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1.1 Introduction
The rapid growth of safety critical software has been driven by regulation and underpinned by the existence of domain 
specific safety development standards. Their objective is to ensure embedded systems are designed robustly, to prevent 
harm or death occurring to users of the systems, or damage happening to surrounding equipment or the environment. Each 
application domain has slightly different use cases, which the safety standards take into account. The most used safety 
standards in embedded engineering are as follows:

• Industrial IEC 61508 
• Medical IEC 62304 and FDA 510(k) 
• Automotive ISO 26262
• Rail EN50128, EN50129
• Aerospace DO-178C 

These safety standards typically define a range of safety levels. These safety levels are used to classify the context the 
system is operating in, and define the amount harm the system can potentially cause. The higher the safety level, the greater 
the potential harm, and the more rigorous and demanding the development life cycle becomes.  

In many cases safety critical systems also have to support feature rich graphical interfaces, responsive networking 
communications, diagnostics, data storage and much more. For example, your typical medical device not only has to 
protect the patient and medical practitioner from harm, it must provide a good users experience, be easy to use, and 
communicate treatment data back to a healthcare center.

System designers are now faced with the challenge of providing safety and functionality as part of the same system. Due 
to the rigors of developing safety critical software the development costs are high and it would not be feasible to develop 
all the software used within the system to the highest safety level required. Also, many software systems use third party 
components such as networking stacks and file systems - the development history of these components may be unknown, 
and hence would have to be classified with a very low safety rating. This means that within a single system there may be 
several different levels of safety software.      

The software within the system needs to be partitioned, grouping software of the same safety level together, and assuring 
that software from lower safety levels can not interfere with software relating to the higher safety levels. Partitioning allows 
the safety related software to be kept small and concise, whilst allowing the use of third party software modules, which 
shortens developments times and lowers costs.

This paper discusses in detail partitioning techniques used in mixed safety level embedded systems.             

CHAPTER 1 Introduction
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2.1 Use Case – A Simple Embedded System
Figure 2-1 shows a simple embedded system. A number of input sensors are processed by control logic and some 
output is driven in response. There is a display with associated software and some memory storage with its own software. 
Not all of the elements shown are critical to the successful running of the system. The mission critical components are 
outlined in green

 Figure 2-1 A Simple Embedded System

Things inevitably get more complex. The requirement to reprogram in the field, manage logging and configuration files and 
allow remote monitoring give us a considerably more complex block diagram, see Figure 2-2. 

Figure 2-2 A more complex system

CHAPTER 2 Use Case
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We now have a system with:

• Critical Safety Software
• Commercial third party software that we have no control over.
• Other software not developed to the required Safety Integrity Level (SIL).
• Grey areas where potentially critical data is passing through 3rd party stacks.

To successfully achieve a SIL rating for our product we need to be able to demonstrate both temporal and spatial separation 
between the code responsible for the safety critical parts of the application and the code that has not been developed with 
the required rigor and the software of unknown provenance.

One approach to achieving this separation is to spread the software across multiple processors so that one (or more) 
processors are responsible for implementing the safety application and the non-safety functions are located other processors. 
This architecture is discussed in section CHAPTER 3.

Where appropriate, another approach that may be possible is to use software techniques to attempt to guarantee the 
necessary separation. This involves:

• Breaking the application into a number of threads or tasks and using an Memory Protection Unit (MPU) or Memory 
Management Unit (MMU) aware Real Time Operating System (RTOS) to enforce spatial separation.

• Using software techniques to monitor the timing profiles of the tasks and report deviations to the temporal separation.
• Using communication protocols to protect the data communications with other tasks and system elements rather 

than relying on the integrity of the data channel and the software servicing that channel.

 Each of these techniques will be the subject of a separate white paper, but are introduced in CHAPTER 4.
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3.1 System Architecture
The example system architecture, shown in Figure 3 1 achieves the objectives set out above for the device (in this case a 
medical device). It is constructed around three processing elements. Two processors are allocated to implementing safety 
critical functionality, and the third processor is reserved for non-safety related operations including the users interface, 
networking and other aspects of the application. 

Generally, it is desirable to limit the scope of the safety critical functionality as much as possible. The simpler the overall 
design is, the easier and cheaper the design and testing and hopefully results in reduced development timescales, and an 
easier path to achieving approval/certification.
   
