel for which cubic curves are smooth and which have singularities.
It turns out that each elliptic curve C has a point of inflection (see Exercise 4), a point

where the curve C meets its tangent line in multiplicity three, as in the right diagram of
Figure 2. Fix one such point of inflection and call it E. If P and Q are distinct points
on the elliptic curve, then the line through P and Q is a degree 1 curve and by Bézout’s
Theorem it meets C in another point (PQ). Similarly, the line through E and (PQ) hits



the curve C in another point, which we denote P +Q. If two points in this process coincide
then we replace the secant line through both points with the tangent line.

Theorem 3. The points on the elliptic curve C form an Abelian group under the operation
+ defined above. The identity element of the group is the point E.

Proof. We leave it to the reader to check that the elliptic curve C is closed under the oper-
ation +, that the identity element is E, that the inverse of a point on C is again a point on
C, and that P +Q = Q+ P (see Exercise 5).

It remains to check that the group law is associative. This follows from a nice result
about cubics: if two cubic (degree-3) curves meet in 9 points, then any other cubic passing
through 8 of them also passes through the ninth. This theorem can be proven using Bézout’s
Theorem; you might want to check out the proof given by Fields Medalist Terry Tao on his
blog.2 To show that (P + Q) + R = P + (Q + R) it suffices to show that R(P + Q) =
P (Q + R) since then the line joining this point to E meets C for a third time in both
(P +Q)+R = P +(Q+R). We define three red lines and three blue lines as in Figure 3.

Figure 3: Six lines to show R(P +Q) = P (Q+R).

Let the line through P and Q be colored red. It hits C at (PQ). Let the line through
(PQ) and E be colored blue. It hits C at P + Q. Let the line through P + Q and R be
colored red. It hits C at R(P + Q). Now let the line through Q and R be colored blue.

2See Tao’s July 15, 2011 post at terrytao.wordpress.com.



It hits C at (QR). Let the line through (QR) and E be colored red. It hits C at Q + R.
Let the line through Q + R and P be colored blue. It hits C at P (Q + R). Now consider
the nine points P , Q, (PQ), E, P +Q, R, (QR), Q + R and the intersection T of the red
line joining P + Q to R and the blue line joining Q + R to P . All nine points lie on one
of the three red lines and one of the three blue lines. The union of the blue lines forms a
(degenerate) cubic curve, as does the union of the three red lines. Moreover, the elliptic
curve C passes through the first 8 of the nine points, so C must also pass through T . It
follows that T = R(P +Q) = P (Q+R), as desired.

Example 4. Consider the elliptic curve C, a portion of which is depicted in Figure 4,
defined by

Y 2Z + Y Z2 −X3 +XZ2 = 0.

Figure 4: Addition on the elliptic curve Y 2Z + Y Z2 −X3 +XZ2 = 0.

The point E(0 : 1 : 0) (not pictured) is an inflection point with tangent line Z = 0 and
we use E as the identity of our group law. Let’s add the points P (0 : 0 : 1) and Q(1 : 0 : 1)
of C. The line through P and Q has equation Y = 0 and the third point of intersection of
this line with C is (PQ) = (−1 : 0 : 1). The line through (PQ) and E is X + Z = 0.
Substituting X = −Z into the equation for C we obtain

Y 2Z + Y Z2 = Y Z(Y + Z) = 0.



The solutions Y = 0, Z = 0 and Y + Z = 0 correspond to (PQ) = (−1 : 0 : 1),
E = (0 : 1 : 0) and P +Q = (−1 : −1 : 1).

Let’s also compute 2P , where P = (0 : 0 : 1). Here we need the tangent line to C at
P , which is given by X + Y = 0. This hits C at a third point (PP ) = (1 : −1 : 1). The
line through (PP ) and E is X − Z = 0, which hits C in the third point 2P = (1 : 0 : 1).

Try Exercise 6 for some practice computing using the group law on an elliptic curve.

