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Abstract: Herein, we produced a series of ultrahigh molecular weight polyethylene/polypropylene
(UHMWPE/PP) blends by elongational-flow-field dominated eccentric rotor extruder (ERE) and
shear-flow-field dominated twin screw extruder (TSE) respectively and presented a detailed compar-
ative study on microstructures and tribological properties of UHMWPE/PP by different processing
modes. Compared with the shear flow field in TSE, the elongational flow field in ERE facilitates
the dispersion of PP in the UHMWPE matrix and promotes the interdiffusion of UHMWPE and PP
molecular chains. For the first time, we discovered the presence of the interlayer phase in blends
with different processing modes by using Raman mapping inspection. The elongational flow field
introduces strong interaction to enable excellent compatibility of UHMWPE and PP and induces more
pronounced interlayer phase with respect to the shear flow field, eventually endowing UHMWPE/PP
with improved wear resistance. The optimized UHMWPE/PP (85/15) blend processed by ERE dis-
played higher tensile strength (25.3 MPa), higher elongation at break (341.77%) and lower wear loss
of ERE-85/15 (1.5 mg) compared to the blend created by TSE. By systematically investigating the
microstructures and mechanical properties of blends, we found that with increased content of PP, the
wear mechanism of blends varies from abrasive wear, fatigue wear, to adhesion wear as the dominant
mechanism for two processing modes.

Keywords: eccentric rotor extruder; UHMWPE; wear; mechanical properties

1. Introduction

Ultrahigh molecular weight polyethylene (UHMWPE) has multiple advantages in-
cluding good self-lubricating ability, low friction coefficient, high impact strength, fatigue
resistance, and biological inertness, which demonstrates its potential use as a wear-resistant
material in industrial bearings, protective layer, and artificial joints [1]. However, owing to
the relatively high average of UHMWPE, irregular inter-chain entanglement results in high
regional chain density and low mass flow rate (MFR), making UHMWPE difficult to be pro-
cessed by common injection molding or extrusion processes. In addition, the low surface
hardness, low modulus of elasticity, and bending strength, and poor abrasion resistance of
UHMWPE greatly limit its application [2]. It is therefore of great significance to develop
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industrially viable UHMWPE-based wear resistant materials through the regulation of
polymer composition and the optimization of processing technology [3].

Recently, developing UHMWPE-based blends, i.e., introducing low density polyethy-
lene (LDPE), Poly (lactic acid) (PLLA), poly (ethylene oxide) (PEO), etc., into the UHMWPE
matrix, is a viable option to improve the processability [4–7]. However, excessive amounts
of additives will lead to an increased mobility of the UHMWPE based blends, while its
mechanical properties may be adversely affected [8,9]. Due to the superiority of polypropy-
lene (PP) with high MFR value, a mixture of a certain amount of PP with UHMWPE also
can effectively improve the processing properties of UHMWPE-based blends [10]. Unlike
high density polyethylene (HDPE), which penetrates the UHMWPE particles, PP acts as a
lubricant which is distributed between the primary and secondary particles of UHMWPE,
enhancing the processing properties, but with limited improvements in wear resistance
and mechanical properties [11]. Moreover, changing the strain type of the forming process
can also be used to improve the target performance of the blends [12,13]. The flow field
of polymer materials in processing is divided into a shear flow field where the velocity
gradient direction is in line with the flow direction and the elongational flow field where
the velocity gradient direction is perpendicular to the flow direction, corresponding to the
twin-screw extruder (TSE) and eccentric rotor extruder (ERE), respectively. The different
flow fields greatly influence the compatibility of the two phases in the blends, giving rise
to differences in all aspects of performance [14–17]. Therefore, the relationship between
the structure and the wear resistant properties of the blends in ERE and TSE needed to be
systematically investigated.

