Embedded System Design and Synthesis

Robert Dick

http://robertdick.org/esds/ Office: EECS 2417-E Department of Electrical Engineering and Computer Science University of Michigan

Data compression

Embedded system memory organization

Overview of real-time and embedded operating systems sbedded application/OS time, power, and energy estimation Homework

Embedded system memory organization

- Control of datum location: static or dynamic?
- Implications of real-time deadlines?
- Implications of networked systems?
- Implications of tight constraints on transistor count?
- Implications of tight constraints on memory?
- Errors related to misuse of memory?

Robert Dick

Embedded System Design and Synthesis

Data compression

Embedded system memory organization

Overview of real-time and embedded operating systems

shedded application/OS time, power, and energy estimation

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure

Introduction

- Real-Time Operating Systems are often used in embedded systems
- They simplify use of hardware, ease management of multiple tasks, and adhere to real-time constraints
- Power is important in many embedded systems with RTOSs
- RTOSs can consume significant amount of power
- They are re-used in many embedded systems
- They impact power consumed by application software
- RTOS power effects influence system-level design

Data compression
Embedded system memory organization
Overview of real-time and embedded operating systems
Embedded application/OS time, power, and energy estimation
Homework

Data compression review

- Lossy compression.
- Lossless compression.
- Uses in embedded systems.
- Predictive models.
- Relationship with intelligence: Hutter Prize.
 - €50,000 per percent.
- Kolmogorov complexity.

Robert Di

Embedded System Design and Synthesi

Data compression Embedded system memory organization Overview of real-time and embedded operating systems ded application/OS time, power, and energy estimation

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

Collaborators on project

Princeton Niraj K. Jha **NEC Labs America**Ganesh Lakshminarayana
Anand Raghunathan

Robert Dic

Embedded System Design and Synthesi

Data compression
Embedded system memory organization
Overview of real-time and embedded operating systems
Embedded application/OS time, power, and energy estimation

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure

Real-time operating systems (RTOS)

- Interaction between HW and SW
 - Rapid response to interrupts
 - HW interface abstraction
- Interaction between different tasks
 - Communication
 - Synchronization
- Multitasking
 - Ideally fully preemptive
 - Priority-based scheduling
 - Fast context switching
 - Support for real-time clock

Rober

Robert Dick

Embedded System Design and Synthes

Embedded system memory organization Overview of real-time and embedded operating systems mbedded application/OS time, power, and energy estimation Homework Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

Embedded system memory organiza
Overview of real-time and embedded operating syst
mbedded application/OS time, power, and energy estima
Homev

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

General-purpose OS stress

- Good average-case behavior
- Providing many services
- Support for a large number of hardware devices

- Predictable service execution times
- Predictable scheduling
- Good worst-case behavior
- Low memory usage
- Speed

RTOSs stress

Simplicity

Robert I

Embedded System Design and Synthesis

13

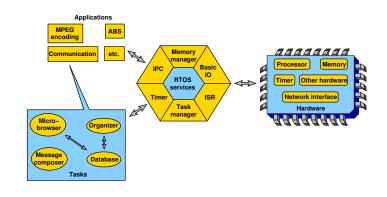
Robert Dick

Embedded System Design and Synthesis

Data compression
Embedded system memory organization
rview of real-time and embedded operating systems
application/OS time, power, and energy estimation

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

Predictability


• General-purpose computer architecture focuses on average-case

- Caches
- Prefetching
- Speculative execution
- Real-time embedded systems need predictability
 - Disabling or locking caches is common
 - Careful evaluation of worst-case is essential
 - Specialized or static memory management common

Data compression
Embedded system memory organization
Overview of real-time and embedded operating systems
Embedded application/OS time, power, and energy estimation

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

RTOS overview

15

Robert Dick

mbedded System Design and Synthesis

Data compression
Embedded system memory organization
Overview of real-time and embedded operating systems
Embedded application/OS time, power, and energy estimation

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure

RTOS power consumption

- Used in several low-power embedded systems
- Need for RTOS power analysis
 - Significant power consumption
 - Impacts application software power
 - Re-used across several applications

Data compression
Embedded system memory organization
Overview of real-time and embedded operating systems
Embedded application/OS time, power, and energy estimation

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure

RTOS and real-time references

- K. Ramamritham and J. Stankovic. Scheduling algorithms and operating systems support for real-time systems. *Proc. IEEE*, 82(1):55–67, January 1994
- Giorgio C. Buttazzo. *Hard Real-Time Computing Systems*. Kluwer Academic Publishers, Boston, 2000

