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Design Process, Formalism for System design Design Example: Model Train Controller. 
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Bus-Based Computer Systems: CPU Bus, Memory Devices, I/O devices, Component Interfacing, 
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Program Design and Analysis: Components for embedded programs, Models of programs, Assembly, 
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analysis, Software performance optimization, Program-Level energy and power analysis, Analysis and 

optimization of program size, Program validation and testing. Design Example: Software modem. 
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UNIT – 5 6 Hours 

Real Time Operating System (RTOS) Based Design – 1: Basics of OS, Kernel, types of OSs, tasks, 

processes, Threads, Multitasking and Multiprocessing, Context switching, Scheduling Policies, Task 

Communication, Task Synchronization. 
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RTOS-Based Design - 2: Inter process Communication mechanisms, Evaluating OS performance, Choice 
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UNIT 1 

Embedded Computing 

1.1 COMPLEX SYSTEMS AND MICROPROCESSORS 

 

What is an embedded computer  system? Loosely  defined, it 

is any device  that includes a programmable computer but is 

not itself intended to be a general-purpose computer. Thus, a PC 

is not itself an embedded computing system, although PCs are 

often used to build embedded computing systems. But a fax 

machine or a clock  built from a microprocessor  is  an 

embedded computing system. 

 

1.1.1 Embedding Computers 

 

A microprocessor is a single-chip CPU. Very  large scale 

integration (VLSI) stet—the acronym is the name technology 

has allowed us to put a complete CPU on a single chip since 

1970s, but those CPUs were very simple. The first 

microprocessor- the Intel 4004, was designed for an embedded 

application, namely, a calculator. The calculator was not a 

general-purpose computer—it merely  provided  basic 

arithmetic functions. However, Ted Hoff of Intel  realized that 

a general-purpose computer programmed properly could 

implement the required function, and that the computer-on-a- 

chip could then be  reprogrammed for use  in other  products 

as well. Since integrated circuit design was (and still is) an 

expensive and time- consuming process, the ability to  reuse 

the hardware design by changing the software was a key 

breakthrough. The HP-35 was the first handheld calculator to 

perform transcendental functions [Whi72].  It was  introduced 

in 1972, so it used several chips to implement the CPU, rather 

than a single-chip microprocessor. How- ever, the ability to 

write programs to perform math rather than having to design 

digital circuits to perform operations like trigonometric 

functions was critical to the successful design  of  the 

calculator. 
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1.1.2 Characteristics of Embedded Computing Applications 

 

Embedded computing is in many ways  much  more 

demanding than the sort of programs that  you  may  have 

written  for  PCs  or  workstations.  Functionality is important 

in  both  general-purpose  computing  and  embedded 

computing, but embedded applications must meet many other 

constraints as well. 

 

 
■ Complex algorithms: The operations performed by the 

microprocessor may be very sophisticated. For example, the 

microprocessor that controls an automobile engine must 

perform complicated filtering functions to opti- mize the 

performance of the car while minimizing pollution and 

fuel utilization. 

 

 
■ User interface: Microprocessors are frequently used to 

control complex user interfaces that may include multiple 

menus and many options. The moving maps in Global 

Positioning System (GPS) navigation are good examples of 

sophisticated user  interfaces. 

 

■ Real time: Many embedded computing systems have to 

perform in real time— if the data is not ready by a certain 

deadline, the system breaks. In some cases, failure to meet a 

deadline is unsafe and can even endanger lives. In other cases, 

missing a deadline does not create safety problems but does 

create unhappy customers—missed deadlines in printers, for 

example, can result in scrambled pages. 

 

 
■ Multirate: Not only must operations be completed by 

deadlines, but many embedded computing  systems  have 

several real-time activities going on at the same time. They 

may simultaneously control some operations that run at slow 

rates and others that  run  at  high  rates.  Multimedia 

applications  are prime   examples  of  multirate  behavior. The 
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audio and video portions of a multimedia stream run at very 

different rates, but they must remain  closely  synchronized. 

Failure to meet a deadline on either the audio or video portions 

spoils  the  perception of the  entire  presentation. 

 

 
■ Manufacturing cost: The total cost of building the system 

is very important in many cases. Manufacturing cost is 

determined by many factors, including the type of 

microprocessor used, the amount of memory required, and the 

types of I/O devices. 

 

 
■ Power and energy: Power  consumption  directly affects 

the cost of the hardware, since a larger power supply 

may be necessary. Energy con- sumption affects 

battery life, which is important in many applications, as 

well as heat consumption, which can be important even 

in desktop applications. 

 

1.1.3 Why Use Microprocessors? 

 

There are many ways to design a digital system: custom logic, 

field-programmable gate arrays (FPGAs), and so on. Why use 

microprocessors? There are two answers: 

 

 
■ Microprocessors are a very efficient way to implement 

digital  systems. 

 

 

■ Microprocessors make it easier to design families of products 

that can be built to provide various feature sets at different 

price points and can be extended to provide new features to 

keep up with rapidly changing markets. 

 

 
1.1.4 The Physics of Software 
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Computing is a physical act. Although PCs have trained us to 

think about computers as purveyors  of  abstract  information, 

those  computers  in  fact  do  their  work  by moving  electrons 

and  doing  work.  This  is  the  fundamental  reason  why 

programs take  time  to finish, why  they  consume energy, etc. 

 

A prime subject of this book is what we  might  think  of as 

the physics of software. Software performance and energy 

consumption are very important prop- erties when we are 

connecting our embedded computers to the real  world. We 

need to understand the sources of performance and power 

consumption if we are to be able to design programs that meet 

our application’s goals. Luckily, we don’t have to optimize our 

programs by pushing around electrons. In many cases, we can 

make very high-level decisions about the structure of our 

programs to greatly improve their real-time performance and 

power consumption. As much as possible, we want to make 

computing abstractions work for us as  we  work  on  the 

physics of our software systems. 

 

 

 
1.1.5 Challenges in Embedded Computing System Design 

 

External constraints are one important source of difficulty in 

embedded system design. Let’s consider some important 

problems that must be taken into account in embedded system 

design. 

 

 
How much hardware do we need? 

 

We have a great deal of control over the  amount  of 

computing power we apply to our problem. We cannot only 

select the type of microprocessor used, but also select the 

amount of memory, the peripheral devices, and more. Since we 

often must meet both performance  deadlines  and 

manufacturing cost constraints, the choice of hardware is 

important—too little hardware and the system fails to meet its 

deadlines, too much  hardware and it becomes too expensive. 
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How do we meet deadlines? 

 

The brute force way of meeting a deadline is to speed  up 

the hardware so that the program runs faster. Of course, that 

makes the system more expensive. It is also entirely possible 

that increasing the CPU clock rate may not make enough 

difference to execution time, since the program’s speed may be 

limited by the memory system. 

 

 
How do we minimize power consumption? 

 

In battery-powered applications, power consumption is 

extremely important. Even in nonbattery  applications, 

excessive  power  consumption  can  increase  heat  dis- 

sipation. One way to make a digital system consume less 

power is to make it un more slowly, but naively  slowing 

down the system can obviously lead to missed deadlines. 

Careful design  is  required  to  slow  down  the  noncritical 

parts of the machine for power consumption while still 

meeting necessary performance goals. 

 

 

How do we design for upgradability? 

 

The hardware platform may be used over several product 

generations, or for several different versions of a product in 

the same generation, with few or no changes. However, we 

want to be able to add features by changing software. How 

can we design a machine that will provide the required 

performance for software that we haven’t  yet written? 

 

 

How Does it Really work ? 

 

Reliability is always important when selling products— 

customers  rightly   expect that  products they  buy  will  work. 
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Reliability is especially important in some appli- cations, such 

as safety-critical systems. If we wait until we have a running 

system and try to eliminate the bugs, we will be too late—we 

won’t find enough bugs, it will be too expensive to fix them, 

and it will take too long as well. Another set of challenges 

comes from the characteristics of the components and systems 

them- selves. If workstation programming is like assembling a 

machine on a bench, then embedded system design is often 

more like working on a car—cramped, delicate, and difficult. 

Let’s consider some ways in which the nature of embedded 

computing machines makes their design more difficult. 

 

 

■ Complex testing: Exercising an embedded system is 

generally more difficult than typing in some data. We may 

have to run a real machine in order to generate the proper 

data. The timing of data is often important, meaning that we 

cannot separate the testing of an embedded computer from the 

machine in which it is embedded. 

 

 

■ Limited  observability   and   controllability: Embedded 

computing systems usually do not come with keyboards 

and screens.This makes it more difficult to see what is going 

on and to affect the system’s operation. We may be forced 

to watch the values of electrical signals on the 

microprocessor bus, for example, to know what is going on 

inside the system. Moreover, in real-time applica- tions we 

may not be able to easily stop the system to see what is going 

on inside. 

 

 

■ Restricted development environments: The development 

environments for embedded systems (the tools used to 

develop software and hardware) are often much more limited 

than those available for PCs and workstations. We 

generally compile code on one type of machine, such as a PC, 

and download it onto the embedded system. To debug the code, 
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we  must  usually rely  on pro- grams  that  run  on  the  PC or 

workstation and then look inside the embedded system. 

 
1.1.6 Performance in Embedded Computing 

 

Embedded system designers, in contrast, have a very clear 

performance goal in mind—their program must meet its 

deadline. At the heart of embedded computing is real-time 

computing , which is the science and art of programming to 

deadlines. The program receives its input data; the deadline is 

the time at which a computation must be finished. If the 

program does not produce the required  output  by  the 

deadline, then the program does not work, even if the output 

that  it eventually produces is functionally correct. 

 

■ CPU: The CPU clearly influences the behavior of the 

program, particularly when the CPU is a pipelined processor 

with  a cache. 

 

 

■ Platform: The platform includes the bus and I/O devices. The 

platform com- ponents that surround the CPU are responsible 

for feeding the CPU and can dramatically affect its 

performance. 

 

 

■ Program: Programs are very large and the CPU sees only a 

small window of the program at a time. We must consider the 

structure of the entire program to determine its overall 

behavior. 

 

■ Task: We generally run several programs simultaneously on a 

CPU, creating a multitasking system. The tasks interact with 

each other in ways that have profound implications for 

performance. 

 

■ Multiprocessor: Many embedded systems have more than 

one processor— they may include multiple programmable 

CPUs as well   as accelerators.  Once again, the interaction 
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between these processors adds yet more complexity to the 

analysis of overall system  performance. 

 
1.2 THE EMBEDDED SYSTEM DESIGN PROCESS 

 

A design methodology is important for three reasons. First, it 

allows us to keep a scorecard on a design to ensure that we 

have done everything we need to do, such as optimizing 

performance or perform- ing functional tests. Second,  it 

allows  us to develop computer-aided design  tools. Developing 

a single program that takes in a concept for an embedded 

system and emits a completed design would be a daunting task, 

but by first breaking the process into manageable steps, we can 

work on automating (or at least semiautomating) the steps one 

at a time. Third, a design methodology makes it much easier for 

members of a design  team to communicate. By defining the 

overall process, team members can more easily understand 

what they are supposed to do, what they should receive from 

other team members at certain times, and what they are to 

hand off when they complete their  assigned  steps.  Since 

most embedded systems  are  designed by teams, coordination 

is perhaps the most important role of a well-defined design 

methodology. 

 

specification, we create a more detailed description of what 

we want. But the specification states only how the system 

behaves, not how it is built. The details of the system’s 

internals begin to take shape when  we develop the 

architecture, which gives the system structure in terms of large 

components. Once we know the components we need, we can 

design those components, including  both  software modules 

and any specialized hardware we need. Based on those 

components, we can finally build a complete system. 

 

In this section we will consider design from the top–down— 

we will begin with the most abstract description of the system 

and conclude with concrete details. The alternative is a 

bottom–up view in which we start with components to build a 

system. Bottom–up design steps are shown in the figure as 

dashed-line arrows. We need bottom–up design because we do 
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not have perfect insight into how later stages of the design 

process will turn out. Decisions at one stage of design are based 

upon estimates of what will happen later: How fast can we make 

a particular function run? How much memory will we need? 

How much system bus capacity do we need? If our estimates 

are inadequate, we may have to backtrack and amend our 

original decisions to take the new facts into  account.  In 

general, the less experience we have with  the  design  of 

similar systems, the more we will have to rely on bottom-up 

design information to help us refine the system 

 

But the  steps in the  design process are only one axis along 

which we can view embedded system design. We also need to 

consider the major  goals  of the design: 

 

 
■ manufacturing cost; 

 

 

■ performance ( both overall speed  and deadlines); and 

 

 
■ power consumption. 

 

 

We must also consider the tasks we need to perform at every 

step in the design process. At each step in the design, we add 

detail: 

 

 
■ We must analyze the design at each step to determine how 

we can meet the specifications. 

 

 
■ We must then refine the design  to add detail. 
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■ And we must verify the design to ensure that it still meets all 

system  goals, such  as cost, speed, and so on. 

 

 

 

 
 

1.2.1 Requirements 

 

Clearly, before we design a system, we  must  know  what 

we are designing. The initial stages of the design process 

capture this information for use in creating the architecture 

and components. We generally proceed in two phases: First, we 

gather an informal description from the customers known as 

requirements, and we refine the  requirements into  a 

specification that contains enough information to begin 

designing the system  architecture 

 

■ Performance: The speed of the system is often a major 

consideration both for the usability of the system and for its 

ultimate cost. As we have noted, perfor- mance may be a 

combination of soft performance metrics such as approximate 

time to perform a user-level function and hard deadlines by 

which a particular operation must be completed. 

 

 
■ Cost: The target cost or purchase price for the system is 

almost always a consideration. Cost typically has two major 

components: manufacturing cost includes the cost of 

components and assembly; nonrecurring  engi-  neering 

(NRE) costs include the personnel and other costs of designing 

the system. 

 

 
■ Physical size and weight: The physical aspects of the 

final system can vary greatly depending upon the 

application. An industrial control system for an assembly line 

may be designed to fit into a standard-size rack with no strict 

limitations on weight. A handheld device typically has tight 
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requirements on both size and weight that can ripple through 

the entire system design. 

 

 
■ Power consumption: Power,  of  course, is  important 

in battery-powered systems and is often important in other 

applications as well. Power can be specified in the 

requirements stage in terms of battery life—the customer is 

unlikely to be able to describe the allowable wattage. 

 

 

Validating a set of requirements is ultimately a psychological 

task since it requires understanding both  what  people want 

and how they communicate those needs. One good way to 

refine at least the user interface portion of a system’s 

requirements is to build a  mock-up. The mock-up may use 

canned data to simulate functionality in a restricted 

demonstration, and it may be executed on a PC or a 

workstation. But it should give the customer a good idea of 

how the system will be used and how the user can react to it. 

Physical, nonfunctional models of devices can also give 

customers a better idea of characteristics such as size and 

weight. 

 

shows a sample requirements form that can be filled  out at 

the start of the project. We can use the form as a checklist in 

considering the basic characteristics of the system. Let’s 

consider the entries in the form: 

 

 
■ Name: This is simple but helpful. Giving a name to the 

project not only sim- plifies talking about it to other people but 

can also crystallize the purpose of the machine. 

 

 
■ Purpose: This should be a brief one- or two-line description of 

what the system is supposed to do. If you can’t describe the 

essence of your system  in one or two lines, chances are that 
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you don’t understand it well  enough. 

 

 

■ Inputs and outputs: These two entries are more complex 

than they seem. The inputs and outputs to the system 

encompass a wealth of detail: 

 

 
— Types of data: Analog electronic signals? Digital data? 

Mechanical inputs? 

 

— Data characteristics:  Periodically  arriving  data,  such 

as digital audio samples? Occasional user inputs? How many 

bits per data element? 

 

 

 
— Types of I/O devices: Buttons? Analog/digital 

converters? Video displays? 

 

 

■ Functions: This is a more detailed  description  of  what 

the system does. A good way to approach this is to work from 

the inputs to the outputs: When the system receives an input, 

what does it do? How do user interface inputs affect these 

functions? How do different functions interact? 

 

 

 

 

 
■ Performance:  Many  embedded  computing systems  spend 

at least some time controlling physical devices or processing 

data coming from the physical world. In most of these cases, the 

computations must be performed within a certain time frame. 

It is essential that the performance requirements be identified 

early since they must be carefully measured during 

implementation to ensure that the system  works  properly. 
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■ Manufacturing cost: This includes primarily the cost of 

the hardware compo- nents. Even if you don’t know exactly 

how much you can afford to spend on system components, 

you should have some idea of the eventual cost range. Cost 

has a substantial influence on architecture: A machine that is 

meant to sell at $10 most likely has a very different 

internal structure than a $100 system. 

 

 
■ Power: Similarly, you may have only a rough idea  of how 

much power the system can consume, but a little information 

can go a long way. Typically, the most important decision is 

whether the machine will be battery powered or plugged into 

the wall. Battery-powered machines must be much more 

careful about how they spend energy. 

 

 
■ Physical size and weight: You should give some 

indication of the physical size of the system to help guide 

certain architectural decisions. A desktop machine has much 

more flexibility in the components used than, for example, a 

lapel- mounted voice recorder. 

 

 
A more thorough requirements analysis for a large system 

might use a form similar to Figure 1.2 as a summary of the 

longer requirements document. After an introductory section 

containing this form, a longer requirements document could 

include details on each of the items mentioned in the 

introduction. For example, each  individual feature   described 

in the introduction in a single sentence may be described in 

detail  in a section of the specification. 

 

After writing the requirements, you should check them for 

internal consistency: Did you forget  to assign  a function  to 

an input or output? Did you consider all the modes in which 

you want the system to operate? Did you place an unrealistic 

number of features into a battery-powered, low-cost  machine? 
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To  practice  the  capture  of   system   requirements, 

Example 1.1 creates the requirements for a GPS moving map 

system. 

 

 

 
Example:1.1  Requirements analysis of a GPS moving map 

 

The moving map is a handheld device that displays for the user a 

map of the terrain around the user’s current position; the map 

display changes as the user and the map device change posi- tion. 

The moving map obtains its position from the GPS, a satellite- 

based navigation system. The moving map display might look 

something like the following figure. 

 

 

 
■ Functionality: This system is  designed  for  highway  driving 

and  similar  uses,  not nautical  or aviation uses  that  require 

more specialized databases and functions.  The system should 

show major roads and other landmarks available in standard 

topographic   databases. 

 

 
■ User interface: The screen should have at least 400 600 pixel 

resolution. The device should be controlled by no more than three 

buttons. A menu system should pop up on the screen when 

buttons are pressed to allow the user to make selections to control 

the system. 

 

 
■ Performance: The map should scroll smoothly. Upon power-up, a 

display should take no more than one second to appear, and the 

system should be able to verify its position and display the current 

map within 15 s. 
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■ Cost: The selling cost (street price) of the unit should be no 

more than $100. 

 

 

■ Physical size and weight: The device should fit comfortably in 

the palm of the hand. 

 

 

■ Power  consumption:   The  device  should  run  for at  least 

eight  hours  on  four  AA 

 

batteries. 

 

 

 
1.2.2 Specification 

 

The specification is more precise—it serves as the contract 

between the customer and the architects. As such, the 

specification must be carefully written so that it accurately 

reflects the customer’s requirements and does so in a way that 

can be clearly followed during  design. 

 

Specification is probably the least familiar phase of this 

methodology for neo- phyte designers, but it is essential to 

creating working systems with a minimum of designer effort. 

Designers who lack a clear idea of what they  want  to build 

when they  begin  typically make  faulty  assumptions early   in 

the process that aren’t obvi- ous until they have a working 

system. At that point, the only solution is to take the machine 

apart, throw away some of it, and start again. Not only does this 

take a lot of extra time, the resulting system is also very  likely 

to  be  inelegant, kludgey, and bug-ridden. 

 
The specification should be understandable enough so that 

someone can verify that it meets system requirements and 

overall expectations of the customer. It should also be 

unambiguous enough that designers know what they need to 

build. Designers 



Embedded Computing Systems 10CS72 

Dept of CSE Page 19 

 

 

 

 

 

1.2.3 Architecture Design 

 

The specification does not say how the system does things, 

only what the system does. Describing how the system 

implements those functions is the purpose of the architecture. 

The architecture is a plan for the overall structure  of  the 

system that will be used later to design the components that 

make up the architecture. The creation of the architecture is 

the first phase of what many designers think of as design. 

 

To  understand  what an   architectural   description   is,  let’s 

look at a sample  archi- tecture for the  moving  map  of Example 

1.1. Figure 1.3 shows  a sample  system architecture in the 

form of a block diagram that shows major operations and data 

flows among them. 

 

 

 

 

 
This block diagram is still quite abstract—we have not yet 

specified which oper- ations will be performed by software 

running on a CPU, what will be done by special-purpose 

hardware, and so on. The diagram does, however, go a long 

way toward describing how to implement the functions 

described in the specification. We clearly  see,  for  example, 

that we need to search the topographic database and to render 

(i.e., draw) the results for the display. We have chosen to 

separate those functions so that we can  potentially do them 

in parallel—performing rendering  separately from searching 

the database may help us update the screen more fluidly. 

 

1.2.4 Designing Hardware and Software Components 

 

The architectural description  tells  us  what  components  we 

need. The component design effort builds those components in 

conformance to the architecture and spec- ification. The 

components  will    in  general  include  both   hardware—FPGAs, 
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boards, and so on—and software modules. 

 
Some of the components will be ready-made. The CPU, for 

example, will be a standard component in almost all cases, as 

will memory chips and many other com- ponents. In the 

moving map, the GPS receiver is a good example of a 

specialized component that will  nonetheless  be  a 

predesigned, standard component. We can also make use of 

standard software modules. One good example is the 

topographic database. Standard topographic  databases  exist, 

and you probably want to use stan- dard routines to access the 

database—not only is the data in a predefined format, but it is 

highly compressed to save storage. Using standard software for 

these access functions not only saves us design time, but it may 

give us a faster  implementation for specialized functions such 

as the data decompression phase. 

 

 

 
1.2.5 System Integration 

 

System integration is difficult because it usually uncovers 

problems. It is often hard to observe the system in sufficient 

detail to determine exactly what is wrong— the debugging 

facilities for embedded systems are usually much more limited 

than what you would find on desktop systems. As a result, 

determining why things do not stet work correctly and how 

they can be fixed is a challenge in itself. 

 

1.3 FORMALISMS FOR SYSTEM DESIGN 

 

As mentioned in the last section, we perform a number of 

different design tasks at different levels of abstraction 

throughout this book: creating requirements and 

specifications,architecting the system,designing code,and 

designing tests. It is often helpful to conceptualize these tasks 

in diagrams. Luckily, there is a visual language that can be used 

to capture all these design tasks: the Unified Modeling 

Language (UML) [Boo99, Pil05]. UML was designed to be 

useful  at many  levels  of abstraction in  the   design   process. 
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UML is useful because it encourages design by successive 

refinement and progressively adding detail to the design, rather 

than rethinking the design at each new level of abstraction. 

 

UML is an object-oriented modeling language. We will see 

precisely what we mean by an object in just a moment, but 

object-oriented design emphasizes two concepts  of 

importance: 

 

 
■ It encourages the design to be described as a number of 

interacting objerather than a few large monolithic blocks  of 

code 

 

 
■ At least some of those objects will  correspond to real 

pieces of software or hardware in the system. We  can  also 

use UML to model the outside world that interacts with our 

system, in which case the objects may  correspond to people 

or other machines. It is sometimes important to implement 

something we think of at a high level as a single object using 

several distinct pieces of code or  to otherwise break up the 

object  correspondence in the implementations. 

 

Object-oriented (often abbreviated OO) specification can be 

seen  in two complementary ways: 

 

 
■ Object-oriented specification allows a system  to be described 

in a way that closely models real-world objects and their 

interactions. 

 

■ Object-oriented specification provides a basic set  of primitives 

that can be used to  describe  systems  with particular 

attributes, irrespective of the relationships of those systems’ 

components to real-world objects. 
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Both views are useful. At a minimum, object-oriented 

specification is a set of linguistic  mechanisms.  In  many 

cases, it is useful to describe a system in terms of real-world 

analogs. However, performance, cost, and so  on may dictate 

that we change the specification to be different in some ways 

from the real-world elements we are trying to model and 

implement. In this case, the object-oriented specification 

mechanisms are still useful. 

 

What is the  relationship between an object-oriented 

specification and an object- oriented programming language 

(such as C++ [Str97])? A specification language may not be 

executable. But both object-oriented specification and 

programming languages provide similar basic methods for 

structuring large  systems. 

 

Unified Modeling  Language  (UML)—the  acronym  is 

the name is a large lan- guage, and covering all of it is beyond 

the scope of this book. In this section, we introduce only a 

few basic concepts. In later chapters, as we need a few 

more UML concepts, we introduce them to the basic modeling 

elements introduced here. Because UML is so rich, there are 

many graphical elements in a UML diagram. It is important to 

be careful to use the correct drawing to describe something— 

for instance, UML distinguishes between arrows with open 

and filled-in arrowheads, and solid and broken lines. As you 

become more familiar with the language, uses of the graphical 

primitives will become more natural to you. 

 

1.3.1 Structural Description 

 

By structural description, we mean the  basic  components 

of the system; we will learn how to describe how these 

components act in the next section. The principal component 

of an object-oriented design is, naturally enough, the object . 

An object includes a set of attributes that define its internal 

state. When implemented in a programming language, these 

attributes usually become variables or  constants held  in  a 

data structure. In some cases, we will add the type of the 

attribute after A class is a form of type  definition—all objects 
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derived from the same class have the same characteristics, 

although their attributes may have different values. A class 

defines the attributes that an object may have. It also defines 

the operations that determine how the object interacts with 

the rest of the world. In a programming language, the 

operations would become pieces of code used to manipulate 

the object. The UML description of the Display class is shown 

in Figure 1.6. The class has the name that we saw used in the 

d 1 object since d 1 is an instance of class Display. The 

Display class defines the pixels attribute seen in the object; 

remember that when we instantiate the class an object, that 

object will have its own memory so that different objects of 

the same class have their own values for the attributes. Other 

classes can examine and modify class attributes; if we have to 

do something more complex than use the attribute directly, we 

define a behavior to perform that function. 

 

A class  defines  both  the  interface  for  a  particular  type 

of object and that object’s implementation. When we use an 

object, we do not directly manipulate its attributes—we can 

only read or modify the object’s state through the opera- 

tions that define the interface to the object. (The 

implementation includes both  the  attributes  and   whatever 

code is used to implement the operations.) As long as we do 

not change the behavior of the object seen at the interface, we 

can change the implementation as much as we want. This lets 

us  improve  the  system    by,  for  example,  speeding  up  an 
 

operation  or  reducing  the amount of  memory required 

without  requiring  changes to  anything  else  that uses   the 

object.   
 

There are several types of  relationships  that   can exist 

between  objects and classes: 

 

■ Association occurs between objects that communicate with 

each other but have no ownership relationship between them. 

 

■ Aggregation describes a complex object  made of smaller 

objects. 
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■ Composition is a type  of aggregation in which the owner 

does  not allow access to the component objects. 

 

 
■ Generalization allows  us to define  one class  in terms  of 

another. 

 

Unified Modeling Language, like most object-oriented 

languages, allows us to define one class in terms of another. 

An example is shown in Figure 1.7, where we derive two 

particular types of displays. The first, BW_display, describes 

a black- and-white display. This does not require us to add new 

attributes or operations, but we can specialize both to work on 

one-bit pixels. The second, Color_map_display, uses a 

graphic device known as a color map to allow the user to 

select from a behaviors—for example, large number of 

available colors even with a small number of bits per pixel. 

This class defines a color_map attribute that determines 

how pixel values are mapped onto display colors. A derived 

class inherits all the attributes and operations from its base 

class. In this class, Display is the base class for the two 

derived classes. A derived class is defined to include all the 

attributes of its base class. This relation is transitive—if 

Display were derived from another class, both BW_display 

and Color_map_display would inherit all the attributes 

and operations of Display’s base class as well. Inheritance 

has two purposes. It of course allows us to succinctly describe 

one class that shares some characteristics with another class. 

Even more important, it captures those relationships between 

classes and documents them. If we ever need to change any of 

the classes, knowledge of the class structure helps us 

determine the reach of changes—for example, should the 

change affect only Color_map_display objects or should it 

change all Display objects? 

 

Unified Modeling Language  considers inheritance to be 

one form of general- ization. A generalization relationship is 

shown in a UML diagram as an arrow with an open (unfilled) 

arrowhead.  Both  BW_display  and  Color 
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versions of Display, so Display generalizes both of them. 

UML also allows us to define multiple inheritance, in which 

a class is derived from more than one base class. (Most object- 

oriented    programming    languages    support multiple 

inheritance as well.) An example of multiple inheritance is 

shown in Figure 1.8; we have omit- ted the details of the 

classes’ attributes and operations for simplicity. In this case, 

we have created a Multimedia_display class by combining 

the Display class with a Speaker class for sound. The derived 

class inherits all the attributes and operations of both its base 

classes, Display and Speaker. Because multiple inheritance 

causes the sizes of the attribute set and operations to expand so 

quickly, it should be used with care. 

 

A link  describes a relationship between objects; association 

is to link as class is to object. We need links because objects 

often do not stand alone; associations let us capture type 

information about these links. examples of links and an 

association. When we consider the actual objects in  the 

system, there is a set of messages that keeps track of the 

current number of active messages (two in this example) and 

points to the active messages. In this case, the link defines the 

contains relation. When generalized into classes, we  define 

an association between the message  set  class  and  the 

message class. The association is  drawn  as  a  line between 

the two labeled with the name of the association, namely, 

contains. The ball and the number at the message class end 

indicate that the message message  objects.  Sometimes we 

may want to attach data to the links themselves; we can 

specify this in the association by attaching a class-like box to 

the association’s edge, which holds the association’s data. 

 

Typically, we find that we use a certain combination of 

elements in an object or class many times. We can give these 

patterns names, which are called  stereotypes 

 

1.3.2 Behavioral  Description 

 

We have to specify the behavior of the system as well as its 

structure. One way to specify the behavior of an operation is a 
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state machine. Figure 1.10  shows  UML states; the transition 

between two states is shown  by a skeleton arrow. 

 

These state machines will not rely on the operation of a 

clock, as in hardware; 

 

rather, changes from one state to another  are triggered by the 

occurrence of events. 

 

■ A signal is an asynchronous occurrence. It is defined in UML by 

an object that is labeled as a <<signal>>. The object in the 

diagram serves as a declaration of the event’s existence. 

Because it is an object, a signal may have parameters that are 

passed to the signal’s receiver. 

 

■ A call event follows the model of a procedure call in a 

programming  language. 

 

■ A time-out event causes the machine to leave a state after a 

certain amount of time. The label  tm(time-value) on the 

edge gives the amount of time after which the  transition 

occurs. A time-out  is generally implemented with  an 

external timer. This notation simplifies the specification and 

allows us to defer implementation details about the time-out 

mechanism. 

 

We show the occurrence of all types of signals in a UML 

diagram  in the same way— 

 

Let’s consider a simple state machine specification to 

understand the semantics of UML state machines. A state 

machine for an  operation of the  display   is shown in Figure 

1.12. The start and stop states are special states that help us to 

organize the flow of the state machine. The states in the state 

machine represent different conceptual operations. In some 

cases, we take conditional transitions out of states based on 

inputs or the results of some computation done in the state. In 

other cases, we make an unconditional transition to the next 

state. Both the unconditional and conditional transitions make 

use   of the   call   event.   Splitting   a  complex operation into 



Embedded Computing Systems 10CS72 

Dept of CSE Page 27 

 

 

 

several states helps document the required steps, much as 

subroutines can be used to structure code. 

 

It is sometimes useful to show the sequence of operations 

over time, particularly when  several objects are involved. In 

this case, we can create a sequence diagram, like the one for a 

mouse click scenario shown in Figure 1.13. A sequence 

diagram is somewhat similar to a hardware timing diagram, 

although the time flows verti- cally in a sequence diagram, 

whereas time typically flows  horizontally  in  a  timing 

diagram. The  sequence diagram is designed to show a 

particular scenario or choice of events—it is not convenient for 

showing a number of mutually exclusive possibil- ities. In this 

case, the sequence shows what happens when a mouse click is 

on the menu region. Processing includes three  objects shown 

at the top of the diagram. Extending below each object is its 

lifeline, a dashed line that shows how  long  the object  is 

alive. In this case, all the objects remain alive for the entire 

sequence, but in other cases objects may be created or 

destroyed during processing. The boxes along the  lifelines 

show  the focus of control in the sequence, 

 

that is, when the object is actively processing. In this case, the 

mouse object is active only long enough to create the 

mouse_click event. The display object  remains  in  play 

longer; it in turn uses call events to invoke the menu object 

twice: once to determine which menu item was selected and 

again to actually execute the menu  call.  The  find_region( ) 

call is internal to the display object, so it does not appear as an 

event in the diagram. 

 

1.4 MODEL TRAIN CONTROLLER 

 

In order to learn how to use UML to model systems, we will 

specify a simple system, a model train controller, which  is 

illustrated in Figure 1.14. The user sends messages to the train 

with a control box attached to the tracks.  The control  box 

may have familiar controls such as a throttle, emergency stop 

button, and so on. Since the  train  receives  its  electrical 

power from the two rails of the track, the control  box can send 
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signals to the train over the tracks by modulating the power 

supply voltage. As shown in the figure,the control panel sends 

packets over the tracks to the receiver on the train. The train 

includes analog electronics to sense  the bits being transmitted 

and a control system to set the train motor’s speed  and 

direction based on those commands. Each packet includes an 

address so that the console can control several trains on the 

same track; the packet also includes an error correction code 

(ECC) to guard against transmission errors. This is a one-way 

communication system—the model train cannot send 

commands back to the user. 

 

1.4.1 Requirements 

 

Before  we  can  create a system  specification, we  have  to 

understand the  require- ments.  Here is a basic  set of 

requirements for  the  system: 

 

■ The console  shall be able to control  up to eight trains on a 

single   track. 

 

■ The speed  of each train shall be controllable by a throttle to at 

least 63 different levels  in each  direction (forward and 

reverse). 

 

There shall be an inertia control that shall allow the user to adjust 

the respon- siveness of the train to  commanded  changes  in 

speed. Higher inertia  means  that  the  train  responds  more 

slowly to a change in the throttle, simulating the inertia of  a 

large train. The inertia control will provide  at  least  eight 

different   levels. 

 

■ There shall be an emergency stop button. 

 

■ An error detection scheme will be used to transmit 

messages. 
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Name Model  train  controller 

 

Purpose Control speed  of up to eight model 

trains 

 

Inputs Throttle, inertia  setting, emergency 

stop, train number 

 

Outputs Train control  signals 

 

Set engine speed  based upon inertia settings; respond to 

emergency  stop 

 

Performance Can update train speed at least 10 

times per second 

 

Manufacturing cost $50 

 

Power 10 W (plugs into wall) 

 

size and weight Console should be comfortable for two 

hands, approx- imate size of standard keyboard; weight 2 

pounds 

 

We will develop our system using a widely used standard for 

model train control. We could develop  our own train control 

system from scratch, but basing our system upon a standard has 

several advantages in this case:  It reduces the  amount  of work 

we have to do and it allows us  to  use  a  wide  variety  of 

existing  trains   and  other pieces of equipment. 

 

1.4.2 DCC 

 

The Digital Command Control  (DCC) standard 

(http://www.nmra.org/ 

standards/DCC/standards_rps/DCCStds.html)    was  created   by 

the National Model Railroad Association  to  support 

interoperable     digitally-controlled    model trains. Hob-  byists 

started  building   homebrew   digital control  systems  in  the 

1970s  and Marklin developed its own digital  control  system  in 

the 1980s.  DCC was created to provide a standard  that could  be 

http://www.nmra.org/
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built  by  any  manufacturer so that  hobbyists could  mix  and 

match  components from multiple vendors. 

 

The DCC standard  is given  in two documents: 

 

Standard  S-9.1, the DCC Electrical  Standard, defines  how bits are 

encoded on the  rails  for transmission. 

 

■ Standard S-9.2, the  DCC  Communication  Standard, 

defines the packets that  carry  information  Any  DCC- 

conforming device must meet these specifications. DCC also 

provides  several  recommended  practices.   These   are   not 

strictly required but they provide some hints to manufacturers 

and users as to how to best use DCC. 

 

The DCC standard does not specify many aspects of a DCC 

train system. It doesn’t define the control panel, the type of 

microprocessor used, the programming lan- guage  to be used, 

or many other aspects of a real model train system. The 

standard concentrates on those aspects of system design that 

are necessary for interoper- ability. Overstandardization, or 

specifying elements that do not really need  to  be 

standardized, only makes the standard less attractive and harder 

to implement. 

 

The  Electrical  Standard  deals  with   voltages   and  currents 

on the track.  While the  electrical  engineering aspects of this 

part of the specification are beyond the scope of the book, we 

will  briefly  discuss  the  data  encoding  here.   The  standard 

must be carefully designed because the main  function  of the 

track is to carry  power  to  the  locomotives.  The  signal 

encoding  system  should  not   interfere   with   power 

transmission either to DCC or non-DCC locomotives. A key 

requirement is that the data signal should not change the DC 

value  of the rails. 

 

The data signal swings between two voltages  around  the 

power supply volt- age. As shown in Figure 1.15, bits  are 

encoded  in  the  time  between  transitions,  not   by  voltage 

levels.  A 0 is at least 100    s while  a 1 is nominally 58    s. The 
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dura- tions of the high (above nominal voltage) and  low 

(below nominal voltage) parts of a bit are equal to keep the 

DC value constant. The specification also gives the allowable 

variations in bit times that a conforming DCC receiver must 

be able  to tolerate. 

 

The standard  also  describes other  electrical  properties of 

the  system, such  as allowable transition times for signals. 

 

The DCC Communication Standard describes how bits are 

combined into packets and the meaning of some important 

packets. Some packet types are left undefined in the standard 

but typical uses are given in Recommended Practices 

documents. 

 

■ P is the preamble, which is a sequence of at least 10 1 bits. 

The command station  should send at least 14 of these 1 bits, 

some of which may be corrupted during  transmission. 

 

■ S is the packet start bit. It is a 0 bit. 

 

■ A is an address data byte that gives the address  of the  unit, 

with the  most significant bit  of the  address  transmitted  first. 

An address is eight bits long. The addresses  00000000, 

11111110, and   11111111  are   reserved. 

 

■ s is the data byte start bit, which, like the packet start bit, is a 

0. 

 

 

■ D is the data byte, which includes eight bits. A data byte 

may contain an address, instruction, data, or error correction 

information. 

 

 
■ E is a packet end bit, which is a 1 bit. 

 

A packet includes one or more data byte start bit/data byte 

combinations. Note that the address  data byte is a specific type 
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of data byte. 

 
A baseline packet is the minimum packet that must be 

accepted by all DCC implementations. More complex packets 

are given in a Recommended Practice doc- ument. A baseline 

packet has three data bytes: an address data byte that gives 

the intended receiver of the packet; the instruction data byte 

provides a basic instruc- tion; and an error correction data byte 

is used  to detect and correct transmission errors. 

 

The instruction data byte carries  several  pieces  of 

information. Bits 0–3 provide a 4-bit speed value. Bit 4 has an 

additional speed bit, which  is  interpreted  as  the  least 

significant speed bit. Bit 5 gives direction, with  1 for forward 

and 0 for reverse. Bits 

 

7–8 are set at 01 to indicate that this instruction provides speed 

and   direction. 

 

The error correction databyte is the bitwise exclusive OR 

of the address  and instruction data bytes. 

 

The standard says that the command unit should  send 

packets frequently since a packet may be corrupted. Packets 

should be separated by at least 5 ms. 

 

1.4.3 Conceptual Specification 

 

Digital  Command  Control  specifies  some   important 

aspects of the system, particularly  those  that  allow 

equipment to interoperate. But DCC deliberately does not 

specify everything about a model train control system. We need 

to round out our specification with details that complement the 

DCC spec. A conceptual specifi- cation allows us to 

understand the system a little better. We will use the 

experience gained by writing the conceptual specification to 

help us write a detailed specifi- cation to be given to a system 

architect. This specification does not correspond to what any 

commercial DCC controllers do, but it is simple enough to 

allow  us to cover some basic concepts in system design. 
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A train control system turns commands into packets. A 

command comes from the command unit while a packet is 

transmitted over the rails. Commands  and packets may  not 

be generated in  a  1-to-1 ratio.  In  fact,  the  DCC standard 

says that command units should resend packets in case a 

packet is dropped during transmission. 

 

We now need to model the train control system  itself. 

There are clearly  two major  subsystems: the  command unit 

and the train-board component as shown in Figure  1.16.  Each 

of these subsystems  has  its  own  internal  structure.  The 

basic relationship between them is illustrated in Figure 1.17. 

This figure shows a UML collaboration diagram; we could 

have used another type of figure, such as a class or object 

diagram, but we wanted to emphasize the transmit/receive 

relationship between these major subsystems. The command 

unit and receiver are each rep- resented by objects; the 

command unit sends a sequence of packets to the train’s 

receiver,as illustrated by the arrow.The notation on the arrow 

provides both the type of message sent and its sequence in a 

flow of messages; since the console sends all the messages, we 

have numbered the arrow’s messages as 1..n. Those messages 

are of course carried over the track. Since the track is not a 

computer component and is purely passive, it does not appear 

in the diagram. However, it would be perfectly legitimate to 

model the track in the collaboration diagram, and in some 

situations it may be wise to model such nontraditional 

components in the specification dia- grams. For example, if we 

are worried about what happens when  the track breaks, 

 

■ Knobs* describes the actual  analog knobs, buttons, and levers 

on the control panel. 

 

■ Sender* describes the analog  electronics that send bits 

along the track. Likewise, the Train makes use of three other 

classes that define its components: 
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■ The Receiver class  knows  how  to turn the analog  signals 

on the track into digital form. 

 

■ The Controller class  includes behaviors that  interpret the 

commands and figures out how to control the motor. 

 

■ The Motor interface class defines how to generate the 

analog signals required to control the motor. 

 

We define two classes to represent analog components: 

 

■ Detector* detects analog  signals  on the track  and converts 

them into digital form. 