 

Figure 3 1 Multi Processor Architecture

By allocating two microprocessors to perform the safety function, it allows one microprocessor to implement the safety 
function and the other to verify the operation. The resulting safety case is simple, if the two microprocessors agree the 
treatment continues, if there is a difference then the treatment is stopped and the system is placed in a safe state.  This 
architecture provides protection from single hardware failures, and inherently provides isolation from interference from 
actions taken by the non-safety processor.

One of the microprocessors would also be allocated the ‘power on’ task, ensuring the system is placed within a safe state 
upon leaving its initialisation state, and configuring the system architecture so that the non-safety processor cannot interfere 
with the safety microprocessors. This microprocessor would also be allocated the task of performing any power on self-
tests and periodic built in tests that effect the safety of the system. 

CHAPTER 3 Achieving Functional Separation with Hardware
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3.3 Data Sharing
When sharing Data within a safety critical system, the SIL value of the individual data items needs to be preserved during 
transmission.  The distribution of safety critical data becomes more complex when the transmission mechanism is shared 
with data generated from unknown or non-safety rated sources.

Generally communication channels can be considered as white channels with known properties or black channel with 
unknown properties. As designers of the system, initially it would seem more logical to consider the communication link as 
a white channel, but this requires implementing in-depth bit error rate probability calculations, and an analysis to determine 
the effects the unknown data sources may have on the communication channel. In many ways it’s easier to treat the 
channel as a black channel, and protect the data sent over it. Here the system will need to guard against the 8 known 
failure modes of a black channel, as detailed within EN/IEC61784-3 Functional safety fieldbuses – general rules and profile 
definitions. These failure modes include, Data Corruption, Unwanted Repetition, Wrong Sequencing, Loss, Inacceptable 
Delay, Insertion, Masquerade and incorrect addressing (see section 4.5).       

3.2 Software Architecture
As the architecture has two different roles to perform, supporting safety and non-safety functionality, two different types 
of software Board Support Packages (BSPs) are required, coupled with a means of transferring data seamlessly between 
them. 

The safety related microprocessors will typically require a real time operating system suitable for use within a safety device. 
The RTOS is at the heart of the system and controls the scheduling of the safety software. Therefore the RTOS needs to be 
rated at the highest SIL of the software on the processor, and cannot be treated as a ‘Commercial off the Shelf’ (COTS) or 
Software of Unknown Provenance (SOUP) component.

One such example of a SIL rated RTOS is SAFERTOS® from WITTENSTEIN high integrity systems. With an imperceptible 
boot time, SAFERTOS can quickly and effectively bring the system up, configure the safety partitions and execute critical 
safety functionality/testing, before enabling other processors which may require longer to boot. Due to its high safety 
classification, SAFERTOS can safely be used on both primary and monitoring microprocessors, removing the need to use 
differential software. 

In this example, there is a separate application processor, which handles the non-safety critical aspects of the system. This 
may include networking, Wi-Fi stacks, and user interfaces. In this example the application processor is shown as using a 
BSP built around the Linux operating system. Linux is supported by a wide range of middleware components and drivers 
and provides the ideal platform for building a complex application upon. An alternative to Linux would be to use an RTOS 
such as SAFERTOS and a selection of middleware components.

It should be noted that careful attention should be paid to the classification of software/system functions. In this example 
we are assuming the display and networking functionality are non-safety critical components, this is frequently not the case. 
When dealing with medical devices the information displayed may affect clinical decisions or the input data affects dose 
rates, this functionality then becomes a safety component.

3.4 Safety Considerations
The current trend is to build safety systems from pre-certified modules. This reduces overall development times and lowers 
the risk of certification issues.  It also allows companies to benefit from the know-how and expertise of suppliers who have 
their components in safety critical devices already. 

Processors can be selected according to their ability to be safety certified. Many silicon vendors are now offering safety 
design packages for their MCUs. These packages typically contain a Safety Manual that details the list of safety requirements 
(conditions of use) and provides examples to guide users on how to achieve the required SIL according to IEC 61508. 
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3.5 Conclusion
Referring back to the original use case and the requirements for spatial and temporal separation, this has been achieved by 
physically separating the safety and non-safety functionality onto different processors and using a third processor to monitor 
the correctness of the safety processor. A strong case for certification can be made if:

• The software on the safety and monitoring processors has been developed in accordance with the required SIL rating 
for the industry sector.

• Any third party software (such as RTOS or communications stacks) has also been developed and tested to the 
required SIL level.

• The selection of the hardware is suitable for use in a safety application at the required SIL, this potentially includes 
software to monitor the correct operation of the hardware, redundancy of sensors/actuators, error checking of RAM 
and ROM.