Robert

Embedded System Design and Synthesis

Robert Dick

Embedded System Design and Synthes

Embedded system memory organization
Overview of real-time and embedded operating systems
Embedded application/OS time, power, and energy estimation
Homework

Introduction, motivation, and past wor Examples of energy optimization Simulation infrastructure Results

Prior work

- Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Compilation techniques for low energy: An overview. In *Proc. Int. Symp. Low-Power Electronics*, pages 38–39, October 1994
- Y. Li and J. Henkel. A framework for estimating and minimizing energy dissipation of embedded HW/SW systems. In *Proc. Design Automation Conf.*, pages 188–193, June 1998
- J. J. Labrosse. MicroC/OS-II. R & D Books, KS, 1998

Robert

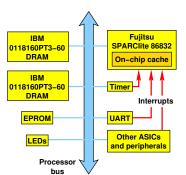
Embedded System Design and Synthesis

Embedded system memory organization
Overview of real-time and embedded operating systems
edded application/OS time, power, and energy estimation
Homework

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

RTOS power references

- K. Baynes, C. Collins, E. Fiterman, B. Ganesh, P. Kohout,
 C. Smit, T. Zhang, and B. Jacob. The performance and energy consumption of three embedded real-time operating systems. In Proc. Int. Conf. Compilers, Architecture & Synthesis for Embedded Systems, pages 203–210, November 2001
- T.-K. Tan, A. Raghunathan, and Niraj K. Jha. EMSIM: An energy simulation framework for an embedded operating system. In *Proc. Int. Symp. Circuits & Systems*, pages 464–467, May 2002


Embedded System Design and Synthesis

Robert Dick

Introduction, motivation, and past work

Simulated embedded system

Overview of real-time and embedded operat Embedded application/OS time, power, and energy

- Easy to add new devices
- Cycle-accurate model
- Fujitsu board support library used in model
- \bullet μ C/OS-II RTOS used

Data compression
Embedded system memory organization
Overview of real-time and embedded operating systems
Embedded application/OS time, power, and energy estimation

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure

Embedded OS power references

- T. Cignetti, K. Komarov, and C. Ellis. Energy estimation tools for the Palm. In Proc. Int. Wkshp. on Modeling, Analysis and Simulation of Wireless and Mobile Systems, pages 96–103, August 2000.
- Robert P. Dick, G. Lakshminarayana, A. Raghunathan, and Niraj K. Jha. Analysis of power dissipation in real-time operating systems. *IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems*, 22(5):615–627, May 2003.
- A Shye, B Scholbrock, and G Memik. Into the wild: studing real user activity patterns to guide power optimizations for mobile architectures. In *Proc. Int. Symp. on Microarchitecture*, pages 168–178, 2009.
- M Dong and L Zhong. Sesame: A self-constructive virtual power meter for battery-powered mobile systems. Technical report,

Robert

Data compression
Embedded system memory organization
Overview of real-time and embedded operating systems
sedded application/OS time, power, and energy estimation

ntroduction, motivation, and past work Examples of energy optimization Simulation infrastructure

Contributions

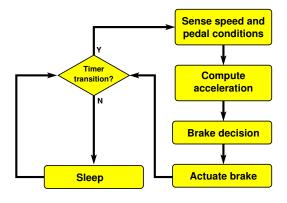
- First detailed power analysis of RTOS
 - Proof of concept later used by others
- Applications
 - Low-power RTOS
 - Energy-efficient software architecture
 - Incorporate RTOS effects in system design

Robert Die

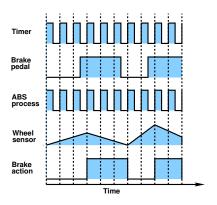
Embedded System Design and Synthesi

Data compression

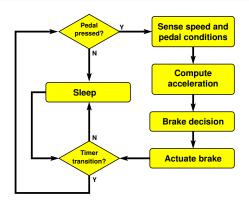
Embedded system memory organization

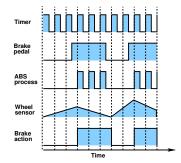

Overview of real-time and embedded operating systems

Embedded application/OS time, power, and energy estimation

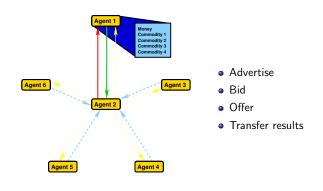

Homework

Introduction, motivation, and past wor Examples of energy optimization Simulation infrastructure

