
Embedded Computing Systems 10CS72

Dept of CSE Page 1

EMBEDDED COMPUTING SYSTEMS

Sub Code: 10CS72 IA Marks :25

Hrs/Week: 04 Exam Hours :03

Total Hrs: 52 Exam Marks :100

PART- A

UNIT – 1 6 Hours
Embedded Computing: Introduction, Complex Systems and Microprocessors, Embedded Systems

Design Process, Formalism for System design Design Example: Model Train Controller.

UNIT – 2 7 Hours
Instruction Sets, CPUs: Preliminaries, ARM Processor, Programming Input and Output, Supervisor

mode, Exceptions, Traps, Coprocessors, Memory Systems Mechanisms, CPU Performance, CPU Power

Consumption. Design Example: Data Compressor.

UNIT – 3 6 Hours

Bus-Based Computer Systems: CPU Bus, Memory Devices, I/O devices, Component Interfacing,

Designing with Microprocessor, Development and Debugging, System-Level Performance Analysis

Design Example: Alarm Clock.

UNIT – 4 7 Hours

Program Design and Analysis: Components for embedded programs, Models of programs, Assembly,

Linking and Loading, Basic Compilation Techniques, Program optimization, Program-Level performance

analysis, Software performance optimization, Program-Level energy and power analysis, Analysis and

optimization of program size, Program validation and testing. Design Example: Software modem.

PART- B

UNIT – 5 6 Hours

Real Time Operating System (RTOS) Based Design – 1: Basics of OS, Kernel, types of OSs, tasks,

processes, Threads, Multitasking and Multiprocessing, Context switching, Scheduling Policies, Task

Communication, Task Synchronization.

UNIT – 6 6 Hours

RTOS-Based Design - 2: Inter process Communication mechanisms, Evaluating OS performance, Choice

of RTOS, Power Optimization. Design Example: Telephone Answering machine

UNIT – 7 7 Hours
Distributed Embedded Systems: Distributed Network Architectures, Networks for Embedded Systems:

I2C Bus, CAN Bus, SHARC Link Ports, Ethernet, Myrinet, Internet, Network Based Design. Design

Example:

Elevator Controller.

UNIT – 8 7 Hours

Embedded Systems Development Environment: The Integrated Development Environment, Types of

File generated on Cross Compilation, Dis-assembler /Decompiler, Simulators, Emulators, and Debugging,

Target

Hardware Debugging.

Embedded Computing Systems 10CS72

Dept of CSE Page 2

Text Books:

1. Wayne Wolf: Computers as Components, Principles of Embedded Computing Systems Design, 2nd

Edition, Elsevier, 2008.

2. Shibu K V: Introduction to Embedded Systems, Tata McGraw Hill, 2009

(Chapters 10, 13)

Reference Books:
1. James K. Peckol: Embedded Systems, A contemporary Design Tool, Wiley India, 2008

2. Tammy Neorgaard: Embedded Systems Architecture, Elsevier, 2005.

Embedded Computing Systems 10CS72

Dept of CSE Page 3

Table of Contents

Sl.No Unit Page No

1 Embedded Computing 4-34

2 Instruction Sets, CPUs 35-112

3 Bus-Based Computer Systems 113-142

4 Program Design and Analysis 143-198

5 PART B

Real Time Operating System (RTOS) Based

Design – 1

199-311

6 RTOS-Based Design - 2 312-320

7 Distributed Embedded Systems 321-330

8 Embedded Systems Development

Environment

331-343

Embedded Computing Systems 10CS72

Dept of CSE Page 4

UNIT 1

Embedded Computing

1.1 COMPLEX SYSTEMS AND MICROPROCESSORS

What is an embedded computer system? Loosely defined, it

is any device that includes a programmable computer but is

not itself intended to be a general-purpose computer. Thus, a PC

is not itself an embedded computing system, although PCs are

often used to build embedded computing systems. But a fax

machine or a clock built from a microprocessor is an

embedded computing system.

1.1.1 Embedding Computers

A microprocessor is a single-chip CPU. Very large scale

integration (VLSI) stet—the acronym is the name technology

has allowed us to put a complete CPU on a single chip since

1970s, but those CPUs were very simple. The first

microprocessor- the Intel 4004, was designed for an embedded

application, namely, a calculator. The calculator was not a

general-purpose computer—it merely provided basic

arithmetic functions. However, Ted Hoff of Intel realized that

a general-purpose computer programmed properly could

implement the required function, and that the computer-on-a-

chip could then be reprogrammed for use in other products

as well. Since integrated circuit design was (and still is) an

expensive and time- consuming process, the ability to reuse

the hardware design by changing the software was a key

breakthrough. The HP-35 was the first handheld calculator to

perform transcendental functions [Whi72]. It was introduced

in 1972, so it used several chips to implement the CPU, rather

than a single-chip microprocessor. How- ever, the ability to

write programs to perform math rather than having to design

digital circuits to perform operations like trigonometric

functions was critical to the successful design of the

calculator.

Embedded Computing Systems 10CS72

Dept of CSE Page 5

1.1.2 Characteristics of Embedded Computing Applications

Embedded computing is in many ways much more

demanding than the sort of programs that you may have

written for PCs or workstations. Functionality is important

in both general-purpose computing and embedded

computing, but embedded applications must meet many other

constraints as well.

■ Complex algorithms: The operations performed by the

microprocessor may be very sophisticated. For example, the

microprocessor that controls an automobile engine must

perform complicated filtering functions to opti- mize the

performance of the car while minimizing pollution and

fuel utilization.

■ User interface: Microprocessors are frequently used to

control complex user interfaces that may include multiple

menus and many options. The moving maps in Global

Positioning System (GPS) navigation are good examples of

sophisticated user interfaces.

■ Real time: Many embedded computing systems have to

perform in real time— if the data is not ready by a certain

deadline, the system breaks. In some cases, failure to meet a

deadline is unsafe and can even endanger lives. In other cases,

missing a deadline does not create safety problems but does

create unhappy customers—missed deadlines in printers, for

example, can result in scrambled pages.

■ Multirate: Not only must operations be completed by

deadlines, but many embedded computing systems have

several real-time activities going on at the same time. They

may simultaneously control some operations that run at slow

rates and others that run at high rates. Multimedia

applications are prime examples of multirate behavior. The

Embedded Computing Systems 10CS72

Dept of CSE Page 6

audio and video portions of a multimedia stream run at very

different rates, but they must remain closely synchronized.

Failure to meet a deadline on either the audio or video portions

spoils the perception of the entire presentation.

■ Manufacturing cost: The total cost of building the system

is very important in many cases. Manufacturing cost is

determined by many factors, including the type of

microprocessor used, the amount of memory required, and the

types of I/O devices.

■ Power and energy: Power consumption directly affects

the cost of the hardware, since a larger power supply

may be necessary. Energy con- sumption affects

battery life, which is important in many applications, as

well as heat consumption, which can be important even

in desktop applications.

1.1.3 Why Use Microprocessors?

There are many ways to design a digital system: custom logic,

field-programmable gate arrays (FPGAs), and so on. Why use

microprocessors? There are two answers:

■ Microprocessors are a very efficient way to implement

digital systems.

■ Microprocessors make it easier to design families of products

that can be built to provide various feature sets at different

price points and can be extended to provide new features to

keep up with rapidly changing markets.

1.1.4 The Physics of Software

Embedded Computing Systems 10CS72

Dept of CSE Page 7

Computing is a physical act. Although PCs have trained us to

think about computers as purveyors of abstract information,

those computers in fact do their work by moving electrons

and doing work. This is the fundamental reason why

programs take time to finish, why they consume energy, etc.

A prime subject of this book is what we might think of as

the physics of software. Software performance and energy

consumption are very important prop- erties when we are

connecting our embedded computers to the real world. We

need to understand the sources of performance and power

consumption if we are to be able to design programs that meet

our application’s goals. Luckily, we don’t have to optimize our

programs by pushing around electrons. In many cases, we can

make very high-level decisions about the structure of our

programs to greatly improve their real-time performance and

power consumption. As much as possible, we want to make

computing abstractions work for us as we work on the

physics of our software systems.

1.1.5 Challenges in Embedded Computing System Design

External constraints are one important source of difficulty in

embedded system design. Let’s consider some important

problems that must be taken into account in embedded system

design.

How much hardware do we need?

We have a great deal of control over the amount of

computing power we apply to our problem. We cannot only

select the type of microprocessor used, but also select the

amount of memory, the peripheral devices, and more. Since we

often must meet both performance deadlines and

manufacturing cost constraints, the choice of hardware is

important—too little hardware and the system fails to meet its

deadlines, too much hardware and it becomes too expensive.

Embedded Computing Systems 10CS72

Dept of CSE Page 8

How do we meet deadlines?

The brute force way of meeting a deadline is to speed up

the hardware so that the program runs faster. Of course, that

makes the system more expensive. It is also entirely possible

that increasing the CPU clock rate may not make enough

difference to execution time, since the program’s speed may be

limited by the memory system.

How do we minimize power consumption?

In battery-powered applications, power consumption is

extremely important. Even in nonbattery applications,

excessive power consumption can increase heat dis-

sipation. One way to make a digital system consume less

power is to make it un more slowly, but naively slowing

down the system can obviously lead to missed deadlines.

Careful design is required to slow down the noncritical

parts of the machine for power consumption while still

meeting necessary performance goals.

How do we design for upgradability?

The hardware platform may be used over several product

generations, or for several different versions of a product in

the same generation, with few or no changes. However, we

want to be able to add features by changing software. How

can we design a machine that will provide the required

performance for software that we haven’t yet written?

How Does it Really work ?

Reliability is always important when selling products—

customers rightly expect that products they buy will work.

Embedded Computing Systems 10CS72

Dept of CSE Page 9

Reliability is especially important in some appli- cations, such

as safety-critical systems. If we wait until we have a running

system and try to eliminate the bugs, we will be too late—we

won’t find enough bugs, it will be too expensive to fix them,

and it will take too long as well. Another set of challenges

comes from the characteristics of the components and systems

them- selves. If workstation programming is like assembling a

machine on a bench, then embedded system design is often

more like working on a car—cramped, delicate, and difficult.

Let’s consider some ways in which the nature of embedded

computing machines makes their design more difficult.

■ Complex testing: Exercising an embedded system is

generally more difficult than typing in some data. We may

have to run a real machine in order to generate the proper

data. The timing of data is often important, meaning that we

cannot separate the testing of an embedded computer from the

machine in which it is embedded.

■ Limited observability and controllability: Embedded

computing systems usually do not come with keyboards

and screens.This makes it more difficult to see what is going

on and to affect the system’s operation. We may be forced

to watch the values of electrical signals on the

microprocessor bus, for example, to know what is going on

inside the system. Moreover, in real-time applica- tions we

may not be able to easily stop the system to see what is going

on inside.

■ Restricted development environments: The development

environments for embedded systems (the tools used to

develop software and hardware) are often much more limited

than those available for PCs and workstations. We

generally compile code on one type of machine, such as a PC,

and download it onto the embedded system. To debug the code,

Embedded Computing Systems 10CS72

Dept of CSE Page 10

we must usually rely on pro- grams that run on the PC or

workstation and then look inside the embedded system.

1.1.6 Performance in Embedded Computing

Embedded system designers, in contrast, have a very clear

performance goal in mind—their program must meet its

deadline. At the heart of embedded computing is real-time

computing , which is the science and art of programming to

deadlines. The program receives its input data; the deadline is

the time at which a computation must be finished. If the

program does not produce the required output by the

deadline, then the program does not work, even if the output

that it eventually produces is functionally correct.

■ CPU: The CPU clearly influences the behavior of the

program, particularly when the CPU is a pipelined processor

with a cache.

■ Platform: The platform includes the bus and I/O devices. The

platform com- ponents that surround the CPU are responsible

for feeding the CPU and can dramatically affect its

performance.

■ Program: Programs are very large and the CPU sees only a

small window of the program at a time. We must consider the

structure of the entire program to determine its overall

behavior.

■ Task: We generally run several programs simultaneously on a

CPU, creating a multitasking system. The tasks interact with

each other in ways that have profound implications for

performance.

■ Multiprocessor: Many embedded systems have more than

one processor— they may include multiple programmable

CPUs as well as accelerators. Once again, the interaction

Embedded Computing Systems 10CS72

Dept of CSE Page 11

between these processors adds yet more complexity to the

analysis of overall system performance.

1.2 THE EMBEDDED SYSTEM DESIGN PROCESS

A design methodology is important for three reasons. First, it

allows us to keep a scorecard on a design to ensure that we

have done everything we need to do, such as optimizing

performance or perform- ing functional tests. Second, it

allows us to develop computer-aided design tools. Developing

a single program that takes in a concept for an embedded

system and emits a completed design would be a daunting task,

but by first breaking the process into manageable steps, we can

work on automating (or at least semiautomating) the steps one

at a time. Third, a design methodology makes it much easier for

members of a design team to communicate. By defining the

overall process, team members can more easily understand

what they are supposed to do, what they should receive from

other team members at certain times, and what they are to

hand off when they complete their assigned steps. Since

most embedded systems are designed by teams, coordination

is perhaps the most important role of a well-defined design

methodology.

specification, we create a more detailed description of what

we want. But the specification states only how the system

behaves, not how it is built. The details of the system’s

internals begin to take shape when we develop the

architecture, which gives the system structure in terms of large

components. Once we know the components we need, we can

design those components, including both software modules

and any specialized hardware we need. Based on those

components, we can finally build a complete system.

In this section we will consider design from the top–down—

we will begin with the most abstract description of the system

and conclude with concrete details. The alternative is a

bottom–up view in which we start with components to build a

system. Bottom–up design steps are shown in the figure as

dashed-line arrows. We need bottom–up design because we do

Embedded Computing Systems 10CS72

Dept of CSE Page 12

not have perfect insight into how later stages of the design

process will turn out. Decisions at one stage of design are based

upon estimates of what will happen later: How fast can we make

a particular function run? How much memory will we need?

How much system bus capacity do we need? If our estimates

are inadequate, we may have to backtrack and amend our

original decisions to take the new facts into account. In

general, the less experience we have with the design of

similar systems, the more we will have to rely on bottom-up

design information to help us refine the system

But the steps in the design process are only one axis along

which we can view embedded system design. We also need to

consider the major goals of the design:

■ manufacturing cost;

■ performance (both overall speed and deadlines); and

■ power consumption.

We must also consider the tasks we need to perform at every

step in the design process. At each step in the design, we add

detail:

■ We must analyze the design at each step to determine how

we can meet the specifications.

■ We must then refine the design to add detail.

Embedded Computing Systems 10CS72

Dept of CSE Page 13

■ And we must verify the design to ensure that it still meets all

system goals, such as cost, speed, and so on.

1.2.1 Requirements

Clearly, before we design a system, we must know what

we are designing. The initial stages of the design process

capture this information for use in creating the architecture

and components. We generally proceed in two phases: First, we

gather an informal description from the customers known as

requirements, and we refine the requirements into a

specification that contains enough information to begin

designing the system architecture

■ Performance: The speed of the system is often a major

consideration both for the usability of the system and for its

ultimate cost. As we have noted, perfor- mance may be a

combination of soft performance metrics such as approximate

time to perform a user-level function and hard deadlines by

which a particular operation must be completed.

■ Cost: The target cost or purchase price for the system is

almost always a consideration. Cost typically has two major

components: manufacturing cost includes the cost of

components and assembly; nonrecurring engi- neering

(NRE) costs include the personnel and other costs of designing

the system.

■ Physical size and weight: The physical aspects of the

final system can vary greatly depending upon the

application. An industrial control system for an assembly line

may be designed to fit into a standard-size rack with no strict

limitations on weight. A handheld device typically has tight

Embedded Computing Systems 10CS72

Dept of CSE Page 14

requirements on both size and weight that can ripple through

the entire system design.

■ Power consumption: Power, of course, is important

in battery-powered systems and is often important in other

applications as well. Power can be specified in the

requirements stage in terms of battery life—the customer is

unlikely to be able to describe the allowable wattage.

Validating a set of requirements is ultimately a psychological

task since it requires understanding both what people want

and how they communicate those needs. One good way to

refine at least the user interface portion of a system’s

requirements is to build a mock-up. The mock-up may use

canned data to simulate functionality in a restricted

demonstration, and it may be executed on a PC or a

workstation. But it should give the customer a good idea of

how the system will be used and how the user can react to it.

Physical, nonfunctional models of devices can also give

customers a better idea of characteristics such as size and

weight.

shows a sample requirements form that can be filled out at

the start of the project. We can use the form as a checklist in

considering the basic characteristics of the system. Let’s

consider the entries in the form:

■ Name: This is simple but helpful. Giving a name to the

project not only sim- plifies talking about it to other people but

can also crystallize the purpose of the machine.

■ Purpose: This should be a brief one- or two-line description of

what the system is supposed to do. If you can’t describe the

essence of your system in one or two lines, chances are that

Embedded Computing Systems 10CS72

Dept of CSE Page 15

you don’t understand it well enough.

■ Inputs and outputs: These two entries are more complex

than they seem. The inputs and outputs to the system

encompass a wealth of detail:

— Types of data: Analog electronic signals? Digital data?

Mechanical inputs?

— Data characteristics: Periodically arriving data, such

as digital audio samples? Occasional user inputs? How many

bits per data element?

— Types of I/O devices: Buttons? Analog/digital

converters? Video displays?

■ Functions: This is a more detailed description of what

the system does. A good way to approach this is to work from

the inputs to the outputs: When the system receives an input,

what does it do? How do user interface inputs affect these

functions? How do different functions interact?

■ Performance: Many embedded computing systems spend

at least some time controlling physical devices or processing

data coming from the physical world. In most of these cases, the

computations must be performed within a certain time frame.

It is essential that the performance requirements be identified

early since they must be carefully measured during

implementation to ensure that the system works properly.

Embedded Computing Systems 10CS72

Dept of CSE Page 16

■ Manufacturing cost: This includes primarily the cost of

the hardware compo- nents. Even if you don’t know exactly

how much you can afford to spend on system components,

you should have some idea of the eventual cost range. Cost

has a substantial influence on architecture: A machine that is

meant to sell at $10 most likely has a very different

internal structure than a $100 system.

■ Power: Similarly, you may have only a rough idea of how

much power the system can consume, but a little information

can go a long way. Typically, the most important decision is

whether the machine will be battery powered or plugged into

the wall. Battery-powered machines must be much more

careful about how they spend energy.

■ Physical size and weight: You should give some

indication of the physical size of the system to help guide

certain architectural decisions. A desktop machine has much

more flexibility in the components used than, for example, a

lapel- mounted voice recorder.

A more thorough requirements analysis for a large system

might use a form similar to Figure 1.2 as a summary of the

longer requirements document. After an introductory section

containing this form, a longer requirements document could

include details on each of the items mentioned in the

introduction. For example, each individual feature described

in the introduction in a single sentence may be described in

detail in a section of the specification.

After writing the requirements, you should check them for

internal consistency: Did you forget to assign a function to

an input or output? Did you consider all the modes in which

you want the system to operate? Did you place an unrealistic

number of features into a battery-powered, low-cost machine?

Embedded Computing Systems 10CS72

Dept of CSE Page 17

To practice the capture of system requirements,

Example 1.1 creates the requirements for a GPS moving map

system.

Example:1.1 Requirements analysis of a GPS moving map

The moving map is a handheld device that displays for the user a

map of the terrain around the user’s current position; the map

display changes as the user and the map device change posi- tion.

The moving map obtains its position from the GPS, a satellite-

based navigation system. The moving map display might look

something like the following figure.

■ Functionality: This system is designed for highway driving

and similar uses, not nautical or aviation uses that require

more specialized databases and functions. The system should

show major roads and other landmarks available in standard

topographic databases.

■ User interface: The screen should have at least 400 600 pixel

resolution. The device should be controlled by no more than three

buttons. A menu system should pop up on the screen when

buttons are pressed to allow the user to make selections to control

the system.

■ Performance: The map should scroll smoothly. Upon power-up, a

display should take no more than one second to appear, and the

system should be able to verify its position and display the current

map within 15 s.

Embedded Computing Systems 10CS72

Dept of CSE Page 18

■ Cost: The selling cost (street price) of the unit should be no

more than $100.

■ Physical size and weight: The device should fit comfortably in

the palm of the hand.

■ Power consumption: The device should run for at least

eight hours on four AA

batteries.

1.2.2 Specification

The specification is more precise—it serves as the contract

between the customer and the architects. As such, the

specification must be carefully written so that it accurately

reflects the customer’s requirements and does so in a way that

can be clearly followed during design.

Specification is probably the least familiar phase of this

methodology for neo- phyte designers, but it is essential to

creating working systems with a minimum of designer effort.

Designers who lack a clear idea of what they want to build

when they begin typically make faulty assumptions early in

the process that aren’t obvi- ous until they have a working

system. At that point, the only solution is to take the machine

apart, throw away some of it, and start again. Not only does this

take a lot of extra time, the resulting system is also very likely

to be inelegant, kludgey, and bug-ridden.

The specification should be understandable enough so that

someone can verify that it meets system requirements and

overall expectations of the customer. It should also be

unambiguous enough that designers know what they need to

build. Designers

Embedded Computing Systems 10CS72

Dept of CSE Page 19

1.2.3 Architecture Design

The specification does not say how the system does things,

only what the system does. Describing how the system

implements those functions is the purpose of the architecture.

The architecture is a plan for the overall structure of the

system that will be used later to design the components that

make up the architecture. The creation of the architecture is

the first phase of what many designers think of as design.

To understand what an architectural description is, let’s

look at a sample archi- tecture for the moving map of Example

1.1. Figure 1.3 shows a sample system architecture in the

form of a block diagram that shows major operations and data

flows among them.

This block diagram is still quite abstract—we have not yet

specified which oper- ations will be performed by software

running on a CPU, what will be done by special-purpose

hardware, and so on. The diagram does, however, go a long

way toward describing how to implement the functions

described in the specification. We clearly see, for example,

that we need to search the topographic database and to render

(i.e., draw) the results for the display. We have chosen to

separate those functions so that we can potentially do them

in parallel—performing rendering separately from searching

the database may help us update the screen more fluidly.

1.2.4 Designing Hardware and Software Components

The architectural description tells us what components we

need. The component design effort builds those components in

conformance to the architecture and spec- ification. The

components will in general include both hardware—FPGAs,

Embedded Computing Systems 10CS72

Dept of CSE Page 20

boards, and so on—and software modules.

Some of the components will be ready-made. The CPU, for

example, will be a standard component in almost all cases, as

will memory chips and many other com- ponents. In the

moving map, the GPS receiver is a good example of a

specialized component that will nonetheless be a

predesigned, standard component. We can also make use of

standard software modules. One good example is the

topographic database. Standard topographic databases exist,

and you probably want to use stan- dard routines to access the

database—not only is the data in a predefined format, but it is

highly compressed to save storage. Using standard software for

these access functions not only saves us design time, but it may

give us a faster implementation for specialized functions such

as the data decompression phase.

1.2.5 System Integration

System integration is difficult because it usually uncovers

problems. It is often hard to observe the system in sufficient

detail to determine exactly what is wrong— the debugging

facilities for embedded systems are usually much more limited

than what you would find on desktop systems. As a result,

determining why things do not stet work correctly and how

they can be fixed is a challenge in itself.

1.3 FORMALISMS FOR SYSTEM DESIGN

As mentioned in the last section, we perform a number of

different design tasks at different levels of abstraction

throughout this book: creating requirements and

specifications,architecting the system,designing code,and

designing tests. It is often helpful to conceptualize these tasks

in diagrams. Luckily, there is a visual language that can be used

to capture all these design tasks: the Unified Modeling

Language (UML) [Boo99, Pil05]. UML was designed to be

useful at many levels of abstraction in the design process.

Embedded Computing Systems 10CS72

Dept of CSE Page 21

UML is useful because it encourages design by successive

refinement and progressively adding detail to the design, rather

than rethinking the design at each new level of abstraction.

UML is an object-oriented modeling language. We will see

precisely what we mean by an object in just a moment, but

object-oriented design emphasizes two concepts of

importance:

■ It encourages the design to be described as a number of

interacting objerather than a few large monolithic blocks of

code

■ At least some of those objects will correspond to real

pieces of software or hardware in the system. We can also

use UML to model the outside world that interacts with our

system, in which case the objects may correspond to people

or other machines. It is sometimes important to implement

something we think of at a high level as a single object using

several distinct pieces of code or to otherwise break up the

object correspondence in the implementations.

Object-oriented (often abbreviated OO) specification can be

seen in two complementary ways:

■ Object-oriented specification allows a system to be described

in a way that closely models real-world objects and their

interactions.

■ Object-oriented specification provides a basic set of primitives

that can be used to describe systems with particular

attributes, irrespective of the relationships of those systems’

components to real-world objects.

Embedded Computing Systems 10CS72

Dept of CSE Page 22

Both views are useful. At a minimum, object-oriented

specification is a set of linguistic mechanisms. In many

cases, it is useful to describe a system in terms of real-world

analogs. However, performance, cost, and so on may dictate

that we change the specification to be different in some ways

from the real-world elements we are trying to model and

implement. In this case, the object-oriented specification

mechanisms are still useful.

What is the relationship between an object-oriented

specification and an object- oriented programming language

(such as C++ [Str97])? A specification language may not be

executable. But both object-oriented specification and

programming languages provide similar basic methods for

structuring large systems.

Unified Modeling Language (UML)—the acronym is

the name is a large lan- guage, and covering all of it is beyond

the scope of this book. In this section, we introduce only a

few basic concepts. In later chapters, as we need a few

more UML concepts, we introduce them to the basic modeling

elements introduced here. Because UML is so rich, there are

many graphical elements in a UML diagram. It is important to

be careful to use the correct drawing to describe something—

for instance, UML distinguishes between arrows with open

and filled-in arrowheads, and solid and broken lines. As you

become more familiar with the language, uses of the graphical

primitives will become more natural to you.

1.3.1 Structural Description

By structural description, we mean the basic components

of the system; we will learn how to describe how these

components act in the next section. The principal component

of an object-oriented design is, naturally enough, the object .

An object includes a set of attributes that define its internal

state. When implemented in a programming language, these

attributes usually become variables or constants held in a

data structure. In some cases, we will add the type of the

attribute after A class is a form of type definition—all objects

Embedded Computing Systems 10CS72

Dept of CSE Page 23

derived from the same class have the same characteristics,

although their attributes may have different values. A class

defines the attributes that an object may have. It also defines

the operations that determine how the object interacts with

the rest of the world. In a programming language, the

operations would become pieces of code used to manipulate

the object. The UML description of the Display class is shown

in Figure 1.6. The class has the name that we saw used in the

d 1 object since d 1 is an instance of class Display. The

Display class defines the pixels attribute seen in the object;

remember that when we instantiate the class an object, that

object will have its own memory so that different objects of

the same class have their own values for the attributes. Other

classes can examine and modify class attributes; if we have to

do something more complex than use the attribute directly, we

define a behavior to perform that function.

A class defines both the interface for a particular type

of object and that object’s implementation. When we use an

object, we do not directly manipulate its attributes—we can

only read or modify the object’s state through the opera-

tions that define the interface to the object. (The

implementation includes both the attributes and whatever

code is used to implement the operations.) As long as we do

not change the behavior of the object seen at the interface, we

can change the implementation as much as we want. This lets

us improve the system by, for example, speeding up an

operation or reducing the amount of memory required

without requiring changes to anything else that uses the

object.

There are several types of relationships that can exist

between objects and classes:

■ Association occurs between objects that communicate with

each other but have no ownership relationship between them.

■ Aggregation describes a complex object made of smaller

objects.

Embedded Computing Systems 10CS72

Dept of CSE Page 24

■ Composition is a type of aggregation in which the owner

does not allow access to the component objects.

■ Generalization allows us to define one class in terms of

another.

Unified Modeling Language, like most object-oriented

languages, allows us to define one class in terms of another.

An example is shown in Figure 1.7, where we derive two

particular types of displays. The first, BW_display, describes

a black- and-white display. This does not require us to add new

attributes or operations, but we can specialize both to work on

one-bit pixels. The second, Color_map_display, uses a

graphic device known as a color map to allow the user to

select from a behaviors—for example, large number of

available colors even with a small number of bits per pixel.

This class defines a color_map attribute that determines

how pixel values are mapped onto display colors. A derived

class inherits all the attributes and operations from its base

class. In this class, Display is the base class for the two

derived classes. A derived class is defined to include all the

attributes of its base class. This relation is transitive—if

Display were derived from another class, both BW_display

and Color_map_display would inherit all the attributes

and operations of Display’s base class as well. Inheritance

has two purposes. It of course allows us to succinctly describe

one class that shares some characteristics with another class.

Even more important, it captures those relationships between

classes and documents them. If we ever need to change any of

the classes, knowledge of the class structure helps us

determine the reach of changes—for example, should the

change affect only Color_map_display objects or should it

change all Display objects?

Unified Modeling Language considers inheritance to be

one form of general- ization. A generalization relationship is

shown in a UML diagram as an arrow with an open (unfilled)

arrowhead. Both BW_display and Color

Embedded Computing Systems 10CS72

Dept of CSE Page 25

versions of Display, so Display generalizes both of them.

UML also allows us to define multiple inheritance, in which

a class is derived from more than one base class. (Most object-

oriented programming languages support multiple

inheritance as well.) An example of multiple inheritance is

shown in Figure 1.8; we have omit- ted the details of the

classes’ attributes and operations for simplicity. In this case,

we have created a Multimedia_display class by combining

the Display class with a Speaker class for sound. The derived

class inherits all the attributes and operations of both its base

classes, Display and Speaker. Because multiple inheritance

causes the sizes of the attribute set and operations to expand so

quickly, it should be used with care.

A link describes a relationship between objects; association

is to link as class is to object. We need links because objects

often do not stand alone; associations let us capture type

information about these links. examples of links and an

association. When we consider the actual objects in the

system, there is a set of messages that keeps track of the

current number of active messages (two in this example) and

points to the active messages. In this case, the link defines the

contains relation. When generalized into classes, we define

an association between the message set class and the

message class. The association is drawn as a line between

the two labeled with the name of the association, namely,

contains. The ball and the number at the message class end

indicate that the message message objects. Sometimes we

may want to attach data to the links themselves; we can

specify this in the association by attaching a class-like box to

the association’s edge, which holds the association’s data.

Typically, we find that we use a certain combination of

elements in an object or class many times. We can give these

patterns names, which are called stereotypes

1.3.2 Behavioral Description

We have to specify the behavior of the system as well as its

structure. One way to specify the behavior of an operation is a

Embedded Computing Systems 10CS72

Dept of CSE Page 26

state machine. Figure 1.10 shows UML states; the transition

between two states is shown by a skeleton arrow.

These state machines will not rely on the operation of a

clock, as in hardware;

rather, changes from one state to another are triggered by the

occurrence of events.

■ A signal is an asynchronous occurrence. It is defined in UML by

an object that is labeled as a <<signal>>. The object in the

diagram serves as a declaration of the event’s existence.

Because it is an object, a signal may have parameters that are

passed to the signal’s receiver.

■ A call event follows the model of a procedure call in a

programming language.

■ A time-out event causes the machine to leave a state after a

certain amount of time. The label tm(time-value) on the

edge gives the amount of time after which the transition

occurs. A time-out is generally implemented with an

external timer. This notation simplifies the specification and

allows us to defer implementation details about the time-out

mechanism.

We show the occurrence of all types of signals in a UML

diagram in the same way—

Let’s consider a simple state machine specification to

understand the semantics of UML state machines. A state

machine for an operation of the display is shown in Figure

1.12. The start and stop states are special states that help us to

organize the flow of the state machine. The states in the state

machine represent different conceptual operations. In some

cases, we take conditional transitions out of states based on

inputs or the results of some computation done in the state. In

other cases, we make an unconditional transition to the next

state. Both the unconditional and conditional transitions make

use of the call event. Splitting a complex operation into

Embedded Computing Systems 10CS72

Dept of CSE Page 27

several states helps document the required steps, much as

subroutines can be used to structure code.

It is sometimes useful to show the sequence of operations

over time, particularly when several objects are involved. In

this case, we can create a sequence diagram, like the one for a

mouse click scenario shown in Figure 1.13. A sequence

diagram is somewhat similar to a hardware timing diagram,

although the time flows verti- cally in a sequence diagram,

whereas time typically flows horizontally in a timing

diagram. The sequence diagram is designed to show a

particular scenario or choice of events—it is not convenient for

showing a number of mutually exclusive possibil- ities. In this

case, the sequence shows what happens when a mouse click is

on the menu region. Processing includes three objects shown

at the top of the diagram. Extending below each object is its

lifeline, a dashed line that shows how long the object is

alive. In this case, all the objects remain alive for the entire

sequence, but in other cases objects may be created or

destroyed during processing. The boxes along the lifelines

show the focus of control in the sequence,

that is, when the object is actively processing. In this case, the

mouse object is active only long enough to create the

mouse_click event. The display object remains in play

longer; it in turn uses call events to invoke the menu object

twice: once to determine which menu item was selected and

again to actually execute the menu call. The find_region()

call is internal to the display object, so it does not appear as an

event in the diagram.

1.4 MODEL TRAIN CONTROLLER

In order to learn how to use UML to model systems, we will

specify a simple system, a model train controller, which is

illustrated in Figure 1.14. The user sends messages to the train

with a control box attached to the tracks. The control box

may have familiar controls such as a throttle, emergency stop

button, and so on. Since the train receives its electrical

power from the two rails of the track, the control box can send

Embedded Computing Systems 10CS72

Dept of CSE Page 28

signals to the train over the tracks by modulating the power

supply voltage. As shown in the figure,the control panel sends

packets over the tracks to the receiver on the train. The train

includes analog electronics to sense the bits being transmitted

and a control system to set the train motor’s speed and

direction based on those commands. Each packet includes an

address so that the console can control several trains on the

same track; the packet also includes an error correction code

(ECC) to guard against transmission errors. This is a one-way

communication system—the model train cannot send

commands back to the user.

1.4.1 Requirements

Before we can create a system specification, we have to

understand the require- ments. Here is a basic set of

requirements for the system:

■ The console shall be able to control up to eight trains on a

single track.

■ The speed of each train shall be controllable by a throttle to at

least 63 different levels in each direction (forward and

reverse).

There shall be an inertia control that shall allow the user to adjust

the respon- siveness of the train to commanded changes in

speed. Higher inertia means that the train responds more

slowly to a change in the throttle, simulating the inertia of a

large train. The inertia control will provide at least eight

different levels.

■ There shall be an emergency stop button.

■ An error detection scheme will be used to transmit

messages.

Embedded Computing Systems 10CS72

Dept of CSE Page 29

Name Model train controller

Purpose Control speed of up to eight model

trains

Inputs Throttle, inertia setting, emergency

stop, train number

Outputs Train control signals

Set engine speed based upon inertia settings; respond to

emergency stop

Performance Can update train speed at least 10

times per second

Manufacturing cost $50

Power 10 W (plugs into wall)

size and weight Console should be comfortable for two

hands, approx- imate size of standard keyboard; weight 2

pounds

We will develop our system using a widely used standard for

model train control. We could develop our own train control

system from scratch, but basing our system upon a standard has

several advantages in this case: It reduces the amount of work

we have to do and it allows us to use a wide variety of

existing trains and other pieces of equipment.

1.4.2 DCC

The Digital Command Control (DCC) standard

(http://www.nmra.org/

standards/DCC/standards_rps/DCCStds.html) was created by

the National Model Railroad Association to support

interoperable digitally-controlled model trains. Hob- byists

started building homebrew digital control systems in the

1970s and Marklin developed its own digital control system in

the 1980s. DCC was created to provide a standard that could be

http://www.nmra.org/

Embedded Computing Systems 10CS72

Dept of CSE Page 30

built by any manufacturer so that hobbyists could mix and

match components from multiple vendors.

The DCC standard is given in two documents:

Standard S-9.1, the DCC Electrical Standard, defines how bits are

encoded on the rails for transmission.

■ Standard S-9.2, the DCC Communication Standard,

defines the packets that carry information Any DCC-

conforming device must meet these specifications. DCC also

provides several recommended practices. These are not

strictly required but they provide some hints to manufacturers

and users as to how to best use DCC.

The DCC standard does not specify many aspects of a DCC

train system. It doesn’t define the control panel, the type of

microprocessor used, the programming lan- guage to be used,

or many other aspects of a real model train system. The

standard concentrates on those aspects of system design that

are necessary for interoper- ability. Overstandardization, or

specifying elements that do not really need to be

standardized, only makes the standard less attractive and harder

to implement.

The Electrical Standard deals with voltages and currents

on the track. While the electrical engineering aspects of this

part of the specification are beyond the scope of the book, we

will briefly discuss the data encoding here. The standard

must be carefully designed because the main function of the

track is to carry power to the locomotives. The signal

encoding system should not interfere with power

transmission either to DCC or non-DCC locomotives. A key

requirement is that the data signal should not change the DC

value of the rails.

The data signal swings between two voltages around the

power supply volt- age. As shown in Figure 1.15, bits are

encoded in the time between transitions, not by voltage

levels. A 0 is at least 100 s while a 1 is nominally 58 s. The

Embedded Computing Systems 10CS72

Dept of CSE Page 31

dura- tions of the high (above nominal voltage) and low

(below nominal voltage) parts of a bit are equal to keep the

DC value constant. The specification also gives the allowable

variations in bit times that a conforming DCC receiver must

be able to tolerate.

The standard also describes other electrical properties of

the system, such as allowable transition times for signals.

The DCC Communication Standard describes how bits are

combined into packets and the meaning of some important

packets. Some packet types are left undefined in the standard

but typical uses are given in Recommended Practices

documents.

■ P is the preamble, which is a sequence of at least 10 1 bits.

The command station should send at least 14 of these 1 bits,

some of which may be corrupted during transmission.

■ S is the packet start bit. It is a 0 bit.

■ A is an address data byte that gives the address of the unit,

with the most significant bit of the address transmitted first.

An address is eight bits long. The addresses 00000000,

11111110, and 11111111 are reserved.

■ s is the data byte start bit, which, like the packet start bit, is a

0.

■ D is the data byte, which includes eight bits. A data byte

may contain an address, instruction, data, or error correction

information.

■ E is a packet end bit, which is a 1 bit.

A packet includes one or more data byte start bit/data byte

combinations. Note that the address data byte is a specific type

Embedded Computing Systems 10CS72

Dept of CSE Page 32

of data byte.

A baseline packet is the minimum packet that must be

accepted by all DCC implementations. More complex packets

are given in a Recommended Practice doc- ument. A baseline

packet has three data bytes: an address data byte that gives

the intended receiver of the packet; the instruction data byte

provides a basic instruc- tion; and an error correction data byte

is used to detect and correct transmission errors.

The instruction data byte carries several pieces of

information. Bits 0–3 provide a 4-bit speed value. Bit 4 has an

additional speed bit, which is interpreted as the least

significant speed bit. Bit 5 gives direction, with 1 for forward

and 0 for reverse. Bits

7–8 are set at 01 to indicate that this instruction provides speed

and direction.

The error correction databyte is the bitwise exclusive OR

of the address and instruction data bytes.

The standard says that the command unit should send

packets frequently since a packet may be corrupted. Packets

should be separated by at least 5 ms.

1.4.3 Conceptual Specification

Digital Command Control specifies some important

aspects of the system, particularly those that allow

equipment to interoperate. But DCC deliberately does not

specify everything about a model train control system. We need

to round out our specification with details that complement the

DCC spec. A conceptual specifi- cation allows us to

understand the system a little better. We will use the

experience gained by writing the conceptual specification to

help us write a detailed specifi- cation to be given to a system

architect. This specification does not correspond to what any

commercial DCC controllers do, but it is simple enough to

allow us to cover some basic concepts in system design.

Embedded Computing Systems 10CS72

Dept of CSE Page 33

A train control system turns commands into packets. A

command comes from the command unit while a packet is

transmitted over the rails. Commands and packets may not

be generated in a 1-to-1 ratio. In fact, the DCC standard

says that command units should resend packets in case a

packet is dropped during transmission.