As is well known, one marked difference between polymers and metallic wear-
resistant materials is that polymers tend to have a higher viscoelasticity and that wear
volume loss in polymers is a complex behavior that is influenced by many factors such
as friction type, strength, resistance, temperature, and geometry of friction nodes [18,19].
The common wear mechanisms in polymers are adhesive wear, abrasive wear, and fatigue
wear, in which fatigue wear differs significantly from adhesive or abrasive wear and does
not cause significant damage to the surface until a critical number of cycles is reached [20].
The wear resistant properties of polymers are generally determined to some extent by
their chemical structures, while the processing technology exerts a great influence on the
chemical structure of polymers [21,22]. In order to ensure that the physical and chemical
properties of the products meet the required conditions, it is necessary to provide a lucid
understanding on morphological structure of the products.

In this contribution, we prepared a series of UHMWPE/PP blends with different com-
position by two processing methods TSE and ERE respectively and provided a comparative
study of structures and mechanical and wear resistance properties of blends processed
by elongational flow field and shear flow field. With the same PP content, the elongation
strength of ERE-85/15 (25.3 MPa) was higher than that of TSE-85/15 (22.7 MPa), while the
elongation at break (341.77%) was four times higher. In the sliding wear test, the wear vol-
ume loss of ERE-85/15 (1.5 mg) was less than that of TSE-85/15 (3.0 mg), which indicates
that the ERE-processed blend has superior mechanical and wear resistant properties. We
also elucidated the enhancement mechanism by Raman spectroscopy and SEM, showing
that the elongational flow field facilitates the dispersion of PP phase in the UHMWPE
matrix and promotes the interdiffusion of UHMWPE and PP molecular chains, resulting
in the formation of a wide interlayer phase (1~2 µm). This ‘soft link’ interlayer phase
means that the chains of UHMWPE and PP are partially entangled under elongational
flow field and effectively strengthens the interface between the two phases, endowing the
UHMWPE/PP blend better wear resistance.
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2. Materials and Methods
2.1. Materials

UHMWPE GUR4120, viscosity-averaged relative molecular mass 4.7 × 106 g/mol,
Tekona GmbH, Germany; PP: Z30s, viscosity-averaged relative molecular mass
1.5 × 105 g/mol, Maoming Petrochemical Co. (Guangdong, China).

2.2. Sample Preparation

UHMWPE/PP blends were processed by ERE (ERE-30-CV-A, Guangdong Xinglian
Precision Machinery Co., Ltd., Guangdong, China) and TSE (MEDI-22/40, Guangzhou
Putong Experimental Analytical Instruments Co., Ltd., Guangdong, China).

Briefly, the UHMWPE/PP blend was processed by using ERE with the UHMWPE/PP
mass ratios of 100/0, 95/5, 85/15, 75/25, 65/35, and 50/50 at a speed of 25 rpm and various
processing temperatures of 200 ◦C, respectively. The extrusion die was an 8 mm round bar
mill; the samples were extruded from the ERE and immediately placed in a stainless-steel
die and pressed into sheets at 17 MPa.

The UHMWPE/PP blend was also produced by TSE. The polymers with similar
mass ratio as that processed by the ERE were put into a TSE for melt blending with a
screw diameter of 21.7 mm, a speed of 220 rpm and a melt temperature of 200 ◦C. The
samples were extruded by the twin-screw and immediately placed in a stainless-steel die
and pressed into sheets at a pressure of 17 MPa. Pure UHMWPE was also processed into
CM-UPE consists of pure UHMWPE, which is processed directly by compression molding
(CM) using a flat plate vulcanizer (Flat Plate Vulcanizer: ZG-80T, Dongguan Zhenggong
Mechanical & Electrical Equipment Technology Co., Dongguan, China).

2.3. Sample Characterization

The morphology and structure were examined by scanning electron microscopy (SEM:
HITACHI-Regulus 8100, Tokyo, Japan). Confocal Raman spectroscopy (DXR2xi, Thermo
Scientific) was employed to investigate microstructures and interface phase morphology
with a 532 nm argon ion laser.