It is common to change coordinates so that the elliptic curveC is defined by an equation
of the form

Y 2Z = X3 + aXZ2 + bZ3

with identity E(0 : 1 : 0). In this case we can write down the group law explicitly.
Dehomogenize and suppose that P (x0 : y0) and Q(x1 : y1) are finite points on the elliptic
curve with x0 6= x1 (Question: If x0 = x1 then what is the sum of P and Q on C?). Then
the line joining P and Q has equation y−y0 = m(x−x0) where m = (y1−y0)/(x1−x0).
Substituting into the equation of the curve, we get

(y0 +m(x− x0))2 = x3 + ax+ b,

a cubic in x. Expanding the cubic gives x3 − m2x2 + · · · = 0, which must factor as
(x − x0)(x − x1)(x − xr) = 0, where xr is the x-coordinate of (PQ), the third point
of intersection of the line with C. Expanding and equating coefficients of x2 we see that
x0 + x1 + xr = m2, or

xr = m2 − x0 − x1.

Plugging back into the equation of the line, we get that yr = y0+mxr−mx0. Now the line
through (PQ) and E is vertical so that the x-coordinate of P +Q equals the x-coordinate
of (PQ) and their y-coordinates differ by a factor of −1. So

P +Q = (x2, y2) = (m2 − x0 − x1,−y0 −mxr +mx0), (1)

where m = (y1 − y0)/(x1 − x0). These formulas hold even if the elliptic curve is defined
over a finite ground field Fp

∼= Z/pZ. In that case we interpret the defining equation of C
to hold modulo p and the variablesX , Y and Z are only allowed to take values in Fp. When
p 6= 2 and p 6= 3 the same formulas for addition (and doubling, see Exercise 7) hold on
the elliptic curve as long as everything is interpreted modulo the prime p (Question: Why
make the assumptions p 6= 2 and p 6= 3?).

Example 5. Consider the elliptic curve C defined over F101 = Z/101Z by Y 2Z = X3 −
4Z3 with identity element E(0 : 1 : 0). This means that the coordinates of each point are to



be taken as points in F101 and the equation defining the curve is understood to hold modulo
101. The points P (3 : 15 : 1) and Q(87 : 22 : 1) lie on C. Using Equation (1) and working
modulo 101, we find that m = (22− 15)/(87− 3) = 7/84 = 7(95) = 59 and

P +Q = (58 : 73 : 1).

For more practice computing with elliptic curves, try Exercise 7.

2 Elliptic Curve Cryptography
Elliptic curves can be used to secure public communication using the Diffie-Helman proto-
col. Private key cryptography, in which both the sender and receiver share a special code,
has been around for a long time, but private key cryptography is not well-suited to the
world of digital communications. In the modern age we often need to communicate with
people we’ve never met, and so we can’t rely on a shared secret code. As well, we need to
communicate with lots of people and sharing a secret code among so many people is likely
to be insecure. Updating a widely shared secret code is also problematic. For all these
reasons, public key cryptography is much better suited to communication in the digital age.

Public key cryptography does something that sounds impossible. It allows two people
who have never met to communicate securely even if an eavesdropper can hear everything
that they say! RSA cryptography is one type of public key cryptography; it uses the dif-
ficulty of factoring large numbers to guarantee that the communication is secure [2]. In
contrast, the Diffie-Helman protocol uses the difficulty of finding discrete logarithms to
secure communication.

The Diffie-Helman protocol works with an arbitrary groupG and a fixed element g ∈ G.
Suppose that Alice wants to send a message to Bob. They must first arrange to exchange
some secret information using public communication. They do this as follows. First they
agree on the group G and the element g. Then Alice picks an integer a and Bob picks an
integer b. They keep these integers secret. Alice computes ga (here we’re writing out the
group operation multiplicatively) and Bob computes gb and they exchange this information.
Alice gets h = gb from Bob and computes ha = gab. Bob gets k = ga from Alice and
computes kb = gab. Now both Alice and Bob have gab. Of course, once they have a shared
secret (like gab), Alice and Bob can use private key cryptography based on this secret to
communicate securely. An eavesdropper would be able to obtain G, g, h, and k, but they
would really need to get a or b to compute gab = ha = kb. That is, they’d need to compute
a = logg(g

a), given ga. This is called the discrete log problem and it is thought to be very
difficult if the size of the subgroup 〈g〉 is large enough and the group G doesn’t possess
some special structure.