We now need to model the train control system itself.

There are clearly two major subsystems: the command unit

and the train-board component as shown in Figure 1.16. Each

of these subsystems has its own internal structure. The

basic relationship between them is illustrated in Figure 1.17.

This figure shows a UML collaboration diagram; we could

have used another type of figure, such as a class or object

diagram, but we wanted to emphasize the transmit/receive

relationship between these major subsystems. The command

unit and receiver are each rep- resented by objects; the

command unit sends a sequence of packets to the train’s

receiver,as illustrated by the arrow.The notation on the arrow

provides both the type of message sent and its sequence in a

flow of messages; since the console sends all the messages, we

have numbered the arrow’s messages as 1..n. Those messages

are of course carried over the track. Since the track is not a

computer component and is purely passive, it does not appear

in the diagram. However, it would be perfectly legitimate to

model the track in the collaboration diagram, and in some

situations it may be wise to model such nontraditional

components in the specification dia- grams. For example, if we

are worried about what happens when the track breaks,

■ Knobs* describes the actual analog knobs, buttons, and levers

on the control panel.

■ Sender* describes the analog electronics that send bits

along the track. Likewise, the Train makes use of three other

classes that define its components:

Embedded Computing Systems 10CS72

Dept of CSE Page 34

■ The Receiver class knows how to turn the analog signals

on the track into digital form.

■ The Controller class includes behaviors that interpret the

commands and figures out how to control the motor.

■ The Motor interface class defines how to generate the

analog signals required to control the motor.

We define two classes to represent analog components:

■ Detector* detects analog signals on the track and converts

them into digital form.

■ Pulser* turns digital commands into the analog signals

required to control the motor speed.

Embedded Computing Systems 10CS72

Dept of CSE Page 35

UNIT -2

Instruction Set CPUs

Harvard architectures are widely used today for one very

simple reason—the separation of program and data memories

provides higher performance for digital signal processing.

Processing signals in real-time places great strains on the

data access system in two ways: First, large amounts of data

flow through the CPU; and second, that data must be processed

at precise intervals, not just when the CPU gets around to it.

Data sets that arrive continuously and periodically are called

streaming data. Having two memories with separate ports

provides higher memory band- width; not making data and

memory compete for the same port also makes it easier to move

the data at the proper times. DSPs constitute a large fraction of

all micro- processors sold today, and most of them are Harvard

architectures. A single example shows the importance of DSP:

Most of the telephone calls in the world go through at least two

DSPs, one at each end of the phone call.

Another axis along which we can organize computer

architectures relates to their instructions and how they are

executed. Many early computer architectures were what is

known today as complex instruction set computers

(CISC). These machines provided a variety of instructions

that may perform very com- plex tasks, such as string

searching; they also generally used a number of different

instruction formats of varying lengths. One of the advances in

the development of high-performance microprocessors was

the concept of reduced instruction set computers (RISC).

These computers tended to provide somewhat fewer and sim-

pler instructions. The instructions were also chosen so that they

could be efficiently executed in pipelined processors. Early

RISC designs substantially outperformed CISC designs of the

period. As it turns out, we can use RISC techniques to

efficiently execute at least a common subset of CISC

instruction sets, so the performance gap between RISC-like

and CISC-like instruction sets has narrowed somewhat.

Embedded Computing Systems 10CS72

Dept of CSE Page 36

Beyond the basic RISC/CISC characterization, we can classify

computers by sev- eral characteristics of their instruction sets.

The instruction set of the computer defines the interface

between software modules and the underlying hardware;

the instructions define what the hardware will do under

certain circumstances. Instructions can have a variety of

characteristics, including:

■ Fixed versus variable length.

■ Addressing modes.

■ Numbers of operands.

■ Types of operations supported.

The set of registers available for use by programs is called

the programming model ,also known as the programmer

model . (The CPU has many other registers that are used for

internal operations and are unavailable to programmers.)

There may be several different implementations of an

architecture. In fact, the architecture definition serves to

define those characteristics that must be true of all

implementations and what may vary from implementation to

implementation. Different CPUs may offer different clock

speeds, different cache configurations, changes to the bus or

interrupt lines, and many other changes that can make one

model of CPU more attractive than another for any given

application.

Embedded Computing Systems 10CS72

Dept of CSE Page 37

2.1.2 Assembly Language

Figure 2.3 shows a fragment of ARM assembly code to remind us

of the basic features of assembly languages. Assembly

languages usually share the same basic features:

■ One instruction appears per line.

■ Labels, which give names to memory locations, start in the

first column.

■ Instructions must start in the second column or after to

distinguish them from labels.

■ Comments run from some designated comment character (;

in the case of

ARM) to the end of the line.

Assembly language follows this relatively structured

form to make it easy for the assembler to parse the

program and to consider most aspects of the program line

by line. (It should be remembered that early assemblers

were writ- ten in assembly language to fit in a very small

amount of memory. Those early restrictions have carried into

modern assembly languages by tradition.) Figure 2.4 shows

the format of an ARM data processing instruction such as an

ADD. For the instruction

ADDGT r0,r3,#5

Embedded Computing Systems 10CS72

Dept of CSE Page 38

the cond field would be set according to the GT condition

(1100), the opcode field would be set to the binary code for

the ADD instruction (0100), the first operand register Rn

would be set to 3 to represent r3, the destination register Rd

would be set to 0 for r0, and the operand 2 field would be

set to the immediate value of 5.

Assemblers must also provide some pseudo-ops to help

programmers create complete assembly language programs.

An example of a pseudo-op is one that allows data values to be

loaded into memory locations. These allow constants, for

example, to be set into memory. An example of a memory

allocation pseudo-op for ARM is shown in Figure 2.5. The ARM

% pseudo-op allocates a block of memory of the size specified

by the operand and initializes those locations to zero.

label1 ADR r4,c

LDR r0,[r4] ; a comment

ADR r4,d

LDR r1,[r4]

SUB r0,r0,r1 ; another comment

FIGURE 2.3

An example of ARM assembly language

2.2.1 Processor and Memory Organization

Different versions of theARM architecture are identified by

different numbers. ARM7 is a von Neumann architecture

machine, while ARM9 uses a Harvard architecture. However,

this difference is invisible to the assembly language

programmer, except for possible performance differences.

Embedded Computing Systems 10CS72

Dept of CSE Page 39

The ARM architecture supports two basic types of data:

■ The standard ARM word is 32 bits long.

■ The word may be divided into four 8-bit bytes.

ARM7 allows addresses up to 32 bits long. An address refers

to a byte, not a word. Therefore, the word 0 in the ARM address

space is at location 0, the word 1 is at 4, the word 2 is at 8, and

so on. (As a result, the PC is incremented by 4 in the absence of

a branch.) The ARM processor can be configured at power-

up to address the bytes in a word in either little-endian mode

(with the lowest-order byte residing in the low-order bits of

the word) or big-endian mode (the lowest-order byte stored

in the highest bits of the word), as illustrated in Figure 2.6

[Coh81].

Bit 31 Bit 0

Byte 3 Byte 2 Byte 1 Byte 0

Little-endian

Bit 31 Bit 0

Byte 0 Byte 1 Byte 2 Byte 3

Big-endian

FIGURE 2.6

Byte organizations within an ARM word.

Embedded Computing Systems 10CS72

Dept of CSE Page 40

2.2.2 Data Operations

Arithmetic and logical operations in C are performed in

variables. Variables are implemented as memory locations.

Therefore, to be able to write instructions to perform C

expressions and assignments, we must consider both

arithmetic and logical instructions as well as instructions for

reading and writing memory.

Figure 2.7 shows a sample fragment of C code with data

declarations and several assignment statements. The variables

a, b, c, x, y, and z all become data locations in memory. In

most cases data are kept relatively separate from instructions

in the program’s memory image.

In the ARM processor, arithmetic and logical operations

cannot be performed directly on memory locations. While

some processors allow such operations to directly

reference main memory, ARM is a load-store architecture—

data operands must first be loaded into the CPU and then

stored back to main memory to save the results. Figure 2.8

shows the registers in the basic ARM programming model.

ARM has 16 general-purpose registers, r0 through r15. Except

for r15, they are identical—any operation that can be done

on one of them can be done on the other one also. The r15

register has the same capabilities as the other registers, but it

is also used as the program counter. The program counter should

of course not be overwritten for use in data operations.

However, giving the PC the properties of a general-purpose

register allows the program counter value to be used as an

operand in computations, which can make certain

programming tasks easier.

The other important basic register in the programming

model is the cur- rent program status register (CPSR).

This register is set automatically during every arithmetic,

logical, or shifting operation. The top four bits of the

CPSR hold the following useful information about the results

of that arithmetic/logical operation:

Embedded Computing Systems 10CS72

Dept of CSE Page 41

■ The negative (N) bit is set when the result is negative in

two’s-complement arithmetic.

■ The zero (Z) bit is set when every bit of the result is zero.

■ The carry (C) bit is set when there is a carry out of the

operation.

■ The overflow (V) bit is set when an arithmetic operation

results in an overflow.

int a, b, c, x, y, z;

x (a b) c;

y a*(b c);

z (a << 2) | (b & 15);

FIGURE 2.7

A C fragment with data operations.

Embedded Computing Systems 10CS72

Dept of CSE Page 42

These bits can be used to check easily the results of an

arithmetic operation. However, if a chain of arithmetic or

logical operations is performed and the inter- mediate states

of the CPSR bits are important, then they must be checked at

each step since the next operation changes the CPSR values.

Example 2.1 illustrates the computation of CPSR bits.

Example 2.1

Status bit computation in the ARM

An ARM word is 32 bits. In C notation, a hexadecimal number

starts with 0x, such as 0xffffffff, which is a two’s-complement

representation of 1 in a 32-bit word.

Here are some sample calculations:

■ 1 1 0: Written in 32-bit format, this becomes 0xffffffff

0x1 0x0, giving the

CPSR value of NZCV 1001.

■ 0 1 1: 0x0 0x1 0xffffffff, with NZCV 1000.

■ 2 31 1 1 2 31 : 0x7fffffff 0x1 0x80000000, with

NZCV 1001.

Embedded Computing Systems

10CS72

Dept of CSE Page 43

The basic form of a data instruction is simple:

ADD r0,r1,r2

This instruction sets register r0 to the sum of the values stored

in r1 and r2. In addition to specifying registers as sources for

operands, instructions may also provide immediate operands,

which encode a constant value directly in the instruction. For

example,

ADD r0,r1,#2

sets r0 to r1 2.

The major data operations are summarized in Figure 2.9. The

arithmetic opera- tions perform addition and subtraction; the with-

carry versions include the current value of the carry bit in the

computation. RSB performs a subtraction with the order of the two

operands reversed, so that RSB r0, r1, r2 sets r0 to be r2 r1. The bit-

wise logical operations perform logical AND, OR, and XOR

operations (the exclusive or is called EOR). The BIC instruction

stands for bit clear: BIC r0, r1, r2 sets r0 to r1 and not r2. This

instruction uses the second source operand as a mask:Where a bit in

the mask is 1, the corresponding bit in the first source operand is

cleared. The MUL instruction multiplies two values, but with some

restrictions: No operand may be an immediate, and the two source

operands must be different registers. The MLA instruction performs a

multiply-accumulate operation, particularly useful in matrix

operations and signal processing. The instruction

Embedded Computing Systems

10CS72

Dept of CSE Page 44

MLA r0,r1,r2,r3

sets r0 to the value r1 r2 r3.

The shift operations are not separate instructions—rather, shifts

can be applied to arithmetic and logical instructions. The shift

modifier is always applied to the second source operand. A left

shift moves bits up toward the most-significant bits, while a right

shift moves bits down to the least-significant bit in the word. The

LSL and LSR modifiers perform left and right logical shifts, filling

the least-significant bits of the operand with zeroes. The arithmetic

shift left is equivalent to an LSL, but the ASR copies the sign bit—if

the sign is 0, a 0 is copied, while if the sign is 1, a

1 is copied. The rotate modifiers always rotate right, moving the

bits that fall off the least-significant bit up to the most-significant bit

in the word. The RRX modifier performs a 33-bit rotate, with the

CPSR’s C bit being inserted above the sign bit of the word; this

allows the carry bit to be included in the rotation.

stored in the register is used as the address to be fetched

from memory; the result of that fetch is the desired operand value.

Thus, as illustrated in Figure 2.13, if we set r1 0 100, the

instruction

LDR r0,[r1]

Embedded Computing Systems

10CS72

Dept of CSE Page 45

sets r0 to the value of memory location 0x100.

Similarly, STR r0,[r1] would store the contents of r0 in the memory

location whose address is given in r1. There are several possible

variations:

LDR r0,[r1, – r2]

this step. Thus, as shown in Figure 2.14, if we give

location 0x100 the name FOO, we can use the pseudo-operation

ADR r1,FOO

to perform the same function of loading r1 with the

address 0x100.

Example 2.2 illustrates how to implement C assignments

in ARM instruction.

Example 2.2

C assignments in ARM instructions

We will use the assignments of Figure 2.7. The semicolon

(;) begins a comment after an instruction, which continues to the end of

that line. The statement

x (a b) c ;

Embedded Computing Systems

10CS72

Dept of CSE Page 46

can be implemented by using r0 for a, r1 for b, r2 for c , and

r3 for x . We also need registers for indirect addressing. In this case, we

will reuse the same indirect addressing register, r4, for each variable load.

The code must load the values of a, b, and c into these registers before

performing the arithmetic, and it must store the value of x back to

memory when it is done. This code performs the following necessary

steps:

ADR r4,a ; get address for a

LDR r0,[r4] ; get value of a

ADR r4,b ; get address for b, reusing

r4

LDR r1,[r4] ; load value of b

x to a + b

ADD r3,r0,r1 ; set intermediate result for

ADR r4,c ; get address for c

LDR r2,[r4] ; get value of c

SUB r3,r3,r2 ; complete computation of x

ADR r4,x ; get address for x

STR r3,[r4] ; store x at proper location

Embedded Computing Systems

10CS72

Dept of CSE Page 47

LDR r0,[r4] ; get value of a

MUL r2,r2,r0 ; compute final value of y

ADR r4,y ; get address for y

location
STR r2,[r4] ; store value of y at proper

2.2.3 Flow of Control

The B (branch) instruction is the basic mechanism in

ARM for changing the flow of control. The address that is the

destination of the branch is often called the branch target . Branches

are PC-relative—the branch specifies the offset from the current PC

value to the branch target. The offset is in words, but because the ARM

is byte- addressable, the offset is multiplied by four (shifted left two

bits, actually) to form a byte address. Thus, the instruction

B #100

will add 400 to the current PC value.

We often wish to branch conditionally,based on the result

of a given computation. The if statement is a common example. The

ARM allows any instruction, including branches, to be executed

conditionally. This allows branches to be conditional, as well as data

operations. Figure 2.15 summarizes the condition codes.

Example 2.3

Embedded Computing Systems

10CS72

Dept of CSE Page 48

Implementing an if statement in ARM

We will use the following if statement as an example:

if (a < b) {

x = 5;

y = c + d;

}

else x = c – d;

The implementation uses two blocks of code, one for the

true case and another for the false case. A branch may either fall through

to the true case or branch to the false case:

; compute and test the condition

ADR r4,a ; get address for a

LDR r0,[r4] ; get value of a

ADR r4,b ; get address for b

LDR r1,[r4] ; get value of b

CMP r0, r1 ; compare a < b

BGE fblock ; if a >= b, take branch

; the true block follows

Embedded Computing Systems

10CS72

Dept of CSE Page 49

MOV r0,#5 ; generate value for x

ADR r4,x ; get address for x STR

r0,[r4] ; store value of x ADR r4,c ; get

address for c LDR r0,[r4] ; get value of c

ADR r4,d ; get address for d

LDR r1,[r4] ; get value of d

ADD r0,r0,r1 ; compute c + d

ADR r4,y ; get address for y

STR r0,[r4] ; store value of y

block

B after ; branch around the false

; the false block follows

fblock ADR r4,c ; get address for c

LDR r0,[r4] ; get value of c

ADR r4,d ; get address for d

LDR r1,[r4] ; get value of d

SUB r0,r0,r1 ; compute c – d

ADR r4,x ; get address for x

STR r0,[r4] ; store value of x after

... ; code after the if statement

Embedded Computing Systems

10CS72

Dept of CSE Page 50

Example 2.4

Implementing the C switch statement in ARM

The switch statement in C takes the following form:

... break;

switch (test) { case 0: ... break; case 1:

...

}

The above statement could be coded like an if statement by

first testing test A, then test B, and so forth. However, it can be more

efficiently implemented by using base-plus-offset addressing and

building what is known as a branch table :

ADR r2,test ; get address for test

LDR r0,[r2] ; load value for test

ADR r1,switchtab ; load address for

switch table

LDR r15,[r1,r0,LSL #2]

switchtab DCD case0

Embedded Computing Systems

10CS72

Dept of CSE Page 50

Example 2.4

Implementing the C switch statement in ARM

The switch statement in C takes the following form:

... break;

switch (test) { case 0: ... break; case 1:

...

}

The above statement could be coded like an if statement by

first testing test A, then test B, and so forth. However, it can be more

efficiently implemented by using base-plus-offset addressing and

building what is known as a branch table :

ADR r2,test ; get address for test

LDR r0,[r2] ; load value for test

ADR r1,switchtab ; load address for

switch table

LDR r15,[r1,r0,LSL #2]

switchtab DCD case0

Embedded Computing Systems

10CS72

Dept of CSE Page 51

DCD case1

...

case0 ... ; code for case 0

...

case1 ... ; code for case 1

...

This implementation uses the value of test as an offset into a

table, where the table holds the addresses for the blocks of code that

implement the various cases. The heart of this code is the LDR instruction,

which packs a lot of functionality into a single instruction:

word address.

■ It shifts the value of r0 left two bits to turn the offset into a

■ It uses base-plus-offset addressing to add the left-shifted

value of test (held in r0) to the address of the base of the table held in r1.

■ It sets the PC (r15) to the new address computed by the

instruction.The loop is a very common C statement, particularly in

signal processing code. Loops can be naturally implemented using

conditional branches. Because addressing mode. A simple but

common use of a loop is in the FIR filter, which is explained in

Application Example 2.1; the loop-based implementation of the FIR

filter is described in Example 2.5.

Embedded Computing Systems

10CS72

Dept of CSE Page 52

Application Example 2.1

FIR filters

A finite impulse response (FIR) filter is a commonly used

method for processing signals; we make use of it in Section 5.11. The FIR

filter is a simple sum of products:

Example 2.5

An FIR filter for the ARM

follows:

The C code for the FIR filter of Application Example 2.1

for (i = 0, f = 0; i < N; i++)

f = f + c[i] * x[i];

We can address the arrays c and x using base-plus-offset

addressing: We will load one register with the address of the zeroth element

of each array and use the register holding i as the offset.

The C language [Ker88] defines a for loop as equivalent

to a while loop with proper initialization and termination. Using that rule,

the for loop can be rewritten as

Embedded Computing Systems

10CS72

Dept of CSE Page 53

i = 0;

f = 0;

while (i < N) {

f = f + c[i]*x[i];

i++;

}

Here is the code for the loop:

; loop initiation code

MOV r0,#0 ; use r0 for i, set to 0

arrays

MOV r8,#0 ; use a separate index for

ADR r2,N ; get address for N

LDR r1,[r2] ; get value of N for loop

termination test

MOV r2,#0 ; use r2 for f, set to 0

ADR r3,c ; load r3 with address of

base of c array

ADR r5,x ; load r5 with address of

base of x array

Embedded Computing Systems

10CS72

Dept of CSE Page 54

; loop body

loop LDR r4,[r3,r8] ; get value of c[i]

LDR r6,[r5,r8] ; get value of x[i] MUL r4,r4,r6

; compute c[i]*x[i]

ADD r2,r2,r4 ; add into running sum f

; update loop counter and array index

ADD r8,r8,#4 ; add one word offset to

array index

ADD r0,r0,#1 ; add 1 to i

; test for exit

CMP r0,r1

loopend...

BLT loop ; if i < N, continue loop

The other important class of C statement to consider is the function. A

C func- tion returns a value (unless its return type is void); subroutine

or procedure are the common names for such a construct when it does

not return a value. Consider this simple use of a function in C:

x = a + b;

foo(x);

y = c - d;

A function returns to the code immediately after the

function call, in this case the assignment to y. A simple branch is

insufficient because we would not know where to return. To properly

Embedded Computing Systems

10CS72

Dept of CSE Page 55

return, we must save the PC value when the procedure/ function is

called and, when the procedure is finished, set the PC to the address of

the instruction just after the call to the procedure. (You don’t want

to endlessly execute the procedure, after all.) The branch-and-link

instruction is used in the ARM for procedure calls. For instance,

BL foo

will perform a branch and link to the code starting at

location foo (using PC-relative addressing, of course). The branch and

link is much like a branch, except that before branching it stores the

current PC value in r14. Thus, to return from a procedure, you simply

move the value of r14 to r15:

MOV r15,r14

You should not, of course, overwrite the PC value

stored in r14 during the procedure.

The C code shows a series of functions that call other

functions: f1() calls f2(), which in turn calls f3(). The right side of

the figure shows the state of the procedure call stack during the

execution of f3(). The stack contains one activation record for each

active procedure. When f3() finishes, it can pop the top of the stack to

get its return address, leaving the return address for f2() waiting at the

top of the stack for its return.We can also use the procedure call stack

to pass parameters. The conventions used to pass values into and out

of procedures is known as procedure linkage. To pass parameters

into a procedure, the values can be pushed onto the stack just

before the procedure call. Once the procedure returns, those values

must be popped off the stack by the caller, since they may hide a

return address or other useful information on the stack.

Example 2.6 illustrates the programming of a simple C function.

Embedded Computing Systems

10CS72

Dept of CSE Page 56

Example 2.6

Procedure calls in ARM

2.16:

We use as an example one of the functions from Figure

void f1(int a) {

f2(a);

}

call to f2():

Here is some handwritten code for f1(), which includes a

f1 LDR r0,[r13] ; load value of a

argument into r0 from stack

; call f2()

STR r14,[r13]! ; store f1's return

address on the stack

onto stack

STR r0,[r13!] ; store argument to f2

BL f2 ; branch and link to f2

; return from f1()

the stack

SUB r13,#4 ; pop f2's argument off

return

LDR r13!,r15 ; restore registers and

Embedded Computing Systems

10CS72

Dept of CSE Page 57

We use base-plus-offset addressing to load the value passed into f1() into

a register for use by r1. To call f2(), we first push f1()’s return address,

stored in r14 by the branch-and-link instruction executed to get into f1(),

onto the stack. We then push f2()’s parameter onto the stack. In both

cases, we use autoincrement addressing to both store onto the stack and

adjust the stack pointer. To return, we must first adjust the stack to get rid

of f2()’s parameter that hides return address; we then use autoincrement

addressing to pop f1()’s return address off the stack and into the PC (r15).

3.1 PROGRAMMING INPUT AND OUTPUT

The basic techniques for I/O programming can be understood relatively

indepen- dent of the instruction set. In this section, we cover the

basics of I/O program- ming and place them in the contexts of both

the ARM and C55x. We begin by discussing the basic characteristics

of I/O devices so that we can understand the requirements they place

on programs that communicate with them.

Embedded Computing Systems 10CS72

Dept of CSE Page 58

3.1.1 Input and Output Devices

Input and output devices usually have some analog or nonelectronic

component— for instance, a disk drive has a rotating disk and analog

read/write electronics. But the digital logic in the device that is most closely

connected to the CPU very strongly resembles the logic you would expect

in any computer system.

Figure 3.1 shows the structure of a typical I/O device and its relationship

to the CPU.The interface between the CPU and the device’s internals

(e.g.,the rotating disk and read/write electronics in a disk drive) is a set of

registers. The CPU talks to the device by reading and writing the registers.

Devices typically have several registers:

■ Data registers hold values that are treated as data by the device, such as

the data read or written by a disk.

■ Status registers provide information about the device’s operation,

such as whether the current transaction has completed.

Application Example 3.1

The 8251 UART

The 8251 UART (Universal Asynchronous Receiver/Transmitter) [Int82] is the

original device used for serial communications, such as the serial port

connections on PCs. The 8251 was introduced as a stand-alone integrated

circuit for early microprocessors. Today, its functions are typically subsumed

by a larger chip, but these more advanced devices still use the basic

programming interface defined by the 8251.

The UART is programmable for a variety of transmission and reception

parameters. However, the basic format of transmission is simple. Data are
transmitted as streams of characters, each of which has the following form:

Embedded Computing Systems 10CS72

Dept of CSE Page 59

Every character starts with a start bit (a 0) and a stop bit (a 1). The start bit

allows the receiver to recognize the start of a new character; the stop bit ensures

that there will be a transition at the start of the stop bit. The data bits are sent as

high and low voltages at a uniform rate. That rate is known as the baud rate ; the

period of one bit is the inverse of the baud rate.

Before transmitting or receiving data, the CPU must set the UART’s mode

registers to correspond to the data line’s characteristics. The parameters for

the serial port are familiar from the parameters for a serial communications

program (such as Kermit):

■ the baud rate;

■ the number of bits per character (5 through 8);

■ whether parity is to be included and whether it is even or odd; and

■ the length of a stop bit (1, 1.5, or 2 bits).

The UART includes one 8-bit register that buffers characters between the

UART and the CPU bus. The Transmitter Ready output indicates that the
transmitter is ready to accept a data character; the Transmitter Empty signal
goes high when the UART has no characters to send. On the receiver side, the
Receiver Ready pin goes high when the UART has a character ready to be read
by the CPU.

3.1.2 Input and Output Primitives

Microprocessors can provide programming support for input and output in

two ways: I/O instructions and memory-mapped I/O . Some architectures,

such as the Intel x86, provide special instructions (in and out in the case of

the Intel x86) for input and output. These instructions provide a separate

address space for I/O devices.

Embedded Computing Systems 10CS72

Dept of CSE Page 60

But the most common way to implement I/O is by memory mapping—

even CPUs that provide I/O instructions can also implement memory-

mapped I/O. As the name implies, memory-mapped I/O provides

addresses for the registers in each I/O device. Programs use the CPU’s

normal read and write instructions to communicate with the devices.

Example 3.1 illustrates memory-mapped I/O on the ARM.

Example 3.1

Memory-mapped I/O on ARM

We can use the EQU pseudo-op to define a symbolic name for the memory

location of our I/O

device:

DEV1 EQU 0x1000

Given that name, we can use the following standard code to read and

write the device register:

LDR r1,#DEV1 ; set up device address

LDR r0,[r1] ; read DEV1

LDR r0,#8 ; set up value to write

STR r0,[r1] ; write 8 to device

How can we directly write I/O devices in a high-level language like C?

When we define and use a variable in C, the compiler hides the variable’s

address from us. But we can use pointers to manipulate addresses of I/O

devices. The traditional names for functions that read and write arbitrary

memory locations are peek and poke. The peek function can be written in

C as:

Embedded Computing Systems 10CS72

Dept of CSE Page 61

int peek(char *location) {

return *location; /* de-reference location pointer */

}

The argument to peek is a pointer that is de-referenced by the C *

operator to read the location. Thus, to read a device register we can write:

#define DEV1 0x1000

...

dev_status = peek(DEV1); /* read device register */

The poke function can be implemented as:

void poke(char *location, char newval) {

(*location) = newval; /* write to location */

}

To write to the status register, we can use the following code:

poke(DEV1,8); /* write 8 to device register */

These functions can, of course, be used to read and write arbitrary

memory locations, not just devices.

Embedded Computing Systems 10CS72

Dept of CSE Page 62

3.1.3 Busy-Wait I/O

The most basic way to use devices in a program is busy-wait I/O .

Devices are typically slower than the CPU and may require many cycles to

complete an opera- tion. If the CPU is performing multiple operations on a

single device, such as writing several characters to an output device, then it

must wait for one operation to com- plete before starting the next one. (If

we try to start writing the second character before the device has finished

with the first one, for example, the device will prob- ably never print the

first character.) Asking an I/O device whether it is finished by reading its

status register is often called polling .

Example 3.2 illustrates busy-wait I/O.

Example 3.2

Busy-wait I/O programming

In this example we want to write a sequence of characters to an output

device. The device has two registers: one for the character to be written and a

status register. The status register’s value is 1 when the device is busy writing

and 0 when the write transaction has completed.

We will use the peek and poke functions to write the busy-wait routine in C.

First, we define symbolic names for the register addresses:

#define OUT_CHAR 0x1000 /* output device character

register */

#define OUT_STATUS 0x1001 /* output device status

register */

Embedded Computing Systems 10CS72

Dept of CSE Page 63

The sequence of characters is stored in a standard C string, which is

terminated by a null (0) character. We can use peek and poke to send the

characters and wait for each transaction to complete:

char *mystring = "Hello, world." /* string to write */

char *current_char; /* pointer to current position in string

*/

current_char = mystring; /* point to head of string */

while (*current_char != `\ 0') { /* until null character */

poke(OUT_CHAR,*current_char); /* send character to

device */

while (peek(OUT_STATUS) != 0); /* keep checking status */

current_char++; /* update character pointer */

}

Example 3.3 illustrates a combination of input and output.

Example 3.3

Copying characters from input to output using busy-wait I/O

We want to repeatedly read a character from the input device and write it to the

output device. First, we need to define the addresses for the device registers:

#define IN_DATA 0x1000

#define IN_STATUS 0x1001

#define OUT_DATA 0x1100

Embedded Computing Systems 10CS72

Dept of CSE Page 64

#define OUT_STATUS 0x1101

The input device sets its status register to 1 when a new character has been

read; we must set the status register back to 0 after the character has been read

so that the device is ready to read another character. When writing, we must

set the output status register to 1 to start writing and wait for it to return to 0.

We can use peek and poke to repeatedly perform the read/write operation:

while (TRUE) { /* perform operation forever */

/* read a character into achar */

while (peek(IN_STATUS) == 0); /* wait until ready */

achar = (char)peek(IN_DATA); /* read the character */

/* write achar */

poke(OUT_DATA,achar);

poke(OUT_STATUS,1); /* turn on device */

while (peek(OUT_STATUS) != 0); /* wait until done */

}

3.1.4 Interrupts

Basics

Busy-wait I/O is extremely inefficient—the CPU does nothing but test the

device status while the I/O transaction is in progress. In many cases, the

CPU could do useful work in parallel with the I/O transaction, such as:

■ computation, as in determining the next output to send to the device or

processing the last input received, and

Embedded Computing Systems 10CS72

Dept of CSE Page 65

■ control of other I/O devices.

To allow parallelism, we need to introduce new mechanisms into the CPU.

The interrupt mechanism allows devices to signal the CPU and to force

execu- tion of a particular piece of code. When an interrupt occurs, the

program counter’s value is changed to point to an interrupt handler routine

(also commonly known as a device driver) that takes care of the device:

writing the next data, reading data that have just become ready, and so on.

The interrupt mechanism of course saves the value of the PC at the

interruption so that the CPU can return to the program that was interrupted.

Interrupts therefore allow the flow of control in the CPU to change easily

between different contexts, such as a foreground computation and

multiple I/O devices.

As shown in Figure 3.2, the interface between the CPU and I/O device

includes the following signals for interrupting:

■ the I/O device asserts the interrupt request signal when it wants service

from the CPU; and

■ the CPU asserts the interrupt acknowledge signal when it is ready to handle

the I/O device’s request.

The I/O device’s logic decides when to interrupt; for example, it may

generate an interrupt when its status register goes into the ready state. The

CPU may not be able to immediately service an interrupt request because it

may be doing something else that must be finished first—for example, a

program that talks to both a high-speed disk drive and a low-speed keyboard

should be designed to finish a disk transaction before handling a keyboard

interrupt. Only when the CPU decides to acknowledge the interrupt does

the CPU change the program counter to point to the device’s handler. The

interrupt handler operates much like a subroutine, except that it is not

called by the executing program. The program that runs when no

interrupt is being handled is often called the foreground program; when

the interrupt handler finishes, it returns to the foreground program,

Embedded Computing Systems 10CS72

Dept of CSE Page 66

wherever processing was interrupted

Example 3.5

Copying characters from input to output with interrupts and buffers

Because we do not need to wait for each character, we can make this I/O

program more sophisticated than the one in Example 3.4. Rather than reading

a single character and then writing it, the program performs reads and writes

independently. The read and write routines communicate through the following

global variables:

■ A character string io_buf will hold a queue of characters that have been read

but not yet written.

■ A pair of integers buf_start and buf_end will point to the first and last

characters read.

■ A integer error will be set to 0 whenever io_buf overflows.

The global variables allow the input and output devices to run at different

rates. The queue io_buf acts as a wraparound buffer—we add characters to the
tail when an input is received and take characters from the tail when we are
ready for output. The head and tail wrap around the end of the buffer array to
make most efficient use of the array. Here is the situation at the start of the
program’s execution, where the tail points to the first available character and
the head points to the ready character. As seen below, because the head and
tail are equal, we know that the queue is empty.

Head Tail

Embedded Computing Systems 10CS72

Dept of CSE Page 67

When the first character is read, the tail is incremented after the character is

added to the queue, leaving the buffer and pointers looking like the following:

Head Tail

When the buffer is full, we leave one character in the buffer unused. As the next
figure shows, if we added another character and updated the tail buffer
(wrapping it around to the head of the buffer), we would be unable to
distinguish a full buffer from an empty one.

Head Tail

Here is what happens when the output goes past the end of io_buf:

Tail Head

he following code provides the declarations for the above global variables

and some service routines for adding and removing characters from the

queue. Because interrupt handlers are regular code, we can use

subroutines to structure code just as with any program.

Embedded Computing Systems 10CS72

Dept of CSE Page 68

#define BUF_SIZE 8

char io_buf[BUF_SIZE]; /* character buffer */

int buf_head = 0, buf_tail = 0; /* current position in

buffer */

int error = 0; /* set to 1 if buffer ever overflows */

void empty_buffer() { /* returns TRUE if buffer is

empty */

buf_head == buf_tail;

}

void full_buffer() { /* returns TRUE if buffer is full */

(buf_tail+1) % BUF_SIZE == buf_head ;

}

int nchars() { /* returns the number of characters in

the buffer */

if (buf_head >= buf_tail) return buf_tail – buf_head;

else return BUF_SIZE + buf_tail – buf_head;

}

void add_char(char achar) { /* add a character to the

buffer head */

Embedded Computing Systems 10CS72

Dept of CSE Page 69

io_buf[buf_tail++] = achar;

/* check pointer */

if (buf_tail == BUF_SIZE)

buf_tail = 0;

}

char remove_char() { /* take a character from the
buffer head */

char achar;

achar = io_buf[buf_head++];

/* check pointer */

if (buf_head == BUF_SIZE)

buf_head = 0;

}

Assume that we have two interrupt handling routines defined in C,

input_handler for the input device and output_handler for the output device.

These routines work with the device in much the same way as did the busy-

wait routines. The only complication is in starting the output device: If io_buf

has characters waiting, the output driver can start a new output transaction by

itself. But if there are no characters waiting, an outside agent must start a new

output action whenever the new character arrives. Rather than force the

foreground program to look at the character buffer, we will have the input

handler check to see whether there is only one character in the buffer and start

a new transaction.

Here is the code for the input handler:

Embedded Computing Systems 10CS72

Dept of CSE Page 70

#define IN_DATA 0x1000

#define IN_STATUS 0x1001 void input_handler() {

char achar;

if (full_buffer()) /* error */

error = 1;

else { /* read the character and update pointer */ achar =

peek(IN_DATA); /* read character */ add_char(achar); /*
add to queue */

}

poke(IN_STATUS,0); /* set status register back to 0 */

/* if buffer was empty, start a new output transaction */

if (nchars() == 1) { /* buffer had been empty until this

interrupt */

poke(OUT_DATA,remove_char()); /* send character */

poke(OUT_STATUS,1); /* turn device on */

}

#define OUT_DATA 0x1100

#define OUT_STATUS 0x1101 void output_handler() {

if (!empty_buffer()) { /* start a new character */

poke(OUT_DATA,remove_char()); /* send character */

poke(OUT_STATUS,1); /* turn device on */

}

Embedded Computing Systems 10CS72

Dept of CSE Page 71

}

The foreground program does not need to do anything—everything is
taken care of by the interrupt handlers. The foreground program is free to do
useful work as it is occasionally interrupted by input and output operations.
The following sample execution of the program in the form of a UML
sequence diagram shows how input and output are interleaved with the
foreground program. (We have kept the last input character in the queue until
output is complete to make it clearer when input occurs.) The simulation
shows that the foreground program is not executing continuously, but it
continues to run in its regular state independent of the number of characters
waiting in the queue.

Interrupts allow a lot of concurrency, which can make very efficient use

of the CPU. But when the interrupt handlers are buggy, the errors can be

very hard to find. The fact that an interrupt can occur at any time means

that the same bug can manifest itself in different ways when the interrupt

handler interrupts different segments of the foreground program. Example

3.6 illustrates the problems inherent in debugging interrupt handlers.

Example 3.6

Debugging interrupt code

Assume that the foreground code is performing a matrix multiplication operation

y Ax b:

for (i = 0; i < M; i++) {

y[i] = b[i];

for (j = 0; j < N; j++)

y[i] = y[i] + A[i,j]*x[j];

}

What happens to the foreground program when j changes value during

Embedded Computing Systems 10CS72

Dept of CSE Page 72

an interrupt depends on when the interrupt handler executes. Because the

value of j is reset at each iteration of the outer loop, the bug will affect only one

entry of the result y . But clearly the entry that changes will depend on when the

interrupt occurs. Furthermore, the change observed in y depends on not only

what new value is assigned to j (which may depend on the data handled by

the interrupt code), but also when in the inner loop the interrupt occurs. An

inter- rupt at the beginning of the inner loop will give a different result than one

that occurs near the end. The number of possible new values for the result

vector is much too large to consider manually—the bug cannot be found by

enumerating the possible wrong values and correlat- ing them with a given

root cause. The CPU implements interrupts by checking the interrupt

request line at the beginning of execution of every instruction. If an

interrupt request has been asserted, the CPU does not fetch the instruction

pointed to by the PC. Instead the CPU sets the PC to a predefined location,

which is the beginning of the interrupt

Priorities and Vectors

Providing a practical interrupt system requires having more than a simple

interrupt request line. Most systems have more than one I/O device, so there

must be some mechanism for allowing multiple devices to interrupt. We

also want to have flexibil- ity in the locations of the interrupt handling

routines, the addresses for devices, and so on. There are two ways in which

interrupts can be generalized to handle mul- tiple devices and to provide

more flexible definitions for the associated hardware and software:

■ interrupt priorities allow the CPU to recognize some interrupts as more

important than others, and

■ interrupt vectors allow the interrupting device to specify its handler.

Prioritized interrupts not only allow multiple devices to be connected to

the interrupt line but also allow the CPU to ignore less important interrupt

requests while it handles more important requests. As shown in Figure

3.3, the CPU pro- vides several different interrupt request signals, shown

here as L1, L2, up to Ln. Typically, the lower-numbered interrupt lines are

given higher priority, so in this case, if devices 1, 2, and n all requested

Interrupts simultaneously, 1’s request would be acknowledged because it

is connected to the highest-priority interrupt line. Rather than provide a

Embedded Computing Systems 10CS72

Dept of CSE Page 73

separate interrupt acknowledge line for each device, most CPUs use a set

of signals that provide the priority number of the winning interrupt in

binary form (so that interrupt level 7 requires 3 bits rather than 7). A

device knows that its interrupt request was accepted by seeing its own

priority number on the interrupt acknowledge lines.

Example 3.7

I/O with prioritized interrupts

Assume that we have devices A, B, and C. A has priority 1 (highest priority), B

priority 2, and C priority 3. The following UML sequence diagram shows which

interrupt handler is executing as a function of time for a sequence of interrupt

requests. In each case, an interrupt handler keeps running until either it is

finished or a higher- priority interrupt arrives. The C interrupt, although it

arrives early, does not finish for a long time because interrupts from both A and

B intervene—system design must take into account the worst-case

combinations of interrupts that can occur to ensure that no device goes without

service for too long. When both A and B interrupt simultaneously, A’s

interrupt gets prior- ity; when A’s handler is finished, the priority mechanism

automatically answers B’s pending interrupt

Vectors provide flexibility in a different dimension, namely, the ability to

define the interrupt handler that should service a request from a device.

