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a proof of concept for a future real-world implementation on an embedded microprocessor.
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Embedded Optimization Algorithms for Steering in Autonomous
Vehicles based on Nonlinear Model Predictive Control
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Abstract— Steering control for autonomous vehicles on slip-
pery road conditions, such as on snow or ice, results in a highly
nonlinear and therefore challenging online control problem,
for which nonlinear model predictive control (NMPC) schemes
have shown to be a promising approach. NMPC allows to
deal with the nonlinear vehicle dynamics as well as the system
limitations and geometric constraints in a rather natural way,
given a desired trajectory that can be provided by a supervisory
algorithm for path planning. Our aim is to study the real-time
feasibility of NMPC-based steering control on an embedded
computer and the importance of the appropriate vehicle model
selection, the optimization solver choice and control horizon
length. The presented computation times have been obtained
on a Raspberry Pi 2 model, as a proof of concept for a future
real-world implementation on an embedded microprocessor.

I. INTRODUCTION

Many recent publications have shown the potential benefits
of using Nonlinear Model Predictive Control (NMPC) for
steering control in autonomous vehicle systems, e.g. [1–6]
based on closed-loop simulation results and [7–10] based on
real-world experimental results. Most of these prior works
found the use of nonlinear optimization tools impractical
because of the tight timing constraints in such a safety critical
embedded application. A nonlinear and nonconvex Optimal
Control Problem (OCP) needs to be solved at each sampling
time instant under stringent timing requirements. For this
purpose, tailored continuation-based online algorithms have
been developed for solving these nonlinear optimal control
problems in real-time [11], [12].

Depending on the targeted application, the dynamic vehi-
cle model that is used in the NMPC scheme can exhibit
different levels of complexity, ranging from a simplified
single-track (ST) or bicycle model in [4], [5], [8], [10] to
an ST model combined with Pacejka tire modeling in [1],
[7] and a complete double-track (DT) vehicle model in [2],
[6]. A detailed overview of these different vehicle models
and of their use in an optimal control problem formulation,
can be found in [13], [14]. The latter work presents model
parameters that have been identified and validated based on
real-world experiments and it presents time-optimal control
solutions, in order to study different modeling choices for
performing at-the-limit maneuvers.

A popular approach to efficiently implement nonlinear
MPC is based on the Real-Time Iteration (RTI) scheme [15],
which typically combines a direct multiple shooting type
optimal control discretization [16] with an online variant
of Sequential Quadratic Programming (SQP). By applying a
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continuation technique, one SQP iteration can be performed
in order to update the state and control trajectories as a
solution guess for the nonlinear OCP from one sampling
instant to the next. An efficient numerical implementation of
the RTI scheme requires a careful combination of differen-
tiation techniques, integration schemes and convex solvers.
An overview of explicit and implicit integration schemes
with sensitivity analysis based on Algorithmic Differentia-
tion (AD) can be found in [17], [18].

Within an SQP-based algorithm for NMPC, a tailored
convex solver is needed to solve the optimal control struc-
tured quadratic programs (QP). In recent years, many such
algorithms have been developed to directly deal with this
particular sparsity structure, such as in the software imple-
mentations FORCES [19], qpDUNES [20] and HPMPC [21].
This paper will additionally include a new sparse solver,
called PRESAS, more information on which can be found
in [22]. Alternatively, one can use a condensing technique
to numerically eliminate the state variables and preserve
only the control inputs [16]. The resulting smaller but dense
quadratic subproblem can be solved with any QP solver
based on dense linear algebra such as qpOASES [23],
PQP [24] or a particular variant of ADMM [25].

This article aims at providing a comparison of different
available embedded optimization algorithms for autonomous
vehicle control, using hardware with limited processing
resources. Unlike prior publications such as in [2], [10],
the presented computation times have been obtained using
the Raspberry Pi 2 model for rapid prototyping. While they
are not embedded processors by themselves, such Raspberry
Pi models use ARM cores of the same type as those that
are used by multiple high-end automotive microprocessors.
Finally, simulation results are presented for variants of both
single- and double-track vehicle models in NMPC, resulting
in a trade-off between modeling accuracy and corresponding
online computational efforts. Based on these results, one
can observe that single-track modeling can be sufficiently
accurate to be used in NMPC-based feedback control, even
in the case of an aggressive double lane-change maneuver.

