

LECTURE NOTES

ON

EMBEDDED SYSTEMS DESIGN

IV B. Tech I semester (JNTUH-R15)

Faculty Members

Mr. N Paparao
Assistant Professor

Mr. S Lakshmanachari
Assistant Professor

Mr. MD Khadir
Assistant Professor

ELECTRONICS AND COMMUNICATION ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

DUNDIGAL, HYDERABAD - 500 043

Embedded Systems Design
LECTURE NOTES

 SYLLABUS:

Unit-I

Introduction to Embedded Systems:

Definition of Embedded System, Embedded Systems Vs General Computing Systems, History

of Embedded Systems, Classification, Major Application Areas, Purpose of Embedded

Systems, Characteristics and Quality Attributes of Embedded Systems.

UNIT-II

Typical Embedded System:

Core of the Embedded System: General Purpose and Domain Specific Processors, ASICs,
PLDs, Commercial Off-The-Shelf Components (COTS), Memory: ROM, RAM, Memory

according to the type of Interface, Memory Shadowing, Memory selection for Embedded

Systems, Sensors and Actuators, Communication Interface: Onboard and External

Communication Interfaces.

UNIT-III
Embedded Firmware:
Reset Circuit, Brown-out Protection Circuit, Oscillator Unit, Real Time Clock, Watchdog

Timer, Embedded Firmware Design Approaches and Development Languages.

UNIT-IV
RTOS Based Embedded System Design:

Operating System Basics, Types of Operating Systems, Tasks, Process and Threads,

Multiprocessing and Multitasking, Task Scheduling.

UNIT- V
Task Communication:
Shared Memory, Message Passing, Remote Procedure Call and Sockets, Task Synchronization:

Task Communication Synchronization Issues, Task Synchronization Techniques, Device

Drivers, How to Choose an RTOS.

TEXT BOOKS:

1. Introduction to Embedded Systems - Shibu K.V, Mc Graw Hill.

REFERENCE BOOKS:

1. Embedded Systems - Raj Kamal, TMH.

2. Embedded System Design - Frank Vahid, Tony Givargis, John Wiley.
3. Embedded Systems – Lyla, Pearson, 2013
4. An Embedded Software Primer - David E. Simon, Pearson Education.

UNIT -I

Introduction to Embedded systems

INTRODUCTION:

 An embedded system is an electronic system, which includes a single chip microcomputers

(Microcontrollers) like the ARM or Cortex or Stellaris LM3S1968.

 It is configured to perform a specific dedicated application.

 An embedded system is some combination of computer hardware and software, either fixed in

capability or programmable, that is designed for a specific function or for specific functions within

a larger system.

 Here the microcomputer is embedded or hidden inside the system. Every embedded

microcomputer system accepts inputs, performs computations, and generates outputs and runs in

―real time.‖

Ex: Cell phone, Digital camera, Microwave Oven, MP3 player, Portable digital assistant & automobile

antilock brake system Industrial machines, agricultural and process industry devices, automobiles, medical

equipment, household appliances, airplanes, vending machines and toys as well as mobile devices are all

possible locations for an embedded system.etc.

Characteristics of an Embedded System: The important characteristics of an embedded system are

 Speed (bytes/sec) : Should be high speed

 Power (watts) : Low power dissipation

 Size and weight : As far as possible small in size and low weight

 Accuracy (% error) : Must be very accurate

 Adaptability: High adaptability and accessibility.

 Reliability: Must be reliable over a long period of time.

So, an embedded system must perform the operations at a high speed so that it can be readily used for

real time applications and its power consumption must be very low and the size of the system should be as

for as possible small and the readings must be accurate with minimum error. The system must be easily

adaptable for different situations.

http://searchnetworking.techtarget.com/definition/hardware
http://searchsoa.techtarget.com/definition/software

CATEGORIES OF EMBEDDED SYSTEMS: Embedded systems can be classified into the following 4

categories based on their functional and performance requirements.

Embedded system

 Functional

 performance

 Stand alone embedded systems small scale embedded system

 Real time embedded system medium scale embedded s/m

a) Hard real time E.S

b) Soft Real time E.S

 Networked embedded system large scale embedded system

 Mobile embedded system .

Stand alone Embedded systems:

A stand-alone embedded system works by itself. It is a self-contained device which does not require

any host system like a computer. It takes either digital or analog inputs from its input ports, calibrates,

converts, and processes the data, and outputs the resulting data to its attached output device, which either

displays data, or controls and drives the attached devices.

EX: Temperature measurement systems, Video game consoles, MP3 players, digital cameras, and

microwave ovens are the examples for this category.

Real-time embedded systems:

An embedded system which gives the required output in a specified time or which strictly follows

the time deadlines for completion of a task is known as a Real time system. i.e. a Real Time system , in

addition to functional correctness, also satisfies the time constraints .

There are two types of Real time systems. (i) Soft real time system and (ii) Hard real time system.

 Soft Real-Time system: A Real time system in which, the violation of time constraints will cause

only the degraded quality, but the system can continue to operate is known as a Soft real time

system. In soft real-time systems, the design focus is to offer a guaranteed bandwidth to each real-

time task and to distribute the resources to the tasks.

 Ex: A Microwave Oven, washing machine, TV remote etc.

 Hard Real-Time system: A Real time system in which, the violation of time constraints will cause

critical failure and loss of life or property damage or catastrophe is known as a Hard Real t ime

system.

These systems usually interact directly with physical hardware instead of through a human being .The

hardware and software of hard real-time systems must allow a worst case execution (WCET) analysis that

guarantees the execution be completed within a strict deadline. The chip selection and RTOS selection

become important factors for hard real-time system design.

Ex: Deadline in a missile control embedded system , Delayed alarm during a Gas leakage , car airbag

control system , A delayed response in pacemakers ,Failure in RADAR functioning etc.

Networked embedded systems:

The networked embedded systems are related to a network with network interfaces to access the

resources. The connected network can be a Local Area Network (LAN) or a Wide Area Network (WAN), or

the Internet. The connection can be either wired or wireless.

The networked embedded system is the fastest growing area in embedded systems applications. The

embedded web server is such a system where all embedded devices are connected to a web server and can

be accessed and controlled by any web browser.

Ex: A home security system is an example of a LAN networked embedded system where all sensors (e.g.

motion detectors, light sensors, or smoke sensors) are wired and running on the TCP/IP protocol.

Mobile Embedded systems:

The portable embedded devices like mobile and cellular phones, digital cameras, MP3 players, PDA

(Personal Digital Assistants) are the example for mobile embedded systems. The basic limitation of these

devices is the limitation of memory and other resources.

Based on the performance of the Microcontroller they are also classified into (i) Small scaled

embedded system (ii) Medium scaled embedded system and (iii) Large scaled embedded system.

Small scaled embedded system:

An embedded system supported by a single 8–16 bit Microcontroller with on-chip RAM and ROM

designed to perform simple tasks is a Small scale embedded system.

Medium scaled embedded system:

An embedded system supported by 16–32 bit Microcontroller /Microprocessor with external RAM

and ROM that can perform more complex operations is a Medium scale embedded system.

 Large scaled embedded system:

 An embedded system supported by 32-64 bit multiple chips which can perform distributed jobs is

considered as a Large scale embedded system.

 Application Areas of Embedded Systems:

 The embedded systems have a huge variety of application domains which varies from very low cost

to very high cost and from daily life consumer electronics to industry automation equipments, from

entertainment devices to academic equipments, and from medical instruments to aerospace and weapon

control systems. So, the embedded systems span all aspects of our modern life. The following table gives

the various applications of embedded systems.

 Embedded System Application

Home Appliances Dishwasher, washing machine, microwave, Top-set box,

security system , HVAC system, DVD, answering machine,

garden sprinkler systems etc..

Office Automation Fax, copy machine, smart phone system, modern, scanner,

printers.

Security Face recognition, finger recognition, eye recognition, building

security system , airport security system, alarm system.

Academia Smart board, smart room, OCR, calculator, smart cord.

Instrumentation Signal generator, signal processor, power supplier,Process

instrumentation,

Telecommunication Router, hub, cellular phone, IP phone, web camera

Automobile Fuel injection controller, anti-locking brake system, air-bag

system, GPS, cruise control.

Entertainment M P3, video game, Mind Storm, smart toy.

Aerospace Navigation system, automatic landing system, flight attitude

controller, space explorer, space robotics.

Industrial automation Assembly line, data collection system, monitoring systems on

pressure, voltage, current, temperature, hazard detecting

system, industrial robot.

Personal PDA, iPhone, palmtop, data organizer.

Medical CT scanner, ECG , EEG , EMG ,MRI, Glucose monitor,

blood pressure monitor, medical diagnostic device.

Banking & Finance ATM, smart vendor machine, cash register ,Share market

 Miscellaneous: Elevators, tread mill, smart card, security door etc.

Overview of embedded systems architecture:

 Every embedded system consists of customer-built hardware components supported by a Central

Processing Unit (CPU), which is the heart of a microprocessor (µP) or microcontroller (µC).

 A microcontroller is an integrated chip which comes with built-in memory, I/O ports, timers, and

other components.

 Most embedded systems are built on microcontrollers, which run faster than a custom-built system

with a microprocessor, because all components are integrated within a single chip.

 Operating system plays an important role in most of the embedded systems. But all the embedded

systems do not use the operating system.

 The systems with high end applications only use operating system. To use the operating system the

embedded system should have large memory capability.

 So, this is not possible in low end applications like remote systems, digital cameras, MP3 players,

robot toys etc.

 The architecture of an embedded system with OS can be denoted by layered structure as shown

below.

 The OS will provide an interface between the hardware and application software.

In the case of embedded systems with OS, once the application software is loaded into memory it

will run the application without any host system.

Coming to the hardware details of the embedded system, it consists of the following important blocks.

 CPU(Central Processing Unit)

 RAM and ROM

 I/O Devices

 Communication Interfaces

 Sensors etc. (Application specific circuitry)

This hardware architecture can be shown by the following block diagram.

Fig: hardware architecture of embedded system

Central Processing Unit:

 A CPU is composed of an Arithmetic Logic Unit (ALU), a Control Unit (CU), and many internal

registers that are connected by buses.

 The ALU performs all the mathematical operations (Add, Sub, Mul, Div), logical operations (AND,

OR), and shifting operations within CPU.

 The timing and sequencing of all CPU operations are controlled by the CU, which is actually built of

many selection circuits including latches and decoders. The CU is responsible for directing the flow

of instruction and data within the CPU and continuously running program instructions step by step.

 The CPU works in a cycle of fetching an instruction, decoding it, and executing it, known as the

fetch-decode-execute cycle.

 For embedded system design, many factors impact the CPU selection, e.g., the maximum size

(number of bits) in a single operand for ALU (8, 16, 32, 64 bits), and CPU clock frequency for

timing tick control, i.e. the number of ticks (clock cycles) per second in measures of MHz

 CPU contains the core and the other components which support the core to execute programs.

Peripherals are the components which communicate with other systems or physical world (Like

ports, ADC,DAC, Watch dog Timers etc.). The core is separated from other components by the

system bus.

 The CPU in the embedded system may be a general purpose processor like a microcontroller or a

special purpose processor like a DSP (Digital signal processor). But any CPU consists of of an

Arithmetic Logic Unit (ALU), a Control Unit (CU), and many internal registers that are connected

by buses. The ALU performs all the mathematical operations (Add, Sub, Mul, Div), logical

operations (AND, OR), and shifting operations within CPU.

 There are many internal registers in the CPU.

 The accumulator (A) is a special data register that stores the result of ALU operations. It can also

be used as an operand. The Program Counter (PC) stores the memory location of the next instruction

to be executed. The Instruction Register (IR) stores the current machine instruction to be decoded

and executed.

 The Data Buffer Registers store the data received from the memory or the data to be sent to memory.

The Data Buffer Registers are connected to the data bus.

 The Address Register stores the memory location of the data to be accessed (get or set). The Address

Register is connected to the address bus.

 In an embedded system, the CPU may never stop and run forever .The CPU works in a cycle of

fetching an instruction, decoding it, and executing it, known as the fetch-decode-execute cycle. The

cycle begins when an instruction is fetched from a memory location pointed to by the PC to the IR

via the data bus.

When data and code lie in different memory blocks, then the architecture is referred as Harvard

architecture. In case data and code lie in the same memory block, then the architecture is referred as Von

Neumann architecture.

Von Neumann Architecture:

The Von Neumann architecture was first proposed by a computer scientist John von Neumann. In

this architecture, one data path or bus exists for both instruction and data. As a result, the CPU does one

operation at a time. It either fetches an instruction from memory, or performs read/write operation on data.

So an instruction fetch and a data operation cannot occur simultaneously, sharing a common bus.

 addressbus

 databus

Von-Neumann architecture supports simple hardware. It allows the use of a single, sequential

memory. Today's processing speeds vastly outpace memory access times, and we employ a very fast but

small amount of memory (cache) local to the processor.

Harvard Architecture:

The Harvard architecture offers separate storage and signal buses for instructions and data. This

architecture has data storage entirely contained within the CPU, and there is no access to the instruction

storage as data. Computers have separate memory areas for program instructions and data using internal

data buses, allowing simultaneous access to both instructions and data.

Programs needed to be loaded by an operator; the processor could not boot itself. In a Harvard

architecture, there is no need to make the two memories share properties.

Von-Neumann Architecture vs Harvard Architecture:

The following points distinguish the Von Neumann Architecture from the Harvard Architecture.

CPU code &

program

memory

PROGRAM

MEMORY

CPU

CODE

MEMORY

Von-Neumann Architecture Harvard Architecture

Single memory to be shared by both code and data. Separate memories for code and data.

Processor needs to fetch code in a separate clock

cycle and data in another clock cycle. So it

requires two clock cycles.

Single clock cycle is sufficient, as

separate buses are used to access code

and data.

Higher speed, thus less time consuming. Slower in speed, thus more time-

consuming.

Simple in design. Complex in design.

CISC and RISC:

 CISC is a Complex Instruction Set Computer. It is a computer that can address a large number of

instructions.

 In the early 1980s, computer designers recommended that computers should use fewer instructions

with simple constructs so that they can be executed much faster within the CPU without having to

use memory. Such computers are classified as Reduced Instruction Set Computer or RISC.

CISC vs RISC:

The following points differentiate a CISC from a RISC −

CISC RISC

Larger set of instructions. Easy to program Smaller set of Instructions. Difficult to

program.

Simpler design of compiler, considering

larger set of instructions.

Complex design of compiler.

Many addressing modes causing complex

instruction formats.

Few addressing modes, fix instruction

format.

Instruction length is variable. Instruction length varies.

Higher clock cycles per second. Low clock cycle per second.

Emphasis is on hardware. Emphasis is on software.

Control unit implements large instruction set

using micro-program unit.

Each instruction is to be executed by

hardware.

Slower execution, as instructions are to be

read from memory and decoded by the

decoder unit.

Faster execution, as each instruction is to be

executed by hardware.

Pipelining is not possible. Pipelining of instructions is possible,

considering single clock cycle.

Mainly used in normal pc‘s, workstations &

servers.

Mainly used for real time applications.

Memory:

 Embedded system memory can be either on-chip or off-chip.

 On chip memory access is much fast than off-chip memory, but the size of on-chip memory is much

smaller than the size of off-chip memory.

 Usually, it takes at least two I/O ports as external address lines plus a few control lines such as

R/W and ALE control lines to enable the extended memory. Generally the data is stored in RAM

and the program is stored in ROM.

 The ROM, EPROM, and Flash memory are all read-only type memories often used to store code in

an embedded system.

 The embedded system code does not change after the code is loaded into memory.

 The ROM is programmed at the factory and cannot be changed over time.

 The newer microcontrollers come with EPROM or Flash instead of ROM.

 Most microcontroller development kits come with EPROM as well.

 EPROM and Flash memory are easier to rewrite than ROM. EPROM is an Erasable Programmable

ROM in which the contents can be field programmed by a special burner and can be erased by a UV

light bulb.

 The size of EPROM ranges up to 32kb in most embedded systems.

 Flash memory is an Electrically EPROM which can be programmed from software so that the

developers don‘t need to physically remove the EPROM from the circuit to re-program it.

 It is much quicker and easier to re-write Flash than other types of EPROM.