 

 
■ Pulser* turns digital commands into the analog signals 

required to control the motor speed. 
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UNIT -2 
 

Instruction Set CPUs 

Harvard architectures are widely used today  for  one  very 

simple reason—the separation of program and data memories 

provides higher performance for digital signal processing. 

Processing  signals  in  real-time   places  great   strains   on  the 

data access system in two ways: First, large  amounts  of data 

flow through the  CPU; and second, that data must  be processed 

at precise intervals, not just when the CPU gets  around  to it. 

Data sets that arrive continuously and periodically are called 

streaming data. Having two memories with separate ports 

provides higher memory band- width; not making data and 

memory compete for the same port also makes it easier to move 

the data at the proper times. DSPs constitute a large fraction  of 

all micro- processors sold today, and most of them are Harvard 

architectures. A single example shows the importance of DSP: 

Most of the telephone calls in the world go through at least two 

DSPs, one at each  end of the phone  call. 

 

Another axis along which we can organize computer 

architectures relates to their instructions and how  they are 

executed. Many early computer architectures were what is 

known today   as  complex  instruction  set  computers 

(CISC). These machines provided a  variety  of  instructions 

that may perform very com- plex tasks, such as string 

searching; they also generally used a number of different 

instruction formats of varying lengths. One of the advances in 

the development of  high-performance  microprocessors  was 

the concept of reduced instruction set computers (RISC). 

These computers tended to provide somewhat fewer and sim- 

pler instructions. The instructions were also chosen so that they 

could be efficiently  executed in pipelined processors. Early 

RISC designs substantially outperformed CISC designs of the 

period. As it turns out, we can use RISC techniques to 

efficiently execute at least a common subset of CISC 

instruction sets, so the performance gap  between  RISC-like 

and CISC-like instruction sets has narrowed somewhat. 
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Beyond the basic RISC/CISC characterization, we can classify 

computers by sev- eral characteristics of their instruction sets. 

The instruction set of the computer defines the interface 

between  software  modules  and   the   underlying  hardware; 

the instructions define what the hardware  will  do  under 

certain circumstances. Instructions can have a variety of 

characteristics,  including: 

 

 

■ Fixed versus  variable  length. 

 

 

■ Addressing modes. 

 

 
■ Numbers of operands. 

 

 

■ Types of operations supported. 

 

 

The set of registers available for use by programs is called 

the programming model ,also known as the programmer 

model . ( The CPU has many other registers that are used for 

internal operations and are unavailable to programmers.) 

 

There may be several different implementations of an 

architecture.  In  fact,  the  architecture  definition   serves   to 

define those characteristics that must be true of all 

implementations and what may vary from implementation to 

implementation. Different CPUs  may  offer  different  clock 

speeds, different cache configurations, changes to the bus or 

interrupt lines, and many other changes that  can  make  one 

model of CPU more attractive than another for any given 

application. 
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2.1.2 Assembly Language 

 

Figure 2.3 shows a fragment of ARM assembly code to remind us 

of the basic  features  of  assembly  languages.  Assembly 

languages usually share  the  same  basic  features: 

 

 
■ One instruction appears per line. 

 

 
■ Labels, which give names  to memory  locations, start in the 

first column. 

 

 

■ Instructions must start in the second column or after to 

distinguish them from labels. 

 

 
■ Comments   run  from  some  designated  comment character  (; 

in the  case  of 

 

ARM) to the end of the line. 

 

 

Assembly  language  follows  this   relatively   structured 

form to make it easy for  the  assembler  to  parse  the 

program and to  consider most  aspects of the program  line 

by line. ( It should be  remembered  that  early  assemblers 

were writ- ten in assembly language to fit  in a very small 

amount of memory. Those early restrictions have carried into 

modern assembly languages by tradition.) Figure  2.4 shows 

the format of an ARM data processing instruction such as an 

ADD. For the instruction 

 

 

ADDGT r0,r3,#5 
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the cond field would be set according to the GT condition 

(1100), the opcode field would be set to the binary code for 

the ADD instruction (0100), the first operand register Rn 

would be set to 3 to represent r3, the destination register Rd 

would be set to 0 for r0, and the operand 2 field would be 

set to the immediate value of 5. 

 

Assemblers must also provide some pseudo-ops to help 

programmers create complete  assembly  language  programs. 

An example of a pseudo-op is one that allows data values to be 

loaded into memory locations. These allow constants, for 

example, to be set into memory. An example of a memory 

allocation pseudo-op for ARM is shown in Figure 2.5. The ARM 

% pseudo-op   allocates a block  of memory  of the size specified 

by the operand and initializes those locations to zero. 

 
label1 ADR r4,c 

 

LDR r0,[r4] ; a comment 

ADR r4,d 

LDR r1,[r4] 

SUB r0,r0,r1 ; another  comment 

 

 
 

FIGURE 2.3 

 

An example  of ARM assembly  language 

 

 

 
2.2.1 Processor and Memory Organization 

 

Different versions of theARM  architecture are identified by 

different numbers. ARM7 is a von Neumann architecture 

machine, while ARM9 uses a Harvard architecture. However, 

this difference is invisible to the assembly language 

programmer, except for possible performance differences. 
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The ARM architecture supports two  basic  types  of data: 

 

 

■ The standard ARM word is 32 bits long. 

 

 

■ The word may be divided  into four 8-bit bytes. 

 

 

ARM7 allows addresses up to 32 bits long. An address refers 

to a byte, not a word. Therefore, the word 0 in the ARM address 

space is at location 0, the word 1 is at 4, the word 2 is at 8, and 

so on. (As a result, the PC is incremented by 4 in the absence of 

a branch.) The  ARM processor  can  be  configured  at  power- 

up to address the bytes in a word in either little-endian mode 

(with  the  lowest-order byte  residing in  the  low-order  bits   of 

the  word)  or  big-endian  mode   (the   lowest-order  byte stored 

in the highest bits of the word), as illustrated in Figure 2.6 

[Coh81]. 

 

Bit 31 Bit 0 
 

 

Byte 3 Byte 2 Byte 1 Byte 0 

Little-endian 
 

Bit 31 Bit 0 
 

 

Byte 0 Byte 1 Byte 2 Byte 3 

Big-endian 

 

 

FIGURE 2.6 

 

Byte organizations  within an ARM word. 
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2.2.2 Data Operations 

 

Arithmetic and logical operations in C are performed in 

variables. Variables are implemented as memory locations. 

Therefore, to be able to write instructions to perform C 

expressions and assignments, we  must  consider  both 

arithmetic and logical instructions as well as instructions for 

reading and writing memory. 

 

Figure 2.7 shows a sample fragment of C code with data 

declarations and several assignment statements. The  variables 

a, b, c, x, y, and z all become data locations in memory. In 

most cases data are kept relatively separate from instructions 

in the program’s memory  image. 

 

In the ARM processor, arithmetic and logical operations 

cannot be performed directly on memory locations.  While 

some  processors  allow  such   operations  to   directly 

reference main memory, ARM is a load-store architecture—

data operands must first be  loaded  into  the CPU and then 

stored back to main memory to save the results. Figure 2.8 

shows the registers in the basic ARM programming model. 

ARM has 16 general-purpose registers, r0 through r15. Except 

for r15, they are identical—any operation that can be done 

on one of them can be done on the other one also. The r15 

register has the same capabilities as the other registers, but it 

is also used as the program counter. The program counter should 

of course not be overwritten for use in data operations. 

However, giving the PC the properties of a general-purpose 

register allows the program counter value to be used as an 

operand in computations, which can make  certain 

programming tasks  easier. 

 

The other important basic register in the  programming 

model is  the  cur- rent  program  status  register  (CPSR). 

This register is set automatically during every arithmetic, 

logical, or  shifting  operation. The  top  four  bits  of  the 

CPSR hold the following useful information about  the results 

of that arithmetic/logical operation: 
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■ The negative (N) bit is set when  the result  is negative in 

two’s-complement  arithmetic. 

 

 
■ The zero (Z) bit is set when  every  bit of the result  is zero. 

 

 

■ The carry (C) bit is set when  there  is a carry out of the 

operation. 

 

 
■ The overflow ( V ) bit is set when  an arithmetic operation 

results  in an overflow. 

 

int a, b, c, x, y, z; 

x (a b) c; 

y a*(b c); 

z (a << 2) | (b & 15); 

 

 

FIGURE 2.7 

 

A C fragment  with data  operations. 
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These bits can be used to check easily the results of an 

arithmetic operation. However, if a chain of arithmetic or 

logical operations is performed and  the  inter- mediate states 

of the CPSR bits are important, then they must be checked at 

each step since the next operation changes the CPSR values. 

Example 2.1 illustrates the computation of CPSR bits. 

 

Example 2.1 

 

 
Status bit computation in the ARM 

 

An ARM word is 32 bits. In C notation, a hexadecimal number 

starts with 0x, such as 0xffffffff, which is a two’s-complement 

representation  of 1 in a 32-bit word. 

 

Here are some sample calculations: 

 

 

■ 1  1 0:  Written in 32-bit format, this becomes 0xffffffff 

0x1  0x0, giving the 

 

CPSR value of NZCV 1001. 

 

 

■ 0 1 1: 0x0 0x1 0xffffffff, with NZCV  1000. 

 

 
■ 2 31 1 1 2 31 : 0x7fffffff   0x1 0x80000000,  with 

NZCV 1001. 
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The basic form of a data instruction is simple: 

 

 
ADD r0,r1,r2 

 

 

This instruction sets register r0 to the sum of the  values  stored 

in r1 and r2. In addition to specifying registers as sources for 

operands, instructions may also  provide  immediate  operands, 

which encode a constant value directly in the instruction. For 

example, 

 

 
ADD r0,r1,#2 

 

 
sets r0 to r1 2. 

 

The major data operations are summarized in Figure 2.9. The 

arithmetic opera- tions perform addition and subtraction; the  with- 

carry versions include the current value of the carry bit in the 

computation. RSB performs a subtraction with the order of the two 

operands reversed, so that RSB r0, r1, r2 sets r0 to be r2 r1. The bit- 

wise logical operations perform logical AND, OR,  and  XOR 

operations (the exclusive or is  called  EOR). The  BIC  instruction 

stands for bit clear: BIC r0, r1, r2 sets r0 to r1 and not r2. This 

instruction uses the second  source  operand as a mask:Where a bit in 

the mask is 1, the corresponding bit in the first source operand is 

cleared. The MUL instruction multiplies two values, but with some 

restrictions: No operand may be an immediate, and the two source 

operands must be different registers. The MLA instruction performs a 

multiply-accumulate  operation,  particularly  useful  in   matrix 

operations  and  signal   processing. The  instruction 
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MLA  r0,r1,r2,r3 

 

 

sets r0 to the value r1    r2    r3. 

 

The shift operations are not separate  instructions—rather, shifts 

can be applied to arithmetic and logical instructions. The shift 

modifier is always applied to  the second  source  operand. A left 

shift moves bits up toward the most-significant bits, while a right 

shift moves bits down to the least-significant bit in the word. The 

LSL and LSR modifiers perform left and right logical shifts, filling 

the least-significant bits of the operand with zeroes. The arithmetic 

shift left is equivalent to an LSL, but the ASR copies the sign bit—if 

the sign is 0, a 0 is copied, while if the sign is 1, a 

 

1 is copied. The rotate modifiers always rotate right, moving the 

bits that fall off the least-significant bit up to the most-significant bit 

in the word. The RRX modifier performs a 33-bit rotate, with the 

CPSR’s C bit being inserted above the sign bit of the word; this 

allows the carry bit to be included in the rotation. 

 

 

stored in the register is used as the address to be fetched 

from memory; the result of that fetch  is  the  desired  operand  value. 

Thus,  as  illustrated  in  Figure  2.13,  if  we  set  r1  0  100,  the 

instruction 

 

 

LDR r0,[r1] 
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sets r0 to the value of  memory  location  0x100. 

Similarly, STR r0,[r1] would store the contents of r0 in the memory 

location whose address is given in r1. There are several possible 

variations: 

 

 

LDR r0,[r1, –  r2] 

 

this step. Thus, as shown in Figure 2.14, if we give 

location 0x100 the name FOO, we can use the pseudo-operation 

 

ADR r1,FOO 

 

to perform the same function of loading r1 with  the 

address   0x100. 

 

Example 2.2 illustrates how to implement C assignments 

in ARM instruction. 

 

 

Example 2.2 

 

 

C assignments in ARM instructions 

 

We will use the assignments of Figure 2.7. The semicolon 

(;) begins a comment after an instruction, which continues to the end of 

that line. The statement 

 

 
x (a b) c ; 
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can be implemented by using r0 for a, r1 for b, r2 for c , and 

r3 for x . We also need registers for indirect addressing. In this case, we 

will reuse the same indirect addressing register, r4, for each variable load. 

The code must load the values of a, b, and c into these registers before 

performing the arithmetic, and it must store the value of x back to 

memory when it is done. This code performs the following  necessary 

steps: 

 

 

 
ADR r4,a ; get address for a 

LDR r0,[r4] ; get value of a 

ADR r4,b ; get address for b, reusing 

r4 
 

LDR r1,[r4] ; load  value  of  b 
 

 
x  to a + b 

ADD r3,r0,r1 ; set intermediate result for 

 

ADR r4,c ; get address for c 

LDR r2,[r4] ; get value of c 

SUB r3,r3,r2 ; complete computation of  x 

ADR r4,x ; get  address for  x 

 

STR r3,[r4] ; store x  at proper location 
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LDR r0,[r4] ; get value of a 

 

MUL r2,r2,r0 ; compute final value of y 

ADR r4,y ; get  address for  y 

location 
STR r2,[r4] ; store  value of y  at proper 

 

 

 

 

 

2.2.3 Flow of Control 

 

The B (branch) instruction is the  basic  mechanism  in 

ARM for changing the flow of control. The address  that  is  the 

destination of the branch  is often  called  the  branch  target . Branches 

are PC-relative—the branch specifies the offset from  the  current  PC 

value to the branch  target. The offset is in words, but because the ARM 

is byte- addressable, the offset is multiplied by  four  (shifted  left  two 

bits, actually) to form a byte  address. Thus, the  instruction 

 

 
B #100 

 

 

will  add 400 to the current PC value. 

 

We often wish to branch conditionally,based on the result 

of a given computation. The if statement is a common example. The 

ARM allows any instruction, including branches, to be executed 

conditionally. This allows branches to be conditional, as well as data 

operations. Figure 2.15 summarizes the condition codes. 

 

Example 2.3 
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Implementing an if statement in ARM 

 

We will use the following if statement as an example: 

 

 

if (a <  b) { 

x = 5; 

y = c + d; 

 

} 

 

else x  = c –  d; 

 

The implementation  uses two blocks of code, one for the 

true case and another for the false case.  A branch  may either fall through 

to the true case or branch  to the false case: 

 

; compute and test the   condition 

ADR r4,a ; get address for  a 

LDR r0,[r4] ; get value of a 

ADR r4,b ; get address for b 

LDR r1,[r4] ; get value of b 

CMP r0, r1 ; compare a < b 

BGE fblock ; if a >= b, take branch 

 

; the true block follows 
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MOV r0,#5 ; generate value for x 

 

ADR r4,x ; get address for x STR 

r0,[r4] ; store value of x ADR r4,c ; get 

address for c LDR r0,[r4] ; get value of c 

 

ADR r4,d ; get address for  d 

LDR r1,[r4] ; get  value of d 

ADD r0,r0,r1 ; compute c + d 

ADR r4,y ; get address for y 

STR  r0,[r4] ; store value of y 

 

block 

B after ; branch around the false 

 

; the false block follows 

 

fblock ADR r4,c ; get address for c 

LDR r0,[r4] ; get value of c 

ADR r4,d ; get address for  d 

LDR r1,[r4] ; get  value of d 

SUB r0,r0,r1 ; compute c – d 

ADR r4,x ; get address for x 

 

STR  r0,[r4] ; store value of x after 

... ; code after the if statement 
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Example 2.4 

 

Implementing the C switch statement in ARM 

 

The switch statement in C takes the following form: 
 

 

 

 
... break; 

switch (test) { case 0: ... break; case 1: 

 

... 

 

} 

 

 

The above statement could be coded like an if statement by 

first testing test A, then test B, and so forth. However, it can be more 

efficiently implemented by  using  base-plus-offset  addressing  and 

building what is known as a branch table : 

 

 

ADR r2,test ; get address for test 

LDR r0,[r2] ; load value for test 

ADR r1,switchtab ; load address for 

switch table 

 

LDR r15,[r1,r0,LSL   #2] 

 

switchtab DCD case0 
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Example 2.4 

 

Implementing the C switch statement in ARM 

 

The switch statement in C takes the following form: 
 

 

 

 
... break; 

switch (test) { case 0: ... break; case 1: 

 

... 

 

} 

 

 

The above statement could be coded like an if statement by 

first testing test A, then test B, and so forth. However, it can be more 

efficiently implemented by  using  base-plus-offset  addressing  and 

building what is known as a branch table : 

 

 

ADR r2,test ; get address for test 

LDR r0,[r2] ; load value for test 

ADR r1,switchtab ; load address for 

switch table 

 

LDR r15,[r1,r0,LSL   #2] 

 

switchtab DCD case0 
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DCD case1 

 

... 

 

case0 ... ; code for case 0 

 

... 

 

case1 ... ; code for case 1 

 

... 

 

 

This implementation uses the value of test as an offset into a 

table, where the table holds the addresses for the blocks of code that 

implement the various cases. The heart of this code is the LDR instruction, 

which packs a lot of functionality into a single instruction: 

 

 
 

 
word address. 

■ It shifts the value of r0 left two bits to turn the offset into a 

 

 
 

■ It uses base-plus-offset addressing  to add the left-shifted 

value of test (held in r0) to the address  of the base of the table held in r1. 

 

■ It sets the PC (r15) to the new address  computed by the 

instruction.The loop  is a very  common  C statement, particularly in 

signal  processing code. Loops  can   be  naturally  implemented  using 

conditional  branches.  Because  addressing  mode.  A simple   but 

common  use  of a loop is in the  FIR filter, which is explained in 

Application Example  2.1;  the  loop-based implementation of the FIR 

filter  is described in Example  2.5. 
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Application Example 2.1 

 

FIR filters 

 

A finite impulse response (FIR) filter is a commonly used 

method for processing signals; we make use of it in Section 5.11. The FIR 

filter is a simple sum of products: 

 

 

 

 

 

 

 
Example 2.5 

 

An FIR filter for the ARM 
 

 
follows: 

The  C code  for the  FIR filter of Application Example 2.1 

 

 
 

for (i = 0, f = 0; i < N; i++) 

 

f = f + c[i] * x[i]; 

 

 

We can address the arrays c and x using base-plus-offset 

addressing: We will load one register with the address of the zeroth element 

of each array and use the register holding i as the offset. 

 

The C language [Ker88] defines  a for loop as  equivalent 

to a while loop with proper initialization and termination. Using that rule, 

the for loop can be rewritten as 
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i = 0; 

 

f = 0; 

 

while (i <  N)  { 

 

f =  f +  c[i]*x[i]; 

i++; 

} 

 

 

Here is the code for the loop: 

 

;  loop initiation code 

 

MOV r0,#0 ; use r0 for i, set to 0 
 

 
arrays 

MOV r8,#0 ; use a separate index for 

 

ADR r2,N ; get address for N 

 

LDR  r1,[r2] ; get value of N for loop 

termination test 

MOV r2,#0 ; use r2 for f, set to 0 

ADR r3,c ; load r3 with address of 

base of c array 

 

ADR r5,x ; load r5 with address of 

base of x  array 
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; loop body 

 

loop  LDR r4,[r3,r8] ;  get  value  of  c[i] 

LDR r6,[r5,r8] ; get  value  of  x[i] MUL  r4,r4,r6 

; compute c[i]*x[i] 

 
ADD r2,r2,r4 ; add into running sum f 

 

; update loop counter and array index 

 

ADD r8,r8,#4 ; add one word offset to 

array index 
 

ADD r0,r0,#1 ; add 1  to i 

 

;  test for exit 

CMP r0,r1 

 
loopend... 

BLT loop ; if i < N, continue loop 

 

The other important class  of C statement to consider is the  function. A 

C func- tion returns a value (unless its return  type  is void); subroutine 

or procedure are the common names for such a construct when it does 

not return  a value.  Consider this simple  use of a function  in C: 

 

x = a + b; 

foo(x); 

y  = c - d; 

 

A function returns to the code immediately after the 

function call, in this case the assignment to y. A simple branch is 

insufficient because we would not know where to return. To properly 
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return, we must save the PC value when the procedure/ function is 

called and, when the procedure is finished, set the PC to the address of 

the instruction just after the call to the procedure. (You don’t want 

to endlessly execute the procedure, after all.) The branch-and-link 

instruction is used in the ARM for procedure calls. For instance, 

 

BL foo 

 

will perform a branch and link to the code starting at 

location foo (using PC-relative addressing, of course). The branch and 

link is much like a branch, except that before branching it stores the 

current PC value in r14. Thus, to return from a procedure, you simply 

move the value of r14 to r15: 

 

MOV  r15,r14 

 

You should not,  of  course,  overwrite  the  PC  value 

stored   in  r14  during   the procedure. 

 

The C code shows a series of functions that call other 

functions: f1( ) calls f2( ), which in turn calls f3( ). The right side of 

the figure shows the state of the procedure call stack during the 

execution of f3( ). The stack contains one activation record for each 

active procedure. When f3( ) finishes, it can pop the top of the stack to 

get its return address, leaving the return address for f2( ) waiting at the 

top of the stack for its return.We can also use the procedure call stack 

to pass parameters. The conventions used to pass values into and out 

of procedures is known as procedure  linkage. To  pass  parameters 

into a procedure, the  values  can  be  pushed  onto  the  stack just 

before the procedure call. Once the procedure returns, those values 

must be popped off the stack by the caller, since they may hide a 

return address or other useful information on the stack. 

 

Example 2.6 illustrates the programming of a simple C function. 



Embedded Computing Systems 

10CS72 

Dept of CSE Page 56 

 

 

 

Example 2.6 

 

Procedure calls in ARM 
 

 
2.16: 

We use  as  an  example  one  of the  functions  from Figure 

 

void f1(int a) { 
 

f2(a); 
 

} 
 

 
call to f2(): 

Here is some handwritten code for f1(), which includes a 

 

f1 LDR r0,[r13] ; load value of a 

argument into r0 from stack 

 

; call f2() 

 

STR r14,[r13]! ; store f1's return 

address on the stack 
 

 
onto stack 

STR r0,[r13!] ; store argument to f2 

 

BL f2 ; branch and link to f2 

 

; return from f1() 
 

 
the stack 

SUB r13,#4 ; pop f2's argument off 

 

 
return 

LDR r13!,r15 ; restore registers and 
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We use base-plus-offset  addressing  to load the value passed into f1() into 

a register for use by r1. To call f2(), we first push f1()’s return address, 

stored in r14 by the branch-and-link instruction executed to get into f1(), 

onto the stack. We then push f2()’s parameter onto the stack.  In both 

cases, we use autoincrement addressing to both store onto the stack and 

adjust the stack pointer. To return, we must first adjust the stack to get rid 

of f2()’s parameter that hides return address; we then use autoincrement 

addressing to pop f1()’s return address off the stack and into the PC (r15). 

 

3.1 PROGRAMMING INPUT AND OUTPUT 

 

The basic techniques for I/O programming can be understood relatively 

indepen- dent of the instruction set. In this section, we cover the 

basics of I/O program- ming and place them  in the  contexts of both 

the ARM and C55x. We begin  by discussing the basic  characteristics 

of I/O devices so that we can understand the requirements they place 

on programs that communicate with  them. 
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3.1.1  Input and Output Devices 

 

Input and output devices usually have some analog or nonelectronic 

component— for instance, a disk drive has a rotating disk and analog 

read/write electronics. But the digital logic in the device that is most closely 

connected to the CPU very strongly resembles the logic you would expect 

in any computer system. 

 

Figure 3.1 shows the structure of a typical I/O device and its relationship 

to the CPU.The interface between the CPU and the device’s internals 

(e.g.,the rotating disk and read/write electronics in a disk drive) is a set of 

registers. The CPU talks to the device by reading and writing the registers. 

Devices typically have several  registers: 

 

 
■ Data registers hold values that are treated as data by the device, such as 

the data read or written by a disk. 

 

 
■ Status registers  provide  information about  the  device’s operation, 

such as whether the current transaction has completed. 

 

Application Example 3.1 

 

The 8251 UART 

 

The 8251 UART (Universal Asynchronous Receiver/Transmitter) [Int82] is the 

original device used for serial communications, such as the serial port 

connections on PCs. The 8251 was introduced as a stand-alone integrated 

circuit for early microprocessors. Today, its functions are typically subsumed 

by a larger chip, but these more advanced devices still use the basic 

programming interface defined by the 8251. 

 
The UART is  programmable for a variety of transmission and reception 

parameters. However, the basic format of transmission is simple. Data are 
transmitted  as  streams  of characters, each of which has the following form: 



Embedded Computing Systems 10CS72 

Dept of CSE Page 59 

 

 

 

 

Every character starts with a start bit (a 0) and a stop bit (a 1). The start bit 

allows the receiver to recognize the start of a new character; the stop bit ensures 

that there will be a transition at the start of the stop bit. The data bits are sent as 

high and low voltages at a uniform rate. That rate is known as the baud rate ; the 

period of one bit is the inverse of the baud rate. 

 

Before transmitting or receiving data, the CPU must set the UART’s mode 

registers to correspond to the data line’s characteristics. The parameters for 

the serial port are familiar from the parameters for a serial communications 

program (such as Kermit): 

 

■ the baud rate; 

 

 

■ the number  of bits per character  (5 through 8); 

 

 

■ whether parity is to be included and whether it is even or odd; and 

 

 

■ the length of a stop bit (1, 1.5, or 2 bits). 

 
The UART includes one 8-bit register that buffers characters between the 

UART and the CPU bus. The Transmitter Ready output indicates that the 
transmitter is ready to accept a data character; the Transmitter Empty signal 
goes high when the UART has no characters to send. On the receiver side, the 
Receiver Ready pin goes high when the UART has a character ready to be read 
by the CPU. 

 

 

3.1.2 Input and Output Primitives 

 

Microprocessors can provide programming support for input and output in 

two ways: I/O instructions and memory-mapped I/O . Some architectures, 

such as the Intel x86, provide special instructions (in and out in the case of 

the Intel x86) for input and output. These instructions provide a separate 

address  space  for I/O devices. 
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But the most common way to implement I/O is by memory mapping— 

even CPUs that provide I/O instructions  can  also  implement  memory- 

mapped  I/O.  As  the  name  implies,  memory-mapped   I/O   provides 

addresses for the registers in each I/O device.  Programs  use  the  CPU’s 

normal read and write instructions to  communicate  with  the  devices. 

Example   3.1  illustrates  memory-mapped I/O on the ARM. 

 

 

Example 3.1 

 

Memory-mapped I/O on ARM 

 

We can use the EQU pseudo-op  to define a symbolic name for the memory 

location of our I/O 

 

device: 

 

DEV1 EQU 0x1000 

 

Given that name,  we can  use  the following standard code  to read  and 

write the device register: 

 

 

LDR r1,#DEV1 ; set up  device address 

LDR r0,[r1] ; read DEV1 

LDR r0,#8 ; set up  value to write 

STR r0,[r1] ; write 8  to device 

 

 
How can we directly write I/O devices in a high-level language like C? 

When we define and use a variable in C, the compiler hides the variable’s 

address from us. But we can use pointers to manipulate addresses of I/O 

devices. The traditional names for functions that read and  write arbitrary 

memory locations are peek  and poke. The peek  function  can be written in 

C as: 
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int peek(char *location)  { 
 

return *location; /* de-reference location pointer */ 
 

} 

 

The argument to peek  is a pointer that  is de-referenced by the  C * 

operator to read  the  location. Thus, to read  a device register we  can  write: 

 

 

#define DEV1 0x1000 

 

... 

 

dev_status  =  peek(DEV1);  /* read device register  */ 

 

 
 

The poke function can be implemented as: 

 

 

void poke(char *location, char newval) { 

(*location) =  newval; /* write to location */ 

} 

 

 
 

To write  to the status register, we can use the following code: 

 

 
 

poke(DEV1,8); /*  write  8 to device register  */ 

 

 
 

These  functions can, of course, be used  to read  and write  arbitrary 

memory locations, not just devices. 
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3.1.3 Busy-Wait  I/O 

 

The most basic way  to  use  devices  in  a  program  is  busy-wait  I/O . 

Devices are typically slower than the CPU and may require many cycles to 

complete an opera- tion. If the CPU is performing multiple operations on a 

single device, such as writing several characters to an output device, then it 

must wait for one operation to com- plete before starting  the next  one.  (If 

we try to start writing the second  character before  the  device has  finished 

with the first one, for example, the  device will  prob- ably  never  print  the 

first character.) Asking an I/O device whether it is finished  by reading its 

status register is often called  polling . 

 

Example 3.2 illustrates busy-wait I/O. 

 

 

Example 3.2 

 

 

Busy-wait I/O programming 

 

In this example we want to write a sequence of characters  to  an  output 

device. The device has two registers: one for the character to be written and a 

status register. The status register’s value is 1 when the device is busy writing 

and 0 when the write transaction  has completed. 

 

We will use the peek and poke functions to write the busy-wait routine in C. 

First, we define symbolic names  for the register addresses: 

 

 

#define OUT_CHAR 0x1000 /* output device character 

register   */ 

 

#define OUT_STATUS 0x1001 /* output device status 

register   */ 
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The sequence of characters is stored in a standard C string, which is 

terminated by a null (0) character. We can use peek and poke to send the 

characters and  wait for each transaction  to complete: 

 

 

char *mystring = "Hello, world." /* string to write */ 

 
char *current_char; /* pointer to current position in string 

*/ 

 
current_char  =  mystring;  /*  point  to  head of  string  */ 

while  (*current_char   !=  `\  0')  {  /*  until   null  character */ 

poke(OUT_CHAR,*current_char);  /*  send character to 

device */ 

 
while (peek(OUT_STATUS) != 0); /* keep checking status */ 

current_char++; /*  update character pointer */ 

} 

 

Example 3.3 illustrates a combination of input and output. 

 

Example 3.3 

 

 
Copying characters from input to output using busy-wait I/O 

 

We want to repeatedly read a character  from the input device and write it to the 

output device. First, we need to define the addresses for the device registers: 

 

 

#define IN_DATA 0x1000 

 

#define IN_STATUS 0x1001 

 

#define OUT_DATA  0x1100 
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#define OUT_STATUS 0x1101 

 

 

The input device sets its status register to 1 when a new character has been 

read; we must set the status register back to 0 after the character has been read 

so that the device is ready to read another character. When writing, we must 

set the output status register to 1 to start writing and wait for it to return to 0. 

We can  use  peek  and  poke to repeatedly  perform the read/write operation: 

 

 

while (TRUE)  {  /* perform operation forever */ 

 

/* read a character into achar */ 

 

while  (peek(IN_STATUS) == 0); /* wait until  ready */ 

achar =  (char)peek(IN_DATA); /* read the character */ 

/*  write  achar */ 

poke(OUT_DATA,achar); 

poke(OUT_STATUS,1); /* turn on device */ 
 

while (peek(OUT_STATUS) != 0); /* wait until done */ 

} 
 

3.1.4 Interrupts 

 

Basics 

 

Busy-wait I/O is extremely inefficient—the CPU does nothing but test the 

device status while the I/O transaction is  in  progress.  In many  cases,  the 

CPU could  do useful work  in parallel with  the I/O transaction, such as: 

 

 
■ computation, as in determining the  next  output  to send  to the  device or 

processing the last input received, and 
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■ control  of other I/O devices. 

 

To allow parallelism, we need to introduce new mechanisms into the CPU. 

 

The interrupt mechanism allows devices to signal the CPU and to force 

execu- tion of a particular piece of code. When an interrupt occurs, the 

program counter’s value is changed to point to an interrupt handler routine 

(also commonly known as a device driver ) that takes care of the device: 

writing the next data, reading data that have just become ready, and so on. 

The interrupt mechanism of course saves the value of the PC  at the 

interruption so that the CPU can return to the program that was interrupted. 

Interrupts therefore allow the flow of control in the CPU to change easily 

between different contexts,  such as a  foreground  computation  and 

multiple I/O devices. 

 

As shown in Figure 3.2, the interface between the CPU and I/O device 

includes the following signals  for interrupting: 

 

 
■ the I/O device asserts  the interrupt request signal  when  it wants  service 

from the CPU; and 

 

 
■ the CPU asserts the interrupt acknowledge signal when it is ready to handle 

the I/O device’s request. 

 

The I/O device’s logic decides when to interrupt; for example, it may 

generate an interrupt when its status register goes into the ready state. The 

CPU may not be able to immediately service an interrupt request because it 

may be doing something else that must be finished first—for example, a 

program that talks to both a high-speed disk drive and a low-speed keyboard 

should be designed to finish a disk transaction before handling a keyboard 

interrupt. Only when the CPU decides to acknowledge the interrupt does 

the CPU change the program counter to point to the device’s handler. The 

interrupt handler  operates much like a subroutine, except that  it  is not 

called by the executing program. The program  that  runs  when  no 

interrupt is being handled is often called the  foreground program; when 

the   interrupt  handler  finishes,   it  returns    to  the   foreground  program, 
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wherever processing was interrupted 

 
Example 3.5 

 

 

Copying characters from input to output with interrupts and buffers 

 

Because we do not need to wait for each character, we can make this I/O 

program more sophisticated than the one in Example 3.4. Rather than reading 

a single character and then writing it, the program performs reads and writes 

independently. The read and write routines communicate through the following 

global variables: 

 

 

■ A character  string io_buf will hold a queue  of characters that have been  read 

but not yet written. 

 

 
■ A pair of integers buf_start and buf_end will point to the first and last 

characters  read. 

 

 

■ A integer error will be set to 0 whenever io_buf overflows. 

 
The global variables allow the input and output devices to run at different 

rates. The queue io_buf acts as a wraparound buffer—we add characters to the 
tail when an input is received and take characters from the tail when we are 
ready for output. The head and tail wrap around the end of the buffer array to 
make most efficient use of the array. Here is the situation at the start of the 
program’s execution, where the tail points to the first available character and 
the head points to the ready character. As seen below, because the head and 
tail are equal, we know that the queue  is empty. 

 

 
 

  
 
 

Head  Tail 
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When the first character  is read,  the tail is incremented after the character  is 

added  to the queue,  leaving the buffer and pointers looking like the following: 

 

 
 

Head  Tail 

 

 
 

When the buffer is full, we leave one character in the buffer unused. As the next 
figure shows, if we added another character and updated the tail buffer 
(wrapping it around to the head of the buffer), we would be unable to 
distinguish a full buffer from an empty one. 

 

 
 

 

 

 

  
Head Tail 

 

 

 

 
Here is what happens when the output goes past the end of io_buf: 

 

 
 

 
 

Tail   Head 
 

he following code provides the declarations  for the  above  global  variables 

and some service routines for adding and  removing  characters  from  the 

queue.  Because  interrupt  handlers  are  regular  code,  we  can   use 

subroutines   to  structure   code  just  as  with any program. 
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#define BUF_SIZE 8 

 

char  io_buf[BUF_SIZE]; /* character buffer */ 

 

int buf_head =  0, buf_tail =  0; /* current position in 

buffer  */ 

 

int error = 0; /* set to 1  if buffer  ever overflows */ 

 

 

void empty_buffer()  { /* returns TRUE if buffer is 

empty */ 
 

buf_head ==  buf_tail; 
 

} 

 

 

void  full_buffer() {   /*  returns  TRUE if  buffer is  full  */ 

(buf_tail+1) %  BUF_SIZE  ==  buf_head ; 

 

} 

 

int nchars() {  /* returns the number of characters in 

the buffer */ 

 

if (buf_head >=  buf_tail) return buf_tail –  buf_head; 

else return BUF_SIZE  + buf_tail – buf_head; 

} 

 

void add_char(char achar)  { /* add a character to the 

buffer head */ 



Embedded Computing Systems 10CS72 

Dept of CSE Page 69 

 

 

 

 

io_buf[buf_tail++]   =   achar; 

 

/* check pointer */ 

 

if (buf_tail == BUF_SIZE) 

buf_tail = 0; 

} 
 

char remove_char() {  /* take a character from the 
buffer head */ 

 

char achar; 

 

achar   =   io_buf[buf_head++]; 

 

/* check pointer */ 

 

if (buf_head == BUF_SIZE) 

buf_head  =  0; 

} 
 

 
Assume that we have two interrupt handling routines defined in C, 

input_handler for the input device and output_handler for the  output device. 

These routines work with the device in much the same way as did the busy- 

wait routines. The only complication is in starting the output device: If io_buf 

has characters waiting, the output driver can start a new output transaction by 

itself. But if there are no characters waiting, an outside agent must start a new 

output action whenever the new character arrives. Rather than force the 

foreground program to look at the character buffer, we will have the input 

handler  check  to see whether there is only one character  in the buffer and start 

a new transaction. 

 

Here is the code for the input handler: 
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#define IN_DATA 0x1000 

 

#define IN_STATUS 0x1001 void input_handler() { 

char  achar; 

if (full_buffer()) /* error */ 

 

error =  1; 

 
else {  /*  read  the  character and update pointer */ achar  = 

peek(IN_DATA);  /* read character */ add_char(achar);  /* 
add to  queue */ 

 

} 

 

poke(IN_STATUS,0); /* set  status  register back to  0  */ 

/* if buffer was  empty, start a new output transaction */ 

if  (nchars() == 1) { /* buffer  had been empty until this 

interrupt */ 

 
poke(OUT_DATA,remove_char());  /*  send character */ 

poke(OUT_STATUS,1); /* turn device on */ 

} 

 

#define OUT_DATA  0x1100 

 

#define OUT_STATUS 0x1101 void output_handler() { 

if  (!empty_buffer())  {   /*  start a new  character */ 

poke(OUT_DATA,remove_char()); /* send character */ 

poke(OUT_STATUS,1); /* turn device on */ 
 

} 
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} 
 

The foreground program does  not  need  to  do  anything—everything  is 
taken care of by the interrupt handlers. The foreground program is free to do 
useful work as it is occasionally interrupted by input and  output  operations. 
The following sample execution of the program in the form of a  UML 
sequence diagram shows how input and output are interleaved with the 
foreground program. (We have kept the last input character in the queue until 
output is complete to make it clearer when input occurs.) The  simulation 
shows that the foreground program is not executing continuously, but it 
continues to run in its regular state independent of the number of characters 
waiting in the queue. 

 

Interrupts allow a lot of concurrency, which can make very efficient use 

of the CPU. But when the interrupt handlers are buggy, the errors can be 

very hard to find. The fact that an interrupt can occur at any time means 

that the same bug can manifest itself in different ways when the interrupt 

handler interrupts different segments of the  foreground program. Example 

3.6 illustrates the problems inherent in debugging interrupt handlers. 

 
Example 3.6 

 

 

Debugging interrupt code 

 

Assume that the foreground code is performing a matrix multiplication operation 

y Ax b: 

 

 

for (i = 0; i < M; i++)  { 

y[i] =  b[i]; 

for (j = 0; j < N; j++) 
 

y[i] =  y[i] +  A[i,j]*x[j]; 
 

} 

 

 

What happens  to the  foreground  program  when  j  changes  value  during 
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an interrupt depends on when the interrupt handler  executes.  Because  the 

value of j is reset at each iteration of the outer loop, the bug will affect only one 

entry of the result y . But clearly the entry that changes will depend on when the 

interrupt occurs. Furthermore, the change observed in y depends on not only 

what new value is assigned to j (which may depend on the data handled by 

the interrupt code), but also when in the inner loop the interrupt occurs. An 

inter- rupt at the beginning of the inner loop will give a different result than one 

that occurs near the end. The number of possible new values for the result 

vector is much too large to consider manually—the bug cannot be found by 

enumerating the possible wrong values and  correlat- ing them  with a  given 

root cause. The CPU  implements  interrupts  by  checking  the  interrupt 

request line at the beginning of execution  of  every  instruction.  If  an 

interrupt request has been asserted, the CPU does not fetch the instruction 

pointed to by the PC. Instead the CPU sets the PC to a predefined location, 

which  is the  beginning of the  interrupt 

 

Priorities and Vectors 

 

Providing a practical interrupt system requires having more than a simple 

interrupt request line. Most systems have more than one I/O device, so there 

must be some mechanism for allowing multiple devices to interrupt. We 

also want to have flexibil- ity in the locations of the interrupt handling 

routines, the addresses for devices, and so on. There are two ways in which 

interrupts can be generalized to handle mul- tiple devices and to provide 

more  flexible definitions for the associated hardware and software: 

 

■ interrupt priorities allow the CPU to recognize some interrupts as more 

important than others, and 

 

■ interrupt vectors allow the interrupting device to specify its handler. 

Prioritized interrupts not only allow multiple devices to be connected to 

the interrupt line but also allow the CPU to ignore less important interrupt 

requests while it handles more important requests. As shown in Figure 

3.3, the CPU pro- vides several different interrupt request signals, shown 

here as L1, L2, up to Ln. Typically, the lower-numbered interrupt lines are 

given higher priority, so in this case, if devices 1, 2, and n all requested 

 

Interrupts simultaneously, 1’s request would be  acknowledged  because  it 

is connected to the  highest-priority interrupt  line. Rather  than provide  a 
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separate interrupt acknowledge line for each device, most CPUs use a set 

of signals that provide the priority number of the winning interrupt in 

binary form (so that interrupt level 7 requires 3 bits rather than 7). A 

device knows that its interrupt request was accepted by seeing its own 

priority number on the  interrupt acknowledge lines. 