Elliptic curve cryptography (ECC) essentially implements the Diffie-Helman protocol
using an elliptic curve group defined over a finite ground field Fp

∼= Z/pZ. A base point P
is chosen and P plays the role of the group element g in our description above. For various
technical reasons, ECC is able to obtain the same security as the regular Diffie-Helman
protocol using G = Fq where q is much larger than p. That is, ECC is able to guarantee
strong security while using smaller field sizes. Using smaller field sizes is beneficial since
it requires less storage and computations run much quicker if the field size is smaller too.
In 2009, the National Security Agency endorsed ECC for both unclassified and classified
communication.3

Example 6. Suppose that Alice and Bob agree to use the elliptic curve C defined over
F101 = Z/101Z by Y 2Z −X3 + 4Z3 = 0 (and having identity element E(0 : 1 : 0)) and
base point P = (3 : 15 : 1). Alice chooses a = 22 and Bob chooses b = 17. Alice sends
22P = (61 : 63 : 1) to Bob and Bob sends 17P = (62 : 60 : 1) to Alice. Alice then
computes 22(62 : 60 : 1) = (0 : 81 : 1) and Bob computes 17(61 : 63 : 1) = (0 : 81 : 1).
Alice and Bob now share a secret, one that ought to be difficult for an eavesdropper to
recover. However, the modulus p = 101 is too small to be secure since an eavesdropper
could just compute all the multiples of P (which turns out to have order 102) and hence
solve the discrete log problem, after which they can recover the secret point (0 : 81 : 1).
It is safer to use a much larger prime p (on the order of 300 digits) and correspondingly
large values of a and b. Of course there are lots of primes of this size but actually finding
one isn’t so easy. Primality testing is a topic that would take us too far away from our
narrative; an excellent source is Crandall and Pomerance [3]. For more practice with ECC,
try Exercise 8.

3 Factoring with Elliptic Curves
The RSA public key cryptography protocol depends on the difficulty of factoring large
numbers in order to secure communication. John Pollard [7] gave an algorithm that factors
numbers with special structure reasonably quickly. Hendrick Lenstra [5] generalized Pol-
lard’s method, showing that large numbers with a relatively small divisor can be factored
using elliptic curves.

Pollard’s p − 1 algorithm is based on Fermat’s Little Theorem, which is really just a
corollary of the fact that the unit group of Fp has order p− 1 when p is a prime.

3See The Case for Elliptic Curve Cryptography on the NSA’s website at
http://www.nsa.gov/business/programs/elliptic curve.shtml.



Theorem 7 (Fermat’s Little Theorem). If a is a number relatively prime to the prime p then
ap−1 ≡ 1 mod p.

Pollard realized that if n is a number with a prime factor p such that p− 1 factors only
into small primes then n can be factored as follows. First we set a bound B on the size of
the primes that we are willing to allow in p− 1. Then we compute

K =
∏

q prime ≤B

qblogq nc.

If p − 1 factors into primes less than or equal to B then (p − 1)|K (Question: Why?) and
K = (p − 1)t for some integer t. Pick an integer a relatively prime to n (and hence to p).
Then Fermat’s Little Theorem shows that

aK − 1 = a(p−1)t − 1

is divisible by p and so n and aK − 1 share a common factor (a multiple of p). It may
turn out that this common factor is n itself, in which case we get no information and we
should choose a different value of a, but it is more likely that gcd(aK − 1, n) = p. This
greatest common divisor (gcd) can be computed quickly using the Euclidean algorithm (see
Exercise 10). So we can use the Euclidean algorithm to obtain the first factor of n; if we
are trying to break RSA, n is the product of two large primes and we can find the other
factor of n by dividing by p. Unfortunately, if p − 1 is not a product of small primes then
our only recourse is to increase the bound B and do more work to try to factor n. There is
no way to vary the group Fp that underlies Fermat’s Little Theorem.