 When the power is on, the first instruction in ROM is loaded into the PC and then the CPU fetches

the instruction from the location in the ROM pointed to by the PC and stores it in the IR to start the

continuous CPU fetch and execution cycle. The PC is advanced to the address of the next

instruction depending on the length of the current instruction or the destination of the Jump

instruction.

 The memory is divided into Data Memory and Code Memory.

 Most of data is stored in Random Access Memory (RAM) and code is stored in Read Only Memory

(ROM).

 This is due to the RAM constraint of the embedded system and the memory organization.

 The RAM is readable and writable, faster access and more expensive volatile storage, which can be

used to store either data or code.

 Once the power is turned off, all information stored in the RAM will be lost.

 The RAM chip can be SRAM (static) or DRAM (dynamic) depending on the manufacturer. SRAM

is faster than DRAM, but is more expensive.

I/O Ports:

 The I/O ports are used to connect input and output devices. The common input devices for an

embedded system include keypads, switches, buttons, knobs, and all kinds of sensors (light,

temperature, pressure, etc).

 The output devices include Light Emitting Diodes (LED), Liquid Crystal Displays (LCD), printers,

alarms, actuators, etc. Some devices support both input and output, such as communication

interfaces including Network Interface Cards (NIC), modems, and mobile phones.

µp Memory

Address Lines

Data Lines

Control Lines

Interface 26

In parallel I/O have two types of interfacing

1. Memory mapped I/O

2. I/O mapped I/O

Memory Mapped IO

• IO is treated as
memory.

• 16-bit addressing.

• More Decoder
Hardware.

• Can address 216=64k
locations.

• Less memory is
available.

IO Mapped IO

• IO is treated IO.

• 8- bit addressing.

• Less Decoder Hardware.

• Can address 28=256
locations.

• Whole memory address
space is available.

38

Memory Mapped IO

• Memory Instructions
are used.

• Memory control
signals are used.

• Arithmetic and logic
operations can be
performed on data.

• Data transfer b/w
register and IO.

IO Mapped IO

• Special Instructions
are used like IN, OUT.

• Special control
signals are used.

• Arithmetic and logic
operations can not
be performed on
data.

• Data transfer b/w
accumulator and IO.

39

Communication Interfaces:

 To transfer the data or to interact with other devices, the embedded devices are provided the various

communication interfaces like RS232, RS422, RS485 ,USB, SPI(Serial Peripheral Interface) ,SCI

(Serial Communication Interface) ,Ethernet etc.

Application Specific Circuitry:

 The embedded system sometimes receives the input from a sensor or actuator. In such situations

certain signal conditioning circuitry is needed. This hardware circuitry may contain ADC, Op-amps,

DAC etc. Such circuitry will interact with the embedded system to give correct output.

ADC & DAC:

 Many embedded system application need to deal with non-digital external signals such as electronic

voltage, music or voice, temperature, pressures, and many other signals in the analog form.

 The digital computer does not understand these data unless they are converted to digital formats.

The ADC is responsible for converting analog values to binary digits.

 The DAC is responsible for outputting analog signals for automation controls such as DC motor or

HVDC furnace control.

In addition to these peripherals, an embedded system may also have sensors, Display modules like LCD or

Touch screen panels, Debug ports certain communication peripherals like I
2
C, SPI, Ethernet, CAN, USB for

high speed data transmission. Now a days various sensors are also becoming an important part in the design

of real time embedded systems. Sensors like temperature sensors, light sensors, PIR sensors, gas sensors are

widely used in application specific circuitry.

Address bus and data bus:

 According to computer architecture, a bus is defined as a system that transfers data between

hardware components of a computer or between two separate computers.

 Initially, buses were made up using electrical wires, but now the term bus is used more broadly to

identify any physical subsystem that provides equal functionality as the earlier electrical buses.

 Computer buses can be parallel or serial and can be connected as multidrop, daisy chain or by

switched hubs.

 System bus is a single bus that helps all major components of a computer to communicate with each

other.

 It is made up of an address bus, data bus and a control bus. The data bus carries the data to be

stored, while address bus carries the location to where it should be stored.

Address Bus

 Address bus is a part of the computer system bus that is dedicated for specifying a physical address.

 When the computer processor needs to read or write from or to the memory, it uses the address bus

to specify the physical address of the individual memory block it needs to access (the actual data is

sent along the data bus).

 More correctly, when the processor wants to write some data to the memory, it will assert the write

signal, set the write address on the address bus and put the data on to the data bus.

 Similarly, when the processor wants to read some data residing in the memory, it will assert the read

signal and set the read address on the address bus.

 After receiving this signal, the memory controller will get the data from the specific memory block

(after checking the address bus to get the read address) and then it will place the data of the memory

block on to the data bus.

The size of the memory that can be addressed by the system determines the width of the data bus

and vice versa. For example, if the width of the address bus is 32 bits, the system can address 232 memory

blocks (that is equal to 4GB memory space, given that one block holds 1 byte of data).

Data Bus

 A data bus simply carries data. Internal buses carry information within the processor, while external

buses carry data between the processor and the memory.

 Typically, the same data bus is used for both read/write operations. When it is a write operation, the

processor will put the data (to be written) on to the data bus.

 When it is the read operation, the memory controller will get the data from the specific memory

block and put it in to the data bus.

What is the difference between Address Bus and Data Bus?

 Data bus is bidirectional, while address bus is unidirectional. That means data travels in both

directions but the addresses will travel in only one direction.

 The reason for this is that unlike the data, the address is always specified by the processor. The

width of the data bus is determined by the size of the individual memory block, while the width of

the address bus is determined by the size of the memory that should be addressed by the system.

Power supply:

 Most of the embedded systems now days work on battery operated supplies.

 Because low power dissipation is always required. Hence the systems are designed to work with

batteries.

Clock:

 The clock is used to control the clocking requirement of the CPU for executing instructions and the

configuration of timers. For ex: the 8051 clock cycle is (1/12)10
-6

 second (1/12µs) because the

clock frequency is 12MHz. A simple 8051 instruction takes 12 cycles (1ms) to complete. Of course,

some multi-cycle instructions take more clock cycles.

 A timer is a real-time clock for real-time programming. Every timer comes with a counter which can

be configured by programs to count the incoming pulses. When the counter overflows (resets to

zero) it will fire a timeout interrupt that triggers predefined actions. Many time delays can be

generated by timers. For example ,a timer counter configured to 24,000 will trigger the timeout

signal in 24000x 1/12µs = 2ms.

 In addition to time delay generation, the timer is also widely used in the real-time embedded system

to schedule multiple tasks in multitasking programming. The watchdog timer is a special timing

device that resets the system after a preset time delay in case of system anomaly. The watchdog

starts up automatically after the system power up.

 One need to reboot the PC now and then due to various faults caused by hardware or software. An

embedded system cannot be rebooted manually, because it has been embedded into its system. That

is why many microcontrollers come with an on-chip watchdog timer which can be configured just

like the counter in the regular timer. After a system gets stuck (power supply voltage out of range or

regular timer does not issue timeout after reaching zero count) the watchdog eventually will restart

the system to bring the system back to a normal operational condition.

Application Specific software:

It sits above the O.S. The application software is developed according to the features of the

development tools available in the OS.

These development tools provide the function calls to access the services of the OS. These function

calls include, creating a task ,to read the data from the port and write the data to the memory etc.

The various function calls provided by an operating system are

i. To create ,suspend and delete tasks.

ii. To do task scheduling to providing real time environment.

iii. To create inter task communication and achieve the synchronization between tasks.

iv. To access the I/O devices.

v. To access the communication protocol stack .

The designer develops the application software based on these function calls.

Recent trends in Embedded systems : With the fast developments in semiconductor industry and

VLSI technology ,one can find tremendous changes in the embedded system design in terms of processor

speed , power , communication interfaces including network capabilities and software developments like

operating systems and programming languages etc.

 Processor speed and Power : With the advancements in processor technology ,the embedded

systems are now days designed with 16,32 bit processors which can work in real time environment.

These processors are able to perform high speed signal processing activities which resulted in the

development of high definition communication devices like 3G mobiles etc.Also the recent

developments in VLSI technology has paved the way for low power battery operated devices which

are very handy and have high longevity. Also , the present day embedded systems are provided

with higher memory capabilities ,so that most of them are based on tiny operating systems like

android etc.

 Communication interfaces : Most of the present day embedded systems are aimed at internet based

applications. So,the communication interfaces like Ethernet, USB, wireless LAN etc.have become

very common resources in almost all the embedded systems. The developments in memory

technologies also helped in porting the TCP/IP protocol stack and the HTTP server software on to

the embedded systems. Such embedded systems can provide a link between any two devices

anywhere in the globe.

 Operating systems : With recent software developments ,there is a considerable growth in the

availability of operating systems for embedded systems. Mainly new operating systems are

developed which can be used in real time applications. There are both commercial RTOSes like Vx

Works , QNX,WIN-CE and open source RTOSes like RTLINUX etc. The Android OS in mobiles

has revolutionized the embedded industry.

 Programming Languages : There is also a remarkable development in the programming languages.

Languages like C++, Java etc. are now widely used in embedded application programming. For

example by having the Java virtual machine in a mobile phones ,one can download Java applets

from a server and can be executed on your mobile.

In addition to these developments, now a days we also find new devices like ASICs and FPGAs in the

embedded system market. These new hardware devices are popular as programmable devices and

reconfigurable devices.

Msp430 introduction:

 The MSP430 was introduced in the late 1990s. It is a particularly straightforward 16-bit processor

with a von Neumann architecture, designed for low-power applications.

 Both the address and data buses are 16 bits wide. The registers in the CPU are also all 16 bits wide

and can be used interchangeably for either data or addresses.

 This makes the MSP430 simpler than an 8-bit processor with 16-bit addresses. Such a processor

must use its general-purpose registers in pairs for addresses or provide separate, wider registers.

 In many ways, the MSP430 fits between traditional 8- and 16-bit processors.

 The 16-bit data bus and registers clearly define it as a 16-bit processor. On the other hand, it can

address only 216 =64KB of memory.

 The MSP430 has 16 registers in its CPU, which enhances efficiency because they can be used for

local variables, parameters passed to subroutines, and either addresses or data.

 This is a typical feature of a RISC, but unlike a ―pure‖ RISC, it can perform arithmetic directly on

values in main memory.

 Microcontrollers typically spend much of their time on such operations. The MSP430 is the simplest

microcontroller in Texas Instrumentations.

 Several features make the MSP430 suitable for low-power and portable applications:

Features of MSP430:

 The CPU is small and efficient, with a large number of registers.

 It is extremely easy to put the device into a low-power mode. No special instruction is needed.

 The mode is controlled by bits in the status register. There are several low-power modes, depending

on how much of the device should remain active and how quickly it should return to full-speed

operation.

 There is a wide choice of clocks. Typically, a low-frequency watch crystal runs continuously at

32KHz and is used to wake the device periodically. The CPU is clocked by an internal, digitally

controlled oscillator (DCO), which restarts in less than 1us in the latest devices.

 Therefore the MSP430 can wake from a standby mode rapidly, perform its tasks, and return to a

low-power mode.

 A wide range of peripherals is available, many of which can run autonomously without the CPU for

most of the time.

 Many portable devices include liquid crystal displays, which the MSP430 can drive directly.

 Some MSP430 devices are classed as application-specific standard products (ASSPs) and contain

specialized analog hardware for various types of measurement.

 Ultra-low-power (ULP) architecture and flexible clock system extend battery life

 Low power consumption:

o μ A for RAM data Retention,

o 0.8 μ A for RTC mode operation

o 250 μA /MIPS at active operation.

 Low operation voltage (from 1.8 V to 3.6 V).

o Zero-power Brown-Out Reset (BOR).

 Enhanced libraries to benefit several applications such as capacitive touch, metering metrology,

low power design and debugging

 Extensive interrupt capability relieves need for polling

 Flexible and powerful processing capabilities:

 Seven source-address modes

 Four destination-address modes

 Only 27 core instructions

 Prioritized, nested interrupts

 Large register file

 Efficient table processing

 Fast hex-to-decimal conversion

ARCHITECTURE OF MSP430:

The Inside View—Functional Block Diagram Figure shows a block diagram of the F2013.

 These are its main features: On the left is the CPU and its supporting hardware, including the clock

generator. The emulation, JTAG interface and Spy-Bi-Wire are used to communicate with a desktop

computer when downloading a program and for debugging.

 The main blocks are linked by the memory address bus (MAB) and memory data bus (MDB).

 These devices have flash memory, 1KB in the F2003 or 2KB in the F2013, and 128 bytes of RAM.

 Six blocks are shown for peripheral functions (there are many more in larger devices).

 All MSP430s include input/output ports, Timer_A, and a watchdog timer, although the details differ.

 The universal serial interface (USI) and sigma–delta analog-to-digital converter (SD16_A) are

particular features of this device.

 The brownout protection comes into action if the supply voltage drops to a dangerous level. Most

devices include this but not some of the MSP430x1xx family.

 There are ground and power supply connections. Ground is labeled VSS and is taken to define 0V.

 The supply connection is VCC. For many years, the standard for logic was VCC =+5V but most

devices now work from lower voltages and a range of 1.8–3.6V is specified for the F2013.

 The performance of the device depends on VCC. For example, it is unable to program the flash

memory if VCC < 2.2V and the maximum clock frequency of 16MHz is available only if VCC

≥3.3V.

 TI uses a quaint notation for the power connections. The S stands for the source of a field-effect

transistor, while the C stands for the collector of a bipolar junction transistor, a quite different

device.

 The MSP430, like most modern integrated circuits, is built using complementary metal–oxide–

silicon (CMOS) technology and field-effect transistors. I doubt if it contains any bipolar junction

transistors except possibly in some of the analog peripherals.

 There is only one pair of address and data buses, as expected with a von Neumann architecture.

Some addresses must therefore point to RAM and some to flash, so it is a good idea to explore the

memory map next.

Clock Generator:

 Clocks for microcontrollers used to be simple. Usually a crystal with a frequency of a few MHz

would be connected to two pins.

 It would drive the CPU directly and was typically divided down by a factor of 2 or 4 for the main

bus.

 Unfortunately, the conflicting demands for high performance and low power mean that most modern

microcontrollers have much more complicated clocks, often with two or more sources.

 In many applications the MCU spends most of its time in a low-power mode until some event

occurs, when it must wake up and handle the event rapidly. It is often necessary to keep track of real

time, either so that the MCU can wake periodically (every second or minute, for instance) or to time-

stamp external events.

 Therefore, two clocks with quite different specifications are often needed:

1. Afast clock to drive the CPU, which can be started and stopped rapidly to conserve energy but

usually need not be particularly accurate.

2. Aslow clock that runs continuously to monitor real time, which must therefore use little power

and may need to be accurate.

The MSP430 addresses the conflicting demands for high performance, low power, and a precise

frequency by using three internal clocks, which can be derived from up to four sources. These are the

internal clocks, which are the same in all devices:

 Master clock, MCLK, is used by the CPU and a few peripherals.

 Subsystem master clock, SMCLK, is distributed to peripherals.

 Auxiliary clock, ACLK, is also distributed to peripherals. Typically SMCLK runs at the same

frequency as MCLK, both in the megahertz range. ACLK is often derived from a watch crystal and

therefore runs at a much lower frequency. Most peripherals can select their clock from either

SMCLK or ACLK.

 ACLK comes from a low-frequency crystal oscillator, typically at 32KHz.

 Both MCLK and SMCLK are supplied by an internal digitally controlled oscillator (DCO), which

runs at about 0.8MHz in the MSP430x1xx and 1.1MHz in the MSP430F2xx.

Execution of a program usually proceeds predictably, but there are two classes of exception to this rule:

interrupts and resets:

Interrupts: Usually generated by hardware (although they can be initiated by software) and often indicate

that an event has occurred that needs an urgent response. Apacket of data might have been received, for

instance, and needs to be processed before the next packet arrives. The processor stops what it was doing,

stores enough information (the contents of the program counter and status register) for it to resume later on

and executes an interrupt service routine (ISR). It returns to its previous activity when the ISR has been

completed.Thus an ISR is something like a subroutine called by hardware (at an unpredictable time) rather

than software. Asecond use of interrupts, which is particularly important in the MSP430, is to wake the

processor from a low-power state.

Resets: Again usually generated by hardware, either when power is applied or when something catastrophic

has happened and normal operation cannot continue. This can happen accidentally if the watchdog timer has

not been disabled, which is easy to forget. Areset causes the device to (re)start from a well-defined state.