The paper is organized as follows. Section II summa-
rizes the modeling choices for the nonlinear vehicle dy-
namics. Section III introduces the optimal control problem
formulation and the online NMPC algorithm. A software
implementation based on the ACADO code generation tool is
presented in Section IV, including a discussion on embedded
convex solvers for real-time optimal control. A comparison
of different implementations of the NMPC scheme is carried
out in Section V. Section VI finally concludes the paper.



Fig. 1: Double-track vehicle model with roll and pitch
dynamics to take load transfer into account [13].

II. VEHICLE DYNAMICS

Let us briefly summarize some of the important modeling
choices for the vehicle dynamics in order to further formulate
the nonlinear MPC problem.

A. Chassis Modeling: Single- versus Double-track

One distinctive choice is whether to use a single- or
double-track chassis model, as illustrated in Figure 1. The
double-track or DT model includes roll (φ) and pitch (θ)
dynamics such that it exhibits five degrees of freedom,
namely two translational and three rotational. Based on
these additional degrees of freedom in the dynamics, both
the longitudinal and lateral load transfer between the four
wheels of the vehicle can be accurately modeled. Note that
load transfer modeling allows to capture differences in the
tire forces that generate yaw moments when turning and
differences in peak torques when accelerating or braking.

Alternatively, the single-track or ST model typically ne-
glects roll and pitch dynamics and it can be obtained by
lumping together the left and right wheel on each axle.
Consequently, the standard ST model describes only one ro-
tational degree of freedom. It is relatively straightforward to
obtain alternative chassis models as a compromise between
these two extreme cases. For example, one can formulate
an ST model with pitch dynamics in order to represent the
longitudinal load transfer as described in [13].

B. Tire Friction Forces and Wheel Dynamics

In order to represent the tire friction forces, one needs to
define the slip angles αi and slip ratios si

αi = − arctan

(
vy,i
vx,i

)
,

si =
Rwωi − vx,i

vx,i
, i ∈ {f, r} or {1, 2, 3, 4},

(1)

where Rw denotes the wheel radius, ωi is the wheel an-
gular velocity and vx,i, vy,i are the longitudinal and lateral
velocities for wheel i. Note that subscripts {f, r} denote the
front and rear wheels in the ST model, while the indices
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Fig. 2: Longitudinal and lateral tire forces with respect to slip
angle and slip ratio according to the Pacejka model, where
the coupling is based on the friction ellipse [27].

{1, 2, 3, 4} denote the four wheels in the DT model. As
proposed by [26], we use the following first-order filter to
describe the slip angles

α̇i
σ

vx,i
+ αi = − arctan

(
vy,i
vx,i

)
, (2)

where σ is the relaxation length, to account for the effect
that tire forces do not develop instantaneously [27]. Finally,
the wheel dynamics are given by

Ti − Iwω̇i − Fx,iRw = 0, i ∈ {f, r} or {1, 2, 3, 4}, (3)

where Iw denotes the wheel inertia and Ti defines the
driving/braking torque.

Using the above quantities, one can compute the nominal
tire forces, i.e., under pure slip conditions, using Pacejka’s
magic formula [26], [28] in the following form

Fx
0,i = µxi F

z
i sin (Cx

i arctan(Bx
i (1− Ex

i )si + Ex
i arctan(Bx

i si))) ,

F y
0,i = µyi F

z
i sin

(
Cy

i arctan(By
i (1− Ey

i )αi + Ey
i arctan(By

i αi))
)
,

(4)
where µxi and µyi are the friction coefficients and B?i , C?i and
E?i are model parameters. The magic formula (4) exhibits the
typical saturation behavior in the tire forces as illustrated
also in Figure 2. Under combined slip conditions, i.e., when
both s and α are non-zero, one needs to model the coupling
between longitudinal and lateral tire forces.