 

Example 3.7 

 

I/O with prioritized interrupts 

 

Assume that we have devices A, B, and C. A has priority 1 (highest priority), B 

priority 2, and C priority 3. The following UML sequence diagram shows which 

interrupt handler is executing as a function of time for a sequence of interrupt 

requests. In each case, an interrupt handler keeps running until either it is 

finished or a higher- priority interrupt arrives. The C interrupt, although  it 

arrives early, does not finish for a long time because interrupts from both A and 

B intervene—system design must take into account  the  worst-case 

combinations of interrupts that can occur to ensure that no device goes without 

service for too long. When both A and B interrupt  simultaneously,  A’s 

interrupt gets prior- ity; when A’s handler is finished, the priority mechanism 

automatically answers  B’s pending interrupt 

 

Vectors provide flexibility in a different dimension, namely, the ability to 

define the interrupt handler that should service a request from a device. 

Figure 3.5 shows the hardware structure required to support interrupt 

vectors. In addition to the interrupt request and acknowledge lines, 

additional interrupt vector lines run from the devices to the CPU. After a 

device’s request is acknowledged, it sends its inter- rupt vector over those 

lines to the CPU. The CPU then uses the vector number as an index in a table 

stored in memory as shown in Figure 3.5. The location referenced in the 

interrupt vector table by the vector number gives the address of the handler. 

 

There  are  two  important things  to notice  about  the  interrupt vector 

mecha- nism.  First, 

 

Most modern CPUs implement both prioritized and vectored interrupts. 

Priori- ties determine which device is serviced first, and vectors determine 

what routine is used to service the interrupt. The combination of the two 

provides a rich  interface between hardware and software. 
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Interrupt overhead Now that we have a basic understanding of the interrupt 

mech- anism, we can consider  the  complete  interrupt  handling  process. 

Once a  device  requests  an  interrupt, some  steps  are  performed  by  the 

CPU, some by the device, and others  by software. Here are the major  steps 

in the  process: 

 

1. CPU The CPU checks for pending interrupts at the beginning of an instruc- 

tion. It answers the highest-priority interrupt, which has a higher priority 

than that given in the interrupt priority register. 

 

 
2. Device The device receives the acknowledgment and sends the CPU its 

interrupt  vector. 

 

 
3. CPU The CPU looks up the device handler address in the interrupt vector 

table using the vector as an index. A subroutine-like mechanism is used to 

save the current value of the PC and possibly other internal CPU state, such 

as general-purpose registers. 

 

 
4. Software   The device driver  may save additional CPU state.  It then 

performs the  required 

 

. CPU The interrupt return instruction restores the PC and other automati- 

cally saved states to return execution to the code that was interrupted. 

 

Interrupts do not come without a performance penalty. In addition to the 

execu- tion time required for the code that talks directly to the  devices, 

there is execution time  overhead associated  with  the  interrupt 

mechanisms. 

 

■ The interrupt itself has overhead similar to a subroutine call. Because an 

inter- rupt causes a change in  the program counter, it incurs a branch 

penalty. In addition, if the interrupt automatically stores CPU registers, that 

action requ- ires extra cycles, even if the state is not modified by the 

interrupt  handler. 
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■ In addition  to the branch  delay  penalty, the interrupt requires extra  cycles 

to acknowledge the interrupt and obtain the vector  from the device. 

 

 
■ The  interrupt  handler  will,   in  general, save   and  restore CPU registers 

that were not automatically saved by the interrupt. 

 

 
■ The interrupt return  instruction incurs  a branch  penalty as well  as the time 

required to restore  the automatically saved state. 

 

The time required for the hardware to respond to the interrupt, obtain the 

vector, and so on cannot be changed by the programmer. In particular, CPUs 

vary quite a bit in the amount of internal state automatically saved by an 

interrupt. The programmer does have control over what state is modified by 

the interrupt handler and therefore it must  be saved and restored. Careful 

programming can sometimes result in a small number of registers used by an 

interrupt handler, thereby saving time in maintaining the CPU state. 

However, such tricks usually require coding the interrupt handler in 

assembly language rather  than a high-level language. 

 

Interrupts in ARM ARM7 supports two types of interrupts: fast interrupt 

requests (FIQs) and interrupt requests (IRQs). An FIQ takes priority over an 

IRQ. The inter- rupt table is always kept in the bottom memory addresses, 

starting at location 0. The entries in the table typically contain  subroutine 

calls  to the  appropriate handler. 

 

The ARM7 performs  the  following steps  when  responding to an 

interrupt 

 

[ARM99B]: 

 

 
■ saves the appropriate value of the PC to be used to return, 

 

 
■ copies  the CPSR into a saved program  status register (SPSR), 
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■ forces  bits in the CPSR to note the interrupt, and 

 

 
■ forces the PC to the appropriate interrupt vector. When leaving the 

interrupt handler, the  handler should: 

 

■ restore  the proper  PC value, 

 

 
■ restore  the CPSR from the SPSR, and 

 

 

■ clear interrupt disable flags. 

 

 

 

The   worst-case  latency  to  respond  to  an   interrupt  includes  the 

following  components: 

 

■ two cycles to synchronize the external request, 

 

■ up to 20 cycles to complete the current instruction, 

 

■ three cycles for data abort, and 

 

■ two cycles to enter the interrupt handling state. 

 

This adds up to 27 clock  cycles. The best-case  latency is four clock  cycles. 

 

Interrupts in C55x Interrupts in the C55x  [Tex04] never  take less than 

seven  clock cycles. In many  situations, they  take  13 clock  cycles. 

 

A maskable interrupt  is  processed in  several steps  once  the  interrupt 

request is sent to the CPU: 

 

 
■ The interrupt flag register (IFR) corresponding to the interrupt is set. 

 

■ The interrupt enable register (IER) is checked to ensure that the interrupt 
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is enabled. 

 
■ The interrupt mask register (INTM) is checked to be sure that the interrupt 

is not masked. 

 

 
■ The interrupt flag register (IFR) corresponding to the flag is cleared. 

 

■ Appropriate registers are saved as context. 

 

■ INTM  is set to 1 to disable  maskable interrupts. 

 

■ DGBM is set to 1 to disable debug events. 

 

■ EALLOW  is set to 0 to disable  access to non-CPU emulation registers. 

 

■ A branch  is performed to the interrupt service routine  (ISR). 

 

The C55x provides  two  mechanisms—fast-return  and  slow-return—to 

save and restore registers for interrupts and other context switches. Both 

processes save  the  return  address  and  loop  context  registers. The  fast- 

return mode uses RETA to save the return address and CFCT for the loop 

context bits. The  slow- return  mode,  in  contrast, saves  the  return  address 

and  loop  context bits  on  the stack. 

 

3.2 SUPERVISOR MODE, EXCEPTIONS, AND TRAPS 

 

3.2.1 Supervisor Mode 

 

As will become clearer in later chapters, complex systems are often 

implemented as several programs that communicate with each other. These 

programs may run under the command of an operating system. It may be 

desirable to provide hardware checks to ensure that the programs do not 

interfere with each other—for example, by erroneously writing into a 

segment of memory used by another program. Soft- ware debugging is 

important but can leave some problems in a running system; hardware 

checks ensure an additional level of safety. 

 

In such cases it is often useful to have  a supervisor mode  provided by 

the CPU. Normal  programs run  in user mode.  The supervisor mode  has 
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privileges that user modes do not. For example, we study  memory 

management systems in Section 3.4.2 that allow the addresses of memory 

locations  to  be  changed  dynam-  ically.  Control  of  the  memory 

management unit (MMU)  is  typically  reserved  for  supervisor  mode  to 

avoid the obvious problems that could occur when program bugs cause 

inadvertent changes in  the  memory   management  registers. 

 

Not all CPUs have  supervisor  modes.  Many  DSPs, including the  C55x, 

do not provide supervisor modes. The ARM, however, does have  such  a 

mode. The ARM instruction that puts the CPU in supervisor mode is called 

SWI: 

 

SWI CODE_1 

 

It can, of course, be executed conditionally, as with any ARM instruction. 

SWI causes the CPU to go into supervisor mode and sets the PC to 0x08. The 

argument to SWI is a 24-bit immediate value that is passed on to the 

supervisor mode code; it allows the program to request various services 

from the supervisor mode. 

 

In supervisor mode, the bottom 5 bits of the CPSR are all set to 1  to 

indicate that the CPU is in supervisor mode. The old value of the CPSR just 

before the SWI is stored in a register called  the  saved  program  status 

register (SPSR). There are in fact several SPSRs for different modes; the 

supervisor mode  SPSR is referred to as SPSR_svc. 

 

To return from supervisor mode, the supervisor restores the PC from 

register r14 and restores the CPSR from the SPSR_svc. 

 
3.2.2 Exceptions 

 

An exception is  an  internally detected  error.  A simple  example  is  division 

by zero. One way to handle this problem would be to check every divisor 

before division to be sure it is not zero, but this would both substantially 

increase the size of numerical programs and cost a great deal of CPU time 

evaluating the divisor’s value. The CPU can more efficiently  check  the 

divisor’s  value  during  execution. Since  the  time  at which a zero  divisor 

will be found is not known in advance, this event is similar to an interrupt 

except that it is generated inside  the  CPU.  The  exception  mechanism 

provides a way  for the program  to react  to such  unexpected events. 
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3.2.3 Traps 

 

A trap, also known as a software interrupt , is an instruction that explicitly 

gener- ates an exception condition. The most common use of a trap is to 

enter supervisor mode. The entry into supervisor mode must be controlled 

to maintain security—if the interface between user and supervisor mode is 

improperly designed, a user pro- gram may be able to sneak code into the 

supervisor mode that could be executed to perform  harmful operations. 

 

The ARM provides the SWI interrupt for software interrupts. This 

instruction causes the CPU to enter supervisor mode. An opcode is embedded 

in the instruction that can be read by the handler. 

 

3.3 CO-PROCESSORS 

 

CPU architects often want to provide flexibility in what features are 

implemented in the CPU. One way to provide such flexibility at the 

instruction set level is to allow co-processors, which are attached to the 

CPU and implement some of the instructions. For example, floating-point 

arithmetic was introduced  into  the  Intel  architecture  by  providing 

separate chips  that implemented the floating-point instructions. 

 

To support co-processors, certain opcodes must be reserved in the 

instruction set for co-processor operations.  Because  it  executes 

instructions, a co-processor must be tightly coupled to the CPU. When the 

CPU receives a co-processor instruc- tion, the CPU must activate the co- 

processor and pass it the relevant instruction. Co-processor instructions can 

load and store co-processor registers or can perform internal operations. The 

CPU can suspend execution to wait for the co-processor instruction to 

finish; it can also take a more superscalar  approach  and  continue 

executing instructions while waiting for the co-processor to finish. 

 

3.4 MEMORY SYSTEM MECHANISMS 

 

Modern microprocessors do more than just read and write a monolithic 

memory. Architectural features improve both the speed and capacity of 

memory systems. Microprocessor clock rates are increasing at a faster rate 

than memory speeds, such that memories are falling further and further 

behind microprocessors every day. As a result, computer architects resort to 

caches  to  increase  the  average  performance   of  the  memory   system. 
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Although memory capacity is increasing steadily, program sizes are 

increasing as well, and designers may not be willing to pay for all the 

memory demanded by an application. Modern microprocessor units 

(MMUs) perform address translations that provide a larger virtual memory 

space in a small physical memory. In this section, we review both caches 

and MMUs. 

 

3.4.1 Caches 

 

Caches are widely used to speed up memory system performance. Many 

micropro- cessor architectures include caches as part of their definition. 

The cache speeds up  average memory  access time  when   properly used. 

It increases the variability  of  memory  access  times—accesses  in  the 

cache will be fast, while access to loca- tions not cached will be slow. This 

variability in performance makes  it  especially  important  to  understand 

how caches work so that we can better understand how to predict cache 

performance and factor variabilities into system  design. 

 

A cache is a small, fast memory that holds copies of some of the contents 

of main memory. Because the cache is fast, it provides higher-speed access 

for the CPU; but since it is small, not all requests can be satisfied by the 

cache, forcing the system to wait for the slower main memory. Caching 

makes sense when the CPU is using only a relatively small set of memory 

locations at any one time; the set of active locations is often called the 

working set . 

 

Shows how the cache support reads in the memory system. A cache 

controller mediates between the CPU and the memory system  comprised 

of the main memory. The cache controller sends a memory request to the 

cache and main memory. If the requested location is in the cache, the cache 

controller forwards the location’s contents to the CPU and aborts the main 

memory request; this condition is known as a cache hit . If the location is 

not in the cache, the controller waits for the value from main memory and 

forwards it to the CPU; this situation is known  as a cache miss. 

 

We can classify cache misses into several types depending on the 

situation that generated them: 

 

■ a compulsory miss  (also  known  as a cold  miss)  occurs  the  first time  a 

location is  used, 
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■ a capacity miss  is caused by a too-large working set, and 

 

■ a conflict miss happens when two locations map to the same location in the 

cache. 

 
Even before we consider ways to implement caches, we can write some 

basic formulas for memory system performance. Let h be the hit rate, the 
probability that a given memory location is in the cache. It follows  that 1 
h is the miss  rate, or the probability that the location is not in the cache. 
Then we can compute the average memory  access time as 

 

tav     htcache     (1     h)tmain . (3.1) 

where tcache is the access time of the cache and tmain is  the  main 

memory access time. The memory access  times are basic parameters 

available from the memory manufacturer. The hit rate depends on the 

program being executed and the cache organization, and is typically 

measured using simulators, as is described in more detail in Section 5.6. 

The best-case memory access time (ignoring cache controller overhead) is 

tcache , while the worst-case access time is tmain . Given that tmain is 

typically 50–60 ns for DRAM, while tcache is at most a few nanoseconds, 

the spread between worst-case and best-case  memory delays  is substantial. 

 

Modern   CPUs  may   use   multiple  levels of  cache  as  shown in  Figure 

3.7. The first-level cache (commonly known  as  L1  cache) is  closest  to 

the CPU, the second-level cache (L2 cache) feeds the first-level cache, and 

so on. The second-level cache is much larger but is also slower. If h1 is 

the first-level hit rate and  h2 is the rate at which access hit the second- 

level cache but not the first-level cache, then the average access time for a 

two-level cache system  is  tav      h1 tL1     h2 tL2     (1     h1     h2 )tmain 

 

 
The simplest way to implement a cache is a direct-mapped cache, as 

shown in Figure 3.8. The cache consists of cache blocks, each of which 

includes a tag to show which memory location is  represented  by  this 

block, a data field holding the contents of that memory, and a valid tag to 

show whether the contents of this cache block are valid. An address is 

divided into three sections. The index  is used to select  which cache block 

to check. The tag is compared against the tag value in the block selected 

by the index. If the address   tag matches the tag value  in the block,  that 
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block  includes the  desired memory  location. If the  length   of the  data field 

is  longer  than  the   minimum  addressable  unit,   then   the   lowest  bits   of 

the address are used as an offset to select the required value from the data 

field.  Given the  structure of the  cache, there  is  only  one  block  that  must 

be checked to see whether a  location is in the cache—the index uniquely 

determines that block. If the access is a hit, the data  value is read from the 

cache. 

 

Writes are slightly more complicated than reads because we have to 

update main memory as well as the cache. There are several methods by 

which we can do this. The simplest scheme is known as write-through— 

every write changes both the cache and the corresponding main  memory 

location (usually through a write buffer). This scheme  ensures  that  the 

cache and main memory are consistent, but may generate some additional 

main memory traffic. We can reduce the number of times we write to main 

memory by using a write-back policy:If we write only when we remove a 

location from the cache, we eliminate the writes  when  a  location  is 

written several  times before it is removed from the cache. 

 

The direct-mapped cache is both fast and relatively low cost, but it does 

have limits in its caching power due to its simple scheme for mapping the 

cache onto main memory. Consider a direct-mapped cache with four blocks, 

in which locations 

 

0, 1, 2, and 3 all map to different blocks. But locations 4, 8, 12, … all map to 

the same block as location 0; locations 1, 5, 9, 13, … all map to a single block; 

and so on. If two popular locations in a program happen to  map  onto  the 

same block, we will not gain the full  benefits  of the  cache. As seen  in 

Section   5.6,  this  can  create program performance problems. 

 

The limitations of the  direct-mapped cache  can  be  reduced by  going 

to the set-associative cache structure shown in Figure 3.9. A set-associative 

cache is char- acterized by the number of banks or ways it uses, giving an 

n-way set-associative cache. A set is formed by all the blocks (one for each 

bank) that share the same index. Each set is implemented with a direct- 

mapped cache. A cache request is broadcast to all banks simultaneously. If 

any of the sets has the location, the cache reports a hit. Although memory 

locations map onto blocks using the same function, there are n separate 

blocks for each set of locations. Therefore, we can simultaneously cache 

several  locations that  happen to map onto the same  cache block. The set- 
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associative cache structure incurs a little extra overhead and is slightly 

slower than a direct-mapped cache, but the higher hit rates that it can provide 

often compensate. 

 

The set-associative cache generally provides higher hit rates than the 

direct- mapped cache because conflicts between a small number  of 

locations can be resolved within the cache. The set-associative cache is 

somewhat slower, so the CPU designer has to be careful that  it doesn’t 

slow down the CPU’s cycle time too much. A more important problem with 

set-associative caches for embedded program 

 

Various ARM implementations use different cache sizes  and 

organizations [Fur96]. The ARM600 includes a 4-KB, 64-way (wow!) 

unified instruction/data cache. The StrongARM uses a 16-KB, 32-way 

instruction cache with a 32-byte block and a 16-KB,32-way data cache with 

a 32-byte block;the data cache uses a write-back strategy. 

 

The C5510, one of the models of C55x, uses a 16-K byte  instruction 

cache organized as a  two-way set-associative cache  with  four  32-bit  words 

per line. The instruction cache can  be  disabled  by  software  if  desired.  It 

also includes two RAM sets that are designed  to  hold  large  contiguous 

blocks of code. Each RAM set can hold up to 4-K bytes of code organized as 

256 lines of four 32-bit words per line. Each RAM has a tag that specifies what 

range of addresses are in the RAM; it also includes a tag valid field  to show 

whether the RAM is in use and line valid bits for each  line. 

 

3.4.2 Memory Management Units and Address Translation 

 

A MMU translates addresses between the CPU and physical memory. This 

translation process is often known as memory mapping since addresses are 

mapped from a logical space into a physical space. MMUs in embedded 

systems appear primarily in the host processor. It is helpful to understand 

the basics of MMUs for embedded systems complex enough to require 

them. 

 

Many DSPs, including the C55x, do not use MMUs. Since DSPs are 

used for compute-intensive tasks, they often do not require the hardware 

assist for logical address  spaces. 

 

Early computers used  MMUs to compensate for limited  address  space  in 
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their instruction sets. When memory became cheap enough that physical 

memory could be larger than the address space defined by the instructions, 

MMUs allowed software to manage multiple programs in a single physical 

memory, each with its own address space. 

 

Because modern CPUs typically do not have this  limitation, MMUs are 

used to provide virtual addressing . As shown in Figure 3.10, the  MMU 

accepts logical addresses from the CPU. Logical addresses refer to the 

program’s abstract  address space but do not correspond to actual RAM 

locations.The MMU translates them  from  tables  to  physical  addresses  that 

do correspond to RAM. By changing the MMU’s tables, you can change the 

physical location at which the program resides without modifying the 

program’s code or data. (We must, of course, move the program in main 

memory   to correspond to the  memory   mapping change.) 

 

Furthermore, if we add a secondary storage unit such as flash or a disk, 

we can eliminate parts of the program from main memory. In a virtual 

memory system, the MMU keeps track of which logical addresses are 

actually resident in main memory; those that do not reside in main memory 

are kept on the secondary storage device. 

 

When the CPU requests an address that is not in main memory, the MMU 

generates an exception called a page fault . The handler for this exception 

executes code that reads the requested location from the secondary storage 

device into  main memory. The program that generated the page fault is 

restarted by the handler only after 

 

■ the required memory  has been  read back  into main memory, and 

 

■ the MMU’s tables  have been  updated to reflect  the changes. 

 

 

Of course, loading a location into main memory will usually require 

throwing something out of main memory. The  displaced  memory  is 

copied into secondary storage before the requested location is read in. As 

with  caches, LRU is a good replacement policy. 

 

There are two styles of address translation: segmented and paged . Each 

has advantages and the two can be combined to form a segmented, paged 

addressing scheme. As illustrated in Figure 3.11, segmenting is designed to 
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support a large, arbi- trarily sized region of memory, while pages describe 

small, equally sized regions. A segment is usually described by its start 

address and size, allowing different segments to  be  of different  sizes. 

Pages are of uniform size, which simplifies the hardware required for 

address translation. A segmented, paged scheme is  created by  dividing 

each segment into pages and  using  two  steps  for address  translation. 

Paging introduces the possibility of fragmentation as program pages are 

scattered around  physical memory. 

 

In a simple segmenting scheme, shown in Figure 3.12, the MMU would 

maintain a segment register that describes the currently active segment. 

This register would point to the base of the current segment. The address 

extracted from an instruction (or from any other source for addresses, such 

as a register) would be used  as the offset for the address. The physical 

address is formed by adding the segment base to the offset. Most 

segmentation schemes also check the physical address against the upper 

limit of the segment by extending the segment register to include  the 

segment size and comparing the offset to the allowed size. 

 

The translation of paged addresses requires more  MMU  state  but  a 

simpler cal- culation. As shown in  Figure  3.13,  the  logical  address  is 

divided into two sections, including a page number and an offset. The page 

number is used as an index into a page table, which stores  the  physical 

address  for the start of each  page.  However, 

 

 

Segments and  pages. 

 

 

Segment register 

 

 

Segment base address 
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Range error 

 

 
FIGURE 3.12 

 

Address  translation  for a segment. 

 

 

 

 

 

 
Segment lower bound 

To memory 

Range check  
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Alternative schemes for organizing  page  tables. 

 

 

■ A dirty bit shows whether the page/segment has been written to. 

This bit is maintained by the MMU, since it knows about every 

write performed by the CPU. 

 

■ Permission bits are often used. Some pages/segments may be 

readable but not writable. If the CPU supports modes, 

pages/segments may be accessible by the supervisor but not in user 

mode. 

 

A data or instruction cache may operate either on logical or 

physical addresses, depending on where it is positioned relative to 

the MMU. 

 

A MMU is an optional part of the ARM architecture. The ARM 

MMU supports both virtual address  translation  and  memory 

protection; the architecture requires that the MMU be implemented 

when cache or write buffers are implemented. The ARM MMU 

supports the following types of memory regions  for  address 

translation: 

 

 
■ a section is a 1-MB block of memory, 

 

 
■ a large page  is 64 KB, and 

 

 

■ a small  page  is 4 KB. 

 

 

An address is marked as section mapped or page mapped. A two- 

level scheme is used to translate addresses.The first-level 

table,which is  pointed to  by  theTranslation  Table    Base  register, 
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holds descriptors for section translation and pointers  to  the second-

level  tables.  The   second-level   tables   describe   the translation of 

both large and small  pages.  The  basic  two-level process for a large 

or small page is illustrated in Figure 3.15. The details differ between 

large and small pages, such as the size of the second-level table index. 

The first- and second-level  pages  also contain  access control  bits 

for virtual  memory  and protection. 

 

 

3.5 CPU PERFORMANCE 

 

Now that we have an understanding of the various types of 

instructions that CPUs can execute, we can move on to a topic 

particularly important in embedded com- puting: How fast can the 

CPU execute instructions? In this  section,  we  consider  three 

factors that can substantially influence program performance: 

pipelining  and caching. 

 

3.5.1 Pipelining 

 

Modern CPUs are designed as pipelined machines  in  which 

several instructions are executed in parallel. Pipelining greatly 

increases the efficiency of the CPU. But like any pipeline, a CPU 

pipeline works best when its contents flow smoothly. Some 

sequences of instructions can disrupt the flow of information in the 

pipeline and, temporarily at least, slow down the operation of the 

CPU. 

 

The ARM7 has a three-stage pipeline: 

 

 
■ Fetch the instruction is fetched from memory. 

 

 

■ Decode  the  instruction’s opcode and  operands are  decoded to 

determine what function  to perform. 

 

 
■ Execute the decoded instruction is executed. 
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Each of these operations requires one clock cycle for typical 

instructions. Thus, a normal instruction requires three  clock  cycles 

to completely execute, known as the latency of instruction 

execution. But since the  pipeline has three  stages,  an instruction 

is completed in every clock cycle. In other  words, the  pipeline 

has a throughput of one instruction per cycle. Figure  3.16 

illustrates the position of instructions in the pipeline during 

execution using the notation introduced by Hennessy and Patterson 

[Hen06]. A vertical slice through the timeline  shows  all 

instructions in the pipeline at that time. By following an instruction 

horizontally, we can see the progress of its execution. 

 

The C55x  includes a seven-stage pipeline [Tex00B]: 

 

 
1. Fetch. 

 

 
2. Decode. 

 

 

3. Address computes data and branch  addresses. 

 

 
4. Access 1 reads data. 

 

 

5. Access  2 finishes  data read. 

 

 
6. Read  stage puts operands onto internal busses. 

 

 

7. Execute performs  operations. 
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RISC machines are designed to keep the pipeline busy. CISC 

machines may dis-  play a wide variation in instruction timing. 

Pipelined RISC machines typically have more regular timing 

characteristics—most instructions that do not have pipeline hazards 

display the same latency. 

 

add r0,r1,#5 sub r2,r3,r6 

 

 

cmp r2,#3 
 

The  one-cycle-per-instruction  completion  rate   does   not   hold 

in  every  case, however. The simplest case  for extended execution 

is when an instruction is too complex to complete the execution 

phase in a single cycle. A multiple load instruc- tion is an example 

of an instruction that requires several cycles  in  the  execution 

phase. Figure 3.17 illustrates a data stall in the execution of a 

sequence of instruc- tions starting with a load multiple (LDMIA) 

instruction. Since there are two registers  to load, the  instruction 

must stay in the execution phase for two cycles. In a mul- tiphase 

execution, the decode stage is also  occupied,  since  it  must 

continue to remember the decoded instruction. As a result, the SUB 

instruction is fetched at the normal time but not decoded until the 

LDMIA is finishing. This delays the fetching of the third instruction, 

the CMP. 

 

Branches  also  introduce  control  stall  delays  into   the 

pipeline, commonly referred to as the branch penalty, as shown in 

Figure 3.18. The decision whether to take the conditional branch 

BNE is not made until the third clock cycle of that instruction’s 

execution, which computes the  branch target  address.  If  the 

branch is taken, the succeeding instruction at PC+4 has  been 

fetched and started to be decoded. When the branch is taken, the 

branch target address is used to fetch the branch target instruction. 

Since we have to wait for the execution cycle to complete before 

knowing the target, we must throw away two cycles of work on 

instructions 

 

in  the  path not  taken.  The  CPU  uses  the  two cycles     between 

starting to  fetch the  branch target and  starting to  execute   that 
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instruction to finish  housekeeping tasks related to the execution of 

the branch. 

 

One way around this problem is to introduce  the  delayed 

branch. In this style of branch instruction, some number of 

instructions directly after the  branch are  always executed, whether 

or not the branch is taken. This allows the CPU to keep  the 

pipeline full during execution of the branch. However, some of 

those instructions after the delayed branch may be no-ops. Any 

instruction in the delayed branch window must be valid for both 

execution paths, whether or not the branch is taken. If there are not 

enough instructions to fill the delayed branch window, it must be 

filled with no-ops. 

 

Let’s use this knowledge of instruction execution time to evaluate 

the execution time of some C code, as shown in Example 3.9. 

 
Example 3.9 

 

 

Execution time of a for loop on the ARM 

 

We will use the C code for the FIR filter of Application Example 2.1: 

 

 

for (i = 0, f = 0; i < N; i++) 

 

f =  f +  c[i] *  x[i]; 

We repeat the ARM code for this loop: 

;  loop initiation code 

 

MOV r0,#0 ; use r0 for i, set to 0 

 

MOV r8,#0 ; use a separate index for  arrays 

ADR r2,N ; get address for N 

LDR r1,[r2] ; get value of N  for  loop termination 
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test 

 

MOV r2,#0 ; use r2 for f, set  to 0 

 

ADR r3,c ; load r3 with address of base of c 

array 

 

ADR r5,x ; load r5 with address of base of x 

array 

 

; loop body 

 

loop LDR r4,[r3,r8] ; get value of c[i] LDR 

r6,[r5,r8] ; get  value of  x[i] MUL r4,r4,r6 

; compute c[i]*x[i] 

 
ADD r2,r2,r4 ; add into running sum f 

 

; update loop counter and array index 

 

ADD r8,r8,#4 ; add one word offset to array 

index 

 

ADD r0,r0,#1 ; add 1  to i 

 

;  test for exit 

CMP r0,r1 

BLT loop ; if i < N, continue loop 

loopend... 

 

Inspection of the code shows that the only instruction that may take 

more than one cycle is the conditional branch in the  loop test.  We 

can count  the  number  of instructions  and associated  number  of 

clock cycles in each block as follows: 

 

Block Variable # Instructions # Cycles 
 

The unconditional branch  at the end of the update  block always incurs 
a branch  penalty of two cycles. The BLT instruction in the test block 
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incurs a pipeline delay of two cycles when the branch is taken. That 
happens for  all but the last iteration, when the instruction has an 
execution time of  t test,worst ; the last iteration executes in time t 
test,best . We can write a formula for the total execution time of the loop 
in cycles as 

 
t loop     t init     N (t body     t update )     (N     1)t test,worst     t 

test,best . (3.3) 

 

3.5.2 Caching 

 

The extra time required to access a memory location not in the 

cache is often called the cache  miss penalty. The amount of 

variation depends on  several factors  in the  system  architecture, 

but a cache miss is often several clock cycles slower than a cache 

hit. 

 

The time required to access a memory location depends on 

whether the requested location  is in the  cache.  However, as  we 

have seen, a location may not be in the cache for several  reasons. 

 

 
■ At a compulsory miss, the location has not been referenced 

before. 

 

 

■ At a conflict miss, two particular memory locations are fighting for 

the same cache line. 

 

 
■ At a capacity miss, the  program’s working set  is simply  too 

large  for the cache. 

 

 
The contents of the cache can change considerably over the course 

of execution of a program. When we have several  programs 

running  concurrently on the CPU 

 
3.6 CPU POWER CONSUMPTION 
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Power consumption is, in some situations, as  important  as 

execution time. In this section we study the characteristics of CPUs 

that influence power consumption and mechanisms provided by 

CPUs to control how much power they consume. 

 

First, it is important to distinguish between energy and power . 

Power is, of course, energy consumption per unit time. Heat 

generation depends on power consumption. Battery life, on the 

other hand, most directly depends on energy consumption. 

Generally, we will use the term power as shorthand for energy 

and power consumption, distinguishing between them only when 

necessary. 

 

The high-level power  consumption characteristics of  CPUs  and 

other system  components  are  derived  from  the  circuits  used  to 

build  those  components. Today,  virtually  all  digital  systems   are 

built  with  complementary  metal   oxide   semi-   conductor 

(CMOS) circuitry. The  detailed  circuit  characteristics  are  best  left 

to a study of VLSI design [Wol08], but the basic sources of CMOS 

power  consumption  are  easily  identified  and  briefly   described 

below. 

 

 
■ Voltage drops: The dynamic power consumption of a CMOS 

circuit is proportional to the square of the power supply voltage 

(V2 ). Therefore, by reducing the power supply voltage to the 

lowest level that provides the required performance, we can 

significantly reduce power consumption. We also may be able to 

add parallel hardware and even further reduce the power supply 

voltage while maintaining required performance [Cha92]. 

 

 
■ Toggling : A CMOS circuit uses most of its power when it is 

changing its output value. This provides  two  ways  to  reduce 

power consumption. By reducing the speed at which the circuit 

operates, we can reduce its power consumption (although not the 

total energy required for the operation, since the result is available 

later). We can actually reduce energy consumption by eliminating 

unnecessary changes to the inputs  of a CMOS circuit—eliminating 
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unnecessary glitches at the  circuit outputs  eliminates 

unnecessary power consumption. 

 

 
■ Leakage: Even  when a CMOS circuit  is not active, some 

charge leaks out of the circuit’s nodes through the substrate. The 

only way to eliminate leak- age current is to remove the power 

supply. Completely disconnecting the power supply eliminates 

power consumption, but it usually takes a significant amount of time 

to reconnect the system to the power  supply and reinitialize its 

internal state so that it once again performs properly . 

 

There  are  two  types  of   power   management   features 

provided by CPUs. A static power management mechanism is 

invoked by the user but does not otherwise depend on CPU 

activities. An example of a static mechanism is a power- down mode 

intended to save energy.  This mode provides a high-level way to 

reduce unnecessary power consumption. The mode is typically 

entered with an instruc- tion. If the mode stops the interpretation of 

instructions, then it clearly cannot be exited  by  execution  of 

another instruction. Power-down modes typically end upon receipt 

of an interrupt or other event. A dynamic power management 

mecha- nism takes actions to control power based upon the dynamic 

activity in the CPU. For example, the CPU may turn off certain 

sections of the CPU when the instructions being executed do not 

need them. 

 

Application Example 3.2 

 

Energy efficiency features in the PowerPC 603 

 

The PowerPC 603 [Gar94] was designed specifically for low-power 

operation while retaining high performance. It typically dissipates 2.2 

W running at 80 MHz. The architecture pro- vides three low-power 

modes—doze, nap, and sleep—that provide static power management 

capabilities for use by the programs and operating system. 

 

The 603 also uses a variety of dynamic power management 

techniques for power minimiza- tion that are performed  automatically, 
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without program intervention. The CPU is a two-issue, out-of-order 

superscalar processor. It  uses the dynamic  techniques  summarized 

below to reduce  power consumption. 

 

■ An execution unit that is not being used can be shut down. 

 

■ The cache, an 8-KB, two-way set-associative  cache,  was organized 

into subarrays so that at most two out of eight subarrays will be 

accessed on any given clock cycle. A variety of circuit techniques were 

also used in the cache to reduce power consumption. 

 

Not all units in the CPU are active all the time; idling them when 

they are not being  used can save power. The table below shows the 

percentage of time  various units in the 603 were idle for the SPEC 

integer and  floating-point benchmarks [Gar94]. 

 

A system power manager can both monitor the CPU and other 

devices and control their operation to gracefully transition between 

power modes. It provides several registers that allow programs to 

control power modes, determine why power modes were entered, 

determine the current state of power management modes,  and so on. 

 

The SA-1100 provides the three power modes described below. 

 

■ Run mode is normal operation and has the highest power 

consumption. 

 

■ Idle mode saves power by stopping the CPU clock. The system unit 

modules—real- time clock, operating system timer, interrupt control, 

general-purpose I/O, and power manager—all remain operational. Idle 

mode is entered by executing a three-instruction sequence. The CPU 

returns to run mode upon receiving an interrupt from one of  the 

internal system units or from a peripheral or by resetting the  CPU. 

This causes the machine to restart the CPU clock and to resume 

execution where it left off. 

 

■ Sleep mode shuts off most of the chip’s activity. Entering sleep mode 

causes the system to shut  down on-chip  activity, reset  the  CPU, and 
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negate the PWR_EN pin to tell the external electronics that the chip’s 

power supply should be driven to 0 V. A separate I/O power supply 

remains on and supplies power to the power manager so that the 

CPU can be awakened from sleep mode; the low-speed clock keeps 

the power manager running at low speeds sufficient to manage sleep 

mode. The CPU software should set several registers to prepare for 

sleep mode. Sleep mode is entered by forcing the sleep bit in the 

power manager control register; it can also be entered by a power 

supply fault. The sleep shutdown sequence happens in three steps, 

each of which requires about 30 s. The machine wakes up from 

sleep state on a preprogrammed wake-up event. The wake-up 

sequence has three steps: the PWR_EN pin is asserted to turn on 

the external power supply and waits for about 10 ms; the 3.686-MHz 

oscillator is ramped up to speed; and the internal reset is negated 

and the CPU boot sequence begins. 

 

Here is the power state machine  of the SA-1100 [Ben00]: 

 

 
Prun 5 400 mW 

The sleep mode saves over three orders of magnitude  of power 

consumption. However, the time required to reenter run mode from 

sleep is over a tenth of a second. 

 

The SA-1100 has a companion chip, the SA-1111, that provides an 

integrated  set  of 

 
peripherals.  That chip has its own power management modes that 
complement  the SA-1100. 
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3.7 DATA   COMPRESSOR 

 

Our design example for this chapter is a data compressor that takes 

in data with a constant number of bits per data element and puts out 

a compressed data stream in which the data is encoded in variable-

length symbols. Because this chapter concentrates  on CPUs, we 

focus on the data compression routine itself. 

 

 

3.7.1 Requirements and Algorithm 

 

We  use  the  Huffman  coding technique,  which   is   introduced 

in Application 

 

Example 3.4. 

 

We require  some  understanding  of  how  our  compression  code 

fits into a  larger system. Figure 3.20  shows  a collaboration diagram 

for the data compression process. The data compressor takes in a 

sequence of input symbols  and then produces a stream of output 

symbols. Assume for simplicity that  the  input  symbols  are  one byte 

in length.The output symbols are variable  length,so  we  have  to 

choose a format in which  to  deliver  the  output  data.  Delivering 

each coded symbol separately is tedious, since we  would  have  to 

supply the length of each symbol and  use  external code  to  pack 

them into words. On the other hand, bit-by-bit delivery is almost 

certainly too slow. Therefore, we will rely on the data compressor to 

pack the coded symbols into an array. There is not a one-to-one 

relationship between the input  and  output  symbols, and  we  may 

have to wait for several input symbols before a packed output word 

comes  out. 

 

Application Example 3.4 

 

Huffman coding for text compression 
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Text compression algorithms aim at statistical reductions in the volume 

of data. One commonly used  compression algorithm is Huffman 

coding [Huf52], which makes  use  of information 

 

The data compressor as discussed above is not a complete 

system, but we can create at least a partial requirements list for the 

module as seen below. We used the abbreviation N/A for not 

applicable to describe some items that do not make sense for a code 

module. 

 

Name Data compression module 
 

 

 

 
Purpose Code module  for Huffman data 

compression  Inputs  Encoding  table,  uncoded 

byte-size  input  symbols Outputs  Packed 

compressed  output   symbols 

 

Functions Huffman coding Performance 

Requires fast performance Manufacturing cost N/A 

 

Power N/A Physical  size and weight N/A 

 
3.7.2 Specification 

 

Let’s refine the description of Figure 3.20 to come up with a more 

complete speci- fication for our data compression module. That 

collaboration diagram concentrates on the steady-state behavior of 

the system. For a fully functional system, we have to provide the 

following additional behavior. 

 

 
■ We have to be able to provide  the compressor with a new symbol 

table. 

 

■ We should be able to flush the symbol buffer to cause the system to 

release all pending symbols that have been  partially packed. We 

may want to do this when we change the symbol table or in the 

middle of an encoding session to keep a transmitter busy. 
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A class description for this refined understanding of the 

requirements on the module is shown in Figure 3.21. The class’s 

buffer and current-bit behaviors keep track of the state of the 

encoding,and the table attribute provides the current symbol table. 

The class has three methods as follows: 

 

■ Encode performs the basic encoding function. It takes in a 1-byte 

input sym- bol and  returns  two  values:  a boolean  showing whether 

it is returning a full buffer and, if the boolean is true, the full buffer 

itself 

 

■ New-symbol-table installs a new symbol table into the  object 

and throws away  the current contents of the internal buffer. 

 

 
■ Flush  returns   the  current state  of the  buffer, including the  number 

of valid bits in the buffer. 

 

The data-buffer will be used to hold both packed symbols and 

unpacked ones (such as in the symbol table). It defines the  buffer 

itself and the length of the buffer. We have to define a data type 

because the longest encoded  symbol  is  longer  than  an  input 

symbol. The longest Huffman code for an eight-bit input  symbol  is 

256 bits. (Ending up with a symbol this long happens only when the 

symbol probabilities have the proper  values.) The  insert  function 

packs a new symbol into  the  upper  bits  of the  buffer; it also  puts 

the remaining bits in a new buffer if  the  current  buffer  is 

overflowed.  The   Symbol-table  class    indexes 

 

 

 
3.7.3 Program Design 

 

Since we are only  building  an  encoder, the  program  is  fairly 

simple. We will use this as an opportunity  to  compare  object- 

oriented and non-OO implementations by coding the design in both 

C++ and C. 

 

OO design in C++ 
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First is the object-oriented design using C++,  since  this 

implementation most  closely mirrors  the  specification. The  first  step 

is to design the data buffer. The data buffer needs to be as long as 

the longest  symbol.  We  also  need  to implement a function that lets 

us merge in another data_buffer, shifting the incoming buffer by the 

proper   amount. 