Pin out diagram of MSP430:

Typical pins can be configured for either input or output and some inputs may generate interrupts

when the voltage on the pin changes. This is useful to awaken a system that has entered a low-power mode

while it waits for input from a (slow) human. Pins usually have further functions as well as described in the

section ―The Outside View—Pin-Out‖ shown in fig;

The pin-out shows which interior functions are connected to each pin of the package. There are

several diagrams for each device, corresponding to the different packages in which it is produced. The

F2013 is available in a traditional 14-pin plastic dual-in-line package (PDIP).

 VCC and VSS are the supply voltage and ground for the whole device (the analog and digital

supplies are separate in the 16-pin package).

 P1.0–P1.7, P2.6, and P2.7 are for digital input and output, grouped into ports P1 and P2.

 TACLK, TA0, and TA1 are associated with Timer_A; TACLK can be used as the clock input to the

timer, while TA0 and TA1 can be either inputs or outputs. These can be used on several pins

because of the importance of the timer.

 A0−,A0+, and so on, up toA4±, are inputs to the analog-to-digital converter. It has four differential

channels, each of which has negative and positive inputs.

 VREF is the reference voltage for the converter.

 ACLK and SMCLK are outputs for the microcontroller‘s clock signals. These can be used to supply

a clock to external components or for diagnostic purposes.

 SCLK, SDO, and SCLare used for the universal serial interface, which communicates with external

devices using the serial peripheral interface (SPI) or inter-integrated circuit (I2C) bus.

 XIN and XOUT are the connections for a crystal, which can be used to provide an accurate, stable

clock frequency.

 RST is an active low reset signal. Active low means that it remains high near VCC for normal

operation and is brought low near VSS to reset the chip.Alternative notations to show the active low

nature are _RST and /RST.

 NMI is the nonmaskable interrupt input, which allows an external signal to interrupt the normal

operation of the program.

 TCK, TMS, TCLK, TDI, TDO, and TEST form the full JTAG interface, used to program and debug

the device.

 SBWTDIO and SBWTCK provide the Spy-Bi-Wire interface, an alternative to the usual JTAG

connection that saves pins.

 A less common feature of the MSP430 is that some functions are available at several pins rather than

a single one.

 The emulation, JTAG interface and Spy-Bi-Wire are used to communicate with a desktop computer

when downloading a program and for debugging.

Addressing Modes:

 A key feature of any CPU is its range of addressing modes, the ways in which operands can be

specified.

 The MSP430 has four basic modes for the source but only two for the destination in instructions

with two operands.

 These modes are made more useful by the way in which they interact with the CPU‘s registers.

 All 16 of these are treated on an almost equal basis, including the four special-purpose registers R0–

R3 or PC, SP, SR/CG1, and CG2. The combination of the basic addressing modes and the registers

gives the seven modes listed in the user‘s guides, although eight could reasonably be claimed.

Double operand (Format I): Arithmetic and logical operations with two operands such as add.w src,dst,

which is the equivalent of dst+=src in C. Note the different ordering of src and dst in C and assembly

language. Both operands must be specified in the instruction. This contrasts with accumulator-based

architectures, where an accumulator or working register is used automatically as the destination and one

operand.

 Single operand (Format II): Amixture of instructions for control or to manipulate a single operand, which

is effectively the source for the addressing modes. The nomenclature in TI‘s documents is inconsistent in

this respect. Jumps: The jump to the destination rather than its absolute address, in other words the offset

that must be added to the program counter.

Register Mode: This uses one or two of the registers in the CPU. It is the most straightforward addressing

mode and is available for both source and destination. For example,

Syntax: mov.w R5,R6 ; move (copy) word from R5 to R6

The registers are specified in the instruction word; no further data are needed. It is also the fastest

mode and this instruction takes only 1 cycle. Any of the 16 registers can be used for either source or

destination but there are some special cases:

 The PC is incremented by 2 while the instruction is being fetched, before it is used as a source.

 The constant generator CG2 reads 0 as a source.

 Both PC and SP must be even because they address only words, so the lsb is discarded if they are

used as the destination.

 SR can be used as a source and destination in almost the usual way although there are some details

about the behavior of individual bits.

For byte instructions,

 Operands are taken from the lower byte; the upper byte is not affected.

 The result is written to the lower byte of the register and the upper byte is cleared.

The upper byte of a register in the CPU cannot be used as a source. If this is needed, the 2 bytes in a word

must first be swapped with swpb.

Indexed Mode:

This looks much like an element of an array in C. The address is formed by adding a constant base

address to the contents of a CPU register; the value in the register is not changed. Indexed addressing can be

used for both source and destination. For example, suppose that R5 contains the value 4 before this

instruction:

Syntax: mov.b 3(R5),R6 ; load byte from address 3+(R5)=7 into R6

The address of the source is computed as 3+(R5)=3+4=7. Thus a byte is loaded from address 7 into R6. The

value in R5 is unchanged. There is no restriction on the address for a byte but remember that words must lie

on even addresses.

Indexed addressing can be used for the source, destination, or both. The base addresses, just the single

value 3 here because only one address is indexed, are stored in the words following the instruction. They

cannot be produced by the constant generator.

Symbolic Mode (PC Relative):

 In this case the program counter PC is used as the base address, so the constant is the offset to the

data from the PC. TI calls this the symbolic mode although it is usually described as PC-relative addressing.

It is used by writing the symbol for a memory location without any prefix. For example, suppose that a

program uses the variable LoopCtr, which occupies a word. The following instruction stores the value of

LoopCtr in R6 using symbolic mode:

Syntax: mov.w LoopCtr,R6 ; load word LoopCtr into R6, symbolic mode

 mov.w X(PC),R6 ; load word LoopCtr into R6, symbolic mode

where X = LoopCtr−PC is the offset that needs to be added to PC to get the address of LoopCtr. This

calculation is performed by the assembler, which also accounts for the automatic incrementing of PC.

Absolute Mode:

 The constant in this form of indexed addressing is the absolute address of the data. This is already

the complete address required so it should be added to a register that contains 0. The MSP430 mimics this

by using the status register SR. It makes no sense to use the real contents of SR in an address so it behaves

as though it contains 0 when it is used as the base for indexed addressing. This is one of its roles as constant

generator CG1. Absolute addressing is shown by the prefix & and should be used for special function and

peripheral registers, whose addresses are fixed in the memory map. This example copies the port 1 input

register into register R6:

Syntax: mov.b &P1IN,R6 ; load byte P1IN into R6, absolute mode

The assembler replaces this by the indexed form

Syntax: mov.b P1IN(SR),R6 ; load byte P1IN into R6, absolute mode

where P1IN is the absolute address of the register.

SP-Relative Mode:

 TI does not claim this as a distinct mode of addressing, but many other companies do! The stack

pointer SP can be used as the register in indexed mode like any other. Recall from the section ―Stack

Pointer (SP)‖ on page 120 that the stack grows down in memory and that SP points to (holds the address of)

the most recently added word. Suppose that we wanted to copy the value that had been pushed onto the

stack before the most recent one. The following instruction will do this:

Syntax: mov.w 2(SP),R6 ; copy most recent word but one from stack For example, suppose that the stack

were as shown in Figure 5.2(d) with SP=0x027C. Then the preceding instruction would load 0x1234 into

R6.

Indirect Register Mode

 This is available only for the source and is shown by the symbol @ in front of a register, such as

@R5. It means that the contents of R5 are used as the address of the operand. In other words, R5 holds a

pointer rather than a value. (The contents of R5 would be the operand itself if the @ were omitted.) Suppose

that R5 contains the value 4 before this instruction:

Syntax: mov.w @R5,R6 ; load word from address (R5)=4 into R6

The address of the source is 4, the value in R5. Thus a word is loaded from address 4 into R6. The value in

R5 is unchanged. This has exactly the same effect as indexed addressing with a base address of 0 but saves

a word of program memory, which also makes it faster. This is very loosely the equivalent of r6 = *r5 in C,

without worrying about the types of the variables held in the registers.

Indirect addressing cannot be used for the destination so indexed addressing must be used instead. Thus the

reverse of the preceding move must be done like this:

Syntax: mov.w R6,0(R5) ; store word from R6 into address 0+(R5)=4

The penalty is that a word of 0 must be stored in the program memory and fetched from it. The constant

generator cannot be used.

Indirect Autoincrement Register Mode:

Again this is available only for the source and is shown by the symbol @ in front of a register with a

+ sign after it, such as @R5+. It uses the value in R5 as a pointer and automatically increments it afterward

by 1 if a byte has been fetched or by 2 for a word. Suppose yet again that R5 contains the value 4 before this

instruction:

Syntax: mov.w @R5+,R6

Aword is loaded from address 4 into R6 and the value in R5 is incremented to 6 because a word (2 bytes)

was fetched. This is useful when stepping through an array or table, where expressions of the form *c++ are

often used in C. This mode cannot be used for the destination. Instead the main instruction must use indexed

mode with an offset of 0, followed by an explicit increment of the register by 1 or 2. The reverse of this

move therefore needs two instructions:

Syntax: mov.w R6,0(R5) ; store word from R6 into address 0+(R5)=4 incd.w R5 ; R5 += 2

This is undoubtedly a bit clumsy.

Autoincrement is usually called postincrement addressing because many processors have a complementary

predecrement addressing mode, equivalent to *--c in C, but the MSP430 does not.

An important feature of the addressing modes is that all operations on the first address are fully completed

before the second address is evaluated. This needs to be considered when moving blocks of memory. The

move itself might be done by a line like this:

Syntax: mov.w @R5+,0x0100(R5)

Suppose as usual that R5 initially contains the value 4. The contents of address 4 is read and R5 is double-

incremented to 6 because a word is involved. Only now is the address for the destination calculated as

0x0100+0x0006=0x0106. Thus a word is copied from address 0x0004 to 0x0106; the offset is not just the

value of 0x0100 used as the base address for the destination. The compiler takes care of these tricky details

if you write in C, but you are on your own with assembly language.

Immediate Mode This is a special case of autoincrement addressing that uses the program counter PC.

Look at this example:

Syntax: mov.w @PC+,R6 ; load immediate word into R6

The PC is automatically incremented after the instruction is fetched and therefore points to the following

word. The instruction loads this word into R6 and increments PC to point to the next word, which in this

case is the next instruction. The overall effect is that the word that followed the original instruction has been

loaded into R6. This is how the MSP430 handles immediate or literal values, which are encoded into the

stream of instructions. It is the equivalent of r6 = constant. This is available only for the source of an

instruction because it is a type of autoincrement addressing but it is hard to see when it would be useful for

the destination.

Currently four families of MSP430 are available. The letter after MSP430 shows the type of memory.

Most part numbers include F for flash memory but some have C for ROM.

Instruction set:

The instruction set

All instructions are 16 bits long, and there are only three instruction formats:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 0 Opcode B/W Ad Destreg

0 0 1 Condition PC offset (10 bit)

Opcode Source reg Ad B/W As Destreg

As and Ad are the source and destination addressing modes. B/W is a bit that is set to 1 for byte instructions.

2-operand opcodes begin at 0100 = 4.

As you can see, there are at most 8+8+12 = 28 instructions to keep track of, which is nice and simple.

One-operand instructions:

000 RRC(.B)
9-bit rotate right through carry. C->msbit->...->lsbit->C. Clear the carry bit beforehand to

do a logical right shift.

001 SWPB Swap 8-bit register halves. No byte form.

010 RRA(.B) Badly named, this is an 8-bit arithmetic right shift.

011 SXT Sign extend 8 bits to 16. No byte form.

100 PUSH(.B)

Push operand on stack. Push byte decrements SP by 2. CPU BUG: PUSH #4 and PUSH #8

do not work when the short encoding using @r2 and @r2+ is used. The workaround, to

use a 16-bit immediate, is trivial, so TI do not plan to fix this bug.

101 CALL

Fetch operand, push PC, then assign operand value to PC. Note the immediate form is the

most commonly used. There is no easy way to perform a PC-relative call; the PC-relative

addressing mode fetches a word and uses it as an absolute address. This has no byte form.

110 RETI

Pop SP, then pop PC. Note that because flags like CPUOFF are in the stored status

register, the CPU will normally return to the low-power mode it was previously in. This

can be changed by adjusting the SR value stored on the stack before invoking RETI (see

below). The operand field is unused.

111 Not used The MSP430 actually only has 27 instructions.

The status flags are set by RRA, RRC, SXT, and RETI.

The status flags are NOT set by PUSH, SWPB, and CALL.

Relative jumps. These are all PC-relative jumps, adding twice the sign-extended offset to the PC, for a jump

range of -1024 to +1022.

000 JNE/JNZ Jump if Z==0 (if !=)

001 JEQ/Z Jump if Z==1 (if ==)

010 JNC/JLO Jump if C==0 (if unsigned <)

011 JC/JHS Jump if C==1 (if unsigned >=)

100 JN Jump if N==1 Note there is no "JP" if N==0!

101 JGE Jump if N==V (if signed >=)

110 JL Jump if N!=V (if signed <)

111 JMP Jump unconditionally

Two-operand instructions. These basically perform dest = src op dest operations. However, MOV doesn't

fetch the destination, and CMP and BIT do not write to the destination. All are valid in their 8 and 16 bit

forms.

Operands are written in the order src,dest.

0100 MOV src,dest dest = src The status flags are NOT set.

0101 ADD src,dest dest += src

0110 ADDC src,dest dest += src + C

0111 SUBC src,dest dest += ~src + C

1001 SUB src,dest dest -= src Implemented as dest += ~src + 1.

1001 CMP src,dest dest – src Sets status only; the destination is not written.

1010 DADD src,dest dest += src + C, BCD.

1011 BIT src,dest dest&src Sets status only; the destination is not written.

1100 BIC src,dest dest&= ~src The status flags are NOT set.

1101 BIS src,dest dest |= src The status flags are NOT set.

1110 XOR src,dest dest ^= src

1111 AND src,dest dest&=- src

There are a number of zero- and one-operand pseudo-operations that can be built from these two-operand

forms. These are usually referred to as "emulated" instructions:

NOP MOV r3,r3 Any register from r3 to r15 would do the same thing.

POP dst MOV @SP+,dst

Note that other forms of a NOP instruction can be constructed as emulated instructions, which take different

numbers of cycles to execute. These can sometimes be useful in constructing accurate timing patterns in

software.

Branch and return can be done by moving to PC (r0):

BR dst MOV dst,PC

RET MOV @SP+,PC

The constants were chosen to make status register (r2) twiddling efficient:

CLRC BIC #1,SR

SETC BIS #1,SR

CLRZ BIC #2,SR

SETZ BIS #2,SR

CLRN BIC #4,SR

SETN BIS #4,SR

DINT BIC #8,SR

EINT BIC #8,SR

Shift and rotate left is done with add:

RLA(.B) dst ADD(.B) dst,dst

RLC(.B) dst ADDC(.B) dst,dst

Some common one-operand instructions:

INV(.B) dst XOR(.B) #-1,dst

CLR(.B) dst MOV(.B) #0,dst

TST(.B) dst CMP(.B) #0,dst

Increment and decrement (by one or two):

DEC(.B) dst SUB(.B) #1,dst

DECD(.B) dst SUB(.B) #2,dst

INC(.B) dst ADD(.B) #1,dst

INCD(.B) dst ADD(.B) #2,dst

Adding and subtracting only the carry bit:

ADC(.B) dst ADDC(.B) #0,dst

DADC(.B) dst DADD(.B) #0,dst

SBC(.B) dst SUBC(.B) #0,dst

Comparisions of MSP430x1xx, MSP430x2xx, x3xx,x4xx,x5xx,x6xx:

MSP430x1xx series

The MSP430x1xx Series is the basic generation without an embedded LCD controller. They are generally

smaller than the '3xx generation. These flash- or ROM-based ultra-low-power MCUs offer 8 MIPS, 1.8–

3.6 V operation, up to 60 KB flash, and a wide range of analog and digital peripherals.

 Power specification overview, as low as:

o 0.1 μA RAM retention

o 0.7 μA real-time clock mode

o 200 μA / MIPS active

o Features fast wake-up from standby mode in less than 6 µs.