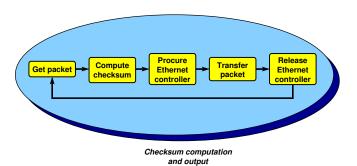

Periodically triggered ABS


Periodically triggered ABS timing

Selectively triggered ABS

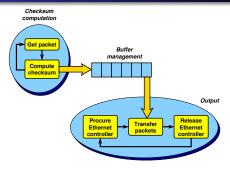


Selectively triggered ABS timing

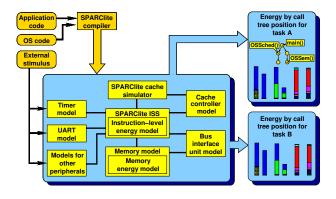

63% reduction in energy and power consumption

Agent example

Overview of real-time and embedded operati Embedded application/OS time, power, and energy

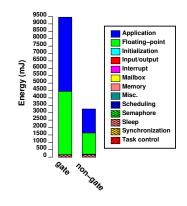

Single task network interface

Procuring Ethernet controller has high energy cost

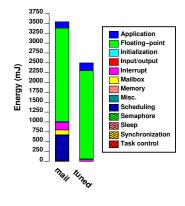

Overview of real-time and embedded operating Embedded application/OS time, power, and energy es

Multi-tasking network interface

RTOS power analysis suggests process re-organization. 21% reduction in energy consumption. Similar power consumption.

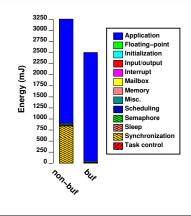

Infrastructure

Robert Dick Embedded System Design and Synthesis


Overview of real-time and embedded of Embedded application/OS time, power, and e

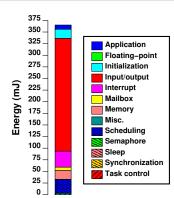
ABS optimization effects

- Redesigned application after using simulator to locate areas where power was wasted
- 63% energy reduction
- 63% power reduction
- RTOS directly accounted for 50% of system energy


Agent optimization effects

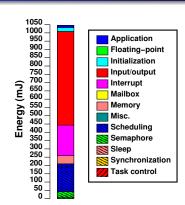
- Mail version used RTOS mailboxes for information transmission
- Tuned version carefully hand-tuned to used shared
- Power can be reduced at a
 - Increased application software complexity
 - Decreased flexibility

Overview of real-time and embedded operating syste Embedded application/OS time, power, and energy estimati


Ethernet optimization effects

- Determined that synchronization routine cost was high
 - Used RTOS buffering to amortize synchronization costs
- ullet 20.5% energy reduction
- 0.2% power reduction
- RTOS directly accounted for 1% of system energy
 - Energy savings due to improved RTOS use, not reduced RTOS energy

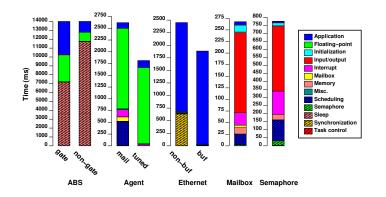
Overview of real-time and embedded operati Embedded application/OS time, power, and energy


Mailbox example

- Rapid mailbox communication between tasks
- RTOS directly accounted for 99% of system energy

Overview of real-time and embedded operating Embedded application/OS time, power, and energy est

Semaphore example



- Semaphores used for task synchronization
- RTOS directly accounted for 98.7% of system energy

Data compression
Embedded system memory organization
Overview of real-time and embedded operating systems
Embedded application/OS time, power, and energy estimation

Introduction, motivation, and past wor Examples of energy optimization Simulation infrastructure

Time results

Pohe Pohe

Embedded System Design and Synthesis

Energy bounds

C .	Minimum	Maximum	
Service	energy (µJ)	energy (µJ)	
AgentTask	3.41	4727.88	
fptodp	17.46	49.72	
BSPInit	3.52	3.52	
fstat	16.34	16.34	
CPUInit	287.15	287.15	
fstat_r	31.26	31.26	
GetPsr	0.38	0.55	
init_bss	2.86	3.07	
GetTbr	0.40	0.53	
init_data	4.23	4.37	
InitTimer	2.53	2.53	
init_timer	18012.10	20347.00	
OSCtxSw	46.63	65.65	
init_tvecs	1.31	1.31	
OSDisableInt	0.84	1.31	
•••			