The simplest and therefore most straightforward model-
ing of these combined tire forces is based on the friction
ellipse (FE) as follows

F yi = F y0,i

√
1−

(
F x0,i
µxi F

z
i

)2

, i ∈ {f, r} or {1, 2, 3, 4}.

(5)
The main limitation of the FE models is that the longitudinal
force does not explicitly depend on the lateral slip (see
Fig. 2). Therefore, more accurate models to represent the
combined slip could be used, e.g., based on weighting
functions [13], [26]. For this paper, the model parameters
for both vehicle and tire friction are taken directly from [27]
and they are based on experimental validation.



III. NONLINEAR MPC PROBLEM FORMULATION

We introduce the following tracking-type optimal control
problem formulation in continuous time

min
x(·), u(·)

∫ T

0

‖F (x(t), u(t))− yref(t)‖2W dt (6a)

s.t. 0 = x(0)− x̂0, (6b)
0 = f(ẋ(t), x(t), u(t)), ∀t ∈ [0, T ], (6c)
0 ≥ h(x(t), u(t)), ∀t ∈ [0, T ], (6d)
0 ≥ r(x(T )), (6e)

where x(t) ∈ Rnx denote the differential states and u(t) ∈
Rnu are the control inputs for t ∈ [0, T ]. The objective in
Eq. (6a) consists of a nonlinear least squares type Lagrange
term. For simplicity, T denotes both the control and predic-
tion horizon length and we do not consider a Mayer cost
term. Note that the NMPC problem depends on the current
state estimate x̂0 through the initial condition of Eq. (6b).
The nonlinear dynamics in Eq. (6c) are described by an
implicit system of Ordinary Differential Equations (ODE),
which allows the formulation of both the single- and double-
track vehicle dynamics [13]. Respectively, Eqs. (6d) and (6e)
denote the path and terminal inequality constraints.

A. Objective Function and Inequality Constraints

The path constraints in the NMPC problem formulation
consist of geometric and physical limitations of the system.
Depending on the particular maneuver, one can include
constraints on the longitudinal and lateral position of the
vehicle. However, in practice, it is important to reformulate
such requirements as soft constraints because of unknown
disturbances. For simplicity, we define a quadratic penal-
ization of the slack variable to ensure a feasible solution
whenever possible. Depending on the convex solver that is
used as discussed in Section IV-B, the latter can be replaced
by an exact L1 penalty similar to [7]. In addition, bound
constraints are taken into account on the steering angle,
steering rate and the wheel torque values.

The equation in (6a) allows us to formulate any standard
tracking-type objective. In the presented simulation results,
the NMPC scheme is based on a direct tracking of a reference
trajectory for the state and control variables

‖x(t)− xref(t)‖2Q + ‖u(t)− uref(t)‖2R, (7)

where Q ∈ Rnx×nx and R ∈ Rnu×nu are the corresponding
weighting matrices. Note that the optimal control problem
consists of nx = 11 or nx = 19 state variables, respectively,
when using the single- or double-track vehicle model. The
number of control inputs is nu = 4, including the steering
rate, the drive and brake torques and slack variable.

B. Direct Optimal Control Parameterization

In direct optimal control, the continuous time and therefore
infinitely dimensional OCP in (6) is reformulated as a
tractable nonlinear program (NLP) by a particular control
and state parameterization. A popular approach is based on
the direct multiple shooting method from [16]. For simplicity,

let us formulate an equidistant grid over the control horizon
consisting of the collection of time points ti, where ti+1 −
ti =

T
N =: Ts for i = 0, . . . , N−1. Additionally, we consider

a piecewise constant control parameterization u(τ) = ui for
τ ∈ [ti, ti+1). The time discretization for the state variables
can then be obtained by simulating the system dynamics
using a numerical integration scheme. This corresponds to
solving the following initial value problem

0 = f(ẋ(τ), x(τ), ui), τ ∈ [ti, ti+1], x(ti) = xi. (8)

Note that the vehicle dynamics can be relatively stiff and the
differential equations are implicitly defined for the DT model
in [13], such that an implicit integration scheme should
be used for NMPC to provide the required accuracy in a
numerically efficient manner [17], [18], [29].