The crystallinity of blends was acquired by differential scanning calorimetry (DSC:
Q20, TA, USA). The heating and cooling rate of the whole test process was set at 10 ◦C/min.
Dynamic thermomechanical analysis (DMA: Q800, TA Instruments, New Castle, DE, USA)
was used to analyze the thermo-mechanical properties of the samples with a temperature
range of 30–180 ◦C, a temperature rise rate of 3 ◦C/min, an amplitude of 5 µm and a
test frequency of 1 Hz. The samples were tested for mechanical properties according
to GB/T 1040.2-2006 standard, with the elongational speed set at 50 mm/min and at
room temperature.

The tensile strength and elongation at break were performed using microcomputer-
controlled electronic universal testing machine (CMT4104, Shenzhen New Sansi Materials
Testing Co., Shenzhen, China). The M-200 plastic sliding friction and wear tester was
used to determine the sliding friction and wear properties of the material according to
the standard GB/T 3960-2006. The sample size was 30 mm × 7 mm × 6 mm, and the test
was carried out under dry friction conditions on 45# steel with a speed of 200 r/min. The
temperature of the metal grinding wheel surface was monitored at 30 min intervals using
an infrared thermometer.

3. Results and Discussion

To achieve the imaging of fracture surface, the sample was completely submerged in
liquid nitrogen for a certain period and then, after complete freezing, an isotropic stress was
applied at both ends of the sample, resulting in a fracture in the central stress concentration
area of the sample.

The crystallinity of blends was acquired by DSC, and the crystallinity of UHMWPE
was calculated according to Equation (1):
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Xc =
∆Hm

∆Hm0 ×∅m
× 100% (1)

where ∅m as the mass fraction of UHMWPE; ∆Hm as the enthalpy of melting of UHMWPE;
∆Hm0 represents the enthalpy of melting when Xc is 100%, and its value is 290 J/g [23].
Based on the Raman spectra of the microstructure of the samples, the crystallinity (Xc) is
calculated according to Equation (2) [24]:

Xc =
I1416

0.46 × I(1295+1305)
(2)

The phase morphology is indicative of blends was derived from Equation (3) [25]:

Phase morphology =
I804

I1295
(3)

where I denotes the peak area corresponding to the position of the Raman peak. I804 and
I1295 are the indications of PP and UHMWPE, respectively.