Figure 3.5 shows the hardware structure required to support interrupt

vectors. In addition to the interrupt request and acknowledge lines,

additional interrupt vector lines run from the devices to the CPU. After a

device’s request is acknowledged, it sends its inter- rupt vector over those

lines to the CPU. The CPU then uses the vector number as an index in a table

stored in memory as shown in Figure 3.5. The location referenced in the

interrupt vector table by the vector number gives the address of the handler.

There are two important things to notice about the interrupt vector

mecha- nism. First,

Most modern CPUs implement both prioritized and vectored interrupts.

Priori- ties determine which device is serviced first, and vectors determine

what routine is used to service the interrupt. The combination of the two

provides a rich interface between hardware and software.

Embedded Computing Systems 10CS72

Dept of CSE Page 74

Interrupt overhead Now that we have a basic understanding of the interrupt

mech- anism, we can consider the complete interrupt handling process.

Once a device requests an interrupt, some steps are performed by the

CPU, some by the device, and others by software. Here are the major steps

in the process:

1. CPU The CPU checks for pending interrupts at the beginning of an instruc-

tion. It answers the highest-priority interrupt, which has a higher priority

than that given in the interrupt priority register.

2. Device The device receives the acknowledgment and sends the CPU its

interrupt vector.

3. CPU The CPU looks up the device handler address in the interrupt vector

table using the vector as an index. A subroutine-like mechanism is used to

save the current value of the PC and possibly other internal CPU state, such

as general-purpose registers.

4. Software The device driver may save additional CPU state. It then

performs the required

. CPU The interrupt return instruction restores the PC and other automati-

cally saved states to return execution to the code that was interrupted.

Interrupts do not come without a performance penalty. In addition to the

execu- tion time required for the code that talks directly to the devices,

there is execution time overhead associated with the interrupt

mechanisms.

■ The interrupt itself has overhead similar to a subroutine call. Because an

inter- rupt causes a change in the program counter, it incurs a branch

penalty. In addition, if the interrupt automatically stores CPU registers, that

action requ- ires extra cycles, even if the state is not modified by the

interrupt handler.

Embedded Computing Systems 10CS72

Dept of CSE Page 75

■ In addition to the branch delay penalty, the interrupt requires extra cycles

to acknowledge the interrupt and obtain the vector from the device.

■ The interrupt handler will, in general, save and restore CPU registers

that were not automatically saved by the interrupt.

■ The interrupt return instruction incurs a branch penalty as well as the time

required to restore the automatically saved state.

The time required for the hardware to respond to the interrupt, obtain the

vector, and so on cannot be changed by the programmer. In particular, CPUs

vary quite a bit in the amount of internal state automatically saved by an

interrupt. The programmer does have control over what state is modified by

the interrupt handler and therefore it must be saved and restored. Careful

programming can sometimes result in a small number of registers used by an

interrupt handler, thereby saving time in maintaining the CPU state.

However, such tricks usually require coding the interrupt handler in

assembly language rather than a high-level language.

Interrupts in ARM ARM7 supports two types of interrupts: fast interrupt

requests (FIQs) and interrupt requests (IRQs). An FIQ takes priority over an

IRQ. The inter- rupt table is always kept in the bottom memory addresses,

starting at location 0. The entries in the table typically contain subroutine

calls to the appropriate handler.

The ARM7 performs the following steps when responding to an

interrupt

[ARM99B]:

■ saves the appropriate value of the PC to be used to return,

■ copies the CPSR into a saved program status register (SPSR),

Embedded Computing Systems 10CS72

Dept of CSE Page 76

■ forces bits in the CPSR to note the interrupt, and

■ forces the PC to the appropriate interrupt vector. When leaving the

interrupt handler, the handler should:

■ restore the proper PC value,

■ restore the CPSR from the SPSR, and

■ clear interrupt disable flags.

The worst-case latency to respond to an interrupt includes the

following components:

■ two cycles to synchronize the external request,

■ up to 20 cycles to complete the current instruction,

■ three cycles for data abort, and

■ two cycles to enter the interrupt handling state.

This adds up to 27 clock cycles. The best-case latency is four clock cycles.

Interrupts in C55x Interrupts in the C55x [Tex04] never take less than

seven clock cycles. In many situations, they take 13 clock cycles.

A maskable interrupt is processed in several steps once the interrupt

request is sent to the CPU:

■ The interrupt flag register (IFR) corresponding to the interrupt is set.

■ The interrupt enable register (IER) is checked to ensure that the interrupt

Embedded Computing Systems 10CS72

Dept of CSE Page 77

is enabled.

■ The interrupt mask register (INTM) is checked to be sure that the interrupt

is not masked.

■ The interrupt flag register (IFR) corresponding to the flag is cleared.

■ Appropriate registers are saved as context.

■ INTM is set to 1 to disable maskable interrupts.

■ DGBM is set to 1 to disable debug events.

■ EALLOW is set to 0 to disable access to non-CPU emulation registers.

■ A branch is performed to the interrupt service routine (ISR).

The C55x provides two mechanisms—fast-return and slow-return—to

save and restore registers for interrupts and other context switches. Both

processes save the return address and loop context registers. The fast-

return mode uses RETA to save the return address and CFCT for the loop

context bits. The slow- return mode, in contrast, saves the return address

and loop context bits on the stack.

3.2 SUPERVISOR MODE, EXCEPTIONS, AND TRAPS

3.2.1 Supervisor Mode

As will become clearer in later chapters, complex systems are often

implemented as several programs that communicate with each other. These

programs may run under the command of an operating system. It may be

desirable to provide hardware checks to ensure that the programs do not

interfere with each other—for example, by erroneously writing into a

segment of memory used by another program. Soft- ware debugging is

important but can leave some problems in a running system; hardware

checks ensure an additional level of safety.

In such cases it is often useful to have a supervisor mode provided by

the CPU. Normal programs run in user mode. The supervisor mode has

Embedded Computing Systems 10CS72

Dept of CSE Page 78

privileges that user modes do not. For example, we study memory

management systems in Section 3.4.2 that allow the addresses of memory

locations to be changed dynam- ically. Control of the memory

management unit (MMU) is typically reserved for supervisor mode to

avoid the obvious problems that could occur when program bugs cause

inadvertent changes in the memory management registers.

Not all CPUs have supervisor modes. Many DSPs, including the C55x,

do not provide supervisor modes. The ARM, however, does have such a

mode. The ARM instruction that puts the CPU in supervisor mode is called

SWI:

SWI CODE_1

It can, of course, be executed conditionally, as with any ARM instruction.

SWI causes the CPU to go into supervisor mode and sets the PC to 0x08. The

argument to SWI is a 24-bit immediate value that is passed on to the

supervisor mode code; it allows the program to request various services

from the supervisor mode.

In supervisor mode, the bottom 5 bits of the CPSR are all set to 1 to

indicate that the CPU is in supervisor mode. The old value of the CPSR just

before the SWI is stored in a register called the saved program status

register (SPSR). There are in fact several SPSRs for different modes; the

supervisor mode SPSR is referred to as SPSR_svc.

To return from supervisor mode, the supervisor restores the PC from

register r14 and restores the CPSR from the SPSR_svc.

3.2.2 Exceptions

An exception is an internally detected error. A simple example is division

by zero. One way to handle this problem would be to check every divisor

before division to be sure it is not zero, but this would both substantially

increase the size of numerical programs and cost a great deal of CPU time

evaluating the divisor’s value. The CPU can more efficiently check the

divisor’s value during execution. Since the time at which a zero divisor

will be found is not known in advance, this event is similar to an interrupt

except that it is generated inside the CPU. The exception mechanism

provides a way for the program to react to such unexpected events.

Embedded Computing Systems 10CS72

Dept of CSE Page 79

3.2.3 Traps

A trap, also known as a software interrupt , is an instruction that explicitly

gener- ates an exception condition. The most common use of a trap is to

enter supervisor mode. The entry into supervisor mode must be controlled

to maintain security—if the interface between user and supervisor mode is

improperly designed, a user pro- gram may be able to sneak code into the

supervisor mode that could be executed to perform harmful operations.

The ARM provides the SWI interrupt for software interrupts. This

instruction causes the CPU to enter supervisor mode. An opcode is embedded

in the instruction that can be read by the handler.

3.3 CO-PROCESSORS

CPU architects often want to provide flexibility in what features are

implemented in the CPU. One way to provide such flexibility at the

instruction set level is to allow co-processors, which are attached to the

CPU and implement some of the instructions. For example, floating-point

arithmetic was introduced into the Intel architecture by providing

separate chips that implemented the floating-point instructions.

To support co-processors, certain opcodes must be reserved in the

instruction set for co-processor operations. Because it executes

instructions, a co-processor must be tightly coupled to the CPU. When the

CPU receives a co-processor instruc- tion, the CPU must activate the co-

processor and pass it the relevant instruction. Co-processor instructions can

load and store co-processor registers or can perform internal operations. The

CPU can suspend execution to wait for the co-processor instruction to

finish; it can also take a more superscalar approach and continue

executing instructions while waiting for the co-processor to finish.

3.4 MEMORY SYSTEM MECHANISMS

Modern microprocessors do more than just read and write a monolithic

memory. Architectural features improve both the speed and capacity of

memory systems. Microprocessor clock rates are increasing at a faster rate

than memory speeds, such that memories are falling further and further

behind microprocessors every day. As a result, computer architects resort to

caches to increase the average performance of the memory system.

Embedded Computing Systems 10CS72

Dept of CSE Page 80

Although memory capacity is increasing steadily, program sizes are

increasing as well, and designers may not be willing to pay for all the

memory demanded by an application. Modern microprocessor units

(MMUs) perform address translations that provide a larger virtual memory

space in a small physical memory. In this section, we review both caches

and MMUs.

3.4.1 Caches

Caches are widely used to speed up memory system performance. Many

micropro- cessor architectures include caches as part of their definition.

The cache speeds up average memory access time when properly used.

It increases the variability of memory access times—accesses in the

cache will be fast, while access to loca- tions not cached will be slow. This

variability in performance makes it especially important to understand

how caches work so that we can better understand how to predict cache

performance and factor variabilities into system design.

A cache is a small, fast memory that holds copies of some of the contents

of main memory. Because the cache is fast, it provides higher-speed access

for the CPU; but since it is small, not all requests can be satisfied by the

cache, forcing the system to wait for the slower main memory. Caching

makes sense when the CPU is using only a relatively small set of memory

locations at any one time; the set of active locations is often called the

working set .

Shows how the cache support reads in the memory system. A cache

controller mediates between the CPU and the memory system comprised

of the main memory. The cache controller sends a memory request to the

cache and main memory. If the requested location is in the cache, the cache

controller forwards the location’s contents to the CPU and aborts the main

memory request; this condition is known as a cache hit . If the location is

not in the cache, the controller waits for the value from main memory and

forwards it to the CPU; this situation is known as a cache miss.

We can classify cache misses into several types depending on the

situation that generated them:

■ a compulsory miss (also known as a cold miss) occurs the first time a

location is used,

Embedded Computing Systems 10CS72

Dept of CSE Page 81

■ a capacity miss is caused by a too-large working set, and

■ a conflict miss happens when two locations map to the same location in the

cache.

Even before we consider ways to implement caches, we can write some

basic formulas for memory system performance. Let h be the hit rate, the
probability that a given memory location is in the cache. It follows that 1
h is the miss rate, or the probability that the location is not in the cache.
Then we can compute the average memory access time as

tav htcache (1 h)tmain . (3.1)

where tcache is the access time of the cache and tmain is the main

memory access time. The memory access times are basic parameters

available from the memory manufacturer. The hit rate depends on the

program being executed and the cache organization, and is typically

measured using simulators, as is described in more detail in Section 5.6.

The best-case memory access time (ignoring cache controller overhead) is

tcache , while the worst-case access time is tmain . Given that tmain is

typically 50–60 ns for DRAM, while tcache is at most a few nanoseconds,

the spread between worst-case and best-case memory delays is substantial.

Modern CPUs may use multiple levels of cache as shown in Figure

3.7. The first-level cache (commonly known as L1 cache) is closest to

the CPU, the second-level cache (L2 cache) feeds the first-level cache, and

so on. The second-level cache is much larger but is also slower. If h1 is

the first-level hit rate and h2 is the rate at which access hit the second-

level cache but not the first-level cache, then the average access time for a

two-level cache system is tav h1 tL1 h2 tL2 (1 h1 h2)tmain

The simplest way to implement a cache is a direct-mapped cache, as

shown in Figure 3.8. The cache consists of cache blocks, each of which

includes a tag to show which memory location is represented by this

block, a data field holding the contents of that memory, and a valid tag to

show whether the contents of this cache block are valid. An address is

divided into three sections. The index is used to select which cache block

to check. The tag is compared against the tag value in the block selected

by the index. If the address tag matches the tag value in the block, that

Embedded Computing Systems 10CS72

Dept of CSE Page 82

block includes the desired memory location. If the length of the data field

is longer than the minimum addressable unit, then the lowest bits of

the address are used as an offset to select the required value from the data

field. Given the structure of the cache, there is only one block that must

be checked to see whether a location is in the cache—the index uniquely

determines that block. If the access is a hit, the data value is read from the

cache.

Writes are slightly more complicated than reads because we have to

update main memory as well as the cache. There are several methods by

which we can do this. The simplest scheme is known as write-through—

every write changes both the cache and the corresponding main memory

location (usually through a write buffer). This scheme ensures that the

cache and main memory are consistent, but may generate some additional

main memory traffic. We can reduce the number of times we write to main

memory by using a write-back policy:If we write only when we remove a

location from the cache, we eliminate the writes when a location is

written several times before it is removed from the cache.

The direct-mapped cache is both fast and relatively low cost, but it does

have limits in its caching power due to its simple scheme for mapping the

cache onto main memory. Consider a direct-mapped cache with four blocks,

in which locations

0, 1, 2, and 3 all map to different blocks. But locations 4, 8, 12, … all map to

the same block as location 0; locations 1, 5, 9, 13, … all map to a single block;

and so on. If two popular locations in a program happen to map onto the

same block, we will not gain the full benefits of the cache. As seen in

Section 5.6, this can create program performance problems.

The limitations of the direct-mapped cache can be reduced by going

to the set-associative cache structure shown in Figure 3.9. A set-associative

cache is char- acterized by the number of banks or ways it uses, giving an

n-way set-associative cache. A set is formed by all the blocks (one for each

bank) that share the same index. Each set is implemented with a direct-

mapped cache. A cache request is broadcast to all banks simultaneously. If

any of the sets has the location, the cache reports a hit. Although memory

locations map onto blocks using the same function, there are n separate

blocks for each set of locations. Therefore, we can simultaneously cache

several locations that happen to map onto the same cache block. The set-

Embedded Computing Systems 10CS72

Dept of CSE Page 83

associative cache structure incurs a little extra overhead and is slightly

slower than a direct-mapped cache, but the higher hit rates that it can provide

often compensate.

The set-associative cache generally provides higher hit rates than the

direct- mapped cache because conflicts between a small number of

locations can be resolved within the cache. The set-associative cache is

somewhat slower, so the CPU designer has to be careful that it doesn’t

slow down the CPU’s cycle time too much. A more important problem with

set-associative caches for embedded program

Various ARM implementations use different cache sizes and

organizations [Fur96]. The ARM600 includes a 4-KB, 64-way (wow!)

unified instruction/data cache. The StrongARM uses a 16-KB, 32-way

instruction cache with a 32-byte block and a 16-KB,32-way data cache with

a 32-byte block;the data cache uses a write-back strategy.

The C5510, one of the models of C55x, uses a 16-K byte instruction

cache organized as a two-way set-associative cache with four 32-bit words

per line. The instruction cache can be disabled by software if desired. It

also includes two RAM sets that are designed to hold large contiguous

blocks of code. Each RAM set can hold up to 4-K bytes of code organized as

256 lines of four 32-bit words per line. Each RAM has a tag that specifies what

range of addresses are in the RAM; it also includes a tag valid field to show

whether the RAM is in use and line valid bits for each line.

3.4.2 Memory Management Units and Address Translation

A MMU translates addresses between the CPU and physical memory. This

translation process is often known as memory mapping since addresses are

mapped from a logical space into a physical space. MMUs in embedded

systems appear primarily in the host processor. It is helpful to understand

the basics of MMUs for embedded systems complex enough to require

them.

Many DSPs, including the C55x, do not use MMUs. Since DSPs are

used for compute-intensive tasks, they often do not require the hardware

assist for logical address spaces.

Early computers used MMUs to compensate for limited address space in

Embedded Computing Systems 10CS72

Dept of CSE Page 84

their instruction sets. When memory became cheap enough that physical

memory could be larger than the address space defined by the instructions,

MMUs allowed software to manage multiple programs in a single physical

memory, each with its own address space.

Because modern CPUs typically do not have this limitation, MMUs are

used to provide virtual addressing . As shown in Figure 3.10, the MMU

accepts logical addresses from the CPU. Logical addresses refer to the

program’s abstract address space but do not correspond to actual RAM

locations.The MMU translates them from tables to physical addresses that

do correspond to RAM. By changing the MMU’s tables, you can change the

physical location at which the program resides without modifying the

program’s code or data. (We must, of course, move the program in main

memory to correspond to the memory mapping change.)

Furthermore, if we add a secondary storage unit such as flash or a disk,

we can eliminate parts of the program from main memory. In a virtual

memory system, the MMU keeps track of which logical addresses are

actually resident in main memory; those that do not reside in main memory

are kept on the secondary storage device.

When the CPU requests an address that is not in main memory, the MMU

generates an exception called a page fault . The handler for this exception

executes code that reads the requested location from the secondary storage

device into main memory. The program that generated the page fault is

restarted by the handler only after

■ the required memory has been read back into main memory, and

■ the MMU’s tables have been updated to reflect the changes.

Of course, loading a location into main memory will usually require

throwing something out of main memory. The displaced memory is

copied into secondary storage before the requested location is read in. As

with caches, LRU is a good replacement policy.

There are two styles of address translation: segmented and paged . Each

has advantages and the two can be combined to form a segmented, paged

addressing scheme. As illustrated in Figure 3.11, segmenting is designed to

Embedded Computing Systems 10CS72

Dept of CSE Page 85

support a large, arbi- trarily sized region of memory, while pages describe

small, equally sized regions. A segment is usually described by its start

address and size, allowing different segments to be of different sizes.

Pages are of uniform size, which simplifies the hardware required for

address translation. A segmented, paged scheme is created by dividing

each segment into pages and using two steps for address translation.

Paging introduces the possibility of fragmentation as program pages are

scattered around physical memory.

In a simple segmenting scheme, shown in Figure 3.12, the MMU would

maintain a segment register that describes the currently active segment.

This register would point to the base of the current segment. The address

extracted from an instruction (or from any other source for addresses, such

as a register) would be used as the offset for the address. The physical

address is formed by adding the segment base to the offset. Most

segmentation schemes also check the physical address against the upper

limit of the segment by extending the segment register to include the

segment size and comparing the offset to the allowed size.

The translation of paged addresses requires more MMU state but a

simpler cal- culation. As shown in Figure 3.13, the logical address is

divided into two sections, including a page number and an offset. The page

number is used as an index into a page table, which stores the physical

address for the start of each page. However,

Segments and pages.

Segment register

Segment base address

Embedded Computing Systems 10CS72

Dept of CSE Page 86

1

Segment upper bound

Physical address

Range error

FIGURE 3.12

Address translation for a segment.

Segment lower bound

To memory

Range check

Embedded Computing Systems 10CS72

Dept of CSE Page 87

Alternative schemes for organizing page tables.

■ A dirty bit shows whether the page/segment has been written to.

This bit is maintained by the MMU, since it knows about every

write performed by the CPU.

■ Permission bits are often used. Some pages/segments may be

readable but not writable. If the CPU supports modes,

pages/segments may be accessible by the supervisor but not in user

mode.

A data or instruction cache may operate either on logical or

physical addresses, depending on where it is positioned relative to

the MMU.

A MMU is an optional part of the ARM architecture. The ARM

MMU supports both virtual address translation and memory

protection; the architecture requires that the MMU be implemented

when cache or write buffers are implemented. The ARM MMU

supports the following types of memory regions for address

translation:

■ a section is a 1-MB block of memory,

■ a large page is 64 KB, and

■ a small page is 4 KB.

An address is marked as section mapped or page mapped. A two-

level scheme is used to translate addresses.The first-level

table,which is pointed to by theTranslation Table Base register,

Embedded Computing Systems 10CS72

Dept of CSE Page 88

holds descriptors for section translation and pointers to the second-

level tables. The second-level tables describe the translation of

both large and small pages. The basic two-level process for a large

or small page is illustrated in Figure 3.15. The details differ between

large and small pages, such as the size of the second-level table index.

The first- and second-level pages also contain access control bits

for virtual memory and protection.

3.5 CPU PERFORMANCE

Now that we have an understanding of the various types of

instructions that CPUs can execute, we can move on to a topic

particularly important in embedded com- puting: How fast can the

CPU execute instructions? In this section, we consider three

factors that can substantially influence program performance:

pipelining and caching.

3.5.1 Pipelining

Modern CPUs are designed as pipelined machines in which

several instructions are executed in parallel. Pipelining greatly

increases the efficiency of the CPU. But like any pipeline, a CPU

pipeline works best when its contents flow smoothly. Some

sequences of instructions can disrupt the flow of information in the

pipeline and, temporarily at least, slow down the operation of the

CPU.

The ARM7 has a three-stage pipeline:

■ Fetch the instruction is fetched from memory.

■ Decode the instruction’s opcode and operands are decoded to

determine what function to perform.

■ Execute the decoded instruction is executed.

Embedded Computing Systems 10CS72

Dept of CSE Page 89

Each of these operations requires one clock cycle for typical

instructions. Thus, a normal instruction requires three clock cycles

to completely execute, known as the latency of instruction

execution. But since the pipeline has three stages, an instruction

is completed in every clock cycle. In other words, the pipeline

has a throughput of one instruction per cycle. Figure 3.16

illustrates the position of instructions in the pipeline during

execution using the notation introduced by Hennessy and Patterson

[Hen06]. A vertical slice through the timeline shows all

instructions in the pipeline at that time. By following an instruction

horizontally, we can see the progress of its execution.

The C55x includes a seven-stage pipeline [Tex00B]:

1. Fetch.

2. Decode.

3. Address computes data and branch addresses.

4. Access 1 reads data.

5. Access 2 finishes data read.

6. Read stage puts operands onto internal busses.

7. Execute performs operations.

Embedded Computing Systems 10CS72

Dept of CSE Page 90

RISC machines are designed to keep the pipeline busy. CISC

machines may dis- play a wide variation in instruction timing.

Pipelined RISC machines typically have more regular timing

characteristics—most instructions that do not have pipeline hazards

display the same latency.

add r0,r1,#5 sub r2,r3,r6

cmp r2,#3

The one-cycle-per-instruction completion rate does not hold

in every case, however. The simplest case for extended execution

is when an instruction is too complex to complete the execution

phase in a single cycle. A multiple load instruc- tion is an example

of an instruction that requires several cycles in the execution

phase. Figure 3.17 illustrates a data stall in the execution of a

sequence of instruc- tions starting with a load multiple (LDMIA)

instruction. Since there are two registers to load, the instruction

must stay in the execution phase for two cycles. In a mul- tiphase

execution, the decode stage is also occupied, since it must

continue to remember the decoded instruction. As a result, the SUB

instruction is fetched at the normal time but not decoded until the

LDMIA is finishing. This delays the fetching of the third instruction,

the CMP.

Branches also introduce control stall delays into the

pipeline, commonly referred to as the branch penalty, as shown in

Figure 3.18. The decision whether to take the conditional branch

BNE is not made until the third clock cycle of that instruction’s

execution, which computes the branch target address. If the

branch is taken, the succeeding instruction at PC+4 has been

fetched and started to be decoded. When the branch is taken, the

branch target address is used to fetch the branch target instruction.

Since we have to wait for the execution cycle to complete before

knowing the target, we must throw away two cycles of work on

instructions

in the path not taken. The CPU uses the two cycles between

starting to fetch the branch target and starting to execute that

Embedded Computing Systems 10CS72

Dept of CSE Page 91

instruction to finish housekeeping tasks related to the execution of

the branch.

One way around this problem is to introduce the delayed

branch. In this style of branch instruction, some number of

instructions directly after the branch are always executed, whether

or not the branch is taken. This allows the CPU to keep the

pipeline full during execution of the branch. However, some of

those instructions after the delayed branch may be no-ops. Any

instruction in the delayed branch window must be valid for both

execution paths, whether or not the branch is taken. If there are not

enough instructions to fill the delayed branch window, it must be

filled with no-ops.

Let’s use this knowledge of instruction execution time to evaluate

the execution time of some C code, as shown in Example 3.9.

Example 3.9

Execution time of a for loop on the ARM

We will use the C code for the FIR filter of Application Example 2.1:

for (i = 0, f = 0; i < N; i++)

f = f + c[i] * x[i];

We repeat the ARM code for this loop:

; loop initiation code

MOV r0,#0 ; use r0 for i, set to 0

MOV r8,#0 ; use a separate index for arrays

ADR r2,N ; get address for N

LDR r1,[r2] ; get value of N for loop termination

Embedded Computing Systems 10CS72

Dept of CSE Page 92

test

MOV r2,#0 ; use r2 for f, set to 0

ADR r3,c ; load r3 with address of base of c

array

ADR r5,x ; load r5 with address of base of x

array

; loop body

loop LDR r4,[r3,r8] ; get value of c[i] LDR

r6,[r5,r8] ; get value of x[i] MUL r4,r4,r6

; compute c[i]*x[i]

ADD r2,r2,r4 ; add into running sum f

; update loop counter and array index

ADD r8,r8,#4 ; add one word offset to array

index

ADD r0,r0,#1 ; add 1 to i

; test for exit

CMP r0,r1

BLT loop ; if i < N, continue loop

loopend...

Inspection of the code shows that the only instruction that may take

more than one cycle is the conditional branch in the loop test. We

can count the number of instructions and associated number of

clock cycles in each block as follows:

Block Variable # Instructions # Cycles

The unconditional branch at the end of the update block always incurs
a branch penalty of two cycles. The BLT instruction in the test block

Embedded Computing Systems 10CS72

Dept of CSE Page 93

incurs a pipeline delay of two cycles when the branch is taken. That
happens for all but the last iteration, when the instruction has an
execution time of t test,worst ; the last iteration executes in time t
test,best . We can write a formula for the total execution time of the loop
in cycles as

t loop t init N (t body t update) (N 1)t test,worst t

test,best . (3.3)

3.5.2 Caching

The extra time required to access a memory location not in the

cache is often called the cache miss penalty. The amount of

variation depends on several factors in the system architecture,

but a cache miss is often several clock cycles slower than a cache

hit.

The time required to access a memory location depends on

whether the requested location is in the cache. However, as we

have seen, a location may not be in the cache for several reasons.

■ At a compulsory miss, the location has not been referenced

before.

■ At a conflict miss, two particular memory locations are fighting for

the same cache line.

■ At a capacity miss, the program’s working set is simply too

large for the cache.

The contents of the cache can change considerably over the course

of execution of a program. When we have several programs

running concurrently on the CPU

3.6 CPU POWER CONSUMPTION

Embedded Computing Systems 10CS72

Dept of CSE Page 94

Power consumption is, in some situations, as important as

execution time. In this section we study the characteristics of CPUs

that influence power consumption and mechanisms provided by

CPUs to control how much power they consume.

First, it is important to distinguish between energy and power .

Power is, of course, energy consumption per unit time. Heat

generation depends on power consumption. Battery life, on the

other hand, most directly depends on energy consumption.

Generally, we will use the term power as shorthand for energy

and power consumption, distinguishing between them only when

necessary.

The high-level power consumption characteristics of CPUs and

other system components are derived from the circuits used to

build those components. Today, virtually all digital systems are

built with complementary metal oxide semi- conductor

(CMOS) circuitry. The detailed circuit characteristics are best left

to a study of VLSI design [Wol08], but the basic sources of CMOS

power consumption are easily identified and briefly described

below.

■ Voltage drops: The dynamic power consumption of a CMOS

circuit is proportional to the square of the power supply voltage

(V2). Therefore, by reducing the power supply voltage to the

lowest level that provides the required performance, we can

significantly reduce power consumption. We also may be able to

add parallel hardware and even further reduce the power supply

voltage while maintaining required performance [Cha92].

■ Toggling : A CMOS circuit uses most of its power when it is

changing its output value. This provides two ways to reduce

power consumption. By reducing the speed at which the circuit

operates, we can reduce its power consumption (although not the

total energy required for the operation, since the result is available

later). We can actually reduce energy consumption by eliminating

unnecessary changes to the inputs of a CMOS circuit—eliminating

Embedded Computing Systems 10CS72

Dept of CSE Page 95

unnecessary glitches at the circuit outputs eliminates

unnecessary power consumption.

■ Leakage: Even when a CMOS circuit is not active, some

charge leaks out of the circuit’s nodes through the substrate. The

only way to eliminate leak- age current is to remove the power

supply. Completely disconnecting the power supply eliminates

power consumption, but it usually takes a significant amount of time

to reconnect the system to the power supply and reinitialize its

internal state so that it once again performs properly .

There are two types of power management features

provided by CPUs. A static power management mechanism is

invoked by the user but does not otherwise depend on CPU

activities. An example of a static mechanism is a power- down mode

intended to save energy. This mode provides a high-level way to

reduce unnecessary power consumption. The mode is typically

entered with an instruc- tion. If the mode stops the interpretation of

instructions, then it clearly cannot be exited by execution of

another instruction. Power-down modes typically end upon receipt

of an interrupt or other event. A dynamic power management

mecha- nism takes actions to control power based upon the dynamic

activity in the CPU. For example, the CPU may turn off certain

sections of the CPU when the instructions being executed do not

need them.

Application Example 3.2

Energy efficiency features in the PowerPC 603

The PowerPC 603 [Gar94] was designed specifically for low-power

operation while retaining high performance. It typically dissipates 2.2

W running at 80 MHz. The architecture pro- vides three low-power

modes—doze, nap, and sleep—that provide static power management

capabilities for use by the programs and operating system.

The 603 also uses a variety of dynamic power management

techniques for power minimiza- tion that are performed automatically,

Embedded Computing Systems 10CS72

Dept of CSE Page 96

without program intervention. The CPU is a two-issue, out-of-order

superscalar processor. It uses the dynamic techniques summarized

below to reduce power consumption.

■ An execution unit that is not being used can be shut down.

■ The cache, an 8-KB, two-way set-associative cache, was organized

into subarrays so that at most two out of eight subarrays will be

accessed on any given clock cycle. A variety of circuit techniques were

also used in the cache to reduce power consumption.

Not all units in the CPU are active all the time; idling them when

they are not being used can save power. The table below shows the

percentage of time various units in the 603 were idle for the SPEC

integer and floating-point benchmarks [Gar94].

A system power manager can both monitor the CPU and other

devices and control their operation to gracefully transition between

power modes. It provides several registers that allow programs to

control power modes, determine why power modes were entered,

determine the current state of power management modes, and so on.

The SA-1100 provides the three power modes described below.

■ Run mode is normal operation and has the highest power

consumption.

■ Idle mode saves power by stopping the CPU clock. The system unit

modules—real- time clock, operating system timer, interrupt control,

general-purpose I/O, and power manager—all remain operational. Idle

mode is entered by executing a three-instruction sequence. The CPU

returns to run mode upon receiving an interrupt from one of the

internal system units or from a peripheral or by resetting the CPU.

This causes the machine to restart the CPU clock and to resume

execution where it left off.

■ Sleep mode shuts off most of the chip’s activity. Entering sleep mode

causes the system to shut down on-chip activity, reset the CPU, and

Embedded Computing Systems 10CS72

negate the PWR_EN pin to tell the external electronics that the chip’s

power supply should be driven to 0 V. A separate I/O power supply

remains on and supplies power to the power manager so that the

CPU can be awakened from sleep mode; the low-speed clock keeps

the power manager running at low speeds sufficient to manage sleep

mode. The CPU software should set several registers to prepare for

sleep mode. Sleep mode is entered by forcing the sleep bit in the

power manager control register; it can also be entered by a power

supply fault. The sleep shutdown sequence happens in three steps,

each of which requires about 30 s. The machine wakes up from

sleep state on a preprogrammed wake-up event. The wake-up

sequence has three steps: the PWR_EN pin is asserted to turn on

the external power supply and waits for about 10 ms; the 3.686-MHz

oscillator is ramped up to speed; and the internal reset is negated

and the CPU boot sequence begins.

Here is the power state machine of the SA-1100 [Ben00]:

Prun 5 400 mW

The sleep mode saves over three orders of magnitude of power

consumption. However, the time required to reenter run mode from

sleep is over a tenth of a second.

The SA-1100 has a companion chip, the SA-1111, that provides an

integrated set of

peripherals. That chip has its own power management modes that
complement the SA-1100.

Dept of CSE Page 97

Embedded Computing Systems 10CS72

Dept of CSE Page 98

3.7 DATA COMPRESSOR

Our design example for this chapter is a data compressor that takes

in data with a constant number of bits per data element and puts out

a compressed data stream in which the data is encoded in variable-

length symbols. Because this chapter concentrates on CPUs, we

focus on the data compression routine itself.

3.7.1 Requirements and Algorithm

We use the Huffman coding technique, which is introduced

in Application

Example 3.4.

We require some understanding of how our compression code

fits into a larger system. Figure 3.20 shows a collaboration diagram

for the data compression process. The data compressor takes in a

sequence of input symbols and then produces a stream of output

symbols. Assume for simplicity that the input symbols are one byte

in length.The output symbols are variable length,so we have to

choose a format in which to deliver the output data. Delivering

each coded symbol separately is tedious, since we would have to

supply the length of each symbol and use external code to pack

them into words. On the other hand, bit-by-bit delivery is almost

certainly too slow. Therefore, we will rely on the data compressor to

pack the coded symbols into an array. There is not a one-to-one

relationship between the input and output symbols, and we may

have to wait for several input symbols before a packed output word

comes out.

Application Example 3.4

Huffman coding for text compression

Embedded Computing Systems 10CS72

Dept of CSE Page 99

Text compression algorithms aim at statistical reductions in the volume

of data. One commonly used compression algorithm is Huffman

coding [Huf52], which makes use of information

The data compressor as discussed above is not a complete

system, but we can create at least a partial requirements list for the

module as seen below. We used the abbreviation N/A for not

applicable to describe some items that do not make sense for a code

module.

Name Data compression module

Purpose Code module for Huffman data

compression Inputs Encoding table, uncoded

byte-size input symbols Outputs Packed

compressed output symbols

Functions Huffman coding Performance

Requires fast performance Manufacturing cost N/A

Power N/A Physical size and weight N/A

3.7.2 Specification

Let’s refine the description of Figure 3.20 to come up with a more

complete speci- fication for our data compression module. That

collaboration diagram concentrates on the steady-state behavior of

the system. For a fully functional system, we have to provide the

following additional behavior.

■ We have to be able to provide the compressor with a new symbol

table.

■ We should be able to flush the symbol buffer to cause the system to

release all pending symbols that have been partially packed. We

may want to do this when we change the symbol table or in the

middle of an encoding session to keep a transmitter busy.

Embedded Computing Systems 10CS72

Dept of CSE Page 100

A class description for this refined understanding of the

requirements on the module is shown in Figure 3.21. The class’s

buffer and current-bit behaviors keep track of the state of the

encoding,and the table attribute provides the current symbol table.

The class has three methods as follows:

■ Encode performs the basic encoding function. It takes in a 1-byte

input sym- bol and returns two values: a boolean showing whether

it is returning a full buffer and, if the boolean is true, the full buffer

itself

■ New-symbol-table installs a new symbol table into the object

and throws away the current contents of the internal buffer.

■ Flush returns the current state of the buffer, including the number

of valid bits in the buffer.

The data-buffer will be used to hold both packed symbols and

unpacked ones (such as in the symbol table). It defines the buffer

itself and the length of the buffer. We have to define a data type

because the longest encoded symbol is longer than an input

symbol. The longest Huffman code for an eight-bit input symbol is

256 bits. (Ending up with a symbol this long happens only when the

symbol probabilities have the proper values.) The insert function

packs a new symbol into the upper bits of the buffer; it also puts

the remaining bits in a new buffer if the current buffer is

overflowed. The Symbol-table class indexes

3.7.3 Program Design

Since we are only building an encoder, the program is fairly

simple. We will use this as an opportunity to compare object-

oriented and non-OO implementations by coding the design in both

C++ and C.

OO design in C++

Embedded Computing Systems 10CS72

Dept of CSE Page 101

First is the object-oriented design using C++, since this

implementation most closely mirrors the specification. The first step

is to design the data buffer. The data buffer needs to be as long as

the longest symbol. We also need to implement a function that lets

us merge in another data_buffer, shifting the incoming buffer by the

proper amount.

const int databuflen = 8; /* as long in bytes as

longest symbol */const int bitsperbyte = 8; /*

definition of byte */

const int bytemask = 0xff; /* use to mask to 8

bits for safety */

const char lowbitsmask [bitsperbyte] = { 0, 1, 3,

7, 15, 31,

63, 127};

/* used to keep low bits in a byte */

typedef char boolean; /* for clarity */

#define TRUE 1

#define FALSE 0

class data_buffer {

char databuf[databuflen];

int len;

int length_in_chars() { return len/bitsperbyte; }

/* length in bytes rounded down-used in

implementation */

public:

Embedded Computing Systems 10CS72

Dept of CSE Page 102

void insert(data_buffer, data_buffer&);

int length() { return len; } /* returns number of

bits in symbol */

int length_in_bytes() { return (int)ceil(len/8.0);

}

void initialize(); /* initializes the data

structure */

void data_buffer::fill(data_buffer, int);

/* puts upper bits of symbol into buffer */

data_buffer& operator = (data_buffer&);

/* assignment operator */

data_buffer() { initialize(); } /* C++

constructor */

∼data_buffer() { } /* C++ destructor */

};

data_buffer empty_buffer; /* use this to
initialize other data_buffers */

void data_buffer::insert(data_buffer newval,

data_buffer&

newbuf) {

/* This function puts the lower bits of a symbol

(newval) into an existing buffer without

overflowing the buffer. Puts spillover, if any,

into newbuf. */

Embedded Computing Systems 10CS72

Dept of CSE Page 103

int i, j, bitstoshift, maxbyte;

/* precalculate number of positions to shift up */

bitstoshift = length() –

length_in_bytes()*bitsperbyte;

/* compute how many bytes to transfer–can't run past

end of this buffer */

maxbyte = newval.length() + length() >

databuflen*bitsperbyte ?

databuflen : newval.length_in_chars();

for (i = 0; i < maxbyte; i++) {

/* add lower bits of this newval byte */

databuf[i + length_in_chars()] | = (newval.databuf[i] <<
bitstoshift) &

byte-mask;

/* add upper bits of this newval byte */

databuf[i + length_in_chars() + 1] | =
(newval.databuf[i] >> (bitsperbyte –

bitstoshift)) &

lowbitsmask[bitsperbyte – bitstoshift];

}

/* fill up new buffer if necessary */

if (newval.length() + length() >

databuflen*bitsperbyte) {

Embedded Computing Systems 10CS72

Dept of CSE Page 104

/* precalculate number of positions to shift down

*/

bitstoshift = length() % bitsperbyte;

for (i = maxbyte, j = 0; i++, j++;

i <= newval.length_in_chars()) {

newbuf.databuf[j] =

(newval.databuf[i] >> bitstoshift) &

bytemask;

newbuf.databuf[j] | = newval.databuf[i + 1] &

lowbitsmask[bitstoshift];

}

}

/* update length */

len = len + newval.length() >

databuflen*bitsperbyte ?

databuflen*bitsperbyte : len +

newval.length();

}

data_buffer& data_buffer::operator=(data_buffer&

e) {

/* assignment operator for data buffer */

int i;

/* copy the buffer itself */

Embedded Computing Systems 10CS72

Dept of CSE Page 105

for (i = 0; i < databuflen; i++)

databuf[i] = e.databuf[i];

/* set length */

len = e.len;

/* return */

return e;

}

void data_buffer::fill(data_buffer newval, int

shiftamt) {

/* This function puts the upper bits of a symbol

(newval) into the buffer. */

int i, bitstoshift, maxbyte;

/* precalculate number of positions to shift up */

bitstoshift = length() –

length_in_bytes()*bitsperbyte;

/* compute how many bytes to transfer–can't run past

end of this buffer */

maxbyte = newval.length_in_chars() > databuflen ?

databuflen : newval.length_in_chars();

for (i = 0; i < maxbyte; i++) {

/* add lower bits of this newval byte */ databuf[i

+ length_in_chars()] = newval.databuf[i] <<

bitstoshift;

Embedded Computing Systems 10CS72

Dept of CSE Page 106

/* add upper bits of this newval byte */

databuf[i + length_in_chars() + 1] =

newval.databuf[i] >> (bitsperbyte –

bitstoshift);

}

}

void data_buffer::initialize() {

/* Initialization code for data_buffer. */

int i;

/* initialize buffer to all zero bits */

for (i = 0; i < databuflen; i++)

databuf[i] = 0;

/* initialize length to zero */

len = 0;

}

The code for data_buffer is relatively complex, and not all of its

complexity was reflected in the state diagram of Figure 3.25. That

does not mean the specification was bad, but only that it was

written at a higher level of abstraction.