C. Online Tracking of a Geometric Path

A path planner or high level supervisory algorithm select-
ing, e.g., the target lane, would typically be implemented in
addition to the proposed NMPC scheme in order to provide
the time-varying reference trajectory that needs to be tracked
online. By realizing the behavior that is requested by the
path planner through the tracking controller, the autonomous
vehicle can alternate between different common scenarios
such as lane keeping and performing lane changes or obstacle
avoidance. Similar to the work in [30] and based on [31], we
model the reference path as a piecewise clothoidal trajectory
such that the desired yaw angle ψdes and yaw rate ψ̇des of
the vehicle can be described as follows

ψ̈des = vdes(t)κ̇(t), (9)

where vdes(t) denotes the reference velocity, and κ̇(t) de-
notes the change of desired yaw rate or the change of
the curvature of the reference trajectory. For simplicity, the
latter two quantities are typically provided as a piecewise
constant trajectory, i.e., the velocity and the change of
curvature are both constant over each sampling interval Ts.
Based on this path representation, one can reformulate the
vehicle dynamics using the position and orientation errors
(eX , eY , eψ) with respect to such reference trajectory.

IV. SOFTWARE IMPLEMENTATION FOR
EMBEDDED NONLINEAR MPC

In order to assess the real-time feasibility of the different
optimal control formulations for embedded applications, an
efficient and tailored implementation is used in the open-
source ACADO code generation tool [29], [32]. The nonlinear
optimal control solver in this toolkit uses an online variant of
SQP, known as the Real-Time Iteration (RTI) scheme [15].
The idea is to minimize the computational delay between
obtaining the new state estimate x̂0 in Eq. (6b) and applying
the next control input.

A. ACADO Code Generation Tool

Two algorithmic components are crucial to efficiently
implement the RTI scheme for NMPC:



1) integrators with algorithmic differentiation for online
problem linearization: an overview on sensitivity anal-
ysis for explicit and implicit integration schemes can
be found in [17]. Note that stiff and/or implicit differ-
ential equations typically require implicit integrators,
such as the lifted collocation methods in [18].

2) convex QP solvers tailored for optimal control struc-
tured problems and suitable for embedded hardware
architectures: see [12] and the following subsection.

To obtain a real-time feasible NMPC implementation on
the embedded control hardware, the ACADO code generation
tool has been used as presented in [29], [32]. It is part of
the open-source ACADO Toolkit which can be downloaded
from www.acadotoolkit.org. The code generation tool
exports highly efficient, standalone C-code implementing the
RTI scheme for fast optimal control.

B. Embedded Optimal Control Solvers

Important properties to be taken into account when choos-
ing or designing an embedded QP solver for real-time
optimal control are the following:

• scaling of computational complexity and corresponding
memory requirements with problem dimensions,

• warm starting capabilities for receding horizon control,
• software portability of solver code and dependencies,
• early termination of the solver in real-time applications

to obtain a feasible but suboptimal solution,
• numerical performance on embedded control hardware

with limited resources, e.g., limited or the absence of
cache memory or the use of single-precision arithmetics.

Regarding the scaling of the algorithm, there is an impor-
tant distinction between solvers that directly tackle the block
structured QP and those that solve a dense QP instead, after
eliminating the state variables in a condensing routine [16].
A popular example of the latter is the parametric active-
set solver qpOASES [23], which provides a library-free
implementation for embedded applications based on dense
linear algebra routines. We also consider the projection-
free PQP [24] algorithm based on dual optimization and
a multiplicative update rule as well as a variant of the
alternating direction method of multipliers (ADMM) in [25].

Additionally, there exist many sparsity exploiting convex
solvers that are tailored to block structured optimal con-
trol problems. A popular approach is to use an interior-
point method with block sparsity exploiting linear algebra,
such as the block-tridiagonal Cholesky factorization of the
Schur complement in [33] or a particular Riccati recur-
sion for linear-quadratic control problems in [34]. Efficient
implementations of such techniques for embedded optimal
control can be found, for example, in the software tools
FORCES [19] and HPMPC [21].