• Data exchange between the safety and monitoring processors is implemented using hardware or protocols to 
guarantee safety to the required SIL.

SAFERTOS from WITTENSEIN high integrity systems is supplied fully integrated with the selected processor/compiler 
combination, and accompanied by a comprehensive Design Assurance Pack (DAP) or Design History File (DHF). These 
packages contain the design and testing artefacts as well as instructions on how to install and integrate SAFERTOS into a 
safety critical development without the need for further retesting upon the target hardware. The safety manual also details 
how to generate the evidence required to demonstrate the integration and installation process has been correctly followed. 
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4.1 System Architecture
The architecture discussed in the previous section potentially provides the necessary separation and is suitable for larger 
devices. When dealing with smaller devices or battery operated devices a smaller hardware footprint is frequently necessary 
in terms of both cost and power consumption. In these cases, it is desirable to use a single processor for all the functionality 
with an external watchdog or small monitoring micro to provide the necessary redundancy for failure detection of a safety 
device. This is shown in Figure 4-1. The acceptability of a single core architecture for a mixed SIL application may not always 
be possible, and should be reviewed on a case-by-case basis. The design and safety mitigations need to be discussed with 
the relevant certification body at an early stage.

 

 Figure 4-1 Single Processor Architecture

4.2 Software Architecture
Conventionally, all software running on a microprocessor must be written to the Safety Integrity Level (SIL) that is required 
for the system. This means that the use of third party COTS or SOUP code is problematic as it is most unlikely to be tested 
or documented to the required standards.

When using third party software that is pre-certified as suitable for inclusion in a SIL rated safety system, advantages can 
be gained in that the effort necessary to design, test and certify the software has been performed externally by people who 
are domain experts in that functionality. SAFERTOS from WITTENSTEIN high integrity systems provides a fully pre-certified 
scheduling kernel which is designed for use with safety applications up to SIL3.

CHAPTER 4 Achieving Functional Separation with a Single Processor
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4.3 Spatial Separation using MPU or MMU
An MPU or MMU is used to detect access to unauthorised regions within the memory map. The rest of this section refers 
to the use of the MPU; however it is equally applicable to the use of an MMU with a flat memory map. 

Microprocessors that have an MPU typically allow a number of “memory regions” to be defined. This consists of a memory 
range and associated access permissions. There are some differences in the operation depending on the silicon manufacturer 
(e.g. ARM processors feature prioritised MPU regions whereas others are additive with respect to granting of permissions); 
however whatever the flavour, the action is the same, a processor exception will be generated if an illegal access is detected.

When not using an RTOS, the uses of the MPU are somewhat limited unless the application performs significant reconfiguration 
of the MPU during run time. Figure 4-3 shows a memory map where the MPU is used to restrict access to the used FLASH, 
used RAM and certain peripherals. This is a useful diagnostic but not enough to prove any spatial separation of processes 
within the system.

Figure 4-2 Mixed SIL Software Architecture

Figure 4-3 Basic MPU configuration
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Using processor privilege modes (e.g. System or User) can provide more options to define more precise memory regions 
but this is still generally insufficient to fully segregate safety and non-safety critical code.

When using an RTOS, the application is broken up into tasks or threads. Communication between tasks is frequently 
accomplished with Queues or Events that are managed by the RTOS. This gives much more opportunity for enforcing 
partitioning at a fundamental level if the RTOS provides native support for the MPU. If the RTOS in use does not provide 
native support for the MPU, then we have a similar scenario to the previous arrangement except that we have a new problem, 
the RTOS code and data. The RTOS is managing the task switching and is responsible for scheduling, therefore from a 
Function Safety viewpoint this must be at the highest SIL level of the application and we cannot use protection techniques 
to partition COTS or SOUP since the operation of this implicitly affects the operation of the application. This means that we 
must either use a certified RTOS that natively supports the MPU or test it ourselves. Many commercial RTOS’s have a long 
history and there is some ‘proof in use’ claims but this is notoriously hard to quantify in a functional safety environment.