UHMWPE/PP blends with various mass ratios of 100/0, 95/5, 85/15, 75/25, 65/35,
and 50/50 were extruded into sheets using the ERE and TSE, respectively. Figure 1 and
Figure S1 (see Supplementary Materials) shows typical SEM images of the fractural surface
of the UHMWPE/PP blends processed by ERE and TSE. As seen from Figure 1, the
fractured surface of UHMWPE/PP by TSE exhibits a high density of cavities. A higher
magnification of SEM imaging reveals that the cavity wall is smooth, and the two-phase
interface is clearly visible. This could be caused by the poor compatibility of UHMWPE
and PP and the weak interfacial bonding strength under the shear flow field dominated in
TSE (Figure 1A,a). In contrast, for UHMWPE/PP extruded by ERE, the cavity number on
the fractured surface is markedly reduced and the cavity wall becomes rougher with fibril-
like structure exposed, while the two-phase interface is more blurred (Figure 1B,b). This
indicates that PP is more uniformly dispersed in the UHMWPE matrix with the stronger
interfacial bonding strength induced by the elongational flow field.
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As observed in Figure S2 (see Supplementary Materials), the Raman spectrum of
pure UHMWPE shows a characteristic peak at 1295 cm−1 assigned to the twisted vibra-
tion of CH2, while pure PP reveals a characteristic peak at 804 cm−1, attributable to the
wobble vibration of CH2 [26]. The distribution of UHMWPE and PP in the blends can
be obtained by fitting the Raman data according to Equations (1)–(3) mentioned above.
As shown in Figure 2, the red part in the Raman mapping means a larger IPP/IUHMWPE
ratio, indicating that the red region is dominated by the PP phase. The blue part denotes
a smaller IPP/IUHMWPE ratio, implying the dominant presence of the UHMWPE phase.
The green part suggests the coexistence of equivalent UHMWPE and PP phases. Under
either elongational or shear flow fields, as the PP content is less than 25%, UHMWPE act
as the continuous phase while PP is dispersed in the UHMWPE matrix to form an island
structure (Figure 2a1,a2,b1,b2). As the PP content approaches 25%, the area of the green
region increases and a bi-continuous structure form (Figure 2c1,c2). When the PP content
is above 25%, the area of the red area gradually increases while the area of the blue area
decreases (Figure 2d1,d2,e1,e2), indicating a reverse blend system with PP as the continuous
phase and UHMWPE as the dispersed phase. Having established that ERE dominated by
elongational stress can induce a uniformly dispersed phase morphology of PP. In contrast,
PP under the action of shear flow field is more likely to agglomerate in the UHMWPE
matrix and the UHMWPE/PP blend is prone to phase separation.
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DSC curves of UHMWP/PP blends obtained by different processing methods are
shown in Figure S3a,b (see Supplementary Materials). The UHMWPE/PP blends extruded
under the elongational flow field exhibit two melt peaks at near ~135 ◦C (UHMWPE) and
164 ◦C (PP), respectively, while the melt peak of PP becomes apparent with the increase of
the PP content. Moreover, the melt enthalpy and crystallinity of UHMWPE decrease with
the addition of PP, suggesting that UHMWPE/PP is an incompatible system, and the two
phases compete during the crystallization process. Interestingly, the melting point of PP in
the UHMWPE/PP blend by ERE (~164 ◦C) is higher than that of PP in the blend prepared
by TSE (~155 ◦C) [27,28]. The cooling crystallization curves demonstrate that only one
crystallization peak appears in the UHMWPE/PP blend obtained under the elongational
flow field, while the blend sample from the shear flow field feature a double peak appears
when the PP content is >25% (Figure S3c,d, see Supplementary Materials). Moreover, the
crystallinity analysis derived from the DSC results confirms that there is no significant
difference in the crystallinity variation of the blend samples produced by TSE and ERE
(Table S1, see Supplementary Materials).

The tensile strength and elongation at break of the UHMWPE/PP blends processed
by ERE and TSE are shown in Figure S4 (see Supplementary Materials). Clearly, in terms
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of the tensile strength and elongation at break, the UHMWPE/PP blends by ERE exhibit
similar variation trend with the increased PP content compared to those by TSE, while the
ERE-processed blends display much higher tensile strength and elongation at break (i.e.,
25.31 MPa and 341.77% at 15% PP content) with respect to the TSE-processed counterpart
(22.71 MPa and 85.13%). This result highlights the distinct advantage of the elongational
flow field for superior mechanical performance in the UHMWPE/PP blends.

Figure 3a presents the wear loss of the UHMWPE and UHMWPE/PP blends with
different processing methods after 2 h of wear test. For the UHMWPE blends by either
ERE or TSE, the optimal PP content to yield the best tribological property is 15% (the
UHMWPE/PP ratio: 85/15), while the optimized ERE-processed blend produces lower
wear loss (1.5 mg) relative to the TSE-processed blend (3.0 mg), highlighting the superiority
of the elongational flow field—dominated processing. Interestingly, such weight loss values
from the blends are significantly lower than those of pure UHMWPE samples produced
by CM and ERE (13.1 and 12.4 mg) under identical wear test conditions, verifying the
crucial role of the introduced PP within the UHMWPE matrix toward the tribological
property. On the other hand, as indicated by the weight loss time profiles in Figure 3b, the
wear degree for the UHMWPE blends produced by either ERE or TSE shows very small
variations with increased time throughout the whole friction period in stark contrast to pure
UHMWPE showing marked increase with increased friction time. This result implies that
the blends are less sensitive to the friction time compared to pure UHMWPE. An analysis
of the tribological performance based on UHMWPE/PP reveals that the wear resistance of
UHMWPE increases significantly when the PP content is 15%. The relationship curves of
friction coefficient—the time for pure UHMWPE and UHMWPE/PP (85/15) indicates that
the variation trend for samples with different processing methods is basically the same
(Figure S5, see Supplementary Materials). In the initial stage (0–2400 s), the surface friction
coefficient increases sharply, then, it shows a slow increase, and after 7200 S, the coefficient
of friction of ERE-85/15 (0.35) and TSE-85/15 (0.36) containing pp is significantly smaller
than that of CM-UPE (0.37) and ERE-UPE (0.38) without PP. This is most likely since the
lateral methyl group contained in the structural formula of PP makes the hardness and
modulus of PP larger than that of UHMWPE, which improves the ability of UHMWPE to
resist plastic deformation and reduces the contact area between the friction, which in turn
reduces the friction.