A solver called PRESAS has been proposed recently
in [22], which applies the block structured factorization
techniques with low-rank updates to preconditioning of an
iterative solver within a primal active-set algorithm. For
real-time applications, this primal active-set approach has

the advantage that it can provide a feasible but suboptimal
solution when being terminated early. In addition to interior-
point and active-set based algorithms, other methods exist for
real-time optimal control such as the dual Newton strategy
in qpDUNES [20]. In the simulation results presented in this
paper, we restrict to the tools that are mentioned above. An
overview of algorithms can be found in [12].

V. NONLINEAR MPC SIMULATION RESULTS

This closed-loop simulation study is based on the standard-
ized ISO 3888-2 double lane-change maneuver, developed
for vehicle stability evaluation. Note that, in prior publica-
tions, computational results were often obtained on a modern
PC featuring, for instance, an Intel i7 CPU at 2.7GHz in [2],
[4]. Instead, this paper illustrates all computational timing
results using the ARM-based Raspberry Pi 2 model1, which
is considerably closer to an embedded control hardware ar-
chitecture that could be used when performing experiments.
In fact, Raspberry Pi uses ARM cores of the same type as
those used by high-end automotive embedded microproces-
sors, such as the TDAx family by Texas Instruments, the RZ
family by Renesas and the TEGRA system by NVIDIA.

A. Vehicle Dynamics and Model Mismatch in NMPC

One of the most significant nonlinearities in the vehicle
dynamics, when performing maneuvers on a low-friction
road surface, comes from Pacejka’s magic formula in Eq. (4)
to model the tire forces under pure slip conditions. Figure 3
illustrates the typical behavior for the tire force trajectories,
with respect to both the slip ratio and the slip angle, while
performing a double lane-change on a snow-covered road.
Note that in the latter figure, the resulting force, relative to
the normal force, is defined as follows

F res
i =

√
F x

2

i + F y
2

i

F zi
, i ∈ {f, r} or {1, 2, 3, 4}. (10)

We further perform closed-loop NMPC simulations for a
front-wheel drive vehicle, using the DT model to simulate
the vehicle dynamics and using either the ST or DT model
within the NMPC problem formulation, with the model
parameters from [27]. The DT model can generally be much
more accurate than the ST model, but feedback control in
the form of closed-loop based NMPC allows one to use
a low-order (ST) model to control the vehicle dynamics in
case of not too aggressive maneuvers, even on challenging
road conditions [13], [14]. This can also be observed in
Figures 4 and 5 that show the closed-loop steering control
results using either the ST or DT model within NMPC.
They show the closed-loop trajectories, when assuming either
snow or asphalt conditions for the model used in the NMPC
formulation, while actually performing the double lane-
change maneuver on an asphalt (Figure 4) or snow road
surface (Figure 5). Note that the slip angles for the ST based

1The Raspberry Pi 2 uses a Broadcom BCM2836 SoC with a 900 MHz
32-bit quad-core ARM Cortex-A7 processor, with 256 KB shared L2 cache.



Fig. 3: NMPC closed-loop simulation results for double lane-
change on snow: trajectories for resulting relative tire forces.
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Fig. 4: NMPC closed-loop simulation results at 9 m/s for
double lane-change on asphalt (N = 50 and Ts = 50 ms,
legends refer to the type of road that is expected by NMPC).

NMPC scheme are shown in both figures, because they are
indistinguishable from the results based on the DT model.

Fig. 4 illustrates that the double lane-change maneuver
can be executed relatively easily on asphalt, even when the
NMPC scheme expects the vehicle to be on a snow-covered
road. On the other hand, the vehicle can quickly go unstable
when the controller would overestimate the tire friction, as
can be observed in Fig. 5 for the case where the NMPC
scheme assumes asphalt instead of snow road conditions.
More specifically, the unstable behavior can be seen in the
violation of the soft constraints on the lateral position and
in the oscillations of the slip, pitch and roll angles. It is
interesting to point out that, even in such a case where the
vehicle goes unstable, the closed-loop trajectories from the
ST and DT based NMPC algorithm remain similar.