The symbol table code can be implemented relatively easily as

shown below.

const int nsymbols = 256;

Embedded Computing Systems 10CS72

Dept of CSE Page 107

class symbol_table {

data_buffer symbols[nsymbols];

public:

data_buffer value(int i) { return symbols[i]; }

void load(symbol_table&);

symbol_table() { } /* C++ constructor */

∼symbol_table() { } /* C++ destructor */

};

void symbol_table::load(symbol_table& newsyms) {

int i;

for (i = 0; i < nsymbols; i++) {

symbols[i] = newsyms.symbols[i];

}

}

Now let’s create the class definition for data_compressor:

typedef char boolean; /* for clarity */

class data_compressor { data_buffer buffer; int

current_bit; symbol_table table;

public:

boolean encode(char, data_buffer&);

void new_symbol_table(symbol_table newtable)

{ table = newtable; current_bit = 0;

Embedded Computing Systems 10CS72

Dept of CSE Page 108

buffer = empty_buffer; }

int flush(data_buffer& buf)

{ int temp = current_bit; buf = buffer;

buffer = empty_buffer; current_bit = 0;

return temp; }

data_compressor() { } /* C++ constructor */

∼data_compressor() { } /* C++ destructor */

};

Now let’s implement the encode() method.The main challenge

here is managing the buffer.

boolean data_compressor::encode(char isymbol,

data_buffer&

fullbuf) {

data_buffer temp;

int overlen;

/* look up the new symbol */

temp = table.value(isymbol); /* the symbol itself

*/

/* will this symbol overflow the buffer? */

overlen = temp.length() + current_bit –

buffer.length(); /* amount of overflow */

Embedded Computing Systems 10CS72

Dept of CSE Page 109

if (overlen > 0) { /* we did in fact overflow */

data_buffer nextbuf; buffer.insert(temp,nextbuf);

/* return the full buffer and keep the next partial

buffer */

fullbuf = buffer; buffer = nextbuf; return TRUE;

} else { /* no overflow */ data_buffer no_overflow;

buffer.insert(temp,no_overflow);

/* won't use this argument */

if (current_bit == buffer.length()) {

/* return current buffer */

fullbuf = buffer;

buffer.initialize(); /* initialize the buffer */

return TRUE;

}

else return FALSE; /* buffer isn't full yet */

}

}

OO design in C

How would we have to modify the implementation for C? We have

two choices in implementation, based on whether we want to

support multiple simultaneous data compressors. If we want to

strictly adhere to the specification, we must be able to run several

simultaneous compressors, since in the object-oriented specification

we can create as many new data-compressor objects as we

want.

Embedded Computing Systems 10CS72

Dept of CSE Page 110

The fun- damental point is that we cannot rely on any global

variables—all of the object state must be replicable. We can do this

relatively easily, making the code only a little more cumbersome. We

create a structure that holds the data part of the object as follows:

struct data_compressor_struct {

data_buffer buffer; int current_bit; sym_table
table;

}

typedef struct data_compressor_struct data_compressor,

data_compressor_ptr; / data type declaration

for convenience */

We would, of course, have to do something similar for the other

classes. Depend- ing on how strict we want to be, we may want to

define data access functions to get to fields in the various structures

we create. C would permit us to get to those struct fields without

using the access functions, but using the access functions would

give us a little extra freedom to modify the structure definitions

later.

We then implement the class methods as C functions, passing in a

pointer to the data_compressor object we want to operate on.

Appearing below is the beginning of the modified encode method

showing how we make explicit all references to the data in the

object.

typedef char boolean; /* for clarity */

#define TRUE 1

#define FALSE 0

boolean data_compressor_encode(data_compressor_ptr

Embedded Computing Systems 10CS72

Dept of CSE Page 111

mycmprs, char isymbol, data_buffer *fullbuf) {

data_buffer temp;

int len, overlen;

/* look up the new symbol */

temp = mycmprs->table[isymbol].value; /* the

symbol itself */

len = mycmprs->table[isymbol].length; /* its

value */

...

(For C++ afficionados, the above amounts to making explicit

the C++ this

pointer.)

static data_buffer buffer; static int

current_bit; static sym_table table;

We have used the C static declaration to ensure that these globals

are not defined outside the file in which they are defined; this gives

us a little added modularity. We would, of course, have to update

the specification so that it makes clear that only one compressor

object can be running at a time. The functions that implement the

methods can then operate directly on the globals as seen below.

boolean data_compressor_encode(char isymbol,

data_buffer*

fullbuf) {

Embedded Computing Systems 10CS72

Dept of CSE Page 112

data_buffer temp;

int len, overlen;

/* look up the new symbol */

temp = table[isymbol].value; /* the symbol itself

*/

len = table[isymbol].length; /* its value */

...

Notice that this code does not need the structure pointer

argument, making it resemble the C++ code a little more closely.

However, horrible bugs will ensue if we try to run two different

compressions at the same time through this code.

What can we say about the efficiency of this code? Efficiency has

many aspects covered in more detail in Chapter 5. For the

moment, let’s consider instruction selection, that is, how well the

compiler does in choosing the right instructions to implement the

operations. Bit manipulations such as we do here often raise con-

cerns about efficiency. But if we have a good compiler and we select

the right data types, instruction selection is usually not a problem. If

we use data types that do not require data type transformations, a

good compiler can select the right instructions to efficiently

implement the required operations.

3.7.4 Testing

How do we test this program module to be sure it works? We

consider testing much more thoroughly in Section 5.10. In the

meantime, we can use common sense to come up with some testing

techniques.

One way to test the code is to run it and look at the output

without consid- ering how the code is written. In this case, we

can load up a symbol table, run some symbols through it, and see

Embedded Computing Systems 10CS72

Dept of CSE Page 113

whether we get the correct result. We can get the symbol table from

outside sources (such as the tables of Application Example 3.4)

Testing the internals of code often requires building scaffolding

code. For example, we may want to test the insert method

separately, which would require building a program that calls the

method with the proper values. If our programming language comes

with an interpreter, building such scaffolding is easier because we

do not have to create a complete executable, but we often want to

automate such tests even with interpreters because we will usually

execute them several times

Embedded Computing Systems 10CS72

Dept of CSE Page 114

UNIT 3

BUS-Based Computer Systems

3.1 THE CPU BUS

A computer system encompasses much more than the CPU; it also

includes memory and I/O devices. The bus is the mechanism by

which the CPU communicates with memory and devices. A bus is,

at a minimum, a collection of wires, but the bus also defines a

protocol by which the CPU, memory, and devices communicate.

One of the major roles of the bus is to provide an interface to

memory. (Of course, I/O devices also connect to the bus.) Based on

understanding of the bus, we study the characteristics of memory

components in this section.

3.1.1 Bus Protocols

The basic building block of most bus protocols is the four-cycle

handshake, illustrated in Figure 4.1. The handshake ensures that

when two devices want to communicate, one is ready to transmit

and the other is ready to receive. The hand- shake uses a pair of

wires dedicated to the handshake: enq (meaning enquiry) and ack

(meaning acknowledge). Extra wires are used for the data

transmitted during the handshake. The four cycles are described

below.

1. Device 1 raises its output to signal an enquiry, which tells

device 2 that it should get ready to listen for data.

Embedded Computing Systems 10CS72

Dept of CSE Page 115

2. When device 2 is ready to receive, it raises its output to signal

an acknowl- edgment. At this point, devices 1 and 2 can transmit

or receive.

3. Once the data transfer is complete, device 2 lowers its output,

signaling that it has received the data.

4. After seeing that ack has been released, device 1 lowers its

output.

At the end of the handshake, both handshaking signals are low,

just as they were at the start of the handshake. The system has thus

returned to its original state in readiness for another handshake-

enabled data transfer.

Microprocessor buses build on the handshake for communication

between the CPU and other system components. The term bus is

used in two ways. The most basic use is as a set of related wires,

such as address wires. However, the term may also mean a protocol

for communicating between components. To avoid confusion, we

will use the term bundle to refer to a set of related signals. The

fundamental bus operations are reading and writing. Figure 4.2

shows the structure of a typical bus that supports reads and writes.

The major components follow:

■ Clock provides synchronization to the bus components,

■ R/W is true when the bus is reading and false when the bus is

writing,

■ Address is an a-bit bundle of signals that transmits the address

for an access,

Embedded Computing Systems 10CS72

Dept of CSE Page 116

■ Data is an n-bit bundle of signals that can carry data to or from

the CPU, and

■ Data ready signals when the values on the data bundle are

valid.

All transfers on this basic bus are controlled by the CPU—the

CPU can read or write a device or memory, but devices or memory

cannot initiate a transfer. This is reflected by the fact that R/W and

address are unidirectional signals, since only the CPU can

determine the address and direction of the transfer.

Fig

The behavior of a bus is most often specified as a timing

diagram. A timing diagram shows how the signals on a bus vary

over time, but since values like the address and data can take on

many values, some standard notation is used to describe signals,

as shown in Figure 4.3. A’s value is known at all times, so it is

shown as a standard waveform that changes between zero and

one. B and C alternate between changing and stable states. A

stable signal has, as the name implies, a stable value that could be

measured by an oscilloscope, but the exact value of that signal

does not matter for purposes of the timing diagram. For exam- ple,

an address bus may be shown as stable when the address is

present, but the bus’s timing requirements are independent of the

exact address on the bus. A signal can go between a known 0/1 state

and a stable/changing state. A changing signal does not have a stable

value. Changing signals should not be used for computation. To be

sure that signals go to their proper values at the proper times, timing

diagrams sometimes show timing constraints. We draw timing

constraints in two different ways, depending on whether we are

concerned with the amount of time between events or only the

order of events. The timing constraint from A to B, for example,

Embedded Computing Systems 10CS72

Dept of CSE Page 117

shows that A must go high before B becomes stable. The constraint

from A to B also has a time value of 10 ns, indicating that A goes

high at least 10 ns before B goes stable.

Figure 3 .4 shows a timing diagram for the example bus. The

diagram shows a read and a write. Timing constraints are shown

only for the read operation, but similar constraints apply to the

write operation. The bus is normally in the read mode since that

does not change the state of any of the devices or memories. The

CPU can then ignore the bus data lines until it wants to use the

results of a read. Notice also that the direction of data transfer on

bidirectional lines is not specified in the timing diagram. During a

read, the external device or memory is sending a value on the data

lines, while during a write the CPU is controlling the data lines.

The sequence of operations for a read on the timing diagram as

follows:

■ A read or write is initiated by setting address enable high after the

clock starts to rise. We set R/W 1 to indicate a read, and the

address lines are set to the desired address.

■ One clock cycle later, the memory or device is expected to assert

the data value at that address on the data lines. Simultaneously,

the external device specifies that the data are valid by pulling down

the data ready line. This line is active low, meaning that a

logically true value is indicated by a low voltage, in order to provide

increased immunity to electrical noise.

■ The CPU is free to remove the address at the end of the clock cycle

and must do so before the beginning of the next cycle. The external

device has a similar requirement for removing the data value from

the data lines.

The write operation has a similar timing structure. The read/write

sequence does illustrate that timing constraints are required on the

Embedded Computing Systems 10CS72

Dept of CSE Page 118

transition of the R/W signal between read and write states. The

signal must, of course, remain stable within a read or write. As a

result there is a restricted time window in which the CPU can

change between read and write modes.

The handshake that tells the CPU and devices when data are to be

transferred is formed by data ready for the acknowledge side, but is

implicit for the enquiry side. Since the bus is normally in read

mode, enq does not need to be asserted, but the acknowledge must

be provided by data ready.

The data ready signal allows the bus to be connected to devices

that are slower than the bus. As shown in Figure 4.5, the external

device need not immediately assert data ready. The cycles

between the minimum time at which data can be asserted and

when it is actually asserted are known as wait states. Wait states

are commonly used to connect slow, inexpensive memories to

buses.

We can also use the bus handshaking signals to perform burst

transfers, as illustrated in Figure 4.6. In this burst read

transaction, the CPU sends one address but receives a sequence of

data values. We add an extra line to the bus, called burst9

here,which signals when a transaction is actually a burst. Releasing

the burst9 signal tells the device that enough data has been

transmitted. To stop receiving data after the end of data 4, the CPU

releases the burst9 signal at the end of data 3 since the device

requires some time to recognize the end of the burst. Those values

come from successive memory locations starting at the given

address.

Some buses provide disconnected transfers. In these buses, the

request and response are separate. A first operation requests the

transfer. The bus can then be used for other operations. The transfer

is completed later, when the data are ready.

The state machine view of the bus transaction is also helpful and

a useful com- plement to the timing diagram. Figure 4.7 shows the

CPU and device state machines for the read operation. As with a

timing diagram, we do not show all the possible values of address

Embedded Computing Systems 10CS72

Dept of CSE Page 119

and data lines but instead concentrate on the transitions of control

signals. When the CPU decides to perform a read transaction, it moves

to a new state, sending bus signals that cause the device to behave

appropriately. The device’s state transition graph captures its side of

the protocol.

Some buses have data bundles that are smaller than the natural

word size of the CPU. Using fewer data lines reduces the cost of

the chip. Such buses are eas- iest to design when the CPU is

natively addressable. A more complicated proto- col hides the

smaller data sizes from the instruction execution unit in the CPU.

Byte addresses are sequentially sent over the bus, receiving one

byte at a time; the bytes are assembled inside the CPU’s bus logic

before being presented to the CPU proper.

Some buses use multiplexed address and data. As shown in Figure

4.8, additional control lines are provided to tell whether the value

on the address/data lines is an address or data. Typically, the

address comes first on the combined address/data lines, followed

by the data. The address can be held in a register until the data arrive

so that both can be presented to the device (such as a RAM) at the

same time.

3.1.2 DMA

Standard bus transactions require the CPU to be in the middle of

every read and write transaction. However, there are certain types

of data transfers in which the CPU does not need to be involved. For

example, a high-speed I/O device may want to transfer a block of

data into memory. While it is possible to write a program that

alternately reads the device and writes to memory, it would be

faster to eliminate the CPU’s involvement and let the device and

memory communicate directly. This

Direct memory access (DMA) is a bus operation that allows reads

and writes not controlled by the CPU. A DMA transfer is

controlled by a DMA controller , which requests control of the bus

from the CPU. After gaining control, the DMA con- troller performs

Embedded Computing Systems 10CS72

Dept of CSE Page 120

read and write operations directly between devices and memory.

Figure 4.9 shows the configuration of a bus with a DMA

controller. The DMA

requires the CPU to provide two additional bus signals:

■ The bus request is an input to the CPU through which DMA

controllers ask for ownership of the bus.

■ The bus grant signals that the bus has been granted to the DMA

controller.

A device that can initiate its own bus transfer is known as a bus

master . Devices that do not have the capability to be bus masters

do not need to connect to a bus request and bus grant. The DMA

controller uses these two signals to gain control of the bus using a

classic four-cycle handshake. The bus request is asserted by the

DMA controller when it wants to control the bus, and the bus grant

is asserted by the CPU when the bus is ready.

The CPU will finish all pending bus transactions before granting

control of the bus to the DMA controller. When it does grant

control, it stops driving the other bus signals: R/W, address, and so

on. Upon becoming bus master, the DMA con- troller has control

of all bus signals (except, of course, for bus request and bus

grant).

Once the DMA controller is bus master, it can perform reads and

writes using the same bus protocol as with any CPU-driven bus

transaction. Memory and devices do not know whether a read or

write is performed by the CPU or by a DMA controller. After the

transaction is finished, the DMA controller returns the bus to the

CPU by deasserting the bus request, causing the CPU to deassert the

bus grant.

The CPU controls the DMA operation through registers in the

DMA controller. A typical DMA controller includes the following

Embedded Computing Systems 10CS72

Dept of CSE Page 121

three registers:

■ A starting address register specifies where the transfer is to begin.

■ A length register specifies the number of words to be transferred.

■ A status register allows the DMA controller to be operated by the

CPU.

The CPU initiates a DMA transfer by setting the starting address

and length reg- isters appropriately and then writing the status

register to set its start transfer bit. After the DMA operation is

complete, the DMA controller interrupts the CPU to tell it that the

transfer is done.

What is the CPU doing during a DMA transfer? It cannot use the bus.

As illustrated in Figure 4.10,if the CPU has enough instructions and

data in the cache and registers, it may be able to continue doing

useful work for quite some time and may not notice the DMA transfer.

But once the CPU needs the bus, it stalls until the DMA controller

returns bus mastership to the CPU.

To prevent the CPU from idling for too long, most DMA

controllers implement modes that occupy the bus for only a few

cycles at a time. For example, the trans- fer may be made 4, 8, or

16 words at a time. As illustrated in Figure 4.11, after each block,

the DMA controller returns control of the bus to the CPU and goes

to sleep for a preset period, after which it requests the bus again

for the next block transfer.

3.1.3 System Bus Configurations

A microprocessor system often has more than one bus. As shown

in Figure 4.12, high-speed devices may be connected to a high-

performance bus, while lower-speed devices are connected to a

Embedded Computing Systems 10CS72

Dept of CSE Page 122

different bus. A small block of logic known as a bridge allows the

buses to connect to each other. There are several good reasons to

use multiple buses and bridges:

■ Higher-speed buses may provide wider data connections.

■ A high-speed bus usually requires more expensive circuits and

connectors. The cost of low-speed devices can be held down by

using a lower-speed, lower-cost bus.

The bridge may allow the buses to operate independently, thereby

providing some parallelism in I/O operations.

In Section 4.5.3, we see that PCs often use this methodology.

Let’s consider the operation of a bus bridge between what we will

call a fast bus and a slow bus as illustrated in Figure 4.13. The bridge

is a slave on the fast bus and the master of the slow bus. The bridge

takes commands from the fast bus on which it is a slave and issues

those commands on the slow bus. It also returns the results from the

slow bus to the fast bus—for example, it returns the results of a

read on the slow bus to the fast bus.

The upper sequence of states handles a write from the fast bus to

the slow bus. These states must read the data from the fast bus and

set up the handshake for the slow bus. Operations on the fast and

slow sides of the bus bridge should be overlapped as much as

possible to reduce the latency of bus-to-bus transfers. Similarly, the

bottom sequence of states reads from the slow bus and writes the

data to the fast bus.

The bridge serves as a protocol translator between the two

bridges as well. If the bridges are very close in protocol operation

and speed, a simple state machine may be enough. If there are larger

differences in the protocol and timing between the two buses, the

bridge may need to use registers to hold some data values

temporarily.

3.1.4 AMBA Bus

Embedded Computing Systems 10CS72

Dept of CSE Page 123

Since the ARM CPU is manufactured by many different vendors, the

bus provided off-chip can vary from chip to chip. ARM has created

a separate bus specification for single-chip systems. The AMBA bus

[ARM99A] supports CPUs, memories, and peripherals integrated in

a system-on-silicon. As shown in Figure 4.14, the AMBA

specification includes two buses. The AMBA high-performance bus

(AHB) is opti- mized for high-speed transfers and is directly

connected to the CPU. It supports several high-performance

features: pipelining, burst transfers, split transactions, and multiple

bus masters.

A bridge can be used to connect the AHB to an AMBA

peripherals bus (APB). This bus is designed to be simple and easy to

implement; it also consumes relatively little power. The AHB

assumes that all peripherals act as slaves, simplifying the logic

required in both the peripherals and the bus controller. It also does

not perform pipelined operations, which simplifies the bus logic.

3.2 MEMORY DEVICES

In this section, we introduce the basic types of memory components

that are com- monly used in embedded systems. Now that we

understand the operation of the bus, we are able to understand the

pinouts of these memories and how values are read and written. We

also need to understand the varieties of memory cells that are used

to build memories. There are several varieties of both read-only and

read/write memories, each with its own advantages. After discussing

some basic characteristics of memories, we describe RAMs and then

ROMs.

3.2.1 Memory Device Organization

The most basic way to characterize a memory is by its capacity,

such as 256 MB. However, manufacturers usually make several

versions of a memory of a given size, each with a different data

width. For example, a 256-MB memory may be available in two

versions:

■ As a 64 M 4-bit array, a single memory access obtains an 8-bit data

item, with a maximum of 226 different addresses.

Embedded Computing Systems 10CS72

Dept of CSE Page 124

■ As a 32 M 8-bit array, a single memory access obtains a 1-bit data
item, with a maximum of 223 different addresses.

The height/width ratio of a memory is known as its aspect

ratio. The best aspect ratio depends on the amount of memory

required.

Internally, the data are stored in a two-dimensional array of

memory cells as shown in Figure 4.15. Because the array is stored in

two dimensions,the n-bit address received by the chip is split into

a row and a column address (with n r c).

The row and column select a particular memory cell. If the

memory’s external width is 1 bit, the column address selects a

single bit; for wider data widths, the column address can be used

to select a subset of the columns. Most memories include an

enable signal that controls the tri-stating of data onto the

memory’s pins. We will see in Section 4.4.1 how the enable pin

can be used to easily build large memories from multiple banks of

memory chips. A read/write signal (R/W in the figure) on read/write

memories controls the direction of data transfer; memory chips do

not typically have separate read and write data pins.

3.2.2 Random-Access Memories

Random-access memories can be both read and written. They are

called random access because, unlike magnetic disks, addresses

can be read in any order. Most bulk memory in modern systems is

dynamic RAM (DRAM). DRAM is very dense; it does, however,

require that its values be refreshed periodically since the values

inside the memory cells decay over time.

The dominant form of dynamic RAM today is the synchronous

DRAMs (SDRAMs), which uses clocks to improve DRAM

performance. SDRAMs use Row Address Select (RAS) and Column

Address Select (CAS) signals to break the address into two parts,

which select the proper row and column in the RAM array. Signal

Embedded Computing Systems 10CS72

Dept of CSE Page 125

transitions are relative to the SDRAM clock, which allows the

internal SDRAM operations to be pipelined

As shown in Figure 4.16, transitions on the control signals are

related to a clock [Mic00]. RAS and CAS can therefore become

valid at the same time. The address lines are not shown in full detail

here; some address lines may not be active depend- ing on the mode

in use. SDRAMs use a separate refresh signal to control refreshing.

DRAM has to be refreshed roughly once per millisecond. Rather

than refresh the entire memory at once, DRAMs refresh part of the

memory at a time. When a section of memory is being refreshed, it

cannot be accessed until the refresh is complete. The memory

refresh occurs over fairly few seconds so that each section is

refreshed every few microseconds.

SDRAMs include registers that control the mode in which the

SDRAM operates. SDRAMs support burst modes that allow several

sequential addresses to be accessed by sending only one address.

SDRAMs generally also support an interleaved mode that

exchanges pairs of bytes.

Even faster synchronous DRAMs, known as double-data rate

(DDR) SDRAMs or DDR2 and DDR3 SDRAMs, are now in use. The

details of DDR operation are beyond the scope of this book, but

the basic capabilities of DDR memories are similar to those of single-

rate SDRAMs; DDRs simply use sophisticated circuit techniques to

perform more operations per clock cycle.

SIMMs and DIMMs

Memory for PCs is generally purchased as single in-line

memory modules (SIMMs) or double in-line memory modules

(DIMMs). A SIMM or DIMM is a small circuit board that fits into a

standard memory socket. A DIMM has two sets of leads compared

to the SIMM’s one. Memory chips are soldered to the circuit

board to supply the desired memory.

3.2.3 Read-Only Memories

Read-only memories (ROMs) are preprogrammed with fixed data.

Embedded Computing Systems 10CS72

Dept of CSE Page 126

They are very useful in embedded systems since a great deal of the

code, and perhaps some data, does not change over time. Read-only

memories are also less sensitive to radiation- induced errors.

There are several varieties of ROM available. The first-level

distinction to be made is between factory-programmed ROM

(sometimes called mask-programmed ROM) and field-

programmable ROM . Factory-programmed ROMs are ordered from

the factory with particular programming. ROMs can typically be

ordered in lots of a few thousand, but clearly factory programming

is useful only when the ROMs are to be installed in some quantity.

Field-programmable ROMs, on the other hand, can be

programmed in the lab. Flash memory is the dominant form of

field-programmable ROM and is electrically erasable. Flash memory

uses standard system voltage for erasing and programming,

allowing it to be reprogrammed inside a typical system.This allows

applications such as automatic distribution of upgrades—the flash

memory can be reprogrammed while downloading the new

memory contents from a telephone line. Early flash memories had

to be erased in their entirety; modern devices allow memory to be

erased in blocks. Most flash memories today allow certain blocks to

be protected..

3.3 I/O DEVICES

In this section we survey some input and output devices commonly

used in embed- ded computing systems. Some of these devices are

often found as on-chip devices in micro-controllers; others are

generally implemented separately but are still com- monly used.

Looking at a few important devices now will help us understand

both the requirements of device interfacing in this chapter and the

uses of devices in programming in this and later chapters.

3.3.1 Timers and Counters

Timers and counters are distinguished from one another largely

Embedded Computing Systems 10CS72

Dept of CSE Page 127

by their use, not their logic. Both are built from adder logic with

registers to hold the current value, with an increment input that adds

one to the current register value.

A timer has its count connected to a periodic clock signal to measure

time intervals, while a counter has its count input connected to an

aperiodic signal in order to count the number of occurrences of

some external event. Because the same logic can be used for either

purpose, the device is often called a counter/timer .

Figure 4.17 shows enough of the internals of a counter/timer to

illustrate its operation. An n-bit counter/timer uses an n-bit register

to store the current state of the count and an array of half

subtractors to decrement the count when the count signal is

asserted. Combinational logic checks when the count equals zero;

the done output signals the zero count. It is often useful to be able

to control the time-out, rather than require exactly 2n events to

occur. For this purpose, a reset register provides the value with

which the count register is to be loaded. The counter/timer

provides logic to load the reset register. Most counters provide

both cyclic and acyclic modes of operation. In the cyclic mode,

once the counter reaches the done state, it is automatically

reloaded and the counting process continues. In acyclic mode, the

counter/timer waits for an explicit signal from the microprocessor

to resume counting.

A watchdog timer is an I/O device that is used for internal

operation of a system. As shown in Figure 4.18, the watchdog timer

is connected into the CPU bus and also to the CPU’s reset line. The

CPU’s software is designed to periodically reset

the watchdog timer, before the timer ever reaches its time-out limit. If

the watchdog timer ever does reach that limit, its time-out action is

to reset the processor. In that case, the presumption is that either a

software flaw or hardware problem has caused the CPU to

misbehave. Rather than diagnose the problem, the system is reset to

get it operational as quickly as possible.

Embedded Computing Systems 10CS72

Dept of CSE Page 128

3.3.2 A/D and D/A Converters

Analog/digital (A/D) and digital/analog (D/A) converters

(typically known as ADCs and DACs, respectively) are often used

to interface nondigital devices to embedded systems. The design

of A/D and D/A converters themselves is beyond the scope of this

book; we concentrate instead on the interface to the micropro-

cessor bus. Because A/D conversion requires more complex

circuitry, it requires a somewhat more complex interface.

Analog/digital conversion requires sampling the analog input

before convert- ing it to digital form. A control signal causes the

A/D converter to take a sample and digitize it.

There are several different types of A/D converter circuits, some of

which take a constant amount of time, while the conversion time of

others depends on the sam- pled value.Variable-time converters

provide a done signal so that the microprocessor knows when the

value is ready.

A typical A/D interface has, in addition to its analog inputs, two

major digital inputs. A data port allows A/D registers to be read and

written, and a clock input tells when to start the next conversion.

D/A conversion is relatively simple, so the D/A converter

interface generally includes only the data value. The input value is

continuously converted to analog form.

3.3.3 Keyboards

A keyboard is basically an array of switches, but it may include

some internal logic to help simplify the interface to the

microprocessor. In this chapter, we build our understanding from a

single switch to a microprocessor-controlled keyboard A hardware

debouncing circuit can be built using a one-shot timer. Software can

also be used to debounce switch inputs. A raw keyboard can be

assembled from several switches. Each switch in a raw keyboard

Embedded Computing Systems 10CS72

Dept of CSE Page 129

has its own pair of terminals, making raw keyboards impractical

when a large number of keys is required.

The microprocessor can provide debouncing, but it also

provides other functions as well. An encoded keyboard uses some

code to represent which switch is cur- rently being depressed. At

the heart of the encoded keyboard is the scanned array of switches

shown in Figure 4.20. Unlike a raw keyboard, the scanned

keyboard array reads only one row of switches at a time. The

demultiplexer at the left side of the array selects the row to be read.

When the scan input is 1, that value is trans- mitted to one terminal

of each key in the row. If the switch is depressed, the 1 is sensed

at that switch’s column. Since only one switch in the column is

activated, that value uniquely identifies a key. The row address and

column output can be used for encoding, or circuitry can be used to

give a different encoding.

A consequence of encoding the keyboard is that combinations of

keys may not be represented. For example, on a PC keyboard, the

encoding must be chosen so that combinations such as control-Q

can be recognized and sent to the PC. Another consequence is that

rollover may not be allowed. For example, if you press ―a,‖ and then

press ―b‖ before releasing ―a,‖ in most applications you want the

keyboard to send an ―a‖ followed by a ―b.‖ Rollover is very

common in typing at even modest rates. A naive implementation of

the encoder circuitry will simply throw away any character

depressed after the first one until all the keys are released. The

keyboard microcontroller can be programmed to provide n-key

rollover , so that rollover keys are sensed, put on a stack, and

transmitted in sequence as keys are released.

3.3.4 LEDs

Light-emitting diodes (LEDs) are often used as simple displays by

themselves, and arrays of LEDs may form the basis of more complex

displays. Figure 4.21 shows how to connect an LED to a digital

output. A resistor is connected between the output pin and the LED

to absorb the voltage difference between the digital output voltage

Embedded Computing Systems 10CS72

Dept of CSE Page 130

and the 0.7 V drop across the LED. When the digital output goes to

0, the LED voltage is in the device’s off region and the LED is not on.

3.3.5 Displays

A display device may be either directly driven or driven from a

frame buffer. Typi- cally, displays with a small number of elements

are driven directly by logic, while large displays use a RAM frame

buffer.

The n-digit array, shown in Figure 4.22, is a simple example of a

display that is usually directly driven. A single-digit display

typically consists of seven segments; each segment may be either

an LED or a liquid crystal display (LCD) element. This display

relies on the digits being visible for some time after the drive to

the digit is removed, which is true for both LEDs and LCDs. The

digit input is used to choose which digit is currently being

updated, and the selected digit activates its display elements based

on the current data value. The display’s driver is responsible for

repeatedly scanning through the digits and presenting the current

value of each to the display.

A frame buffer is a RAM that is attached to the system bus. The

microprocessor writes values into the frame buffer in whatever

order is desired. The pixels in the frame buffer are generally

written to the display in raster order (by tradition, the screen is in

the fourth quadrant) by reading pixels sequentially.

Many large displays are built using LCD. Each pixel in the

display is formed by a single liquid crystal. LCD displays present a

very different interface to the system because the array of pixel

LCDs can be randomly accessed. Early LCD panels were called

passive matrix because they relied on a two-dimensional grid of

wires to address the pixels. Modern LCD panels use an active

matrix system that puts a transistor at each pixel to control access

to the LCD. Active matrix displays provide higher contrast and a

higher-quality display

Embedded Computing Systems 10CS72

Dept of CSE Page 131

3.3.6 Touchscreens

A touchscreen is an input device overlaid on an output device.

The touchscreen registers the position of a touch to its surface. By

overlaying this on a display, the user can react to information shown

on the display.

The two most common types of touchscreens are resistive

and capacitive. A resistive touchscreen uses a two-dimensional

voltmeter to sense position. As shown in Figure 4.23, the

touchscreen consists of two conductive sheets separated by spacer

balls. The top conductive sheet is flexible so that it can be pressed

to touch the bottom sheet. A voltage is applied across the sheet; its

resistance causes a voltage gradient to appear across the sheet. The

top sheet samples the conductive sheet’s applied voltage at the

contact point. An analog/digital converter is used to measure the

voltage and resulting position. The touchscreen alternates

between x and y position sensing by alternately applying

horizontal and vertical voltage gradients.

3.4 COMPONENT INTERFACING

Building the logic to interface a device to a bus is not too difficult

but does take some attention to detail. We first consider interfacing

memory components to the bus, since that is relatively simple, and

then use those concepts to interface to other types of devices.

3.4.1 Memory Interfacing

If we can buy a memory of the exact size we need, then the

memory structure is simple. If we need more memory than we can

buy in a single chip, then we must construct the memory out of

several chips. We may also want to build a memory that is wider

than we can buy on a single chip; for example, we cannot

generally buy a 32-bit-wide memory chip. We can easily construct a

memory of a given width (32 bits, 64 bits, etc.) by placing RAMs in

parallel.

3.4.2 Device Interfacing

Embedded Computing Systems 10CS72

Dept of CSE Page 132

Some I/O devices are designed to interface directly to a

particular bus, forming glueless interfaces. But glue logic is

required when a device is connected to a bus for which it is not

designed.

An I/O device typically requires a much smaller range of addresses than

a memory, so addresses must be decoded much more finely. Some

additional logic is required to cause the bus to read and write the

device’s registers.

3.5 DESIGNING WITH MICROPROCESSORS

In this section we concentrate on how to create an initial working

embedded system and how to ensure that the system works

properly. Section 4.5.1 considers possible architectures for

embedded computing systems. Section 3.5.2 studies techniques for

designing the hardware components of embedded systems. Section

4.5.3 describes the use of the PC as an embedded computing

platform.

3.5.1 System Architecture

We know that an architecture is a set of elements and the

relationships between them that together form a single unit. The

architecture of an embedded computing system is the blueprint for

implementing that system—it tells you what components you need

and how you put them together.

The architecture of an embedded computing system includes both

hardware and software elements. Let’s consider each in turn.

The hardware architecture of an embedded computing system is

the more obvi- ous manifestation of the architecture since you can

touch it and feel it. It includes several elements, some of which may

be less obvious than others.

■ CPU An embedded computing system clearly contains a

microprocessor. But which one? There are many different

architectures, and even within an architecture we can select

between models that vary in clock speed, bus data width, integrated

Embedded Computing Systems 10CS72

Dept of CSE Page 133

peripherals, and so on. The choice of the CPU is one of the most

important, but it cannot be made without considering the software

that will execute on the machine.

■ Bus The choice of a bus is closely tied to that of a CPU, since the

bus is an integral part of the microprocessor

Memory Once again, the question is not whether the system will have

mem- ory but the characteristics of that memory. The most obvious

characteristic is total size, which depends on both the required data

volume and the size of the program instructions. The ratio of ROM to

RAM and selection of DRAM versus SRAM can have a significant

influence on the cost of the system. The speed of the memory will

play a large part in determining system performance.

■ Input and output devices The user’s view of the input and output

mech- anisms may not correspond to the devices connected to the

microprocessor. For example, a set of switches and knobs on a front

panel may all be controlled by a single microcontroller, which is in

turn connected to the main CPU. For a given function, there may be

several different devices of varying sophistica- tion and cost that

can do the job. The difficulty of using a particular device, such as

the amount of glue logic required to interface it, may also play a

role in final device selection.

You may not think of programs as having architectures, but well-

designed programs do have structure that represents an

architecture. A fundamental task in software architecture design is

partitioning —breaking the functionality into pieces in a way that

makes it easy to implement, test, and modify.

Most embedded systems will do more than one thing—for

example, processing streams of data and handling the user

interface. Mixing together different types of functionality into a

single code module leads to spaghetti code, which has poorly

structured control flow, excessive use of global data, and generally

unreliable programs.

Breaking the system’s functionality into pieces that roughly

Embedded Computing Systems 10CS72

Dept of CSE Page 134

correspond to the major modes of operation and functions of the

device is often a good choice. First, different types of functionality

often require different programming styles, so that they will

naturally fall into different procedures in the code. Second,the

functionality boundaries often correspond to performance

requirements. Since at least some of the software components will

almost certainly have to finish executing within a given deadline,

it is important to be able to identify the code that must satisfy the

deadline and to measure the performance of that code.

It is also important to remember that some of the functionality

may in fact be implemented in the I/O devices. You may have a

choice between using a simple, inexpensive device that requires

more software support or a more sophisticated and expensive device

that can perform more functions automatically. (An example in the

digital audio domain is -law scaling, which can be done

automatically by some analog/digital converters.) Using DMA to

move data rather than a programmed loop is another example of

using hardware to substitute for software. Most of the functionality

will be in the software, but careful consideration of the hardware

architecture can help simplify the software and make it easier for

the software to meet its performance requirements.

3.5.2 Hardware Design

The design complexity of the hardware platform can vary

greatly, from a totally off-the-shelf solution to a highly customized

design.

At the board level,the first step is to consider evaluation boards

supplied by the microprocessor manufacturer or another company

working in collaboration with the manufacturer. Evaluation boards

are sold for many microprocessor systems; they typically include

the CPU, some memory, a serial link for downloading programs,

and some minimal number of I/O devices. Figure 4.24 shows an

ARM evaluation board manufactured by Sharp. The evaluation

board may be a complete solution or provide what you need with

only slight modifications. If the evaluation board is supplied by the

microprocessor vendor, its design (netlist, board layout, etc.) may

be available from the vendor; companies provide such information

Embedded Computing Systems 10CS72

Dept of CSE Page 135

to make it easy for customers to use their microprocessors. If the

evaluation board comes from a third party, it may be possible to

contract them to design a new board with your required

modifications, or you can start from scratch on a new board design.

The other major task is the choice of memory and peripheral

components. In the case of I/O devices, there are two alternatives

for each device: selecting a

component from a catalog or designing one yourself. When

shopping for devices from a catalog, it is important to read data

sheets carefully—it may not be trivial to figure out whether the

device does what you need it to do. You should also con- sider the

amount of glue logic required to connect the device to your bus.

Simple peripheral logic can be implemented in programmable

logic devices (PLDs), while more complex units can be built from

field-programmable gate arrays (FPGAs).

3.5.3 The PC as a Platform

Personal computers are often used as platforms for embedded

computing. A PC offers several important advantages—it is a

predesigned hardware platform with a great many features, a wide

variety of I/O devices can be purchased for it, and it provides a rich

programming environment. Because a PC-based system does not use

custom hardware, it also carries the resulting disadvantages. It is

larger, more power- hungry, and more expensive than a custom

hardware platform would be. However, for low-volume

applications and environments such as factories and offices where

size and power are not critical,using a PC to build an embedded

system often makes a lot of sense.The term personal computer

has come to apply to a variety of machines, including IBM-

compatibles, Macs, and others. In this section, we describe a generic

PC architecture with some discussion of features relevant to

different types of PCs. A detailed discussion of any of these

platforms is beyond the scope of this book.