 Device parameters

o Flash options: 1–60 KB

o ROM options: 1–16 KB

o RAM options: 128 B–10 KB

o GPIO options: 14, 22, 48 pins

o ADC options: Slope, 10 & 12-bit SAR

o Other integrated peripherals: 12-bit DAC, up to 2 16-bit timers, watchdog timer,

brown-out reset, SVS, USART module (UART, SPI), DMA, 16×16 multiplier,

Comparator_A, temperature sensor

MSP430F2xx series

The MSP430F2xx Series are similar to the '1xx generation, but operate at even lower power, support up to

16 MHz operation, and have a more accurate (±2%) on-chip clock that makes it easier to operate without an

external crystal. These flash-based ultra-low power devices offer 1.8–3.6 V operation. Includes the very-low

power oscillator (VLO), internal pull-up/pull-down resistors, and low-pin count options.

 Power specification overview, as low as:

http://focus.ti.com/paramsearch/docs/parametricsearch.tsp?familyId=911§ionId=95&tabId=1527&family=mcu
https://en.wikipedia.org/wiki/LCD
http://focus.ti.com/paramsearch/docs/parametricsearch.tsp?familyId=912§ionId=95&tabId=1528&family=mcu

o 0.1 μA RAM retention

o 0.3 μA standby mode (VLO)

o 0.7 μA real-time clock mode

o 220 μA / MIPS active

o Feature ultra-fast wake-up from standby mode in less than 1 μs

 Device parameters

o Flash options: 1–120 KB

o RAM options: 128 B – 8 KB

o GPIO options: 10, 11, 16, 24, 32, and 48 pins

o ADC options: Slope, 10 & 12-bit SAR, 16 & 24-bit Sigma Delta

o Other integrated peripherals: operational amplifiers, 12-bit DAC, up to 2 16-bit

timers, watchdog timer, brown-out reset, SVS, USI module (I²C, SPI), USCI module,

DMA, 16×16 multiplier, Comparator_A+, temperature sensor

MSP430x3xx series

The MSP430x3xx Series is the oldest generation, designed for portable instrumentation with an embedded

LCD controller. This also includes a frequency-locked loop oscillator that can automatically synchronize to

a low-speed (32 kHz) crystal. This generation does not support EEPROM memory, only mask ROM and

UV-eraseable and one-time programmable EPROM. Later generations provide only flash memory and mask

ROM options. These devices offer 2.5–5.5 V operation, up to 32 KB ROM.

 Power specification overview, as low as:

o 0.1 μA RAM retention

o 0.9 μA real-time clock mode

o 160 μA / MIPS active

o Features fast wake-up from standby mode in less than 6 µs.

 Device parameters:

o ROM options: 2–32 KB

o RAM options: 512 B–1 KB

o GPIO options: 14, 40 pins

o ADC options: Slope, 14-bit SAR

o Other integrated peripherals: LCD controller, multiplier

http://focus.ti.com/paramsearch/docs/parametricsearch.tsp?familyId=913§ionId=95&tabId=1529&family=mcu¶mCriteria=no
https://en.wikipedia.org/wiki/Frequency-locked_loop
https://en.wikipedia.org/wiki/EEPROM
https://en.wikipedia.org/wiki/EPROM
https://en.wikipedia.org/wiki/Mask_ROM
https://en.wikipedia.org/wiki/Mask_ROM
https://en.wikipedia.org/wiki/Mask_ROM

MSP430x4xx series

The MSP430x4xx Series are similar to the '3xx generation, but include an integrated LCD controller, and

are larger and more capable. These flash or ROM based devices offers 8–16 MIPS at 1.8–3.6 V operation,

with FLL, and SVS. Ideal for low power metering and medical applications.

 Power specification overview, as low as:

o 0.1 μA RAM retention

o 0.7 μA real-time clock mode

o 200 μA / MIPS active

o Features fast wake-up from standby mode in less than 6 µs.

 Device parameters:

o Flash/ROM options: 4 – 120 KB

o RAM options: 256 B – 8 KB

o GPIO options: 14, 32, 48, 56, 68, 72, 80 pins

o ADC options: Slope, 10 & 12-bit SAR, 16-bit Sigma Delta

o Other integrated peripherals: SCAN_IF, ESP430, 12-bit DAC, Op Amps, RTC, up to

2 16-bit timers, watchdog timer, basic timer, brown-out reset, SVS, USART module

(UART, SPI), USCI module, LCD Controller, DMA, 16×16 & 32x32 multiplier,

Comparator_A, temperature sensor, 8 MIPS CPU Speed

MSP430x5xx series

The MSP430x5xx Series are able to run up to 25 MHz, have up to 512 KB flash memory and up to 66 KB

RAM. This flash-based family features low active power consumption with up to 25 MIPS at 1.8–3.6 V

operation (165 uA/MIPS). Includes an innovative power management module for optimal power

consumption and integrated USB.
[3]

 Power specification overview, as low as:

o 0.1 μA RAM retention

o 2.5 μA real-time clock mode

o 165 μA / MIPS active

o Features fast wake-up from standby mode in less than 5 µs.

 Device parameters:

http://focus.ti.com/paramsearch/docs/parametricsearch.tsp?familyId=914§ionId=95&tabId=1530&family=mcu
http://focus.ti.com/paramsearch/docs/parametricsearch.tsp?familyId=1615§ionId=95&tabId=2229&family=mcu
https://en.wikipedia.org/wiki/TI_MSP430#cite_note-3

o Flash options: up to 512 KB

o RAM options: up to 66 KB

o ADC options: 10 & 12-bit SAR

o GPIO options: 29, 31, 47, 48, 63, 67, 74, 87 pins

o Other integrated peripherals: High resolution PWM, 5 V I/O's, USB, backup battery

switch, up to 4 16-bit timers, watchdog timer, Real-Time Clock, brown-out reset,

SVS, USCI module, DMA, 32x32 multiplier, Comp B, temperature sensor

MSP430x6xx series

The MSP430x6xx Series are able to run up to 25 MHz, have up to 512 KB flash memory and up to 66 KB

RAM. This flash-based family features low active power consumption with up to 25 MIPS at 1.8–3.6 V

operation (165 uA/MIPS). Includes an innovative power management module for optimal power

consumption and integrated USB.

 Power specification overview, as low as:

o 0.1 μA RAM retention

o 2.5 μA real-time clock mode

o 165 μA / MIPS active

o Features fast wake-up from standby mode in less than 5 µs.

 Device parameters:

o Flash options: up to 512 KB

o RAM options: up to 66 KB

o ADC options: 12-bit SAR

o GPIO options: 74 pins

o Other integrated peripherals: USB, LCD, DAC, Comparator_B, DMA, 32x32

multiplier, power management module (BOR, SVS, SVM, LDO), watchdog timer,

RTC, Temp sensor

http://focus.ti.com/paramsearch/docs/parametricsearch.tsp?familyId=2926§ionId=95&tabId=2880&family=mcu¶mCriteria=no

UNIT II

TYPICAL EMBEDDED SYSTEM:

Embedded systems overview

An embedded system is nearly any computing system other than a desktop computer. An

embedded system is a dedicated system which performs the desired function upon power up,

repeatedly.

Embedded systems are found in a variety of common electronic devices such as consumer

electronics ex. Cell phones, pagers, digital cameras, VCD players, portable Video games, calculators,

etc.,

Embedded systems are found in a variety of common electronic devices, such as: (a)consumer

electronics -- cell phones, pagers, digital cameras, camcorders, videocassette recorders, portable video

games, calculators, and personal digital assistants; (b) home appliances

-- microwave ovens, answering machines, thermostat, home security, washing machines, and lighting

systems; (c) office automation -- fax machines, copiers, printers, and scanners; (d) business equipment

-- cash registers, curbside check-in, alarm systems, card readers, product scanners, and automated

teller machines; (e) automobiles --transmission control, cruise control, fuel injection, anti-lock brakes,

and active suspension

Classifications of Embedded systems

1. Small Scale Embedded Systems: These systems are designed with a single 8- or 16-bit

microcontroller; they have little hardware and software complexities and involve board- level

design. They may even be battery operated. When developing embedded software for these, an

editor, assembler and cross assembler, specific to the microcontroller or processor used, are the

main programming tools. Usually, ‗C‗ is used for developing these systems. ‗C‗ program

compilation is done into the assembly, and executable codes are then appropriately located in

the system memory. The software has to fit within the memory available and keep in view the

need to limit power dissipation when system is running continuously.

2. Medium Scale Embedded Systems: These systems are usually designed with a single or few

16- or 32-bit microcontrollers or DSPs or Reduced Instruction Set Computers (RISCs). These

have both hardware and software complexities. For complex software design, there are the

following programming tools: RTOS, Source code engineering tool, Simulator, Debugger and

Integrated Development Environment (IDE). Software tools also provide the solutions to the

hardware complexities. An assembler is of little use as a programming tool. These systems

may also employ the readily available ASSPs and IPs (explained later) for the various

functions—for example, for the bus interfacing, encrypting, deciphering, discrete cosine

transformation and inverse transformation, TCP/IP protocol stacking and network connecting

functions.

3. Sophisticated Embedded Systems: Sophisticated embedded systems have enormous hardware

and software complexities and may need scalable processors or configurable processors and

programmable logic arrays. They are used for cutting edge applications that need hardware and

software co-design and integration in the final system; however, they are constrained by the

processing speeds available in their hardware units. Certain software functions such as

encryption and deciphering algorithms, discrete cosine transformation and inverse

transformation algorithms, TCP/IP protocol stacking and network driver functions are

implemented in the hardware to obtain additional speeds by saving time. Some of the functions

of the hardware resources in the system are also implemented by the software. Development

tools for these systems may not be readily available at a reasonable cost or may not be

available at all. In some cases, a compiler or retarget able compiler might have to be developed

for these.

The processing units of the embedded system

1. Processor in an Embedded System A processor is an important unit in the embedded system

hardware. A microcontroller is an integrated chip that has the processor, memory and several

other hardware units in it; these form the microcomputer part of the embedded system. An

embedded processor is a processor with special features that allow it to be embedded into a

system. A digital signal processor (DSP) is a processor meant for applications that process

digital signals.

2. Commonly used microprocessors, microcontrollers and DSPs in the small-, medium-and large

scale embedded systems

3. A recently introduced technology that additionally incorporates the application-specific system

processors (ASSPs) in the embedded systems.

4. Multiple processors in a system.

Embedded systems are a combination of hardware and software as well as other components that

we bring together inti products such as cell phones,music player,a network router,or an aircraft

guidance system.they are a system within another system as we see in Figure 1.1

Figure 1.1: A simple embedded system

Building an embedded system

we embed 3 basic kinds of computing engines into our systems: microprocessor,

microcomputer and microcontrollers. The microcomputer and other hardware are connected via A

system bus is a single computer bus that connects the major components of a computer system. The

technique was developed to reduce costs and improve modularity. It combines the functions of a data

bus to carry information, an address bus to determine where it should be sent, and a control bus to

determine its operation.

The system bus is further classified int address ,data and control bus.the microprocessor

controls the whole system by executing a set of instructions call firmware that is stored in ROM.

An instruction set, or instruction set architecture (ISA), is the part of the computer

architecture related to programming, including the native data types, instructions, registers,

addressing modes, memory architecture, interrupt and exception handling, and external I/O. An ISA

includes a specification of the set of opcodes (machine language), and the native commands

implemented by a particular processor. To run the application, when power is first turned ON, the

microprocessor addresses a predefined location and fetches, decodes, and executes the instruction one

after the other. The implementation of a microprocessor based embedded system combines the

individual pieces into an integrated whole as shown in Figure 1.2, which represents the architecture for

a typical embedded system and identifies the minimal set of necessary components.

Figure 1.2 :A Microprocessor based Embedded system

Embedded design and development process

Figure1.3 shows a high level flow through the development process and identifies the major

elements of the development life cycle.

Figure 1.3 Embedded system life cycle

The traditional design approach has been traverse the two sides of the accompanying diagram

separately, that is,

 Design the hardware components Design the software components. Bring the

two together.

 Spend time testing and debugging the system.

The major areas of the design process are

 Ensuring a sound software and hardware specification.

 Formulating the architecture for the system to be designed. Partitioning the h/w and s/w.

 Providing an iterative approach to the design of h/w and s/w.

The important steps in developing an embedded system are Requirement definition.

 System specification. Functional design

 Architectural design Prototyping.

The major aspects in the development of embedded applications are

 Digital hardware and software architecture

 Formal design , development, and optimization process. Safety and reliability.

 Digital hardware and software/firmware design.

 The interface to physical world analog and digital signals.

Debug, troubleshooting and test of our design.

Figure 1.4: Interfacing to the outside world

Embedded applications are intended to work with the physical world, sensing various analog

and digital signals while controlling, manipulating or responding to others. The study of the interface

to the external world extends the I/O portion of the von-Neumann machine as shown in figure 1.4 with

a study of buses, their constitutes and their timing considerations.

Exemplary applications of each type of embedded system

Embedded systems have very diversified applications. A few select application areas of

embedded systems are Telecom, Smart Cards, Missiles and Satellites, Computer Networking, Digital

Consumer Electronics, and Automotive. Figure 1.9 shows the applications of embedded systems in

these areas.

Figure 1.9 Applications of embedded systems

THE HARDWARE SIDE

In today‗s hi-tech and changing world, we can put together a working hierarchy of hard ware

components. At the top, we find VLSI circuits comprising of significant pieces of functionality:

microprocessor, microcontrollers, FPGA‗s, CPLD, and ASIC.

Our study of hardware side of embedded systems begins with a high level view of the

computing core of the system. we will expand and refine that view of hardware both inside and outside

of the core. Figure 2.1 illustrates the sequence.

The core level

Figure 2.1 Exploring embedded systems

Figure 2.2 Four major blocks of an embedded hardware core

At the top, we begin with a model comprising four major functional blocks i.e., input, output, memory

and data path and control depicting the embedded hardware core and high level signal flow as

illustrated in figure 2.2.

The source of the transfer is the array of eight bit values; the destination is perhaps a display. in

figure 2.3, we refine the high level functional diagram to illustrate a typical bus configuration

comprising the address, data and control lines.

Figure 2.3 A typical Bus structure comprising address, data and control signals.

The Microprocessor

A microprocessor (sometimes abbreviated µP) is a programmable digital electronic component

that incorporates the functions of a central processing unit (CPU) on a single semiconducting

integrated circuit (IC). It is a multipurpose, programmable device that accepts digital data as input,

processes it according to instructions stored in its memory, and provides results as output. It is an

example of sequential digital logic, as it has internal memory. Microprocessors operate on numbers

and symbols represented in the binary numeral system.

A microprocessor control program can be easily tailored to different needs of a product line,

allowing upgrades in performance with minimal redesign of the product. Different features

can be implemented in different models of a product line at negligible production cost. Figure

2.4 shows a block diagram for a microprocessor based system.

Figure 2.4 : A block diagram for a microprocessor based system

The microcomputer

The microcomputer is a complete computer system that uses a microprocessor as its

computational core. Typically, a microcomputer will also utilizes numerous other large scale

integrated circuits to provide necessary peripheral functionality. The complexity of microcomputers

varies from simple units that are implemented on a single chip along with a small amount of on chip

memory and elementary I/O system to the complex that will augment the microprocessor with a wide

array of powerful peripheral support circuitry.

The microcontroller

A microcontroller (sometimes abbreviated µC, uC or MCU) is a small computer on a single

integrated circuit containing a processor core, memory, and

programmable input/output peripherals. Program memory in the form of NOR flash or OTP

ROM is also often included on chip, as well as a typically small amount of RAM. Microcontrollers are

designed for embedded applications, in contrast to the microprocessors used in personal computers or

other general purpose applications.

Figure 2.5 shows together the microprocessor core and a rich collection of peripherals and I/O

capability into a single integrated circuit.

Microcontrollers are used in automatically controlled products and devices, such as automobile

engine control systems, implantable medical devices, remote controls, office machines, appliances,

power tools, toys and other embedded systems. By reducing the size and cost compared to a design

that uses a separate microprocessor, memory, and input/output devices, microcontrollers make it

economical to digitally control even more devices and processes. Mixed signal microcontrollers are

common, integrating analog components needed to control non-digital electronic systems.