The Elliptic Curve Method (ECM) gets around this problem by working in the group
of points of an elliptic curve defined over Fp rather than on the multiplicative group of Fp.
The benefit is that when the ECM fails, we can vary the elliptic curve and use the ECM
again.

The ECM to factor n works as follows. First pick a point P (x0 : y0 : 1) in projective
space over Z/nZ. Then find an elliptic curve C with equation Y 2Z = X3 + aXZ2 + bZ3

so that P ∈ C (just pick a at random and set b = y20 − x30 − ax0). Now pick a bound
B and compute B!P , perhaps using the doubling method of Exercise 7. To add points on
the elliptic curve we need to compute slopes (of secant or tangent lines) and these have
the form u/v for some integers u and v. If v is relatively prime to n then we can compute
u/v ∈ Z/nZ but if v is not relatively prime to n then our addition formulas break down and
the answer is not well-defined. And yet, in this moment of great despair, we realize that
salvation is at hand: if v is not relatively prime to n then v and n share a common factor.
That factor is unlikely to be n itself, so we’ve found a factor of n. In particular, if n were



an RSA number then we could break that instance of the RSA protocol. If we manage to
compute B!P without mishap, then we need to change our elliptic curve and try again.

The computations in the ECM can be understood as operating on several elliptic curves
simultaneously. For instance, suppose that n = pq is a product of two primes. Then
Z/nZ ∼= (Z/pZ)×(Z/qZ). Moreover, the points on the elliptic curveC defined over Z/nZ
can be viewed as points on Cp × Cq, where Cp (and Cq, respectively) is the elliptic curve
with the same defining equation as C but interpreted over Z/pZ (or Z/qZ, respectively)
rather than Z/nZ. The elliptic curve addition on C breaks when the resulting point can be
interpreted as (E,R) or (R,E) on Cp ×Cq, where E is the identity element at infinity and
R 6= E. Now if kP = E for some integer k then by Lagrange’s Theorem k divides the
order of the elliptic curve group. A celebrated theorem of Hasse shows that the number
of points on an elliptic curve over Fp is randomly distributed between p + 1 − 2

√
p and

p + 1 + 2
√
p. So we expect Cp and Cq to have orders that are roughly equal to p + 1 and

q + 1, respectively. Moreover, two such numbers are unlikely to share many factors. So
if kP = E on one of the two factors Cp or Cq, this is also unlikely to occur on the other
factor. That is, if kP = (R,E) then R is unlikely to be E and we’ll obtain a factor of n.

Example 8. This example is taken from Trappe and Washington [10]. Suppose that we
want to factor n = 455839. Let P = (1 : 1 : 1) and choose the elliptic curve C to be
defined by Y 2Z = X3 + 5XZ2 − 5Z3 over Z/nZ. Let’s try to compute 9!P . At first we
need to find 2P and so we compute the slope of the tangent line at P . The slope here is
(3X2 + aZ2)/(2Y Z) = 8/2 = 4 and so we have no trouble implementing the doubling
algorithm to get 2P = (14 : −53 : 1). To compute 3!P = 3(2P ) we first try to double 2P .
The slope of the tangent line is (3(142) + 5)/(2(−53)) = −593/106 mod n and 106 is
invertible modulo n so again there is no problem computing 4P = (259851 : 116255 : 1).
After this, one can compute 3!P = 6P = 4P +2P without mishap. Continuing in this way
we compute 4!P , 5!P , 6!P and 7!P , but computing 8!P turns out to require that we invert
599 mod 455839 and since 599|455839 out addition formulas break down. Fortunately,
we win because we’ve managed to factor n = 455839 = 599× 761.