4.3.1 SAFERTOS a Certified RTOS with Integrated MPU Support

When using an RTOS with integrated MPU support, developers can add a degree of spatial separation. Firstly, it is desirable 
to spatially separate the kernel code and data from unauthorised access by the application. Obviously the correct operation 
of the kernel is necessary to ensure that the safety critical software is scheduled correctly. Figure 4-4 shows the memory 
map of a system where:

• All flash code has read and execute permissions.
• Kernel code has supervisor read and execute permissions only.
• Kernel data has supervisor read and write permissions only.
• General access is permitted to the processor peripherals.
• No other access is granted to the RAM (this means that any necessary access must be explicitly granted in an 

individual task basis

Figure 4-4 Protecting the Scheduler Kernel with MPU regions

Secondly, integrated MPU Support allows us to provide a degree of task isolation by protecting user task stacks. Figure 
4-5 shows a system where each task has an MPU region that covers the stack allocated to the task. This region is 
reprogrammed on each context switch so that the active task cannot corrupt other task stacks or memory buffers.
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Figure 4-6 Configurable MPU regions for each Task

Finally, integrated MPU Support allows us to reprogram some of the MPU during each context switch and therefore allow 
each task to have its own set of configurable regions. Figure 4-6 shows a system where:

• There is a global data region that tasks 1 and 2 have full access to but task 3 has only read access.
• There is a shared region between tasks 1 and 2.
• Task 3 has a private data region.

Figure 4-5 Protecting Task Stacks with MPU regions
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4.4 Temporal Separation using Checkpoints
Temporal separation is much harder in an embedded real time system, by definition we are responding to events and timely 
response to these events is crucial. Checkpoints is a feature that can be used to detect scheduling issues and help to prove 
temporal separation. Note that this does not enforce temporal separation, it merely offers a means to detect when temporal 
separation has been breached.

4.4.1 Temporal Scheduling Problems

Figure 4-7 shows a system that has two interrupts that each trigger a task to process the event. In addition, there is a high 
priority periodic task and a low priority periodic task.

Figure 4-7 Temporal Scheduling Problems

In this example there is severe instability in the time taken to complete the low priority periodic processing and in one 
instance the processing has not completed when the pass is due to commence. In addition, there are severe delays in 
responding to the event that triggers the low priority event based task. Depending on the system in question this may be 
acceptable and perhaps some improvements can be made by altering task priorities; however it may be the case that a 
safety critical task has a define time profile that must be adhered to to maintain the correct operation of the system.

4.4.2 Using Software Timers to Monitor Task Execution

Checkpoints is a very simple concept where two software timers are used to monitor the execution of a task. Figure 4-8 
shows a task that has two software timers associated with it. There is a checkpoint monitoring point within the task, if T1 
has not expired at that point then there is a task underrun situation. The checkpoint monitoring point also resets both T1 
and T2; therefore if at any point T2 expires then there is a task overrun condition. The precise action to take in the case of a 
scheduling breach is application specific and an error callback hook can be triggered when an error is detected.

Figure 4 8 Checkpoint Timers
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Variations on this approach can be used to monitor event driven tasks, or whole safety functions that may involve the 
interaction of multiple tasks and events.

4.5 Data Protection with SAFEXchange
The SAFEXchange Safety Component preserves the SIL of data shared across black channel communication buses within 
a multi-processor, multi-core environment. As such it forms a safety communication layer between the application and 
communication software that adds integrity information to data packets before transmission. Upon reception, the additional 
integrity information is used to verify the correctness of the data packet before making it available to the application layer.

SAFEXchange uses the principles defined in the Functional Safety Fieldbus Standard, IEC 61784-3 to determine the 
correctness of the data. This standard defines the eight error types that occur in a ‘Black Channel’ communication system 
and outlines the safety measures required to protect against them. The potential failure modes (Data Corruption, Unwanted 
Repetition, Wrong Sequencing, Loss, Inacceptable Delay, Insertion, Masquerade and incorrect addressing) are shown in 
Figure 4-9 together with the mitigation strategy included within the SAFEXchange protocol layer.

Figure 4-9 Communication Failure Modes and Mitigations

Mitigations

Failures Identifier Sequence 
Counter Timestamp Checksum

Incorrect 
Addressing X X

Corruption X
Delay X
Repetition X
Incorrect 
Sequence X X

Loss X
Insertion X X
Masquerade X X X X
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User feedback is essential to the continued maintenance and development of SAFERTOS. Please provide all software 
and documentation comments and suggestions to the most convenient contact point listed below.

Contact WITTENSTEIN high integrity systems
Address: WITTENSTEIN high integrity systems
  Brown’s Court, Long Ashton Business Park
  Yanley Lane, Long Ashton
  Bristol, BS41 9LB
  England

Phone:  +44 (0)1275 395 600
Email:  support@HighIntegritySystems.com 
 
 
Website  www.HighIntegritySystems.com

All Trademarks acknowledged.

Contact Information