As shown in Figure 4.25, a typical PC includes several major

Embedded Computing Systems 10CS72

Dept of CSE Page 136

hardware com- ponents:

■ The CPU provides basic computational facilities.

■ RAM is used for program storage.

ROM holds the boot program.

■ A DMA controller provides DMA capabilities.

■ Timers are used by the operating system for a variety of purposes.

■ A high-speed bus, connected to the CPU bus through a bridge,

allows fast devices to communicate efficiently with the rest of the

system.

■ A low-speed bus provides an inexpensive way to connect simpler

devices and may be necessary for backward compatibility as well.

PCI (Peripheral Component Interconnect) is the dominant high-

perfor- mance system bus today. PCI uses high-speed data

transmission techniques and efficient protocols to achieve high

throughput. The original PCI standard allowed operation up to 33

MHz; at that rate, it could achieve a maximum transfer rate of

264 MB/s using 64-bit transfers. The revised PCI standard allows the

bus to run up to 66 MHz, giving a maximum transfer rate of 524

MB/s with 64-bit wide transfers.

PCI uses wide buses with many data and address bits along with

multiple control bits.The width of the bus both increases the cost of

an interface to the bus and makes the physical connection to the bus

more complicated. As a result, PC manufacturers have introduced

serial buses to provide high-speed transfers while keeping the cost

of connecting to the bus relatively low. USB (Universal Serial Bus)

Embedded Computing Systems 10CS72

Dept of CSE Page 137

and IEEE 1394 are the two major high-speed serial buses. Both of

these buses offer high transfer rates using simple connectors. They

also allow devices to be chained together so that users don’t have

to worry about the order of devices on the bus or other details of

connection.

A PC also provides a standard software platform that provides

interfaces to the underlying hardware as well as more advanced

services. At the bottom of the soft- ware platform structure in most

PCs is a minimal set of software in ROM. This software is

designed to load the complete operating system from some other

device (disk, network, etc.), and it may also provide low-level

hardware interfaces. In the IBM-compatible PC, the low-level

software is known as the basic input/output system (BIOS). The

BIOS provides low-level hardware drivers as well as booting

facilities. The operating system provides high-level drivers, control

of executing pro- cesses, user interfaces, and so on. Because the PC

software environment is so rich, developing embedded code for a

PC target is much easier than when a host must be connected to a

CPU in a development target. However, if the software is delivered

directly on a standard version of the operating system, the resulting

software pack- age will require significant amounts of RAM as well

as occupy a large disk image. Developers often create pared down

versions of the operating system for delivering embedded code on

PC platforms.

Both the IBM-compatible PC and the Mac provide a combination

of hardware and software that allows devices to provide their own

configuration information. On the IBM-compatible PC, this is known

as the Plug-and-Play standard developed by Microsoft. These

standards make it possible to plug in a device and have it work

directly, without hardware or software intervention from the user.

3.6 DEVELOPMENT AND DEBUGGING

In this section we take a step back from the platform and consider

how it is used during design. We first consider how we can build an

effective means for program- ming and testing an embedded system

using hosts. We then see how hosts and other techniques can be used

for debugging embedded systems.

Embedded Computing Systems 10CS72

Dept of CSE Page 138

3.6.1 Development Environments

A typical embedded computing system has a relatively small

amount of everything, including CPU horsepower, memory, I/O

devices, and so forth. As a result, it is com- mon to do at least part of

the software development on a PC or workstation known as a host

as illustrated in Figure 4.26. The hardware on which the code will

finally run is known as the target . The host and target are frequently

connected by a USB link, but a higher-speed link such as Ethernet

can also be used.

The target must include a small amount of software to talk to the

host system. That software will take up some memory, interrupt

vectors, and so on, but it should generally leave the smallest

possible footprint in the target to avoid interfering with the

application software. The host should be able to do the following:

■ load programs into the target,

■ start and stop program execution on the target, and

■ examine memory and CPU registers.

A cross-compiler is a compiler that runs on one type of

machine but gener- ates code for another. After compilation, the

executable code is downloaded to the embedded system by a serial

link or perhaps burned in a PROM and plugged in. We also often

make use of host-target debuggers,in which the basic hooks for

debugging are provided by the target and a more sophisticated user

interface is created by the host.

A PC or workstation offers a programming environment that is

in many ways much friendlier than the typical embedded

computing platform. But one prob- lem with this approach

emerges when debugging code talks to I/O devices. Since the host

Embedded Computing Systems 10CS72

Dept of CSE Page 139

almost certainly will not have the same devices configured in the

same way, the embedded code cannot be run as is on the host. In

many cases, a test- bench program can be built to help debug the

embedded code. The testbench generates inputs to simulate the

actions of the input devices; it may also take the output values

and compare them against expected values, providing valu- able

early debugging help. The embedded code may need to be slightly

modified to work with the testbench, but careful coding (such as

using the #ifdef direc- tive in C) can ensure that the changes can

be undone easily and without intro- ducing bugs.

3.6.2 Debugging Techniques

A good deal of software debugging can be done by compiling and

executing the code on a PC or workstation. But at some point it

inevitably becomes necessary to run code on the embedded

hardware platform. Embedded systems are usually less friendly

programming environments than PCs. Nonetheless, the

resourceful designer has several options available for debugging

the system.

The serial port found on most evaluation boards is one of the

most important debugging tools. In fact, it is often a good idea to

design a serial port into an embed- ded system even if it will not be

used in the final product; the serial port can be used not only for

development debugging but also for diagnosing problems in the

field.

Another very important debugging tool is the breakpoint . The

simplest form of a breakpoint is for the user to specify an address at

which the program’s execution is to break. When the PC reaches

that address, control is returned to the monitor program. From the

monitor program, the user can examine and/or modify CPU

registers, after which execution can be continued. Implementing

breakpoints does not require using exceptions or external devices.

Programming Example 3.1

Embedded Computing Systems 10CS72

Dept of CSE Page 140

Breakpoints

A breakpoint is a location in memory at which a program stops

executing and returns to the debugging tool or monitor program.

Implementing breakpoints is very simple—you simply replace the

instruction at the breakpoint location with a subroutine call to the

monitor. In the following code, to establish a breakpoint at location

0x40c in some ARM code, we’ve replaced the branch (B) instruction

normally held at that location with a subroutine call (BL) to the

breakpoint handling routine:

3.7 SYSTEM-LEVEL PERFORMANCE ANALYSIS

Bus-based systems add another layer of complication to

performance analysis. The CPU, bus, and memory or I/O device all

act as independent elements that can operate in parallel. In this

section, we will develop some basic techniques for analyzing the

performance of bus-based systems.

3.7.1 System-Level Performance Analysis

System-level performance involves much more than the CPU. We

often focus on the CPU because it processes instructions, but any

part of the system can affect total system performance. More

precisely, the CPU provides an upper bound on performance, but

any other part of the system can slow down the CPU. Merely

counting instruction execution times is not enough.

Consider the simple system of Figure 4.28. We want to

move data from memory to the CPU to process it. To get the data

from memory to the CPU we must:

■ read from the memory;

■ transfer over the bus to the cache; and

■ transfer from the cache to the CPU.

The most basic measure of performance we are interested in is

bandwidth— the rate at which we can move data. Ultimately, if

we are interested in real-time performance, we are interested in

Embedded Computing Systems 10CS72

Dept of CSE Page 141

real-time performance measured in seconds. But often the simplest

way to measure performance is in units of clock cycles. However,

different parts of the system will run at different clock rates. We

have to make sure that we apply the right clock rate to each part of

the performance estimate when we convert from clock cycles to

seconds.

Bandwidth questions often come up when we are transferring

large blocks of data. For simplicity, let’s start by considering the

bandwidth provided by only one system component, the bus.

Consider an image of 320 240 pixels, with each pixel composed

of 3 bytes of data. This gives a grand total of 230, 400 bytes of

data. If these images are video frames, we want to check if we

can push one frame through the system within the 1/30 s that we

have to process a frame before the next one arrives.

Let us assume that we can transfer one byte of data every

microsecond, which implies a bus speed of 1 MHz. In this case, we

would require 230, 400 s 0.23 s to transfer one frame. That is

more than the 0.033 s allotted to the data transfer. We would have

to increase the transfer rate by 7 to satisfy our performance

requirement.

We can increase bandwidth in two ways: We can increase the

clock rate of the bus or we can increase the amount of data

transferred per clock cycle. For example, if we increased the bus to

carry four bytes or 32 bits per transfer, we would reduce the transfer

time to 0.058 s. If we could also increase the bus clock rate to 2

MHz, then we would reduce the transfer time to 0.029 s, which is

within our time budget for the transfer.

How do we know how long it takes to transfer one unit of data?

To determine that, we have to look at the data sheet for the bus. As

we saw in Section 4.1.1, a bus transfer generally takes more than

one bus cycle. Burst transfers, which move to contiguous

locations, may be more efficient per byte. We also need to know the

width of the bus—how many bytes per transfer. Finally, we need to

know the bus clock period, which in general will be different from

the CPU clock period.

Embedded Computing Systems 10CS72

Dept of CSE Page 142

Let’s call the bus clock period P and the bus width W . We will put
W in units

of bytes but we could use other measures of width as well. We
want to write for-

mulas for the time required to transfer N bytes of data. We will
write our basic

formulas in units of bus cycles T , then convert those bus cycle
counts to real

time t using the bus clock period P :

A basic bus transfer transfers a W -wide set of bytes. The data

transfer itself takes D clock cycles. (Ideally, D 1, but a memory
that introduces wait states is one example of a transfer that could
require D 1 cycles.)

3.8.3 System Architecture

The software and hardware architectures of a system are always

hard to completely separate, but let’s first consider the software

architecture and then its implications on the hardware.

The system has both periodic and aperiodic components—the

current time must obviously be updated periodically, and the button

commands occur occasionally.

It seems reasonable to have the following two major software

components:

■ An interrupt-driven routine can update the current time. The current

time will be kept in a variable in memory. A timer can be used to

interrupt periodically and update the time. As seen in the

subsequent discussion of the hardware

3.8.4 Component Design and Testing

The two major software components,the interrupt handler and the

foreground code, can be implemented relatively straightforwardly.

Since most of the functionality of the interrupt handler is in the

Embedded Computing Systems 10CS72

Dept of CSE Page 143

interruption process itself, that code is best tested on the

microprocessor platform. The foreground code can be more easily

tested on the PC or workstation used for code development.

3.8.5 System Integration and Testing

Because this system has a small number of components, system

integration is relatively easy. The software must be checked to

ensure that debugging code has been turned off. Three types of

tests can be performed. First, the clock’s accuracy can be

checked against a reference clock. Second, the commands can

be exercised from the buttons. Finally, the buzzer’s functionality

should be verified.

Embedded Computing Systems 10CS72

Dept of CSE Page 144

UNIT-4

Program Design and Analysis

4.1.2 Stream-Oriented Programming and Circular Buffers

The data stream style makes sense for data that comes in

regularly and must be processed on the fly. The FIR filter of

Example 2.5 is a classic example of stream- oriented processing.

For each sample, the filter must emit one output that depends on the

values of the last n inputs. In a typical workstation application, we

would process the samples over a given interval by reading them all

in from a file and then computing the results all at once in a batch

process. In an embedded system we must not only emit outputs in

real time, but we must also do so using a minimum amount of

memory.

The circular buffer is a data structure that lets us handle

streaming data in an efficient way. Figure 5.1 illustrates how a

circular buffer stores a subset of the data stream. At each point in

time, the algorithm needs a subset of the data stream that forms a

window into the stream. The window slides with time as we throw

out old values no longer needed and add new values. Since the size

of the window does not

Programming Example 4.2

A circular buffer implementation of an FIR filter

Appearing below are the declarations for the circular buffer and filter

Embedded Computing Systems 10CS72

Dept of CSE Page 145

coefficients, assuming that N , the number of taps in the filter, has been

previously defined.

int circ_buffer[N]; /* circular buffer for data */

int circ_buffer_head = 0; /* current head of the

buffer */

int c[N]; /* filter coefficients (constants) */

To write C code for a circular buffer-based FIR filter, we need to modify

the original loop slightly. Because the 0th element of data may not be in

the 0th element of the circular buffer, we have to change the way in

which we access the data. One of the implications of this is that we

need separate loop indices for the circular buffer and coefficients.

int f, /* loop counter */

ibuf, /* loop index for the circular buffer */

ic; /* loop index for the coefficient array */

for (f = 0, ibuf = circ_buffer_head, ic = 0;

ic < N;

ibuf = (ibuf == (N – 1) ? 0 : ibuf++),ic++)

f = f + c[ic] * circ_buffer[ibuf];

The above code assumes that some other code, such as an interrupt
handler, is replacing the last element of the circular buffer at the
appropriate times. The statement ibuf (ibuf (N 1) ? 0 : ibuf
) is a shorthand C way of incrementing ibuf such that it returns to 0
after reaching the end of the circular buffer array.

Embedded Computing Systems 10CS72

Dept of CSE Page 146

4.1.3 Queues

Queues are also used in signal processing and event processing.

Queues are used whenever data may arrive and depart at

somewhat unpredictable times or when variable amounts of data

may arrive. A queue is often referred to as an elastic buffer .

One way to build a queue is with a linked list. This approach

allows the queue to grow to an arbitrary size. But in many

applications we are unwilling to pay the price of dynamically

allocating memory. Another way to design the queue is to use

an array to hold all the data. We used a circular buffer in Example

3.5 to manage interrupt-driven data; here we will develop a non-

interrupt version. Programming Example 5.3 gives C code for a

queue that is built from an array.

Programming Example 4.3

A buffer-based queue

The first step in designing the queue is to declare the array that we will

use for the buffer:

#define Q_SIZE 32 /* your queue size may vary */

#define Q_MAX (Q_SIZE-1) /* this is the maximum

index value into the array */

int q[Q_SIZE]; /* the array for our queue */

We will use two variables to keep track of the state of the queue:

As our initialization code shows, we initialize them to the same

position. As we add a value to the tail of the queue, we will increment

tail. Similarly, when we remove a value from the head, we will

increment head. When we reach the end of the array, we must wrap

around these values—for example, when we add a value into the last

element of q, the new value of tail becomes the 0th entry of the array.

Embedded Computing Systems 10CS72

Dept of CSE Page 147

void initialize_queue() {

head = 0;

tail = Q_MAX;

}

A useful function adds one to a value with wraparound:

Int wrap(int i) { /* increment with wraparound for

queue size */

return ((i+1) % Q_SIZE);

}

We need to check for two error conditions: removing from an empty

queue and adding to a full queue. In the first case, we know the queue

is empty if head wrap(tail). In the second case, we know the queue

is full if incrementing tail will cause it to equal head. Testing for

fullness, however, is a little harder since we have to worry about

wraparound.

Here is the code for adding an element to the tail of the queue,

which is known as

enqueueing:

enqueue(int val) {

/* check for a full queue */

if (wrap(wrap(tail) == head)

error(ENQUEUE_ERROR);

/* update the tail */

Embedded Computing Systems 10CS72

Dept of CSE Page 148

tail = wrap(tail);

/* add val to the tail of the queue */

q[tail] = val;

}

And here is the code for removing an element from the head of

the queue, known as

dequeueing:

int dequeue() {

int returnval; /* use this to remember the value

that you will return */

/* check for an empty queue */

if (head == wrap(tail)) error(DEQUEUE_ERROR);

/* remove from the head of the queue */

returnval = q[head];

/* update head */

head = wrap(head);

/* return the value */

return returnval;

}

4.2 MODELS OF PROGRAMS

Our fundamental model for programs is the control/data flow

Embedded Computing Systems 10CS72

Dept of CSE Page 149

graph (CDFG). (We can also model hardware behavior with the

CDFG.) As the name implies, the CDFG has constructs that model

both data operations (arithmetic and other compu- tations) and

control operations (conditionals). Part of the power of the CDFG

comes from its combination of control and data constructs. To

understand the CDFG, we start with pure data descriptions and then

extend the model to control.

4.2.1 Data Flow Graphs

A data flow graph is a model of a program with no conditionals.

In a high-level programming language, a code segment with no

conditionals—more precisely, with only one entry and exit point—is

known as a basic block. Figure 5.2 shows a simple basic block. As

the C code is executed, we would enter this basic block at the

beginning and execute all the statements

FIGURE4.2

A basic block in C.

w 5 a 1 b;

x1 5 a 2 c;

y 5 x1 1 d;

x2 5 a 1 c;

z 5 y 1 e;

FIGURE4.3

The basic block in single-assignment form.

There are two assignments to the variable x—it appears twice on

Embedded Computing Systems 10CS72

Dept of CSE Page 150

the left side of an assignment. We need to rewrite the code in single-

assignment form, in which a variable appears only once on the

left side. Since our specification is C code, we assume that the

statements are executed sequentially, so that any use of a variable

refers to its latest assigned value. In this case, x is not reused in this

block (presumably it is used elsewhere), so we just have to

eliminate the multiple assignment to x. The result is shown in Figure

5.3, where we have used the names x1 and x2 to distinguish the

separate uses of x.

The single-assignment form is important because it allows us to

identify a unique location in the code where each named location

is computed. As an introduction to the data flow graph, we use

two types of nodes in the graph—round nodes denote operators

and square nodes represent values. The value nodes may be either

inputs to the basic block, such as a and b, or variables assigned to

within the block, such as w and x1. The data flow graph for our

single-assignment code is shown in Figure 5.4. The single-

assignment form means that the data flow graph is acyclic—if we

assigned to x multiple times, then the second assignment would

form a cycle in the graph including x and the operators used to

compute x. Keeping the data flow graph acyclic is important in many

types of analyses we want to do on the graph. (Of course,it is

important to know whether the source code actually assigns to a

variable multiple times, because some of those assignments may be

mistakes. We consider the analysis of source code for proper use of

assignments in Section 5.10.1).

The data flow graph is generally drawn in the form shown in Figure

5.5. Here, the variables are not explicitly represented by nodes.

Instead, the edges are labeled with the variables they represent.

4.2.2 Control/Data Flow Graphs

A CDFG uses a data flow graph as an element, adding constructs to

describe control. In a basic CDFG, we have two types of nodes:

decision nodes and data flow nodes. A data flow node

encapsulates a complete data flow graph to represent a basic block.

We can use one type of decision node to describe all the types of

control in a sequential program. (The jump/branch is, after all, the

Embedded Computing Systems 10CS72

Dept of CSE Page 151

way we implement all those high-level control constructs.)

shows a bit of C code with control constructs and the CDFG

con- structed from it. The rectangular nodes in the graph

represent the basic blocks. The basic blocks in the C code have

been represented by function calls for simplic- ity. The diamond-

shaped nodes represent the conditionals. The node’s condition is

given by the label, and the edges are labeled with the possible

outcomes of evaluating the condition.

Building a CDFG for a while loop is straightforward, as shown in

Figure 5.7. The while loop consists of both a test and a loop body,

each of which we know how to represent in a CDFG. We can

represent for loops by remembering that, in C, a for loop is defined

in terms of a while loop. The following for loop

for (i = 0; i < N; i++) {

loop_body();

}

is equivalent to

i = 0;

while (i < N) { loop_body(); i++;

}

For a complete CDFG model, we can use a data flow graph to

model each data flow node. Thus, the CDFG is a hierarchical

representation—a data flow CDFG can be expanded to reveal a

complete data flow graph.

Embedded Computing Systems 10CS72

Dept of CSE Page 152

An execution model for a CDFG is very much like the

execution of the pro- gram it represents. The CDFG does not require

explicit declaration of variables, but we assume that the

implementation has sufficient memory for all the variables.

4.3 ASSEMBLY, LINKING, AND LOADING

Assembly and linking are the last steps in the compilation process—

they turn a list of instructions into an image of the program’s bits in

memory. Loading actually puts the program in memory so that it

can be executed. In this section, we survey the basic techniques

required for assembly linking to help us understand the complete

compilation and loading process.

Highlights the role of assemblers and linkers in the

compilation process. This process is often hidden from us by

compilation commands that do everything required to generate

an executable program. As the figure shows, most compilers do

not directly generate machine code, but instead create the

instruction-level program in the form of human-readable assembly

language. Gene- rating assembly language rather than binary

instructions frees the compiler writer from details extraneous to the

compilation process, which includes the instruction format as well

as the exact addresses of instructions and data. The assembler’s job

is to translate symbolic assembly language statements into bit-level

representations of instructions known as object code. The assembler

takes care of instruction formats and does part of the job of

translating labels into addresses. However, since the pro- gram may

be built from many files, the final steps in determining the addresses

of instructions and data are performed by the linker, which

produces an executable binary file. That file may not necessarily be

located in the CPU’s memory, however, unless the linker happens

to create the executable directly in RAM. The program that brings

the program into memory for execution is called a loader .

The simplest form of the assembler assumes that the starting

address of the assembly language program has been specified by

the programmer. The addresses in such a program are known as

absolute addresses. However, in many cases, particularly when

we are creating an executable out of several component files, we do

Embedded Computing Systems 10CS72

Dept of CSE Page 153

not want to specify the starting addresses for all the modules before

assembly— if we did, we would have to determine before

assembly not only the length of each program in memory but also

the order in which they would be linked into the program. Most

assemblers therefore allow us to use relative addresses by

specifying at the start of the file that the origin of the assembly

language module is to be computed later. Addresses within the

module are then computed relative to the start of the module. The

linker is then responsible for translating relative addresses into

addresses.

4.3.1 Assemblers

When translating assembly code into object code, the assembler

must translate opcodes and format the bits in each instruction, and

translate labels into addresses. In this section, we review the

translation of assembly language into binary.

Labels make the assembly process more complex, but they are

the most impor- tant abstraction provided by the assembler. Labels

let the programmer (a human programmer or a compiler generating

assembly code) avoid worrying about the locations of instructions

and data. Label processing requires making two passes through

the assembly source code as follows:

1. The first pass scans the code to determine the address of each

label.

2. The second pass assembles the instructions using the label values

computed in the first pass.

As shown in Figure 5.9, the name of each symbol and its address

is stored in a symbol table that is built during the first pass. The

symbol table is built by scan- ning from the first instruction to the

last. (For the moment, we assume that we know the address of the

first instruction in the program; we consider the general case in

Section 5.3.2.) During scanning, the current location in memory

is kept in a program location counter (PLC). Despite the

similarity in name to a pro- gram counter, the PLC is not used to

Embedded Computing Systems 10CS72

Dept of CSE Page 154

execute the program, only to assign memory locations to labels.

For example, the PLC always makes exactly one pass through the

program, whereas the program counter makes many passes over code

in a loop. Thus, at the start of the first pass, the PLC is set to the

program’s starting address and the assembler looks at the first line.

After examining the line, the assembler updates the PLC to the next

location (since ARM instructions are four bytes long, the PLC

would be incremented by four) and looks at the next instruction. If

the instruction begins with a label, a new entry is made in the symbol

table, which includes the label name and its value. The value of the

label is equal to the current value of the PLC. At the end of the first

pass, the assembler rewinds to the beginning of the assembly

language file to make the second pass. During the second pass, when

a label name is found, the label is looked up in the symbol table and

its value substituted into the appropriate place in the instruction.

But how do we know the starting value of the PLC? The simplest

case is absolute addressing. In this case, one of the first statements in

the assembly language program is a pseudo-op that specifies the

origin of the program, that is, the location of the first address in the

program. A common name for this pseudo-op (e.g., the one used for

the ARM) is the ORG statement

ORG 2000

which puts the start of the program at location 2000. This pseudo-op

accomplishes this by setting the PLC’s value to its argument’s value,

2000 in this case. Assemblers generally allow a program to have

many ORG statements in case instructions or data must be spread

around various spots in memory.

Example4.1

Generating a symbol table

Let’s use the following simple example of ARM assembly code:

Embedded Computing Systems 10CS72

Dept of CSE Page 155

ORG 100 label1 ADR r4,c

LDR r0,[r4]

label2 ADR r4,d

LDR r1,[r4]

label3 SUB r0,r0,r1

The initial ORG statement tells us the starting address of the program.

To begin, let’s initialize the symbol table to an empty state and put the

PLC at the initial ORG statement.

Assemblers allow labels to be added to the symbol table

without occupying space in the program memory. A typical name

of this pseudo-op is EQU for equate. For example, in the code

ADD r0,r1,r2

FOO EQU 5

BAZ SUB r3,r4,#FOO

the EQU pseudo-op adds a label named FOO with the value 5 to the

symbol table. The value of the BAZ label is the same as if the EQU

pseudo-op were not present, since EQU does not advance the PLC.

The new label is used in the subsequent SUB instruction as the name

for a constant. EQUs can be used to define symbolic values to help

make the assembly code more structured.

The ARM assembler supports one pseudo-op that is particular to the

ARM instruc- tion set. In other architectures, an address would be

loaded into a register (e.g., for an indirect access) by reading it

from a memory location. ARM does not have an instruction that

can load an effective address, so the assembler supplies the ADR

pseudo-op to create the address in the register. It does so by using

ADD or SUB instructions to generate the address. The address to be

Embedded Computing Systems 10CS72

Dept of CSE Page 156

loaded can be register rela- tive, program relative, or numeric, but it

must assemble to a single instruction. More complicated address

calculations must be explicitly programmed.

The assembler produces an object file that describes the

instructions and data in binary format. A commonly used object file

format, originally developed for Unix but now used in other

environments as well, is known as COFF (common object file

format). The object file must describe the instructions, data, and any

addressing information and also usually carries along the symbol

table for later use in debugging.

Generating relative code rather than absolute code introduces

some new chal- lenges to the assembly language process. Rather

than using an ORG statement to provide the starting address, the

assembly code uses a pseudo-op to indicate that the code is in fact

relocatable. (Relative code is the default for the ARM assembler.)

Similarly, we must mark the output object file as being relative code.

We can initialize the PLC to 0 to denote that addresses are relative

to the start of the file. However, when we generate code that makes

use of those labels,we must be careful,since we do not yet know the

actual value that must be put into the bits. We must instead generate

relocatable code. We use extra bits in the object file format to mark the

relevant fields as relocatable and then insert the label’s relative value

into the field. The linker must therefore modify the generated code—

when it finds a field marked as relative, it uses the addresses that it

has generated to replace the relative value with a correct, value for

the address.To understand the details of turning relocatable code into

executable code, we must understand the linking process described

in the next section.

4.3.2 Linking

Many assembly language programs are written as several smaller

pieces rather than as a single large file. Breaking a large program

into smaller files helps delineate A linker allows a program to be

stitched together out of several smaller pieces. The linker operates

on the object files created by the assembler and modifies the

assembled code to make the necessary links between files.

Embedded Computing Systems 10CS72

Dept of CSE Page 157

Some labels will be both defined and used in the same file.

Other labels will be defined in a single file but used elsewhere

as illustrated in Figure 5.10. The place in the file where a label is

defined is known as an entry point . The place in the file where

the label is used is called an external reference. The main job of

the loader is to resolve external references based on available

entry points. As a result of the need to know how definitions and

references connect, the assembler passes to the linker not only the

object file but also the symbol table. Even if the entire symbol table

is not kept for later debugging purposes, it must at least pass the entry

points. External references are identified in the object code by their

relative symbol identifiers.

The linker proceeds in two phases. First, it determines the address

of the start of each object file. The order in which object files are

to be loaded is given by the user, either by specifying parameters

when the loader is run or by creating a load map file that gives

the order in which files are to be placed in memory. Given the

order in which files are to be placed in memory and the length of

each object file, it is easy to compute the starting address of each

file. At the start of the second phase, the loader merges all symbol

tables from the object files into a single, large table. It then edits the

object files to change relative addresses into addresses. This is

typically performed by having the assembler write extra bits into

the object file to identify the instructions and fields that refer to

labels. If a label cannot be found in the merged symbol table, it is

undefined and an error message is sent to the user.

Controlling where code modules are loaded into memory is

important in embedded systems. Some data structures and

instructions, such as those used to manage interrupts, must be put

at precise memory locations for them to work. In other cases,

different types of memory may be installed at different address

ranges. For example, if we have EPROM in some locations and

DRAM in oth- ers, we want to make sure that locations to be

written are put in the DRAM locations.

Workstations and PCs provide dynamically linked libraries, and

some embed- ded computing environments may provide them as

well. Rather than link a separate copy of commonly used routines

Embedded Computing Systems 10CS72

Dept of CSE Page 158

such as I/O to every executable program on the system,

dynamically linked libraries allow them to be linked in at the start

of pro- gram execution. A brief linking process is run just before

execution of the program begins; the dynamic linker uses code

libraries to link in the required routines. This not only saves storage

space but also allows programs that use those libraries to be easily

updated.

4.4 BASIC COMPILATION TECHNIQUES

It is useful to understand how a high-level language program is

translated into instructions. Since implementing an embedded

computing system often requires controlling the instruction

sequences used to handle interrupts, placement of data and

instructions in memory, and so forth, understanding how the

compiler works can help you know when you cannot rely on the

compiler. Next, because many applications are also performance

sensitive, understanding how code is generated can help you meet

your performance goals, either by writing high-level code that gets

compiled into the instructions you want or by recognizing when you

must write your own assembly code. Compilation combines

translation and optimization. The high-level language program is

translated into the lower-level form of instructions; optimizations

try to generate better instruction sequences than would be possible if

the brute force technique of independently translating source code

statements were used. Optimization techniques focus on more of

the program to ensure that com- pilation decisions that appear to be

good for one statement are not unnecessarily problematic for other

parts of the program.

The compilation process is summarized in Figure 5.11.

Compilation begins with high-level language code such as C and

generally produces assembly code. (Directly producing object

code simply duplicates the functions of an assembler,

Simplifying arithmetic expressions is one example of a machine-

independent optimization. Not all compilers do such

optimizations, and compilers can vary widely regarding which

combinations of machine-independent optimizations they do

perform. Instruction-level optimizations are aimed at generating

code. They may work directly on real instructions or on a

Embedded Computing Systems 10CS72

Dept of CSE Page 159

pseudo-instruction format that is later mapped onto the

instructions of the target CPU. This level of optimization also helps

modularize the compiler by allowing code generation to create

simpler code that is later optimized. For example, consider the

following array access code:

x[i] = c*x[i];

A simple code generator would generate the address for x[i]

twice, once for each appearance in the statement. The later

optimization phases can recognize this as an example of common

expressions that need not be duplicated. While in this simple case

it would be possible to create a code generator that never

generated the redundant expression, taking into account every

such optimization at code generation time is very difficult. We get

better code and more reliable compilers by generating simple code

first and then optimizing it.

4.4.1 Statement Translation

In this section, we consider the basic job of translating the high-

level language program with little or no optimization. Let’s first

consider how to translate an expres- sion. A large amount of the code

in a typical application consists of arithmetic and logical

expressions. Understanding how to compile a single expression,as

described in Example 4.2, is a good first step in understanding the

entire compilation process.

Example 4.2

Compiling an arithmetic expression

In the following arithmetic expression,

a*b + 5*(c – d)

Embedded Computing Systems 10CS72

Dept of CSE Page 160

the variable is written in terms of program variables. In some

machines we may be able to perform memory-to-memory arithmetic

directly on the locations corresponding to those variables. However, in

many machines, such as the ARM, we must first load the variables into

registers. This requires choosing which registers receive not only the

named variables but also intermediate results such as (c d).

The code for the expression can be built by walking the data flow

graph. The data flow graph for the expression appears on page 230.

The temporary variables for the intermediate values and final

result have been named w , x , y , and z . To generate code, we walk

from the tree’s root (where z , the final result, is generated) by

traversing the nodes in post order. During the walk, we generate

instructions tocover the operation at every node. The path is presented

below.

The nodes are numbered in the order in which code is generated.

Since every node in the data flow graph corresponds to an operation

that is directly supported by the instruction set, we simply generate an

instruction at every node. Since we are making an arbitrary register

assignment, we can use up the registers in order starting with r1. The

resulting ARM code follows:

; operator 1 (+)

ADR r4,a ; get address for a

MOV r1,[r4] ; load a

ADR r4,b ; get address for b

MOV r2,[r4] ; load b

ADD r3,r1,r2 ; put w into r3

Embedded Computing Systems 10CS72

Dept of CSE Page 161

; operator 2 (–)

ADR r4,c ; get address for c

MOV r4,[r4] ; load c

ADR r4,d ; get address for d

MOV r5,[r4] ; load d

SUB r6,r4,r5 ; put x into r6

; operator 3 (*)

MUL r7,r6,#5 ; operator 3, puts y into r7

; operator 4 (+)

ADD r8,r7,r3 ; operator 4, puts z into r8

One obvious optimization is to reuse a register whose value is no

longer needed. In the case of the intermediate values w , x , and y ,

we know that they cannot be used after the end of the expression

(e.g., in another expression) since they have no name in the C

program. However, the final result z may in fact be used in a C

assignment and the value reused later in the program.

4.4.2 Procedures

Another major code generation problem is the creation of

procedures. Generating code for procedures is relatively

straightforward once we know the procedure link- age appropriate

for the CPU. At the procedure definition, we generate the code to

handle the procedure call and return. At each call of the procedure,

we set up the procedure parameters and make the call.

The CPU’s subroutine call mechanism is usually not sufficient to

directly support procedures in modern programming languages. We

introduced the procedure stack and procedure linkages in Section

Embedded Computing Systems 10CS72

Dept of CSE Page 162

2.2.3. The linkage mechanism provides a way for the program to

pass parameters into the program and for the procedure to return

a value. It also provides help in restoring the values of registers

that the procedure has modified. All procedures in a given

programming language use the same linkage mechanism (although

different languages may use different linkages). The mechanism

can also be used to call handwritten assembly language routines

from compiled code.

Procedure stacks are typically built to grow down from high

addresses. A stack pointer (sp) defines the end of the current

frame, while a frame pointer (fp) defines the end of the last frame.

(The fp is technically necessary only if the stack frame can be

grown by the procedure during execution.) The procedure can

refer

The ARM Procedure Call Standard (APCS) is a good

illustration of a typi- cal procedure linkage mechanism. Although

the stack frames are in main memory, understanding how registers

are used is key to understanding the mechanism, as explained

below.

■ r0 r3 are used to pass parameters into the procedure. r0 is also

used to hold the return value. If more than four parameters are

required, they are put on the stack frame.

■ r4 r7 hold register variables.

■ r11 is the frame pointer and r13 is the stack pointer.

■ r10 holds the limiting address on stack size, which is used to check

for stack overflows.

Other registers have additional uses in the protocol.

4.4.3 Data Structures

Embedded Computing Systems 10CS72

Dept of CSE Page 163

The compiler must also translate references to data structures

into references to raw memories. In general, this requires address

computations. Some of these computations can be done at

compile time while others must be done at run time.

Arrays are interesting because the address of an array element

must in general be computed at run time, since the array index

may change. Let us first consider one-dimensional arrays:

a[i]

The layout of the array in memory is shown in Figure 5.13. The

zeroth element is stored as the first element of the array, the first

element directly below, and so on.

a

FIGURE 4.13

Layout of a one-dimensional array in memory

.

.

.

a[0]

a[1]

. . .

Embedded Computing Systems 10CS72

Dept of CSE Page 164

FIGURE 4.14

Memory layout for two-dimensional arrays.

We can create a pointer for the array that points to the array’s head,

namely, a[0]. If we call that pointer aptr for convenience, then we

can rewrite the reading of a[i] as

*(aptr + i)

Two-dimensional arrays are more challenging. There are multiple

possible ways to lay out a two-dimensional array in memory, as

shown in Figure 5.14. In this form, which is known as row major ,

the inner variable of the array (j in a[i, j]) varies most quickly.

(Fortran uses a different organization known as column major.)

Two- dimensional arrays also require more sophisticated

addressing—in particular, we must know the size of the array. Let

us consider the row-major form. If the a[] array is of size N M ,

then we can turn the two-dimensional array access into a one-

dimensional array access. Thus,

a[i,j] becomes a[i*M + j]

where the maximum value for j is M 1.

A C struct is easier to address. As shown in Figure 5.15, a structure

is implemented as a contiguous block of memory. Fields in the

structure can be accessed using constant offsets to the base

address of the structure. In this example, if field1 is four bytes

long, then field2 can be accessed as

*(aptr + 4)

This addition can usually be done at compile time, requiring only

the indirection itself to fetch the memory location during

execution.

Embedded Computing Systems 10CS72

Dept of CSE Page 165

4.5 PROGRAM OPTIMIZATION

Now that we understand something about how programs are

created,we can start to understand how to optimize programs. If we

want to write programs in a high-level language, then we need to

understand how to optimize them without rewriting them in

assembly language. This first requires creating the proper source

code that causes the compiler to do what we want. Hopefully, the

compiler can optimize our program by recognizing features of the

code and taking the proper action.

5.5.1 Expression Simplification

Expression simplification is a useful area for machine-

independent transforma- tions. We can use the laws of algebra to

simplify expressions. Consider the following expression:

a*b + a*c

We can use the distributive law to rewrite the expression as

a*(b + c)

Since the new expression has only two operations rather than

three for the original form, it is almost certainly cheaper, because

it is both faster and smaller. Such transformations make some broad

assumptions about the relative cost of oper- ations. In some cases,

simple generalizations about the cost of operations may be

misleading. For example, a CPU with a multiply-and-accumulate

instruction may be

able to do a multiply and addition as cheaply as it can do an addition.

However, such situations can often be taken care of in code

generation.

We can also use the laws of arithmetic to further simplify

Embedded Computing Systems 10CS72

Dept of CSE Page 166

expressions on constants. Consider the following C statement:

for (i = 0; i < 8 + 1; i++)

We can simplify 8 1 to 9 at compile time—there is no need to

perform that arithmetic while the program is executing. Why

would a program ever contain expressions that evaluate to

constants? Using named constants rather than numbers is good

programming practice and often leads to constant expression. The

original form of the for statement could have been

for (i = 0; i < NOPS + 1; i++)

where, for example, the added 1 takes care of a trailing null

character.

4.5.2 Dead Code Elimination

Code that will never be executed can be safely removed from the

program. The general problem of identifying code that will never

be executed is difficult, but there are some important special cases

where it can be done.

Programmers will intentionally introduce dead code in

certain situations. Consider this C code fragment:

#define DEBUG 0

...

if (DEBUG) print_debug_stuff();

In the above case, the print_debug_stuff() function is never

executed, but the code allows the programmer to override the

preprocessor variable definition (per- haps with a compile-time

flag) to enable the debugging code. This case is easy to analyze

because the condition is the constant 0, which C uses for the false

condition. Since there is no else clause in the if statement, the

compiler can totally eliminate the if statement, rewriting the CDFG

Embedded Computing Systems 10CS72

Dept of CSE Page 167

to provide a direct edge between the statements before and after the

if.

4.5.3 Procedure Inlining

Another machine-independent transformation that requires a little

more evalua- tion is procedure inlining. An inlined procedure does

not have a separate proce- dure body and procedure linkage; rather,

the body of the procedure is substituted in place for the procedure

calining in C.

int foo(a,b,c) { return a 1 b 2 c; }

Function definition

z 5 foo(w,x,y);

Function call

z 5 w 1 x 2 y;

Inlining result

The C++ programming language provides an inline construct that

tells the compiler to generate inline code for a function. In this case,

an inlined procedure is generated in expanded form whenever

possible. However, inlining is not always the best thing to do.

Although it does eliminate the procedure linkage instructions, when

a cache is present, having multiple copies of the function body may

actually slow down the fetches of these instructions. Inlining also

increases code size, and memory may be precious.

4.5.4 Loop Transformations

Loops are important program structures—although they are

compactly described in the source code, they often use a large

fraction of the computation time. Many techniques have been

designed to optimize loops.

A simple but useful transformation is known as loop

unrolling , which is illustrated in Example 5.4. Loop unrolling is

Embedded Computing Systems 10CS72

Dept of CSE Page 168

important because it helps expose parallelism that can be used by

later stages of the compiler.