In our example, C599 has 640 = 27×5 points, whileC761 has 777 = 3×7×37 points. In
fact, ordC599P = 640 and ordC761P = 777. Since 8! is a multiple of 640 but not a multiple
of 777, we have kP = E on C599 and not on C761, so the addition formulas broke down at
this point, giving the factorization of n.

Check out Exercise 11 to try your hand at factoring using the ECM.



4 Parting Comments and Further Reading
Elliptic curves take their name from elliptic functions. These are inverse functions to cer-
tain functions that appear when you try to compute the arclength of an ellipse. Elliptic
functions are doubly periodic functions on the complex plane whose image turns out to be
an elliptic curve. Roughly speaking, elliptic functions allow us to think of an elliptic curve
as a parallelogram in which opposite edges are identified. The resulting object has 2 real
dimensions (so it is sometimes called a Riemann surface) and 1 complex dimension (so it
is also sometimes called a complex curve) and looks kind of like a donut. Mathematicians
say that the resulting object has genus 1 since it has 1 hole. The study of Riemann surfaces
sits at the intersection of analysis, algebra and topology and is an excellent introduction to
advanced mathematics. A good reference is Miranda’s book [6].

Elliptic curve cryptography (ECC) is an active area of current research. One worry for
those using (ECC) – and other public-key cryptography protocols such as RSA – is that
there are known attacks on ECC using quantum computers. There are currently no large-
scale quantum computers but if one is ever built, we’ll need to move to quantum resistant
cryptographic schemes. Fortunately such schemes are already under development. A good
reference for post-quantum cryptography is [1].

A good general reference on elliptic curves is Husemöller [4]. The book by Trappe and
Washington [10] contains an accessible account of the use of elliptic curves in cryptogra-
phy as well as a very readable introduction to the mathematics behind other cryptographic
schemes. I’m generally a big fan of Simon Singh’s books, and I can recommend his book
on Fermat’s Last Theorem [8] and his book on cryptography [9]; both contain a lot more
background than you’ll find in more specialized works, though the mathematical level is
fairly low (which makes them easier to read but also might leave you wanting more details).

5 Exercises
1. (a) Imagine sunlight streaming across the xy-plane, with light particles moving paral-

lel to the y-axis, approaching the x-axis from above. A mirrored barrier is fashioned
in the shape of a smooth curve with equation y = f(x). Light bounces off this
curve so that the angle of incidence is equal to the angle of reflection (as measured
against the tangent line to the curve), and all the reflected light passes through the
point (0, 1). Find the equation of the curve if the curve passes through the origin, i.e.
f(0) = 0. [Hint: set up and solve an initial value problem.]
(b) Of course, most mirrored barriers are not 2-dimensional. Explain how to make a
surface so that light rays parallel to the y-axis, streaming toward the xz-plane from



“the right” all bounce off the surface and pass through the point (0, 1, 0). This math-
ematical computation is the theoretical foundation for solar ovens – low technology
ovens powered by the sun – and the large microphones seen on the sidelines of al-
most all professional football games.
(c) Instead of looking at light rays from the sun, we can consider a light source lo-
cated at position (0, 1, 0). Explain what happens to the light rays when they bounce
off your reflecting surface. Why are these mirrored surfaces located at the back of
most automobile headlights?

2. Show that parallel lines in R2 meet the line Z = 0 at infinity in a unique point and
that this point depends on the slope of the parallel lines.

3. For each of the three curves below determine if any points on the curve are singular.
Plot the curves and note the behavior of the curve near its singular points.
(a) Y 2 −X3 −X2 = 0
(b) Y 2 −X3 = 0
(c) Y 2 −X3 +X = 0.

4. Let C be a smooth curve defined by the homogeneous polynomial equation F = 0.
Each inflection point P on C satisfies the Hessian condition: writing X1 = X ,
X2 = Y and X3 = Z, the evaluation of the determinant of the matrix H(F ) =
(∂2F/∂Xi∂Xj) at P equals zero.
(a) Find the points of inflection of the elliptic curve Y 2Z + Y Z2 −X3 +X2Z = 0.
(b) Show that a general elliptic curve has 9 points of inflection. [Hint: use Bézout’s
Theorem.]