Semaphore example hierarchical call tree

		Function	Energy(µJ) invocation	Energy (%)	Time (ms)	Calls
realstart	init_tvecs		1.31	0.00	0.00	1
25.40 mJ total	init_timer	liteled	4.26	0.00	0.00	1
2.43 %	18.01 mJ total					
7	1.72 %					
	startup	do_main	7363.11	0.70	5.57	1
	7.39 mJ total	save_data	5.08	0.00	0.00	1
	0.71 %	init_data	4.23	0.00	0.00	1
		init_bss	2.86	0.00	0.00	1
		cache_on	8.82	0.00	0.01	1
Task1	win_unf_trap		6.09	1.16	9.43	199
508.88 mJ total	OSDisableInt		0.98	0.09	0.82	100
OSSemPe 104.59 mJ 10.01 9 0SSemPo 9.82 mJ t 0.94 % OSTime6 4.62 mJ t 0.44 % GPUIni 0.29 mJ t 0.03 % print:	OSEnableInt		1.07	0.10	0.92	100
	OSSemPend	win_unf_trap	6.00	0.57	4.56	999
	104.59 mJ total	OSDisableInt	0.94	0.18	1.56	199
	10.01 %	OSEnableInt	0.94	0.18	1.56	199
		OSEventTaskWait	13.07	1.25	9.89	999
		OSSched	66.44	6.35	51.95	999
	OSSemPost	OSDisableInt	0.96	0.09	0.78	100
	9.82 mJ total 0.94 %	OSEnableInt	0.98	0.09	0.81	100
	OSTimeGet	OSDisableInt	0.84	0.08	0.66	100
	4.62 mJ total	OSEnableInt	0.98	0.09	0.81	100
	0.44 %					l
	CPUInit	BSPInit	3.52	0.00	0.00	1
	0.29 mJ total	exceptionHandler	15.51	0.02	0.17	15
	0.03 %	-				1
	printf	win_unf_trap	6.18	0.59	4.87	100
	368.07 mJ total 35.22 %	vfprintf	355.04	33.97	257.55	100

Embedded system memory organization
Overview of real-time and embedded operating systems
Embedded application/OS time, power, and energy estimation
Homework

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure

Example power-efficient change to RTOS

- Alternatively, can use timer-based sampling
 - Normally NOP or sleep when idle
 - Wake up on timer ticks
 - Sample highest non-timer ISR task
 - If it's the idle task, increment a counter
 - Can dramatically reduce power consumption without losing functionality

Data compression

Embedded system memory organization

Overview of real-time and embedded operating systems

mbedded application/OS time, power, and energy estimation

Monework

ntroduction, motivation, and past work Examples of energy optimization Simulation infrastructure

Example power-efficient change to RTOS

- Small changes can greatly improve RTOS power consumption
- $\bullet~\mu\text{C}/\text{OS-II}$ tracks processor loading by incrementing a counter when idle
- However, this is not a good low-power design decision
- NOPs have lower power than add or increment instructions
- Sleep mode has much lower power
- Can disable loading counter and use NOPs or sleep mode

Robe

mbedded System Design and Synthesis

Data compression

Embedded system memory organization

Overview of real-time and embedded operating systems

Embedded application/OS time, power, and energy estimation

Homework

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure

RTOS Conclusions

- Demonstrated that RTOS significantly impacts power
- RTOS power analysis can improve application software design
- Applications
 - Low-power RTOS design
 - Energy-efficient software architecture
 - \bullet Consider RTOS effects during system design

Rober

ert Dick Embedded System Design and Synthe

Robert Dick

Embedded System Design and Synthes

Embedded system memory organization Overview of real-time and embedded operating systems imbedded application/OS time, power, and energy estimation Homework Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

Reference

Kaushik Ghosh, Bodhisattwa Mukherjee, and Karsten Schwan. A survey of real-time operating systems. Technical report, College of Computing, Georgia Institute of Technology, February 1994

Rober

Embedded System Design and Synthesis

Data compression

Embedded system memory organization

Overview of real-time and embedded operating systems
bedded application/OS time, power, and energy estimation

Homework

Upcoming topics

- Technology trends.
- Power analysis and optimization.
- Emerging applications: CPS.
- Human-centered computer design.
- Energy supply in embedded systems.

Robe

Embedded System Design and Synthesis

Data compression

Embedded system memory organization

Overview of real-time and embedded operating systems

Embedded application/OS time, power, and energy estimation

Homework

Memory hierarchy and scheduling reading I

- Due 4 October: Yu-Kwong Kwok and Ishfaq Ahmad.
 Benchmarking and comparison of the task graph scheduling algorithms. *J. of Parallel and Distributed Computing*, 59(3):381–422, 1999.
- Due 6 October: L. Yang, Robert P. Dick, Haris Lekatsas, and Srimat Chakradhar. High-performance operating system controlled on-line memory compression. ACM Trans. Embedded Computing Systems, 9(4):30:1–30:28, March 2010.
- Due 11 October: .

Robert Die

Embedded System Design and Synthesis