Figure 2.5 :A block diagram for a microcontroller based system

The digital signal processor

A digital signal processor (DSP) is a specialized microprocessor with an architecture optimized

for the operational needs of digital signal processing. A DSP provides fast, discrete-

time, signal-processing instructions. It has Very Large Instruction Word (VLIW) processing

capabilities; it processes Single Instruction Multiple Data (SIMD) instructions fast; it processes

Discrete Cosine Transformations (DCT) and inverse DCT (IDCT) functions fast. The latter are a must

for fast execution of the algorithms for signal analyzing, coding, filtering, noise cancellation, echo-

elimination, compressing and decompressing, etc. Figure 2.6 shows the block diagram for a digital

signal processor

Figure 2.6 A block diagram for a digital signal processor

By the standards of general-purpose processors, DSP instruction sets are often highly irregular. One

implication for software architecture is that hand-optimized assembly-code routines are commonly

packaged into libraries for re-use, instead of relying on advanced compiler technologies to handle

essential algorithms.

Hardware features visible through DSP instruction sets commonly include:

 Hardware modulo addressing, allowing circular buffers to be implemented without having to

constantly test for wrapping.

 Memory architecture designed for streaming data, using DMA extensively and expecting code to

be written to know about cache hierarchies and the associated delays.

 Driving multiple arithmetic units may require memory architectures to support several accesses

per instruction cycle

 Separate program and data memories (Harvard architecture), and sometimes concurrent access

on multiple data busses

 Special SIMD (single instruction, multiple data) operations

 Some processors use VLIW techniques so each instruction drives multiple arithmetic units in

parallel

 Special arithmetic operations, such as fast multiply–accumulates (MACs). Many fundamental

DSP algorithms, such as FIR filters or the Fast Fourier transform (FFT) depend heavily on

multiply–accumulate performance.

 Bit-reversed addressing, a special addressing mode useful for calculating FFTs

 Special loop controls, such as architectural support for executing a few instruction words in a very

tight loop without overhead for instruction fetches or exit testing

 Deliberate exclusion of a memory management unit. DSPs frequently use multi-tasking

operating systems, but have no support for virtual memory or memory protection. Operating

systems that use virtual memory require more time for context switching among processes, which

increases latency.

Representing Information

Big endian systems are simply those systems whose memories are organized with the most

significant digits or bytes of a number or series of numbers in the upper left corner of a memory page

and the least significant in the lower right, just as in a normal spreadsheet.

Little endian systems are simply those system whose memories are organized with the least

significant digits or bytes of a number or series of numbers in the upper left corner of a memory page

and the most significant in the lower right. There are many examples of both types of systems, with

the principle reasons for the choice of either format being the underlying operation of the given

system.

Understanding numbers

We have seen that within a microprocessor, we don‗t have an unbounded numbers of bits with which

to express the various kinds of numeric information that we will be working with in an embedded

application. The limitation of finite word size can have unintended consequences of results of any

mathematical operations that we might need to perform. Let‗s examine the effects of finite word size

on resolution, accuracy, errors and the propagation of errors in these operation. In an embedded

system, the integers and floating point numbers are normally represented as binary values and are

stored either in memory or in registers. The expensive power of any number is dependent on the

number of bits in the number.

Addresses

In the earlier functional diagram as well as in the block diagram for a microprocessor, we learned that

information is stored in memory. Each location in memory has an associated address much like an

index in the array. If an array has 16 locations to hold information, it will have 16 indices. if a memory

has 16 locations to store information ,it will have 16 addresses. Information is accessed in memory by

giving its address.

MSB LSB

31 0

Big endian

LSB MSB

0 31

Instructions

Figure Expressing Addresses

Little endian

An instruction set, or instruction set architecture (ISA), is the part of the computer architecture

related to programming, including the native data types, instructions, registers, addressing modes,

memory architecture, interrupt and exception handling, and external I/O. An ISA includes a

specification of the set of opcodes (machine language), and the native commands implemented by a

particular processor.

The entities that instructions operate on are denoted Operand. The number of operands that an

instruction operates on at any time is called the arity of the operation.

Figure 2.7 Expressing Instructions

In figure 2.7 ,we see that within the 32 bit word, the bit are aggregated into groups or fields. Some of

the fields are interpreted as the operation to be performed, and others are seen as the operands

involved in the operation.

Embedded systems-An instruction set view

A microprocessor instruction set specifies the basic operations supported by the machine. From the

earlier functional model, we see that the objectives of such operations are to transfer or store data, to

operate on data, and to make decisions based on the data values or outcome of the operations,

corresponding to such operations, we can classify instructions into the following groups

 Data transfer Flow control

 Arithmetic and logic

Data transfer Instructions

Data transfer instructions are responsible for moving data around inside the processor as well as for

bringing data in from the outside world or sending data out. The source and destination can be any of

the following:

 A register Memory

 An input or output As shown in figure

Addressing modes

There are five addressing modes in 8085. 1.Direct Addressing Mode

1. Register Addressing Mode

2. Register Indirect Addressing Mode

3. Immediate Addressing Mode

4. Implicit Addressing Mode

Direct Addressing Mode

In this mode, the address of the operand is given in the instruction itself.

 LDA is the operation.

 2500 H is the address of source. Accumulator is the destination.

1. Immediate addressing mode:

In this mode, 8 or 16 bit data can be specified as part of the instruction.

OP Code Immediate Operand

Example 1 : MOV CL, 03 H

Moves the 8 bit data 03 H into CL Example 2 : MOV DX, 0525 H

Moves the 16 bit data 0525 H into DX

In the above two examples, the source operand is in immediate mode and the destination operand is in

register mode. A constant such as ―VALUE‖ can be defined by the assembler EQUATE directive

such as VALUE EQU 35H

Example : MOV BH, VALUE

Used to load 35 H into BH

2. Register addressing mode

The operand to be accessed is specified as residing in an internal register of 8086. Example below

shows internal registers, any one can be used as a source or destination operand, however only the data

registers can be accessed as either a byte or word.

Example 1 : MOV DX (Destination Register) , CX (Source Register) Which moves 16 bit content of

CS into DX.

Example 2 : MOV CL, DL

Moves 8 bit contents of DL into CL MOV BX, CH is an illegal instruction.

* The register sizes must be the same.

3. Direct addressing mode

The 20 bit physical address of the operand in memory is normally obtained as PA = DS : EA

But by using a segment override prefix (SOP) in the instruction, any of the four segment

registers can be referenced,

The Execution Unit (EU) has direct access to all registers and data for register and immediate

operands. However the EU cannot directly access the memory operands. It must use the BIU, in order

to access memory operands.

In the direct addressing mode, the 16 bit effective address (EA) is taken directly from the displacement

field of the instruction.

Example 1 : MOV CX, START

If the 16 bit value assigned to the offset START by the programmer using an assembler pseudo

instruction such as DW is 0040 and [DS] = 3050.

Then BIU generates the 20 bit physical address 30540 H. The content of 30540 is moved to CL The

content of 30541 is moved to CH

Example 2 : MOV CH, START

If [DS] = 3050 and START = 0040

8 bit content of memory location 30540 is moved to CH. Example 3 : MOV START, BX

With [DS] = 3050, the value of START is 0040. Physical address : 30540

1. Register indirect addressing mode :

The EA is specified in either pointer (BX) register or an index (SI or DI) register. The 20 bit physical

address is computed using DS and EA.

Example : MOV [DI], BX

If [DS] = 5004, [DI] = 0020, [Bx] = 2456 PA=50060.

The content of BX(2456) is moved to memory locations 50060 H and 50061 H.

2. Based addressing mode:

when memory is accessed PA is computed from BX and DS when the stack is accessed PA is

computed from BP and SS.

Example : MOV AL, START [BX] or MOV AL, [START + BX] EA : [START] + [BX]

PA : [DS] + [EA]

The 8 bit content of this memory location is moved to AL.

Indexed addressing mode:

Example : MOV BH, START [SI] PA : [SART] + [SI] + [DS]

The content of this memory is moved into BH

Based Indexed addressing mode:

Example : MOV ALPHA [SI] [BX], CL

If [BX] = 0200, ALPHA – 08, [SI] = 1000 H and [DS] = 3000

Physical address (PA) = 31208

8 bit content of CL is moved to 31208 memory address.

Execution flow

The execution flow or control flow captures the order of evaluation of each instruction comprising the

firmware in an embedded application, we can identify these as

 Sequential Branch

 Loop

 Procedure or functional call

Sequential flow-sequential control flow describes the fundamental movement through a program. Each

instruction contained in the program is executed in sequence one after the other.

Branch-

The control-flow of a language specify the order in which computations are performed The if-else

statement is used to express decisions. Formally the syntax is

if (expression) statement1

else

statement2

Where the else part is optional. The expression is evaluated; if it is true (that is, if expression has a

nonzero value), statement1 is executed. If it is false (expression is zero) and if there is an else part,

statement2 is executed instead.

Since a if tests the numeric value of an expression, certain coding shortcuts are possible. The most

obvious is writing

if (expression)

Instead of

if (expression != 0)

Sometimes this is natural and clear; at other times it can be cryptic

Procedure or function call

The procedure or function invocation is the most complex of the flow of control constructs. CALL

operand - when PC is unconditionally saved and replaced by specified operand; the control is

transferred to specified memory location.

RET – Previously saved contents of PC are restored, and control is returned to previous context.

Arithmetic and logic

Arithmetic and logic operations are essential elements in affecting what the processor is to do. such

operations are executed by any og several hardware components comprising the ALU. Figure 2.8

presents a block diagram for a possible functional ALU architecture.

t Datapat
h

Figure 2.8 A block diagram for a possible functional ALU architecture.

Data is brought into the ALU and held in the local registers. The opcode is decoded, the

appropriate operation is performed on the selected operands, and the result is stored in another local

register.

Embedded system-A register view

At the ISA level, the instruction set specifies the basic operations supported by the machine-that is ,

the external view of the processor from the developer‗s perspective. The instruction set expresses the

machine‗s ability to transfer data, store data , operate on data, and make decision. The core hardware

comprises a control unit and a data path as illustrated in figure 2.9

Control input control output
control

Control signals status information Data input data output

Figure 2.9 A control and datapath block diagram

The data path is a collection of registers and an associated set of micro operations on the data held in

the registers. The control unit directs the ordered execution of the micro operations so as to effect the

desired transformation of the data. Thus the system‗s behavior can be expressed by the movement of

data among these registers, by operations and transformations performed on the register‗s contents,

and by the management of how such movements and operations take place.the operations on data

found at the instruction level are paralled by a similar, yet more detailed, set of operations at the

register level.

Register view of a Microprocessor The datapath

Figure 2.10 expresses the architecture of the datapath and the memory interface for a simple

microprocessor at the register transfer level.

Figure 2.10 Architecture of the datapath and the memory interface

Processor control

The control of the microprocessor data path comprises four fundamental operations defined as

the instruction cycle . The steps are identified in figure 2.11 .

Figure 2.11 The instruction cycle

Fetch-The fetch operation retrieves an instruction from memory. That instruction is identified by its

address, which is the contents of the PC.

Decode-The decode step is performed when the opcode field in the instruction is extracted from the

instruction and decoded by the decoder. That information is forwarded to the control logic, which will

initiate the execute portion of the instruction cycle.

Execute-Based on the value contained in the opcode field, the control logic performs the sequence of

steps necessary to execute the instruction.

Next-The address of the next instruction to be executed is dependent on the type of instruction to be

executed and potentially, on the state of the condition flags as modified by the recently completed

instruction.

The Hardware side-storage elements and finite state machines

The logic devices that we have studied so far are combinational. The outputs of such circuitry are a

function of inputs only, they are valid as long as the inputs are true. If the input changes, the output

changes.

The concepts of State and Time

Time - A combinational logic system has no notion of time or history. The present output does not

depend in any way on how the output values are achieved. Neglecting the delays through the system,

we find that the output is immediate and a direct function of the current input set. Time is an integral

part of the behavior of a system.

State -In an analog circuits, we define branch and mesh currents and branch or node voltages. The

values these variables assume over time characterize the behavior of that circuit. If we know the values

of the specified variables over time, we know the behavior of the circuit. Such variables are called

state variables. We define the state of a system at any time as a set of values for such variables; each

set of values represents a unique state.

State changes

In traditional logic, a simple memory device, represented by a single variable, has two states binary 1

and 0. The device will remain in the state until changed. For a set of variables, the state changes with

time are called the behavior of a system.

The state diagram

In the embedded world, the state diagram is one of the means used to capture, describe and specify the

behavior of a system. In a state diagram, each state is represented by a circle,node,or vertex. We label

each node to identify the state. A memory device has two states-its output is a logical 0 or 1,thus to

express its behavior we will need two nodes as shown in figure 2.12.

Figure 2.12 transition between states in a digital memory device

We show the transition between two states using a labeled directed line or arrow called arc as

illustrated in figure because the line has a direction, the state diagram is referred to as a directed graph.

The head o point of the arrow identifies the final state, and the tail or back of the arrow identifies the

initial state.

Finite-state machine (FSM)- A theoretical model

A finite-state machine (FSM) or finite-state automaton (plural: automata), or simply a state

machine, is a mathematical model of computation used to design both computer programs and

sequential logic circuits. It is conceived as an abstract machine that can be in one of a finite number of

states. The machine is in only one state at a time; the state it is in at any given time is called the current

state. It can change from one state to another when initiated by a triggering event or condition; this is

called a transition. A particular FSM is defined by a list of its states, and the triggering condition for

each transition.

The behavior of state machines can be observed in many devices in modern society which

perform a predetermined sequence of actions depending on a sequence of events with which they are

presented. Simple examples are vending machines which dispense products when the proper

combination of coins are deposited, elevators which drop riders off at upper floors before going down,

traffic lights which change sequence when cars are waiting, and combination locks which require the

input of combination numbers in the proper order.

Finite-state machines can model a large number of problems, among which are electronic

design automation, communication protocol design, language parsing and other engineering

applications. In biology and artificial intelligence research, state machines or hierarchies of state

machines have been used to describe neurological systems and in linguistics—to describe the

grammars of natural languages.

Figure shows a simple finite-state machine having no inputs other than a clock and have only

primitive outputs. such machines are referred to as autonomous clocks. A high level block diagram for

a finite-state machine begins with the diagram in figure 2.13.

Figure 2.13 A high level block diagram for a finite-state machine

The output shown in the diagram may be the values of the state variables, combinations of the state

variables ,or combinations of the state variables and the inputs.

MEMORY

In a system, there are various types of memories. Figure 1.4 shows a chart for the various

forms of memories that are present in systems. These are as follows:

(i) Internal RAM of 256 or 512 bytes in a microcontroller for registers, temporary data and stack.

(ii) (ii) Internal ROM/PROM/EPROM for about 4 kB to 16 kB of program (in the case of

microcontrollers).

(iii) (iii) External RAM for the temporary data and stack (in most systems).

(iv) (iv) Internal caches (in the case of certain microprocessors).

(v) (v) EEPROM or flash (in many systems saving the results of processing in nonvolatile

memory: for example, system status periodically and digital-camera images, songs, or

speeches after a suitable format compression).

(vi) (vi) External ROM or PROM for embedding software (in almost all nonmicrocontroller- based

systems).

(vii) (vii) RAM Memory buffers at the ports. (viii) Caches (in superscalar microprocessors).

Table 1.1 gives the functions assigned in the embedded systems to the memories. ROM or PROM or

EPROM embeds the embedded software specific to the system.

Table 1.1

The memory unit in an embedded system should have low access time and high density (a memory

chip has greater density if it can store more bits in the same amount of space). Memory in an

embedded system consists of ROM (only read operations permitted) and RAM (read and write

operations are permitted). The contents of ROM are non-volatile (power failure does not erase the

contents) while RAM is volatile. The classification of the ROM is given in Figure 3.1. ROM stores the

program code while RAM is used to store transient input or output data. Embedded systems generally

do not possess secondary storage devices such as magnetic disks. As programs of embedded systems

are small there is no need for virtual storage.

Figure 3.1: Classifications of ROM

Volatile memory

A primary distinction in memory types is volatility. Volatile memories only hold their contents while

power is applied to the memory device. As soon as power is removed, the memories lose their

contents; consequently, volatile memories are unacceptable if data must be retained when the memory

is switched off. Examples of volatile memories include static RAM (SRAM),

synchronous static RAM (SSRAM), synchronous dynamic RAM (SDRAM), and FPGA on-chip

memory.