Example 4.4

Loop unrolling

A simple loop in C follows:

for (i = 0; i < N; i++) {

a[i] = b[i]*c[i];

}

This loop is executed a fixed number of times, namely, N . A

straightforward implementation of the loop would create and initialize

the loop variable i , update its value on every iteration, and test it to see

whether to exit the loop. However, since the loop is executed a fixed

number of times, we can generate more direct code.

If we let N 4, then we can substitute the above C code for the

following loop:

a[0] = b[0]*c[0];

a[1] = b[1]*c[1];

fig

Example 4.5

Register allocation

To keep the example small, we assume that we can use only four of

the ARM’s registers. In fact, such a restriction is not unthinkable—

programming conventions can reserve certain registers for special

purposes and significantly reduce the number of general-purpose

registers available.

Embedded Computing Systems 10CS72

Dept of CSE Page 169

Consider the following C code:

w = a + b; /* statement 1 */ x = c + w; /*

statement 2 */ y = c + d; /* statement 3 */

A naive register allocation, assigning each variable to a separate

register, would require seven registers for the seven variables in the

above code. However, we can do much better by reusing a register once

the value stored in the register is no longer needed. To understand

how to do this, we can draw a lifetime graph that shows the statements

on which each statement is used. Appearing below is a lifetime graph in

which the x -axis is the statement number in the C code and the y -axis

shows the variables.

A horizontal line stretches from the first statement where the

variable is used to the last use of the variable; a variable is said to be

live during this interval. At each statement, we can determine every

variable currently in use. The maximum number of variables in use at

any statement determines the maximum number of registers required.

In this case, statement two requires three registers: c , w , and x . This

fits within the four registers limitation. By reusing registers once their

current values are no longer needed, we can write code that requires

no more than four registers. Appearing below is one register

assignment.

The ARM assembly code that uses the above register assignment

follows:

LDR r0,[p_a] ; load a into r0 using pointer to

a (p_a) LDR r1,[p_b] ; load b into r1

ADD r3,r0,r1 ; compute a + b

STR r3,[p_w] ; w = a + b

Embedded Computing Systems 10CS72

Dept of CSE Page 170

LDR r2,[p_c] ; load c into r2

ADD r0,r2,r3 ; compute c + w, reusing r0 for x

STR r0,[p_x] ; x = c + w

LDR r0,[p_d] ; load d into r0

ADD r3,r2,r0 ; compute c + d, reusing r3 for y

STR r3,[p_y] ; y = c + d

Example 4.6

Operator scheduling for register allocation

Here is sample C code fragment:

w = a + b; /* statement 1 */ x = c + d; /*

statement 2 */ y = x + e; /* statement 3 */ z = a –

b; /* statement 4 */

Since w is needed until the last statement, we need five registers at

statement 3, even though only three registers are needed for the

statement at line 3. If we swap statements 3 and 4 (renumbering

them 39 and 49), we reduce our requirements to three registers. The

modified C code follows:

w = a + b; /* statement 1 */

z = a – b; /* statement 29 */ x = c + d; /*

statement 39 */ y = x + e; /* statement 49 */

Compare the ARM assembly code for the two code fragments.

We have written both assuming that we have only four free registers.

In the before version, we do not have to write out any values, but we

Embedded Computing Systems 10CS72

Dept of CSE Page 171

must read a and b twice. The after version allows us to retain all values

in registers as long as we need them.

Before version After version

LDR r0,a LDR r0,a

LDR r1,b LDR r1,b

ADD r2,r0,r1 ADD r2,r1,r0

STR r2,w ; w = a + b STR r2,w ; w = a + b

LDRr r0,c SUB r2,r0,r1

LDR r1,d STR r2,z ; z = a – b

ADD r2,r0,r1 LDR r0,c

STR r2,x ; x = c + d LDR r1,d

LDR r1,e ADD r2,r1,r0

ADD r0,r1,r2 STR r2,x ; x = c + d

STR r0,y ; y = x + e LDR r1,e

LDR r0,a ; reload a ADD r0,r1,r2

LDR r1,b ; reload b STR r0,y ; y = x + e

SUB r2,r1,r0

STR r2,z ; z = a – b

register allocation by changing the order in which operations are

performed,thereby changing the lifetimes of the variables.

We can keep track of CPU resources during instruction scheduling

using a reser- vation table [Kog81]. As illustrated in Figure 5.19,

Embedded Computing Systems 10CS72

Dept of CSE Page 172

rows in the table represent instruction execution time slots and

columns represent resources that must be scheduled. Before

scheduling an instruction to be executed at a particular time, we

check the reservation table to determine whether all resources

needed by the instruction are available at that time. Upon

scheduling the instruction, we update the table to note all

resources used by that instruction. Various algorithms can be used

for the scheduling itself, depending on the types of resources and

instruc- tions involved, but the reservation table provides a good

summary of the state of an instruction scheduling problem in

progress.

We can also schedule instructions to maximize performance. As

we know from Section 3.5, when an instruction that takes more

cycles than normal to finish is in the pipeline, pipeline bubbles

appear that reduce performance. Software pipelining is a

technique for reordering instructions across several loop itera-

tions to reduce pipeline bubbles. Some instructions take several

cycles to complete; if the value produced by one of these

instructions is needed by other instructions in the loop iteration,

then they must wait for that value to be produced. Rather than

pad the loop with no-ops, we can start instructions from the next

iteration. The loop body then contains instructions that manipulate

values from several dif- ferent loop iterations—some of the

instructions are working on the early part of iteration n 1,

others are working on iteration n, and still others are finishing

iteration n 1.

4.5.7 Instruction Selection

Selecting the instructions to use to implement each operation is not

trivial. There may be several different instructions that can be used

to accomplish the same goal, but they may have different

execution times. Moreover, using one instruction for one part of

the program may affect the instructions that can be used in

adjacent code. Although we cannot discuss all the problems and

methods for code generation here, a little bit of knowledge helps us

envision what the compiler is doing.

One useful technique for generating code is template matching ,

Embedded Computing Systems 10CS72

Dept of CSE Page 173

illustrated in Figure 5.20. We have a DAG that represents the

expression for which we want to generate code. In order to be able

to match up instructions and operations, we rep- resent instructions

using the same DAG representation. We shaded the instruction

template nodes to distinguish them from code nodes. Each node has

a cost, which may be simply the execution time of the instruction or

may include factors for size, power consumption, and so on. In this

case, we have shown that each instruction takes the same amount

of time, and thus all have a cost of 1. Our goal is to cover all nodes

in the code DAG with instruction DAGs—until we have covered the

code DAG we have not generated code for all the operations in the

expression.

4.5.8 Understanding and Using Your Compiler

Clearly, the compiler can vastly transform your program during

the creation of assembly language. But compilers are also

substantially different in terms of the optimizations they perform.

Understanding your compiler can help you get the best code out

of it.

Studying the assembly language output of the compiler is a good

way to learn about what the compiler does. Some compilers will

annotate sections of code to help you make the correspondence

between the source and assembler output. Start- ing with small

examples that exercise only a few types of statements will help.

You can experiment with different optimization levels (the -O flag

on most C compil- ers). You can also try writing the same

algorithm in several ways to see how the compiler’s output

changes.

If you cannot get your compiler to generate the code you want,

you may need to write your own assembly language. You can do

this by writing it from scratch or modifying the output of the

compiler. If you write your own assembly code, you must ensure

that it conforms to all compiler conventions, such as procedure

call linkage. If you modify the compiler output, you should be sure

that you have the algorithm right before you start writing code so

that you don’t have to repeatedly edit the compiler’s assembly

language output. You also need to clearly document the fact that

Embedded Computing Systems 10CS72

Dept of CSE Page 174

the high-level language source is, in fact, not the code used in the

system.

4.5.9 Interpreters and JIT Compilers

Programs are not always compiled and then separately executed.

In some cases, it may make sense to translate the program into

instructions during execution. Two well-known techniques for on-

the-fly translation are interpretation and just-in-time (JIT)

compilation. The trade-offs for both techniques are simi- lar.

Interpretation or JIT compilation adds overhead—both time and

memory—to execution. However, that overhead may be more than

made up for in some circum- stances. For example, if only parts of

the program are executed over some period of time, interpretation

or JIT compilation may save memory, even taking overhead into

account. Interpretation and JIT compilation also provide added

security when programs arrive over the network.

An interpreter translates program statements one at a time.The

program may be expressed in a high-level language, with Forth being

a prime example of an embed- ded language that is interpreted. An

interpreter may also interpret instructions in some abstract

machine language. As illustrated in Figure 5.21, the interpreter

sits between the program and the machine. It translates one

statement of the program at a time. The interpreter may or may not

generate an explicit piece of code to represent the statement.

Because the interpreter translates only a very small piece of the

program at any given time, a small amount of memory is used to

hold inter- mediate representations of the program. In many cases,

a Forth program plus the Forth interpreter are smaller than the

equivalent native machine code.

4.6 PROGRAM-LEVEL PERFORMANCE ANALYSIS

Because embedded systems must perform functions in real time, we

often need to know how fast a program runs.The techniques we use

to analyze program execution time are also helpful in analyzing

Embedded Computing Systems 10CS72

Dept of CSE Page 175

properties such as power consumption. In this

we might hope that the execution time of programs could be

precisely determined, this is in fact difficult to do in practice:

■ The execution time of a program often varies with the input data

values because those values select different execution paths in the

program. For example, loops may be executed a varying number

of times, and different branches may execute blocks of varying

complexity.

■ The cache has a major effect on program performance, and once

again, the cache’s behavior depends in part on the data values input

to the program.

■ Execution times may vary even at the instruction level. Floating-

point opera- tions are the most sensitive to data values, but the

normal integer execution pipeline can also introduce data-

dependent variations. In general, the execu- tion time of an

instruction in a pipeline depends not only on that instruction but on

the instructions around it in the pipeline.

We can measure program performance in several ways:

■ Some microprocessor manufacturers supply simulators for their

CPUs: The simulator runs on a workstation or PC, takes as input an

executable for the microprocessor along with input data, and

simulates the execution of that pro- gram. Some of these simulators

go beyond functional simulation to measure the execution time of

the program. Simulation is clearly slower than executing the

program on the actual microprocessor, but it also provides much

greater visibility during execution. Be careful—some

microprocessor performance simulators are not 100% accurate, and

simulation of I/O-intensive code may be difficult.

Embedded Computing Systems 10CS72

Dept of CSE Page 176

■ A timer connected to the microprocessor bus can be used to

measure perfor- mance of executing sections of code. The code to

be measured would reset and start the timer at its start and stop the

timer at the end of execution. The length of the program that can be

measured is limited by the accuracy of the timer.

■ A logic analyzer can be connected to the microprocessor bus to

measure the start and stop times of a code segment. This technique

relies on the code being able to produce identifiable events on the

bus to identify the start and stop of execution. The length of code

that can be measured is limited by the size of the logic analyzer’s

buffer.

■ Average-case execution time This is the typical execution time

we would expect for typical data. Clearly, the first challenge is

defining typical inputs.

■ Worst-case execution time The longest time that the program can

spend on any input sequence is clearly important for systems that

must meet dead- lines. In some cases, the input set that causes the

worst-case execution time is obvious, but in many cases it is not.

■ Best-case execution time This measure can be important in

multirate real-time systems, as seen in Chapter 6.

First, we look at the fundamentals of program performance in

more detail. We then consider trace-driven performance based on

executing the program and observing its behavior.

4.6.1 Elements of Program Performance

The key to evaluating execution time is breaking the

Embedded Computing Systems 10CS72

Dept of CSE Page 177

performance problem into parts. Program execution time [Sha89]

can be seen as

execution time program path instruction timing

Not all instructions take the same amount of time.

Although RISC archi- tectures tend to provide uniform instruction

execution times in order to keep the CPU’s pipeline full, even many

RISC architectures take different amounts of time to execute

certain instructions. Multiple load-store instructions are examples

of longer-executing instructions in the ARM architecture. Floating-

point instructions show especially wide variations in execution

time—while basic multiply and add operations are fast, some

transcendental functions can take thousands of cycles to execute.

■ Execution times of instructions are not independent.

The

execution time of one instruction depends on the instructions around

it. For example, many CPUs use register bypassing to speed up

instruction

sequences when the result of one instruction is used in the next

instruction.

As a result, the execution time of an instruction may depend on

whether its destination register is used as a source for the next

operation

(or vice versa).

■ The execution time of an instruction may depend on

operand values. This is clearly true of floating-point

instructions in which a different number of iter- ations may be

required to calculate the result. Other specialized instructions can,

Embedded Computing Systems 10CS72

Dept of CSE Page 178

for example, perform a data-dependent number of integer

operations.

We can handle the first two problems more easily than the third.

We can look up instruction execution time in a table; the table will

be indexed by opcode and possibly by other parameter values such

as the registers used. To handle interdepen- dent execution times, we

can add columns to the table to consider the effects of nearby

instructions. Since these effects are generally limited by the size of

the CPU pipeline, we know that we need to consider a relatively

small window of instruc- tions to handle such effects. Handling

variations due to operand values is difficult to do without actually

executing the program using a variety of data values, given the large

number of factors that can affect value-dependent instruction timing.

Luckily, these effects are often small. Even in floating-point

programs, most of the opera- tions are typically additions and

multiplications whose execution times have small variances.

Thus far we have not considered the effect of the cache. Because

the access time for main memory can be 10–100 times larger than the

cache access time,caching can have huge effects on instruction

execution time by changing both the instruction and data access

times. Caching performance inherently depends on the program’s

execution path since the cache’s contents depend on the history of

accesses.

4.6.2 Measurement-Driven Performance Analysis

The most direct way to determine the execution time of a program is

by measuring it. This approach is appealing, but it does have some

drawbacks. First, in order to cause the program to execute its worst-

case execution path, we have to provide the proper inputs to it.

Determining the set of inputs that will guarantee the worst- case

execution path is infeasible. Furthermore, in order to measure the

program’s performance on a particular type of CPU, we need the

CPU or its simulator.

Despite these drawbacks, measurement is the most commonly used

way to deter- mine the execution time of embedded software. Worst-

Embedded Computing Systems 10CS72

Dept of CSE Page 179

case execution time analysis algorithms have been used

successfully in some areas,such as flight control software, but many

system design projects determine the execution time of their

programs by measurement.

The other problem with input data is the software scaffolding

that we may need to feed data into the program and get data out.

When we are designing a large system,it may be difficult to extract

out part of the software and test it independently of the other parts of

the system. We may need to add new testing modules to the system

software to help us introduce testing values and to observe testing

outputs.

We can measure program performance either directly on the

hardware or by using a simulator. Each method has its advantages

and disadvantages.

Physical measurement requires some sort of hardware

instrumentation.The most direct method of measuring the

performance of a program would be to watch the program

counter’s value: start a timer when the PC reaches the program’s

start, stop the timer when it reaches the program’s end.

Unfortunately, it generally isn’t possible to directly observe the

program counter. However, it is possible in many cases to modify

the program so that it starts a timer at the beginning of execu-

tion and stops the timer at the end. While this doesn’t give us

direct information about the program trace, it does give us

execution time. If we have several timers available, we can use

them to measure the execution time of different parts of the

program.

A logic analyzer or an oscilloscope can be used to watch for

signals that mark various points in the execution of the program.

However, because logic analyzers have a limited amount of

memory, this approach doesn’t work well for programs with

extremely long execution times.

Some CPUs have hardware facilities for automatically generating

trace informa- tion. For example,the Pentium family microprocessors

generate a special bus cycle,a branch trace message, that shows the

Embedded Computing Systems 10CS72

Dept of CSE Page 180

source and/or destination address of a branch [Col97]. If we record

only traces, we can reconstruct the instructions executed within

the basic blocks while greatly reducing the amount of memory

required to hold the trace.

The alternative to physical measurement of execution time is

simulation. A CPU simulator is a program that takes as input a

memory image for a CPU and performs the operations on that

memory image that the actual CPU would perform, leaving

To start the simulation process, we compile our test program using a

special compiler:

% arm-linux-gcc firtest.c

This gives us an executable program (by default, a.out) that we use to

simulate our program:

% arm-outorder a.out

SimpleScalar produces a large output file with a great deal of

information about the pro- gram’s execution. Since this is a simple

example, the most useful piece of data is the total number of

simulated clock cycles required to execute the program:

sim_cycle 25854 # total simulation time

in cycles

To make sure that we can ignore the effects of program overhead, we

will execute the FIR filter for several different values of N and compare.

This run used N 100; when we also run N 1,000 and N

10,000, we get these results:

T S

 o i

Embedded Computing Systems 10CS72

Dept of CSE Page 181

2 2
1 1
1 1

 4 4

Because the FIR filter is so simple and ran in so few cycles, we had to
execute it a number of times to wash out all the other overhead of
program execution. However, the time for 1,000 and 10,000 filter
executions are within 10% of each other, so those values are
reasonably close to the actual execution time of the FIR filter itself.

4.7 SOFTWARE PERFORMANCE OPTIMIZATION

In this section we will look at several techniques for optimizing

software perfor- mance.

4.7.1 Loop Optimizations

Loops are important targets for optimization because programs with

loops tend to spend a lot of time executing those loops. There are

three important techniques in optimizing loops: code motion,

induction variable elimination, and strength reduction.

Code motion lets us move unnecessary code out of a loop. If a

computation’s result does not depend on operations performed in the

loop body,then we can safely move it out of the loop. Code motion

opportunities can arise because programmers may find some

computations clearer and more concise when put in the loop body,

even though they are not strictly dependent on the loop iterations. A

simple example of code motion is also common. Consider the

following loop:

for (i = 0; i < N*M; i++) {

z[i] = a[i] + b[i];

}

The code motion opportunity becomes more obvious when we

draw the loop’s CDFG as shown in Figure 5.23. The loop bound

computation is performed on every iteration during the loop test,

Embedded Computing Systems 10CS72

Dept of CSE Page 182

even though the result never changes. We can avoid N M 1

unnecessary executions of this statement by moving it before the

loop, as shown in the figure.

An induction variable is a variable whose value is derived from

the loop iter- ation variable’s value. The compiler often introduces

induction variables to help it implement the loop. Properly

transformed, we may be able to eliminate some variables and

apply strength reduction to others.

A nested loop is a good example of the use of induction

variables. Here is a simple nested loop:

for (i = 0; i < N; i++)

for (j = 0; j < M; j++)

z[i][j] = b[i][j];

The compiler uses induction variables to help it address the arrays.

Let us rewrite the loop in C using induction variables and

pointers. (Later, we use a common induction variable for the two

arrays, even though the compiler would probably introduce

separate induction variables and then merge them.)

for (i = 0; i < N; i++)

for (j = 0; j < M; j++) {

zbinduct = i*M + j;

*(zptr + zbinduct) = *(bptr + zbinduct);

}

Embedded Computing Systems 10CS72

Dept of CSE Page 183

In the above code, zptr and bptr are pointers to the heads of the z

and b arrays and zbinduct is the shared induction variable. However,

we do not need to compute zbinduct afresh each time. Since we are

stepping through the arrays sequentially, we can simply add the

update value to the induction variable:

zbinduct = 0;

for (i = 0; i < N; i++) {

for (j = 0; j < M; j++) {

*(zptr + zbinduct) = *(bptr + zbinduct);

zbinduct++;

}

}

This is a form of strength reduction since we have eliminated the

multiplication from the induction variable computation.

Strength reduction helps us reduce the cost of a loop iteration.

Consider the following assignment:

y = x * 2;

In integer arithmetic, we can use a left shift rather than a

multiplication by

2 (as long as we properly keep track of overflows). If the shift

is faster than the multiply, we probably want to perform the

substitution. This optimization can often be used with induction

variables because loops are often indexed with simple

expressions. Strength reduction can often be performed with

Embedded Computing Systems 10CS72

Dept of CSE Page 184

simple sub- stitution rules since there are relatively few

interactions between the possible substitutions.

Cache Optimizations

A loop nest is a set of loops, one inside the other. Loop nests

occur when we process arrays. A large body of techniques has been

developed for optimizing loop nests. Rewriting a loop nest changes

the order in which array elements are accessed. This can expose new

parallelism opportunities that can be exploited by later stages of the

compiler, and it can also improve cache performance. In this

section we concentrate on the analysis of loop nests for cache

performance.

Example 5.10

Data realignment and array padding

Assume we want to optimize the cache behavior of the following code:

for (j = 0; j < M; j++)

for (i = 0; i < N; i++)

a[j][i] = b[j][i] * c;

Let us also assume that the a and b arrays are sized with M at 265 and

N at 4 and a 256-line, four-way set-associative cache with four words

per line. Even though this code does not reuse any data elements,

cache conflicts can cause serious performance problems because

they interfere with spatial reuse at the cache line level.

Assume that the starting location for a[] is 1024 and the starting

location for b[] is 4099. Although a[0][0] and b[0][0] do not map to

the same word in the cache, they do map to the same block.

Embedded Computing Systems 10CS72

Dept of CSE Page 185

As a result, we see the following scenario in execution:

■ The access to a[0][0] brings in the first four words of a[].

■ The access to b[0][0] replaces a[0][0] through a[0][3] with b[0][3]

and the contents of the three locations before b[].

■ When a[0][1] is accessed, the same cache line is again replaced

with the first four elements of a[].

Once the a[0][1] access brings that line into the cache, it remains

there for the a[0][2] and a[0][3] accesses since the b[] accesses are

now on the next line. However, the scenario repeats itself at a[1][0] and

every four iterations of the cache.

One way to eliminate the cache conflicts is to move one of the

arrays. We do not have to move it far. If we move b’s start to 4100, we

eliminate the cache conflicts.

However, that fix won’t work in more complex situations. Moving one

array may only intro- duce cache conflicts with another array. In such

cases, we can use another technique called padding. If we extend each

of the rows of the arrays to have four elements rather than three, with

the padding word placed at the beginning of the row, we eliminate the

cache conflicts. In this case, b[0][0] is located at 4100 by the padding.

Although padding wastes memory, it substantially improves memory

performance. In complex situations with multiple arrays and

sophisticated access patterns, we have to use a combination of

techniques—relocating arrays and padding them—to be able to

minimize cache conflicts.

4.7.2 Performance Optimization Strategies

Let’s look more generally at how to improve program execution

Embedded Computing Systems 10CS72

Dept of CSE Page 186

time. First, make sure that the code really needs to be accelerated.

If you are dealing with a large program, the part of the program

using the most time may not be obvious. Profiling the program will

help you find hot spots. A profiler does not measure execution time—

instead, it counts the number of times that procedures or basic

blocks in the program are executed. There are two major ways to

profile a program: We can modify the executable program by

adding instructions that increment a location every time the program

passes that point in the program; or we can sample the program

counter during execution and keep track of the distribution of PC

values. Profiling adds relatively little overhead to the program and it

gives us some useful information about where the program spends

most of its time.

You may be able to redesign your algorithm to improve

efficiency. Examining asymptotic performance is often a good guide

to efficiency. Doing fewer operations is usually the key to

performance. In a few cases, however, brute force may provide a

better implementation. A seemingly simple high-level language

statement may in fact hide a very long sequence of operations that

slows down the algorithm. Using dynamically allocated memory is

one example, since managing the heap takes time but is hidden

from the programmer. For example, a sophisticated algorithm that

uses dynamic storage may be slower in practice than an algorithm

that performs more operations on statically allocated memory.

Finally, you can look at the implementation of the program itself.

A few hints on program implementation are summarized below.

■ Try to use registers efficiently. Group accesses to a value

together so that the value can be brought into a register and kept

there.

■ Make use of page mode accesses in the memory

system whenever possible. Page mode reads and writes

eliminate one step in the memory access. You can increase use of

page mode by rearranging your variables so that more can be

Embedded Computing Systems 10CS72

Dept of CSE Page 187

referenced contiguously.

■ Analyze cache behavior to find major cache conflicts.

Restructure the code to eliminate as many of these as you can as

follows:

—For instruction conflicts, if the offending code segment is small,

try to rewrite the segment to make it as small as possible so that

it better fits into the cache. Writing in assembly language may be

necessary. For con- flicts across larger spans of code, try moving

the instructions or padding with NOPs.

—For scalar data conflicts, move the data values to different locations to

reduce conflicts.

—For array data conflicts, consider either moving the arrays or

changing your array access patterns to reduce conflicts.

4.8 PROGRAM-LEVEL ENERGY AND POWER ANALYSIS AND OPTIMIZATION

Power consumption is a particularly important design metric for

battery-powered systems because the battery has a very limited

lifetime. However, power consump- tion is increasingly important

in systems that run off the power grid. Fast chips run hot, and

controlling power consumption is an important element of

increasing reliability and reducing system cost.

How much control do we have over power consumption?

Ultimately, we must consume the energy required to perform

necessary computations. However, there are opportunities for

saving power. Examples appear below.

■ We may be able to replace the algorithms with others that do things

Embedded Computing Systems 10CS72

Dept of CSE Page 188

in clever ways that consume less power.

■ Memory accesses are a major component of power consumption

in many applications. By optimizing memory accesses we may be

able to significantly reduce power.

■ We may be able to turn off parts of the system—such as

subsystems of the CPU, chips in the system, and so on—when we

do not need them in order to save power.

The first step in optimizing a program’s energy consumption is

knowing how much energy the program consumes. It is possible to

measure power consumption for an instruction or a small code

fragment [Tiw94]. The technique, illustrated in Figure 5.24,

executes the code under test over and over in a loop. By

measuring the current flowing into the CPU, we are measuring the

power consumption of the complete loop, including both the body

and other code. By separately measuring the power consumption

of a loop with no body (making sure, of course, that the compiler

hasn’t optimized away the empty loop), we can calculate the power

con- sumption of the loop body code as the difference between the

full loop and the bare loop energy cost of an instruction.

Several factors contribute to the energy consumption of the

program.

■ Energy consumption varies somewhat from instruction to

instruction.

■ The sequence of instructions has some influence.

■ Th opcode and the locations of the operands also matter.

A few optimizations mentioned previously for performance are

also often useful for improving energy consumption:

Embedded Computing Systems 10CS72

Dept of CSE Page 189

■ Try to use registers efficiently. Group accesses to a value

together so that the value can be brought into a register and kept

there.

■ Analyze cache behavior to find major cache conflicts.

Restructure the code to eliminate as many of these as you can:

—For instruction conflicts, if the offending code segment is small,

try to rewrite the segment to make it as small as possible so that

it better fits into the cache. Writing in assembly language may be

necessary. For con- flicts across larger spans of code, try moving

the instructions or padding with NOPs.

—For scalar data conflicts,move the data values to different locations to

reduce conflicts.

—For array data conflicts, consider either moving the arrays or

changing your array access patterns to reduce conflicts.

■ Make use of page mode accesses in the memory system

whenever possible. Page mode reads and writes eliminate

one step in the memory access, saving a considerable amount

of power.

4.9 ANALYSIS AND OPTIMIZATION OF PROGRAM SIZE

The memory footprint of a program is determined by the size of

its data and instructions. Both must be considered to minimize

program size.

Data provide an excellent opportunity for minimizing size

because the data are most highly dependent on programming style.

Because inefficient programs often keep several copies of data,

identifying and eliminating duplications can lead to significant

memory savings usually with little performance penalty. Buffers

should be sized carefully—rather than defining a data array to a

Embedded Computing Systems 10CS72

Dept of CSE Page 190

large size that the pro- gram will never attain, determine the actual

maximum amount of data held in the buffer and allocate the array

accordingly. Data can sometimes be packed, such as by storing

several flags in a single word and extracting them by using bit-

level operations.

A very low-level technique for minimizing data is to reuse values.

For instance, if several constants happen to have the same value,

they can be mapped to the same location. Data buffers can often be

reused at several different points in the program. This technique must

be used with extreme caution, however, since subsequent ver- sions

of the program may not use the same values for the constants. A more

generally applicable technique is to generate data on the fly rather

than store it. Of course, the code required to generate the data

takes up space in the program, but when complex data structures

are involved there may be some net space savings from using code

to generate data.

Minimizing the size of the instruction text of a program

requires a mix of high-level program transformations and careful

instruction selection. Encapsulating functions in subroutines can

reduce program size when done carefully. Because sub- routines

have overhead for parameter passing that is not obvious from the

high-level language code, there is a minimum-size function body for

which a subroutine makes sense. Architectures that have variable-

size instruction lengths are particularly good candidates for careful

coding to minimize program size, which may require assembly

language coding of key program segments. There may also be cases

in which one or a sequence of instructions is much smaller than

alternative implementations— for example, a multiply-accumulate

instruction may be both smaller and faster than separate arithmetic

operations.

4.10 PROGRAM VALIDATION AND TESTING

Complex systems need testing to ensure that they work as they are

intended. But bugs can be subtle, particularly in embedded

systems, where specialized hardware and real-time responsiveness

make programming more challenging. Fortunately, there are many

available techniques for software testing that can help us gener-

Embedded Computing Systems 10CS72

Dept of CSE Page 191

ate a comprehensive set of tests to ensure that our system works

properly. We examine the role of validation in the overall design

methodology in Section 9.5. In this section, we concentrate on nuts-

and-bolts techniques for creating a good set of tests for a given

program.

The first question we must ask ourselves is how much testing is

enough. Clearly, we cannot test the program for every possible

combination of inputs. Because we cannot implement an infinite

number of tests, we naturally ask ourselves what a reasonable

standard of thoroughness is. One of the major contributions of

soft- ware testing is to provide us with standards of thoroughness

that make sense. Following these standards does not guarantee

that we will find all bugs. But by breaking the testing problem

into subproblems and analyzing each subproblem,

The two major types of testing strategies:

■ Black-box methods generate tests without looking at the internal

structure of the program.

■ Clear-box (also known as white-box) methods generate tests based

on the program structure.

In this section we cover both types of tests, which complement

each other by exercising programs in very different ways.

4.10.1 Clear-Box Testing

The control/data flow graph extracted from a program’s source code is

an important tool in developing clear-box tests for the program. To

adequately test the program, we must exercise both its control and

data operations.

In order to execute and evaluate these tests, we must be able to

control variables in the program and observe the results of

computations, much as in manufacturing testing. In general, we

may need to modify the program to make it more testable. By

adding new inputs and outputs, we can usually substantially

Embedded Computing Systems 10CS72

Dept of CSE Page 192

reduce the effort required to find and execute the test. Example

5.11 illustrates the importance of observability and controllability

in software testing.

No matter what we are testing, we must accomplish the

following three things in a test:

■ Provide the program with inputs that exercise the test we

are inter- ested in.

■ Execute the program to perform the test.

■ Examine the outputs to determine whether the test was

successful.

Example4.13

Condition testing with the branch testing strategy

Assume that the code below is what we meant to write.

if (a | | (b >= c)) { printf("OK\n"); }

The code that we mistakenly wrote instead follows:

if (a && (b >= c)) { printf("OK\n"); }

If we apply branch testing to the code we wrote, one of the tests will use
these values: a = 0, b = 3, c = 2 (making a false and b >= c true). In
this case, the code should print the OK term [0 || (3 >= 2) is true] but
instead doesn’t print [0 && (3 >= 2) evaluates to false]. That test
picks up the error.

Let’s consider another more subtle error that is nonetheless all too

common in C. The code we meant to write follows:

Embedded Computing Systems 10CS72

Dept of CSE Page 193

if ((x == good_pointer) && (x->field1 == 3))

{ printf("got the value\n"); }

Here is the bad code we actually wrote:

if ((x = good_pointer) && (x->field1 == 3))

{ printf("got the value\n"); }

The problem here is that we typed = rather than ==, creating an

assignment rather than a test. The code x = good_pointer first assigns

the value good_pointer to x and then, because assignments are also

expressions in C, returns good_pointer as the result of evaluating this

expression.

If we apply the principles of branch testing, one of the tests we

want to use will contain x != good_pointer and x ->field1 == 3.

Whether this test catches the error depends on the state of the record

pointed to by good_pointer. If it is equal to 3 at the time of the test,

the message will be printed erroneously. Although this test is not

guaranteed to uncover the bug, it has a reasonable chance of success.

One of the reasons to use many different types of tests is to maximize

the chance that supposedly unrelated elements will cooperate to

reveal the error in a particular situation.

Another more sophisticated strategy for testing conditionals is

known as domain testing [How82], illustrated in Figure 5.28.

Domain testing concentrates on linear inequalities. In the figure,

the inequality the program should use for the test is j <= i + 1.

We test the inequality with three test points—two on the boundary

of the valid region and a third outside the region but between the i

Embedded Computing Systems 10CS72

Dept of CSE Page 194

values of the other two points. When we make some common

mistakes in typing the inequality, these three tests are sufficient to

uncover them, as shown in the figure.

5.10.2 Black-Box Testing

Black-box tests are generated without knowledge of the code being

tested. When used alone,black-box tests have a low probability of

finding all the bugs in a program. But when used in conjunction with

clear-box tests they help provide a well-rounded test set, since

black-box tests are likely to uncover errors that are unlikely to be

found by tests extracted from the code structure. Black-box tests

can really work. For instance, when asked to test an instrument

whose front panel was run by a microcontroller, one acquaintance

of the author used his hand to depress all the buttons

simultaneously. The front panel immediately locked up. This

situation could occur in practice if the instrument were placed face-

down on a table, but discovery of this bug would be very unlikely

via clear-box tests.

One important technique is to take tests directly from the

specification for the code under design. The specification should

state which outputs are expected for certain inputs. Tests should be

created that provide specified outputs and evaluate whether the

results also satisfy the inputs.

Random tests form one category of black-box test. Random

values are gener- ated with a given distribution. The expected values

are computed independently of the system, and then the test inputs

are applied. A large number of tests must be applied for the results

to be statistically significant, but the tests are easy to generate.

Another scenario is to test certain types of data values. For

example, integer- valued inputs can be generated at interesting

values such as 0, 1, and values near the maximum end of the data

range. Illegal values can be tested as well.

Regression tests form an extremely important category of tests.

When tests are created during earlier stages in the system design

or for previous versions of the system, those tests should be

Embedded Computing Systems 10CS72

Dept of CSE Page 195

saved to apply to the later versions of the system. Clearly, unless

the system specification changed, the new system should be able to

pass old tests. In some cases old bugs can creep back into

systems, such as when an old version of a software module is

inadvertently installed.

4.10.3 Evaluating Function Tests

How much testing is enough? Horgan and Mathur [Hor96]

evaluated the coverage of two well-known programs, TeX and

awk. They used functional tests for these programs that had been

developed over several years of extensive testing. Upon applying

those functional tests to the programs, they obtained the code

coverage statistics shown in Figure 5.30. The columns refer to

various types of test coverage: block refers to basic blocks,

decision to conditionals, p-use to a use of a variable in a

predicate (decision), and c-use to variable use in a nonpredicate

computation. These results are at least suggestive that functional

testing does not fully exercise the code and that techniques that

explicitly generate tests for various pieces of code are necessary to

obtain adequate levels of code coverage.

Methodological techniques are important for understanding the

quality of your tests. For example, if you keep track of the

number of bugs tested each day, the data you collect over time

should show you some trends on the number of errors per page of

code to expect on the average, how many bugs are caught by

certain kinds of tests, and so on. We address methodological

approaches to quality control in more detail in Section 9.5.

One interesting method for analyzing the coverage of your tests is

error injec- tion. First, take your existing code and add bugs to it,

keeping track of where the bugs were added.Then run your existing

tests on the modified program.

4.11 SOFTWARE MODEM

In this section we design a modem. Low-cost modems generally

use specialized chips, but some PCs implement the modem

functions in software. Before jump- ing into the modem design

Embedded Computing Systems 10CS72

Dept of CSE Page 196

itself, we discuss principles of how to transmit digital data over a

telephone line. We will then go through a specification and

discuss architecture, module design, and testing.

4.11.1 Theory of Operation and Requirements

The modem will use frequency-shift keying (FSK),a technique used

in 1200-baud modems. Keying alludes to Morse code—style

keying. As shown in Figure the FSK scheme transmits sinusoidal

tones, with 0 and 1 assigned to different frequen- cies. Sinusoidal

tones are much better suited to transmission over analog phone

lines than are the traditional high and low voltages of digital circuits.

The 01 bit pat- terns create the chirping sound characteristic of

moems. (Higher-speed modems,The modem will not implement a

hardware interface to a telephone line or software for dialing a

phone number. We will assume that we have analog audio inputs

and outputs for sending and receiving. We will also run at a much

slower bit rate than 1200 baud to simplify the implementation.

Next, we will not implement a serial interface to a host, but rather

put the transmitter’s message in memory and save the receiver’s

result in memory as well. Given those understandings, let’s fill out

the requiremnts table.Start bit Bit

Sampling interval

FIGURE 5.33

Receiving bits in the modem.

Name Modem.

Embedded Computing Systems 10CS72

Dept of CSE Page 197

Purpose A fixed baud rate frequency-shift keyed

modem. Inputs Analog sound input, reset button.

Outputs Analog sound output, LED bit display.

Functions Transmitter: Sends data stored in microprocessor

memory in 8-bit bytes. Sends start bit for each byte equal in length

to one bit.

Receiver: Automatically detects bytes and stores results in main

memory. Displays currently received bit on LED.

Performance 1200 baud.

Manufacturing cost Dominated by microprocessor and analog

I/O. Power Powered by AC through a standard

power supply.

Physical size and weight Small and light enough to fit on a
desktop.

4.11.3 System Architecture

The modem consists of one small subsystem (the interrupt handlers

for the samples) and two major subsystems (transmitter and

receiver).Two sample interrupt handlers are required, one for input

and another for output, but they are very simple. The transmitter is

simpler, so let’s consider its software architecture first.

Embedded Computing Systems 10CS72

float sine_wave[N_SAMP]

{ 0.0, 0.5, 0.866, 1,

0.866, 0.5, 0.0, –0.5,

0.866, –1.0, –0.866, –0.5,

Analog waveform and samples

The best way to generate waveforms that retain the proper

shape over long intervals is table lookup. Software oscillators can be

used to generate periodic signals, but numerical problems limit their

accuracy. Figure 5.35 shows an analog waveform with sample points

and the C code for these samples. Table lookup can be combined with

interpolation to generate high-resolution waveforms without

excessive memory costs, which is more accurate than oscillators

because no feed- back is involved. The required number of samples for

the modem can be found by experimentation with the analog/digital

converter and the sampling code.

The structure of the receiver is considerably more complex. The

filters and detec- tors of Figure 5.33 can be implemented with circular

buffers. But that module must feed a state machine that recognizes the

bits. The recognizer state machine must use a timer to determine when

to start and stop computing the filter output average based on the starting

point of the bit. It must then determine the nature of the bit at the

proper interval. It must also detect the start bit and measure it using the

counter. The receiver sample interrupt handler is a natural candidate to

double as the receiver timer since the receiver’s time points are relative

to samples.

The hardware architecture is relatively simple. In addition to

the analog/digital and digital/analog converters, a timer is required. The

amount of memory required to implement the algorithms is relatively

small.

Dept of CSE Page 198

Embedded Computing Systems 10CS72

ting

The transmitter and receiver can be tested relatively thoroughly

on the host platform since the timing-critical code only delivers data

samples. The transmitter’s output is relatively easy to verify,

particularly if the data are plotted. A testbench can be constructed to

feed the receiver code sinusoidal inputs and test its bit recognition rate.

It is a good idea to test the bit detectors first before testing the

complete receiver operation. One potential problem in host-based

testing of the receiver is encountered when library code is used for the

receiver function. If a DSP library for the target processor is used to

implement the filters, then a substitute must be found or built for the

host processor testing. The receiver must then be retested when moved

to the target system to ensure that it still functions properly with the

library code.

4.11.5 System Integration and Testing

There are two ways to test the modem system: by having the

modem’s transmitter send bits to its receiver, and or by connecting two

different modems. The ultimate test is to connect two different modems,

particularly modems designed by different people to be sure that

incompatible assumptions or errors were not made. But single-unit

testing, called loop-back testing in the telecommunications industry,

is simpler and a good first step. Loop-back can be performed in two

ways. First, a shared variable can be used to directly pass data from the

transmitter to the receiver. Second, an audio cable can be used to plug

the analog output to the analog input. In this case it is also possible to

inject analog noise to test the resiliency of the detection algorithm.