The investigation of the surface morphology of the sample after rubbing can intuitively
assess the wear degree of the sample and the corresponding wear mechanism [19,29]. As
shown in Figure S6 (see Supplementary Materials), the wear track of the blends with low PP
content (<5%) shows many furrows, known as abrasive wear, while the surface morphology
of the blend with medium PP content (5–25%) features small, shallow depressions or plastic
deformations, which are caused by contact stress. The wear surface of the samples with
high PP content (25–50%) exhibits tears, which is resulted from the adhesion between the
sample surface and the counter-abrasive surface; the wear mechanisms corresponding to
these three morphologies are, respectively, abrasive wear, fatigue wear and adhesive wear.
the UHMWPE/PP blend prepared by TSE and ERE has a similar friction morphology but
is clearly different from pure UHMWPE. The wear tracks show significantly less furrows,
indicating that the addition of PP improves the wear resistance of UHMWPE to a certain
extent. In addition, it is noted that under the action of the shear flow field, the wear surface
of the UHMWPE/PP blend also exhibits more fatigue cracks when the PP content was
>25%, where the wear behavior is in the form of adhesive wear and fatigue wear. In
contrast, the cracks in the UHMWPE/PP blend prepared by ERE only appears when the PP
content was >35%. Because the interfacial bonding strength of the UHMWPE/PP blends
prepared by TSE is weaker than of the blends prepared by ESE, the material is prone to
tear under wear process, thus triggering cracks.
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Dynamic thermomechanical analysis (DMA) result in Figure 3c reveals that, with
increased temperature, the storage modulus for all the samples including pure UHMWPE
and the UHMWPE/PP blends by different processing exhibit an initial dramatic decrease,
followed by the appearance of a stable plateau at high temperature. Of note, at lower
temperature the ERE-processed UHMWPE/PP (85/15) blend presents higher storage mod-
ulus with respect to other counterparts, indicating better resistance to plastic deformation
and yield stress. The corresponding loss factor (Tanδ)—temperature curve in Figure 3d
indicates that the UHMWPE/PP blend exhibits lower Tanδ than those of pure UHMWPE.

Based on the analysis of the dynamic thermomechanical properties of UHMWPE/PP,
the surface temperature of the material during the wear process was examined using an
infrared thermometer, and the results are shown in Figure S7 and Table S2 (see Supple-
mentary Materials). CM-100/0 and ERE-100/0 have a similar temperature evolution, both
reaching surface temperatures of around 140 ◦C after 120 min of testing, which exceeded
the melting point temperature of UHMWPE (~135 ◦C), and was significantly higher than
TSE-85/15 (127 ◦C) and ERE-85/15 (124 ◦C), suggesting that the PP content has ability
to optimize thermal conductivity and decrease coefficient of friction, which facilitates to
reduce the friction temperature of the UHMWPE/PP surface and mitigate the degree of
oxidative degradation.