Nonvolatile memory

Non-volatile memories retain their contents when power is switched off, making them good choices

for storing information that must be retrieved after a system power-cycle. Processor boot-code,

persistent application settings, and FPGA configurationdataaretypicallystoredinnon-

volatilememory.Althoughnon-volatile memory has the advantage of retaining its data when power is

removed, it is typically much slower to write to than volatile memory, and often has more complex

writing and erasing procedures. Non-volatile memory is also usually only guaranteed to be erasable a

given number of times, after which it may fail. Examples of non- volatile memories include all types

of flash, EPROM, and EEPROM. Most modern embedded systems use some type of flash memory for

non-volatile storage. Many embedded applications require both volatile and non-volatile memories

because the two memory types serve unique and exclusive purposes. The following sections discuss

the use of specific types of memory in embedded systems.

ROM Overview

Although there are exceptions, the ROM is generally viewed as read only device. A high level

interface to the ROM is as shown in figure 3.2. when the ROM is implemented,positions in the array

that are to store a logical 0 have a transistor connected as shown in figure. Those positions intended to

store a logical 1 have none.

Figure 3.2 The ROM- outside and inside

Read Operation

A value is read from a ROM by asserting one of the row lines. Those rows in which there is a

transistor will be pulled to ground thereby expressing a logical 0. Those without the transistor will

express a logical 1. Timing for a ROM read operation is given in figure 3.3.

Figure 3.3 The ROM –read operation timing

Static RAM overview

A high level interface to the SRAM is very similar to that for the ROM.The major differences arise

from support for write capability. Figure 3.4 represents the major I/O signals and a typical cell in an

SRAM array.

Figure 3.4 The SRAM – inside and outside

Write operation

A value is written into the cell by applying a signal to bi and bibar through the write/sense amplifiers.

Asserting the word line causes the new value to be written into the latch.

Read Operation

A value is read from the cell by first precharging bi and bibar to a voltage that is halfway between a 0

and 1.the values are sensed and amplified by write/sense amplifier.

Typical timimg for a read and write operation is shown in Figure 3.5 .

Figure 3.5 timing for the SRAM-read and write operation

SDRAM

SDRAM is another type of volatile memory. It is similar to SRAM, except that it is dynamic

and must be refreshed periodically to maintain its content. The dynamic memory cells in SDRAM are

much smaller than the static memory cells used in SRAM. This difference in size translates into very

high-capacity and low-cost memory devices. In addition to the refresh requirement, SDRAM has other

very specific interface requirements which typically necessitate the use of special controller hardware.

Unlike SRAM, which has a static set of address lines, SDRAM divides up its memory space into

banks, rows, and columns. Switching between banks and rows incurs some overhead, so that efficient

use of SDRAM involves the careful ordering of accesses. SDRAM also multiplexes the row and

column addresses over the same address lines, which reduces the pin count necessary to implement a

given size of SDRAM. Higher speed varieties of SDRAM such as DDR, DDR2, and DDR3 also have

strict signal integrity requirements which need to be carefully considered during the design of the

PCB. SDRAM devices are among the least expensive and largest-capacity types of RAM devices

available, making them one of the most popular. Most modern embedded systems use SDRAM. A

major part of an SDRAM interface is the SDRAM controller. The SDRAM controller manages all the

address-multiplexing, refresh and row and bank switching tasks, allowing the rest of the system to

access SDRAM without knowledge of its internal architecture.

Dynamic RAM Overview

Larger microcomputer systems use Dynamic RAM (DRAM) rather than Static RAM (SRAM) because

of its lower cost per bit. DRAMs require more complex interface circuitry because of their multiplexed

address bus and because of the need to refresh each memory cell periodically.

A typical DRAM memory is laid out as a square array of memory cells with an equal number of rows

and columns. Each memory cell stores one bit. The bits are addressed by using half of the bits (the

most significant half) to select a row and the other half to select a column.

Each DRAM memory cell is very simple – it consists of a capacitor and a MOSFET switch. A DRAM

memory cell is therefore much smaller than an SRAM cell which needs at least two gates to

implement a flip-flop. A typical DRAM array appears as illustrated in figure 3.6 .

Figure 3.6 The DRAM inside

Read Operation

A value is read from the cell by first precharging bi and bibar to a voltage that is halfway between a 0

and 1. Asserting the word line enables the stored signal onto bi. If the stored value is a logical

1,through charge sharing,the value on line bi will increase. Conversely,if the stored value is a logical

0, charge sharing will cause the value on bi to decrease. The change in the values are sensed and

amplified by write/sense amplifier

Write operation

A value is written into the cell by applying a signal to bi and bibar through the write/sense amplifiers.

Asserting the word line charges the capacitor if a logical 1 is to be stored and discharges if it a logical

0 to be stored.

Typical DRAM read and write timing is given in figure 3.7 .

Figure 3.7 : Timing for the DRAM read and write cycles

Chip organization

Independent type of internal storage, the typical memory chip appears as is shown in figure 3.8

Figure 3.8 Typical memory chip internal architecture.

A Memory interface in detail

If a single ROM or RAM chip is large enough and the address and the data I/O are wide enough to

satisfy system memory requirements,then the interface is rather straightforward. We will look at the

SRAM system and then the DRAM design.

An SRAM design

A system specification requires an SRAM system that can store upto 4K 16 bit words..but the largest

memory device available is 1K by 8. Thus it can store upto 1024 8 bit words. Consequently ,the design

will require 8 of the smaller memorydevices:2 sets of 4.

In worst case, to support 4K 16 bit words,12 address lines and 16 data lines are required.

The architecture of such system is given in figure 3.9

Figure 3.9: Design a 4K *16 SRAM system

A DRAM Design

The DRAM system will utilize an architecture that duplicates most of the previous SRAM systems.

One major difference is the potential need to manage the refresh function. A second difference results

from a memory size versus IC package size difficulty.

The relative timing for some of the signals in the base case is illustrated in figure 3.10.

Figure 3.10 Basic DRAM timing

The memory map

As a first step towards understanding the memory subsystem in an embedded application, we begin

with a memory map. The map specifies the allocation and use of each location in the physical memory

address space. A typical memory map for a small 16 bit machine is presented in figure 3.11

Figure 3.11 : Basic Memory map

This is the primary physical memory. From a high level perspective, the memory subsystem is

comprised of two basic types:ROM and RAM. It is possible for the required code and data

space to exceed total available primary memory.under such circumstances, one must use

techniques called virtual memory and overlays to accommodate the expanded needs.

Memory subsystem Architecture

The block labeled memory in the diagrrm for a vonneumann machine is sctually comprised of

a memory components of different size, kinds, and speeds arranged in a heirarchial manner

and designed to coopereate with each other.such a hierarchy is given in figure 3.12 .

Figure 3.12 : Typical memory hierarchy utilizing a variety of memory types.

At the top are the slowest,largest and least expensive memories. These are known as secondary

memory. At the bottom are the smallest,fastest,called cache memory. These are typically

higher speed SRAM. These devices are more expensive.

UNIT III

EMBEDDED FIRMWARE

Timer & Real Time Clock (RTC), PWM control, timing generation and measurements. Analog

interfacing and data acquisition: ADC and Comparator in MSP430, data transfer using DMA.

Case Study: MSP430 based embedded system application using ADC & PWM demonstrating

peripheral intelligence. ―Remote Controller of Air Conditioner Using MSP430‖.

Timer

Timer_A is a 16-bit timer/counter with multiple capture/compare registers. Timer_A is a 16-

bit timer/counter with up to seven capture/compare registers. Timer_A can support

multiple capture/compares, PWM outputs, and interval timing. Timer_A also has extensive

interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and

from each of the capture/compare registers.

Timer_A features include:

Asynchronous 16-bit timer/counter with four operating modes

Selectable and configurable clock source

Up to seven configurable capture/compare registers

Configurable outputs with PWM capability

Asynchronous input and output latching

Interrupt vector register for fast decoding of all Timer_A interrupts

The 16-bit timer/counter register, TAR, increments or decrements (depending on mode of

operation) with each rising edge of the clock signal. TAR can be read or written with software.

Additionally, the timer can generate an interrupt when it overflows.

TAR may be cleared by setting the TACLR bit. Setting TACLR also clears the clock divider

and count direction for up/down mode.

Clock Source Select and Divider

The timer clock TACLK can be sourced from ACLK, SMCLK, or externally via TACLK. The

clock source is selected with the TASSELx bits. The selected clock source may be passed

directly to the timer or divided by 2, 4, or 8, using the IDx bits The selected clock source can

be further divided by 2, 3, 4, 5, 6, 7, or 8 using the IDEXx bits.The TACLK dividers are reset

when TACLR is set.

The timer may be started, or restarted in the following ways:

The timer counts when MCx > 0 and the clock source is active.

When the timer mode is either up or up/down, the timer may be stopped by writing 0 to

TACCR0. The timer may then be restarted by writing a nonzero value to TACCR0. In this

scenario, the timer starts incrementing in the up direction from zero.

Up Mode

The up mode is used if the timer period must be different from 0FFFFh counts. The timer

repeatedly counts up to the value of compare register TACCR0, which defines the period, as

shown in Figure. The number of timer counts in the period is TACCR0+1. When the timer

value equals TACCR0 the timer restarts counting from zero. If up mode is selected when the

timer value is greater than TACCR0, the timer immediately restarts counting from zero

The TACCR0 CCIFG interrupt flag is set when the timer counts to the TACCR0 value. The

TAIFG interrupt flag is set when the timer counts from TACCR0 to zero.

Continuous Mode:

In the continuous mode, the Continuous Mode timer repeatedly counts up to 0FFFFh and

restarts from zero as shown in Figure. The capture/compare register TACCR0 works the same

way as the other capture/compare registers.

The TAIFG interrupt flag is set when the timer counts from 0FFFFh to zero

Use of the Continuous Mode

The continuous mode can be used to generate independent time intervals and output

frequencies. Each time an interval is completed, an interrupt is generated. The next time

interval is added to the TACCRx register in the interrupt service routine. Figure shows two

separate time intervals t0 and t1 being added to the capture/compare registers. In this usage,

the time interval is controlled by hardware, not software, without impact from interrupt

latency. Up to n (Timer_An), where n = 0 to 7, independent time intervals or output

frequencies can be generated using capture/compare registers.

Time intervals can be produced with other modes as well, where TACCR0 is used as the

period register. Their handling is more complex since the sum of the old TACCRx data and the

new period can be higher than the TACCR0 value. When the previous TACCRx value plus tx

is greater than the TACCR0 data, the TACCR0 value must be subtracted to obtain the correct

time interval.

Up/Down Mode

The up/down mode is used if the timer period must be different from 0FFFFh counts, and if

symmetrical pulse generation is needed. The timer repeatedly counts up to the value of

compare register TACCR0 and back down to zero,

The count direction is latched. This allows the timer to be stopped and then restarted in the

same direction it was counting before it was stopped. If this is not desired, the TACLR bit

must be set to clear the direction. The TACLR bit also clears the TAR value and the TACLK

divider.

In up/down mode, the TACCR0 CCIFG interrupt flag and the TAIFG interrupt flag are set

only once during a period, separated by 1/2 the timer period. The TACCR0 CCIFG interrupt

flag is set when the timer counts from TACCR0-1 to TACCR0, and TAIFG is set when the

timer completes counting down from 0001h to 0000h.

Capture/Compare Blocks:

Three or five identical capture/compare blocks, TACCRx, are present in Timer_A. Any of the

blocks may be used to capture the timer data, or to generate time intervals. Capture Mode The

capture mode is selected when CAP = 1. Capture mode is used to record time events. It can be

used for speed computations or time measurements. The capture inputs CCIxA and CCIxB are

connected to external pins or internal signals and are selected with the CCISx bits. The CMx

bits select the capture edge of the input signal as rising, falling, or both. A capture occurs on

the selected edge of the input signal. If a capture occurs:

The timer value is copied into the TACCRx register

The interrupt flag CCIFG is set

The input signal level can be read at any time via the CCI bit. MSP430x5xx family devices

may have different signals connected to CCIxA and CCIxB. Refer to the device-specific data

sheet for the connections of these signals. The capture signal can be asynchronous to the timer

clock and cause a race condition. Setting the SCS bit will synchronize the capture with the

next timer clock. Setting the SCS bit to synchronize the capture signal with the timer clock is

recommended.

Overflow logic is provided in each capture/compare register to indicate if a second capture

was performed before the value from the first capture was read. Bit COV is set

Capture Mode:

Captures can be initiated by software. The CMx bits can be set for capture on both edges.

Software then sets CCIS1 = 1 and toggles bit CCIS0 to switch the capture signal between VCC

and GND, initiating a capture each time CCIS0 changes state:

MOV #CAP+SCS+CCIS1+CM_3,&TACCTLx ; Setup TACCTLx XOR

#CCIS0,&TACCTLx ; TACCTLx = TAR

Compare Mode

The compare mode is selected when CAP = 0. The compare mode is used to generate PWM

output signals or interrupts at specific time intervals. When TAR counts to the value in a

TACCRx:

Interrupt flag CCIFG is set

Internal signal EQUx = 1

EQUx affects the output according to the output mode

The input signal CCI is latched into SCCI

Output Unit:

Each capture/compare block contains an output unit. The output unit is used to generate output

signals such as PWM signals. Each output unit has eight operating modes that generate signals

based on the EQU0 and EQUx signals.

Output Modes

The output modes are defined by the OUTMODx bits and are described in Table. The OUTx

signal is changed with the rising edge of the timer clock for all modes except mode 0. Output

modes 2, 3, 6, and 7 are not useful for output unit 0 because EQUx = EQU0.

Timer_A Interrupts

Two interrupt vectors are associated with the 16-bit Timer_A module:

TACCR0 interrupt vector for TACCR0 CCIFG

TAIV interrupt vector for all other CCIFG flags and TAIFG

In capture mode any CCIFG flag is set when a timer value is captured in the associated

TACCRx register. In compare mode, any CCIFG flag is set if TAR counts to the associated

TACCRx value. Software may also set or clear any CCIFG flag. All CCIFG flags request an

interrupt when their corresponding CCIE bit and the GIE bit are set.

Timer B

Timer_B is a 16-bit timer/counter with three or seven capture/compare registers. Timer_B can

support multiple capture/compares, PWM outputs, and interval timing. Timer_B also has

extensive interrupt capabilities. Interrupts may be generated from the counter on overflow

conditions and from each of the capture/compare registers.

Timer_B features include :

Asynchronous 16-bit timer/counter with four operating modes and four selectable lengths

Selectable and configurable clock source

Up to seven configurable capture/compare registers

Configurable outputs with PWM capability

Double-buffered compare latches with synchronized loading

Interrupt vector register for fast decoding of all Timer_B interrupts

Timer_B is identical to Timer_A with the following exceptions:

The length of Timer_B is programmable to be 8, 10, 12, or 16 bits.

Timer_B TBCCRx registers are double-buffered and can be grouped.

All Timer_B outputs can be put into a high-impedance state.

The SCCI bit function is not implemented in Timer_B.

Real Time Clock:

The Real-Time Clock module provides a clock with calendar that can also be configured as a

general

purpose counter.

Real-Time Clock features include:

Configurable for Real-Time Clock mode or general purpose counter

Provides seconds, minutes, hours, day of week, day of month, month and year in calender

mode.

Interrupt capability.

Selectable BCD or binary format in Real-Time Clock mode

Programmable alarms in Real-Time Clock mode

Calibration logic for time offset correction in Real-Time clock mode

The Real-Time Clock module can be configured as a real-time clock with calendar function or

as a 32-bit general purpose counter with the RTCMODE bit.

Counter mode

Counter mode is selected when RTCMODE is reset. In this mode, a 32-bit counter is provided

that isdirectly accessible by software. Switching from calendar mode to counter mode resets

the count value (RTCNT1, RTCNT2, RTCNT3, RTCNT4), as well as, the prescale counters

(RT0PS, RT1PS). The clock to increment the counter can be sourced from ACLK, SMCLK, or

prescaled versions of ACLK or SMCLK. Prescaled versions of ACLK or SMCLK are sourced

from the prescale dividers , RT0PS and RT1PS. RT0PS and RT1PS output /2, /4, /8, 16, /32,

/64, /128, /256 versions of ACLK and SMCLK, respectively. The output of RT0PS can be

cascaded with RT1PS. The cascaded output can be used as a clock source input to the 32-bit

counter.