Page 199
Dept of CSE

Embedded Computing Systems 10CS72

UNIT-5

Real Time Operating System(RTOS) Based Design

The process and the operating sys- tem (OS). Together, these two

abstractions let us switch the state of the processor between multiple tasks. The

process cleanly defines the state of an executing pro- gram, while the OS

provides the mechanism for switching execution between the processes.

These two mechanisms together let us build applications with more complex

functionality and much greater flexibility to satisfy timing requirements. The

need to satisfy complex timing requirements—events happening at very

different rates, intermittent events, and so on—causes us to use processes and

OSs to build embed- ded software. Satisfying complex timing tasks can

introduce extremely complex control into programs. Using processes to

compartmentalize functions and encap- sulating in the OS the control

required to switch between processes make it much easier to satisfy timing

requirements with relatively clean control within the processes.

Page 200
Dept of CSE

Embedded Computing Systems 10CS72

Dept of CSE Page 294

We are particularly interested in real-time operating systems (RTOSs),which

are OSs that provide facilities for satisfying real-time requirements. A RTOS

allocates resources using algorithms that take real time into account. General-

purpose OSs, in contrast, generally allocate resources using other criteria like

fairness. Trying to allocate the CPU equally to all processes without regard to

time can easily cause processes to miss their deadlines.

In the next section, we will introduce the concepts of task and process.

Section 6.2 looks at how the RTOS implements processes. Section 6.3 develops

algo- rithms for scheduling those processes to meet real-time requirements.

Section 6.4 introduces some basic concepts in interprocess communication.

Section 6.5 con- siders the performance of RTOSs while Section 6.6 looks at

power consumption.

5.1 MULTIPLE TASKS AND MULTIPLE PROCESSES

Most embedded systems require functionality and timing that is too complex to

embody in a single program. We break the system into multiple tasks in order

to manage when things happen. In this section we will develop the basic

abstractions that will be manipulated by the RTOS to build multirate systems.

5.1.1 Tasks and Processes

Many (if not most) embedded computing systems do more than one thing—that is,

the environment can cause mode changes that in turn cause the embedded system

to behave quite differently. For example, when designing a telephone

answering machine, we can define recording a phone call and operating the

user’s control panel as distinct tasks, because they perform logically distinct

operations and they must be performed at very different rates. These different

tasks are part of the system’s functionality, but that application-level

organization of functionality is often reflected in the structure of the program as

well.

A process is a single execution of a program. If we run the same program

two different times, we have created two different processes. Each process has

its own state that includes not only its registers but all of its memory. In some

OSs, the memory management unit is used to keep each process in a separate

Embedded Computing Systems 10CS72

Dept of CSE Page 295

address space. In others, particularly lightweight RTOSs, the processes run in the

same address space. Processes that share the same address space are often called

threads.

To understand why the separation of an application into tasks may be

reflected in the program structure, consider how we would build a stand-

alone compression unit based on the compression algorithm we

implemented in Section 3.7. As shown in Figure 6.1, this device is

connected to serial ports on both ends. The input to the box is an

uncompressed stream of bytes. The box emits a compressed string of bits

on the output serial line, based on a predefined compression table. Such a

box may be used, for example, to compress data being sent to a modem.

The program’s need to receive and send data at different rates—for

example, the program may emit 2 bits for the first byte and then 7 bits for

the second byte— will obviously find itself reflected in the structure of

the code. It is easy to create irregular, ungainly code to solve this

problem; a more elegant solution is to create a queue of output bits, with

those bits being removed from the queue and sent to the serial port in 8-bit

sets. But beyond the need to create a clean data structure that simplifies the

control structure of the code, we must also ensure that we process the inputs

and outputs at the proper rates. For example, if we spend too much time in

packaging and emitting output characters, we may drop an input character.

Solving timing problems is a more challenging problem.

Embedded Computing Systems 10CS72

Dept of CSE Page 296

5.1.2 RTOS
A real-time operating system (RTOS) is an operating

system that guarantees a certain capability within a specified time

constraint. For example, an operating system might be designed to

ensure that a certain object was available for a robot on an

assembly line. In what is usually called a "hard" real-time

operating system, if the calculation could not be performed for

making the object available at the designated time, the operating

system would terminate with a failure. In a "soft" real-time

operating system, the assembly line would continue to function but

the production output might be lower as objects failed to appear at

their designated time, causing the robot to be temporarily

unproductive. Some real-time operating systems are created for a

special application and others are more general purpose. Some

existing general purpose operating systems claim to be a real-time

operating systems. To some extent, almost any general purpose

operating system such as Microsoft's Windows 2000 or IBM's

OS/390 can be evaluated for its real-time operating system

qualities. That is, even if an operating system doesn't qualify, it

may have characteristics that enable it to be considered as a

solution to a particular real-time application problem.

In general, real-time operating systems are said to require:

 multitasking

 Process threads that can be prioritized

 A sufficient number of interrupt levels

Real-time operating systems are often required in small embedded

operating systems that are packaged as part of microdevices. Some

Embedded Computing Systems 10CS72

Dept of CSE Page 297

often requires a kernel update. Additionally, often new kernels are

offered that improve system security or performance. The two

major types of kernels competing in today's computer markets are

the Windows kernel and the unix-like kernels.

The Windows kernel is available only with the Microsoft Windows

series of operating systems. It is proprietary software, developed

and distributed by Microsoft Corporation. Introduced in

Windows/386, it's many incarnations have since gone by several

different names, and some had no names at all. The latest version

of the Windows kernel was introduced in Windows NT, and has

had many of it's functions removed and placed in user-mode

software for Windows Vista. This leads to increased system

stability and security. In Vista, application-level software exploits

have much less access to the core functions of the operating

system, and application crashes will not bring down the OS.

Unix-like kernels are a family of operating system kernels that are

based upon, or operate similar to, the original Bell Labs UNIX

operating system. Common examples of unix-like kernels are the

Linux kernel, BSD, Mac OS, and Solaris. While many of these

kernels were developed with original Bell Labs code as part of the

software, not all of them have direct lineage to Bell. Linux, for

instance, was developed as a free alternative to Minix, itself an

independently developed variation of UNIX. Although originally

running an original kernel design, Mac OS was outfitted with a

unix-like kernel in 1988 with the introduction of A/UX. All

subsequent Apple operating systems have unix-like kernels,

including the current Mac OS-X's BSD-derived kernel.

Definition:
The kernel is the essential center of a computer operating system,

the core that provides basic services for all other parts of the

operating system. A synonym is nucleus. A kernel can be

contrasted with a shell, the outermost part of an operating system

that interacts with user commands. Kernel and shell are terms used

more frequently in Unix operating systems than in IBM mainframe

or Microsoft Windows systems.

Typically, a kernel (or any comparable center of an operating

system) includes an interrupt handler that handles all requests or

Embedded Computing Systems 10CS72

Dept of CSE Page 298

space, the task can continue, in principle, indefinitely, unless the

program instructions contain a halt ,exit,orreturn.

In the computer field, "task" has the sense of a real-time

application, as distinguished from process, which takes up space

(memory), and execution time. See operating system . Both "task"

and " process " should be distinguished from event, which takes

place at a specifictime and place, and which can be planned for in a

computer program.

In a computer graphic user interface (GUI), an event can be as

simple as a mouse click which is displayed on a certain part of the

canvas . In older text-based computer interfaces, an event might be

a keystroke.

For a real-time system, a computer may be too slow, so dedicated

hardware solutions for performing a task may be employed, rather

than a pure software solution. This hardware might be a digital, or

an analog circuit, or a hybrid of many technologies.

For many commercial businesses, a person may be an integral part

of the solution. In this case, the entire "person(s) +

(hardware/software) system" serve as the agentof the task which is

being performed.

Void your task(void * pdata)

{

/* USER CODE*/

OSTaskDel(OS_PRID_SELF);

}

Task State Segment:

The Task State Segment is a special x86 structure which holds

information about a task. It is used by the operating system kernel

for task management. Specifically, the following information is

stored in the TSS:

* Processor register state

* I/O Port permissions

Embedded Computing Systems 10CS72

Dept of CSE Page 299

executed and bookkeeping information used by the operating

system. Whenever you execute a program, the operating system

creates a new task for it. The task is like an envelope for the

program: it identifies the program with a task number and attaches

other bookkeeping information to it.

The terms task and process are often used interchangeably,

although some operating systems make a distinction between the

two.

5.3.2 Task scheduling algorithm:

The assignment of start and end times to a set of tasks, subject to

certain constraints. Constraints are typically either time constraints

(the payload must be installed before the payload bay doors are

closed) or resource constraints (this task requires a small crane and

a crane operator).

In the case where the tasks are programs to run concurrently on a

computer, this is also known as multitasking.

Task interfaces to each other :

The only multitasking problem that multitasked systems have to

solve is that they cannot use the same data or hardware at the same

time. There are two notably successful designs for coping with this

problem:

 Semaphore

 Message passing



A semaphore is either locked, or unlocked. When locked a queue

of tasks wait for the semaphore. Problems with semaphore designs

are well known: priority inversion and deadlocks . In priority

inversion, a high priority task waits because a low priority task has

a semaphore. A typical solution is to have the task that has a

semaphore run at the priority of the highest waiting task. In a

deadlock, two tasks lock two semaphores, but in the opposite

order. This is usually solved by careful design, implementing

queues, or by having floored semaphores (which pass control of a

Embedded Computing Systems 10CS72

Dept of CSE Page 300

* The address space for the process

* Priority (in which higher priority process gets first preference.

eg., nice value on Unix operating systems)

* Process accounting information, such as when the process was

last run, how much CPU time it has accumulated, etc.

* Pointer to the next PCB i.e. pointer to the PCB of the next

process to run

* I/O Information (i.e. I/O devices allocated to this process, list

of opened files, etc)

During a context switch, the running process is stopped and

another process is given a chance to run. The kernel must stop the

execution of the running process, copy out the values in hardware

registers to its PCB, and update the hardware registers with the

values from the PCB of the new process.

Location of the PCB:
Since the PCB contains the critical information for the process, it

must be kept in an area of memory protected from normal user

access. In some operating systems the PCB is placed in the

beginning of the kernel stack of the process since that is a

convenient protected location.

Task Control Block - The Task Control Block (TCB) specifies all

the parameters necessary to schedule and execute a routine.

Typically, a TCB is a 6-10 words long and is logically divided into

two parts:

• Task-Independent Parameters - The first four words (32-bit) of

the TCB are task-independent and simply specify the scheduling

parameters to the DSP scheduler.

• Task-Dependent Parameters - These parameters specify the

routine to be executed and the parameters of execution. The

number and format of these parameters is routine dependent.

TCB’s may be linked in a chain from one to another so that a 

single call to the DSP scheduler can place many tasks in the
scheduler queue simultaneously. This has the side benefit of

guaranteeing the relative synchronization of all the tasks in the

TCB chain. The sequence of execution of tasks in a TCB chain

can be controlled by assigning an appropriate priority to each task,

if desired.

Embedded Computing Systems 10CS72

Dept of CSE Page 301

Multiprogramming systems are designed to maximize CPU usage. 



 In time-sharing systems, the running task is required to relinquish

the CPU, either voluntarily or by an external event such as a

hardware interrupt. Time sharing systems are designed to allow

several programs to execute apparently simultaneously. The

expression 'time sharing' was usually used to designate computers

shared by interactive users at terminals, such as IBM's TSO, and

VM/CMS 



 In real-time systems, some waiting tasks are guaranteed to be

given the CPU when an external event occurs. Real time systems

are designed to control mechanical devices such as industrial

robots, which require timely processing.

The term time-sharing is no longer commonly used, having

been replaced by simply multitasking, and by the advent of

personal computers and workstations rather than shared



5.5Types of MutlTasking:

There are 2 types of multi tasking is there that is given bellow:

 Preemptive

 Non Preemptive

5.5.1Multitasking:

 Most commonly, within some scheduling scheme, one process

needs to be switched out of the CPU so another process can run.



Within a preemptive multitasking operating system, the scheduler
allows every task to run for some certain amount of time, called its

time slice.

 If a process does not voluntarily yield the CPU (for example, by

performing an I/O operation), a timer interrupt fires, and the

operating system schedules another process for execution instead.



This ensures that the CPU cannot be monopolized by any one
processor-intensive application.



5.5.2Preemptive multitasking:

Embedded Computing Systems 10CS72

Dept of CSE Page 302

important external events like incoming data, which might require

the immediate attention of one or another process.

Time slice:
 The period of time for which a process is allowed to run in a

preemptive multitasking system is generally called the time slice,

or quantum. The scheduler is run once every time slice to choose

the next process to run. If the time slice is too short then the

scheduler will consume too much processing time.

 An interrupt is scheduled to allow the operating system kernel to

switch between processes when their time slices expire, effectively

allowing the processor’s time to be shared between a number of

tasks, giving the illusion that it is dealing with these tasks

simultaneously, or concurrently. The operating system which

controls such a design is called a multi-tasking system.

5.5.6 Systems supporting preemptive multitasking:
 Examples of preemptive operating systems include AmigaOS, the

Windows NT family (including XP, Vista, and Seven), Linux,

*BSD, OS/2 2.X - OS/2 Warp 3 - 4.5, Mac OS X and Windows

95/98/ME (32-bit applications only). Unix and Unix-based

systems, and VMS, as well as other systems used in the academic

and medium-to-large business markets, have always supported

preemptive multitasking, but for a long time were beyond the reach

of most users either because of the costs of licensing or the

expensive hardware required to support them.

Examples of older, non-preemptive (cooperative) operating

systems include Windows 1.x, 2.x, 3.x, Windows for Workgroups,

Windows 95/98 (when running 16-bit applications), NetWare, and

Classic Mac OS versions (system 5.0 and up). Non-multitasking

operating systems include older versions of Mac OS, MS DOS,

and Commodore 64 OS which could only execute one program at a

time.

Amiga OS, based on the preemptive multitasking TRIPOS system,

was the first such system widely available to home users (1985);

though some contemporary systems had access to Unix-like

systems such as Xenix and Coherent, they could often be

Embedded Computing Systems 10CS72

Dept of CSE Page 303

resources can not be interrupted until it is finished.

Cooperative multitasking (Preemptive algorithm) is a type of

multitasking in which the process currently controlling the CPU

must offer control to other processes. It is called ―cooperative‖

because all programs must cooperate for it to work. In contrast,

preemptive multitasking forces applications to share the CPU

whether they want to or not.

5.5.8 Interrupt handling:
Some architectures (like the Intel x86 architecture) are interrupt

driven. This means that if the CPU requests data from a disk, for

example, it does not need to busy-wait until the read is over, it can

issue the request and continue with some other execution; when the

read is over, the CPU can be interrupted and presented with the

read. For interrupts, a program called an interrupt handler is

installed, and it is the interrupt handler that handles the interrupt

from the disk.

The kernel services the interrupts in the context of the interrupted

process even though it may not have caused the interrupt. The

interrupted process may have been executing in user mode or in

kernel mode. The kernel saves enough information so that it can

later resume execution of the interrupted process and services the

interrupt in kernel mode. The kernel does not spawn or schedule a

special process to handle interrupts.

User and kernel mode switching:
When a transition between user mode and kernel mode is required

in an operating system, a context switch is not necessary; a mode

transition is not by itself a context switch. However, depending on

the operating system, a context switch may also take place at this

time.

nteractive systems.

5.6 Context Switches

Embedded Computing Systems 10CS72

Dept of CSE Page 304

The most common reasons for a context switch are:

* The time slice has elapsed.

* A thread with a higher priority has become ready to run.

* A running thread needs to wait.

When a running thread needs to wait, it relinquishes the remainder

of its time slice.

Context switch:
A context switch is the computing process of saving and restoring

the state (context) of a CPU such that multiple processes can share

a single CPU resource. The context switch is an essential feature of

a multitasking operating system.

Context switches are usually time consuming and much of the

design of operating systems is to minimize the time of context

switches.

A context switch can mean a register context switch, a task context

switch, a thread context switch, or a process context switch. What

will be switched is determined by the processor and the operating

system.

The scheduler is the part of the operating systems that manage

context switching, it perform context switching in one of the

following conditions:

1. Multitasking: One process needs to be switched out of

(termed "yield" which means "give up") the CPU so another

process can run. Within a preemptive multitasking operating

system, the scheduler allows every task (according to its priority

level) to run for some certain amount of time, called its time slice

where a timer interrupt triggers the operating system to schedule

another process for execution instead.

If a process will wait for one of the computer resources or will

perform an I/O operation, the operating system schedules another

Embedded Computing Systems 10CS72

Dept of CSE Page 305

first process must be saved somehow, so that, when the scheduler

gets back to the execution of the first process, it can restore this

state and continue.

The state of the process includes all the registers that the process

may be using, especially the program counter, plus any other

operating system specific data that may be necessary. This data is

usually stored in a data structure called a process control block

(PCB), or switchframe.

Now, in order to switch processes, the PCB for the first process

must be created and saved. The PCBs are sometimes stored upon a

per-process stack in kernel memory (as opposed to the user-mode

stack), or there may be some specific operating system defined

data structure for this information.

Since the operating system has effectively suspended the execution

of the first process, it can now load the PCB and context of the

second process. In doing so, the program counter from the PCB is

loaded, and thus execution can continue in the new process. New

processes are chosen from a queue or queues. Process and thread

priority can influence which process continues execution, with

processes of the highest priority checked first for ready threads to

execute.

Context Switch Definition:

A context switch (also sometimes referred to as a process switch or

a task switch) is the switching of the CPU (central processing unit)

from one process or thread to another.

A process (also sometimes referred to as a task) is an executing

(i.e., running) instance of a program. In Linux, threads are

lightweight processes that can run in parallel and share an address

space (i.e., a range of memory locations) and other resources with

their parent processes (i.e., the processes that created them).

A context is the contents of a CPU's registers and program counter

Embedded Computing Systems 10CS72

Dept of CSE Page 306

execution of one process on the CPU and resuming execution of

some other process that had previously been suspended. Although

this wording can help clarify the concept, it can be confusing in

itself because a process is, by definition, an executing instance of a

program. Thus the wording suspending progression of a process

might be preferable.

Context Switches and Mode Switches:

Context switches can occur only in kernel mode. Kernel mode is a

privileged mode of the CPU in which only the kernel runs and

which provides access to all memory locations and all other system

resources. Other programs, including applications, initially operate

in user mode, but they can run portions of the kernel code via

system calls. A system call is a request in a Unix-like operating

system by an active process (i.e., a process currently progressing in

the CPU) for a service performed by the kernel, such as

input/output (I/O) or process creation (i.e., creation of a new

process).

I/O can be defined as any movement of information to or from the

combination of the CPU and main memory (i.e. RAM), that is,

communication between this combination and the computer's users

(e.g., via the keyboard or mouse), its storage devices (e.g., disk or

tape drives), or other computers.

The existence of these two modes in Unix-like operating systems

means that a similar, but simpler, operation is necessary when a

system call causes the CPU to shift to kernel mode. This is referred

to as a mode switch rather than a context switch, because it does

not change the current process.

Context switching is an essential feature of multitasking operating

systems. A multitasking operating system is one in which multiple

processes execute on a single CPU seemingly simultaneously and

without interfering with each other. This illusion of concurrency is

achieved by means of context switches that are occurring in rapid

succession (tens or hundreds of times per second). These context

Embedded Computing Systems 10CS72

Dept of CSE Page 307

switching. Its advocates also claim that software context switching

allows for the possibility of improving the switching code, thereby

further enhancing efficiency, and that it permits better control over

the validity of the data that is being loaded.

5.8Scheduler

What is the Scheduler?
The "task scheduler" (or often "scheduler") is the part of the

software that schedules which task to run next. The scheduler is the

part of the software that chooses which task to run next.

The scheduler is arguably the most difficult component of an

RTOS to implement. Schedulers maintain a table of the current

state of each task on the system, as well as the current priority of

each task. The scheduler needs to manage the timer too.

In general, there are 3 states that a task can be in:
1. Active. There can be only 1 active thread on a given processor

at a time.

2. Ready. This task is ready to execute, but is not currently

executing.

3. Blocked. This task is currently waiting on a lock or a critical

section to become free.

Some systems even allow for other states:
1. Sleeping. The task has voluntarily given up control for a

certain period of time.

2. Low-Priority. This task only runs when all other tasks are

blocked or sleeping.

There are 2 ways the scheduler is called:
* the current task voluntarily yield()s to the scheduler, calling

the scheduler directly, or

* the current task has run "long enough", the timer hardware

interrupts it, and the timer interrupt routine calls the scheduler.

The scheduler must save the current status of the current task (save

the contents of all registers to a specified location), it must look

through the list of tasks to find the highest priority task in the

Ready state, and then must switch control back to that task (by

restoring it's register values from memory).

Embedded Computing Systems 10CS72

Dept of CSE Page 308

algorithm, which implements mutual exclusion.

Examples of such resources are fine-grained flags, counters or

queues, used to communicate between code that runs concurrently,

such as an application and its interrupt handlers. The

synchronization of access to those resources is an acute problem

because a thread can be stopped or started at any time.

To illustrate: suppose a section of code is altering a piece of data

over several program steps, when another thread, perhaps triggered

by some unpredictable event, starts executing. If this second thread

reads from the same piece of data, the data, which is in the process

of being overwritten, is in an inconsistent and unpredictable state.

If the second thread tries overwriting that data, the ensuing state

will probably be unrecoverable. These shared data being accessed

by critical sections of code, must therefore be protected, so that

other processes which read from or write to the chunk of data are

excluded from running.

A mutex is also a common name for a program object that

negotiates mutual exclusion among threads, also called a lock. It is

one of thecharacteristics of deadlock. When semaphores are used

or mutual exclusion, the semaphore has an initial value of 1, and

P() is called before the critical section, and V() is called after the

critical section as shown below :

semaphore-> P();

critical section

semaphore-> V();

remainder section

let us suppose that one process A is already executing its critical

section then it implies that semaphore value at that time is zero. If

process B now tries to enter this critical section , it cannot enter the

critical section because it will have to wait before semaphore

becomes greater than zero. This is possible only when process A

executes its signal operation; after executing its critical section.

5.8.2 Semaphore

Semaphore?
In computer science, a semaphore is a protected variable or

abstract data type which constitutes the classic method for

Embedded Computing Systems 10CS72

Dept of CSE Page 309

Wait();

until S > 0;

S := S - 1;

end;
Notice that incrementing the variable S must not be interrupted,

and the P operation must not be interrupted after S is found to be

greater than 0. This can be done using a special instruction such as

test-and-set (if the architecture's instruction set supports it), or (on

uniprocessor systems) ignoring interrupts to prevent other

processes from becoming active.

The value of a semaphore is the number of units of the resource

which are free. (If there is only one resource, a "binary semaphore"

with values 0 or 1 is used.) The P operation busy-waits (uses its

turn to do nothing) or maybe sleeps (tells the system not to give it a

turn) until a resource is available, whereupon it immediately claims

one. The V operation is the inverse; it simply makes a resource

available again after the process has finished using it. The P and V

operations must be atomic, which means that no process may ever

be preempted in the middle of one of those operations to run

another operation on the same semaphore.

The canonical names P and V come from the initials of Dutch

words. The V stands for verhogen, or "increase". Several

explanations have been given for P (including proberen for "to

test", passeer for "pass", probeer "try", and pakken "grab"), but in

fact Dijkstra wrote that he intended P to stand for the made-up

word prolaag,short for probeer te verlagen, literally "try-to-

reduce", or to parallel the terms used in the other case, "try-to-

decrease". This confusion stems from the fact that the words for

increase and decrease both begin with the letter V in Dutch, and

the words spelled out in full would be impossibly confusing for

non-Dutch-speakers.

In the programming language ALGOL 68, in the Linux kernel,and

in some English textbooks, the P and V operations are called,

respectively, down and up. In software engineering practice, they

are often called wait and signal, or acquire and release (which the

standard Java library uses), or pend and post. Some texts call them

procure and vacate to match the original Dutch initials.

Embedded Computing Systems 10CS72

Dept of CSE Page 310

A critical section is a mutex that is tied to a block of code. It's

purpose is to only allow one task at a time be in a block of code.

5.8.3 Message mail boxes
Message mail boxes?

Intertask Communication
Information transfer is sometimes needed among tasks or

between the task and the ISR. Information transfer can be also

called intertask communication.

There are two ways to implement it: through the global

variable or by sending messages.

When using the global variable, it is important to ensure that each

task or ISR possesses the variable alone. The only way to ensure it

is enabling the interrupt. When two tasks share one variable, each

task possesses the variable alone through firstly enabling then

disabling the interrupt or by the semaphore. Please note that a task

can communicate with the ISR only through the global variable

and the task won’t know when the global variable has been

modified by the ISR (unless the ISR sends signals to the task in

manner of semaphore or the task keeps searching the variable’s

value). In this case, CooCox CoOS supplies the mailboxes and the

message queues to avoid the problems above.

* Mailboxes

System or the user code can send a message by the core

services. A typical mail message, also known as the exchange of

Embedded Computing Systems 10CS72

Dept of CSE Page 311

..........

mboxID =

CoCreateMbox(EVENT_SORT_TYPE_PRIO); //Sort by

preemptive

priority pmail = CoPendMail(mboxID,0,&err);

..........

}

void myTaskB(void* pdata)

{

......

CoPostMail(mboxID,"hello,world");

......

}

void myISR(void)

{

CoEnterISR ();

......

isr_PostMail(mboxID,"hello,CooCox");

CoExitISR ();

}

* Message Queues
Message queue is just an array of mailboxes used to send

messages to the task in fact. The task or the ISR can put multiple

messages (that is, the pointers of the message) to the message

queue through the core services. Similarly, one or more tasks can

receive this message by the core services. The tasks sending and

receiving the message promise that the content that the pointer

points to is just that piece of message.

The difference between the mailbox and the message queue is

that the former can store only one piece of message while the latter

can store multiple of it. The maximum pieces of message stored in

a queue are determined by the user when creating the queue in

CooCox CoOS.

In CooCox CoOS, message queue is composed of two parts: one

is the struct which pointed to the message queue; the other is the

waiting list which composed of the tasks waiting for this message

queue. The waiting list supports two kinds of sorting: FIFO

Embedded Computing Systems 10CS72

Dept of CSE Page 312

UNIT-6

RTOS-Based Design-2

6.1 Inter process Communication

In general, a process can send a communication in one of

two ways: blocking or nonblocking . After sending a

blocking communication, the process goes into the waiting

state until it receives a response. Nonblocking

communication allows the process to continue execution

after sending the communication. Both types of

communication are useful.

There are two major styles of interprocess

communication: shared memory and message passing . The

two are logically equivalent—given one, you can build an

interface that implements the other. However, some programs

may be easier to write using one rather than the other. In

addition, the hardware platform may make one easier to

implement or more efficient than the other.

6.4.2 Message Passing

Message passing communication complements the shared

memory model.As shown in Figure 6.15, each communicating

entity has its own message send/receive unit. The message is

not stored on the communications link, but rather at the

senders/ receivers at the end points. In contrast, shared memory

communication can be seen as a memory block used as a

communication device, in which all the data are stored in the

communication link/memory.

Embedded Computing Systems 10CS72

Dept of CSE Page 313

generated by a process and transmitted to another process

by the operating system.

A UML signal is actually a generalization of the Unix

signal. While a Unix signal carries no parameters other than a

condition code, a UML signal is an object. As such, it can carry

parameters as object attributes. Figure 6.16 shows the use of

a signal in UML. The sigbehavior() behavior of the class

is responsible for throwing the signal, as indicated by

send . The signal object is indicated by the signal

stereotype.

6.5 EVALUATING OPERATING SYSTEM PERFORMANCE

The scheduling policy does not tell us all that we would

like to know about the performance of a real system running

processes. Our analysis of scheduling policies makes some

simplifying assumptions:

■ We have assumed that context switches require zero time.

Although it is often reasonable to neglect context switch time

when it is much smaller than the process execution time,

context switching can add significant delay in some cases.

■ We have assumed that we know the execution time of the

processes. In fact, we learned in Section 5.6 that program

time is not a single number, but can be bounded by worst-

case and best-case execution times.

■ We probably determined worst-case or best-case times for

the processes in isolation. But,in fact,they interact with each

other in the cache. Cache conflicts among processes can

Embedded Computing Systems 10CS72

Dept of CSE Page 314

manage the system’s power consumption. A power

management policy [Ben00] is a strategy for determining

when to perform certain power management operations. A

power management policy in general examines the state of

the system to determine when to take actions. However,

the overall strategy embodied in the policy should be

designed based on the characteristics of the static and

dynamic power management mechanisms.

Going into a low-power mode takes time; generally, the

more that is shut off, the longer the delay incurred during

restart. Because power-down and power-up are not free,

modes should be changed carefully. Determining when to

switch into and out of a power-up mode requires an

analysis of the overall system activity.

■ Avoiding a power-down mode can cost unnecessary power.

■ Powering down too soon can cause severe performance

penalties.

Re-entering run mode typically costs a considerable amount

of time.

A straightforward method is to power up the system when a

request is received. This works as long as the delay in

handling the request is acceptable. A more sophisticated

technique is predictive shutdown. The goal is to predict

when the next request will be made and to start the system

just before that time, sav- ing the requestor the start-up time.

In general, predictive shutdown techniques are probabilistic—

they make guesses about activity patterns

Embedded Computing Systems 10CS72

Dept of CSE Page 315

down system waits for a period Toff before returning to the

power-on mode. The choice of Toff and Ton must be

determined by experimentation. Srivastava and Eustace

[Sri94] found one useful rule for graphics terminals. They

plotted the observed idle time (Toff) of a graphics terminal

versus the immediately preceding active time (Ton). The result

was an L-shaped distribution as illustrated in Figure 6.17. In

this distribution, the idle period after a long active period is

usually very short, and the length of the idle period after a

short active period is uniformly distributed. Based on this

distribution, they proposed a shut down threshold that

depended on the length of the last active period—they shut

down when the active period length was below a threshold,

putting the system in the vertical portion of the L distribution.

The Advanced Configuration and Power Interface (ACPI)

is an open indus- try standard for power management

services. It is designed to be compatible with a wide variety

of OSs. It was targeted initially to PCs. The role of ACPI in the

system is illustrated in Figure 6.18. ACPI provides some basic

power management facilities and abstracts the hardware

layer, the OS has its own power management module that

determines the policy, and the OS then uses ACPI to send the

required controls to the hardware and to observe the

hardware’s state as input to the power manager.

ACPI supports the following five basic global power states:

■ G3, the mechanical off state, in which the system consumes

no power.

■ G2, the soft off state, which requires a full OS reboot to

restore the machine to working condition. This state has four

Embedded Computing Systems 10CS72

Dept of CSE Page 316

analog tape. To make life more interesting, we use a simple

algorithm to compress the voice data so that we can make

more efficient use of the limited amount of available memory.

6.7.1 Theory of Operation and Requirements

In addition to studying the compression algorithm, we also

need to learn a little about the operation of telephone

systems.

The compression scheme we will use is known as adaptive

differential pulse code modulation (ADPCM). Despite the

long name, the technique is relatively simple but can yield 2

compression ratios on voice data.

The ADPCM coding scheme is illustrated in Unlike

traditional sam- pling, in which each sample shows the

magnitude of the signal at a particular time, ADPCM encodes

changes in the signal. The samples are expressed in a

coding alphabet , whose values are in a relative range that

spans both negative and positive

values. In this case, the value range is { 3, 2, 1, 1, 2, 3}.
Each sample is used to

predict the value of the signal at the current instant from the
previous value. At each

point in time, the sample is chosen such that the error between

the predicted value and the actual signal value is minimized.

An ADPCM compression system, including an encoder and

decoder, is shown in Figure 6.20. The encoder is more

complex, but both the encoder and decoder use an integrator

to reconstruct the waveform from the samples. The integrator

simply computes a running sum of the history of the

samples; because the samples are differential, integration

Embedded Computing Systems 10CS72

Dept of CSE Page 317

a ringing signal to the telephone when a call is waiting. The

ringing signal is in fact a 90 V RMS sinusoid, but we can use

analog circuitry to produce 0 for no ringing and 1 for ringing.

■ Off-hook: The telephone industry term for answering a

call is going off- hook; the technical term for hanging up

is going on-hook. (This creates some initial confusion since

off-hook means the telephone is active and on-hook

means it is not in use, but the terminology starts to make

sense after a few uses.) Our interface will send a digital

signal to take the phone line off-hook, which will cause

analog circuitry to make the nec- essary connection so

that voice data can be sent and received during the call.

We can now write the requirements for the answering

machine. We will assume that the interface is not to the actual

phone line but to some circuitry that provides voice samples,

off-hook commands, and so on. Such circuitry will let us

test our system with a telephone line simulator and then

build the analog circuitry necessary to connect to a real

phone line. We will use the term outgoing message (OGM) to

refer to the message recorded by the owner of the machine

and played at the start of every phone call.

Name Digital telephone answering

machine

Telephone answering machine with digital memory, using

speech compression.

Inputs Telephone: voice samples, ring

indicator.

Outputs

Embedded Computing Systems 10CS72

Dept of CSE Page 318

back.Performance Should be able to record

about 30 min of total voice, including incoming and OGMs.

Voice data are sampled at the standard telephone rate of 8

kHz.

6.7.2 Specification

The class diagram for the answering machine. In addition

to the classes that perform the major functions, we also use

classes to describe the incoming and OGMs. As seen below,

these classes are related.

The definitions of the physical interface classes are shown

in Figure 6.22. The buttons and lights simply provide

attributes for their input and output values. The phone line,

microphone, and speaker are given behaviors that let us

sample their current values.

The message classes are defined in Figure 6.23. Since

incoming and OGM types share many characteristics, we

derive both from a more fundamental message type.

The major operational classes—Controls, Record, and

Playback—are defined in Figure 6.24. The Controls class

provides an operate() behavior that oversees the user-

level operations. The Record and Playback classes provide

behaviors that handle writing and reading sample sequences.

The state diagram for the Controls activate behavior is

shown in. Most of the user activities are relatively

straightforward. The most complex is an- swering an

incoming call. As with the software modem of Section 5.11,

we want to be sure that a single depression of a button causes

the required action to be taken exactly once; this requires

edge detection on the button signal.

Embedded Computing Systems 10CS72

Dept of CSE Page 319

on-hook commands.

■ The telephone input and output modules handle receiving

samples from and sending samples to the telephone line.

■ The compression module compresses data and stores it in

memory.

■ The decompression module uncompresses data and sends it

to the speaker module.

We can determine the execution model for these modules

based on the rates at which they must work and the ways in

which they communicate.

■ The front panel and telephone line modules must regularly

test the buttons and phone line, but this can be done at a fairly

low rate. As seen below, they can therefore run as polled

processes in the software’s main loop.

while (TRUE) { check_phone_line();
run_front_panel();

}

■ The speaker and phone input and output modules must run at

higher, regular rates and are natural candidates for interrupt

Embedded Computing Systems 10CS72

Dept of CSE Page 320

Performance analysis is important in this case because we

want to ensure that we don’t spend so much time

compressing that we miss voice samples. In a real consumer

product, we would carefully design the code so that we

could use the slowest, cheapest possible CPU that would still

perform the required processing in the available time

between samples. In this case, we will choose the

microprocessor in advance for simplicity and simply ensure

that all the deadlines are met.

An important class of problems that should be

adequately tested is memory overflow. The system can run

out of memory at any time, not just between messages. The

modules should be tested to ensure that they do reasonable

things when all the available memory is used up.

6.7.5 System Integration and Testing

We can test partial integrations of the software on our host

platform. Final testing with real voice data must wait until the

application is moved to the target platform.

Testing your system by connecting it directly to the

phone line is not a very good idea. In the United States, the

Federal Communications Commission regulates equipment

connected to phone lines. Beyond legal problems, a bad circuit

can dam- age the phone line and incur the wrath of your service

provider. The required analog circuitry also requires some

amount of tuning, and you need a second telephone line to

generate phone calls for tests. You can build a telephone line

simulator to test the hardware independently of a real

telephone line.

Embedded Computing Systems 10CS72

Dept of CSE Page 321

UNIT-7

Distributed Embedded Systems

7.2 NETWORKS FOR EMBEDDED SYSTEMS

Networks for embedded computing span a broad range of

requirements; many of those requirements are very different

from those for general-purpose networks. Some networks are

used in safety-critical applications, such as automotive

control. Some networks, such as those used in consumer

electronics systems, must be very inexpensive. Other

networks,such as industrial control networks,must be

extremely rugged and reliable.

Several interconnect networks have been developed

especially for distributed embedded computing:

■ The I2 C bus is used in microcontroller-based systems.

■ The Controller Area Network (CAN) bus was developed

for automotive electronics. It provides megabit rates and can

handle large numbers of devices.

■ Ethernet and variations of standard Ethernet are used for a

variety of control applications.

In addition, many networks designed for general-purpose

computing have been put to use in embedded applications as

well.

Embedded Computing Systems 10CS72

Dept of CSE Page 322

to act as bus masters and the bus

The basic electrical interface to the bus is shown in Figure

8.8. The bus does not define particular voltages to be used for

high or low so that either bipolar or MOS circuits can be

connected to the bus. Both bus signals use open collector/open

drain circuits.1 A pull-up resistor keeps the default state of the

signal high, and transistors are used in each bus device to pull

down the signal when a 0 is to be transmitted. Open

collector/open drain signaling allows several devices to

simultaneously write the bus without causing electrical

damage.

The open collector/open drain circuitry allows a slave

device to stretch a clock signal during a read from a slave.

The master is responsible for generating the SCL clock, but

the slave can stretch the low period of the clock (but not the

high period) if necessary.

The I2 C bus is designed as a multimaster bus—any one of
several different

devices may act as the master at various times. As a result,

there is no global mas- ter to generate the clock signal on

SCL. Instead, a master drives both SCL and SDL when it is

sending data. When the bus is idle, both SCL and SDL remain

high. When two devices try to drive either SCL or SDL to

different values, the open collector/ open drain circuitry

prevents errors, but each master device must listen to the bus

while transmitting to be sure that it is not interfering with

another message—if the device receives a different value than

it is trying to transmit, then it knows that it is interfering with

another message.

Every I2 C device has an address. The addresses of the

devices are determined by the system designer, usually as part

Embedded Computing Systems 10CS72

Dept of CSE Page 323

explains the 7-bit addresses on the bus.) The format of an

address transmission is shown in Figure 8.9.

A bus transaction is initiated by a start signal and

completed with an end signal as follows:

■ A start is signaled by leaving the SCL high and sending a 1

to 0 transition on

SDL.

■ A stop is signaled by setting the SCL high and sending a 0

to 1 transition on

SDL.

However, starts and stops must be paired. A master can

write and then read (or read and then write) by sending a

start after the data transmission, followed by another address

transmission and then more data. The basic state transition

graph for the master’s actions in a bus transaction is shown in

The formats of some typical complete bus transactions are

shown in Figure 8.11. In the first example, the master

writes 2 bytes to the addressed slave. In the second, the

master requests a read from a slave. In the third, the master

writes

1 byte to the slave, and then sends another start to

initiate a read from the slave.

Transmitting a byte on the I2 C bus.

Embedded Computing Systems 10CS72

Dept of CSE Page 324

8.2.2 Ethernet

Ethernet is very widely used as a local area network for

general-purpose computing. Because of its ubiquity and the low

cost of Ethernet interfaces, it has seen significant use as a network

for embedded computing. Ethernet is particularly useful when

PCs are used as platforms, making it possible to use standard

components, and when the network does not have to meet

rigorous real-time requirements.

The physical organization of an Ethernet is very

simple, as shown in Figure 8.14. The network is a bus with a

single signal path; the Ethernet standard allows for several

different implementations such as twisted pair and coaxial

cable.