 

const int databuflen = 8; /* as long in bytes as 

longest symbol */const int bitsperbyte = 8; /* 

definition  of byte */ 

 

const   int bytemask = 0xff;  /*  use to  mask to  8 

bits   for  safety */ 

 

const  char lowbitsmask [bitsperbyte] = {  0, 1, 3, 

7, 15, 31, 
 

63,  127}; 
 

/* used to keep low bits  in a byte */ 

typedef char boolean; /* for clarity  */ 

#define TRUE 1 

 

#define FALSE 0 

 

 

class  data_buffer  { 

 

char databuf[databuflen]; 

int  len; 

int   length_in_chars() {   return  len/bitsperbyte;  } 

 

/*  length in  bytes  rounded down-used in 

implementation  */ 

 

public: 
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void insert(data_buffer, data_buffer&); 

 

int length() { return len; } /* returns number of 

bits in  symbol */ 

 

int  length_in_bytes() {  return (int)ceil(len/8.0); 

} 

 

void initialize(); /* initializes the data 

structure */ 

 

void data_buffer::fill(data_buffer,  int); 

 

/* puts upper bits of symbol into buffer */ 

data_buffer& operator = (data_buffer&); 

/* assignment operator */ 

 

 

 
data_buffer() {  initialize(); }  /* C++ 

constructor  */ 

∼data_buffer()  {  }  /*  C++  destructor */ 

}; 
 

data_buffer empty_buffer; /* use this to 
initialize other data_buffers */ 

 

 

void data_buffer::insert(data_buffer  newval, 

data_buffer& 

 

newbuf)  { 

 

/* This function puts the lower bits of a symbol 

(newval) into an existing buffer without 

overflowing the buffer. Puts spillover, if  any, 

into newbuf. */ 
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int i, j, bitstoshift, maxbyte; 

/* precalculate number  of positions to shift up */ 

bitstoshift  =  length() – 

length_in_bytes()*bitsperbyte; 

 

/* compute how many  bytes to transfer–can't  run past 

end of this  buffer */ 

 

maxbyte =  newval.length()  +  length()  > 

 

databuflen*bitsperbyte ? 

databuflen : newval.length_in_chars(); 

for (i = 0; i < maxbyte; i++) { 

/*  add lower bits of  this newval byte */ 

databuf[i  +   length_in_chars()]  |  = (newval.databuf[i]  << 
bitstoshift)   & 

 

byte-mask; 

/*   add upper bits of  this newval  byte */ 

databuf[i  +   length_in_chars()  +   1]  |  = 
(newval.databuf[i]  >>   (bitsperbyte  – 

 

bitstoshift))   & 
 

lowbitsmask[bitsperbyte –  bitstoshift]; 
 

} 

 

/* fill up  new buffer if necessary */ 

 

if (newval.length() +  length() > 

databuflen*bitsperbyte) { 
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/*  precalculate number  of positions to  shift down 

*/ 

 

bitstoshift = length() %  bitsperbyte; 

for (i = maxbyte, j = 0; i++, j++; 

i <= newval.length_in_chars()) { 

 

newbuf.databuf[j] = 

(newval.databuf[i] >>   bitstoshift) & 

bytemask; 
 

newbuf.databuf[j]  |  = newval.databuf[i  +   1]  & 

lowbitsmask[bitstoshift]; 

 

} 

 

} 

 

/* update length */ 

 

len =  len +  newval.length()  > 

databuflen*bitsperbyte     ? 

 

databuflen*bitsperbyte : len + 

newval.length(); 

} 
 

 

data_buffer& data_buffer::operator=(data_buffer& 

e) { 

 

/* assignment operator for data buffer */ 

int  i; 

/* copy the buffer itself */ 
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for (i = 0; i < databuflen; i++) 

 

databuf[i]  =  e.databuf[i]; 

 

/* set length */ 

len = e.len; 

/* return */ 

return e; 

} 

 

void  data_buffer::fill(data_buffer newval, int 

shiftamt) { 

 

/* This function puts the upper bits of a symbol 

(newval) into the buffer. */ 

 
 

int i, bitstoshift, maxbyte; 

/* precalculate number  of positions to shift up */ 

bitstoshift  =  length() – 

length_in_bytes()*bitsperbyte; 

 

/* compute how many  bytes to transfer–can't  run past 

end of  this  buffer */ 

 

maxbyte = newval.length_in_chars() > databuflen ? 

databuflen : newval.length_in_chars(); 

for (i = 0; i < maxbyte; i++) { 

 

/* add lower bits of this newval byte */ databuf[i 

+ length_in_chars()] = newval.databuf[i] << 

bitstoshift; 
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/*  add upper bits of  this newval byte */ 

databuf[i +  length_in_chars() +  1]  = 

newval.databuf[i]   >>   (bitsperbyte   – 
 

bitstoshift); 
 

} 
 

} 

 

 

void   data_buffer::initialize() { 

 

/* Initialization code for data_buffer. */ 

int  i; 

 

 
/*  initialize buffer to all  zero bits  */ 

for (i = 0; i < databuflen; i++) 

databuf[i]  =  0; 

 

/*  initialize length to zero */ 

len = 0; 

} 
 

The code for data_buffer is relatively complex, and not all of its 

complexity was reflected in the state diagram of Figure 3.25.  That 

does not mean the specification was  bad, but only  that  it  was 

written at a higher  level  of abstraction. 

 

The symbol table code can be implemented relatively easily as 

shown  below. 

 

const int nsymbols = 256; 
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class symbol_table { 

data_buffer  symbols[nsymbols]; 

public: 

data_buffer  value(int   i)  {   return symbols[i];   } 

void   load(symbol_table&); 

symbol_table() {  }  /* C++ constructor */ 

∼symbol_table()  {  }  /*  C++  destructor */ 

}; 
 

void symbol_table::load(symbol_table& newsyms) { 

int  i; 

for (i = 0; i < nsymbols; i++) { 

symbols[i] = newsyms.symbols[i]; 

} 
 

} 
 

Now let’s create the class definition for data_compressor: 

typedef  char  boolean;  /*  for  clarity   */ 

class  data_compressor { data_buffer buffer; int 

current_bit; symbol_table  table; 

 

public: 

 

boolean encode(char,  data_buffer&); 

 

void  new_symbol_table(symbol_table newtable) 

 

{  table  =  newtable; current_bit = 0; 
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buffer  =  empty_buffer;  } 

int flush(data_buffer&    buf) 

{  int temp = current_bit; buf =  buffer; 

buffer  =  empty_buffer; current_bit =  0; 

return  temp;  } 

data_compressor()  {  }  /*  C++  constructor */ 

∼data_compressor()  {  }  /*  C++ destructor */ 

}; 
 

Now let’s implement the encode( ) method.The main challenge 

here is managing the buffer. 

 

boolean data_compressor::encode(char  isymbol, 

data_buffer& 
 

fullbuf)  { 
 

data_buffer temp; 

int   overlen; 

 

/* look up  the new  symbol */ 

 

temp  =  table.value(isymbol); /*  the symbol itself 

*/ 

 

/* will this symbol overflow  the buffer? */ 

overlen = temp.length() + current_bit – 

buffer.length(); /* amount of overflow */ 
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if ( overlen > 0 ) { /* we did in fact  overflow */ 

data_buffer   nextbuf;  buffer.insert(temp,nextbuf); 

 

/* return the full  buffer  and keep the next partial 

buffer */ 

 

fullbuf =  buffer; buffer = nextbuf; return  TRUE; 

 
}  else {  /* no  overflow */ data_buffer no_overflow; 

buffer.insert(temp,no_overflow); 

 

/* won't use this  argument */ 

 

if   (current_bit ==   buffer.length())  { 

 

/* return current buffer */ 

 

fullbuf = buffer; 

buffer.initialize(); /*  initialize the buffer */ 

return TRUE; 

 

} 

 

else return FALSE;  /* buffer isn't  full yet */ 

 

} 
 

} 
 

OO design in C 

 

How would we have to modify the implementation for C? We have 

two choices in implementation, based on whether we want to 

support multiple simultaneous data compressors. If we want to 

strictly adhere to the specification, we must be able to run several 

simultaneous compressors, since in the object-oriented specification 

we can create as many new data-compressor objects as we 

want. 
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The fun- damental point is that we cannot rely on any global 

variables—all of the object state must be replicable. We can do this 

relatively easily, making the code only a little more cumbersome. We 

create a structure that holds the data part of the object as follows: 

 

struct data_compressor_struct { 

 
data_buffer buffer; int current_bit; sym_table 
table; 

 

} 

 

typedef struct  data_compressor_struct data_compressor, 

 

*data_compressor_ptr; /* data type declaration 

for convenience */ 

 

We would, of course, have to do something similar for the other 

classes. Depend- ing on how strict we want to be, we may want to 

define data access functions to get to fields in the various structures 

we create. C would permit us to get to those  struct fields without 

using the access functions, but using the access  functions would 

give us a little extra freedom to modify the  structure definitions 

later. 

 

We then implement the class methods as C functions, passing in a 

pointer to the data_compressor object we want to operate on. 

Appearing below is the beginning of the modified encode method 

showing how we make  explicit all references to the data in the 

object. 

 

 

typedef char boolean; /* for clarity  */ 

 

#define TRUE 1 

 

#define FALSE 0 

 

 

boolean data_compressor_encode(data_compressor_ptr 
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mycmprs, char isymbol, data_buffer *fullbuf) { 

data_buffer temp; 

int len, overlen; 
 

 
 

/* look up  the new  symbol */ 

 

temp = mycmprs->table[isymbol].value; /* the 

symbol itself */ 

 

len   =   mycmprs->table[isymbol].length; /*   its 

value  */ 

 

... 

 

 

(For  C++ afficionados, the  above  amounts to  making   explicit 

the   C++ this 

 

pointer.) 

 

 

 

static data_buffer buffer; static  int 

current_bit; static sym_table table; 

 

We have used the C static declaration to ensure that these  globals 

are not defined outside the  file in which they  are  defined; this  gives 

us a  little added modularity. We  would, of  course, have  to  update 

the specification so that it makes clear  that  only one  compressor 

object can be running at a time. The functions that implement the 

methods can  then  operate directly on the  globals  as seen  below. 

 

boolean data_compressor_encode(char isymbol, 

data_buffer* 
 

fullbuf)  { 
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data_buffer temp; 

int  len,  overlen; 

 
 

/* look up  the new  symbol */ 

 

temp  =  table[isymbol].value; /*  the symbol itself 

*/ 

 

len = table[isymbol].length; /* its value */ 

 

... 

 

Notice that this code does not need the structure pointer 

argument, making it resemble the C++ code a little more closely. 

However, horrible bugs will ensue if we try to run two different 

compressions at the same time through this code. 

 

What can we say about the efficiency of this code? Efficiency has 

many aspects covered in more detail in Chapter  5.  For  the 

moment, let’s consider instruction selection, that is, how well the 

compiler does in choosing the right instructions to implement the 

operations. Bit manipulations such as we do here often raise con- 

cerns about efficiency. But if we have a good compiler and we select 

the right data types, instruction selection is usually not a problem. If 

we use data types that do not require data type transformations, a 

good compiler can select the right instructions to efficiently 

implement the  required operations. 

 

3.7.4 Testing 

 

How do we test this program module to be sure it works?  We 

consider testing much more thoroughly in Section 5.10. In the 

meantime, we can use common sense to come up with some testing 

techniques. 

 

One way to test the code is  to  run  it  and  look  at  the  output 

without  consid- ering  how  the  code  is  written.  In this   case,   we 

can  load  up  a symbol   table,  run some symbols  through it, and see 
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whether we get the correct result. We can get the symbol table from 

outside sources (such as the tables of Application Example 3.4) 

 

Testing the internals of code often requires building scaffolding 

code. For example, we may want to test the insert method 

separately, which would require building a program that calls the 

method with the proper values. If our programming language comes 

with an interpreter, building such scaffolding is easier  because we 

do not have to create a complete executable, but we often want to 

automate such tests even with interpreters because we will usually 

execute them several  times 
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UNIT 3 

 

 

BUS-Based Computer Systems 

 

 
3.1 THE CPU BUS 

 

 
A computer system encompasses much more than the CPU; it also 

includes memory and I/O devices. The bus is  the mechanism by 

which the CPU communicates with memory and devices. A bus is, 

at a minimum, a collection of wires, but the bus also defines a 

protocol by which the CPU, memory, and devices  communicate. 

One of the major roles of the bus is to provide an interface to 

memory. (Of course, I/O devices also connect to the bus.) Based on 

understanding of the bus, we study the characteristics of memory 

components in this section. 

 

 

3.1.1 Bus Protocols 

 

The basic building block of most bus protocols is the four-cycle 

handshake, illustrated in Figure 4.1. The handshake ensures that 

when two devices want to communicate, one is ready to transmit 

and the other is ready to receive. The hand- shake uses  a pair of 

wires dedicated to the handshake: enq (meaning enquiry) and ack 

(meaning acknowledge). Extra wires are used for the data 

transmitted during the handshake. The four cycles are described 

below. 

 

1. Device 1 raises its output to signal an enquiry, which tells 

device 2 that it should get ready to listen for data. 
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2. When  device 2 is ready  to receive, it raises  its output  to signal 

an acknowl- edgment. At this point, devices 1 and 2 can transmit 

or receive. 

 

 
3. Once the data transfer  is complete, device 2 lowers its output, 

signaling that it has received the data. 

 

 
4. After seeing that ack has been released, device 1 lowers its 

output. 

 

 

At the end of the handshake, both handshaking signals are low, 

just as they were at the start of the handshake. The system has thus 

returned to its original state in readiness for another handshake- 

enabled data transfer. 

 

Microprocessor buses build on the handshake for communication 

between the CPU and  other system components. The term bus is 

used in two ways. The most basic use is as a set of related wires, 

such as address wires. However, the term may also mean a protocol 

for communicating between components. To avoid confusion, we 

will use the term bundle to refer to a set of related signals. The 

fundamental bus operations are reading and writing. Figure 4.2 

shows the structure of a typical bus that supports reads and writes. 

The major components follow: 

 

 
■ Clock  provides synchronization to the bus components, 

 

 
■ R/W is true when  the bus is reading and false when  the bus is 

writing, 

 

 
■ Address is an a-bit bundle of signals that transmits  the address 

for an access, 
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■ Data is an n-bit bundle  of signals  that can carry data to or from 

the CPU, and 

 

 

■ Data ready signals when the values on the data bundle are 

valid. 

 

 

All transfers on this basic bus are controlled by the CPU—the 

CPU can read or write a device or memory, but devices or memory 

cannot initiate a transfer. This is reflected by the fact that R/W and 

address are unidirectional signals, since only the CPU  can 

determine the address  and direction of the transfer. 

 

Fig 

 

 

 

The behavior of a bus is most often specified as a timing 

diagram. A timing diagram shows how the signals on a bus vary 

over time, but since values like the address and data can take  on 

many values, some  standard  notation  is used to describe signals, 

as shown in Figure 4.3. A’s value is known at all times, so it is 

shown as  a standard  waveform that  changes between  zero  and 

one. B and C alternate between changing and stable states. A 

stable signal has, as the name implies, a stable value that could be 

measured by an oscilloscope, but the  exact value  of that  signal 

does not matter for purposes of the timing diagram. For exam- ple, 

an address bus may be shown as stable when  the  address  is 

present, but the bus’s timing requirements are independent of the 

exact address on the bus. A signal can go between a known 0/1 state 

and a stable/changing state. A changing signal does not have a stable 

value. Changing signals should not be used for computation. To be 

sure that signals go to their proper values at the proper times, timing 

diagrams sometimes show timing  constraints. We draw timing 

constraints in two different ways, depending on whether we are 

concerned with the amount of time between events  or only  the 

order  of events. The timing   constraint from  A to B, for example, 
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shows that A must go high before B becomes stable. The constraint 

from A to B also has a time value of 10 ns, indicating that A goes 

high  at least  10 ns before  B goes stable. 

 

Figure 3 .4 shows a  timing diagram for the example bus. The 

diagram shows a read  and  a  write. Timing  constraints  are  shown 

only for the  read  operation, but similar  constraints  apply  to  the 

write operation. The bus is  normally  in  the  read mode  since  that 

does not change the state of any of the devices or  memories. The 

CPU can then ignore the bus data lines until  it wants  to use  the 

results of a read. Notice also that the direction of data transfer on 

bidirectional lines is not specified in the timing diagram.  During  a 

read, the external device or memory is sending a value on the data 

lines, while during  a write  the CPU is controlling the data lines. 

 

The sequence of operations for a read on the timing diagram  as 

follows: 

 

 
■ A read or write is initiated by setting  address enable high after the 

clock starts to rise. We  set  R/W  1  to  indicate  a  read,  and  the 

address  lines  are set to the desired address. 

 

 
■ One clock cycle later, the memory or device is expected to assert 

the data value at that address on the  data  lines.  Simultaneously, 

the external device specifies that the data are valid by pulling down 

the data  ready line. This line is active low, meaning that a 

logically true value is indicated by a low voltage, in order to provide 

increased immunity to electrical noise. 

 

 
■ The CPU is free to remove  the address at the end of the clock cycle 

and must do so before the beginning of the next cycle. The external 

device has a similar requirement for removing the data value from 

the data lines. 

 

The write operation has a similar timing structure. The read/write 

sequence does illustrate that timing  constraints are required on the 
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transition of the R/W signal between read and write  states. The 

signal  must, of course, remain  stable  within a read or write. As a 

result  there  is a restricted time window in which the CPU can 

change between read and write  modes. 

 

The handshake that tells the CPU and devices when data are to be 

transferred is formed by data ready for the acknowledge side, but is 

implicit for the enquiry side. Since the bus is normally in read 

mode, enq does not need to be asserted, but the acknowledge must 

be  provided by  data ready. 

 

The data ready signal allows the bus to be connected to devices 

that are slower than the bus. As shown in Figure 4.5, the external 

device need  not immediately assert  data ready. The cycles 

between the minimum time at which data can be asserted and 

when it is actually asserted are known as wait states. Wait states 

are commonly used to connect slow, inexpensive memories to 

buses. 

 

We can also use the bus handshaking signals to perform burst 

transfers, as illustrated in Figure 4.6. In this burst read 

transaction, the CPU sends one address but receives a sequence of 

data values. We add an extra line to the bus, called burst9 

here,which signals when a transaction is actually a burst. Releasing 

the burst9 signal tells the device that  enough data has been 

transmitted. To stop receiving data after the end of data 4, the CPU 

releases the burst9 signal at the end of data 3 since the device 

requires some time to recognize the end of the burst. Those values 

come from successive memory locations starting at the given 

address. 

 

Some buses provide disconnected transfers. In these buses, the 

request and response are separate. A first operation requests the 

transfer. The bus can then be used for other operations. The transfer 

is completed later, when  the data are ready. 

 

The state  machine view  of the bus transaction is also helpful  and 

a useful com- plement to the timing diagram. Figure 4.7 shows the 

CPU and device state machines for the read operation. As with a 

timing   diagram, we  do not  show   all  the  possible values  of address 
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and data lines but instead concentrate on the transitions of control 

signals. When the CPU decides to perform a read transaction, it moves 

to a new state, sending bus signals that cause the device to behave 

appropriately. The device’s state transition graph captures its side of 

the protocol. 

 

Some buses have data bundles that are smaller than  the  natural 

word size of the  CPU. Using  fewer  data  lines  reduces the  cost  of 

the chip. Such buses are eas- iest to  design  when  the  CPU is 

natively addressable. A more complicated  proto-  col  hides  the 

smaller data sizes from the instruction execution unit  in the  CPU. 

Byte addresses are sequentially sent  over  the  bus,  receiving  one 

byte at a time; the bytes are assembled inside the CPU’s bus logic 

before  being  presented to the  CPU proper. 

 

Some buses use multiplexed address and data. As shown in Figure 

4.8, additional control lines  are  provided to  tell  whether the  value 

on the address/data lines is  an  address  or  data.  Typically,  the 

address  comes  first  on  the   combined  address/data lines,  followed 

by the data. The address can be held in a register until the data arrive 

so that both can be presented to the device (such as a RAM) at the 

same  time. 

 

3.1.2 DMA 

 

Standard bus transactions require the CPU to be in the middle of 

every read and write  transaction. However, there  are certain types 

of data transfers in which the CPU does not need to be involved. For 

example, a high-speed I/O device may want to transfer a block of 

data into memory. While it is possible to write a program that 

alternately reads the device and writes to memory, it would  be 

faster to eliminate the CPU’s involvement and let the device and 

memory  communicate directly. This 

 

 

 
Direct memory access (DMA) is a bus operation that allows reads 

and writes not controlled by the CPU. A DMA transfer  is 

controlled by a DMA controller , which requests control of the bus 

from the CPU. After gaining control, the DMA con- troller  performs 
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read and write  operations directly between devices and memory. 

 
Figure 4.9 shows the configuration of a bus with a DMA 

controller. The DMA 
 

requires the CPU to provide two additional bus signals: 

 

 

■ The bus request is an input to the CPU through which DMA 

controllers ask for ownership of the bus. 

 

 
■ The bus grant signals  that the bus has been granted  to the DMA 

controller. 

 

A device that can initiate its own bus transfer is known as a bus 

master . Devices that do not have  the  capability to be  bus  masters 

do not need to connect to a bus request and bus grant. The DMA 

controller uses these two signals to gain control of the bus using a 

classic four-cycle handshake. The bus request  is  asserted  by  the 

DMA controller when it wants  to control  the bus, and the bus grant 

is asserted by the CPU when  the bus is ready. 

 

The CPU will finish all pending bus transactions before granting 

control of the bus to the  DMA controller.  When  it  does  grant 

control, it stops driving the other bus  signals: R/W, address, and  so 

on. Upon  becoming bus  master,  the  DMA con- troller  has  control 

of all bus signals (except,  of  course,  for  bus  request  and  bus 

grant). 

 

Once the DMA controller is bus master, it can perform reads and 

writes using the same bus protocol as with any CPU-driven bus 

transaction. Memory and devices do not know  whether  a  read  or 

write is performed by the CPU or by a DMA controller. After the 

transaction is finished, the DMA controller  returns  the  bus  to  the 

CPU by deasserting the bus request, causing the CPU to deassert the 

bus  grant. 

 

The CPU controls the DMA operation through registers  in  the 

DMA  controller.  A typical  DMA  controller  includes  the  following 
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three  registers: 

 

 
■ A starting  address  register specifies where the transfer is to begin. 

 

 
■ A length  register specifies the number of words  to be transferred. 

 

 

■ A status  register allows  the DMA controller to be operated by the 

CPU. 

 

 

The CPU initiates a DMA transfer by setting the starting address 

and length reg- isters appropriately and  then  writing  the  status 

register to set its start transfer bit. After the DMA operation is 

complete, the DMA controller interrupts the CPU to tell it that the 

transfer  is done. 

 

What is the CPU doing during a DMA transfer? It cannot use the bus. 

As illustrated in Figure 4.10,if the CPU has enough instructions and 

data in the cache and registers, it may be  able  to  continue  doing 

useful work for quite some time and may not notice the DMA transfer. 

But once the CPU needs the bus, it stalls until the DMA controller 

returns  bus mastership to the CPU. 

 

To prevent the CPU from idling for too long,  most  DMA 

controllers implement modes that occupy the bus for  only  a  few 

cycles at a time.  For example, the  trans- fer  may  be  made   4, 8, or 

16 words at a time. As illustrated in Figure  4.11,  after each  block, 

the DMA controller returns  control  of the  bus to the  CPU and goes 

to sleep for  a preset  period, after  which  it  requests  the  bus  again 

for the  next  block transfer. 

 

3.1.3 System Bus Configurations 

 

A microprocessor system often has more  than  one bus. As shown 

in Figure 4.12, high-speed devices may be connected to a high- 

performance  bus,  while  lower-speed  devices  are  connected  to  a 
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different bus. A small  block of logic known as a bridge allows the 

buses to connect to each other. There  are  several  good  reasons  to 

use multiple buses  and  bridges: 

 

■ Higher-speed buses may provide wider data connections. 

 

■ A high-speed bus usually requires more expensive circuits and 

connectors. The cost of low-speed devices can be held down by 

using  a lower-speed, lower-cost bus. 

 

The bridge may allow the buses to operate independently, thereby 

providing some parallelism in I/O operations. 

 

In Section  4.5.3, we  see that PCs often use this methodology. 

 

Let’s consider the operation of a bus bridge between what we will 

call a fast bus and a slow bus as illustrated in Figure 4.13. The bridge 

is a slave on the fast bus and the master of the slow bus. The bridge 

takes commands from the fast bus on which it is a slave and issues 

those commands on the slow bus. It also returns the results from the 

slow bus to the fast  bus—for  example, it  returns  the  results  of a 

read on the slow bus to the fast bus. 

 

The upper sequence of states handles a write from the  fast bus  to 

the slow bus. These states must read  the data from the fast bus and 

set up the handshake for the slow bus.  Operations on  the  fast  and 

slow sides of the bus bridge should be overlapped as  much  as 

possible to reduce the latency of bus-to-bus transfers. Similarly, the 

bottom sequence of states reads from the slow  bus  and  writes the 

data to the fast bus. 

 

The bridge serves as a protocol translator  between  the  two 

bridges as well. If the bridges are very close in protocol operation 

and speed, a simple state machine may be enough. If there are larger 

differences in the protocol and timing between the two buses, the 

bridge may need to use registers to hold some data values 

temporarily. 

 

3.1.4 AMBA Bus 
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Since the ARM CPU is manufactured by many different vendors, the 

bus provided off-chip can vary from chip  to chip. ARM has created 

a separate bus specification for single-chip systems. The AMBA bus 

[ARM99A] supports CPUs, memories, and peripherals integrated in 

a system-on-silicon. As shown in Figure 4.14, the AMBA 

specification includes two buses. The AMBA high-performance bus 

(AHB) is opti- mized for high-speed transfers and is directly 

connected to the CPU. It supports several high-performance 

features: pipelining, burst transfers, split transactions, and multiple 

bus masters. 

 

A bridge can  be used to connect the AHB to an AMBA 

peripherals bus (APB). This bus is designed to be simple and easy to 

implement; it also  consumes relatively little power. The AHB 

assumes that all peripherals act as slaves, simplifying the logic 

required in both the peripherals and the bus controller. It also does 

not perform pipelined operations, which simplifies the bus logic. 

 

3.2 MEMORY DEVICES 

 

In this section, we introduce the basic types of memory components 

that are com- monly used in embedded systems. Now that we 

understand the operation of the bus, we are able to understand the 

pinouts of these memories and how values are read and written. We 

also need to understand the varieties of memory cells that are used 

to build memories. There are several varieties of both read-only and 

read/write memories, each with its own advantages. After discussing 

some basic characteristics of memories, we describe RAMs and then 

ROMs. 

 

3.2.1 Memory Device Organization 

 

The most basic way  to  characterize a memory  is  by  its  capacity, 

such as 256 MB. However, manufacturers usually make  several 

versions of a memory of a given size, each with  a different  data 

width. For example, a 256-MB memory may be available in two 

versions: 

 
■ As a 64 M 4-bit array, a single memory  access obtains an 8-bit data 

item, with a maximum of 226   different  addresses. 
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■ As a 32 M 8-bit array, a single  memory  access obtains  a 1-bit data 
item, with a maximum of 223   different  addresses. 

 
The height/width  ratio of a memory is known  as  its  aspect 

ratio. The best aspect ratio depends on the amount of memory 

required. 

 

Internally, the data are stored in a two-dimensional array of 

memory cells as shown in Figure 4.15. Because the array is stored in 

two dimensions,the n-bit address received by the chip is split into 

a row and a column  address (with  n     r    c). 

 

 

 
The row and column select  a  particular  memory  cell.  If  the 

memory’s external width  is  1 bit,  the  column  address  selects  a 

single  bit; for wider  data  widths, the column  address   can  be  used 

to select a subset of the  columns.  Most  memories  include  an 

enable signal  that  controls  the  tri-stating  of  data  onto  the 

memory’s pins.  We  will  see  in  Section  4.4.1  how  the  enable pin 

can be used to easily build large memories from multiple banks of 

memory chips. A read/write signal (R/W in the figure) on read/write 

memories controls the direction of data  transfer;  memory chips  do 

not typically have  separate read  and write  data  pins. 

 

3.2.2 Random-Access Memories 

 

Random-access memories can be both read and written. They are 

called random access because, unlike  magnetic  disks,  addresses 

can be read in any order. Most bulk memory in modern systems is 

dynamic RAM (DRAM). DRAM is very dense; it does, however, 

require that its values be refreshed periodically since the values 

inside the memory cells decay over time. 

 

The dominant form of dynamic RAM today  is  the  synchronous 

DRAMs (SDRAMs), which uses clocks to improve DRAM 

performance. SDRAMs use Row Address Select (RAS) and Column 

Address Select (CAS) signals to break the address into two parts, 

which select   the proper   row  and column   in the RAM array. Signal 
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transitions are relative to the SDRAM clock, which allows the 

internal SDRAM operations to be pipelined 

 

As shown in Figure 4.16, transitions on the control signals are 

related to a clock  [Mic00].  RAS  and  CAS  can  therefore  become 

valid at the same time. The address lines are not shown in full detail 

here; some address lines may not be active depend- ing on the mode 

in use. SDRAMs use a separate refresh signal to control refreshing. 

DRAM has to be refreshed  roughly  once  per  millisecond.  Rather 

than refresh the entire memory at once, DRAMs refresh part of the 

memory at a time. When a section of memory is being refreshed, it 

cannot be accessed until the refresh  is  complete.  The  memory 

refresh occurs over fairly few seconds so  that  each  section  is 

refreshed every   few  microseconds. 

 

SDRAMs include registers that control the mode in which the 

SDRAM operates. SDRAMs support burst modes that allow several 

sequential addresses to be accessed by sending only one address. 

SDRAMs generally also support an interleaved  mode  that 

exchanges pairs  of bytes. 

 

Even faster synchronous DRAMs, known as  double-data  rate 

(DDR) SDRAMs or DDR2 and DDR3 SDRAMs, are now in use. The 

details of DDR operation are beyond  the  scope  of this  book,  but 

the basic capabilities of DDR memories are similar to those of single-

rate SDRAMs; DDRs simply use  sophisticated  circuit techniques to 

perform  more  operations per  clock  cycle. 

 

SIMMs and DIMMs 

 

Memory  for  PCs  is   generally   purchased   as   single   in-line 

memory modules (SIMMs) or double in-line memory modules 

(DIMMs). A SIMM or DIMM is a small circuit board  that fits into a 

standard  memory  socket. A DIMM has two  sets of leads  compared 

to the SIMM’s one.  Memory  chips  are  soldered  to  the  circuit 

board  to supply the  desired memory. 

 

3.2.3 Read-Only Memories 

 

Read-only memories (ROMs)  are preprogrammed with  fixed  data. 
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They are very useful in embedded systems since a great deal of the 

code, and perhaps some data, does not change over time. Read-only 

memories are also less sensitive to radiation- induced errors. 

 

There are several varieties of ROM available. The first-level 

distinction to be made is between factory-programmed ROM 

(sometimes called mask-programmed ROM ) and field- 

programmable ROM . Factory-programmed ROMs are ordered from 

the factory with particular programming. ROMs can typically be 

ordered in lots of a few thousand, but clearly factory  programming 

is useful only when  the ROMs are to be installed in some quantity. 

 

Field-programmable ROMs, on the other hand, can be 

programmed in the lab. Flash memory is the dominant form of 

field-programmable ROM and is electrically erasable. Flash memory 

uses standard system voltage for erasing  and  programming, 

allowing it to be reprogrammed inside a typical system.This allows 

applications such as automatic distribution of upgrades—the flash 

memory can be reprogrammed while  downloading  the  new 

memory contents from a telephone line.  Early flash memories had 

to be erased in their entirety; modern devices allow memory to be 

erased in blocks. Most flash memories today allow certain blocks to 

be  protected.. 

 

3.3 I/O DEVICES 

 

 
In this section we survey some input and output devices commonly 

used in embed- ded computing systems. Some of these devices are 

often found as on-chip devices in micro-controllers; others  are 

generally implemented separately  but are still com- monly used. 

Looking at a few important devices now will help us understand 

both the requirements of device interfacing in this chapter and the 

uses of devices in programming in this and later chapters. 

 

 

3.3.1 Timers and Counters 

 

Timers  and  counters are  distinguished from  one  another  largely 
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by their use, not their logic. Both are built from adder logic with 

registers to hold the current value, with an increment input that adds 

one to the current register value. 

 

 

 
A timer has its count connected to a periodic clock signal to measure 

time intervals, while a counter has its count input connected to an 

aperiodic signal in order  to count the number of occurrences of 

some external event. Because the same logic can be used for either 

purpose, the device is often called  a counter/timer . 

 

Figure 4.17 shows enough of the internals of a counter/timer to 

illustrate its operation. An n-bit counter/timer uses an n-bit register 

to store the current state of the count and an array of half 

subtractors to decrement the count when the count signal is 

asserted. Combinational logic checks when the count equals zero; 

the done output signals the zero count.  It is often useful to be able 

to control the time-out, rather than require exactly 2n events to 

occur. For this purpose, a reset register provides the value with 

which the count register is to be loaded. The counter/timer 

 

provides logic to load the reset register. Most  counters provide 

both cyclic and acyclic modes of operation. In the cyclic mode, 

once the counter reaches the done state,  it  is  automatically 

reloaded and the counting process continues. In acyclic mode, the 

counter/timer waits for an explicit signal  from the  microprocessor 

to resume  counting. 

 

A watchdog timer is an I/O device that is used for internal 

operation of a system. As shown in Figure 4.18, the watchdog timer 

is connected into the CPU bus and also to the CPU’s reset line. The 

CPU’s software is designed to periodically reset 

 

the watchdog timer, before the timer ever reaches its time-out limit. If 

the watchdog timer ever does reach  that limit, its time-out  action  is 

to reset the processor. In that case, the presumption is that either a 

software flaw or hardware problem has  caused  the  CPU  to 

misbehave. Rather than diagnose the problem, the system  is reset  to 

get it  operational as  quickly as possible. 
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3.3.2 A/D and D/A Converters 

 

Analog/digital (A/D)  and  digital/analog  (D/A)  converters 

(typically known as ADCs and DACs, respectively) are often used 

to interface  nondigital devices  to embedded  systems. The  design 

of A/D and D/A converters themselves is beyond the scope of this 

book; we concentrate instead on the interface to the  micropro- 

cessor bus. Because A/D conversion requires more complex 

circuitry, it requires a somewhat more  complex interface. 

 

Analog/digital conversion requires  sampling  the  analog  input 

before convert- ing  it to digital  form. A control  signal  causes  the 

A/D converter to take  a sample and digitize it. 

 

There are several different types of A/D converter circuits, some of 

which take a constant amount of time, while the conversion time of 

others depends on the sam- pled value.Variable-time converters 

provide a done signal so that the microprocessor knows when the 

value is ready. 

 

A typical A/D interface has, in addition to its analog inputs, two 

major digital inputs. A data port allows A/D registers to be read and 

written, and  a clock  input tells  when  to start the next  conversion. 

 

D/A conversion is relatively simple, so the D/A converter 

interface generally includes only the data value. The input value is 

continuously converted to analog form. 

 

 

3.3.3 Keyboards 

 

A keyboard is basically an array of switches, but it may include 

some internal logic to help simplify the interface to the 

microprocessor. In this chapter, we build our understanding from a 

single switch to a microprocessor-controlled keyboard A hardware 

debouncing circuit can be built using a one-shot timer. Software can 

also be used to debounce switch inputs. A raw keyboard can be 

assembled from  several   switches. Each switch in a raw  keyboard 
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has its own pair of terminals, making raw keyboards impractical 

when a large number of keys is required. 

 

The  microprocessor  can  provide  debouncing,  but  it  also 

provides other functions as well. An encoded keyboard uses some 

code to  represent which  switch  is  cur- rently  being  depressed. At 

the heart of the encoded keyboard is the scanned array of switches 

shown in Figure  4.20.  Unlike  a  raw  keyboard,  the  scanned 

keyboard array reads only one row of switches at a time. The 

demultiplexer at the left side of the array selects the row to be read. 

When the scan input  is 1, that value  is trans- mitted  to one terminal 

of each  key  in  the  row.   If the  switch is depressed, the  1 is sensed 

at that switch’s column. Since only one switch in the column is 

activated, that value uniquely identifies a key. The row address and 

column output can be used for encoding, or circuitry can be used to 

give  a different  encoding. 

 

A consequence of encoding the keyboard  is that combinations of 

keys may not be represented. For example, on a PC keyboard, the 

encoding must be  chosen  so  that  combinations such  as  control-Q 

can be recognized and sent to the PC. Another consequence is that 

rollover may not be allowed. For example, if you press ―a,‖ and then 

press ―b‖ before releasing ―a,‖ in most applications you want the 

keyboard to send an ―a‖ followed by a ―b.‖ Rollover is  very 

common in typing at even modest rates. A naive  implementation of 

the encoder circuitry will  simply  throw  away  any  character 

depressed after the first one until all the keys are released. The 

keyboard microcontroller can be programmed to  provide  n-key 

rollover , so that rollover keys are sensed, put on a stack, and 

transmitted in  sequence as keys  are  released. 

 

 

3.3.4 LEDs 

 

Light-emitting diodes (LEDs) are often used as simple displays by 

themselves, and arrays of LEDs may form the basis of more complex 

displays. Figure 4.21 shows  how to connect an LED to a digital 

output. A resistor  is connected between  the output  pin and the LED 

to absorb  the  voltage   difference between  the  digital  output voltage 
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and the 0.7 V drop across the LED. When the digital  output  goes to 

0, the LED voltage  is in the device’s off region  and the LED is not on. 

 

 
 

3.3.5 Displays 

 

A display device may be either directly driven  or  driven  from  a 

frame buffer. Typi- cally, displays with  a small  number of elements 

are driven directly by logic, while large displays use a RAM frame 

buffer. 

 

The n-digit array, shown in Figure 4.22, is a simple example of a 

display that is  usually  directly  driven.  A  single-digit  display 

typically consists  of seven  segments; each   segment may  be  either 

an LED or a liquid crystal display (LCD)  element.  This   display 

relies on the digits being visible  for some  time  after  the  drive  to 

the digit is removed, which is true for both  LEDs and  LCDs. The 

digit input is used  to  choose  which  digit  is  currently  being 

updated, and  the  selected digit  activates  its display  elements based 

on the current data value. The display’s driver is responsible for 

repeatedly scanning through the digits and  presenting  the  current 

value  of each to the  display. 

 

A frame buffer is a RAM that is attached to the system bus. The 

microprocessor writes values into the frame buffer in  whatever 

order is desired. The pixels in the frame buffer are  generally 

written to the display in raster order (by tradition, the screen is in 

the fourth quadrant) by reading pixels sequentially. 

 

Many large displays are built using LCD. Each pixel in the 

display is formed by a single liquid crystal. LCD displays present a 

very different interface to the system because the array of pixel 

LCDs can be randomly accessed. Early LCD panels were called 

passive matrix because they relied on a two-dimensional grid of 

wires to address the pixels. Modern LCD panels use an active 

matrix system that puts a transistor at each pixel  to control  access 

to the LCD. Active matrix displays provide higher contrast and a 

higher-quality display 



Embedded Computing Systems 10CS72 

Dept of CSE Page 131 

 

 

 

3.3.6 Touchscreens 

 

A touchscreen is an input device  overlaid on  an  output  device. 

The touchscreen registers the position of a touch to its surface. By 

overlaying this on a display, the user can react to information shown 

on the display. 

 

The two  most  common  types  of  touchscreens  are  resistive 

and capacitive. A resistive touchscreen uses a two-dimensional 

voltmeter to sense position. As shown in Figure 4.23, the 

touchscreen consists of two conductive sheets separated by spacer 

balls. The top conductive sheet is flexible so that it can be pressed 

to touch the bottom sheet. A voltage is applied across the sheet; its 

resistance causes a voltage gradient to appear across the sheet. The 

top sheet samples the conductive sheet’s applied voltage at the 

contact point. An analog/digital converter is used to measure the 

voltage  and  resulting  position.  The  touchscreen   alternates 

between x and y position sensing by  alternately  applying 

horizontal and  vertical voltage gradients. 

 

 

3.4 COMPONENT INTERFACING 

 

Building the logic to interface a device to a bus is not too difficult 

but does take some attention to detail. We first consider interfacing 

memory components to the bus, since that is relatively simple, and 

then use those concepts to interface to other types  of devices. 

 

3.4.1 Memory Interfacing 

 

If we can buy a memory of the exact size we need, then the 

memory structure is simple. If we need more memory than we can 

buy in a single chip, then  we must construct the memory out of 

several chips. We may also want to build a memory that is wider 

than we can buy on a single chip; for  example, we  cannot 

generally buy a 32-bit-wide memory chip. We can easily construct a 

memory of a given width (32 bits, 64 bits, etc.) by placing RAMs in 

parallel. 

 

3.4.2 Device Interfacing 



Embedded Computing Systems 10CS72 

Dept of CSE Page 132 

 

 

 

Some I/O devices  are  designed  to  interface  directly  to  a 

particular bus, forming glueless interfaces. But glue logic is 

required when a device is connected to a bus for which it is not 

designed. 

 

An I/O device typically requires a much smaller range of addresses than 

a memory, so addresses must be decoded much more finely. Some 

additional logic is required to cause the bus to read and write the 

device’s  registers. 

 

3.5    DESIGNING WITH MICROPROCESSORS 

 

In this section we concentrate on how to create an initial working 

embedded system and how to ensure that the system  works 

properly. Section 4.5.1 considers possible architectures  for 

embedded computing systems. Section 3.5.2 studies techniques for 

designing the  hardware components of embedded systems. Section 

4.5.3 describes the use of the PC as an embedded computing 

platform. 

 
3.5.1 System  Architecture 

 

We know that an architecture is a  set  of  elements  and  the 

relationships between them that together form a single unit. The 

architecture of an embedded computing system is the blueprint for 

implementing that system—it tells you what  components  you  need 

and how  you put them  together. 

 

The architecture of an embedded computing system includes both 

hardware and software elements. Let’s consider each  in turn. 

 

The hardware architecture of an embedded computing system is 

the more obvi- ous manifestation of the architecture since you can 

touch it and feel it. It includes several elements, some of which may 

be less obvious than others. 

 

■ CPU An embedded computing system clearly contains a 

microprocessor. But which one? There are many different 

architectures, and even within an architecture we  can  select 

between models that vary in clock  speed, bus data width, integrated 
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peripherals, and so on. The choice of the CPU is one of the most 

important, but it cannot be made without considering the software 

that will  execute on the machine. 

 

■ Bus The choice of a bus is closely tied to that of a CPU, since the 

bus  is an integral part  of the  microprocessor 

 

Memory Once again, the question is not whether the system will have 

mem- ory but the characteristics of that memory. The most obvious 

characteristic is total size, which depends on both the required data 

volume and the size of the program instructions. The ratio of ROM to 

RAM and selection of DRAM versus SRAM can have a significant 

influence on the cost of the system. The speed  of the  memory  will 

play  a large  part  in determining system  performance. 

 

 
■ Input and output devices The user’s view of the input and output 

mech- anisms may not correspond to the devices connected to the 

microprocessor. For example, a set of switches and knobs on a front 

panel may all be controlled by a single microcontroller, which is in 

turn connected to the main CPU. For a given function, there may be 

several different  devices of varying  sophistica- tion  and  cost  that 

can do the job. The difficulty  of using  a particular device, such  as 

the amount of glue logic required to  interface it, may  also  play  a 

role in  final  device selection. 

