EMA5001 Lecture 9 Surface Energy

Types of Interfaces for Solids

$\square B y$ the materials on each side of the interface

- Surface
- Between solid and vapor (or vacuum)
- Always present
- Matters in vaporization, condensation, wetting, fracture, etc.
- Grain boundaries
- Separate solids with same composition and same crystal structure but different orientation
- Can be absent
- Matters in recrystallization, grain growth, mechanical strength, hardness, etc.
- Interphase interfaces
- Separate two phases with different crystal structure and/or compositions
- Matters in phase transformation, mechanical properties, etc.
- Most complex and least understood

Interfacial Free Energy \& Surface Tension

- For a system with interface area A and free energy per unit interface area γ, the total free energy is

$$
G=G_{0}+A \gamma
$$

- G_{0} is free energy of system assuming all material has the bulk properties
- γ reflects the excess free energy of material on surface, equaling the work that must be done at constant T and P to create unit area of surface from bulk material
DAt constant \mathbf{T} and \mathbf{P}, if interface area increase by $d A$, system free energy change

$$
d G=\gamma d A+A d \gamma
$$

\square For liquid
F is surface tension

$$
d G=d W=F d A
$$

Therefore,

$$
F=\gamma+A \frac{d \gamma}{d A}
$$

For liquid, $\frac{d \gamma}{d A}=0 \quad F=\gamma$

Energy of a Particular Surface Plane (1)

DExample of (111) plane as surface of FCC crystal

- ε Bond strength
- If a bond is broken, the energy of one of the atom is raised by

Compared with bulk, every surface atom on (111) surface plane has lost three (3)
 of the nearest neighboring atoms

- $\quad \begin{aligned} & \text { Excess internal energy for each of the (111) } 3 \times \frac{1}{2} \varepsilon \\ & \text { surface atom over an atom in the bulk is }\end{aligned}$
- If L_{S} is the measured sublimation energy

$$
L_{S}=12 N_{a} \cdot \frac{1}{2} \varepsilon
$$ N_{a} is Avogadro's number. Therefore $\varepsilon=L_{S} / 6 N_{a}$

- (111) surface (solid-vapor interface) excess $E_{s v}(111)=\frac{3}{2} \varepsilon=\frac{3}{2} \cdot \frac{L_{S}}{6 N_{a}}=\frac{L_{S}}{4 N_{a}}$
- Assumptions:
- Consider only nearest neighbors
- Strength of remaining bonds unchanged

Energy of a Particular Surface Plane (2)

DContinue from p. 4

n is atom number density on (111) plane

$$
n_{(111)}=\frac{0.5}{0.5 \cdot(2 r) \cdot \sqrt{3} r}=\frac{1}{2 \sqrt{3} r^{2}}=\frac{1}{2 \sqrt{3}\left(\frac{\sqrt{2}}{4} a\right)^{2}}=\frac{4}{\sqrt{3}} \cdot \frac{1}{a^{2}}
$$

Therefore,

$$
\gamma_{(111)}=E_{s v} \cdot n_{(111)}=\frac{L_{S}}{4 N_{a}} \cdot \frac{4}{\sqrt{3}} \cdot \frac{1}{a^{2}}=\frac{1}{\sqrt{3}} \cdot \frac{L_{S}}{N_{a} a^{2}} \approx 0.58 \frac{L_{S}}{N_{a} a^{2}}
$$

Energy of a Particular Surface Plane (3)

\square Surface energy of other planes

- Broken bond excess energy $\varepsilon / 2$
- We have $\varepsilon=L_{S} / 6 N_{a}$

Atom on (002) surface plane lost four (4) of the nearest neighbors
$E_{s v}(002)=4 \cdot \frac{\varepsilon}{2}=\frac{4}{2} \cdot \frac{L_{S}}{6 N_{a}}=\frac{L_{S}}{3 N_{a}}$
$\gamma(002)=\frac{L_{S}}{3 N_{a}} \cdot \frac{1}{\left(\frac{\sqrt{2}}{2} a\right)^{2}}=\frac{2}{3} \cdot \frac{L_{S}}{N_{a} a^{2}}=0.67 \frac{L_{S}}{N_{a} a^{2}}$

Atom on (220) surface plane lost five (5) of the nearest neighbors
$E_{s v}(220)=5 \cdot \frac{\varepsilon}{2}=\frac{5}{2} \cdot \frac{L_{S}}{6 N_{a}}=\frac{5 L_{S}}{12 N_{a}}$
http://www.tf.uni-kiel.de/matwis/amat/def_en/kap_1/ illustr/t1_3_3.html

Surface energy (excess energy with respect to bulk) change with different crystal planes
$\gamma(220)=\frac{5}{12} \cdot \frac{L_{S}}{N_{a}} \cdot \frac{1}{a \cdot \frac{\sqrt{2}}{2} a}=\frac{5}{6 \sqrt{2}} \cdot \frac{L_{S}}{N_{a} a^{2}}=0.59 \frac{L_{S}}{N_{a} a^{2}}$

Surface Energy \& Surface Orientation (1)

DIf a 3D crystal surface at $\uparrow^{z=[001]}$ an angle θ to close packed (001) plane for a simple cubic lattice structure

- Number of broken bonds along (001) plane
$\frac{\operatorname{Cos} \theta}{a} \cdot \frac{1}{a}$
- Number of broken bonds along (100) plane

$$
\frac{\operatorname{Sin}|\theta|}{a} \cdot \frac{1}{a}
$$

Surface Energy \& Surface Orientation (2)

DContinue from p. 7

$$
E_{s v}(\theta)=\frac{\operatorname{Cos} \theta+\operatorname{Sin}|\theta|}{a^{2}} \cdot \frac{\varepsilon}{2}
$$

\square Plotting $E_{S V}$ vs. $\boldsymbol{\theta}$

- Closed packed orientation lie at energy minimum (cusp or trough) positions

-Example of γ in polar coordination system for simple cubic lattice
- θ angle to close packed $\{100\}$ type planes, for $0 \leq \theta \leq 90^{\circ}$
$\gamma=(\operatorname{Cos} \theta+\operatorname{Sin} \theta) \cdot \frac{\varepsilon}{2 a^{2}}=\left[\operatorname{Cos} \theta \cdot \frac{1}{\sqrt{2}}-\operatorname{Sin} \theta \cdot\left(-\frac{1}{\sqrt{2}}\right)\right] \cdot \frac{\sqrt{2} \varepsilon}{2 a^{2}}$
$\gamma=\operatorname{Cos}\left(\theta-\frac{\pi}{4}\right) \cdot \frac{\varepsilon}{\sqrt{2} a^{2}}$

Wulff Planes \& Equilibrium Shape

DContinue from p. 7

$$
\gamma=\operatorname{Cos}\left(\theta-\frac{\pi}{4}\right) \cdot \frac{\varepsilon}{\sqrt{2} a^{2}}
$$

A circle off by 45° and diameter of $\frac{\varepsilon}{\sqrt{2} a^{2}}$
As function of θ and absolute value of surface excess energy, yielding schematic
DEquilibrium shape of a crystal determined by

- Minimization of the total surface energy

Equilibrium shape

$$
\sum \gamma_{i} A_{i}
$$

- Wulff Theorem
"The equilibrium shape is bonded by those parts of Wulff planes that can be reached from the origin without crossing any other Wulff planes"

[^0]
[^0]: J. W. Martin, et al. Stability of microstructure in metallic systems, Cambridge Univ.

 Press, $2^{\text {nd }}$ ed, Cambridge, UK (1997), p. 234