Four individual 8-bit counters are cascaded to provide the 32-bit counter. This provides 8-bit,

16-bit, 24-bit, or 32-bit overflow intervals of the counter clock. The RTCTEV bits select the

respective trigger event. An RTCTEV event can trigger an interrupt by setting the RTCTEVIE

bit. Each counter RTCNT1 through RTCNT4 is individually accessible and may be written to.

RT0PS and RT1PS can be configured as two 8-bit counters or cascaded into a single 16-bit

counter. RT0PS and RT1PS can be halted on an individual basis by setting their respective

RT0PSHOLD and RT1PSHOLD bits. When RT0PS is cascaded with RT1PS, setting

RT0PSHOLD will cause both RT0PS and RT1PS to be halted. The 32-bit counter can be

halted several ways depending on the configuration. If the 32-bit counter is sourced directly

from ACLK or SMCLK, it can be halted by setting RTCHOLD. If it is sourced from the

output of RT1PS, it can be halted by setting RT1PSHOLD or RTCHOLD. Finally, if it is

sourced from the cascaded outputs of RT0PS and RT1PS, it can be halted by setting

RT0PSHOLD, RT1PSHOLD, or RTCHOLD.

Calendar mode

Calendar mode is selected when RTCMODE is set. In calendar mode, the Real-Time Clock

module provides seconds, minutes, hours, day of week, day of month, month, and year in

selectable BCD or hexadecimal format. The calendar includes a leap year algorithm that

considers all years evenly divisible by 4 as leap years. This algorithm is accurate from the year

1901 through 2099.

The prescale dividers, RT0PS and RT1PS are automatically configured to provide a one

second clock interval for the Real-Time Clock. RT0PS is sourced from ACLK. ACLK must be

set to 32768 Hz, nominal for proper Real-Time Clock calendar operation. RT1PS is cascaded

with the output ACLK/256 of RT0PS. The Real-Time Clock is sourced with the /128 output of

RT1PS, thereby providing the required one second interval. Switching from counter to

calendar mode clears the seconds, minutes, hours, day-of-week, and year counts and sets day-

of-month and month counts to 1. In addition, the RT0PS and RT1PS are cleared.

When RTCBCD = 1, BCD format is selected for the calendar registers. The format must be

selected before the time is set. Changing the state of RTCBCD clears the seconds, minutes,

hours, day-of-week, and year counts and sets day-of-month and month counts to 1. In addition,

RT0PS and RT1PS are cleared.

In calendar mode, the RT0SSEL, RT1SSEL, RT0PSDIV, RT1PSDIV, RT0PSHOLD,

RT1PSHOLD, and RTCSSEL bits are do not care. Setting RTCHOLD halts the real-time

counters and prescale counters, RT0PS and RT1PS.

Real-Time Clock and Prescale Dividers

The prescale dividers, RT0PS and RT1PS are automatically configured to provide a one

second clock interval for the Real-Time Clock. RT0PS is sourced from ACLK. ACLK must be

set to 32768 Hz, nominal for proper Real-Time Clock calendar operation. RT1PS is cascaded

with the output ACLK/256 of RT0PS. The Real-Time Clock is sourced with the

/128 output of RT1PS, thereby providing the required one second interval. Switching from

counter to calendar mode clears the seconds, minutes, hours, day-of-week, and year counts and

sets day-of-month and month counts to 1. In addition, the RT0PS and RT1PS are cleared.

When RTCBCD = 1, BCD format is selected for the calendar registers. The format must be

selected before the time is set. Changing the state of RTCBCD clears the seconds, minutes,

hours, day-of-week, and year counts and sets day-of-month and month counts to 1. In addition,

RT0PS and RT1PS are cleared.

In calendar mode, the RT0SSEL, RT1SSEL, RT0PSDIV, RT1PSDIV, RT0PSHOLD,

RT1PSHOLD, and RTCSSEL bits are do not care. Setting RTCHOLD halts the real-time

counters and prescale counters, RT0PS and RT1PS.

Real-Time Clock Alarm Function

The Real-Time Clock module provides for a flexible alarm system. There is a single, user

programmable alarm that can be programmed based on the settings contained in the alarm

registers for minutes, hours, day of week, and day of month. The user programmable alarm

function is only available in calendar mode of operation.

Each alarm register contains an alarm enable bit, AE that can be used to enable the respective

alarm register. By setting AE bits of the various alarm registers, a variety of alarm events can

be generated. For example, a user wishes to set an alarm every hour at 15 minutes past the

hour i.e. 00:15:00, 01:15:00, 02:15:00, etc. This is possible by setting RTCAMIN to 15. By

setting the AE bit of the RTCAMIN, and clearing all other AE bits of the alarm registers, the

alarm will be enabled. When enabled, the AF will be set when the count transitions from

00:14:59 to 00:15:00, 01:14:59 to 01:15:00, 02:14:59 to 02:15:00,etc.

For example, a user wishes to set an alarm every day at 04:00:00. This is possible by setting

RTCAHOUR to 4. By setting the AE bit of the RTCHOUR, and clearing all other AE bits of

the alarm registers, the alarm will be enabled. When enabled, the AF will be set when the

count transitions from 03:59:59 to 04:00:00.

For example, a user wishes to set an alarm for 06:30:00. RTCAHOUR would be set to 6 and

RTCAMIN would be set to 30. By setting the AE bits of RTCAHOUR and RTCAMIN, the

alarm will be enabled. Once enabled, the AF will be set when the the time count transitions

from 06:29:59 to 06:30:00. In this case, the alarm event will occur every day at 06:30:00.

For example, a user wishes to set an alarm every Tuesday at 06:30:00. RTCADOW would be

set to 2, RTCAHOUR would be set to 6 and RTCAMIN would be set to 30. By setting the AE

bits of RTCADOW, RTCAHOUR and RTCAMIN, the alarm will be enabled. Once enabled,

the AF will be set when the the time count transitions from 06:29:59 to 06:30:00 and the

RTCDOW transitions from 1 to 2.

For example, a user wishes to set an alarm the fifth day of each month at 06:30:00.

RTCADAY would be set to 5, RTCAHOUR would be set to 6 and RTCAMIN would be set to

30. By setting the AE bits of RTCADAY, RTCAHOUR and RTCAMIN, the alarm will be

enabled. Once enabled, the AF will be set when the the time count transitions from 06:29:59 to

06:30:00 and the RTCDAY equals 5.

Reading or Writing Real-Time Clock Registers in Calendar Mode

must be used when accessing the Real-Time Clock registers.

In calendar mode, the real-time clock registers are updated once per second. In order to

prevent reading any real-time clock register at the time of an update that could result in an

invalid time being read, a keepout window is provided. The keepout window is centered

approximately - 128/32768 seconds around the update transition. The read only RTCRDY bit

is reset during the keepout window period and set outside the keepout the window period.

Any read of the clock registers while RTCRDY is reset, is considered to be potentially invalid,

and the time read should be ignored.An easy way to safely read the real-time clock registers is

to utilize the RTCRDYIFG interrupt flag. Setting RTCRDYIE enables the RTCRDYIFG

interrupt. Once enabled, an interrupt will be generated based on the rising edge of the

RTCRDY bit, causing the RTCRDYIFG to be set. At this point, the application has nearly a

complete second to safely read any or all of the real-time clock registers. This synchronization

process prevents reading the time value during transition. The RTCRDYIFG flag is reset

automatically

when the interrupt is serviced, or can be reset with software. In counter mode, the RTCRDY

bit remains reset. The RTCRDYIE is a do not care and the RTCRDYIFG remains reset.

Real-Time Clock Interrupts

Real-Time Clock Interrupts in Calendar Mode

In calendar mode, five sources for interrupts are available, namely RT0PSIFG, RT1PSIFG,

RTCRDYIFG, RTCTEVIFG, and RTCAIFG. These flags are prioritized and combined to

source a single interrupt vector. The interrupt vector register RTCIV is used to determine

which flag requested an interrupt. The highest priority enabled interrupt generates a number in

the RTCIV register (see register description).

This number can be evaluated or added to the program counter to automatically enter the

appropriate software routine. Disabled RTC interrupts do not affect the RTCIV value. Any

access, read or write, of the RTCIV register automatically resets the highest pending interrupt

flag. If another interrupt flag is set, another interrupt is immediately generated after servicing

the initial interrupt. In addition, all flags can be cleared via software.

The user programmable alarm event sources the real-time clock interrupt, RTCAIFG. Setting

the RTCAIE enables the interrupt. In addition to the user programmable alarm, The Real-Time

Clock Module provides for an interval alarm that sources real-time clock interrupt,

RTCTEVIFG. The interval alarm can be selected to cause an alarm event when RTCMIN

changed, RTCHOUR changed, every day at midnight (00:00:00), or every day at noon

(12:00:00). The event is selectable with the RTCTEV bits Setting the RTCTEVIE bit enables

the interrupt.

The RTCRDY bit sources the real-time clock interrupt, RTCRDYIFG and is useful in

synchronizing the read of time registers with the system clock. Setting the RTCRDYIE bit

enables the interrupt. The RT0PSIFG can be used to generate interrupt intervals selectable by

the RT0IP bits. In calendar mode, RT0PS is sourced with ACLK at 32768 Hz, so intervals of

16384 Hz, 8192 Hz, 4096 Hz, 2048 Hz, 1024 Hz, 512 Hz, 256 Hz, or 128 Hz are possible.

Setting the RT0PSIE bit enables the interrupt. The RT1PSIFG can be used to generate

interrupt intervals selectable by the RT1IP bits. In calendar mode, RT1PS is sourced with the

output of RT0PS, which is 128Hz (32768/256 Hz). Therefore, intervals of 64 Hz, 32 Hz, 16

Hz, 8 Hz, 4 Hz, 2 Hz, 1 Hz, or 0.5 Hz are possible. Setting the RT1PSIE bit enables the

interrupt.

Real-Time Clock Interrupts in Counter Mode

In counter mode, a three interrupt sources are available, namely RT0PSIFG, RT1PSIFG, and

RTCTEVIFG. The RTCAIFG and RTCRDYIFG are cleared. RTCRDYIE and RTCAIE are do

not care.The RT0PSIFG can be used to generate interrupt intervals selectable by the RT0IP

bits. In counter mode, RT0PS is sourced with ACLK or SMCLK so divide ratios of /2, /4, /8,

/16, /32, /64, /128, /256 of the respective clock source are possible. Setting the RT0PSIE bit

enables the interrupt.

The RT1PSIFG can be used to generate interrupt intervals selectable by the RT1IP bits. In

counter mode, RT1PS is sourced with ACLK, SMCLK, or the output of RT0PS so divide

ratios of /2, /4, /8, /16, /32, /64, /128, /256 of the respective clock source are possible. Setting

the RT1PSIE bit enables the interrupt. The Real-Time Clock Module provides for an interval

timer that sources real-time clock interrupt, RTCTEVIFG. The interval timer can be selected

to cause an interrupt event when an 8-bit, 16-bit, 24-bit, or 32-bit overflow occurs within the

32-bit counter. The event is selectable with the RTCTEV bits Setting the RTCTEVIE bit

enables the interrupt.

DMA Controller

The direct memory access (DMA) controller module transfers data from one address to

another, without CPU intervention. This chapter describes the operation of the DMA

controller.

Direct Memory Access (DMA) Introduction

The DMA controller transfers data from one address to another, without CPU intervention,

across the entire address range. For example, the DMA controller can move data from the

ADC conversion memory to RAM. Devices that contain a DMA controller may have up to

eight DMA channels available. Therefore, depending on the number of DMA channels

available, some features described in this chapter are not applicable to all devices. See the

device-specific data sheet for number of channels supported. Using the DMA controller can

increase the throughput of peripheral modules. It can also reduce system power consumption

by allowing the CPU to remain in a low-power mode, without having to awaken to move data

to or from a peripheral.

DMA controller features include:

 Up to eight independent transfer channels

 Configurable DMA channel priorities

 Requires only two MCLK clock cycles per transfer

 Byte or word and mixed byte/word transfer capability

 Block sizes up to 65535 bytes or words

 Configurable transfer trigger selections

 Selectable-edge or level-triggered transfer

 Four addressing modes

 Single, block, or burst-block transfer modes

CASE STUDY:

Remote Controller of Air Conditioner Using MSP430

System Description

This board demonstrates an ultra-low power, general purpose, infrared remote controller

solution. The board uses a FRAM-based MCU MSP430FR4133, which supports features such

as real time clock, button scan, infrared encoding, LED backlight, and LCD display.

MSP430FR4133

The MSP430FR4133 is a FRAM-based ultra-low power mixed signal MCU. With the

following features, the MSP430FR4133 is highly suitable for portable device applications.

16-bit RISC architecture up to 16 Mhz

Wide supply voltage range from 1.8 V to 3.6 V

64-Pin/56-Pin/48Pin TSSOP/LQFP package options

Integrated LCD driver with charge pump can support up to 4x36 or 8x32 segment LCD

Optimized 16-bit timer for infrared signal generation

Low power mode (LPM3.5) with RTC on:0.77 uA

Low power mode (LPM3.5) with LCD on: 0.936 uA

Active mode: 126 uA/MHz

10^15 write cycle endurance low power ferroelectric RAM (FRAM) can be used to store data

10-channel, 10-bit analog-to-digital converter (ADC) with built-in 1.5 V reference for battery

powered

system

All I/Os are capacitive touch I/O

CIRCUIT:

A 4x28 segment LCD is directly connected to the MSP430FR4133 LCD driver pins.

Designers can swap the COM and SEG pins to simplify the PCB layout. A 4x4 matrix is used

to detect 15 buttons. The matrix columns are connected to interrupt-enabled GPIOs (P1) to

wake up the MSP430FR4133 from low power mode. MCU internal pull up/pull down resistors

are used as button scan matrix pull up resistors. No external resistor is needed for button

detection, and no

external circuit is needed for battery voltage detection. The function is also realized by the

MCU ADC module without any external component.

A 32.768 KHz watch crystal serves as the MCU FLL and RTC clock source. Two chip

capacitors, C4 and C6, are used as the crystal loading capacitor. Designers must choose C4

and C6 values carefully according to crystal specification. Cautious PCB layout design for the

crystal is strongly recommended, to secure system clock robustness.

Software Description

The software implements an interrupt-driven structure. In the main loop, the MCU stays in

LPM3.5 mode.Interrupts from the button, RTC, and timer wake up the MCU for task

processing. Inputs from the button are processed in task KeyProcess (), which handles system

status and generates the content for the LCD display and infrared signal. RTC generates a 3S

interval interrupt to inform the system of battery voltage measurement.

UNIT IV

RTOS BASED EMBEDDED SYSTEM DESIGN

Introduction

 Most embedded systems are bound to real-time constraints. In production

control the various machines have to receive their orders at the right time to

ensure smooth operation of a plant and to fulfill customer orders in time. Railway switching

systems obviously have to act in a timely manner.

 An embedded system with a single CPU can run only one process at an instance the

process at any instance either be an ISR

Principles: semaphore and queues:

The principles will discuss the design considerations that have application to a broad range of

embedded system.

Write Short interrupt routines

Limit the number of tasks

Avoid creating and destroying tasks

Avoid time-slicing

Encapsulate semaphores in separate functions

Encapsulate queues in separate functions

Encapsulating Queues:

consider encapsulating queues that tasks use to receive messages from other tasks. we wrote code

to handle a shared flash memory. That code deals correctly with synchronizing the requests for

reading from and writing to the flash memory. Since any task can write onto the flash memory

task input queue, any programmer can blow it and send a message that does not contain a

FLASH_MSG structure.

Hard Real-Time Scheduling Considerations:\

Hard Real Time Systems: Systems were time constraints are absolutely critical

Soft Real Time Systems: Systems with time constraints where minor errors are tolerated

The obvious issue that arises in hard real-time systems is that you must somehow guarantee that

the system will meet the hard deadlines. The ability to meet hard deadlines comes from writing

fast code To write some frequently called subroutine in assembly language.

If you can characterize your tasks, then the studies can help you determine if your system will

meet its deadlines,

Saving Memory and Power:

Saving memory:

Embedded systems often have limited memory

RTOS: each task needs memory space for its stack.

The first method for determining how much stack space a task needs is to examine your code

The second method is experimental. Fill each stack withsome recognizable data pattern at

startup, run the system for a period of time

Program Memory:

Limit the number of functions used

Check the automatic inclusions by your linker: may consider writing own functions

Include only needed functions in RTOS Consider using assembly language for large routines

Data Memory:

Consider using more static variables instead of stack variables

On 8-bit processors, use char instead of int when possible

Few ways to save code space:

Make sure that you are not using two functions to do the same thing.