 

You may not think of programs as having architectures, but well-

designed programs do have structure that represents an 

architecture. A fundamental task in software architecture design is 

partitioning —breaking the functionality into pieces in a way that 

makes it easy to implement, test, and modify. 

 

Most embedded systems will do more than one thing—for 

example, processing streams of data and handling  the  user 

interface. Mixing together different types of functionality into a 

single code module leads to spaghetti code, which has poorly 

structured control flow, excessive use of global data, and generally 

unreliable  programs. 

 

Breaking the  system’s functionality into  pieces that  roughly 
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correspond to the major modes of operation and functions of the 

device is often a good choice. First, different types of functionality 

often require different programming styles, so that they will 

naturally fall into different procedures in the code. Second,the 

functionality boundaries often correspond to performance 

requirements. Since at least some of the software components will 

almost  certainly have  to finish  executing within a given  deadline, 

it is important to be able to identify the code that must satisfy the 

deadline and to measure the performance of that code. 

 

It is also important to remember that some of the functionality 

may in fact  be implemented in the I/O devices. You may have a 

choice between using a simple, inexpensive device that requires 

more software support or a more sophisticated and expensive device 

that can perform more functions automatically. (An example in the 

digital audio domain is -law scaling, which can be done 

automatically by some analog/digital converters.) Using DMA to 

move data rather than a programmed loop is another example of 

using hardware to substitute for software. Most of the functionality 

will be in the software, but careful consideration of the hardware 

architecture can help simplify the software and make it easier for 

the software to meet  its performance requirements. 

 

3.5.2 Hardware Design 

 

The  design   complexity of the  hardware platform  can  vary 

greatly, from  a  totally off-the-shelf solution  to a highly  customized 

design. 

 

At the board level,the first step is to consider evaluation boards 

supplied by the microprocessor manufacturer or another company 

working in collaboration  with the manufacturer. Evaluation boards 

are sold for many microprocessor systems; they  typically  include 

the CPU, some memory, a serial link for downloading programs, 

and some minimal number of I/O devices. Figure 4.24 shows an 

ARM evaluation board manufactured by Sharp. The  evaluation 

board may be a complete solution or provide what you need with 

only slight modifications. If the evaluation board is supplied by the 

microprocessor vendor, its design (netlist, board layout, etc.)  may 

be available from the vendor; companies provide  such information 
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to make it easy for customers to use their microprocessors. If the 

evaluation board comes from a third party, it may be possible to 

contract them to design a new board with your required 

modifications, or you can start from scratch on a new board design. 

 

The other major task is the choice of memory and peripheral 

components. In the case of I/O devices, there are two alternatives 

for each  device: selecting a 

 

component from a catalog or designing one yourself. When 

shopping for devices from a catalog, it is important to read data 

sheets carefully—it may not be trivial to figure out whether the 

device does what you need it to do. You should also con- sider the 

amount of glue logic required to connect the device to your bus. 

Simple peripheral logic can be  implemented  in  programmable 

logic devices (PLDs), while more complex units can be built from 

field-programmable  gate   arrays  (FPGAs). 

 

 

3.5.3 The PC as a Platform 

 

Personal computers are often used as platforms for embedded 

computing. A PC offers several important advantages—it is a 

predesigned hardware platform with a great many features, a wide 

variety of I/O devices can be purchased for it, and it provides a rich 

programming environment. Because a PC-based system does not use 

custom hardware, it also carries the resulting disadvantages. It is 

larger, more power- hungry, and more expensive than a custom 

hardware platform would be.  However,  for  low-volume 

applications and environments such as factories and offices where 

size and power are not critical,using a PC to build an embedded 

system often makes a lot of sense.The term personal computer 

has come to apply to a variety of machines, including IBM- 

compatibles, Macs, and others. In this section, we describe a generic 

PC architecture with some discussion of features relevant to 

different types of PCs. A detailed discussion of any of these 

platforms is beyond the scope of this book. 

 

As shown  in  Figure  4.25,  a typical PC includes several  major 
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hardware  com- ponents: 

 

 
■ The CPU provides basic computational facilities. 

 

 
■ RAM is used for program  storage. 

ROM holds the boot program. 

■ A DMA controller provides DMA capabilities. 

 

■ Timers are used  by the operating system  for a variety  of purposes. 

 

■ A high-speed bus, connected to the  CPU bus  through a bridge, 

allows  fast devices to communicate efficiently with the rest of the 

system. 

 

 
■ A low-speed bus provides an inexpensive way to connect simpler 

devices and may be necessary for backward compatibility as well. 

 

 
PCI (Peripheral Component Interconnect ) is the dominant high-

perfor- mance system bus today. PCI uses high-speed data 

transmission techniques and efficient protocols to achieve high 

throughput. The original PCI standard allowed operation up to 33 

MHz; at that  rate, it could  achieve a maximum transfer  rate  of 

 

264 MB/s using 64-bit transfers. The revised  PCI standard  allows  the 

bus to run up to 66 MHz, giving a maximum transfer  rate of 524 

MB/s with  64-bit wide  transfers. 

 

PCI uses  wide buses with many data and address bits along with 

multiple control bits.The width of the bus both increases the cost of 

an interface to the bus and makes the physical connection to the bus 

more complicated. As a result, PC manufacturers  have   introduced 

serial  buses  to provide  high-speed transfers  while keeping the  cost 

of connecting to the  bus  relatively low.  USB (Universal Serial  Bus) 
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and IEEE 1394 are the two major high-speed serial buses. Both of 

these buses offer high transfer rates using simple  connectors. They 

also  allow  devices to  be  chained  together  so that  users  don’t  have 

to worry about the order of devices on the bus or other details of 

connection. 

 

A PC also provides a standard software platform that provides 

interfaces to the underlying hardware as well as more  advanced 

services. At the bottom of the soft- ware platform structure  in  most 

PCs is a minimal set of  software  in  ROM.  This  software  is 

designed to load the complete operating system from some  other 

device (disk, network, etc.), and it may  also  provide  low-level 

hardware interfaces. In the IBM-compatible  PC,  the  low-level 

software is known as the basic  input/output system  (BIOS ). The 

BIOS provides low-level hardware drivers  as  well  as  booting 

facilities. The  operating  system  provides  high-level  drivers,  control 

of executing pro- cesses, user interfaces, and so on. Because the PC 

software environment is so  rich,  developing  embedded  code  for  a 

PC target is much easier than when a host must be connected to a 

CPU in a development target. However, if the software is  delivered 

directly on a standard version of the operating system, the resulting 

software pack- age  will  require significant amounts  of RAM as well 

as occupy a large disk image. Developers often create pared down 

versions of the operating system for delivering  embedded  code  on 

PC  platforms. 

 

Both the IBM-compatible PC and the Mac provide a combination 

of hardware and software that allows devices to provide their own 

configuration information. On the IBM-compatible  PC, this  is known 

as the Plug-and-Play standard developed  by  Microsoft.  These 

standards make it possible to plug in a device and have it  work 

directly, without  hardware  or  software intervention  from  the  user. 

 

3.6 DEVELOPMENT AND DEBUGGING 

 

In this section we take a step back from the  platform  and consider 

how it is used during design. We first consider how we  can build an 

effective means for program- ming and testing an embedded system 

using hosts. We then see how hosts and other techniques can be used 

for  debugging  embedded  systems. 
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3.6.1 Development Environments 

 

A typical  embedded  computing  system  has  a  relatively  small 

amount of everything, including CPU horsepower, memory, I/O 

devices, and so forth. As a result, it is com- mon to do at least part of 

the software development on  a PC or  workstation known  as  a  host 

as illustrated in Figure 4.26. The hardware on which the code will 

finally run is known as the target . The host and target are frequently 

connected by a USB link, but a higher-speed link such  as Ethernet 

can also be used. 

 

The target must include a small  amount  of software to talk  to the 

host system. That software will take up some  memory, interrupt 

vectors, and so on, but  it  should  generally  leave  the  smallest 

possible footprint in the target  to  avoid  interfering  with  the 

application software. The host  should  be able  to do the  following: 

 

 
■ load programs into the target, 

 

 

■ start and stop program  execution on the target, and 

 

 
■ examine memory and CPU registers. 

 

 

A cross-compiler is a compiler that  runs on one type of 

machine but gener- ates code for another. After compilation, the 

executable code is downloaded to the embedded system by a serial 

link or perhaps burned in a PROM and plugged in. We also often 

make use of host-target debuggers,in which the basic hooks for 

debugging are provided by the target and a more sophisticated user 

interface is created by the host. 

 

A PC or  workstation  offers  a  programming  environment  that  is 

in  many  ways  much  friendlier  than  the  typical  embedded 

computing  platform.  But  one  prob-  lem  with  this   approach 

emerges when   debugging code  talks  to I/O devices. Since the  host 
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almost certainly will not have the same devices  configured in  the 

same way, the embedded code cannot be  run as is on the host. In 

many cases, a test- bench program can be built to help debug the 

embedded code. The testbench generates inputs to  simulate  the 

actions  of  the  input  devices; it  may  also  take the  output  values 

and compare  them  against  expected  values,  providing  valu- able 

early debugging help. The embedded code may need to be  slightly 

modified to work with the testbench, but  careful  coding  (such  as 

using the #ifdef direc- tive  in  C)  can  ensure that  the  changes can 

be  undone   easily  and  without intro- ducing bugs. 

 

 

3.6.2 Debugging  Techniques 

 

A good deal of software debugging can be done by compiling and 

executing the code on a PC or workstation. But at some point it 

inevitably becomes necessary to run code on the embedded 

hardware platform. Embedded systems are usually less friendly 

programming  environments  than  PCs.   Nonetheless,   the 

resourceful designer has several  options  available for debugging 

the system. 

 

The serial port found on most evaluation boards is one of the 

most important debugging tools. In fact, it is often a good idea to 

design a serial port into an embed- ded system even if it will not be 

used in the final product; the serial port can be used not only for 

development debugging but also for diagnosing problems  in  the 

field. 

 

Another very important debugging tool is the breakpoint . The 

simplest form of a breakpoint is for the user to specify an address at 

which the program’s execution is to break. When the PC reaches 

that address, control is returned to the monitor program. From the 

monitor program, the user can examine and/or modify CPU 

registers, after which execution can be continued. Implementing 

breakpoints does not require using exceptions or external devices. 

 

Programming Example 3.1 
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Breakpoints 

 

A breakpoint is a location in memory at which a program stops 

executing and returns to the debugging  tool or monitor program. 

Implementing breakpoints  is very simple—you simply replace the 

instruction at the breakpoint location with a subroutine  call to the 

monitor. In the following code, to establish a breakpoint at location 

0x40c in some ARM code, we’ve replaced the branch  (B) instruction 

normally held at that location with a subroutine  call (BL) to the 

breakpoint handling routine: 

 

3.7  SYSTEM-LEVEL PERFORMANCE ANALYSIS 

 

Bus-based systems add another layer  of  complication  to 

performance analysis. The CPU, bus, and memory or I/O device all 

act as independent elements that can operate in parallel. In this 

section, we will develop some basic techniques for analyzing the 

performance of bus-based systems. 

 

3.7.1   System-Level Performance Analysis 

 

System-level performance involves much more than  the  CPU. We 

often focus  on the  CPU because  it  processes  instructions, but  any 

part of the system can affect  total  system  performance.  More 

precisely, the CPU provides  an  upper  bound  on performance, but 

any other part of the system can slow down  the  CPU. Merely 

counting instruction execution  times  is  not  enough. 

 

Consider  the  simple  system  of   Figure   4.28.   We   want   to 

move data from memory to the CPU to process it. To get the data 

from memory  to the  CPU we must: 

 

■ read  from the  memory; 

 

■ transfer over the bus to the cache; and 
 

■ transfer  from the cache to the CPU. 
 

The most basic measure of performance we are interested in is 

bandwidth— the rate at which we can  move  data.  Ultimately, if 

we   are   interested  in  real-time performance, we  are  interested in 
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real-time performance measured in seconds. But often the simplest 

way to measure performance is in units of clock cycles. However, 

different parts of the system will run at different clock rates. We 

have to make sure that we apply the right clock rate to each part of 

the performance estimate when we convert from clock cycles to 

seconds. 

 

Bandwidth questions often come up  when  we  are  transferring 

large blocks of data. For simplicity, let’s start by considering the 

bandwidth provided by only one  system  component,  the  bus. 

Consider  an image  of 320      240  pixels, with  each  pixel composed 

of 3 bytes of data. This gives a grand total of 230, 400 bytes  of 

data. If these  images  are  video  frames,  we  want   to  check if we 

can push one frame through the system  within the  1/30 s that  we 

have  to process a frame  before  the next  one arrives. 

 

Let us assume that we can transfer one byte of data every 

microsecond, which implies a bus speed of 1 MHz. In this case, we 

would  require 230, 400  s   0.23 s to transfer  one  frame.  That is 

more than the  0.033 s allotted  to the  data  transfer. We  would  have 

to increase the transfer rate by 7 to satisfy our  performance 

requirement. 

 

We can increase bandwidth  in two ways: We  can  increase  the 

clock rate of the bus or we can  increase the amount  of  data 

transferred per clock cycle. For example, if we increased the bus to 

carry four bytes or 32 bits per transfer, we would reduce the transfer 

time to 0.058 s. If we could also increase the bus  clock  rate  to 2 

MHz, then we would reduce the transfer time to 0.029 s, which is 

within our time  budget for the  transfer. 

 

How do we know how long it takes  to transfer  one unit of data? 

To determine that, we have to look at the data sheet for the bus. As 

we saw in Section  4.1.1, a bus  transfer  generally takes  more  than 

one  bus  cycle.  Burst  transfers,  which  move   to   contiguous 

locations, may be more efficient per byte. We also need to know the 

width of the bus—how many bytes per transfer. Finally, we need to 

know the bus clock period, which in general will  be different  from 

the CPU clock  period. 
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Let’s call the bus clock  period  P and the bus width  W . We will  put 
W in units 

 
of bytes but we  could  use  other  measures of width  as  well. We 
want  to write  for- 

 
mulas for the time required to  transfer  N bytes  of data.  We  will 
write  our  basic 

 
formulas in units of bus cycles T , then convert those bus cycle 
counts  to real 

 

time t using the bus clock  period  P : 

 
A basic bus transfer transfers a W -wide set of bytes. The data 

transfer itself  takes  D clock  cycles.  (Ideally, D  1, but  a memory 
that introduces wait states is one example of a  transfer that could 
require D      1 cycles.) 

 

 
 

3.8.3 System  Architecture 

 

The software and hardware architectures of a system are always 

hard to completely separate, but let’s first consider the software 

architecture and then its implications on the hardware. 

 

The system has both periodic and aperiodic components—the 

current time must obviously be updated periodically, and the button 

commands occur  occasionally. 

 

It seems reasonable to have the following two major software 

components: 

 

■ An interrupt-driven routine can update the current time. The current 

time will be kept in a variable in memory. A timer can be used to 

interrupt periodically and  update  the  time.  As  seen  in  the 

subsequent  discussion  of  the   hardware 

 

3.8.4 Component Design and Testing 

 

The two major software components,the interrupt handler and the 

foreground code, can be implemented relatively straightforwardly. 

Since  most  of the  functionality  of the  interrupt handler is  in  the 
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interruption process itself, that code is best tested on the 

microprocessor platform. The foreground code can be more easily 

tested on the PC or workstation used  for code  development. 

 

3.8.5 System Integration and Testing 

 

Because this system has a small number of components, system 

integration is relatively easy. The software must be checked to 

ensure that debugging code has been turned off. Three types of 

tests can be performed. First,  the  clock’s accuracy  can  be 

checked against  a  reference  clock.  Second,  the  commands can 

be exercised from the buttons. Finally, the buzzer’s functionality 

should  be verified. 
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UNIT-4 

 

 

Program Design and Analysis 

 

 
4.1.2 Stream-Oriented Programming and Circular Buffers 

 

The data stream style makes sense for data that comes in 

regularly and must be processed on the fly. The FIR filter of 

Example 2.5 is a classic example of stream- oriented processing. 

For each sample, the filter must emit one output that depends on the 

values of the last n inputs. In a typical workstation application, we 

would process the samples over a given interval by reading them all 

in from a file and then computing the results all at once in a batch 

process. In an embedded system we must not only emit outputs in 

real time, but we must also do so using a minimum amount of 

memory. 

 

The circular buffer is a data  structure  that  lets  us  handle 

streaming data in an efficient way. Figure  5.1  illustrates  how  a 

circular buffer stores a subset of the data stream. At each  point  in 

time, the algorithm needs a subset of the data stream that forms a 

window into the stream. The window slides with  time  as we  throw 

out old values no longer needed and add new  values.  Since  the size 

of the window does  not 

 

 

Programming Example 4.2 

 

 

A circular buffer implementation of an FIR filter 

 

Appearing below are the declarations  for the circular buffer and  filter 
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coefficients, assuming that N , the number  of taps in the filter, has been 

previously defined. 

 

 

int  circ_buffer[N]; /* circular buffer for data */ 

 

int  circ_buffer_head = 0; /* current head of the 

buffer  */ 

 

int c[N]; /* filter coefficients (constants) */ 

 

 

To write C code for a circular buffer-based FIR filter, we need to modify 

the original loop slightly. Because the 0th element of data may not be in 

the 0th element of the circular buffer, we have to change the way in 

which we access the data. One of the implications of this is that we 

need separate  loop indices for the circular buffer and coefficients. 

 

 

int f, /* loop counter */ 

 

ibuf,  /*  loop index for  the  circular  buffer */ 

ic; /*  loop index for  the  coefficient  array */ 

for (f  =  0, ibuf =  circ_buffer_head, ic  =  0; 

ic < N; 

ibuf = (ibuf == (N – 1) ? 0 : ibuf++),ic++) 

f =  f +  c[ic] *  circ_buffer[ibuf]; 

 

The above code assumes that some other code, such as an interrupt 
handler, is replacing the last element of the circular buffer at the 
appropriate  times. The statement ibuf       (ibuf        (N      1) ? 0 : ibuf 
) is a shorthand C way of incrementing   ibuf such  that it returns  to 0 
after reaching the end of the circular buffer array. 
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4.1.3 Queues 

 

Queues are also used in signal processing and event processing. 

Queues are  used whenever data may arrive and depart at 

somewhat unpredictable times or when variable amounts of data 

may arrive.  A queue is often  referred to as an elastic buffer . 

 

One way to build a queue is with a linked list. This approach 

allows the queue to grow to an arbitrary size. But in many 

applications we are unwilling to pay the price of dynamically 

allocating memory. Another way to design  the queue is to use 

 

an array  to hold  all the  data. We used  a circular buffer  in Example 

3.5 to manage interrupt-driven data; here we will develop a non- 

interrupt version. Programming Example 5.3 gives C code for a 

queue that is built from an array. 

 

Programming Example 4.3 

 

A buffer-based queue 

 

The first step in designing the queue  is to declare the array that we will 

use for the buffer: 

 

 

#define Q_SIZE  32  /*  your queue size  may  vary */ 

 

#define Q_MAX (Q_SIZE-1) /* this is the maximum 

index value into  the array */ 

 

int  q[Q_SIZE]; /*   the   array   for   our  queue */ 

We will use two variables to keep track of the state of the queue: 

As our initialization code shows, we initialize them to the same 

position. As we add a value to the tail of the queue, we will increment 

tail. Similarly, when we remove a value from the head, we will 

increment head. When we reach the end of the array, we must wrap 

around these values—for example, when we add a value into the last 

element of q, the new value of tail becomes the 0th entry of the array. 
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void    initialize_queue() { 

head = 0; 

tail = Q_MAX; 

 

} 

 

A useful function adds one to a value with wraparound: 

 

Int wrap(int i) { /* increment with wraparound for 

queue size */ 

 

return  ((i+1)  %   Q_SIZE); 

 

} 

 

We need to check for two error conditions: removing from an empty 

queue and adding to a full queue. In the first case, we know the queue 

is empty if head       wrap(tail). In the second case,  we know the queue 

is full if incrementing tail will cause it to equal head. Testing for 

fullness, however, is a little harder since we have to worry about 

wraparound. 

 

Here  is the  code  for adding  an  element  to the  tail of the  queue, 

which is known as 

 

enqueueing: 

 

enqueue(int val)  { 

 

/* check for  a full queue */ 

 

if (wrap(wrap(tail) == head) 

error(ENQUEUE_ERROR); 

 

 

 

/* update the tail */ 
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tail = wrap(tail); 

 

/*  add val  to  the  tail of  the  queue */ 

q[tail] = val; 

} 

 

And here  is the  code  for removing an  element  from the  head  of 

the  queue,   known as 

 

dequeueing: 

 

int dequeue() { 

 

int returnval; /* use this  to remember the  value 

that you will  return  */ 

 

/*  check for  an empty queue */ 

 

if (head == wrap(tail)) error(DEQUEUE_ERROR); 

 

/*  remove from the  head of the  queue */ 

returnval  =  q[head]; 

/* update head */ 

 

 

head  =   wrap(head); 

 

/* return the value */ 

return returnval; 

} 
 

 
4.2   MODELS OF PROGRAMS 

 

Our  fundamental model  for  programs  is  the  control/data  flow 
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graph (CDFG). (We can also model hardware behavior with the 

CDFG.) As the name implies, the CDFG has constructs that model 

both data operations (arithmetic and other compu- tations)  and 

control operations (conditionals). Part of the power of the CDFG 

comes from its combination of control and data constructs. To 

understand the CDFG, we start with pure data descriptions and then 

extend the model to control. 

 

4.2.1 Data Flow Graphs 

 

A data flow graph is a model of a program  with  no conditionals. 

In a high-level programming language, a code segment with no 

conditionals—more precisely, with only one entry and exit point—is 

known as a basic block. Figure 5.2 shows a simple basic block. As 

the C code is executed, we would enter this basic block at the 

beginning and execute all the statements 

 

FIGURE4.2 
 

A basic  block in C. 

 

 

w 5 a 1 b; 

 

x1 5 a 2 c; 

 

y 5 x1 1 d; 

 

x2 5 a 1 c; 

 

z 5 y 1 e; 

 

 
 

FIGURE4.3 

 

The basic  block in single-assignment  form. 

 

 
There are two assignments to the variable  x—it appears twice on 
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the left side of an assignment. We need to rewrite the code in single-

assignment  form,  in  which  a  variable  appears  only   once on the 

left side. Since our  specification is C code,  we  assume  that the 

statements are executed sequentially, so  that  any  use  of  a variable 

refers to its latest assigned value.  In this  case,  x  is  not reused in this 

block (presumably it is used  elsewhere), so  we  just have  to 

eliminate the  multiple assignment to x. The result  is shown in Figure 

5.3, where we have used  the  names  x1  and  x2  to distinguish the  

separate uses  of x. 

 

The single-assignment form is important because it allows us to 

identify a unique location in the code where each  named  location 

is computed. As an introduction to the data flow graph, we  use 

two types of nodes in the graph—round nodes denote  operators 

and square nodes represent values. The value nodes may be either 

inputs to the basic block, such as a and b, or variables assigned to 

within the block, such as w and x1. The data flow graph for our 

single-assignment code is shown in Figure 5.4. The single- 

assignment form means that the data flow graph is acyclic—if we 

assigned to x multiple times, then the second assignment would 

form a cycle  in the graph including x and the operators used to 

compute x. Keeping  the data flow graph acyclic is important in many 

types of analyses we want to do on the graph. (Of course,it is 

important to know whether the source code actually assigns to a 

variable multiple times, because some of those assignments may be 

mistakes. We consider the analysis of source code for proper use of 

assignments in Section  5.10.1). 

 

The data flow graph  is generally drawn  in the form shown  in Figure 

5.5. Here, the variables are not explicitly represented by nodes. 

Instead, the edges are labeled with the variables they represent. 

 

4.2.2 Control/Data Flow Graphs 

 

A CDFG uses a data flow graph as an element, adding constructs to 

describe control. In a basic CDFG, we have two types of nodes: 

decision nodes and data flow nodes. A data  flow  node 

encapsulates a complete data flow graph to represent a basic block. 

We can use one type of decision node to describe all the types of 

control in a sequential program. (The  jump/branch is, after all, the 
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way  we  implement all those high-level control  constructs.) 

 
shows a bit of C code with control constructs and the CDFG 

con- structed from it.  The  rectangular  nodes  in  the  graph 

represent the basic blocks. The basic blocks in the C code have 

been represented by function calls  for simplic- ity. The diamond- 

shaped nodes represent the conditionals. The node’s condition is 

given by the label, and the edges are labeled with the possible 

outcomes  of evaluating the condition. 

 

Building a CDFG for a while loop is straightforward, as shown in 

Figure 5.7. The while loop consists of both a test and  a loop  body, 

each of which we know how to represent in a CDFG.  We can 

represent for loops by  remembering that, in  C, a for loop  is defined 

in terms  of a while loop. The following for loop 

 

 

for (i = 0; i < N; i++) { 

loop_body(); 

} 

 

 

is equivalent to 

 

 

i = 0; 

 

while (i <  N) { loop_body(); i++; 

 
} 

 

 

 

For a complete CDFG model, we can use a data flow graph to 

model each data flow node. Thus, the CDFG is a hierarchical 

representation—a data flow CDFG can be expanded to reveal a 

complete data  flow  graph. 
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An execution model for  a  CDFG  is  very  much  like  the 

execution of the pro- gram it represents. The CDFG does not require 

explicit declaration of variables, but we assume  that  the 

implementation  has  sufficient  memory   for  all  the  variables. 

 

4.3 ASSEMBLY, LINKING, AND LOADING 

 

Assembly and linking are the last steps in the compilation process— 

they turn a list of instructions into an image of the program’s bits in 

memory. Loading actually puts the program in memory so that it 

can be executed. In this section, we survey the basic techniques 

required for assembly linking to help us understand the complete 

compilation and loading  process. 

 

Highlights the role of assemblers  and linkers  in  the 

compilation process. This process is often hidden from us by 

compilation commands  that  do  everything  required  to  generate 

an executable program. As the  figure  shows, most  compilers  do 

not directly generate machine code, but instead create the 

instruction-level program in the form of human-readable assembly 

language. Gene- rating assembly language rather than binary 

instructions frees the compiler writer from details extraneous to the 

compilation process, which includes the instruction format  as well 

as the exact addresses of instructions and data. The assembler’s job 

is to translate symbolic assembly language statements into bit-level 

representations of instructions known as object code. The assembler 

takes care of instruction formats and does part of the job of 

translating labels into addresses. However, since the pro- gram may 

be built from many files, the final steps in determining the addresses 

of instructions and data are performed by the linker,  which 

produces an executable binary file. That file may not necessarily be 

located in the CPU’s memory, however, unless the linker  happens 

to create the executable directly in RAM. The program that brings 

the program  into memory for execution is called  a loader . 

 

The simplest form  of the assembler assumes that the starting 

address of the assembly language program has been  specified by 

the programmer. The addresses in such a program are known as 

absolute addresses.  However, in  many  cases, particularly when 

we are creating an executable out of several  component files, we do 
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not want to specify the starting addresses for all the modules before 

assembly— if we  did,  we  would  have  to  determine  before 

assembly not only the length of each  program  in memory  but also 

the order in which they would be linked into the program. Most 

assemblers therefore allow us  to  use  relative  addresses  by 

specifying at the start of the file that the origin of the assembly 

language module is to be computed later. Addresses  within  the 

module are then computed relative to the start of the module. The 

linker is then responsible for translating relative addresses into 

addresses. 

 

4.3.1 Assemblers 

 

When translating assembly code into object code, the assembler 

must translate opcodes and format the bits in each instruction, and 

translate labels into addresses. In this section, we review the 

translation of assembly language into binary. 

 

Labels make the assembly process more complex, but  they  are 

the most impor- tant abstraction provided by the assembler. Labels 

let the programmer (a human programmer or a compiler generating 

assembly code) avoid worrying about the locations of instructions 

and data. Label  processing requires making  two  passes through 

the assembly source code as follows: 

 

1. The first pass scans the code to determine the address  of each 

label. 

 

2. The second pass assembles the instructions using the label values 

computed in the first pass. 

 

 
As shown in Figure 5.9, the name of each  symbol  and its address 

is stored in a symbol table that is built during the first pass. The 

symbol table is built by scan- ning from the first instruction to the 

last. (For the moment, we assume that we know  the address  of the 

first instruction in the program; we consider the general  case  in 

Section   5.3.2.)  During   scanning, the   current  location  in  memory 

is kept in  a  program  location  counter  (PLC).  Despite  the 

similarity in  name   to  a  pro- gram  counter, the  PLC is  not  used  to 
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execute the program,  only  to  assign  memory  locations  to  labels. 

For example, the PLC always makes exactly one pass through the 

program, whereas the program counter makes many passes  over code 

in a loop. Thus, at the start of the first pass, the PLC is set to the 

program’s starting address and the assembler looks at the first line. 

After examining the line, the assembler updates the PLC to the next 

location (since ARM instructions  are  four  bytes  long,  the  PLC 

would be incremented by four) and looks  at the  next  instruction. If 

the instruction begins with a label, a new entry is made in the symbol 

table, which includes the label name and its value. The value of the 

label is equal to the current value of the PLC. At the end of the first 

pass, the assembler rewinds to the beginning  of  the  assembly 

language file to make the second  pass. During the second  pass, when 

a label name is found, the label is looked up in the symbol table and 

its value  substituted into  the appropriate place   in the  instruction. 

 

But how do we know the starting value of the PLC? The simplest 

case is absolute addressing. In this case, one of the first statements in 

the assembly language program is a pseudo-op that  specifies  the 

origin of the program, that is, the location of the first address in the 

program. A common name for this pseudo-op (e.g., the one used for 

the ARM) is the ORG statement 

 

ORG 2000 

 

which puts the start of the program at location 2000. This pseudo-op 

accomplishes this by setting the PLC’s value to its argument’s value, 

2000 in this case. Assemblers generally allow a  program   to  have 

many ORG statements in case instructions or data must be spread 

around  various  spots in memory. 

 

 

 

 
Example4.1 

 

Generating a symbol table 

 

Let’s use the following simple example of ARM assembly code: 
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ORG 100 label1 ADR r4,c 

LDR r0,[r4] 

label2 ADR r4,d 
 

LDR r1,[r4] 

 

label3 SUB r0,r0,r1 

 

 

The initial ORG statement tells us the starting address of the program. 

To begin, let’s initialize the symbol table to an empty state and put the 

PLC at the initial ORG statement. 

 

Assemblers allow labels to be added  to  the  symbol  table 

without occupying space in the program  memory. A typical name 

of this pseudo-op is EQU for equate. For example, in the code 

 

ADD  r0,r1,r2 

FOO EQU 5 

BAZ SUB  r3,r4,#FOO 

 

 

the EQU pseudo-op adds a label named FOO with the value 5 to the 

symbol table. The value of the BAZ label is the same as if the EQU 

pseudo-op were not present, since EQU does not advance the  PLC. 

The new label is used in the subsequent SUB instruction as the name 

for a constant. EQUs can be used to define symbolic values to help 

make  the  assembly code  more  structured. 

 

The ARM assembler supports one pseudo-op that is particular to the 

ARM instruc- tion set. In other architectures, an address would be 

loaded into a register  (e.g., for  an  indirect  access)  by  reading  it 

from a  memory  location. ARM does  not  have  an instruction  that 

can load an effective address, so the assembler supplies the ADR 

pseudo-op to create the address in the register. It does so by using 

ADD or  SUB instructions to generate the  address. The address   to be 
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loaded can be register rela- tive, program relative, or numeric, but it 

must assemble to a single instruction. More complicated address 

calculations must  be explicitly programmed. 

 

The assembler produces an object file that describes the 

instructions and data in binary format. A commonly used object file 

format, originally developed for Unix but now used in other 

environments as well, is known as COFF (common object file 

format). The object file must describe the instructions, data, and any 

addressing information and also usually carries along the symbol 

table for later use in debugging. 

 

Generating relative code rather than absolute code introduces 

some new chal- lenges to the assembly language process. Rather 

than using an ORG statement to provide the starting address, the 

assembly code uses a pseudo-op to indicate that the code is in fact 

relocatable. (Relative code is the default for the ARM assembler.) 

Similarly, we must mark the output object file as being relative code. 

We can initialize the PLC to 0 to denote that addresses are relative 

to the start of the file. However, when we generate code that makes 

use of those labels,we must be careful,since we do not yet know the 

actual value that must be put into the bits. We must instead generate 

relocatable code. We use extra bits in the object file format to mark the 

relevant fields as relocatable and then insert the label’s relative value 

into the field. The linker must therefore modify the generated code— 

when it finds a field marked as relative, it uses the addresses that it 

has generated to replace the relative value with a correct, value for 

the address.To understand the details of turning relocatable code into 

executable code, we must understand the linking process described 

in the next section. 

 

4.3.2 Linking 

 

Many assembly language programs are written as several smaller 

pieces rather than as a single large file. Breaking a large program 

into smaller files helps delineate A linker allows a program to be 

stitched together out of several smaller pieces. The linker operates 

on the object files created by the assembler and modifies the 

assembled code to make the necessary links between files. 
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Some labels will be both defined and used in the same file. 

Other labels will be defined  in a single  file  but  used  elsewhere 

as illustrated in Figure 5.10. The place in the file where a label is 

defined is known as an entry point . The place in the file where 

the label is used is called an external reference. The main job of 

the loader is to resolve external references based  on  available 

entry points. As a result of the need to know how definitions and 

references connect, the assembler passes to the linker not only the 

object file but also the symbol table. Even if the entire symbol table 

is not kept for later debugging purposes, it must at least pass the entry 

points. External references are identified in the object code by their 

relative symbol  identifiers. 

 

The linker  proceeds in  two  phases. First, it determines the  address 

of the start of each object file. The order  in which object  files  are 

to be loaded is given by the user, either by  specifying parameters 

when the loader  is run  or by  creating a load  map  file that  gives 

the order in which files are  to  be  placed  in  memory.  Given  the 

order in which files are to be placed in memory and  the  length  of 

each object file, it is easy to compute the  starting  address  of each 

file. At the start of the second phase, the loader merges all symbol 

tables from the object files into a single, large table. It then edits  the 

object files to change relative addresses into addresses. This  is 

typically performed by  having  the  assembler write  extra  bits  into 

the object file to identify the instructions and  fields  that  refer  to 

labels. If a label cannot be found in the merged symbol table, it is 

undefined and  an error  message is sent  to the user. 

 

Controlling where code modules are loaded into memory  is 

important in embedded systems. Some  data  structures  and 

instructions, such  as those  used  to manage  interrupts, must  be  put 

at precise memory locations for them to  work.  In  other  cases, 

different types of memory may be installed  at  different  address 

ranges. For example, if we have EPROM in  some  locations  and 

DRAM in  oth- ers, we want to make  sure  that  locations  to  be 

written  are  put  in  the  DRAM locations. 

 

Workstations and PCs provide dynamically linked libraries, and 

some embed- ded computing environments may provide them as 

well. Rather than link a separate copy  of commonly used  routines 
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such as I/O to every executable program on the  system, 

dynamically linked libraries allow them  to be linked  in at the start 

of pro- gram execution. A brief linking process is run just before 

execution of the program begins; the dynamic linker uses code 

libraries to link in the required routines. This not only saves storage 

space but also allows programs that use those libraries to be easily 

updated. 

 

4.4 BASIC COMPILATION TECHNIQUES 

 

It is useful to understand how a high-level language program is 

translated into instructions. Since  implementing an embedded 

computing system often requires controlling the instruction 

sequences used to handle interrupts, placement of data and 

instructions in memory, and so forth, understanding how the 

compiler works can help you know when you cannot rely on the 

compiler. Next, because many  applications are also performance 

sensitive, understanding how code is generated can help you meet 

your performance goals, either by writing high-level code that gets 

compiled into the instructions you want or by recognizing when you 

must write your own assembly code. Compilation combines 

translation and optimization. The high-level language program is 

translated into the lower-level form of instructions; optimizations 

try to generate better instruction sequences than would be possible if 

the brute force technique of independently translating source code 

statements were used. Optimization techniques focus  on more  of 

the program to ensure that com- pilation decisions that appear to be 

good for one statement are not unnecessarily problematic for other 

parts of the program. 

 

The compilation process is summarized in Figure 5.11. 

Compilation begins with high-level language code such as C and 

generally produces  assembly  code.  (Directly  producing  object 

code simply duplicates  the  functions  of  an  assembler, 

Simplifying arithmetic expressions is one example of a machine- 

independent optimization.  Not  all  compilers  do  such 

optimizations, and compilers can vary widely regarding which 

combinations of machine-independent optimizations they do 

perform. Instruction-level optimizations are aimed at  generating 

code.    They  may   work    directly  on  real    instructions  or  on  a 
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pseudo-instruction format that is  later  mapped  onto  the 

instructions of the target CPU. This level of optimization also helps 

modularize the compiler by allowing code generation to create 

simpler code that is later optimized. For  example, consider the 

following  array  access code: 

 

x[i]  =  c*x[i]; 

 

A simple code generator would generate the address for x[i] 

twice, once for each appearance in the statement. The later 

optimization phases can recognize this as an example of common 

expressions that need not be duplicated. While  in this simple  case 

it would be possible to create a code generator  that  never 

generated the redundant expression,  taking  into  account  every 

such optimization at code generation time is very difficult. We get 

better code and more reliable compilers by generating simple code 

first and then optimizing it. 

 

 

 
4.4.1 Statement Translation 

 

In this section, we consider the basic job of translating the high- 

level language program with little or no optimization. Let’s first 

consider how to translate an expres- sion. A large amount of the code 

in a typical application consists of arithmetic and  logical 

expressions. Understanding how to compile a single expression,as 

described in Example 4.2, is a good first step in understanding the 

entire  compilation process. 

 

 

 
Example 4.2 

 

Compiling an arithmetic expression 

 

In the following arithmetic expression, 

 

 

a*b +  5*(c –  d) 
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the variable is written in terms of program  variables.  In  some 

machines we may be able to perform memory-to-memory arithmetic 

directly on the locations corresponding to those variables. However, in 

many machines, such as the ARM, we must first load the variables into 

registers. This requires choosing which registers receive not only the 

named variables but also intermediate  results such as (c     d ). 

 

The code  for the expression  can  be built by walking the data  flow 

graph.  The data flow graph for the expression appears on page 230. 

 
The temporary variables  for  the  intermediate  values  and  final 

result have been named w , x , y , and z . To generate code, we walk 

from the tree’s root (where z , the final result, is generated) by 

traversing the nodes in post order. During the walk, we generate 

instructions tocover the operation at every node. The path is presented 

below. 

 

The nodes are numbered in the order in which code is generated. 

Since every node in the data flow graph corresponds to an operation 

that is directly supported by the instruction set, we simply generate an 

instruction at every node. Since we are making an arbitrary register 

assignment, we can use up the registers in order starting with r1. The 

resulting ARM code follows: 

 

 
; operator 1 (+) 

 

ADR r4,a ; get address for a 

MOV r1,[r4] ; load a 

ADR r4,b ; get address for b 

MOV r2,[r4] ; load b 

ADD  r3,r1,r2     ; put w  into r3 
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; operator 2 (–) 

 

ADR r4,c ; get address for c 

MOV r4,[r4] ; load c 

ADR r4,d ; get address for d 

MOV r5,[r4] ; load d 

SUB r6,r4,r5    ; put x into r6 

 

; operator 3 (*) 

 

MUL  r7,r6,#5     ; operator 3, puts y  into r7 

 

; operator 4 (+) 

 

ADD r8,r7,r3    ; operator 4, puts z into r8 

 

 

One obvious optimization is to reuse a register whose value is no 

longer needed. In the case of the intermediate values  w , x , and  y , 

we know that they cannot be used after the end of the expression 

(e.g., in another expression) since they have no name  in  the  C 

program. However, the final result z may in fact be used in a C 

assignment and the value reused  later in the program. 

 

4.4.2 Procedures 

 

Another major code generation problem  is the creation of 

procedures. Generating code for procedures is relatively 

straightforward once we know the procedure link- age appropriate 

for the CPU. At the procedure definition, we generate the code to 

handle the procedure call and return. At each call of the procedure, 

we set up the procedure parameters and make the call. 

 

The CPU’s subroutine call mechanism is usually not sufficient to 

directly support procedures in modern programming languages. We 

introduced the procedure stack and  procedure  linkages  in  Section 
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2.2.3. The linkage mechanism provides a way for the program to 

pass  parameters into  the  program  and  for the  procedure to return 

a value. It also provides help in restoring the values  of registers 

that the procedure has modified. All procedures in a given 

programming language use the same linkage mechanism (although 

different languages may use  different  linkages). The  mechanism 

can also be used to call handwritten assembly language routines 

from  compiled code. 

 

Procedure stacks are typically built to grow down from high 

addresses. A stack pointer (sp) defines the end of the  current 

frame, while a frame pointer (fp) defines the end of the last frame. 

(The fp is technically necessary only if the stack frame can be 

grown by the procedure  during  execution.) The  procedure  can 

refer 

 

 

 
The ARM Procedure Call Standard (APCS) is  a  good 

illustration of a typi- cal  procedure  linkage mechanism. Although 

the stack frames are in main memory, understanding how registers 

are used is key to understanding the mechanism, as explained 

below. 

 

 
■ r0 r3 are used to pass parameters into the procedure. r0 is also 

used to hold the return value. If more than four parameters are 

required, they are put on the stack frame. 

 

■ r4    r7 hold register variables. 

 

■ r11 is the frame pointer and r13 is the stack pointer. 

 

■ r10 holds the limiting address on stack size, which is used  to check 

for  stack  overflows. 

 

Other registers have additional uses in the protocol. 

 

4.4.3 Data Structures 



Embedded Computing Systems 10CS72 

Dept of CSE Page 163 

 

 

 

The compiler  must  also  translate  references  to  data  structures 

into references to raw memories. In general, this requires address 

computations. Some of these  computations  can  be  done  at 

compile time  while others  must  be  done  at run time. 

 

Arrays are interesting because the address of an array element 

must in general be computed at run time, since the  array  index 

may change. Let us first consider one-dimensional arrays: 

 

a[i] 

 

The layout of the array in memory is shown in Figure 5.13. The 

zeroth element is stored as the first element of the array, the first 

element directly below, and  so  on. 
 

a 

 

 

 

 

 

 

 

FIGURE 4.13 

 

Layout of a one-dimensional array in memory 

 

 

. 