Unlike the I2 C bus, nodes on the Ethernet are not
synchronized—they can send

their bits at any time. I2 C relies on the fact that a
collision can be detected and

quashed within a single bit time thanks to

synchronization. But since Ethernet nodes are not

synchronized, if two nodes decide to transmit at the same

time, the message will be ruined. The Ethernet arbitration

scheme is known as Carrier Sense Multiple Access with

Collision Detection (CSMA/CD). The algorithm is outlined in

Figure 8.15. A node that has a message waits for the bus to

become silent and then starts transmitting. It simultaneously

listens, and if it hears another transmission that interferes with

its transmission, it stops transmitting and waits to retransmit. The

waiting time is random, but weighted by an exponential function

of the number of times the message has been aborted. Figure

8.16 shows the expo- nential backoff function both before and

after it is modulated by the random wait time. Since a message

may be interfered with several times before it is successfully

transmitted, the exponential backoff technique helps to ensure

that the network does not become overloaded at high demand

factors. The random factor in the wait time minimizes the

chance that two messages will repeatedly interfere with each

other.

The maximum length of an Ethernet is determined by

the nodes’ ability to detect collisions. The worst case occurs

when two nodes at opposite ends of the bus are transmitting

Embedded Computing Systems 10CS72

Dept of CSE Page 325

simultaneously. For the collision to be detected by both nodes,

each node’s signal must be able to travel to the opposite end of

the bus so that it can be heard by the other node. In practice,

Ethernets can run up to several hundred

7.3 NETWORK-BASED DESIGN

Designing a distributed embedded system around a

network involves some of the same design tasks we faced in

accelerated systems. We must schedule computations in time

and allocate them to PEs. Scheduling and allocation of

communication are important additional design tasks required

for many distributed networks. Many embedded networks are

designed for low cost and therefore do not provide exces- sively

high communication speed. If we are not careful, the network

can become the bottleneck in system design. In this section

we concentrate on design tasks unique to network-based

distributed embedded systems.

We know how to analyze the execution time of

programs and systems of pro- cesses on single CPUs, but to
analyze the performance of networks we must know how to
determine the delay incurred by transmitting messages. Let us
assume for the moment that messages are sent reliably—we do
not have to retransmit a message. The message delay for a
single message with no contention (as would be the case in a point-
to-point connection) can be modeled as

where tx is the transmitter-side overhead, tn is the

network transmission time, and tr is the receiver-side

overhead. In I2 C, tx and tr are negligible relative to tn , as

illustrated

If the network uses fixed-priority arbitration, the

network availability delay is unbounded for all but the highest-

priority device. Since the highest-priority device always gets

the network first, unless there is an application-specific limit

on how long it will transmit before relinquishing the network,

it can keep blocking the other devices indefinitely.

■ If the network uses fair arbitration, the network

availability delay is bounded. In the case of round-robin

arbitration, if there are N devices, then the worst- case network

availability delay is N (tx tarb), where tarb is the delay

Embedded Computing Systems 10CS72

Dept of CSE Page 326

incurred for arbitration. tarb is usually small compared to

transmission time.

Even when round-robin arbitration is used to bound

the network availability delay, the waiting time can be very

long. If we add acknowledgment and data cor- ruption into the

analysis, figuring network delay is more difficult. Assuming

that errors are random, we cannot predict a worst-case delay

since every packet may contain an error. We can, however,

compute the probability that a packet will be delayed for more

than a given amount of time. However, such analysis is beyond

the scope of this l ook.

Arbitration on networks is a form of prioritization.

Therefore, we can use the techniques we learned for process

scheduling in Chapter 6 to help us schedule communications.

In a rate-monotonic communication scheme, the task with the

shortest deadline should be assigned the highest priority in the

network.

Our process scheduling model assumed that we could

interrupt processes at any point. But network communications

are organized into packets. In most networks we cannot

interrupt a packet transmission to take over the network for a

higher- priority packet. As a result,networks exhibit priority

inversion like that introduced in Chapter 6. When a low-priority

message is on the network, the network is effectively allocated to

that low-priority message, allowing it to block higher-priority

messages. This cannot cause deadlock since each message has a

bounded length,but it can slow down critical communications.

The only solution is to analyze network behavior to determine

whether priority inversion causes some messages to be

delayed for too long.

Of course, a round-robin arbitrated network puts all

communications at the same priority. This does not eliminate the

priority inversion problem because processes still have

priorities.

Thus far we have assumed a single-hop network: A

message is received at its intended destination directly from the

source, without going through any other net- work node. It is

possible to build multihop networks in which messages are

routed through network nodes to get to their destinations. (Using a

multistage network does not necessarily mean using a multihop

Embedded Computing Systems 10CS72

Dept of CSE Page 327

network—the stages in a multistage network are generally much

smaller than the network PEs.) Figure 8.18 shows an example

of a multihop communication. The hardware platform has two

separate networks (perhaps so that communications between

subsets of the PEs do not interfere), but there is no direct path

from M 1 to M 5. The message is therefore routed through M 3,

which reads it from one network and sends it on to the other one.

Analyzing delays

7.4 INTERNET-ENABLED SYSTEMS

Some very different types of distributed embedded

system are rapidly emerging— the Internet-enabled embedded

system and Internet appliances. The Internet is not well suited

to the real-time tasks that are the bread and butter of embedded

computing, but it does provide a rich environment for non–

real-time interaction. In this section we will discuss the Internet

and how it can be used by embedded computing systems

7.4.1 Internet

The Internet Protocol (IP) [Los97, Sta97A] is the

fundamental protocol on the Internet . It provides

connectionless, packet-based communication. Industrial

automation has long been a good application area for Internet-

based embedded sys- tems. Information appliances that use the

Internet are rapidly becoming another use of IP in embedded

computing.

Internet protocol is not defined over a particular

physical implementation—it is an internetworking standard.

Internet packets are assumed to be carried by some other

network, such as an Ethernet. In general, an Internet packet will

travel over several different networks from source to

destination. The IP allows data to flow seamlessly through these

networks from one end user to another. The relationship

between IP and individual networks is illustrated in Figure 8.19.

IP works at the net- work layer. When node A wants to send data

to node B, the application’s data pass through several layers of

the protocol stack to send to the IP. IP creates packets for routing

to the destination, which are then sent to the data link and

physical layers. A node that transmits data among different

types of networks is known as a router . The router’s

functionality must go up to the IP layer, but since it is not

Embedded Computing Systems 10CS72

Dept of CSE Page 328

running applications, it does not need to go to higher levels of

the OSI model. In general, a packet may go through several

routers to get to its destination. At the destination, the IP layer

provides data to the transport layer and ultimately the receiving

appli- cation. As the data pass through several layers of the

protocol stack, the IP packet data are encapsulated in packet

formats appropriate to each layer.

The basic format of an IP packet is shown in Figure

8.20. The header and data payload are both of variable length.

The maximum total length of the header and data payload is

65,535 bytes.An Internet address is a number (32 bits in early

versions of IP, 128 bits in IPv6). The IP address is typically

written in the form xxx.xx.xx.xx. The names by which users

and applications typically refer to Internet nodes, such as

foo.baz.com,

The fact that IP works at the network layer tells us that it

does not guarantee that a packet is delivered to its destination.

Furthermore,packets that do arrive may come out of order. This is

referred to as best-effort routing . Since routes for data may

change quickly with subsequent packets being routed along

very different paths with different delays, real-time

performance of IP can be hard to predict. When a small

network is contained totally within the embedded system,

performance can be evaluated through simulation or other

methods because the possible inputs are limited. Since the

performance of the Internet may depend on worldwide usage

patterns, its real-time performance is inherently harder to

predict.

The Internet also provides higher-level services built

on top of IP. The Trans- mission Control Protocol (TCP) is one

such example. It provides a connection- oriented service that

ensures that data arrive in the appropriate order, and it uses an

acknowledgment protocol to ensure that packets arrive.

Because many higher- level services are built on top of TCP,

the basic protocol is often referred to as TCP/IP.

Wide Web service, Simple Mail Transfer Protocol

for email, and Telnet for virtual terminals. A separate transport

protocol, User Datagram Protocol , is used as

The Internet service stack. the basis for the network

management services provided by the Simple Network

Embedded Computing Systems 10CS72

Dept of CSE Page 329

Management Protocol .

Internet Applications

The Internet provides a standard way for an embedded system to act in

concert with other devices and with users, such as:

■ One of the earliest Internet-enabled embedded systems was the

laser printer. High-end laser printers often use IP to receive print jobs

from host machines.

■ Portable Internet devices can display Web pages, read email, and

synchronize calendar information with remote computers.

■ A home control system allows the homeowner to remotely

monitor and control home cameras, lights, and so on.

Although there are higher-level services that provide

more time-sensitive delivery mechanisms for the Internet, the

basic incarnation of the Internet is not well suited to hard real-

time operations. However, IP is a very good way to let the

embed- ded system talk to other systems. IP provides a way for

both special-purpose and standard programs (such as Web

browsers) to talk to the embedded system. This non–real-time

interaction can be used to monitor the system, set its

configuration, and interact with it.

As seen in Section 8.4.1, the Internet provides a wide

range of services built on top of IP. Since code size is an

important issue in many embedded systems, one architectural

decision that must be made is to determine which Internet

services will be needed by the system. This choice depends

on the type of data service required, such as connectionless

versus connection oriented, streaming vs. non- streaming, and

so on. It also depends on the application code and its

services: does the system look to the rest of the Internet like a

terminal, a Web server, or something else?

Embedded Computing Systems 10CS72

Dept of CSE Page 330

7.5 VEHICLES AS NETWORKS

Modern cars and planes rely on electronics to operate.

About one-third of the total cost of an airplane or car comes from

its electronics. Electronic systems are used in all aspects of the

vehicle—safety-critical control, navigation and systems

monitoring, and passenger comfort.These electronic devices are

connected using data networks.

Networks are used for a variety of purposes in

vehicles, with varying require- ments on reliability and

performance:

■ Vehicle control (steering and brakes in cars,flight

control surfaces in airplanes) is the most critical operation in the

vehicle since it determines vehicle stability.

Embedded Computing Systems 10CS72

Dept of CSE Page 331

Unit 8

Embedded Systems Development

Environment

8.1 The Integrated Development Environment:

Integrated development environments are designed to maximize

programmer productivity by providing tight-knit components with similar

user interfaces. IDEs present a single program in which all development is

done. This program typically provides many features for authoring,

modifying, compiling, deploying and debugging software. This contrasts

with software development using unrelated tools, such as vi, GCC or

make.

One aim of the IDE is to reduce the configuration necessary to piece

together multiple development utilities, instead providing the same set of

capabilities as a cohesive unit. Reducing that setup time can increase

developer productivity, in cases where learning to use the IDE is faster

than manually integrating all of the individual tools. Tighter integration of

all development tasks has the potential to improve overall productivity

beyond just helping with setup tasks. For example, code can be

continuously parsed while it is being edited, providing instant feedback

when syntax errors are introduced. That can speed learning a new

programming language and its associated libraries.

Some IDEs are dedicated to a specific programming language, allowing a

feature set that most closely matches the programming paradigms of the

language. However, there are many multiple-language IDEs, such as

Eclipse, ActiveState Komodo, IntelliJ IDEA, Oracle JDeveloper,

NetBeans, Codenvy and Microsoft Visual Studio. Xcode, Xojo and Delphi

are dedicated to a closed language or set of programming languages.

While most modern IDEs are graphical, text-based IDEs such as Turbo

Pascal were in popular use before the widespread availability of

windowing systems like Microsoft Windows and the X Window System

(X11). They commonly use function keys or hotkeys to execute frequently

used commands or macros.

http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/Vi
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikipedia.org/wiki/Make_%28software%29
http://en.wikipedia.org/wiki/Make_%28software%29
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Eclipse_%28software%29
http://en.wikipedia.org/wiki/Eclipse_%28software%29
http://en.wikipedia.org/wiki/ActiveState_Komodo
http://en.wikipedia.org/wiki/IntelliJ_IDEA
http://en.wikipedia.org/wiki/Oracle_JDeveloper
http://en.wikipedia.org/wiki/NetBeans
http://en.wikipedia.org/wiki/NetBeans
http://en.wikipedia.org/wiki/Codenvy
http://en.wikipedia.org/wiki/Microsoft_Visual_Studio
http://en.wikipedia.org/wiki/Xcode
http://en.wikipedia.org/wiki/Xojo
http://en.wikipedia.org/wiki/Embarcadero_Delphi
http://en.wikipedia.org/wiki/Turbo_Pascal
http://en.wikipedia.org/wiki/Turbo_Pascal
http://en.wikipedia.org/wiki/Turbo_Pascal
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/X_Window_System
http://en.wikipedia.org/wiki/Keyboard_shortcut

Embedded Computing Systems 10CS72

Dept of CSE Page 332

GNU Emacs, an extensible editor that is commonly used as an IDE on Unix-like

systems

IDEs initially became possible when developing via a console or terminal.

Early systems could not support one, since programs were prepared using

flowcharts, entering programs with punched cards (or paper tape, etc.)

before submitting them to a compiler. Dartmouth BASIC was the first

language to be created with an IDE (and was also the first to be designed

for use while sitting in front of a console or terminal). Its IDE (part of the

Dartmouth Time Sharing System) was command-based, and therefore did

not look much like the menu-driven, graphical IDEs prevalent today.

However it integrated editing, file management, compilation, debugging

and execution in a manner consistent with a modern IDE.

Maestro I is a product from Softlab Munich and was the world's first

integrated development environment
[1]

1975 for software. Maestro I was

installed for 22,000 programmers worldwide. Until 1989, 6,000

installations existed in the Federal Republic of Germany. Maestro I was

arguably the world leader in this field during the 1970s and 1980s. Today

one of the last Maestro I can be found in the Museum of Information

Technology at Arlington.

One of the first IDEs with a plug-in concept was Softbench. In 1995

Computerwoche commented that the use of an IDE was not well received

by developers since it would fence in their creativity.

A cross compiler is a compiler capable of creating executable code for a

platform other than the one on which the compiler is running. For example

in order to compile for Linux/ARM you first need to obtain its libraries to

compile against.

A cross compiler is necessary to compile for multiple platforms from one

machine. A platform could be infeasible for a compiler to run on, such as

http://en.wikipedia.org/wiki/GNU_Emacs
http://en.wikipedia.org/wiki/Unix-like
http://en.wikipedia.org/wiki/System_console
http://en.wikipedia.org/wiki/Computer_terminal
http://en.wikipedia.org/wiki/Punched_card
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Dartmouth_BASIC
http://en.wikipedia.org/wiki/Dartmouth_Time_Sharing_System
http://en.wikipedia.org/wiki/Dartmouth_Time_Sharing_System
http://en.wikipedia.org/wiki/Maestro_I
http://en.wikipedia.org/wiki/Integrated_development_environment#cite_note-1
http://en.wikipedia.org/wiki/Maestro_I
http://en.wikipedia.org/wiki/West_Germany
http://en.wikipedia.org/wiki/Softbench
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Executable
http://en.wikipedia.org/wiki/Platform_%28computing%29
http://en.wikipedia.org/wiki/Platform_%28computing%29

Embedded Computing Systems 10CS72

Dept of CSE Page 333

for the microcontroller of an embedded system because those systems

contain no operating system. In paravirtualization one machine runs many

operating systems, and a cross compiler could generate an executable for

each of them from one main source.

Cross compilers are not to be confused with a source-to-source compilers.

A cross compiler is for cross-platform software development of binary

code, while a source-to-source "compiler" just translates from one

programming language to another in text code. Both are programming

tools

8.1.2 Uses of cross compilers

The fundamental use of a cross compiler is to separate thebuild

environment from target environment. This is useful in a number of

situations:

Embedded computers where a device has extremely limited resources. For

example, a microwave oven will have an extremely small computer to

read its touchpad and door sensor, provide output to a digital display and

speaker, and to control the machinery for cooking food. This computer

will not be powerful enough to run a compiler, a file system, or a

development environment. Since debugging and testing may also require

more resources than are available on an embedded system, cross-

compilation can be less involved and less prone to errors than native

compilation.

Compiling for multiple machines. For example, a company may wish to

support several different versions of an operating system or to support

several different operating systems. By using a cross compiler, a single

build environment can be set up to compile for each of these targets.

Compiling on a server farm. Similar to compiling for multiple machines, a

complicated build that involves many compile operations can be executed

across any machine that is free, regardless of its underlying hardware or

the operating system version that it is running.

Bootstrapping to a new platform. When developing software for a new

platform, or the emulator of a future platform, one uses a cross compiler to

compile necessary tools such as the operating system and a native

compiler.

Compiling native code for emulators for older now-obsolete platforms like

the Commodore 64 or Apple II by enthusiasts who use cross compilers

http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Paravirtualization
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Source-to-source_compiler
http://en.wikipedia.org/wiki/Programming_tool
http://en.wikipedia.org/wiki/Programming_tool
http://en.wikipedia.org/wiki/Programming_tool
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Server_farm
http://en.wikipedia.org/wiki/Bootstrapping_%28compilers%29
http://en.wikipedia.org/wiki/Emulators

Embedded Computing Systems 10CS72

Dept of CSE Page 334

that run on a current platform (such as Aztec C's MS-DOS 6502 cross

compilers running under Windows XP).

Use of virtual machines (such as Java's JVM) resolves some of the reasons

for which cross compilers were developed. The virtual machine paradigm

allows the same compiler output to be used across multiple target systems,

although this is not always ideal because virtual machines are often slower

and the compiled program can only be run on computers with that virtual

machine.

Typically the hardware architecture differs (e.g. compiling a program

destined for the MIPS architecture on an x86 computer) but cross-

compilation is also applicable when only the operating system

environment differs, as when compiling a FreeBSD program under Linux,

or even just the system library, as when compiling programs with uClibc

on a glibc host.

8.1.3 Canadian Cross

The Canadian Cross is a technique for building cross compilers for other

machines. Given three machines A, B, and C, one uses machine A (e.g.

running Windows XP on an IA-32 processor) to build a cross compiler

that runs on machine B (e.g. running Mac OS X on an x86-64 processor)

to create executables for machine C (e.g. running Android on an ARM

processor). When using the Canadian Cross with GCC, there may be four

compilers involved:

The proprietary native Compiler for machine A (1) (e.g. compiler from

Microsoft Visual Studio) is used to build the gcc native compiler for

machine A (2).

The gcc native compiler for machine A (2) is used to build the gcc cross

compiler from machine A to machine B (3)

The gcc cross compiler from machine A to machine B (3) is used to build

the gcc cross compiler from machine B to machine C (4

The end-result cross compiler (4) will not be able to run on your build

machine A; instead you would use it on machine B to compile an

application into executable code that would then be copied to machine C

and executed on machine C.

For instance, NetBSD provides a POSIX Unix shell script named

build.sh which will first build its own toolchain with the host's compiler;

this, in turn, will be used to build the cross-compiler which will be used to

build the whole system.

http://en.wikipedia.org/wiki/MOS_Technology_6502
http://en.wikipedia.org/wiki/Windows_XP
http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/Java_virtual_machine
http://en.wikipedia.org/wiki/Hardware_architecture
http://en.wikipedia.org/wiki/MIPS_architecture
http://en.wikipedia.org/wiki/X86
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/FreeBSD
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/UClibc
http://en.wikipedia.org/wiki/Glibc
http://en.wikipedia.org/wiki/Windows_XP
http://en.wikipedia.org/wiki/IA-32
http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/X86-64
http://en.wikipedia.org/wiki/Android_%28operating_system%29
http://en.wikipedia.org/wiki/ARM_architecture
http://en.wikipedia.org/wiki/Microsoft_Visual_Studio
http://en.wikipedia.org/wiki/NetBSD
http://en.wikipedia.org/wiki/POSIX
http://en.wikipedia.org/wiki/POSIX
http://en.wikipedia.org/wiki/Toolchain

Embedded Computing Systems 10CS72

Dept of CSE Page 335

The term Canadian Cross came about because at the time that these

issues were under discussion, Canada had three national political parties.

8.4 What is a Disassembler?

In essence, a disassembler is the exact opposite of an assembler. Where

an assembler converts code written in an assembly language into binary

machine code, a disassembler reverses the process and attempts to recreate

the assembly code from the binary machine code.

Since most assembly languages have a one-to-one correspondence with

underlying machine instructions, the process of disassembly is relatively

straight-forward, and a basic disassembler can often be implemented

simply by reading in bytes, and performing a table lookup. Of course,

disassembly has its own problems and pitfalls, and they are covered later

in this chapter.

Many disassemblers have the option to output assembly language

instructions in Intel, AT&T, or (occasionally) HLA syntax. Examples in

this book will use Intel and AT&T syntax interchangeably. We will

typically not use HLA syntax for code examples, but that may change in

the future.

8.5Disassembler Issues

As we have alluded to before, there are a number of issues and difficulties

associated with the disassembly process. The two most important

difficulties are the division between code and data, and the loss of text

information.

Separating Code from Data

Since data and instructions are all stored in an executable as binary data,

the obvious question arises: how can a disassembler tell code from data? Is

any given byte a variable, or part of an instruction?

The problem wouldn't be as difficult if data were limited to the .data

section (segment) of an executable (explained in a later chapter) and if

executable code were limited to the .code section of an executable, but this

is often not the case. Data may be inserted directly into the code section

(e.g. jump address tables, constant strings), and executable code may be

stored in the data section (although new systems are working to prevent

this for security reasons). AI programs, LISP or Forth compilers may not

Embedded Computing Systems 10CS72

Dept of CSE Page 336

contain .text and .data sections to help decide, and have code and data

interspersed in a single section that is readable, writable and executable,

Boot code may even require substantial effort to identify sections. A

technique that is often used is to identify the entry point of an executable,

and find all code reachable from there, recursively. This is known as "code

crawling".

Many interactive disassemblers will give the user the option to render

segments of code as either code or data, but non-interactive disassemblers

will make the separation automatically. Disassemblers often will provide

the instruction AND the corresponding hex data on the same line, shifting

the burden for decisions about the nature of the code to the user. Some

disassemblers (e.g. ciasdis) will allow you to specify rules about whether

to disassemble as data or code and invent label names, based on the

content of the object under scrutiny. Scripting your own "crawler" in this

way is more efficient; for large programs interactive disassembling may be

impractical to the point of being unfeasible.

The general problem of separating code from data in arbitrary executable

programs is equivalent to the halting problem. As a consequence, it is not

possible to write a disassembler that will correctly separate code and data

for all possible input programs. Reverse engineering is full of such

theoretical limitations, although by Rice's theore all interesting questions

about program properties are undecidable (so compilers and many other

tools that deal with programs in any form run into such limits as well). In

practice a combination of interactive and automatic analysis and

perseverance can handle all but programs specifically designed to thwart

reverse engineering, like using encryption and decrypting code just prior

to use, and moving code around in memory.

8.5.1 Lost Information

User defined textual identifiers, such as variable names, label names, and

macros are removed by the assembly process. They may still be present in

generated object files, for use by tools like debuggers and relocating

linkers, but the direct connection is lost and re-establishing that connection

requires more than a mere disassembler. Especially small constants may

have more than one possible name. Operating system calls (like dll's in

MS-Windows, or syscalls in Unices) may be reconstructed, as their names

appear in a separate segment or are known beforehand. Many

disassemblers allow the user to attach a name to a label or constant based

on his understanding of the code. These identifiers, in addition to

comments in the source file, help to make the code more readable to a

human, and can also shed some clues on the purpose of the code. Without

these comments and identifiers, it is harder to understand the purpose of

Embedded Computing Systems 10CS72

Dept of CSE Page 337

the source code, and it can be difficult to determine the algorithm being

used by that code. When you combine this problem with the possibility

that the code you are trying to read may, in reality, be data (as outlined

above), then it can be ever harder to determine what is going on.

8.6 Decompilers

Akin to Disassembly, Decompilers take the process a step further and

actually try to reproduce the code in a high level language. Frequently, this

high level language is C, because C is simple and primitive enough to

facilitate the decompilation process. Decompilation does have its

drawbacks, because lots of data and readability constructs are lost during

the original compilation process, and they cannot be reproduced. Since the

science of decompilation is still young, and results are "good" but not

"great", this page will limit itself to a listing of decompilers, and a general

(but brief) discussion of the possibilities of decompilation.

Tools

As with other software, embedded system designers use compilers,

assemblers, and debuggers to develop embedded system software.

However, they may also use some more specific tools:

In circuit debuggers or emulators (see next section).

Utilities to add a checksum or CRC to a program, so the embedded

system can check if the program is valid.

For systems using digital signal processing, developers may use a math

workbench such as Scilab / Scicos, MATLAB / Simulink, EICASLAB,

MathCad, Mathematica,or FlowStone DSP to simulate the mathematics.

They might also use libraries for both the host and target which eliminates

developing DSP routines as done in DSPnano RTOS.

model based development tool like VisSim lets you create and simulate

graphical data flow and UML State chart diagrams of components like

digital filters, motor controllers, communication protocol decoding and

multi-rate tasks. Interrupt handlers can also be created graphically. After

simulation, you can automatically generate C-code to the VisSim RTOS

which handles the main control task and preemption of background tasks,

as well as automatic setup and programming of on-chip peripherals.

http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Debugger
http://en.wikipedia.org/wiki/Cyclic_redundancy_check
http://en.wikipedia.org/wiki/Digital_signal_processing
http://en.wikipedia.org/wiki/Scilab
http://en.wikipedia.org/wiki/Scicos
http://en.wikipedia.org/wiki/MATLAB
http://en.wikipedia.org/wiki/Simulink
http://en.wikipedia.org/wiki/EICASLAB
http://en.wikipedia.org/wiki/MathCad
http://en.wikipedia.org/wiki/MathCad
http://en.wikipedia.org/wiki/Mathematica
http://en.wikipedia.org/w/index.php?title=FlowStone_DSP&action=edit&redlink=1
http://en.wikipedia.org/wiki/DSPnano_RTOS
http://en.wikipedia.org/wiki/VisSim
http://en.wikipedia.org/wiki/Interrupt
http://en.wikipedia.org/wiki/VisSim
http://en.wikipedia.org/wiki/VisSim
http://en.wikipedia.org/wiki/Preemption_%28computing%29

Embedded Computing Systems 10CS72

Dept of CSE Page 338

Custom compilers and linkers may be used to optimize specialized

hardware.

embedded system may have its own special language or design tool, or

add enhancements to an existing language such as Forth or Basic.

Another alternative is to add a real-time operating system or embedded

operating system, which may have DSP capabilities like DSPnano RTOS.

Modeling and code generating tools often based on state machines

Software tools can come from several sources:

Software companies that specialize in the embedded market

Ported from the GNU software development tools

Sometimes, development tools for a personal computer can be used if the

embedded processor is a close relative to a common PC processor

As the complexity of embedded systems grows, higher level tools and

operating systems are migrating into machinery where it makes sense. For

example, cellphones, personal digital assistants and other consumer

computers often need significant software that is purchased or provided by

a person other than the manufacturer of the electronics. In these systems,

an open programming environment such as Linux, NetBSD, OSGi or

Embedded Java is required so that the third-party software provider can

sell to a large market.

8.6 Debugging

Embedded debugging may be performed at different levels, depending on

the facilities available. From simplest to most sophisticated they can be

roughly grouped into the following areas:

Interactive resident debugging, using the simple shell provided by the

embedded operating system (e.g. Forth and Basic)

External debugging using logging or serial port output to trace operation

using either a monitor in flash or using a debug server like the Remedy

Debugger which even works for heterogeneous multicore systems.

An in-circuit debugger (ICD), a hardware device that connects to the

microprocessor via a JTAG or Nexus interface. This allows the operation

http://en.wikipedia.org/wiki/Forth_%28programming_language%29
http://en.wikipedia.org/wiki/BASIC_Stamp
http://en.wikipedia.org/wiki/Real-time_operating_system
http://en.wikipedia.org/wiki/Embedded_operating_system
http://en.wikipedia.org/wiki/Embedded_operating_system
http://en.wikipedia.org/wiki/Embedded_operating_system
http://en.wikipedia.org/wiki/DSPnano_RTOS
http://en.wikipedia.org/wiki/UML_tool
http://en.wikipedia.org/wiki/UML_state_machine
http://en.wikipedia.org/wiki/GNU
http://en.wikipedia.org/wiki/Cellphone
http://en.wikipedia.org/wiki/Personal_digital_assistant
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/NetBSD
http://en.wikipedia.org/wiki/OSGi
http://en.wikipedia.org/wiki/Embedded_Java
http://en.wikipedia.org/wiki/Embedded_Java
http://en.wikipedia.org/wiki/Debugging
http://en.wikipedia.org/wiki/Remedy_Debugger
http://en.wikipedia.org/wiki/Remedy_Debugger
http://en.wikipedia.org/wiki/Remedy_Debugger
http://en.wikipedia.org/wiki/Multi-core_processor
http://en.wikipedia.org/wiki/JTAG
http://en.wikipedia.org/wiki/Nexus_%28standard%29

Embedded Computing Systems 10CS72

Dept of CSE Page 339

of the microprocessor to be controlled externally, but is typically restricted

to specific debugging capabilities in the processor.

An in-circuit emulator (ICE) replaces the microprocessor with a simulated

equivalent, providing full control over all aspects of the microprocessor.

A complete emulator provides a simulation of all aspects of the hardware,

allowing all of it to be controlled and modified, and allowing debugging

on a normal PC. The downsides are expense and slow operation, in some

cases up to 100X slower than the final system.

For SoC designs, the typical approach is to verify and debug the design on
an FPGA prototype board. This is used to debug hardware, firmware
and software interactions across multiple FPGA with capabilities similar
to a logic analyzer.

Unless restricted to external debugging, the programmer can typically load

and run software through the tools, view the code running in the processor,

and start or stop its operation. The view of the code may be as HLL

source-code, assembly code or mixture of both.

Because an embedded system is often composed of a wide variety of

elements, the debugging strategy may vary. For instance, debugging a

software- (and microprocessor-) centric embedded system is different

from debugging an embedded system where most of the processing is

performed by peripherals (DSP, FPGA, co-processor). An increasing

number of embedded systems today use more than one single processor

core. A common problem with multi-core development is the proper

synchronization of software execution. In such a case, the embedded

system design may wish to check the data traffic on the busses between

the processor cores, which requires very low-level debugging, at

signal/bus level, with a logic analyzer, for instance.

8.6.1 Simulation is the imitation of the operation of a real-world process
or system over time The act of simulating something first requires that a
model be developed; this model represents the key characteristics or
behaviors/functions of the selected physical or abstract system or process.
The model represents the system itself, whereas the simulation represents

the operation of the system over time.

Simulation is used in many contexts, such as simulation of technology for

performance optimization, safety engineering, testing, training, education,

and video games. Often, computer experiments are used to study

simulation models. Simulation is also used with scientific modelling of

natural systems or human systems to gain insight into their functioning.

Simulation can be used to show the eventual real effects of alternative

http://en.wikipedia.org/wiki/In-circuit_emulator
http://en.wikipedia.org/wiki/Emulator
http://en.wikipedia.org/wiki/High-level_programming_language
http://en.wikipedia.org/wiki/Source-code
http://en.wikipedia.org/wiki/Source-code
http://en.wikipedia.org/wiki/Assembly_code
http://en.wikipedia.org/wiki/Logic_analyzer
http://en.wikipedia.org/wiki/Function_%28engineering%29
http://en.wikipedia.org/wiki/Technology
http://en.wikipedia.org/wiki/Safety_engineering
http://en.wikipedia.org/wiki/Experiment
http://en.wikipedia.org/wiki/Training
http://en.wikipedia.org/wiki/Education
http://en.wikipedia.org/wiki/Video_game
http://en.wikipedia.org/wiki/Computer_experiment
http://en.wikipedia.org/wiki/Scientific_modelling

Embedded Computing Systems 10CS72

Dept of CSE Page 340

conditions and courses of action. Simulation is also used when the real
system cannot be engaged, because it may not be accessible, or it may be
dangerous or unacceptable to engage, or it is being designed but not yet
built, or it may simply not exit.

Key issues in simulation include acquisition of valid source information

about the relevant selection of key characteristics and behaviours, the use

of simplifying approximations and assumptions within the simulation, and

fidelity and validity of the simulation outcomes.

8.6.2Emulator

This article is about emulators in computing. For a line of digital musical

instruments, see E-mu Emulator. For the Transformers character, see Circuit

Breaker (Transformers)#Shattered Glass. For other uses, see Emulation

(disambiguation).

DOSBox emulates the command-line interface of DOS.

In computing, an emulator is hardware or software or both that duplicates

(or emulates) the functions of one computer system (the guest) in another

computer system (the host), different from the first one, so that the

emulated behavior closely resembles the behavior of the real system (the

guest).

The above described focus on exact reproduction of behavior is in contrast

to some other forms of computer simulation, in which an abstract model of

a system is being simulated. For example, a computer simulation of a

hurricane or a chemical reaction is not emulation.

8.6.3mulation in preservation

Emulation is a strategy in digital preservation to combat obsolescence.
Emulation focuses on recreating an original computer environment, which
can be time-consuming and difficult to achieve, but valuable because of its
ability to maintain a closer connection to the authenticity of the digital
object.

Emulation addresses the original hardware and software environment of

the digital object, and recreates it on a current machine.

The emulator

allows the user to have access to any kind of application or operating

system on a current platform, while the software runs as it did in its

original environment

Jeffery Rothenberg, an early proponent of

emulation as a digital preservation strategy states, "the ideal approach

would provide a single extensible, long-term solution that can be designed

once and for all and applied uniformly, automatically, and in synchrony

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/E-mu_Emulator
http://en.wikipedia.org/wiki/Circuit_Breaker_%28Transformers%29#Shattered_Glass
http://en.wikipedia.org/wiki/Circuit_Breaker_%28Transformers%29#Shattered_Glass
http://en.wikipedia.org/wiki/Circuit_Breaker_%28Transformers%29#Shattered_Glass
http://en.wikipedia.org/wiki/Emulation_%28disambiguation%29
http://en.wikipedia.org/wiki/Emulation_%28disambiguation%29
http://en.wikipedia.org/wiki/Emulation_%28disambiguation%29
http://en.wikipedia.org/wiki/DOSBox
http://en.wikipedia.org/wiki/Command-line_interface
http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Computer_simulation
http://en.wikipedia.org/wiki/Digital_preservation
http://en.wikipedia.org/wiki/Obsolescence
http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Computing_platform
http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Digital_preservation

Embedded Computing Systems 10CS72

Dept of CSE Page 341

(for example, at every refresh cycle) to all types of documents and
media".

He further states that this should not only apply to out of date

systems, but also be upwardly mobile to future unknown systems.
[6]

Practically speaking, when a certain application is released in a new
version, rather than address compatibility issues and migration for every
digital object created in the previous version of that application, one could
create an emulator for the application, allowing access to all of said digital
objects.

Benefits

Basilisk II emulates a Macintosh 68k using interpretation code and

dynamic recompilation.

Potentially better graphics quality than original hardware.

Potentially additional features original hardware didn't have.

Save states

Emulators allow users to play games for discontinued consoles.

Emulators maintain the original look, feel, and behavior of the digital

object, which is just as important as the digital data itself.
[7]

Despite the original cost of developing an emulator, it may prove to be the

more cost efficient solution over time.
[8]

Reduces labor hours, because rather than continuing anongoing task of

continual data migration for every digital object, once the library of past

and present operating systems and application software is established in an

emulator, these same technologies are used for every document using

those platforms.
[4]

http://en.wikipedia.org/wiki/Emulator#cite_note-6
http://en.wikipedia.org/wiki/Computer_compatibility
http://en.wikipedia.org/wiki/Data_migration
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Emulator#cite_note-7
http://en.wikipedia.org/wiki/Emulator#cite_note-8
http://en.wikipedia.org/wiki/Wage_labour
http://en.wikipedia.org/wiki/Data_migration
http://en.wikipedia.org/wiki/Operating_systems
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Computing_platform
http://en.wikipedia.org/wiki/Computing_platform

Embedded Computing Systems 10CS72

Dept of CSE Page 342

Many emulators have already been developed and released under GNU

General Public License through the open source environment, allowing for

wide scale collaboration.
[9]

allow software exclusive to one system to be used on another. For

example, a PlayStation 2 exclusive video game could (in theory) be played

on a PC or Xbox 360 using an emulator. This is especially useful when the

original system is difficult to obtain, or incompatible with modern

equipment (e.g. old video game consoles which connect via analog outputs

may be unable to connect to modern TVs which may only have digital

input

ObstaclesIntellectual property - Many technology vendors implemented

non-standard features during program development in order to establish

their niche in the market, while simultaneously applying ongoing upgrades

to remain competitive. While this may have advanced the technology

industry and increased vendor's market share, it has left users lost in a

preservation nightmare with little supporting documentation due to the

proprietary nature of the hardware and software.

laws are not yet in effect to address saving the documentation and

specifications of proprietary software and hardware in an emulator

module.
[11]

Emulators are often used as a copyright infringement tool, since they

allow users to play video games without having to buy the console, and

rarely make any attempt to prevent the use of illegal copies. This leads to a

number of legal uncertainties regarding emulation, and leads to software

being programmed to refuse to work if it can tell the host is an emulator;

some video games in particular will continue to run, but not allow the

player to progress beyond some late stage in the game, often appearing to

be faulty or just extremely difficult.
[12][13]

These protections make it more

difficult to design emulators, since they must be accurate enough to avoid

triggering the protections, whose effects may not be obvious.

8.6.4 Emulators in new media art

Because of its primary use of digital formats, new media art relies heavily

on emulation as a preservation strategy. Artists such as Cory Arcangel

specialize in resurrecting obsolete technologies in their artwork and

recognize the importance of a decentralized and deinstitutionalized

process for the preservation of digital culture.

In many cases, the goal of emulation in new media art is to preserve a

digital medium so that it can be saved indefinitely and reproduced without

error, so that there is no reliance on hardware that ages and becomes

http://en.wikipedia.org/wiki/GNU_General_Public_License
http://en.wikipedia.org/wiki/GNU_General_Public_License
http://en.wikipedia.org/wiki/GNU_General_Public_License
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Emulator#cite_note-9
http://en.wikipedia.org/wiki/PlayStation_2
http://en.wikipedia.org/wiki/Video_game
http://en.wikipedia.org/wiki/Personal_computer
http://en.wikipedia.org/wiki/Xbox_360
http://en.wikipedia.org/wiki/Intellectual_property
http://en.wikipedia.org/wiki/Market_share
http://en.wikipedia.org/wiki/Emulator#cite_note-11
http://en.wikipedia.org/wiki/Copyright_infringement
http://en.wikipedia.org/wiki/Emulator#cite_note-12
http://en.wikipedia.org/wiki/Emulator#cite_note-12
http://en.wikipedia.org/wiki/New_media_art
http://en.wikipedia.org/wiki/Cory_Arcangel

Embedded Computing Systems 10CS72

Dept of CSE Page 343

Embedded Computing Systems 10CS72

obsolete. The paradox is that the emulation and the emulator

have to be made to work on future computers.

Emulation in future systems desig

Emulation technics are commonly used during the design

and development of new systems. It eases the development

process by providing the ability to detect, recreate and repair

flaws in the design even before the system is actually built.
[15]

It is particularly useful in the design of multi-cores systems,

where concurrency errors can be very difficult to

detect and correct without the controlled environment

provided by virtual hardware.
[16]

This also allows the

software development to take place before the hardware is

ready,
[17]

thus helping to validate design decisions.

8.6.7 Structure of an emulator

Typically, an emulator is divided into modules that correspond

roughly to the emulated computer's subsystems. Most often,

an emulator will be composed of the following modules:

a CPU emulator or CPU simulator (the two terms are mostly

interchangeable in this case), unless the target being

emulated has the same CPU architecture as the host, in

which case a virtual machine layer may be used instead

a memory

ubsystem module

various I/O

devices emulators

http://en.wikipedia.org/wiki/Emulator#cite_note-15
http://en.wikipedia.org/wiki/Emulator#cite_note-16
http://en.wikipedia.org/wiki/Emulator#cite_note-17
http://en.wikipedia.org/wiki/Modular_programming
http://en.wikipedia.org/wiki/Virtual_machine

Embedded Computing Systems 10CS72

Dept of CSE Page 344

Buses are often not emulated, either for reasons of

performance or simplicity, and virtual peripherals

communicate directly with the CPU or the memory

subsystem.