B. NMPC Parameters and Real-Time Feasibility

Table I and II show the average and worst-case compu-
tation times on a Raspberry Pi 2 embedded platform for
the NMPC closed-loop simulation results, respectively, based
on the ST and DT vehicle model. The sampling time for
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Fig. 5: NMPC closed-loop simulation results at 9 m/s for
double lane-change on snow (N = 50 and Ts = 50 ms,
legends refer to the type of road that is expected by NMPC).

these NMPC simulations is chosen to be equal to Ts =
50 ms. The corresponding computation times confirm that an
efficient NMPC implementation based on the RTI scheme,
in combination with a structure exploiting convex solver,
allows one to obtain real-time feasible computations on an
embedded control architecture.

Table I and II additionally illustrate how the NMPC
computation times scale for an increasing control horizon
length and this for different embedded QP solvers. The
typical behavior of a quadratic computational complexity
with the horizon length N for dense solvers, such as PQP,
ADMM and qpOASES, versus the linear complexity of sparse
solvers, such as HPMPC and PRESAS, can also be observed
here. One can reduce the number of control intervals further
by choosing the length of one shooting interval to become
larger than the actual sampling time of the NMPC scheme.
This is illustrated for the computation times corresponding
to N = 20, for which a discretization time of 75 ms is used
instead of the 50 ms for the other horizon lengths.

The computation times, reported in Table I and II, have
been obtained using single-precision arithmetics. The use of
single- versus double-precision arithmetics can have benefi-
cial effects on the storage requirements and on the compu-
tational efficiency of running the solver code on the limited
hardware resources. However, numerical linear algebra oper-
ations exhibit a problem-dependent conditioning such that an
overall higher number of iterations can be required within the
algorithm, when using a relatively lower accuracy in order
to carry out the numerical computations.

VI. CONCLUSIONS

This paper investigates several aspects in the implementa-
tion of NMPC for steering control in autonomous vehicles,
based on the ACADO code generation software. We pre-
sented a comparison for a range of embedded optimization
algorithms tailored to real-time optimal control, based on
detailed timing results on the Raspberry Pi 2 model. With the
exception of aggressive, at-the-limit maneuvers, our closed-
loop simulation results confirm that a low order, single-track



N = 20 N = 30 N = 40 N = 60

mean/max mean/max mean/max mean/max

PQP 23.0/25.7 105/117 209/226 578/599
ADMM 14.7/27.5 39.6/71.9 85.5/150 268/440
qpOASES 12.2/21.0 26.1/50.1 48.5/81.7 132/240
HPMPC 11.9/16.0 18.1/21.9 24.5/29.2 37.0/45.1
PRESAS 6.44/9.61 9.14/10.7 12.4/13.7 18.4/19.8

TABLE I: NMPC computation times (ms) for single-track
vehicle model with varying horizon length (Ts = 50 ms),
using Raspberry Pi 2 (ARM Cortex-A7, single-precision).2

N = 20 N = 30 N = 40 N = 60

mean/max mean/max mean/max mean/max

PQP 45.1/55.5 142/159 266/288 672/704
ADMM 33.4/50.2 69.7/101 129/190 344/506
qpOASES 34.5/40.4 63.7/82.1 102/131 229/354
HPMPC 39.4/48.0 58.7/77.5 82.6/126 122/136
PRESAS 26.0/30.2 39.0/41.9 52.5/65.3 78.7/82.5

TABLE II: NMPC computation times (ms) for double-track
vehicle model with varying horizon length (Ts = 50 ms),
using Raspberry Pi 2 (ARM Cortex-A7, single-precision).2

vehicle model is sufficient for feedback control based on
NMPC. This paper also illustrated the robustness of the
NMPC scheme with respect to a model mismatch.

This work provides motivating results and a proof of
concept for the NMPC scheme, which will lead to a real-
world implementation on an embedded microprocessor.
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