. 
 

. 

 

a[0] 

a[1] 

. . . 
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FIGURE 4.14 

 

Memory layout for two-dimensional arrays. 

 

 

We can create a pointer for the array that points to the array’s head, 

namely, a[0]. If we call that pointer aptr for convenience, then we 

can rewrite the reading of a[i] as 

 

*(aptr + i) 

 

Two-dimensional arrays are more challenging. There are multiple 

possible ways to lay out a two-dimensional  array in memory, as 

shown in Figure 5.14. In this form, which is known as row major , 

the inner variable of the array ( j in a[i, j]) varies most quickly. 

(Fortran uses a different organization known as column  major.) 

Two- dimensional arrays also require more sophisticated 

addressing—in particular, we must know the size  of the array.  Let 

us consider the  row-major form.  If the a[ ] array is of size N M , 

then we can turn the two-dimensional array access into a one- 

dimensional array access. Thus, 

 

 

a[i,j] becomes a[i*M + j] 

 

 

where the maximum value for j is M 1. 

 

A C struct is easier to address. As shown  in Figure 5.15,  a structure 

is implemented as a contiguous block of memory. Fields in the 

structure  can  be  accessed  using  constant  offsets  to  the  base 

address of the  structure.  In  this  example, if  field1  is four  bytes 

long, then  field2  can be accessed as 

 

*(aptr + 4) 

 

This addition can usually be done at compile time, requiring only 

the indirection itself to fetch  the  memory  location  during 

execution. 
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4.5   PROGRAM OPTIMIZATION 

 

 
Now that we understand something about how programs are 

created,we can start to understand how to optimize programs. If we 

want to write programs in a high-level language, then we need to 

understand how to optimize them without rewriting them in 

assembly language. This first requires creating the proper source 

code that causes the compiler to do what we want. Hopefully, the 

compiler can optimize our program by recognizing features of the 

code and taking the proper action. 

 

5.5.1 Expression Simplification 

 

Expression simplification is a useful  area  for  machine- 

independent transforma- tions. We can use the laws of algebra to 

simplify expressions. Consider the following expression: 

 

a*b +  a*c 

 

 

We can use the distributive law to rewrite the expression as 

a*(b  +   c) 

Since the new expression has only two operations rather than 

three for the original  form, it is almost  certainly cheaper, because 

it is both faster and smaller. Such transformations make some broad 

assumptions about the relative cost of oper- ations. In some cases, 

simple generalizations about the cost of operations may be 

misleading. For example, a CPU with a multiply-and-accumulate 

instruction may be 

 

able to do a multiply and addition as cheaply as it can do an addition. 

However, such situations can often be taken care  of  in  code 

generation. 

 

We   can   also   use   the   laws of   arithmetic  to   further simplify 



Embedded Computing Systems 10CS72 

Dept of CSE Page 166 

 

 

 

expressions on constants. Consider the following C statement: 

for (i =  0; i <  8  +  1; i++) 

We can simplify 8 1 to 9 at compile time—there is no need to 

perform that arithmetic while the  program  is  executing.  Why 

would a program ever contain expressions that evaluate  to 

constants? Using named constants rather than numbers is good 

programming practice and often  leads to constant expression. The 

original form of the for statement could have been 

 

for (i =  0; i <  NOPS +  1; i++) 

 

where, for  example,  the  added   1  takes  care  of  a  trailing null 

character. 

 

4.5.2 Dead Code Elimination 

 

Code that will never be executed can be safely removed from the 

program. The general problem of identifying code that will  never 

be executed is difficult, but there are some important special cases 

where it can be done. 

 

Programmers  will  intentionally  introduce   dead   code   in 

certain  situations. Consider  this C code fragment: 

 

 

#define DEBUG 0 

 

... 

 

if (DEBUG) print_debug_stuff(); 

 

In the above case, the print_debug_stuff( ) function is never 

executed, but the code allows the programmer to override the 

preprocessor variable definition (per- haps with a  compile-time 

flag) to enable the debugging code. This case is easy to analyze 

because the condition is the constant 0, which C uses for the false 

condition. Since there is no else clause in the if statement, the 

compiler can totally eliminate the if statement, rewriting the CDFG 
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to provide a direct edge  between the statements before  and after the 

if. 

 
4.5.3 Procedure Inlining 

 
Another machine-independent transformation that requires a little 

more evalua- tion is procedure inlining. An inlined procedure does 

not have a separate proce- dure body and procedure linkage; rather, 

the body of the procedure is substituted in place for the procedure 

calining in C. 

 

int foo(a,b,c)  { return  a 1 b 2 c; } 
 

Function definition 
 

z 5 foo(w,x,y); 

Function  call 

z 5 w 1 x 2 y; 

Inlining result 
 

The C++ programming language provides  an  inline  construct  that 

tells the compiler to generate inline code  for a function. In this case, 

an inlined procedure is  generated  in  expanded  form  whenever 

possible. However, inlining is not always the best thing to  do. 

Although  it  does  eliminate the  procedure  linkage  instructions, when 

a cache is present, having multiple copies of the function body may 

actually slow down the fetches of these instructions. Inlining also 

increases code  size, and memory  may be precious. 

 

4.5.4 Loop  Transformations 

 

Loops are important program structures—although they are 

compactly described in the source code, they often use a large 

fraction of the computation time. Many techniques have been 

designed to optimize loops. 

 

A simple but useful transformation  is known as loop 

unrolling , which  is illustrated in Example  5.4.  Loop unrolling is 
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important because it helps  expose parallelism that can be used by 

later stages of the compiler. 

 
Example 4.4 

 

Loop unrolling 

 

A simple loop in C follows: 

 

 

for (i = 0; i < N; i++) { 
 

a[i] =  b[i]*c[i]; 
 

} 

 

This loop is executed a fixed number of times, namely, N . A 

straightforward implementation of the loop would create and initialize 

the loop variable i , update its value on every iteration, and test it to see 

whether to exit the loop. However, since the loop is executed a fixed 

number of times, we can generate  more direct code. 

 

If we let N 4, then we can substitute  the above C code for the 

following loop: 

 

a[0]  =  b[0]*c[0]; 

 

a[1]  =  b[1]*c[1]; 

 

fig 

 
Example 4.5 

 

Register allocation 

 

To keep the example small, we assume that we can use only four of 

the ARM’s registers. In fact, such a restriction is not unthinkable— 

programming conventions can reserve certain registers for special 

purposes and significantly reduce the number of general-purpose 

registers available. 
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Consider the following C code: 

 

 
 

w = a  + b; /* statement   1 */  x = c  + w; /* 

statement 2  */  y  =  c +  d;  /*  statement 3  */ 

 

A naive register allocation, assigning  each variable to a separate 

register, would require seven registers for the seven variables in the 

above code. However, we can do much better by reusing a register once 

the value stored in the register is  no  longer  needed.  To understand 

how to do this, we can draw a lifetime graph that shows the statements 

on which each statement is used. Appearing below is a lifetime graph in 

which the x -axis is the statement number in the C code and the y -axis 

shows the variables. 

 

 

 

 

A horizontal line stretches from the first statement where the 

variable is used to the last use of the variable; a variable is said to be 

live during this interval. At each statement, we can determine every 

variable currently in use. The maximum number of variables in use at 

any statement determines the maximum number of registers required. 

In this case, statement two requires three registers: c , w , and x . This 

fits within the four registers limitation. By reusing registers once their 

current values are no longer needed, we can write code  that requires 

no more than four registers. Appearing below is one register 

assignment. 

 

The ARM assembly code that uses the above register assignment 

follows: 

 

LDR r0,[p_a] ; load a into r0 using pointer to 

a (p_a) LDR r1,[p_b] ; load b into r1 

 

ADD r3,r0,r1 ; compute a +  b 

STR  r3,[p_w] ; w  =  a +  b 
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LDR r2,[p_c]   ; load c into r2 

 

ADD  r0,r2,r3 ; compute c +  w, reusing r0 for  x 

STR   r0,[p_x] ; x  =  c +  w 

LDR r0,[p_d]   ; load d into r0 

 

ADD r3,r2,r0 ; compute c +  d, reusing r3 for  y 

STR  r3,[p_y] ; y  =  c +  d 

Example 4.6 

 

Operator scheduling for register allocation 

 

Here is sample C code fragment: 

 

 
 

w = a + b; /* statement 1 */ x =  c  +  d;  /* 

statement 2 */ y = x  +  e; /* statement 3  */ z =  a – 

b; /* statement 4  */ 

 

Since w is needed until the last statement, we need five registers at 

statement 3, even though only three registers are needed for the 

statement at line 3. If we  swap  statements  3  and   4  (renumbering 

them 39 and 49), we reduce our requirements to three registers. The 

modified C code follows: 

 

w  =  a +  b;  /* statement 1  */ 

 

z = a – b; /* statement 29 */ x = c + d; /* 

statement 39  */ y = x + e; /* statement 49  */ 

 

 

 
Compare  the  ARM assembly  code  for the  two code  fragments. 

We have written both assuming that we have only four free registers. 

In the before version, we do not have to write out any values, but we 



Embedded Computing Systems 10CS72 

Dept of CSE Page 171 

 

 

 

must read a and b twice. The after version allows us to retain all values 

in registers as long as we need them. 

 

 
Before version After version 

 

LDR r0,a LDR r0,a 

 

LDR r1,b LDR r1,b 

 

ADD r2,r0,r1 ADD r2,r1,r0 

 

STR r2,w ; w = a + b STR r2,w ; w = a + b 

LDRr r0,c SUB r2,r0,r1 

LDR r1,d STR r2,z ; z = a – b 

 

ADD r2,r0,r1 LDR r0,c 

 

STR  r2,x ; x  =  c +  d LDR r1,d 

 

LDR r1,e ADD r2,r1,r0 

 

ADD  r0,r1,r2 STR  r2,x ; x  =  c +  d 

STR  r0,y ; y  =  x  +  e LDR r1,e 

LDR r0,a ; reload a ADD r0,r1,r2 

 

LDR r1,b ; reload b STR r0,y ; y = x + e 

SUB r2,r1,r0 

STR r2,z ; z = a – b 
 

register allocation by changing the order in which operations are 

performed,thereby changing the lifetimes of the variables. 

 

We can keep track of CPU resources during instruction scheduling 

using a reser- vation table  [Kog81]. As illustrated in Figure  5.19, 
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rows in the table represent instruction execution time slots and 

columns represent resources that must be scheduled. Before 

scheduling an instruction to be executed at a particular time, we 

check the reservation table to determine whether all resources 

needed by the instruction are available at that time. Upon 

scheduling the instruction, we  update the table   to  note  all 

resources used by that instruction. Various algorithms can be used 

for the scheduling itself, depending on the types of resources and 

instruc- tions involved, but the reservation table provides a good 

summary of the state of an instruction scheduling problem in 

progress. 

 

We can also schedule instructions to maximize performance. As 

we know from Section 3.5, when an instruction that takes more 

cycles than normal to finish is in the pipeline, pipeline bubbles 

appear that reduce performance. Software  pipelining  is  a 

technique for reordering instructions  across  several  loop  itera- 

tions to reduce pipeline bubbles. Some instructions take several 

cycles to complete; if the value produced by one of these 

instructions is needed by other instructions in the loop iteration, 

then they must wait for that value  to be produced.  Rather than 

pad the loop with no-ops, we can start instructions from the next 

iteration. The loop body then contains instructions that manipulate 

values from several dif- ferent loop iterations—some of the 

instructions  are  working  on  the  early  part  of iteration n   1, 

others are working on iteration n, and still others are finishing 

iteration n      1. 

 

4.5.7 Instruction Selection 

 

Selecting the instructions to use to implement each operation is not 

trivial.  There may be several  different  instructions that can  be used 

to accomplish  the  same  goal,  but  they  may  have  different 

execution  times.  Moreover, using  one  instruction  for one  part  of 

the program may  affect  the  instructions  that  can  be  used  in 

adjacent code. Although we cannot discuss all the problems and 

methods for code generation here, a little bit of knowledge helps us 

envision  what  the compiler is doing. 

 

One useful  technique for generating code  is template matching , 
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illustrated in Figure 5.20. We have a DAG that represents the 

expression for which we want  to generate code.  In order  to be able 

to match up instructions and operations, we rep- resent instructions 

using the same DAG representation. We  shaded  the  instruction 

template nodes  to distinguish them  from code  nodes.  Each node  has 

a cost, which may be simply the execution time of the instruction or 

may include factors for size, power consumption, and so on. In this 

case,  we  have  shown  that  each  instruction takes   the  same  amount 

of time, and thus all have a cost  of 1. Our goal is to cover all nodes 

in the  code DAG with instruction DAGs—until we have covered the 

code DAG we have not generated code for all the operations in the 

expression. 

 

4.5.8 Understanding and Using Your Compiler 

 

Clearly, the compiler can vastly transform  your  program  during 

the creation of assembly language. But compilers are also 

substantially different in terms of the optimizations they perform. 

Understanding your compiler can help  you  get  the best code out 

of it. 

 

Studying the assembly language output of the compiler is a good 

way to learn about what the compiler does. Some compilers will 

annotate sections of code to help you make the correspondence 

between the source and assembler output. Start- ing with small 

examples that exercise only  a  few  types  of  statements  will  help. 

You can  experiment with  different  optimization levels  (the  -O flag 

on most C compil- ers).  You  can  also  try  writing  the  same 

algorithm in several ways  to  see  how  the  compiler’s  output 

changes. 

 

If you cannot get your compiler to generate the code you want, 

you may need to write your own  assembly language. You can do 

this by writing it from scratch or modifying the output of the 

compiler. If you write your own assembly code, you must ensure 

that it conforms  to  all  compiler  conventions, such  as  procedure 

call linkage. If you modify the compiler output, you should be sure 

that you have the algorithm right before you start writing code so 

that you don’t have to repeatedly edit the compiler’s assembly 

language output. You also need  to clearly document the  fact  that 
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the high-level language source is, in fact, not the code used in the 

system. 

 

 

4.5.9 Interpreters and JIT Compilers 

 

Programs are not always compiled and  then  separately executed. 

In some cases, it may make sense to translate the program into 

instructions during execution. Two well-known techniques for on-

the-fly translation are interpretation and just-in-time (JIT ) 

compilation. The trade-offs for both techniques are simi- lar. 

Interpretation or JIT compilation adds overhead—both time and 

memory—to execution. However, that overhead may be more than 

made up for in some circum- stances. For example, if only parts of 

the program are executed over some period of time, interpretation 

or JIT compilation may save memory, even taking overhead into 

account. Interpretation and JIT compilation also provide added 

security when programs arrive  over the network. 

 

An interpreter translates program statements one at a time.The 

program may be expressed in a high-level language, with Forth being 

a prime example of an embed- ded language that is interpreted. An 

interpreter may also interpret instructions  in  some  abstract 

machine language. As illustrated in  Figure  5.21,  the  interpreter 

sits between the program and the  machine. It translates one 

statement of the program at a time. The interpreter may or may not 

generate an explicit piece of code to represent the statement. 

Because the interpreter translates only a very small piece of the 

program at any given time, a small amount of memory is used to 

hold inter- mediate representations of the program. In many  cases, 

a Forth program plus the Forth interpreter are smaller than the 

equivalent native  machine code. 

 

4.6 PROGRAM-LEVEL PERFORMANCE ANALYSIS 

 

 
Because embedded systems must perform functions in real time, we 

often need to know  how fast a program  runs.The  techniques we use 

to analyze  program  execution  time   are  also  helpful    in  analyzing 
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properties such  as power consumption. In this 

 
we   might   hope   that  the  execution  time   of programs  could   be 

precisely determined, this  is in fact  difficult  to do in practice: 

 

 
■ The execution time of a program often varies with the input data 

values because those values select different execution paths in the 

program. For example, loops may be  executed a varying  number 

of times, and different branches may execute blocks of varying 

complexity. 

 

 
■ The cache has a major effect on  program  performance, and  once 

again, the cache’s behavior depends in part  on the  data  values  input 

to the  program. 

 

 
■ Execution times may vary even at the  instruction level.  Floating- 

point opera- tions are the most sensitive to data values,  but  the 

normal integer  execution  pipeline  can  also  introduce  data- 

dependent variations. In general, the execu-  tion  time  of  an 

instruction in a pipeline depends not only on that instruction but  on 

the  instructions around  it in the  pipeline. 

 

We can measure program  performance in several  ways: 

 

 

■ Some microprocessor manufacturers supply simulators  for  their 

CPUs: The simulator runs on a workstation or PC, takes as input an 

executable for the microprocessor along with  input  data,  and 

simulates the execution of that pro- gram.  Some  of these  simulators 

go beyond  functional  simulation  to  measure  the  execution time  of 

the program. Simulation is clearly  slower  than  executing  the 

program on the actual microprocessor, but it  also  provides  much 

greater  visibility  during   execution.   Be   careful—some 

microprocessor performance simulators are not 100% accurate, and 

simulation of I/O-intensive code  may be difficult. 
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■ A timer connected to the microprocessor bus  can  be  used  to 

measure perfor- mance  of executing  sections of code.  The  code  to 

be measured would reset and start the timer at its start and stop the 

timer at the end of execution. The length of the program that can be 

measured is limited   by the  accuracy of the timer. 

 

 
■ A logic analyzer can be connected to the microprocessor bus to 

measure the start and stop times of a code segment. This technique 

relies on the code being able to  produce  identifiable events  on  the 

bus to identify the start  and  stop  of execution. The  length  of code 

that can be measured is limited by the size of the logic analyzer’s 

buffer. 

 

■ Average-case execution time   This is the typical execution time 

we would expect for typical data. Clearly, the first challenge is 

defining  typical inputs. 

 

 
■ Worst-case execution time The longest time that the program can 

spend on any input sequence is clearly  important for systems  that 

must meet dead- lines. In some cases, the input set that causes the 

worst-case execution  time is obvious, but in many  cases  it is not. 

 

 
■ Best-case execution time This measure  can  be  important  in 

multirate real-time  systems, as seen  in Chapter  6. 

 

 
First, we look at  the fundamentals of program performance in 

more detail. We then consider trace-driven performance based on 

executing the program  and observing its behavior. 

 

 

4.6.1 Elements of Program Performance 

 

The key to evaluating execution time is breaking the 
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performance problem into parts. Program execution time  [Sha89] 

can be seen as 

execution time    program path    instruction timing 

Not  all instructions  take the same  amount  of  time. 

Although RISC archi- tectures tend to provide uniform instruction 

execution times in order to keep the CPU’s pipeline full, even many 

RISC architectures take different amounts of time  to  execute 

certain instructions. Multiple  load-store  instructions are examples 

of longer-executing instructions in the ARM architecture. Floating- 

point instructions show especially wide variations in execution 

time—while basic multiply and add operations are fast, some 

transcendental functions can take  thousands of cycles to execute. 

 

 
■ Execution times of instructions are not independent. 

The 

execution time of one instruction depends on the instructions around 

it.  For  example,  many  CPUs  use  register  bypassing  to  speed   up 

instruction 

 
sequences when the result of one instruction is used in the next 

instruction. 

As a result, the execution time of an instruction may depend on 

whether  its  destination  register  is  used  as  a  source for the  next 

operation 

 
(or vice versa). 

 

 
■ The execution time of an instruction may depend on 

operand values. This is clearly true of floating-point 

instructions in which a different number of iter- ations may be 

required to calculate the result. Other specialized instructions can, 
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for example, perform a data-dependent number of  integer 

operations. 

 

 
We can handle the first two problems more easily than the third. 

We can look up instruction execution time in a table; the table will 

be indexed by opcode and possibly by other parameter values such 

as the registers used. To handle interdepen- dent execution times, we 

can add columns to the table to consider the effects of nearby 

instructions. Since these effects are generally limited by the size of 

the CPU pipeline, we know that we need to consider a relatively 

small window of instruc- tions to handle such effects. Handling 

variations due to operand values is difficult to do without actually 

executing the program using a variety of data values, given the large 

number of factors that can affect value-dependent instruction timing. 

Luckily, these effects are often small. Even in floating-point 

programs, most of the opera- tions are typically additions and 

multiplications whose execution times  have  small variances. 

 

Thus far we have not considered the effect of the cache. Because 

the access time for main memory can be 10–100 times larger than the 

cache access time,caching can have huge effects on instruction 

execution time by changing both the instruction and data access 

times. Caching performance inherently  depends on the program’s 

execution path since the cache’s contents depend on the history of 

accesses. 

 

4.6.2 Measurement-Driven  Performance  Analysis 

 

The most direct way to determine the execution time of a program is 

by measuring it. This approach is appealing, but it does have some 

drawbacks. First, in order to cause the program to execute its worst-

case execution path, we have to provide the proper  inputs to it. 

Determining the set of inputs that will guarantee the worst- case 

execution path is infeasible. Furthermore, in order to measure the 

program’s performance on a particular type of CPU, we need the 

CPU or its simulator. 

 

Despite these drawbacks, measurement is the most commonly used 

way to deter- mine the execution time of embedded software. Worst- 
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case execution time analysis algorithms have  been  used 

successfully in some areas,such as flight control software, but many 

system design projects determine the execution time of their 

programs by measurement. 

 

The other  problem with  input  data  is  the  software  scaffolding 

that we may need to feed data into the  program  and  get  data  out. 

When we are designing a large system,it may be difficult  to extract 

out part of the software and test it independently of the other parts of 

the system. We may need to add new testing modules to the system 

software to help us introduce testing values and to observe testing 

outputs. 

 

We can measure program performance either directly on the 

hardware or by using a simulator. Each method has its advantages 

and disadvantages. 

 

Physical measurement requires some sort of hardware 

instrumentation.The most direct method of measuring the 

performance of a program would be to watch  the  program 

counter’s value: start a timer when the PC reaches the program’s 

start, stop the timer when it reaches the program’s end. 

Unfortunately, it generally isn’t possible to directly observe the 

program counter. However, it is possible in many cases to modify 

the program so that it starts a timer at the  beginning of execu- 

tion and stops the timer at the end. While this doesn’t give us 

direct information about the program trace, it does give us 

execution time. If we have several timers available, we  can  use 

them to measure the execution time of different parts of the 

program. 

 

A logic analyzer or an oscilloscope can be used to watch for 

signals that mark various points in the execution of the program. 

However, because logic analyzers have a limited  amount  of 

memory, this approach doesn’t work well for programs with 

extremely long  execution times. 

 

Some CPUs have hardware facilities for automatically generating 

trace informa- tion. For example,the Pentium family microprocessors 

generate a special bus cycle,a branch  trace  message, that shows  the 
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source and/or destination address of a branch [Col97]. If we record 

only traces, we can  reconstruct the  instructions  executed within 

the basic blocks while greatly reducing the amount of memory 

required to hold the trace. 

 

The alternative to physical measurement of execution time is 

simulation. A CPU simulator is a program that takes as input  a 

memory image for a CPU and performs the  operations on  that 

memory  image  that the actual  CPU would  perform, leaving 

 

To start the simulation process,  we compile our test program using a 

special compiler: 

 

 

%   arm-linux-gcc  firtest.c 

 

 

This gives us an executable program (by default, a.out) that we use to 

simulate our program: 

 

%   arm-outorder  a.out 

 

SimpleScalar produces a large output file with a great deal of 

information about the pro- gram’s execution. Since this is a simple 

example, the most useful piece of data is the total number  of 

simulated clock cycles required to execute the program: 

 

sim_cycle 25854 #  total  simulation  time 

in   cycles 

 

To make sure that we can ignore the effects of program overhead, we 

will execute the FIR filter for several different values of N and compare. 

This run  used   N 100; when we also run N  1,000 and  N 

10,000, we get these  results: 

 

 

 
 

 

T S 

  o i   
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2 2 
1 1 
1 1 

  4 4   

Because the FIR filter is so simple and ran in so few cycles, we had to 
execute it a number  of times to wash out all the other overhead of 
program execution. However, the time for 1,000 and 10,000 filter 
executions are within 10% of each other, so those  values  are 
reasonably close to the actual execution time of the FIR filter itself. 

 

4.7 SOFTWARE PERFORMANCE OPTIMIZATION 

 

In this section we  will  look at several   techniques for optimizing 

software perfor- mance. 

 

4.7.1 Loop Optimizations 

 

Loops are important targets for optimization because programs with 

loops tend to spend a lot of time executing those loops. There are 

three important techniques in optimizing loops: code motion, 

induction variable   elimination, and  strength reduction. 

 

Code motion lets us move unnecessary code out of a loop. If a 

computation’s result does not depend on operations performed in the 

loop body,then we can safely move it out of the loop. Code motion 

opportunities can arise because programmers may find some 

computations clearer and more concise when  put in the loop body, 

 

even though they are not strictly dependent on the loop iterations. A 

simple example of code motion is also common. Consider the 

following loop: 

 

for (i = 0; i < N*M; i++)  { 

z[i] =  a[i] +  b[i]; 

} 

 

The code motion opportunity becomes  more  obvious  when  we 

draw the loop’s CDFG as shown in Figure 5.23. The loop bound 

computation is  performed  on  every  iteration  during    the  loop  test, 
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even though the result never changes. We can avoid N M 1 

unnecessary executions of this statement by moving it before the 

loop, as shown in the figure. 

 

An induction variable is a variable whose value is derived from 

the loop iter- ation variable’s value. The compiler often introduces 

induction variables to help it implement the loop. Properly 

transformed, we may be able to  eliminate  some variables and 

apply  strength reduction to others. 

 

A nested loop is a good example of the use of  induction 

variables. Here is a simple nested loop: 

 

 

for (i = 0; i < N; i++) 

for (j = 0; j < M; j++) 

z[i][j] =  b[i][j]; 
 

 

The compiler uses induction variables to help it address the arrays. 

Let us rewrite the loop in C using  induction  variables  and 

pointers. (Later, we use a common induction variable for the two 

arrays, even though the compiler  would  probably  introduce 

separate induction variables and then merge  them.) 

 

 

for (i = 0; i < N; i++) 

for (j = 0; j < M; j++) { 

zbinduct = i*M + j; 

*(zptr  +  zbinduct)  =  *(bptr  +  zbinduct); 
 

} 
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In the above code, zptr and bptr are pointers to the heads of the z 

and b arrays and zbinduct is the shared induction variable. However, 

we do not need to compute zbinduct afresh each time. Since we are 

stepping through the arrays sequentially, we can  simply  add  the 

update  value  to the  induction variable: 

 

 

zbinduct  =  0; 

 

for (i = 0; i < N; i++) { 

for (j = 0; j < M; j++) { 

*(zptr  +  zbinduct)  =  *(bptr  +  zbinduct); 

zbinduct++; 

} 
 

} 

 

This is a form of strength reduction since we have eliminated the 

multiplication from the induction variable  computation. 

 

Strength  reduction helps  us reduce the  cost  of a loop  iteration. 

Consider the following assignment: 

 

 

y  = x  *  2; 

 

 

In integer arithmetic, we  can  use  a left shift rather  than  a 

multiplication  by 

 

2 (as  long  as  we  properly keep  track  of overflows). If the  shift 

is faster than the multiply, we probably want to perform the 

substitution. This optimization can often be used with induction 

variables because  loops  are  often  indexed  with  simple 

expressions.  Strength    reduction  can    often    be  performed  with 
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simple sub- stitution rules since there are  relatively  few 

interactions between  the  possible substitutions. 

 
Cache Optimizations 

 

A loop nest is a set of loops, one inside the other. Loop nests 

occur when we process arrays. A large body of techniques has been 

developed for optimizing loop nests. Rewriting a loop nest changes 

the order in which array elements are accessed. This can expose new 

parallelism opportunities that can be exploited by later stages of the 

compiler, and it can also improve cache performance. In  this 

section we concentrate on the analysis of loop nests for cache 

performance. 

 

Example 5.10 

 

Data realignment and array padding 

 

Assume we want to optimize the cache  behavior of the following code: 

 

 

for (j = 0; j < M; j++) 

for (i = 0; i < N; i++) 

a[j][i] = b[j][i] *  c; 

 

 

Let us also assume that the a and b arrays are sized with M at 265 and 

N at 4 and a 256-line, four-way set-associative cache with four words 

per line. Even though this code does not reuse any  data  elements, 

cache  conflicts  can  cause  serious  performance  problems  because 

they interfere with spatial reuse at the cache  line level. 

 

Assume that the starting location for a[] is 1024 and the starting 

location for b[] is 4099. Although a[0][0] and b[0][0] do not map to 

the same word in the cache,  they do map to the same block. 
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As a result, we see the following scenario in execution: 

 

 

■ The access to a[0][0] brings in the first four words of a[]. 

 

 

■ The access to b[0][0] replaces  a[0][0] through a[0][3] with b[0][3] 

and the contents of the three locations before b[]. 

 

 
■ When a[0][1] is accessed, the same  cache  line is again replaced 

with the first four elements  of a[]. 

 

Once the a[0][1] access brings that line into the cache, it remains 

there for the a[0][2] and a[0][3] accesses since the b[] accesses are 

now on the next line. However, the scenario repeats itself at a[1][0] and 

every four iterations of the cache. 

 

One way to eliminate the cache conflicts is to move one of the 

arrays. We do not have to move it far. If we move b’s start to 4100, we 

eliminate the cache  conflicts. 

 

However, that fix won’t work in more complex situations. Moving one 

array may only intro- duce cache conflicts with another array. In such 

cases, we can use another technique called padding. If we extend each 

of the rows of the arrays to have four elements rather than three, with 

the padding word placed at the beginning of the row, we eliminate the 

cache conflicts. In this case, b[0][0] is located at 4100 by the padding. 

Although padding wastes memory, it substantially improves memory 

performance. In complex situations with multiple arrays and 

sophisticated access patterns, we have to use a combination of 

techniques—relocating arrays  and padding them—to be able to 

minimize cache  conflicts. 

 

4.7.2 Performance Optimization Strategies 

 

Let’s look more  generally at how  to improve program execution 
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time. First, make sure  that  the  code  really  needs  to be accelerated. 

If you are dealing with a  large  program, the  part  of the  program 

using the most time may not be obvious. Profiling the program will 

help you find hot spots. A profiler does not measure execution time—

instead, it counts the number  of  times  that  procedures  or basic 

blocks  in the  program  are  executed. There  are  two  major ways  to 

profile  a program: We  can modify   the  executable program by 

adding instructions that increment a location every time the program 

passes that point in the program; or we can sample the program  

counter  during  execution  and  keep  track  of   the distribution of PC 

values. Profiling adds relatively little  overhead to the program  and  it  

gives  us  some  useful information about  where the program  spends  

most of its time. 

 

You may be able to redesign your algorithm to improve 

efficiency. Examining asymptotic performance is often a good guide 

to efficiency. Doing fewer operations is usually the key to 

performance. In a few cases, however, brute force may provide a 

better implementation. A seemingly simple high-level language 

statement may in fact hide a very long sequence of operations that 

slows down the algorithm. Using dynamically allocated memory is 

one example, since managing the heap takes time but is  hidden 

from the programmer. For example, a sophisticated algorithm that 

uses dynamic storage may be slower in practice than an algorithm 

that performs more operations on statically allocated memory. 

 

Finally, you  can  look  at the implementation of the program   itself. 

A few hints on program  implementation are summarized below. 

 

 

■ Try  to  use   registers  efficiently. Group accesses to a value 

together so that the value can be brought into a register and kept 

there. 

 

 
■ Make use of  page  mode  accesses  in the memory 

system whenever possible. Page mode  reads  and writes 

eliminate one step in the memory access. You can increase use of 

page mode by rearranging your variables so that more can be 
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referenced contiguously. 

 

 
■ Analyze cache   behavior  to  find major  cache   conflicts. 

Restructure the code to eliminate as many of these as you can as 

follows: 

 

 
—For  instruction  conflicts, if  the  offending   code   segment  is   small, 

try to rewrite the  segment to make  it  as  small  as  possible so  that 

it better fits into the cache. Writing in assembly language may be 

necessary. For con- flicts across  larger  spans  of code,  try  moving 

the  instructions or padding with  NOPs. 

 

 
—For scalar data conflicts, move the data values to different locations to 

reduce   conflicts. 

 

 
—For array data conflicts, consider either moving  the arrays or 

changing your array access patterns to reduce conflicts. 

 

 

 
4.8 PROGRAM-LEVEL ENERGY AND POWER ANALYSIS AND OPTIMIZATION 

 

Power consumption is a particularly important design metric for 

battery-powered systems because the battery has a very limited 

lifetime. However, power consump- tion is increasingly  important 

in systems that run off the power grid. Fast chips run hot, and 

controlling power consumption is an important element of 

increasing reliability and reducing system  cost. 

 

How much control do we have over power consumption? 

Ultimately, we must consume the energy required to perform 

necessary computations. However, there  are  opportunities  for 

saving power. Examples  appear below. 

 

■ We may be able  to replace the algorithms with  others  that do things 
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in clever ways  that consume less power. 

 

 
■ Memory accesses are  a major  component of power consumption 

in many applications. By optimizing memory accesses we  may be 

able  to significantly reduce power. 

 

 
■ We may be able to turn off parts of the system—such as 

subsystems of the CPU, chips in the system, and so on—when we 

do not need them in order to save power. 

 

The first step in optimizing a program’s energy consumption is 

knowing how much energy the program consumes. It is possible to 

measure power consumption for an instruction or a small code 

fragment [Tiw94]. The technique, illustrated in Figure  5.24, 

executes the code under test over and over in a loop.  By 

measuring the current flowing into the CPU, we are measuring the 

power consumption of the complete loop, including both the body 

and other code.   By separately measuring the  power consumption 

of a loop with no body (making sure, of course, that the compiler 

hasn’t optimized away the empty loop), we can calculate the power 

con- sumption of the loop body code as the difference between the 

full loop and the bare loop energy cost of an instruction. 

 

Several factors contribute to the energy consumption of the 

program. 

 

■ Energy consumption varies somewhat from instruction to 

instruction. 

 

■ The sequence of instructions has some influence. 

 

■ Th opcode and the locations of the operands also matter. 

 

 

A few  optimizations mentioned previously  for performance are 

also often useful for improving energy consumption: 
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■ Try to use registers efficiently. Group accesses to a value 

together so that the value can be brought into a register and kept 

there. 

 

■ Analyze cache behavior to find major cache conflicts. 

Restructure the code to eliminate as many of these as you can: 

 

 
—For  instruction  conflicts, if  the  offending  code   segment  is   small, 

try to rewrite the  segment to make  it  as  small  as  possible so  that 

it better fits into the cache. Writing in assembly language may be 

necessary. For con- flicts across  larger  spans  of code,  try  moving 

the  instructions or padding with  NOPs. 

 

—For scalar data conflicts,move the data values to different locations to 

reduce  conflicts. 

 

 
—For array data conflicts, consider either moving  the arrays or 

changing your array access patterns to reduce conflicts. 

 

 
■ Make use  of  page  mode  accesses  in  the  memory system 

whenever possible. Page mode reads and writes eliminate 

one step in the memory access, saving a considerable amount 

of power. 

 

4.9 ANALYSIS AND OPTIMIZATION OF PROGRAM SIZE 

 

The memory  footprint  of a program  is determined by the  size of 

its  data  and instructions. Both must be considered to minimize 

program size. 

 

Data provide an excellent opportunity for minimizing size 

because the data are most highly dependent on programming style. 

Because inefficient programs often keep several copies of data, 

identifying and eliminating duplications can lead to significant 

memory savings usually with little performance penalty. Buffers 

should be sized  carefully—rather than  defining  a data  array  to a 
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large size that the pro- gram will never attain, determine the actual 

maximum amount of data held in the buffer and allocate the array 

accordingly. Data can sometimes be packed, such as by storing 

several flags in a single word and extracting them by  using  bit- 

level operations. 

 

A very low-level technique for minimizing data is to reuse values. 

For instance, if several constants happen to  have  the  same  value, 

they can be  mapped to the same location. Data buffers can often be 

reused at several different  points in the program. This technique must 

be  used  with  extreme caution, however, since  subsequent ver- sions 

of the program may not use the same values for the constants. A more 

generally applicable technique is to generate data  on  the  fly  rather 

than store it. Of course, the  code  required  to  generate  the  data 

takes up  space  in  the  program, but  when complex  data  structures 

are involved there may be some  net space  savings  from using code 

to  generate  data. 

 

Minimizing the size of  the  instruction  text  of  a  program 

requires a mix of high-level program transformations and careful 

instruction selection. Encapsulating functions in subroutines can 

reduce program size when done carefully. Because sub- routines 

have overhead for parameter passing that is not obvious from the 

high-level language code, there is a minimum-size function body for 

which a subroutine makes sense. Architectures that have variable- 

size instruction lengths are particularly good candidates for careful 

coding to minimize program size, which may require assembly 

language coding of key program segments. There may also be cases 

in which one or a sequence of instructions is much smaller than 

alternative implementations— for example, a multiply-accumulate 

instruction may be both smaller and faster than separate arithmetic 

operations. 

 

4.10 PROGRAM VALIDATION AND TESTING 

 

Complex systems need testing to ensure that they work as they are 

intended. But bugs can be subtle, particularly  in  embedded 

systems, where specialized hardware and real-time responsiveness 

make programming more challenging. Fortunately, there are many 

available techniques for software testing  that  can  help  us gener- 
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ate a comprehensive set of tests to ensure that our system works 

properly. We examine the role of validation in the overall design 

methodology in Section 9.5. In this section, we concentrate on nuts- 

and-bolts techniques for creating a  good set of tests for a given 

program. 

 

The first question we must ask ourselves is how much testing is 

enough. Clearly, we cannot test the program for every possible 

combination of inputs. Because we cannot implement an infinite 

number of tests, we naturally ask ourselves what a  reasonable 

standard of thoroughness is. One of the  major  contributions of 

soft- ware testing is to provide us with standards of thoroughness 

that make sense. Following these  standards does  not  guarantee 

that we will find all bugs. But by breaking the testing  problem 

into  subproblems and  analyzing each  subproblem, 

 

The two  major types  of testing  strategies: 

 

■ Black-box methods generate tests without looking  at the internal 

structure of the program. 

 

■ Clear-box (also known  as white-box) methods generate tests based 

on the program  structure. 

 

In this section we cover both types of tests, which complement 

each  other by exercising programs in very different  ways. 

 

 
4.10.1 Clear-Box Testing 

 

The control/data flow graph extracted from a program’s source code is 

an important tool in developing clear-box tests for the program. To 

adequately test the program, we must exercise both its control and 

data operations. 

 

In order to execute and evaluate these tests, we must be able to 

control variables in the program and observe the results  of 

computations,  much  as  in  manufacturing  testing.  In  general,  we 

may need to modify the program to  make  it  more  testable. By 

adding    new    inputs    and   outputs,  we    can   usually  substantially 
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reduce  the  effort  required  to  find  and  execute  the  test.   Example 

5.11  illustrates the  importance  of observability and controllability 

in software testing. 

 

No matter what we are   testing,  we must   accomplish  the 

following three  things in a test: 

 

 
■ Provide   the   program with inputs that   exercise  the   test   we 

are   inter- ested  in. 

 

■ Execute  the program  to perform  the test. 

 

■ Examine the outputs to determine whether the test was 

successful. 

 

Example4.13 

 

Condition testing with the branch testing strategy 

 

Assume that the code below is what we meant to write. 

 

 

if  (a |  |    (b  >=  c)) {   printf("OK\n");  } 

 

 

The code that we mistakenly wrote instead follows: 

 

 

if (a &&  (b >= c)) {  printf("OK\n"); } 

 
If we apply branch testing to the code we wrote, one of the tests will use 
these values: a = 0, b = 3, c = 2 (making a false and b >= c true). In 
this case, the code should print the OK term [0 || (3 >= 2) is true] but 
instead doesn’t print [0 && (3 >= 2) evaluates to false]. That test 
picks up the error. 

 

Let’s consider  another  more subtle  error that is nonetheless all too 

common in C. The code we meant to write follows: 
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if ((x ==  good_pointer) &&  (x->field1 ==  3)) 

 

{  printf("got  the value\n"); } 

 

 

Here is the bad code we actually wrote: 

 

 

if ((x =  good_pointer) &&  (x->field1 ==  3)) 

 

{  printf("got  the value\n"); } 

 

 

The problem here is that we typed = rather than ==, creating an 

assignment rather than a test. The code x = good_pointer first assigns 

the value good_pointer to x and then, because assignments are also 

expressions in C, returns good_pointer as the result of evaluating this 

expression. 

 

If we apply the principles of branch testing, one of the tests  we 

want to use will contain x != good_pointer and x ->field1 ==  3. 

Whether this test catches the error depends on the state of the record 

pointed to by good_pointer. If it is equal to 3 at the time of the test, 

the message will be printed erroneously. Although this test is not 

guaranteed to uncover the bug, it has a reasonable chance of success. 

One of the reasons to use many different types of tests is to maximize 

the chance that supposedly unrelated  elements  will  cooperate  to 

reveal the error in a particular situation. 

 

 

 

Another more sophisticated strategy for testing conditionals is 

known as domain testing [How82], illustrated in Figure 5.28. 

Domain testing concentrates on linear inequalities.  In  the  figure, 

the inequality the program should use  for the  test  is j <= i + 1. 

We test the inequality with three test points—two on the boundary 

of the valid region and a third outside  the region but between the i 
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values of the other two points. When  we  make  some  common 

mistakes in  typing the inequality, these three tests are sufficient to 

uncover them, as shown  in the figure. 

 

5.10.2 Black-Box Testing 

 

Black-box tests are generated without knowledge of the code being 

tested. When used alone,black-box tests have a low probability of 

finding all the bugs in a program. But when used in conjunction with 

clear-box tests they help provide a well-rounded test set, since 

black-box tests are likely to uncover errors that are unlikely to be 

found by tests extracted from the code structure. Black-box  tests 

can really work. For instance, when asked to test an instrument 

whose front panel was  run by a microcontroller, one acquaintance 

of the author used his hand to depress all the  buttons 

simultaneously. The front panel immediately locked up. This 

situation could occur in practice if the instrument were placed face- 

down on a table, but discovery of this bug would be very unlikely 

via clear-box tests. 