Check that your development tools are not sabotaging you.

Configure your RTOS to contain only those functions that you need.

Look at the assembly language listings created by your cross-compiler to see if certain of your C

statements translate into huge numbers of instructions.

Saving power:

The primary method for preserving battery power is to turn off parts or all of the system

whenever possible.

Most embedded-system microprocessors have at least one power-saving mode; many have

several.

The modes have names such as sleep mode, low-power mode, idle mode, standby mode, and so

on.

A very common power-saving mode is one in which the microprocessor stops executing

instructions, stops any built-in peripherals, and stops its clock circuit. This saves a lot of power,

but the drawback typically is that the only way to start the microprocessor up again is to reset it.

Static RAM uses very little power when the microprocessor isn't executing instructions

Another typical power-saving mode is one in which the microprocessor stops executing

instructions but the on-board peripherals continue to operate.

Another common method for saving power is to turn off the entire system and have the user turn

it back on when it is needed.

Embedded software development tools:

Host and Target machines:

During development process, a host system is used

Then locating and burning the codes in the target board.

Target board hardware and software later copied to get the final embedded system

Final system function exactly as the one tested and debugged and finalized during the

development process

Host system: at PC or workstation or laptop :

High performance processor with caches, large RAM memory

ROMBIOS (read only memory basic input-output system)

very large memory on disk

keyboard

display monitor

mice

network connection

Target machines:

A target system has a processor, ROM memory, for ROM image of the embedded software

,RAM for stack, temporary variable an memory before ,peripherals and interfaces

Some target systems have 8 or 16 MB flash memory and 64 MB SDRAM

Linker/Locators for Embedded Software:

Linker:

Determines addresses of labels that assembler could not resolve.

Typically extern functions & variables defined in other files.

Assembler will have marked as needing to be fixed:

Instructions referencing these labels

Data (pointers) initialized to address of other variables

The linker puts together files, fixing up the address references between the files.

If unresolved labels exist at this point, it is a fatal error.

Locator:

Quite different functionality than native linker

Determines final memory image of program

No loader will come along after and fix up addresses

Locator can do this because:

No other program will be in memory at runtime; no resource conflicts

Locator can determine final address of everything, including kernel and library functions called

in application code

Locator includes a mechanism for programmer to determine placement in memory

Some parts need to be in RAM, others in ROM

Executing out of RAM:

RAM is often faster than Flash and ROM.

To exploit, startup code must copy program from ROM to RAM, then transfer control to it.

Consider new challenge for locator:

Build a program that is stored at one address (in ROM), but will run correctly at a different

address (in RAM).

A bit tricky: requires support from the RTOS development system.

Getting Embedded Software into the Target System:

Several alternatives:

Write it to flash memory on target

Put it in ROM or PROM, then insert chip into system

Use a ROM emulator

Use an in-circuit emulator

Replaces microprocessor in target system

Overlay memory in emulator can be used instead of memory on target

Useful for debugging – not in shipped products

PROM Programmer

Used to program executable code into a PROM.

The PROM should be socketed so it can be replaced easily.

PROM approach good for production mode, but inconvenient for test and debug during

development.

Painful to pull, reinsert chip for every new test.

Not surprisingly, other alternatives have been developed.

ROM emulator

Plugs into PROM/ROM socket.

Looks like ROM to target.

Has connection to host to allow easy changes to memory.

Much easier than burning a new PROM.

Used during development and debugging only.

Not shipped with working system!

Flash memory

Flash is ―field programmable‖

Host can connect to target, cause flash to be reprogrammed directly without replacing any ships.

Software (bootstrap program) must be on target system to copy data from host to flash memory.

Tricky: cannot execute from flash while reprogramming it.

Must copy itself from ROM to RAM and then run from RAM.

Debugging Techniques:

Avoiding software bugs

The best approach is to produce bug-free code, but no software is completely error-free.

Although it can‘t be your principal technique for ensuring software quality, you are foolish to not

do a lot of testing.

Unfortunately, embedded systems pose special challenges for testing.

Problems testing on target system

Target system may not be available or stable early on while code is being written and debugged.

Difficult to generate pathological timing scenarios.

Impossible to test all combinations, and difficult to know which combinations will cause a

problem.

Bugs are often not repeatable.

Often show up with specific event sequence and timing.

Tough to generate using standard software test suites.

Embedded systems generally lack extensive logging capabilities to identify cause of failure.

Testing on Host Machine:

Test early (target may not ready or completely stable)

Exercise all code, including exceptions (real situations may be difficult to exercise)

Develop reusable, repeatable test (difficult to do in target environment, and likelihood of hitting

the same bug is low)

Store test results (target may not even have disk drive to store results)

Basic Techniques

Target system on the left: (hardware-indep code, hardware-dep code, hw)

Test system (on host) on the right: (hardware-indep code – same, scaffold – rest)

Scaffold provides (in software) all functionalities and calls to hardware as in the hardware-dep

and hardware components of the target system – more like a simulator for them

Laboratory Tools:

 Hardware Diagnostic Laboratory Tools

Voltmeters,

ohmmeters

multi-meters

These are used for checking is the hardware working

Oscilloscopes

Graphs voltage vs. time, potentially multiple signals

Can select trigger to start its operation

Logic analyzers

Capture signals, store in memory, graph on screen.

Can track many signals simultaneously, Up to several

hundred if you are willing to pay and make all the

connections!

Typical operation: trigger on symptom of problem, then look

backward through captured data to see source of problem.

In-circuit emulators
Hardware emulator that plugs into CPU socket, appears to

target system as regular microprocessor.

Programmable or controlled by host.

Software-only

monitor/debugging

kernel

Small debugging program in ROM on target system that

knows how to

receive software over serial line,

copy to RAM, and

run it.

UNIT – V

TASK COMMUNICATION

Introduction

A more complex software architecture is needed to handle multiple tasks, coordination,

communication, and interrupt handling – an RTOS architecture

Distinction:

Desktop OS – OS is in control at all times and runs applications, OS runs in different address

space

RTOS – OS and embedded software are integrated, ES starts and activates the OS – both run in

the same address space (RTOS is less protected)

RTOS includes only service routines needed by the ES application

RTOS vendors: VsWorks (we got it!), VTRX, Nucleus, LynxOS, uC/OS

Most conform to POSIX (IEEE standard for OS interfaces)

Desirable RTOS properties: use less memory, application programming interface, debugging

tools, support for variety of microprocessors, already-debugged network drivers

What Is an O.S?

A piece of software

It provides tools to manage (for embedded systems)

Processes, (or tasks)

Memory space

What Is an Operating System?

What? It is a program (software) that acts as an intermediary between a user of a computer and

the computer hardware.

Why? Make the use of a computer CONVENIENT and EFFICIENT.

What Is an Operating System?For an Embedded System

Provides software tools for a convenient and prioritized control of tasks.

Provides tools for task (process) synchronization.

 Provides a simple memory management system

Abstract View of A System (Embedded System):

Process/Task Concept:

 Process is a program in execution; process execution must progress in sequential fashion

 A process includes:

 program counter

 stack

 data section

Multitasking:

Process/Task Concept:
 Task States:

 Running: Instructions are being executed

 Ready: The process is waiting to be assigned to a process

 Blocked: The process is waiting for some event to occur

 terminated: The process has finished execution

 new: The process is being created

Task states:

Tasks and Task States:

 A task – a simple subroutine

 ES application makes calls to the RTOS functions to start tasks, passing to the OS, start

address, stack pointers, etc. of the tasks

 Task States:

 Running

 Ready (possibly: suspended, pended)

 Blocked (possibly: waiting, dormant, delayed)

 [Exit]

 Scheduler – schedules/shuffles tasks between Running and Ready states

 Blocking is self-blocking by tasks, and moved to Running state via other tasks‘

interrupt signaling (when block-factor is removed/satisfied)

 When a task is unblocked with a higher priority over the ‗running‘ task, the scheduler

‗switches‘ context immediately (for all pre-emptive RTOSs)

Task State Transitions:

 Tasks – 1:

 Issue – Scheduler/Task signal exchange for block-unblock of tasks via function calls

 Issue – All tasks are blocked and scheduler idles forever (not desirable!)

 Issue – Two or more tasks with same priority levels in Ready state (time-slice, FIFO)

 Example: scheduler switches from processor-hog vLevelsTask to vButtonTask (on user

interruption by pressing a push-button), controlled by the main() which initializes the

RTOS, sets priority levels, and starts the RTOS

Tasks and Data:

 Each tasks has its won context - not shared, private registers, stack, etc.

 In addition, several tasks share common data (via global data declaration; use of

‗extern‘ in one task to point to another task that declares the shared data

 Shared data caused the ‗shared-data problem‘ without solutions discussed in Chp4 or

use of ‗Reentrancy‘ characterization of functions

Semaphores and Shared Data – A new tool for atomicity

 Semaphore – a variable/lock/flag used to control access to shared resource (to avoid

shared-data problems in RTOS)

 Protection at the start is via primitive function, called take, indexed by the semaphore

 Protection at the end is via a primitive function, called release, also indexed similarly

 Simple semaphores – Binary semaphores are often adequate for shared data problems

in RTOS

Semaphores and Shared Data – 1:

 RTOS Semaphores & Initializing Semaphores

 Using binary semaphores to solve the ‗tank monitoring‘ problem

 The nuclear reactor system: The issue of initializing the semaphore variable in a

dedicated task (not in a ‗competing‘ task) before initializing the OS – timing of tasks

and priority overrides, which can undermine the effect of the semaphores

 Solution: Call OSSemInit() before OSInit()

 Semaphores and Shared Data – 2

 Reentrancy, Semaphores, Multiple Semaphores, Device Signaling,

 a reentrant function, protecting a shared data, cErrors, in critical section

 Each shared data (resource/device) requires a separate semaphore for individual

protection, allowing multiple tasks and data/resources/devices to be shared exclusively,

while allowing efficient implementation and response time

 example of a printer device signaled by a report-buffering task, via semaphore

signaling, on each print of lines constituting the formatted and buffered report

semaphores and Shared Data – 3:

 Semaphore Problems – ‗Messing up‘ with semaphores

 The initial values of semaphores – when not set properly or at the wrong place

 The ‗symmetry‘ of takes and releases – must match or correspond – each ‗take‘

must have a corresponding ‗release‘ somewhere in the ES application

 ‗Taking‘ the wrong semaphore unintentionally (issue with multiple semaphores)

 Holding a semaphore for too long can cause ‗waiting‘ tasks‘ deadline to be

missed

 Priorities could be ‗inverted‘ and usually solved by ‗priority

inheritance/promotion‘

message queue :

Two (or more) processes can exchange information via access to a common system message queue.

The sending process places via some (OS) message-passing module a message onto a queue which can

be read by another process (Figure)Each message is given an identification or type so that processes

can select the appropriate message. Process must share a common key in order to gain access to the

queue in the first place (subject to other permissions -- see below).

 Basic Message Passing IPC messaging lets processes send and receive messages, and queue

messages for processing in an arbitrary order. Unlike the file byte-stream data flow of pipes, each IPC

message has an explicit length. Messages can be assigned a specific type. Because of this, a server

process can direct message traffic between clients on its queue by using the client process PID as the

message type. For single-message transactions, multiple server processes can work in parallel on

transactions sent to a shared message queue.

Before a process can send or receive a message, the queue must be initialized (through the msgget

function see below) Operations to send and receive messages are performed by the msgsnd() and

msgrcv() functions, respectively.

When a message is sent, its text is copied to the message queue. The msgsnd() and msgrcv() functions

can be performed as either blocking or non-blocking operations. Non-blocking operations allow for

asynchronous message transfer -- the process is not suspended as a result of sending or receiving a

message. In blocking or synchronous message passing the sending process cannot continue until the

message has been transferred or has even been acknowledged by a receiver. IPC signal and other

mechanisms can be employed to implement such transfer. A blocked message operation remains

suspended until one of the following three conditions occurs:

 The call succeeds.

 The process receives a signal.

 The queue is removed.

Initialising the Message Queue :

The msgget() function initializes a new message queue:

int msgget(key_t key, int msgflg)

It can also return the message queue ID (msqid) of the queue corresponding to the key argument. The

value passed as the msgflg argument must be an octal integer with settings for the queue's permissions

and control flags.

The following code illustrates the msgget() function.

#include <sys/ipc.h>;

#include <sys/msg.h>;

...

key_t key; /* key to be passed to msgget() */

int msgflg /* msgflg to be passed to msgget() */

int msqid; /* return value from msgget() */

...

key = ...

msgflg = ...

if ((msqid = msgget(key, msgflg)) == –1)

 {

 perror("msgget: msgget failed");

 exit(1);

 } else

 (void) fprintf(stderr, “msgget succeeded");

Mailbox:

 Mailbox (for message) is an IPC through a message-block at an OS that can be used

only by a single destined task.

 A task on an OS function call puts (means post and also send) into the mailbox nly a

pointer to a mailbox message

 Mailbox message may also include a header to identify the message-type specification.

Mailbox IPC features:

•OS provides for inserting and deleting message into the mailbox message- pointer. Deleting eans

message-pointer pointing to Null.

•Each mailbox for a message need initialization (creation) before using the functions in the scheduler

for the message queue and message pointer pointing to null

Mailbox Related Functions at the OS:

Pipe Function:

Pipe

 Pipe is a device used for the interprocess communication

 Pipe has the functions create, connect and delete and functions similar to a device driver

Writing and reading a Pipe:

• A message-pipe─ a device for inserting (writing) and deleting (reading) from that between two given

inter-connected tasks or two sets of tasks.

• Writing and reading from a pipe is like using a C commandfwrite with a file name

to write into a named file, and C command fread with a file nameto read into a named

Pipe function calls:

 Create a pipe

 Open pipe

 Close pipe

 Read from the pipe

 Write to the pipe

 Event Functions:

 Wait for only one event (semaphore or mailboxmessage posting event)

 Event related OS functions can wait for number of events before initiating an action or wait

for any of the predefined set of events

 Events for wait can be from different tasks or the ISRs

Event functions at OS:

Some OSes support and some don‘t support event functions for a group of event

Event registers function calls:

 Create an event register

 Delete an event register

 Query an event register

 Set an event register

 Clear an event register

 Each bit I an event register can be used to obtain the states of an event .

 A task can have an event register and other tasks can set/clear the bits in the event register

Signal:

 one way for messaging is to use an OS function signal ().

 Provided in Unix, Linux and several RTOSes.

 Unix and Linux OSes use signals profusely and have thirty-one different types of signals for

the various events.

 A signal is the software equivalent of the flag at a register that sets on a hardware interrupt.

Unless masked by a signal mask, the signal allows the execution of the Signal handling

function and allows the handler to run just as a hardware interrupt allows the execution of an

ISR

 Signal provides the shortest communication.

Signal management fuction calls:

 Install a signal handler

 Remove an installed signal handler

 Send a signal to another task

 Block a signal from being delivered

 Unblock a blocked signal

 Ignore a signal

Timers:

 Real time clock ─ system clock, on each tick SysClkIntr interrupts

 Based on each SysClkIntr interrupts─ there are number of OS timer functions

 Timer are used to message the elasped time of events for instance , the kernel has to keep track

of different times

The following functions calls are provided to manage the timer

 Get time

 Set time

 Time delay(in system clock)

 Time delay(in sec.)

 Reset timer

Memory management:

Memory allocation:

 Memory allocation When a process is created, the memory manager allocates the memory

addresses (blocks) to it by mapping the process address space.

 Threads of a process share the memory space of the process

Memory Managing Strategy for a system

 Fixed

 blocks allocation

 Dynamic

 blocks Allocation

 Dynamic Page

 Allocation

 Dynamic Data memory Allocation

Interrupt service routine (ISR):

 Interrupt is a hardware signal that informs the cpu that an important event has occurred when

interrupt occured, cpu saves its content and jumps to the ISR

 In RTOS

o Interrupt latency

o Interrupt response

o Interrupt recovery

Mutex:

 Mutex standards for mutual exclusion ,mutex is the general mechanism used for both rsource

synchronization as well as task synchronization

It has following mechanisms

 Disabling the scheduler

 Disabling the interrupts

 By test and set operations

 Using semaphore