5. Let C is an elliptic curve and let P and Q be points on C. Let E be an inflection
point of C and let + denote the associated addition law on the elliptic curve. In this
exercise you will fill in the details of the proof that C is a group under the operation
+ (the associativity of + was established in the proof of Theorem 3).
(a) Show P +Q is a point on C.
(b) Show that E is a the identity element for the operation +.
(c) Show that −P is a point on the elliptic curve C and identify the point as a point
of the form (AB) for suitable points A and B on C.
(d) Show that P +Q = Q+ P so that the elliptic curve group is Abelian.

6. Consider the curve C given by Y 2Z + Y Z2 −X3 +X2Z = 0 with identity element
E = (0 : 1 : 0). Find the multiples 2P , 3P , 4P , and 5P of P = (1 : 0 : 1). In
particular, show that 5P = E. That is, the subgroup of C generated by P is a cyclic



subgroup. Mordell conjectured (and Faltings proved) that the subgroup of rational
points on an elliptic curve is finitely generated [4, Theorem 5.2]. Mazur described
the possible finite subgroups of the rational points on an elliptic curve [4, Theorem
5.3].

7. (a) The same method that produced Equation (1) can be used to derive doubling
formulas. Given an elliptic curve C defined by Y 2Z = X3 + aX + b and a finite
point P = (x0, y0) on C, find a formula for 2P = (x1, y1).
(b) Use your formula from part (a) to show that if P = (3 : 15 : 1) is a point on the
elliptic curve C defined over F101 = Z/101Z by Y 2Z −X3 + 4Z3 = 0 (and having
identity element E(0 : 1 : 0)), then 2P = (14 : 66 : 1).
(c) In the set-up from part (b), check that 65P = (81 : 51 : 1) as follows. First
write 65 in binary as 64 + 1, i.e. 1000001. Then find 2P , 4P, . . . , 64P by repeated
doubling. Finally, add 64P to P .

8. (a) Try writing a MATLAB program to add points on an elliptic curve Y 2Z = X3 +
aXZ2 + bZ3 modulo a prime p. Use Equation (1) or for a greater challenge, use the
doubling procedure from the Exercise 7.
(b) Alice and Bob want to communicate using ECC with the elliptic curve Y 2Z =
X3 + XZ2 + 661Z3 modulo p = 1000000007. They use the E(0 : 1 : 0) as their
identity element and P (4 : 27 : 1) as their base point. Alice picks a = 2875 and Bob
picks b = 3264. Use your program4 to check that Alice sends point (625316551 :
876120926 : 1) to Bob and he replies with point (797864344 : 881594541 : 1). Then
find Alice and Bob’s shared secret point.

9. Prove Fermat’s Little Theorem, Theorem 7. That is, show that if a is an integer not
divisible by the prime p then ap−1 ≡ 1 mod p.

10. Euclid’s algorithm gives a way to determine the greatest common divisor (gcd) of
two numbers a and b. Euclid observed that if

a = qb+ r

4If you didn’t do part (a), you could use an online ECC calculator like the one found at
http://christelbach.com/ECCalculator.aspx.



with 0 ≤ r < b then gcd(a, b) = gcd(b, r). So to compute gcd(a, b) we write

a = qb+ r,
b = q1r + r1,
r = q2r1 + r2,
r1 = q3r2 + r3,

...
rk−1 = qk+1rk + rk+1,

where each rk satisfies 0 ≤ rk ≤ rk−1. If rk+1 = 0 then

gcd(a, b) = gcd(b, r) = gcd(r, r1) = gcd(r1, r2) = · · · = gcd(rk−1, rk) = rk.

Use this algorithm to compute the gcd of 693 and 3213.

11. Try to factor the number n = 131179 using the Elliptic Curve Method. In particular,
try to compute 6!P for P = (1 : 1 : 1) on the elliptic curve C over Z/nZ defined by
the equation Y 2Z = X3 + 11XZ2 − 11Z3.
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