 

One important technique  is to take tests directly from the 

specification for the code under design. The specification should 

state which outputs are expected for certain inputs. Tests should be 

created that provide specified outputs and evaluate whether the 

results also satisfy the inputs. 

 

Random tests form one category of black-box test. Random 

values are gener- ated with a given distribution. The expected values 

are computed independently of the system, and then the test inputs 

are applied. A large number of tests must be applied for the results 

to be statistically significant, but the tests are easy to generate. 

 

Another scenario is to test certain types of  data  values.  For 

example, integer- valued inputs can  be  generated  at  interesting 

values such as 0, 1, and values near the maximum end of the data 

range.  Illegal values  can be tested  as well. 

 

Regression tests form an extremely important category of tests. 

When tests are created during earlier stages  in the  system  design 

or   for  previous  versions of  the   system, those   tests   should   be 
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saved  to  apply  to  the  later  versions   of the system. Clearly, unless 

the system specification changed, the new system should be able to 

pass old  tests.  In  some  cases  old  bugs  can  creep  back  into 

systems, such as when an old version of a software module is 

inadvertently    installed. 

 

4.10.3 Evaluating Function Tests 

 

How much testing is enough? Horgan and Mathur [Hor96] 

evaluated the coverage of two well-known programs, TeX and 

awk. They used functional tests for these programs that had been 

developed over several years of extensive testing. Upon applying 

those functional tests to the programs, they obtained the code 

coverage statistics shown in Figure 5.30. The columns refer to 

various types of test coverage: block refers to basic blocks, 

decision to conditionals, p-use to a use of a variable in a 

predicate (decision), and c-use to variable use in a nonpredicate 

computation. These results are at least suggestive that functional 

testing does not fully exercise the code and that techniques that 

explicitly generate tests for various pieces of code are necessary to 

obtain adequate levels of code coverage. 

 

Methodological techniques are important for understanding the 

quality of your tests. For example, if  you  keep  track  of  the 

number of bugs tested each day,  the data you collect over time 

should show you some trends on the number of errors per page of 

code to expect on the average, how many bugs are  caught by 

certain kinds of tests, and so on. We address methodological 

approaches to quality control in more detail  in Section  9.5. 

 

One interesting method for analyzing the coverage of your tests is 

error injec- tion. First, take your existing code and add bugs to it, 

keeping track of where the bugs were added.Then run your existing 

tests on the modified program. 

 

4.11  SOFTWARE MODEM 

 

In this  section we  design  a modem.  Low-cost  modems  generally 

use specialized chips, but  some  PCs  implement  the  modem 

functions  in  software.  Before    jump-  ing  into  the  modem    design 
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itself, we discuss principles of how to transmit digital data over a 

telephone line. We will then go  through  a  specification  and 

discuss architecture, module  design, and testing. 

 

4.11.1  Theory of Operation and Requirements 

 

The modem will  use  frequency-shift keying  (FSK),a technique used 

in  1200-baud  modems.  Keying  alludes  to  Morse   code—style 

keying. As shown in  Figure the FSK scheme transmits sinusoidal 

tones, with 0 and 1 assigned to different frequen- cies.  Sinusoidal 

tones are  much  better  suited  to  transmission over   analog  phone 

lines than are the traditional high and low voltages of digital circuits. 

The 01 bit pat- terns create the chirping sound characteristic  of 

moems. (Higher-speed modems,The modem will not implement a 

hardware interface to a telephone line  or software  for  dialing  a 

phone number. We will assume that  we  have  analog  audio inputs 

and outputs for sending and receiving. We will also run at a much 

slower bit rate than  1200  baud  to  simplify  the  implementation. 

Next, we will not  implement a serial  interface to a host, but  rather 

put the transmitter’s message in memory  and  save  the  receiver’s 

result in memory as well. Given those  understandings, let’s  fill out 

the  requiremnts table.Start  bit Bit 
 

 

 

 
Sampling interval 

 

 

FIGURE 5.33 
 

Receiving bits in the modem. 

Name Modem. 
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Purpose A fixed baud rate frequency-shift keyed 

modem. Inputs  Analog sound input, reset button. 

 

Outputs Analog sound output, LED bit display. 

 

Functions Transmitter: Sends  data  stored  in  microprocessor 

memory in 8-bit bytes. Sends start bit for each  byte equal  in length 

to one bit. 

 

Receiver: Automatically  detects   bytes and stores results in main 

memory. Displays currently received bit on LED. 

 

Performance 1200 baud. 

 

Manufacturing cost Dominated by microprocessor and analog 

I/O. Power  Powered by AC through a standard 

power  supply. 

 
Physical  size and weight Small and light enough to fit on a 
desktop. 

 

4.11.3  System Architecture 

 

The modem consists of one small subsystem (the interrupt handlers 

for the samples) and two major subsystems (transmitter and 

receiver).Two sample interrupt handlers are required, one for input 

and another for output, but they are very simple. The transmitter is 

simpler, so let’s  consider its software architecture first. 
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float sine_wave[N_SAMP] 

 

{ 0.0, 0.5, 0.866, 1, 

 

0.866, 0.5, 0.0, –0.5, 

 

0.866, –1.0, –0.866, –0.5, 

 

Analog waveform and samples 
 

The best way to generate waveforms that retain the proper 

shape over long intervals is table lookup. Software oscillators can be 

used to generate periodic signals, but numerical  problems limit their 

accuracy. Figure 5.35 shows an analog waveform with sample points 

and the C code for these samples. Table lookup can be combined with 

interpolation  to  generate  high-resolution  waveforms   without 

excessive memory costs, which is more accurate than oscillators 

because no feed- back is involved. The required number of samples for 

the modem can be found by experimentation with the analog/digital 

converter and the sampling code. 

 

The structure of the receiver is considerably more complex. The 

filters and detec- tors of Figure 5.33 can be implemented with circular 

buffers. But that module must feed a state machine that recognizes the 

bits. The recognizer state machine must use a timer to determine when 

to start and stop computing the filter output average based on the starting 

point of the bit. It must then determine the nature of the bit at the 

proper interval. It must also detect the start bit and measure it using the 

counter. The receiver sample interrupt handler is a natural candidate to 

double as the receiver timer since the receiver’s time points are relative 

to samples. 

 

The hardware architecture is relatively simple. In addition to 

the analog/digital and digital/analog converters, a timer is required. The 

amount of memory required to implement the algorithms is relatively 

small. 
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ting 

 

The transmitter and receiver can be tested relatively thoroughly 

on the host platform since the timing-critical code only delivers data 

samples. The transmitter’s output is relatively  easy  to  verify, 

particularly if the data are plotted. A testbench can be constructed to 

feed the receiver code sinusoidal inputs  and test its bit recognition rate. 

It is a good idea to test the bit detectors first before  testing  the 

complete receiver operation. One potential  problem  in  host-based 

testing of the receiver is encountered when library code is used for the 

receiver function. If a DSP library for the target processor is used to 

implement the filters, then a substitute must be found or built for the 

host processor testing. The receiver must then be retested when moved 

to the target system to ensure that it still functions properly with the 

library code. 

 

4.11.5 System Integration and Testing 

 

There are two ways to test the  modem system: by having the 

modem’s transmitter send bits to its receiver, and or by connecting two 

different modems. The ultimate test is to connect two different modems, 

particularly modems designed by different people to be  sure that 

incompatible assumptions or errors  were  not  made.  But  single-unit 

testing,  called    loop-back  testing    in  the   telecommunications  industry, 

is simpler and a good first step. Loop-back  can  be  performed  in  two 

ways. First, a shared variable can be used to directly pass data from the 

transmitter to the receiver. Second, an audio  cable  can  be  used  to plug 

the analog output to the analog input. In this case it is also possible to 

inject   analog  noise  to  test  the  resiliency of the detection algorithm. 
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UNIT-5 

Real Time Operating System(RTOS) Based Design 

 

The process and the operating sys- tem (OS). Together, these two 

abstractions let us switch the state of the processor between multiple tasks. The 

process cleanly defines the state of an executing pro- gram, while the OS 

provides  the  mechanism  for  switching  execution  between the processes. 

 
These two mechanisms together let us build applications with more complex 

functionality and much greater flexibility to satisfy timing requirements. The 

need to satisfy complex timing requirements—events happening at  very 

different rates, intermittent events, and so on—causes us to use processes and 

OSs to build embed- ded software. Satisfying complex timing tasks  can 

introduce extremely complex control into programs. Using processes to 

compartmentalize functions and  encap-  sulating  in  the  OS  the  control 

required to switch between processes make it much easier to satisfy timing 

requirements with  relatively clean  control  within the processes. 
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We are particularly interested in real-time operating  systems (RTOSs),which 

are OSs that provide facilities for satisfying real-time requirements. A RTOS 

allocates resources using algorithms that take real time into account. General- 

purpose OSs, in contrast, generally allocate resources using other criteria like 

fairness. Trying to allocate the CPU equally to all processes without regard  to 

time can easily  cause processes to miss their deadlines. 

 
In the next section, we  will  introduce  the  concepts  of  task  and  process. 

Section 6.2 looks at how the RTOS implements processes.  Section  6.3  develops 

algo- rithms for scheduling  those  processes  to  meet  real-time  requirements. 

Section 6.4 introduces some  basic  concepts  in  interprocess   communication. 

Section 6.5 con- siders the performance of  RTOSs while  Section  6.6  looks  at 

power    consumption. 

 

 
5.1   MULTIPLE TASKS AND MULTIPLE PROCESSES 

Most embedded systems require functionality and timing that is too complex to 

embody in a single program. We break the system  into multiple tasks  in order 

to manage when things happen. In this section we will develop the basic 

abstractions that will be manipulated by the RTOS to build multirate systems. 

 
5.1.1   Tasks and Processes 

Many (if not most) embedded computing systems do more than one thing—that is, 

the environment can cause mode changes that in turn cause the embedded system 

to behave quite differently. For example,  when  designing  a  telephone 

answering machine, we can define recording a phone call and  operating the 

user’s control panel as distinct tasks, because they perform logically distinct 

operations and they must be performed at very different rates. These different 

tasks are part of the system’s functionality, but  that  application-level 

organization of functionality is often reflected in the structure of the program as 

well. 

 
A process is a single execution of a program. If we run the same  program 

two different times,  we  have  created two  different  processes. Each process has 

its own state that includes not only its registers but all of its memory. In some 

OSs, the  memory  management unit  is used  to keep  each  process in a separate 



Embedded Computing Systems 10CS72 

Dept of CSE Page 295 

 

 

 

address space. In others, particularly lightweight RTOSs, the processes run in the 

same address space. Processes that share the same address space are often called 

threads. 

 

 

To understand why the separation of an application into tasks may be 

reflected in the program structure, consider how we would build  a stand- 

alone compression unit based  on  the  compression  algorithm  we 

implemented in Section 3.7. As shown in Figure 6.1,  this  device  is 

connected to serial ports on both ends. The input to the box is an 

uncompressed stream of bytes. The  box  emits  a compressed string  of bits 

on the output serial line, based on a predefined compression table.  Such  a 

box may be used, for example, to compress data being  sent  to a modem. 

 
The program’s need to receive and send data at different rates—for 

example, the program may emit 2 bits for the first byte and then  7 bits for 

the second  byte— will  obviously find  itself  reflected  in  the  structure  of 

the code. It is easy to  create  irregular,  ungainly  code  to  solve  this 

problem; a more elegant solution is to create a queue of output bits, with 

those bits being removed from the queue and sent to the serial port in 8-bit 

sets. But beyond the need to create a clean data structure that simplifies the 

control structure of the code, we must also ensure that we process the inputs 

and outputs at the proper rates. For example, if we spend too much time in 

packaging and emitting output characters, we may drop an input character. 

Solving timing   problems is a more  challenging problem. 
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5.1.2 RTOS 
A real-time operating system (RTOS) is an operating 

system that guarantees a certain capability within a specified time 

constraint. For example, an operating system might be designed to 

ensure that a certain object was available for a robot on an 

assembly line. In what is usually called a "hard" real-time 

operating system, if the calculation could not be performed for 

making the object available at the designated time, the operating 

system would terminate with a failure. In a "soft" real-time 

operating system, the assembly line would continue to function but 

the production output might be lower as objects failed to appear at 

their designated time, causing the robot to be temporarily 

unproductive. Some real-time operating systems are created for a 

special application and others are more general purpose. Some 

existing general purpose operating systems claim to be a real-time 

operating systems. To some extent, almost any general purpose 

operating system such as Microsoft's Windows 2000 or IBM's 

OS/390 can be evaluated for its real-time operating system 

qualities. That is, even if an operating system doesn't qualify, it 

may have characteristics that enable it to be considered as a 

solution to a particular real-time application problem. 

 

In general, real-time operating systems are said to require: 

 multitasking 

 Process threads that can be prioritized 

 A sufficient number of interrupt levels 

Real-time operating systems are often required in small embedded 

operating systems that are packaged as part of microdevices. Some 
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often requires a kernel update. Additionally, often new kernels are 

offered that improve system security or performance. The two 

major types of kernels competing in today's computer markets are 

the Windows kernel and the unix-like kernels. 

The Windows kernel is available only with the Microsoft Windows 

series of operating systems. It is proprietary software, developed 

and distributed by Microsoft Corporation. Introduced in 

Windows/386, it's many incarnations have since gone by several 

different names, and some had no names at all. The latest version 

of the Windows kernel was introduced in Windows NT, and has 

had many of it's functions removed and placed in user-mode 

software for Windows Vista. This leads to increased system 

stability and security. In Vista, application-level software exploits 

have much less access to the core functions of the operating 

system, and application crashes will not bring down the OS. 

Unix-like kernels are a family of operating system kernels that are 

based upon, or operate similar to, the original Bell Labs UNIX 

operating system. Common examples of unix-like kernels are the 

Linux kernel, BSD, Mac OS, and Solaris. While many of these 

kernels were developed with original Bell Labs code as part of the 

software, not all of them have direct lineage to Bell. Linux, for 

instance, was developed as a free alternative to Minix, itself an 

independently developed variation of UNIX. Although originally 

running an original kernel design, Mac OS was outfitted with a 

unix-like kernel in 1988 with the introduction of A/UX. All 

subsequent Apple operating systems have unix-like kernels, 

including the current Mac OS-X's BSD-derived kernel. 

 

Definition: 
The kernel is the essential center of a computer operating system, 

the core that provides basic services for all other parts of the 

operating system. A synonym is nucleus. A kernel can be 

contrasted with a shell, the outermost part of an operating system 

that interacts with user commands. Kernel and shell are terms used 

more frequently in Unix operating systems than in IBM mainframe 

or Microsoft Windows systems. 

Typically, a kernel (or any comparable center of an operating 

system) includes an interrupt handler that handles all requests or 
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space, the task can continue, in principle, indefinitely, unless the 

program instructions contain a halt ,exit,orreturn. 

 

In the computer field, "task" has the sense of a real-time 

application, as distinguished from process, which takes up space 

(memory), and execution time. See operating system . Both "task" 

and " process " should be distinguished from event, which takes 

place at a specifictime and place, and which can be planned for in a 

computer program. 

In a computer graphic user interface (GUI), an event can be as 

simple as a mouse click which is displayed on a certain part of the 

canvas . In older text-based computer interfaces, an event might be 

a keystroke. 

For a real-time system, a computer may be too slow, so dedicated 

hardware solutions for performing a task may be employed, rather 

than a pure software solution. This hardware might be a digital, or 

an analog circuit, or a hybrid of many technologies. 

 

For many commercial businesses, a person may be an integral part 

of the solution. In this case, the entire "person(s) + 

(hardware/software) system" serve as the agentof the task which is 

being performed. 

 

Void your task(void * pdata) 

{ 

/* USER CODE*/ 

OSTaskDel(OS_PRID_SELF); 

} 
 

Task State Segment: 
 

The Task State Segment is a special x86 structure which holds 

information about a task. It is used by the operating system kernel 

for task management. Specifically, the following information is 

stored in the TSS: 

 

* Processor register state 

* I/O Port permissions 
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executed and bookkeeping information used by the operating 

system. Whenever you execute a program, the operating system 

creates a new task for it. The task is like an envelope for the 

program: it identifies the program with a task number and attaches 

other bookkeeping information to it. 

 

The terms task and process are often used interchangeably, 

although some operating systems make a distinction between the 

two. 

 

5.3.2 Task scheduling algorithm: 
 

The assignment of start and end times to a set of tasks, subject to 

certain constraints. Constraints are typically either time constraints 

(the payload must be installed before the payload bay doors are 

closed) or resource constraints (this task requires a small crane and 

a crane operator). 

In the case where the tasks are programs to run concurrently on a 

computer, this is also known as multitasking. 

 

Task interfaces to each other : 
 

The only multitasking problem that multitasked systems have to 

solve is that they cannot use the same data or hardware at the same 

time. There are two notably successful designs for coping with this 

problem: 

 Semaphore 

 Message passing 



A semaphore is either locked, or unlocked. When locked a queue 

of tasks wait for the semaphore. Problems with semaphore designs 

are well known: priority inversion and deadlocks . In priority 

inversion, a high priority task waits because a low priority task has 

a semaphore. A typical solution is to have the task that has a 

semaphore run at the priority of the highest waiting task. In a 

deadlock, two tasks lock two semaphores, but in the  opposite 

order. This is usually solved by careful design, implementing 

queues, or by having floored semaphores (which pass control of a 
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* The address space for the process 

* Priority (in which higher priority process gets first preference. 

eg., nice value on Unix operating systems) 

* Process accounting information, such as when the process was 

last run, how much CPU time it has accumulated, etc. 

* Pointer to the next PCB i.e. pointer to the PCB of the next 

process to run 

* I/O Information (i.e. I/O devices allocated to this process, list 

of opened files, etc) 

During a context switch, the running process is stopped and 

another process is given a chance to run. The kernel must stop the 

execution of the running process, copy out the values in hardware 

registers to its PCB, and update the hardware registers with the 

values from the PCB of the new process. 
 

Location of the PCB: 
Since the PCB contains the critical information for the process, it 

must be kept in an area of memory protected from normal user 

access. In some operating systems the PCB is placed in the 

beginning of the kernel stack of the process since that is a 

convenient protected location. 

Task Control Block - The Task Control Block (TCB) specifies all 

the parameters necessary to schedule and execute a routine. 

Typically, a TCB is a 6-10 words long and is logically divided into 

two parts: 

• Task-Independent Parameters - The first four words (32-bit) of 

the TCB are task-independent and simply specify the scheduling 

parameters to the DSP scheduler. 

• Task-Dependent Parameters - These parameters specify the 

routine to be executed and the parameters of execution. The 

number and format of these parameters is routine dependent. 

TCB’s may be linked in a chain from one to another so that a 

single  call  to  the  DSP  scheduler  can  place  many  tasks  in  the 
scheduler queue simultaneously. This has the side benefit of 

guaranteeing the relative synchronization of all the tasks in the 

TCB chain. The sequence of execution of tasks in a TCB chain 

can be controlled by assigning an appropriate priority to each task, 

if desired. 
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Multiprogramming systems are designed to maximize CPU usage. 



 In time-sharing systems, the running task is required to relinquish 

the CPU, either voluntarily or by an external event such as a 

hardware interrupt. Time sharing systems are designed to allow 

several programs to execute apparently simultaneously. The 

expression 'time sharing' was usually used to designate computers 

shared by interactive users at terminals, such as IBM's TSO, and 

VM/CMS 



 In real-time systems, some waiting tasks are guaranteed to  be 

given the CPU when an external event occurs. Real time systems 

are designed to control mechanical devices such as industrial 

robots, which require timely processing. 

The term time-sharing is no longer commonly used, having 

been replaced by simply multitasking, and by the advent of 

personal computers and workstations rather than shared 



5.5Types of MutlTasking: 
 

There are 2 types of multi tasking is there that is given bellow: 

 Preemptive 

 Non Preemptive 
 

5.5.1Multitasking: 

 Most  commonly,  within  some  scheduling  scheme,  one  process 

needs to be switched out of the CPU so another process can run. 



Within a preemptive multitasking operating system, the scheduler 
allows every task to run for some certain amount of time, called its 

time slice. 

 If a process does not voluntarily yield the CPU (for example, by 

performing  an  I/O  operation),  a  timer  interrupt  fires,  and  the 

operating system schedules another process for execution instead. 



This ensures that the CPU cannot be monopolized by any one 
processor-intensive application. 



5.5.2Preemptive multitasking: 
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important external events like incoming data, which might require 

the immediate attention of one or another process. 

 

Time slice: 
 The period of time for which a process is allowed to run in a 

preemptive multitasking system is generally called the time slice, 

or quantum. The scheduler is run once every time slice to choose 

the next process to run. If the time slice is too short then the 

scheduler will consume too much processing time. 

 An interrupt is scheduled to allow the operating system kernel to 

switch between processes when their time slices expire, effectively 

allowing the processor’s time to be shared between a number of 

tasks, giving the illusion that it is dealing with these tasks 

simultaneously, or concurrently. The operating system which 

controls such a design is called a multi-tasking system. 

 

5.5.6 Systems supporting preemptive multitasking: 
 Examples of preemptive operating systems include AmigaOS, the 

Windows  NT  family (including  XP,  Vista,  and  Seven),  Linux, 

*BSD, OS/2 2.X - OS/2 Warp 3 - 4.5, Mac OS X and Windows 

95/98/ME (32-bit applications only). Unix and Unix-based 

systems, and VMS, as well as other systems used in the academic 

and medium-to-large business markets, have always supported 

preemptive multitasking, but for a long time were beyond the reach 

of most users either because of the costs of licensing or the 

expensive hardware required to support them. 

Examples of older, non-preemptive (cooperative) operating 

systems include Windows 1.x, 2.x, 3.x, Windows for Workgroups, 

Windows 95/98 (when running 16-bit applications), NetWare, and 

Classic Mac OS versions (system 5.0 and up). Non-multitasking 

operating systems include older versions of Mac OS, MS DOS, 

and Commodore 64 OS which could only execute one program at a 

time. 

 

Amiga OS, based on the preemptive multitasking TRIPOS system, 

was the first such system widely available to home users (1985); 

though some contemporary systems had access to Unix-like 

systems  such  as  Xenix  and  Coherent,  they  could  often  be 
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resources can not be interrupted until it is finished. 

 

Cooperative multitasking (Preemptive algorithm) is a type of 

multitasking in which the process currently controlling the CPU 

must offer control to other processes. It is called ―cooperative‖ 

because all programs must cooperate for it to work. In contrast, 

preemptive multitasking forces applications to share the CPU 

whether they want to or not. 

 

 

5.5.8 Interrupt handling: 
Some architectures (like the Intel x86 architecture) are interrupt 

driven. This means that if the CPU requests data from a disk, for 

example, it does not need to busy-wait until the read is over, it can 

issue the request and continue with some other execution; when the 

read is over, the CPU can be interrupted and presented with the 

read. For interrupts, a program called an interrupt handler is 

installed, and it is the interrupt handler that handles the interrupt 

from the disk. 

 

The kernel services the interrupts in the context of the interrupted 

process even though it may not have caused the interrupt. The 

interrupted process may have been executing in user mode or in 

kernel mode. The kernel saves enough information so that it can 

later resume execution of the interrupted process and services the 

interrupt in kernel mode. The kernel does not spawn or schedule a 

special process to handle interrupts. 

 

User and kernel mode switching: 
When a transition between user mode and kernel mode is required 

in an operating system, a context switch is not necessary; a mode 

transition is not by itself a context switch. However, depending on 

the operating system, a context switch may also take place at this 

time. 

nteractive systems. 

 

5.6 Context Switches 
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The most common reasons for a context switch are: 

 

* The time slice has elapsed. 

* A thread with a higher priority has become ready to run. 

* A running thread needs to wait. 

 

When a running thread needs to wait, it relinquishes the remainder 

of its time slice. 

 

 

Context switch: 
A context switch is the computing process of saving and restoring 

the state (context) of a CPU such that multiple processes can share 

a single CPU resource. The context switch is an essential feature of 

a multitasking operating system. 

 

Context switches are usually time consuming and much of the 

design of operating systems is to minimize the time of context 

switches. 

 

A context switch can mean a register context switch, a task context 

switch, a thread context switch, or a process context switch. What 

will be switched is determined by the processor and the operating 

system. 

The scheduler is the part of the operating systems that manage 

context switching, it perform context switching in one of the 

following conditions: 

 

1. Multitasking: One process needs to be switched out of 

(termed "yield" which means "give up") the CPU so another 

process can run. Within a preemptive multitasking operating 

system, the scheduler allows every task (according to its priority 

level) to run for some certain amount of time, called its time slice 

where a timer interrupt triggers the operating system to schedule 

another process for execution instead. 

 

If a process will wait for one of the computer resources or will 

perform an I/O operation, the operating system schedules another 
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first process must be saved somehow, so that, when the scheduler 

gets back to the execution of the first process, it can restore this 

state and continue. 

 

The state of the process includes all the registers that the process 

may be using, especially the program counter, plus any other 

operating system specific data that may be necessary. This data is 

usually stored in a data structure called a process control block 

(PCB), or switchframe. 

 

Now, in order to switch processes, the PCB for the first process 

must be created and saved. The PCBs are sometimes stored upon a 

per-process stack in kernel memory (as opposed to the user-mode 

stack), or there may be some specific operating system defined 

data structure for this information. 

 

Since the operating system has effectively suspended the execution 

of the first process, it can now load the PCB and context of the 

second process. In doing so, the program counter from the PCB is 

loaded, and thus execution can continue in the new process. New 

processes are chosen from a queue or queues. Process and thread 

priority can influence which process continues execution, with 

processes of the highest priority checked first for ready threads to 

execute. 

 

Context Switch Definition: 
 

A context switch (also sometimes referred to as a process switch or 

a task switch) is the switching of the CPU (central processing unit) 

from one process or thread to another. 

 

A process (also sometimes referred to as a task) is an executing 

(i.e., running) instance of a program. In Linux, threads are 

lightweight processes that can run in parallel and share an address 

space (i.e., a range of memory locations) and other resources with 

their parent processes (i.e., the processes that created them). 

 

A context is the contents of a CPU's registers and program counter 
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execution of one process on the CPU and resuming execution of 

some other process that had previously been suspended. Although 

this wording can help clarify the concept, it can be confusing in 

itself because a process is, by definition, an executing instance of a 

program. Thus the wording suspending progression of a process 

might be preferable. 

 

Context Switches and Mode Switches: 
 

Context switches can occur only in kernel mode. Kernel mode is a 

privileged mode of the CPU in which only the kernel runs and 

which provides access to all memory locations and all other system 

resources. Other programs, including applications, initially operate 

in user mode, but they can run portions of the kernel code via 

system calls. A system call is a request in a Unix-like operating 

system by an active process (i.e., a process currently progressing in 

the CPU) for a service performed by the kernel, such as 

input/output (I/O) or process creation (i.e., creation of a new 

process). 

 

I/O can be defined as any movement of information to or from the 

combination of the CPU and main memory (i.e. RAM), that is, 

communication between this combination and the computer's users 

(e.g., via the keyboard or mouse), its storage devices (e.g., disk or 

tape drives), or other computers. 

 

The existence of these two modes in Unix-like operating systems 

means that a similar, but simpler, operation is necessary when a 

system call causes the CPU to shift to kernel mode. This is referred 

to as a mode switch rather than a context switch, because it does 

not change the current process. 

 

Context switching is an essential feature of multitasking operating 

systems. A multitasking operating system is one in which multiple 

processes execute on a single CPU seemingly simultaneously and 

without interfering with each other. This illusion of concurrency is 

achieved by means of context switches that are occurring in rapid 

succession (tens or hundreds of times per second). These context 
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switching. Its advocates also claim that software context switching 

allows for the possibility of improving the switching code, thereby 

further enhancing efficiency, and that it permits better control over 

the validity of the data that is being loaded. 

 

5.8Scheduler 

 
What is the Scheduler? 
The "task scheduler" (or often "scheduler") is the part of the 

software that schedules which task to run next. The scheduler is the 

part of the software that chooses which task to run next. 

The scheduler is arguably the most difficult component of an 

RTOS to implement. Schedulers maintain a table of the current 

state of each task on the system, as well as the current priority of 

each task. The scheduler needs to manage the timer too. 

In general, there are 3 states that a task can be in: 
1. Active. There can be only 1 active thread on a given processor 

at a time. 

2. Ready. This task is ready to execute, but is not currently 

executing. 

3. Blocked. This task is currently waiting on a lock or a critical 

section to become free. 

Some systems even allow for other states: 
1. Sleeping. The task has voluntarily given up control for a 

certain period of time. 

2. Low-Priority. This task only runs when all other tasks are 

blocked or sleeping. 

There are 2 ways the scheduler is called: 
* the current task voluntarily yield()s to the scheduler, calling 

the scheduler directly, or 

* the current task has run "long enough", the timer hardware 

interrupts it, and the timer interrupt routine calls the scheduler. 

The scheduler must save the current status of the current task (save 

the contents of all registers to a specified location), it must look 

through the list of tasks to find the highest priority task in the 

Ready state, and then must switch control back to that task (by 

restoring it's register values from memory). 
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algorithm, which implements mutual exclusion. 

Examples of such resources are fine-grained flags, counters or 

queues, used to communicate between code that runs concurrently, 

such as an application and its interrupt handlers. The 

synchronization of access to those resources is an acute problem 

because a thread can be stopped or started at any time. 

To illustrate: suppose a section of code is altering a piece of data 

over several program steps, when another thread, perhaps triggered 

by some unpredictable event, starts executing. If this second thread 

reads from the same piece of data, the data, which is in the process 

of being overwritten, is in an inconsistent and unpredictable state. 

If the second thread tries overwriting that data, the ensuing state 

will probably be unrecoverable. These shared data being accessed 

by critical sections of code, must therefore be protected, so that 

other processes which read from or write to the chunk of data are 

excluded from running. 

A mutex is also a common name for a program object that 

negotiates mutual exclusion among threads, also called a lock. It is 

one of thecharacteristics of deadlock. When semaphores are used 

or mutual exclusion, the semaphore has an initial value of 1, and 

P() is called before the critical section, and V() is called after the 

critical section as shown below : 

semaphore-> P(); 

critical section 

semaphore-> V(); 

remainder section 

let us suppose that one process A is already executing its critical 

section then it implies that semaphore value at that time is zero. If 

process B now tries to enter this critical section , it cannot enter the 

critical section because it will have to wait before semaphore 

becomes greater than zero. This is possible only when process A 

executes its signal operation; after executing its critical section. 

 

5.8.2 Semaphore 

 
Semaphore? 
In computer science, a semaphore is a protected variable or 

abstract  data  type  which  constitutes  the  classic  method  for 
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Wait(); 

until S > 0; 

S := S - 1; 

end; 
Notice that incrementing the variable S must not be interrupted, 

and the P operation must not be interrupted after S is found to be 

greater than 0. This can be done using a special instruction such as 

test-and-set (if the architecture's instruction set supports it), or (on 

uniprocessor systems) ignoring interrupts to prevent other 

processes from becoming active. 

The value of a semaphore is the number of units of the resource 

which are free. (If there is only one resource, a "binary semaphore" 

with values 0 or 1 is used.) The P operation busy-waits (uses its 

turn to do nothing) or maybe sleeps (tells the system not to give it a 

turn) until a resource is available, whereupon it immediately claims 

one. The V operation is the inverse; it simply makes a resource 

available again after the process has finished using it. The P and V 

operations must be atomic, which means that no process may ever 

be preempted in the middle of one of those operations to run 

another operation on the same semaphore. 

The canonical names P and V come from the initials of Dutch 

words. The V stands for verhogen, or "increase". Several 

explanations have been given for P (including proberen for "to 

test", passeer for "pass", probeer "try", and pakken "grab"), but in 

fact Dijkstra wrote that he intended P to stand for the made-up 

word prolaag,short for probeer te verlagen, literally "try-to- 

reduce", or to parallel the terms used in the other case, "try-to- 

decrease". This confusion stems from the fact that the words for 

increase and decrease both begin with the letter V in Dutch, and 

the words spelled out in full would be impossibly confusing for 

non-Dutch-speakers. 

In the programming language ALGOL 68, in the Linux kernel,and 

in some English textbooks, the P and V operations are called, 

respectively, down and up. In software engineering practice, they 

are often called wait and signal, or acquire and release (which the 

standard Java library uses ), or pend and post. Some texts call them 

procure and vacate to match the original Dutch initials. 
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A critical section is a mutex that is tied to a block of code. It's 

purpose is to only allow one task at a time be in a block of code. 

 

 
 

 
5.8.3 Message mail boxes 
Message mail boxes? 

 

Intertask Communication 
Information transfer is sometimes needed among tasks or 

between the task and the ISR. Information transfer can be also 

called intertask communication. 

There are two ways to implement it: through the global 

variable or by sending messages. 

When using the global variable, it is important to ensure that each 

task or ISR possesses the variable alone. The only way to ensure it 

is enabling the interrupt. When two tasks share one variable, each 

task possesses the variable alone through firstly enabling then 

disabling the interrupt or by the semaphore. Please note that a task 

can communicate with the ISR only through the global variable 

and the task won’t know when the global variable has been 

modified by the ISR (unless the ISR sends signals to the task in 

manner of semaphore or the task keeps searching the variable’s 

value). In this case, CooCox CoOS supplies the mailboxes and the 

message queues to avoid the problems above. 

* Mailboxes 

System or the user code can send a message by the core 

services. A typical mail message, also known as the exchange of 
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.......... 

mboxID = 

CoCreateMbox(EVENT_SORT_TYPE_PRIO); //Sort by 

preemptive 

priority pmail = CoPendMail(mboxID,0,&err); 

.......... 

} 

void myTaskB(void* pdata) 

{ 

...... 

CoPostMail(mboxID,"hello,world"); 

...... 

} 

void myISR(void) 

{ 

CoEnterISR ( ); 

...... 

isr_PostMail(mboxID,"hello,CooCox"); 

CoExitISR ( ); 

} 
 

* Message Queues 
Message queue is just an array of mailboxes used to send 

messages to the task in fact. The task or the ISR can put multiple 

messages (that is, the pointers of the message) to the message 

queue through the core services. Similarly, one or more tasks can 

receive this message by the core services. The tasks sending and 

receiving the message promise that the content that the pointer 

points to is just that piece of message. 

The difference between the mailbox and the message queue is 

that the former can store only one piece of message while the latter 

can store multiple of it. The maximum pieces of message stored in 

a queue are determined by the user when creating the queue in 

CooCox CoOS. 

In CooCox CoOS, message queue is composed of two parts: one 

is the struct which pointed to the message queue; the other is the 

waiting list which composed of the tasks waiting for this message 

queue. The waiting list supports two kinds of sorting: FIFO 
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UNIT-6 

 
RTOS-Based Design-2 

 
6.1 Inter process Communication 

 
In general, a process can send a communication in one of 

two ways: blocking  or nonblocking . After sending  a 

blocking communication, the process  goes into the waiting 

state until it receives a  response.  Nonblocking 

communication allows the process  to  continue  execution 

after sending the communication. Both types of 

communication are  useful. 

 

There are two  major  styles  of  interprocess 

communication: shared memory and message passing . The 

two are logically equivalent—given one, you can build an 

interface that implements the other. However, some programs 

may be easier to write using one rather than the other. In 

addition, the hardware platform may make one easier to 

implement or more efficient than the other. 

 

 

6.4.2   Message Passing 

 

Message passing communication complements the shared 

memory model.As shown in Figure 6.15, each communicating 

entity has its own message send/receive unit. The message is 

not stored on the communications link, but rather at the 

senders/ receivers at the end points. In contrast, shared memory 

communication can be seen as a memory block used as a 

communication device, in which all the data are stored in the 

communication  link/memory. 
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generated by a  process and  transmitted to  another  process 

by  the operating system. 

 

A UML  signal is actually a generalization of the Unix 

signal. While a Unix signal carries no parameters other than a 

condition code, a UML signal is an object. As such, it can carry 

parameters as object  attributes. Figure 6.16  shows  the use of 

a signal in UML. The sigbehavior( ) behavior of the  class 

is responsible for  throwing  the  signal,  as  indicated  by 

send . The signal object  is indicated by the  signal 

stereotype. 

 

6.5  EVALUATING OPERATING SYSTEM PERFORMANCE 

 

The scheduling policy does not tell us  all  that  we  would 

like to know about the performance of a real system running 

processes. Our analysis of scheduling  policies makes some 

simplifying  assumptions: 

 

 
■ We have assumed that context switches require zero time. 

Although it is often reasonable to neglect context switch time 

when it is much smaller than the process execution time, 

context switching can add significant delay  in some cases. 

 

 
■ We have assumed that we know the execution time of the 

processes. In fact, we learned in  Section 5.6 that program 

time is not a single number, but can be bounded by worst- 

case and best-case  execution times. 

 

 
■ We  probably  determined  worst-case  or  best-case  times  for 

the processes in isolation. But,in fact,they interact with each 

other   in  the   cache.  Cache   conflicts   among   processes   can 
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manage the system’s power consumption. A power 

management policy [Ben00] is a strategy for determining 

when to perform certain power management operations. A 

power management policy in general examines the state  of 

the system  to  determine  when  to  take  actions. However, 

the overall strategy embodied in the policy should  be 

designed based on the characteristics of the static and 

dynamic power  management mechanisms. 

 

Going into a low-power mode takes time; generally, the 

more that is shut off, the longer the delay incurred during 

restart. Because power-down and power-up  are not  free, 

modes should be changed carefully. Determining when to 

switch into and out of a power-up  mode  requires  an 

analysis of  the  overall   system activity. 

 

 

■ Avoiding a power-down mode can cost unnecessary power. 

 

 
■ Powering down too soon can cause severe performance 

penalties. 

 

 

Re-entering run mode typically costs a considerable amount 

of time. 

 

A straightforward method is to power up the system when a 

request is received. This works as long as the delay in 

handling the request is acceptable. A more sophisticated 

technique is predictive shutdown. The goal is  to  predict 

when the next request will be made and to start the  system 

just before that time, sav- ing the requestor the start-up time. 

In general, predictive shutdown techniques are probabilistic—

they  make    guesses  about    activity  patterns 
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down system  waits  for a period  Toff before returning to the 

power-on  mode. The choice  of  Toff   and Ton must be 

determined   by   experimentation.   Srivastava  and Eustace 

[Sri94]  found  one  useful  rule  for  graphics  terminals. They 

plotted the  observed idle  time  (Toff ) of a graphics terminal 

versus the immediately preceding active time (Ton ). The result 

was an L-shaped distribution as illustrated in Figure 6.17.  In 

this distribution, the idle period  after a long active period  is 

usually very  short, and the length  of the idle  period  after a 

short  active period is  uniformly distributed.  Based  on  this 

distribution,  they proposed  a  shut  down threshold  that 

depended on the length  of the last active  period—they shut 

down  when  the active  period  length  was below  a threshold, 

putting the system in the vertical portion of the L distribution. 

 

The Advanced Configuration  and  Power Interface (ACPI) 

is an  open  indus-  try  standard  for  power  management 

services.  It is  designed to  be  compatible  with a wide  variety 

of OSs. It was targeted initially to PCs. The role of ACPI in the 

system is illustrated in Figure 6.18. ACPI provides some basic 

power  management  facilities  and  abstracts   the   hardware 

layer, the OS has its own power management module that 

determines the policy, and the OS then uses ACPI to send the 

required controls to the hardware and  to  observe  the 

hardware’s state  as input  to the  power manager. 

 

ACPI supports the  following five basic  global  power states: 

 

 

■ G3, the mechanical off state, in which the system  consumes 

no power. 

 

 

■ G2, the  soft  off  state,  which  requires  a  full  OS  reboot to 

restore   the  machine to  working condition. This  state  has  four 
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analog tape. To make life more interesting, we use a simple 

algorithm to compress the voice data so that we can make 

more efficient use of the limited amount of available memory. 

 

6.7.1 Theory of Operation and Requirements 

 

In addition to studying the compression algorithm, we also 

need to learn a little about the operation of  telephone 

systems. 

 

The compression scheme we will use is known as adaptive 

differential pulse code modulation (ADPCM). Despite the 

long name, the technique is relatively simple but can yield 2 

compression ratios on voice data. 

 

The ADPCM coding scheme is illustrated in Unlike 

traditional sam- pling, in which each sample shows the 

magnitude of the signal at a particular time, ADPCM encodes 

changes in the signal. The samples are  expressed  in  a 

coding alphabet , whose values are in a relative range that 

spans both negative and positive 
 

values.  In this case, the value range is {   3,   2,   1, 1, 2, 3}. 
Each sample  is used to 

 
predict the value of the signal at the current instant from the 
previous value.  At each 

 
point in time, the sample is chosen such that the error between 

the predicted value and the actual  signal  value  is minimized. 

 

An ADPCM compression system, including an encoder and 

decoder, is shown in Figure 6.20. The encoder is more 

complex, but both the encoder and decoder use an integrator 

to reconstruct the waveform from the samples. The integrator 

simply computes a running sum of the history  of  the 

samples;  because  the    samples  are  differential,  integration 



Embedded Computing Systems 10CS72 

Dept of CSE Page 317 

 

 

 

a ringing signal to the telephone when a call is waiting. The 

ringing signal is in fact a 90 V RMS sinusoid, but we can use 

analog  circuitry to produce 0 for no ringing  and 1 for ringing. 
 

 

■ Off-hook: The telephone industry term for answering a 

call is going  off- hook; the  technical term  for hanging up 

is going on-hook. (This creates some initial confusion since 

off-hook means the telephone  is  active  and on-hook 

means it is not in use, but the terminology starts to make 

sense after a few uses.) Our interface will send a digital 

signal to take the phone line off-hook, which will cause 

analog circuitry to make the nec- essary  connection  so 

that  voice  data  can  be sent  and received during the call. 