Raman mapping plots of the surface crystallinity distribution of the samples before and
after sliding friction testing are shown in Figure 4. The crystallinity of CM-UPE, ERE-UPE,
ERE-85/15, and TSE-85/15 are basically distributed around 50% before wear. After sliding
wear testing, the mapping distribution of all samples partly shifted towards red, i.e., the
crystallinity increased, which result from orientation-induced crystallization of the surface.
For the ERE-85/15 and TSE-85/15, the increase in crystallinity was significantly smaller
than that of the CM-UPE and ERE-UPE, demonstrating the high friction temperature
promotes the rearrangement of polymer chain, while ERE-85/15, and TSE-85/15 remain
stable during friction due to its low coefficient of friction and good thermal conductivity.
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The above results confirm that the PP content in UHMWPE matrix plays a crucial
role in enforcing the mechanical properties and wear resistant performance, while the
differences in frictional properties triggered by TSE and ERE need to be explored in more
depth. The interfacial microstructure of the UHMWP/PP blend was further characterized
by the high-resolution Raman mapping (Figure 5). Clearly, the UHMWP/PP blend ex-
truded by ERE displays a thicker interphase (1–2 µm) compared to the sample produced
by TSE, which attributes to better compatibility of blends processed by ERE. We propose
the reason for strong interactions based on the principles underlying the process; as shown
in Figure 6a, under the shear flow field in TSE, the velocity gradient is perpendicular to
the direction of the flow field, which tends to form a flow with weak interaction between
the layers. Thus, it is difficult for the molecular chains of UHMWPE and PP to diffuse
with each other. When subjected to the elongational flow field in ERE, the introduction of
a compressive stress perpendicular to the flow field tends to result in strong interaction
between UHMWPE and PP and thus the molecular chains easily diffuse and entangle
each other (Figure 6b). Owing to the long relaxation time of the molecular chains, phase
separation of blends is difficult to form during the cooling period and cause entanglement
of the interfacial molecular chains, increasing the interfacial bonding strength and greatly
improving the target performance of the material processed by ERE.
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4. Conclusions

UHMWPE/PP with different component ratios developed by TSE and ERE processing
techniques were systematically investigated for wear-resistant properties and we found
that PP was able to reduce the loss factor (Tan δ) and friction coefficient of the UHMWPE
matrix, contributing to the maintenance of good mechanical properties of the composite
during friction, resulting in less oxidative degradation of the friction surface and less
increase in crystallinity of the friction surface. Importantly, the elongational flow field
clearly contributed to the ability of PP reinforcement to disperse in the UHMWPE matrix,
facilitating the interdiffusion of UHMWPE and PP molecular chains, and the formation
of a wider intercalation phase (approximately 2 µm) was demonstrated for the first time
by Raman mapping techniques. This interlayer phase effectively strengthens the interface
between UHMWPE and PP and dispersed the stress from the surface layer to a wider area
during wear process, giving the UHMWPE/PP blend superior wear resistance compared
to the interface created by the TSE process. The elongational strength of ERE-85/15
(25.3 MPa) was higher than that of TSE-85/15 (22.7 MPa) with the same PP content, while
the elongation at break (341.77%) was four times higher and the wear volume loss of ERE-
85/15 (1.5 mg) is less than of TSE-85/15 (3.0 mg) in the sliding wear test. This new hybrid
composite material developed using ERE processing has excellent tribological properties
that can be expanded into many new applications such as advanced structural materials,
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protective coatings for micromechanical systems and components that are resistant to
contact damage.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13121933/s1, Figures S1–S7, Tables S1–S2. Figure S1: SEM images of cryofrac-
tured surfaces of UHMWPE/PP Figure S2: Raman spectra of UHMWPE and PP, Figure S3: DSC
curve of UHMWPE/PP under different processing methods Figure S4: Mechanical properties of
UHMWPE/PP under different processing methods Figure S5: Curve of friction coefficient as a
function of friction time of UHMWPE and UHMWPE/PP under different processing methods, Figure
S6: SEM images of the end of the friction test of UHMWPE and UHMWPE/PP. Figure S7: Friction
temperature of UHMWPE and UHMWPE/PP under different processing, Table S1: DSC related data
of UHMWPE by different processing methods, Table S2: Surface frictional temperature by different
friction time (◦C).
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