 

 
We can now write the requirements for the answering 

machine. We will assume that the interface is not to the actual 

phone line but to some circuitry that provides voice samples, 

off-hook  commands, and  so  on.  Such  circuitry  will  let   us 

test our system with  a  telephone  line  simulator  and  then 

build the analog  circuitry  necessary  to  connect  to  a  real 

phone line. We will use the term outgoing message (OGM) to 

refer to the message recorded  by  the  owner  of the  machine 

and played at the start of every  phone  call. 

 

Name Digital  telephone answering 

machine 

 

 

Telephone answering machine with digital memory, using 

speech compression. 

 

Inputs Telephone: voice samples, ring 

indicator. 

Outputs 
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back.Performance Should be able to record 

about 30 min of total voice, including incoming and OGMs. 

Voice data are sampled at the standard telephone rate of 8 

kHz. 

 

6.7.2 Specification 

 

The  class  diagram   for  the   answering  machine.  In  addition 

to the classes that perform the major functions, we also use 

classes to describe the incoming and OGMs. As seen below, 

these  classes  are related. 

 

The  definitions of the  physical interface classes  are  shown 

in Figure 6.22.  The  buttons  and  lights  simply  provide 

attributes for their input and output values. The phone line, 

microphone, and speaker are  given  behaviors  that  let  us 

sample   their current values. 

 

The message classes are defined in  Figure 6.23. Since 

incoming and OGM types share many characteristics, we 

derive both from a more fundamental message type. 

 

The  major   operational classes—Controls,  Record, and 

Playback—are  defined in Figure  6.24.  The Controls class 

provides  an  operate( )  behavior  that oversees the user- 

level operations. The Record and Playback classes  provide 

behaviors that handle writing and reading sample sequences. 

 

The state diagram for the Controls activate behavior is 

shown in. Most of the user activities are relatively 

straightforward. The most complex is an- swering an 

incoming call. As with the software modem of Section 5.11, 

we want to be sure that a single depression of a button causes 

the required action to be taken exactly once; this requires 

edge detection on the button signal. 
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on-hook commands. 

 

 
■ The telephone input and output modules handle receiving 

samples from and sending samples to the telephone line. 

 

 
 

■ The compression module  compresses data and stores it in 

memory. 

 

 

■ The decompression module uncompresses data and sends  it 

to the speaker module. 

 

 
We can determine the execution model for these modules 

based on the rates at which they must work and the ways in 

which  they   communicate. 

 

 
■ The front  panel  and  telephone line  modules  must  regularly 

test the buttons and phone line, but this can be done at a fairly 

low rate. As seen below, they can therefore run as polled 

processes in  the  software’s main  loop. 

 

 

while (TRUE) {  check_phone_line(); 
run_front_panel(); 

 

} 

 

 

■ The speaker and phone input and output modules must run at 

higher, regular  rates  and  are  natural   candidates  for  interrupt 
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Performance analysis is important in this case  because we 

want to ensure that we don’t spend so much time 

compressing that we miss voice samples. In a real consumer 

product, we would carefully design the  code  so  that  we 

could use the slowest, cheapest possible CPU that would still 

perform the required processing in the  available  time 

between samples. In this case, we will choose the 

microprocessor in advance for simplicity and simply ensure 

that all the deadlines are met. 

 

An  important  class  of  problems  that  should   be 

adequately tested  is  memory  overflow. The  system  can  run 

out of memory at any time, not just between messages. The 

modules should be tested to ensure that they  do  reasonable 

things  when  all the available memory  is used up. 

 

 

6.7.5 System Integration and Testing 

 

We can test partial integrations of the software  on our host 

platform. Final testing with real voice data must wait until the 

application is moved  to the target  platform. 

 

Testing your system by  connecting  it  directly  to  the 

phone line is not a very good idea. In the United States, the 

Federal Communications Commission regulates equipment 

connected to phone lines. Beyond legal problems, a bad circuit 

can dam- age the phone line and incur the wrath of your service 

provider. The required analog circuitry also requires some 

amount of tuning, and you need a second telephone line to 

generate phone calls for tests. You can build a telephone line 

simulator to test the hardware independently of a real 

telephone line. 
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UNIT-7 

Distributed Embedded Systems 

7.2 NETWORKS FOR EMBEDDED SYSTEMS 

 

 
Networks for embedded  computing span a broad range of 

requirements; many of those requirements are very different 

from those for general-purpose networks. Some networks are 

used in safety-critical applications, such as  automotive 

control. Some networks, such as those used in consumer 

electronics systems, must be very inexpensive. Other 

networks,such as industrial control  networks,must  be 

extremely rugged and  reliable. 

 

Several interconnect networks have been developed 

especially  for distributed embedded computing: 

 

■ The I2 C bus is used in microcontroller-based systems. 

 

 
■ The Controller Area Network (CAN) bus  was  developed 

for automotive electronics. It provides megabit rates and can 

handle large numbers of devices. 

 

■ Ethernet and variations of standard Ethernet are used for a 

variety  of control applications. 

 

 
In addition, many networks designed for general-purpose 

computing have been put to use in embedded applications as 

well. 
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to act as bus masters  and the bus 

 

The basic  electrical interface to the  bus  is shown   in Figure 

8.8. The bus does not define particular voltages to be used for 

high or low so that either bipolar or MOS circuits can be 

connected to the bus. Both bus signals use open collector/open 

drain circuits.1 A pull-up resistor keeps the default state of the 

signal high, and transistors are used in each bus device to pull 

down the signal when a 0 is to be transmitted. Open 

collector/open drain signaling allows several devices to 

simultaneously write the  bus  without  causing  electrical 

damage. 

 

The open collector/open drain circuitry allows a slave 

device to stretch a clock signal during a read from a slave. 

The master is responsible for generating the SCL clock, but 

the slave can stretch the low period of the clock (but not the 

high period) if necessary. 

The I2 C bus  is designed as a multimaster bus—any one of 
several  different 

 

devices may act as the master at various times. As a result, 

there is no global mas- ter to generate the clock signal on 

SCL. Instead, a master drives both SCL and SDL when it is 

sending data. When the bus is idle, both SCL and SDL remain 

high. When two devices try to drive either SCL or SDL to 

different values, the open collector/ open drain circuitry 

prevents errors, but each master device must listen to the bus 

while transmitting to be sure that it is not interfering with 

another message—if the device receives a different  value than 

it is trying to transmit, then it knows that it is interfering with 

another  message. 

 

Every I2 C device has an address. The addresses of the 

devices are determined by the system  designer, usually as part 
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explains the  7-bit addresses on  the  bus.)  The  format  of an 

address  transmission is shown  in Figure 8.9. 

 

A bus transaction is initiated by a start signal and 

completed with  an end signal as follows: 

 

 
■ A start is signaled by leaving  the SCL high and sending a 1 

to 0 transition on 

 

SDL. 

 

 
■ A stop is signaled by setting  the SCL high and sending a 0 

to 1 transition on 

 

SDL. 

 

However, starts and stops must be  paired. A master  can 

write and then read (or  read  and  then  write) by  sending a 

start after the data transmission, followed by another address 

transmission and then more data. The basic state  transition 

graph for the master’s actions  in a bus transaction is shown  in 

 

The formats of some typical complete bus transactions are 

shown in Figure 8.11.  In  the  first  example,  the  master 

writes 2 bytes to the addressed slave.  In the second, the 

master requests a read from a slave. In the third, the master 

writes 

 

1 byte to the slave, and then sends another start to 

initiate  a  read   from  the slave. 

 

Transmitting  a byte on the I2 C bus. 
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8.2.2 Ethernet 

 

Ethernet is very widely used as a local area network for 

general-purpose computing. Because of its ubiquity and the low 

cost of Ethernet interfaces, it has seen significant use as a network 

for embedded computing. Ethernet is particularly useful when 

PCs are used as platforms, making it possible to use standard 

components, and when the network does not have to meet 

rigorous  real-time requirements. 

 

The physical organization  of  an  Ethernet  is  very 

simple, as shown in Figure 8.14. The network is a  bus  with  a 

single signal path; the Ethernet standard  allows  for several 

different  implementations  such  as  twisted  pair  and  coaxial 

cable. 
 

Unlike the I2 C bus, nodes on the Ethernet are not 
synchronized—they can send 

their bits at any time. I2 C relies on the fact that a 
collision  can  be  detected  and 

 

quashed within a single bit time thanks to 

synchronization. But  since  Ethernet  nodes  are  not 

synchronized, if two nodes decide  to  transmit  at  the  same 

time, the message will be ruined. The Ethernet arbitration 

scheme is known as Carrier Sense Multiple Access with 

Collision Detection (CSMA/CD). The algorithm is outlined in 

Figure 8.15. A node that has a message waits for the bus to 

become silent and then starts transmitting. It simultaneously 

listens, and if it hears another transmission that interferes with 

its transmission, it stops transmitting and waits to retransmit. The 

waiting time is random, but weighted by an exponential function 

of the  number of times  the  message has been  aborted. Figure 

8.16 shows the expo- nential backoff function both before and 

after it is modulated by the random wait time. Since a message 

may be interfered with several times before it is successfully 

transmitted, the exponential backoff technique helps to ensure 

that the network does not become overloaded at high demand 

factors. The random factor in the wait  time  minimizes the 

chance that two messages will repeatedly interfere with each 

other. 

 

The maximum length of an Ethernet  is  determined by 

the nodes’ ability to detect  collisions. The  worst  case  occurs 

when    two  nodes  at  opposite  ends  of  the  bus  are  transmitting 
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simultaneously. For the collision to be detected by both  nodes, 

each node’s signal must be able to travel to the opposite end of 

the bus so that it can be heard by the other node. In practice, 

Ethernets can run up to several hundred 

 

7.3 NETWORK-BASED DESIGN 

 

 
Designing a distributed embedded system around a 

network involves some of the same design tasks we faced in 

accelerated systems. We must schedule computations  in  time 

and allocate them to PEs. Scheduling and allocation of 

communication are important additional design tasks required 

for many distributed networks. Many embedded networks are 

designed for low cost and therefore do not provide exces- sively 

high communication speed. If we are not careful, the network 

can become the bottleneck in  system  design. In this  section 

we concentrate on design tasks unique to network-based 

distributed embedded  systems. 

 
We know how to analyze the execution  time  of 

programs and systems of pro- cesses on single CPUs, but  to 
analyze the performance of networks we must know how to 
determine the delay incurred by transmitting messages. Let us 
assume for the  moment  that  messages are  sent  reliably—we do 
not have to retransmit a  message.  The  message  delay  for  a 
single message with no contention (as would be the case in a point-
to-point   connection) can  be  modeled as 

 

where tx is the transmitter-side overhead, tn  is the 

network transmission time, and tr is the receiver-side 

overhead. In I2 C, tx and tr are negligible relative to tn , as 

illustrated 

 

If the network uses fixed-priority arbitration, the 

network availability delay is unbounded for all but the highest- 

priority device. Since the  highest-priority device  always  gets 

the network first, unless  there  is an application-specific limit 

on how long it will  transmit  before  relinquishing the network, 

it can keep  blocking the other devices indefinitely. 

 

 
■ If the network uses fair arbitration, the network 

availability delay is bounded. In the case of round-robin 

arbitration, if there are N devices, then the worst- case network 

availability delay  is N (tx         tarb ), where tarb   is the  delay 
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incurred  for  arbitration.  tarb is  usually  small  compared  to 

transmission time. 

 

Even when  round-robin  arbitration  is  used  to  bound 

the network availability delay, the  waiting  time  can  be  very 

long. If we add acknowledgment and data cor- ruption into the 

analysis, figuring  network  delay  is  more   difficult.   Assuming 

that errors are random, we cannot  predict  a  worst-case  delay 

since every packet may contain an error. We can,  however, 

compute the probability that a packet  will  be delayed for more 

than a given amount of time.  However, such  analysis is beyond 

the scope  of this l ook. 

 

Arbitration on networks is a form of prioritization. 

Therefore, we can use the techniques we learned for process 

scheduling in Chapter 6 to help  us schedule communications. 

In a rate-monotonic communication scheme, the task with the 

shortest deadline should be assigned the highest priority in the 

network. 

 

Our process scheduling model assumed that we could 

interrupt processes at any point. But network communications 

are organized into packets. In most networks  we  cannot 

interrupt a packet transmission to take over the network for a 

higher- priority packet. As a result,networks exhibit priority 

inversion like that introduced in Chapter 6. When a low-priority 

message is on the network, the network is effectively allocated to 

that low-priority message, allowing it to block higher-priority 

messages. This cannot cause deadlock since each message has a 

bounded length,but it can slow down critical communications. 

The only solution is to analyze network behavior to determine 

whether priority inversion causes  some  messages  to  be 

delayed for too long. 

 

Of course, a round-robin arbitrated  network puts all 

communications at the same priority. This does not eliminate the 

priority inversion problem because processes still  have 

priorities. 

 

Thus far we have assumed a single-hop network: A 

message is received at its intended destination directly from the 

source, without going through any other net- work node. It is 

possible to build multihop networks in which messages are 

routed through network nodes to get to their destinations. (Using a 

multistage network does not necessarily mean  using  a multihop 
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network—the stages in a multistage network are generally much 

smaller  than  the  network PEs.) Figure  8.18  shows   an  example 

of a multihop communication. The hardware platform has two 

separate networks ( perhaps so that communications between 

subsets of the PEs do not interfere), but there is no direct path 

from M 1 to M 5. The message is therefore routed through M 3, 

which reads it from one network and sends it on to the other one. 

Analyzing  delays 

 

7.4 INTERNET-ENABLED SYSTEMS 

 

Some very different types of distributed embedded 

system are rapidly emerging— the Internet-enabled embedded 

system and Internet appliances. The Internet is not well suited 

to the real-time tasks that are the bread and butter of embedded 

computing, but it does provide a rich environment for non– 

real-time interaction. In this section we will discuss the Internet 

and how it can be used by embedded computing systems 

 

7.4.1 Internet 

 

The Internet Protocol (IP) [Los97, Sta97A] is the 

fundamental protocol on the Internet . It provides 

connectionless, packet-based communication. Industrial 

automation has long been a good application area for Internet- 

based embedded sys- tems. Information appliances that use the 

Internet are rapidly becoming another use of IP in embedded 

computing. 

 

Internet protocol is not defined over a particular 

physical implementation—it is an internetworking standard. 

Internet packets are assumed to be carried by some other 

network, such as an Ethernet. In general, an Internet packet will 

travel over several different networks from source to 

destination. The IP allows data to flow seamlessly through these 

networks from one end user to another. The relationship 

between IP and individual networks is illustrated in Figure 8.19. 

IP works at the net- work layer. When node A wants to send data 

to node B, the application’s data pass through several layers of 

the protocol stack to send to the IP. IP creates packets for routing 

to the destination, which are then sent to the data link and 

physical layers. A node that transmits data among different 

types of networks is known as a router . The router’s 

functionality must go up to the IP layer, but since  it is not 
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running applications, it does not  need  to go to higher  levels  of 

the OSI model. In general, a packet may  go  through  several 

routers to get to its destination. At the destination, the IP layer 

provides data to the transport layer and ultimately the receiving 

appli- cation. As the data pass through several layers  of  the 

protocol stack, the IP packet data are encapsulated in  packet 

formats  appropriate to each  layer. 

 

The  basic   format  of an  IP packet is  shown in  Figure 

8.20. The header and data payload are both of variable length. 

The maximum total length of the header and data payload is 

65,535 bytes.An Internet address is a number (32 bits in early 

versions of IP, 128 bits in IPv6). The IP address  is typically 

written in the form xxx.xx.xx.xx. The names  by which users 

and applications typically refer to Internet nodes, such as 

foo.baz.com, 

 

The fact that IP works at the network layer tells us that it 

does not guarantee that a packet is delivered to its destination. 

Furthermore,packets that do arrive may come out of order. This is 

referred to as best-effort routing . Since routes for data may 

change quickly with subsequent packets being  routed  along 

very different  paths  with  different  delays,  real-time 

performance of IP can be hard to predict. When  a  small 

network is contained totally within the embedded system, 

performance can be evaluated through simulation or other 

methods because the possible inputs are limited. Since the 

performance of the Internet may depend on worldwide usage 

patterns, its real-time performance is inherently harder  to 

predict. 

 

The Internet also provides higher-level services built 

on top of IP. The Trans- mission Control Protocol (TCP) is one 

such example. It provides a connection- oriented service that 

ensures that data arrive in the appropriate order, and it uses an 

acknowledgment protocol to ensure that  packets  arrive. 

Because many higher- level services are built on top of TCP, 

the basic  protocol is often referred to as TCP/IP. 

 

Wide Web service, Simple  Mail  Transfer  Protocol 

for email, and Telnet for virtual terminals. A separate transport 

protocol, User  Datagram Protocol , is used  as 

 

The Internet service stack. the basis for the network 

management services provided by the Simple  Network 
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Management Protocol . 

 

Internet Applications 

 

The Internet provides a standard way for an embedded system to act in 

concert with other  devices and with  users, such  as: 

 

 
■ One of the earliest Internet-enabled embedded systems was the 

laser printer. High-end laser printers often use IP to receive print jobs 

from host machines. 

 

 
■ Portable Internet devices can display Web pages, read email, and 

synchronize calendar information with  remote  computers. 

 

 
■ A  home  control  system  allows  the  homeowner  to  remotely 

monitor   and control  home  cameras, lights, and so on. 

 

 
Although there are higher-level services that provide 

more time-sensitive delivery mechanisms for the Internet, the 

basic incarnation of the Internet is not well suited to hard real- 

time operations. However, IP is a very good way to let the 

embed- ded system talk to other systems. IP provides a way for 

both special-purpose and standard programs (such as Web 

browsers) to talk to the embedded system. This non–real-time 

interaction can be used to monitor the system, set its 

configuration, and interact with  it. 

 

As seen in Section 8.4.1, the Internet provides a wide 

range of services built on top of IP. Since code size is an 

important issue in many embedded systems, one architectural 

decision that must be made is to determine which Internet 

services will be  needed by  the  system. This  choice  depends 

on the type of data service required, such as connectionless 

versus connection  oriented, streaming vs.  non- streaming, and 

so on. It also depends on the  application  code  and  its 

services: does the system look to the rest of the Internet like a 

terminal, a Web  server,  or something else? 
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7.5 VEHICLES AS NETWORKS 

 

Modern cars and planes rely on electronics to operate. 

About one-third of the total cost of an airplane or car comes from 

its electronics. Electronic systems are used in all aspects of the 

vehicle—safety-critical control, navigation and systems 

monitoring, and passenger comfort.These electronic devices are 

connected using data networks. 

 

Networks are used for a variety of purposes in 

vehicles, with varying require- ments on reliability and 

performance: 

 

 
■ Vehicle control (steering  and brakes in cars,flight 

control surfaces in airplanes) is the most critical operation in the 

vehicle since  it determines vehicle stability. 
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Unit 8 

 

 

Embedded Systems Development 

Environment 

 

 
8.1 The Integrated Development Environment: 

 

Integrated development environments are designed to maximize 

programmer productivity by providing tight-knit components with similar  

user interfaces. IDEs present a single program in which all development is 

done. This program typically provides many features for authoring, 

modifying, compiling, deploying and debugging software. This contrasts 

with software development using unrelated tools, such as vi, GCC or  

make. 
 

One aim of the IDE is to reduce the configuration necessary to piece 

together multiple development utilities, instead providing the same set of 

capabilities as a cohesive unit. Reducing that setup time can increase 

developer productivity, in cases where learning to use the IDE is faster 

than manually integrating all of the individual tools. Tighter integration of 

all development tasks has the potential to improve overall productivity 

beyond just helping with setup tasks. For example, code can be 

continuously parsed while it is being edited, providing instant feedback 

when syntax errors are introduced. That can speed learning a new 

programming language and its associated libraries. 

 

Some IDEs are dedicated to a specific programming language, allowing a 

feature set that most closely matches the programming paradigms of the 

language. However, there are many multiple-language IDEs, such as  

Eclipse, ActiveState Komodo, IntelliJ IDEA, Oracle JDeveloper,  

NetBeans, Codenvy and Microsoft Visual Studio. Xcode, Xojo and Delphi 

are dedicated to a closed language or set of programming languages. 

 

While most modern IDEs are graphical, text-based IDEs such as Turbo  

Pascal were in popular use before the widespread availability of 

windowing systems like Microsoft Windows and the X Window System 

(X11). They commonly use function keys or hotkeys to execute frequently 

used commands or macros. 

http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/Vi
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikipedia.org/wiki/Make_%28software%29
http://en.wikipedia.org/wiki/Make_%28software%29
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Eclipse_%28software%29
http://en.wikipedia.org/wiki/Eclipse_%28software%29
http://en.wikipedia.org/wiki/ActiveState_Komodo
http://en.wikipedia.org/wiki/IntelliJ_IDEA
http://en.wikipedia.org/wiki/Oracle_JDeveloper
http://en.wikipedia.org/wiki/NetBeans
http://en.wikipedia.org/wiki/NetBeans
http://en.wikipedia.org/wiki/Codenvy
http://en.wikipedia.org/wiki/Microsoft_Visual_Studio
http://en.wikipedia.org/wiki/Xcode
http://en.wikipedia.org/wiki/Xojo
http://en.wikipedia.org/wiki/Embarcadero_Delphi
http://en.wikipedia.org/wiki/Turbo_Pascal
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GNU Emacs, an extensible editor that is commonly used as an IDE on Unix-like 

systems 

 

IDEs initially became possible when developing via a console or terminal. 

Early systems could not support one, since programs were prepared using 

flowcharts, entering programs with punched cards (or paper tape, etc.) 

before submitting them to a compiler. Dartmouth BASIC was the first 

language to be created with an IDE (and was also the first to be designed 

for use while sitting in front of a console or terminal). Its IDE (part of the  

Dartmouth Time Sharing System) was command-based, and therefore did 

not look much like the menu-driven, graphical IDEs prevalent today. 

However it integrated editing, file management, compilation, debugging 

and execution in a manner consistent with a modern IDE. 

 

Maestro I is a product from Softlab Munich and was the world's first 

integrated development environment
[1] 

1975 for software. Maestro I was 

installed for 22,000 programmers worldwide. Until 1989, 6,000 

installations existed in the Federal Republic of Germany. Maestro I was 

arguably the world leader in this field during the 1970s and 1980s. Today 

one of the last Maestro I can be found in the Museum of Information 

Technology at Arlington. 

 

One of the first IDEs with a plug-in concept was Softbench. In 1995 

Computerwoche commented that the use of an IDE was not well received 

by developers since it would fence in their creativity. 

 

A cross compiler is a compiler capable of creating executable code for a  

platform other than the one on which the compiler is running. For example 

in order to compile for Linux/ARM you first need to obtain its libraries to 

compile against. 

 

A cross compiler is necessary to compile for multiple platforms from one 

machine. A platform could be infeasible for a compiler to run on, such as 
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for the microcontroller of an embedded system because those systems 

contain no operating system. In paravirtualization one machine runs many  

operating systems, and a cross compiler could generate an executable for 

each of them from one main source. 

 

Cross compilers are not to be confused with a source-to-source compilers. 

A cross compiler is for cross-platform software development of binary 

code, while a source-to-source "compiler" just translates from one 

programming language to another in text code. Both are programming  

tools 
 

 

 

8.1.2 Uses of cross compilers 
 

The fundamental use of a cross compiler is to separate thebuild 

environment from target environment. This is useful in a number of 

situations: 

 

Embedded computers where a device has extremely limited resources. For 

example, a microwave oven will have an extremely small computer to 

read its touchpad and door sensor, provide output to a digital display and 

speaker, and to control the machinery for cooking food. This computer 

will not be powerful enough to run a compiler, a file system, or a 

development environment. Since debugging and testing may also require 

more resources than are available on an embedded system, cross- 

compilation can be less involved and less prone to errors than native 

compilation. 

 

Compiling for multiple machines. For example, a company may wish to 

support several different versions of an operating system or to support 

several different operating systems. By using a cross compiler, a single 

build environment can be set up to compile for each of these targets. 

 

Compiling on a server farm. Similar to compiling for multiple machines, a 

complicated build that involves many compile operations can be executed 

across any machine that is free, regardless of its underlying hardware or 

the operating system version that it is running. 

 

Bootstrapping to a new platform. When developing software for a new 

platform, or the emulator of a future platform, one uses a cross compiler to 

compile necessary tools such as the operating system and a native 

compiler. 

 

Compiling native code for emulators for older now-obsolete platforms like 

the Commodore 64 or Apple II by enthusiasts who use cross compilers 
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that run on a current platform (such as Aztec C's MS-DOS 6502 cross 

compilers running under Windows XP). 
 

Use of virtual machines (such as Java's JVM) resolves some of the reasons 

for which cross compilers were developed. The virtual machine paradigm 

allows the same compiler output to be used across multiple target systems, 

although this is not always ideal because virtual machines are often slower 

and the compiled program can only be run on computers with that virtual 

machine. 

 

Typically the hardware architecture differs (e.g. compiling a program 

destined for the MIPS architecture on an x86 computer) but cross- 

compilation is also applicable when only the operating system 

environment differs, as when compiling a FreeBSD program under Linux, 

or even just the system library, as when compiling programs with uClibc 

on a glibc host. 
 

8.1.3  Canadian Cross 
 

The Canadian Cross is a technique for building cross compilers for other 

machines. Given three machines A, B, and C, one uses machine A (e.g. 

running Windows XP on an IA-32 processor) to build a cross compiler 

that runs on machine B (e.g. running Mac OS X on an x86-64 processor) 

to create executables for machine C (e.g. running Android on an ARM 

processor). When using the Canadian Cross with GCC, there may be four 

compilers involved: 

 

The proprietary native Compiler for machine A (1) (e.g. compiler from  

Microsoft Visual Studio) is used to build the gcc native compiler for 

machine A (2). 

 

The gcc native compiler for machine A (2) is used to build the gcc cross 

compiler from machine A to machine B (3) 

 

The gcc cross compiler from machine A to machine B (3) is used to build 

the gcc cross compiler from machine B to machine C (4 

 

The end-result cross compiler (4) will not be able to run on your build 

machine A; instead you would use it on machine B to compile an 

application into executable code that would then be copied to machine C 

and executed on machine C. 

 

For instance, NetBSD provides a POSIX Unix shell script named 

build.sh which will first build its own toolchain with the host's compiler; 

this, in turn, will be used to build the cross-compiler which will be used to 

build the whole system. 
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The term Canadian Cross came about because at the time that these 

issues were under discussion, Canada had three national political parties. 

 

8.4 What is a Disassembler? 
 

In essence, a disassembler is the exact opposite of an assembler. Where 

an assembler converts code written in an assembly language into binary 

machine code, a disassembler reverses the process and attempts to recreate 

the assembly code from the binary machine code. 

 

Since most assembly languages have a one-to-one correspondence with 

underlying machine instructions, the process of disassembly is relatively 

straight-forward, and a basic disassembler can often be implemented 

simply by reading in bytes, and performing a table lookup. Of course, 

disassembly has its own problems and pitfalls, and they are covered later 

in this chapter. 

 

Many disassemblers have the option to output assembly language 

instructions in Intel, AT&T, or (occasionally) HLA syntax. Examples in 

this book will use Intel and AT&T syntax interchangeably. We will 

typically not use HLA syntax for code examples, but that may change in 

the future. 

 

 

 

8.5Disassembler Issues 
 

As we have alluded to before, there are a number of issues and difficulties 

associated with the disassembly process. The two most important 

difficulties are the division between code and data, and the loss of text 

information. 

 
Separating Code from Data 

 
Since data and instructions are all stored in an executable as binary data, 

the obvious question arises: how can a disassembler tell code from data? Is 

any given byte a variable, or part of an instruction? 

 

The problem wouldn't be as difficult if data were limited to the .data 

section (segment) of an executable (explained in a later chapter) and if 

executable code were limited to the .code section of an executable, but this 

is often not the case. Data may be inserted directly into the code section 

(e.g. jump address tables, constant strings), and executable code may be 

stored in the data section (although new systems are working to prevent 

this for security reasons). AI programs, LISP or Forth compilers may not 
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contain .text and .data sections to help decide, and have code and data 

interspersed in a single section that is readable, writable and executable, 

Boot code may even require substantial effort to identify sections. A 

technique that is often used is to identify the entry point of an executable, 

and find all code reachable from there, recursively. This is known as "code 

crawling". 

 

Many interactive disassemblers will give the user the option to render 

segments of code as either code or data, but non-interactive disassemblers 

will make the separation automatically. Disassemblers often will provide 

the instruction AND the corresponding hex data on the same line, shifting 

the burden for decisions about the nature of the code to the user. Some 

disassemblers (e.g. ciasdis) will allow you to specify rules about whether 

to disassemble as data or code and invent label names, based on the 

content of the object under scrutiny. Scripting your own "crawler" in this 

way is more efficient; for large programs interactive disassembling may be 

impractical to the point of being unfeasible. 

 

The general problem of separating code from data in arbitrary executable 

programs is equivalent to the halting problem. As a consequence, it is not 

possible to write a disassembler that will correctly separate code and data 

for all possible input programs. Reverse engineering is full of such 

theoretical limitations, although by Rice's theore all interesting questions 

about program properties are undecidable (so compilers and many other 

tools that deal with programs in any form run into such limits as well). In 

practice a combination of interactive and automatic analysis and 

perseverance can handle all but programs specifically designed to thwart 

reverse engineering, like using encryption and decrypting code just prior 

to use, and moving code around in memory. 

 

 

 
8.5.1 Lost Information 

 
User defined textual identifiers, such as variable names, label names, and 

macros are removed by the assembly process. They may still be present in 

generated object files, for use by tools like debuggers and relocating 

linkers, but the direct connection is lost and re-establishing that connection 

requires more than a mere disassembler. Especially small constants may 

have more than one possible name. Operating system calls (like dll's in 

MS-Windows, or syscalls in Unices) may be reconstructed, as their names 

appear in a separate segment or are known beforehand. Many 

disassemblers allow the user to attach a name to a label or constant based 

on his understanding of the code. These identifiers, in addition to 

comments in the source file, help to make the code more readable to a 

human, and can also shed some clues on the purpose of the code. Without 

these comments and identifiers, it is harder to understand the purpose of 
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the source code, and it can be difficult to determine the algorithm being 

used by that code. When you combine this problem with the possibility 

that the code you are trying to read may, in reality, be data (as outlined 

above), then it can be ever harder to determine what is going on. 

 

 

 

8.6 Decompilers 
 

Akin to Disassembly, Decompilers take the process a step further and 

actually try to reproduce the code in a high level language. Frequently, this 

high level language is C, because C is simple and primitive enough to 

facilitate the decompilation process. Decompilation does have its 

drawbacks, because lots of data and readability constructs are lost during 

the original compilation process, and they cannot be reproduced. Since the 

science of decompilation is still young, and results are "good" but not 

"great", this page will limit itself to a listing of decompilers, and a general 

(but brief) discussion of the possibilities of decompilation. 

 

 

 

Tools 

 
As with other software, embedded system designers use compilers,  

assemblers, and debuggers to develop embedded system software. 

However, they may also use some more specific tools: 

 

In circuit debuggers or emulators (see next section). 

 

Utilities to add a checksum or CRC to a program, so the embedded 

system can check if the program is valid. 

 

For systems using digital signal processing, developers may use a math 

workbench such as Scilab / Scicos, MATLAB / Simulink, EICASLAB,  

MathCad, Mathematica,or FlowStone DSP to simulate the mathematics. 

They might also use libraries for both the host and target which eliminates 

developing DSP routines as done in DSPnano RTOS. 
 

model based development tool like VisSim lets you create and simulate 

graphical data flow and UML State chart diagrams of components like 

digital filters, motor controllers, communication protocol decoding and 

multi-rate tasks. Interrupt handlers can also be created graphically. After 

simulation, you can automatically generate C-code to the VisSim RTOS 

which handles the main control task and preemption of background tasks, 

as well as automatic setup and programming of on-chip peripherals. 
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Custom  compilers  and  linkers  may  be  used  to  optimize  specialized 

hardware. 

 

embedded system may have its own special language or design tool, or 

add enhancements to an existing language such as Forth or Basic. 
 

Another alternative is to add a real-time operating system or embedded  

operating system, which may have DSP capabilities like DSPnano RTOS. 
 

Modeling and code generating tools often based on state machines 
 

Software tools can come from several sources: 

 

Software companies that specialize in the embedded market 

Ported from the GNU software development tools 

Sometimes, development tools for a personal computer can be used if the 

embedded processor is a close relative to a common PC processor 

 

As the complexity of embedded systems grows, higher level tools and 

operating systems are migrating into machinery where it makes sense. For 

example, cellphones, personal digital assistants and other consumer 

computers often need significant software that is purchased or provided by 

a person other than the manufacturer of the electronics. In these systems, 

an open programming environment such as Linux, NetBSD, OSGi or  

Embedded Java is required so that the third-party software provider can 

sell to a large market. 

 

 

8.6 Debugging 

 
Embedded debugging may be performed at different levels, depending on 

the facilities available. From simplest to most sophisticated they can be 

roughly grouped into the following areas: 

 

Interactive resident debugging, using the simple shell provided by the 

embedded operating system (e.g. Forth and Basic) 

 

External debugging using logging or serial port output to trace operation 

using either a monitor in flash or using a debug server like the Remedy  

Debugger which even works for heterogeneous multicore systems. 
 

An in-circuit  debugger (ICD), a hardware device that connects  to  the 

microprocessor via a JTAG or Nexus interface. This allows the operation 
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of the microprocessor to be controlled externally, but is typically restricted 

to specific debugging capabilities in the processor. 

 

An in-circuit emulator (ICE) replaces the microprocessor with a simulated 

equivalent, providing full control over all aspects of the microprocessor. 

 

A complete emulator provides a simulation of all aspects of the hardware, 

allowing all of it to be controlled and modified, and allowing debugging 

on a normal PC. The downsides are expense and slow operation, in some 

cases up to 100X slower than the final system. 

 
For SoC designs, the typical approach is to verify and debug the design on 
an FPGA prototype board. This is used to debug hardware, firmware 
and software interactions across multiple FPGA with capabilities similar 
to a logic analyzer. 

 

Unless restricted to external debugging, the programmer can typically load 

and run software through the tools, view the code running in the processor, 

and start or stop its operation. The view of the code may be as HLL  

source-code, assembly code or mixture of both. 
 

Because an embedded system is often composed of a wide variety of 

elements, the debugging strategy may vary. For instance, debugging a 

software- (and microprocessor-) centric embedded system is  different 

from debugging an embedded system where most of the processing is 

performed by peripherals (DSP, FPGA, co-processor). An increasing 

number of embedded systems today use more than one single processor 

core. A common problem with multi-core development is the proper 

synchronization of software execution. In such a case, the embedded 

system design may wish to check the data traffic on the busses between 

the processor cores, which requires very low-level debugging, at 

signal/bus level, with a logic analyzer, for instance. 
 

8.6.1 Simulation is the imitation of the operation of a real-world process 
or system over time The act of simulating something first requires that a 
model be developed; this model represents the key characteristics or 
behaviors/functions of the selected physical or abstract system or process. 
The model represents the system itself, whereas the simulation represents 

the operation of the system over time. 

 

Simulation is used in many contexts, such as simulation of technology for 

performance optimization, safety engineering, testing, training, education, 

and video games. Often, computer experiments are used to study 

simulation models. Simulation is also used with scientific modelling of 

natural systems or human systems to gain insight into their functioning.
 

Simulation can be used to show the eventual real effects of alternative 
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conditions and courses of action. Simulation is also used when the real 
system cannot be engaged, because it may not be accessible, or it may be 
dangerous or unacceptable to engage, or it is being designed but not yet 
built, or it may simply not exit. 

 

Key issues in simulation include acquisition of valid source information 

about the relevant selection of key characteristics and behaviours, the use 

of simplifying approximations and assumptions within the simulation, and 

fidelity and validity of the simulation outcomes. 

 

8.6.2Emulator 

 
This article is about emulators in computing. For a line of digital musical 

instruments, see E-mu Emulator. For the Transformers character, see Circuit  

Breaker (Transformers)#Shattered Glass. For other uses, see Emulation  

(disambiguation). 

 

DOSBox emulates the command-line interface of DOS. 

 

In computing, an emulator is hardware or software or both that duplicates 

(or emulates) the functions of one computer system (the guest) in another 

computer system (the host), different from the first one, so that the 

emulated behavior closely resembles the behavior of the real system (the 

guest). 

 

The above described focus on exact reproduction of behavior is in contrast 

to some other forms of computer simulation, in which an abstract model of 

a system is being simulated. For example, a computer simulation of a 

hurricane or a chemical reaction is not emulation. 

 

8.6.3mulation in preservation 
 

Emulation is a strategy in digital preservation to combat obsolescence. 
Emulation focuses on recreating an original computer environment, which 
can be time-consuming and difficult to achieve, but valuable because of its 
ability to maintain a closer connection to the authenticity of the digital 
object.  

 

Emulation addresses the original hardware and software environment of 

the digital object, and recreates it on a current machine.
 
The emulator 

allows the user to have access to any kind of application or operating  

system on a current platform, while the software runs as it did in its 

original environment
 

Jeffery Rothenberg, an early proponent of 

emulation as a digital preservation strategy states, "the ideal approach 

would provide a single extensible, long-term solution that can be designed 

once and for all and applied uniformly, automatically, and in synchrony 
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(for example, at every refresh cycle) to all types of documents and 
media".

 
He further states that this should not only apply to out of date 

systems, but also be upwardly mobile to future unknown systems.
[6] 

Practically speaking, when a certain application is released in a new 
version, rather than address compatibility issues and migration for every 
digital object created in the previous version of that application, one could 
create an emulator for the application, allowing access to all of said digital 
objects. 

 
Benefits 

 

 
 
 

 

 
Basilisk  II  emulates  a  Macintosh  68k  using  interpretation  code  and 

dynamic recompilation. 

 

Potentially better graphics quality than original hardware. 

Potentially additional features original hardware didn't have. 

Save states 

Emulators allow users to play games for discontinued consoles. 

 

Emulators maintain the original look, feel, and behavior of the digital 

object, which is just as important as the digital data itself.
[7]

 

 

Despite the original cost of developing an emulator, it may prove to be the 

more cost efficient solution over time.
[8]

 

 

Reduces labor hours, because rather than continuing anongoing task of 

continual data migration for every digital object, once the library of past 

and present operating systems and application software is established in an 

emulator, these same technologies are used for every document using 

those platforms.
[4]
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Many emulators have already been developed and released under GNU  

General Public License through the open source environment, allowing for 

wide scale collaboration.
[9]

 

 

allow software exclusive to one system to be used on another. For 

example, a PlayStation 2 exclusive video game could (in theory) be played 

on a PC or Xbox 360 using an emulator. This is especially useful when the 

original system is difficult to obtain, or incompatible with modern 

equipment (e.g. old video game consoles which connect via analog outputs 

may be unable to connect to modern TVs which may only have digital 

input 

 

ObstaclesIntellectual property - Many technology vendors implemented 

non-standard features during program development in order to establish 

their niche in the market, while simultaneously applying ongoing upgrades 

to remain competitive. While this may have advanced the technology 

industry and increased vendor's market share, it has left users lost in a 

preservation nightmare with little supporting documentation due to the 

proprietary nature of the hardware and software. 

 

laws are not yet in effect to address saving the documentation and 

specifications of proprietary software and hardware in an emulator 

module.
[11]

 

 

Emulators are often used as a copyright infringement tool, since they 

allow users to play video games without having to buy the console, and 

rarely make any attempt to prevent the use of illegal copies. This leads to a 

number of legal uncertainties regarding emulation, and leads to software 

being programmed to refuse to work if it can tell the host is an emulator; 

some video games in particular will continue to run, but not allow the 

player to progress beyond some late stage in the game, often appearing to 

be faulty or just extremely difficult.
[12][13] 

These protections make it more 

difficult to design emulators, since they must be accurate enough to avoid 

triggering the protections, whose effects may not be obvious. 

 

8.6.4 Emulators in new media art 
 

Because of its primary use of digital formats, new media art relies heavily 

on emulation as a preservation strategy. Artists such as Cory Arcangel 

specialize in resurrecting obsolete technologies in their artwork and 

recognize the importance of a decentralized and deinstitutionalized 

process for the preservation of digital culture. 

 

In many cases, the goal of emulation in new media art is to preserve a 

digital medium so that it can be saved indefinitely and reproduced without 

error, so that there is no reliance on hardware that ages and becomes 
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http://en.wikipedia.org/wiki/Emulator#cite_note-9
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http://en.wikipedia.org/wiki/Market_share
http://en.wikipedia.org/wiki/Emulator#cite_note-11
http://en.wikipedia.org/wiki/Copyright_infringement
http://en.wikipedia.org/wiki/Emulator#cite_note-12
http://en.wikipedia.org/wiki/Emulator#cite_note-12
http://en.wikipedia.org/wiki/New_media_art
http://en.wikipedia.org/wiki/Cory_Arcangel


Embedded Computing Systems 10CS72 

Dept of CSE Page 343 

 

 

 

 

Embedded Computing Systems 10CS72 
 

 
 

obsolete. The paradox is that the emulation and the emulator 

have to be made to work on future computers. 

 

 

 

Emulation in future systems desig 
 

Emulation technics are commonly used during the design 

and development of new systems. It eases the development 

process by providing the ability to detect, recreate and repair 

flaws in the design even before the system is actually built.
[15] 

It is particularly useful in the design of multi-cores systems, 

where concurrency errors can be very difficult to 

detect and correct without the controlled environment 

provided by virtual hardware.
[16] 

This also allows the 

software development to take place before the hardware is 

ready,
[17] 

thus helping to validate design decisions. 
 

8.6.7 Structure of an emulator 
 

 
Typically, an emulator is divided into modules that correspond 

roughly to the emulated computer's subsystems. Most often, 

an emulator will be composed of the following modules: 

 

a CPU emulator or CPU simulator (the two terms are mostly 

interchangeable in this case), unless the target being 

emulated has the same CPU architecture as the host, in 

which case a virtual machine layer may be used instead 

 

a memory  

ubsystem module 

various I/O 

devices emulators 
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Buses are often not emulated, either for reasons of 

performance or simplicity, and virtual peripherals 

communicate directly with the CPU or the memory 

subsystem. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 


