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1 Introduction

The real world is full of unexpected changes, contingencies and opportunities.
Thus it is virtually impossible to perfectly specify in advance all the condi-
tions, states and outcomes for all the possible actions. The so-called “frame
problem” was originally discovered with symbolic reasoning agents [6], but es-
sentially it affects any “intelligent” system that relies on explicit descriptions
about the states and actions. For example, in control theory terms, the target
system can abruptly deviate from the assumed model of the system dynamics,
making the pre-defined control law invalid.

The above problem shows up in a wide range of robot behavior, particu-
larly when the situation is complex and fluid. Cognitive interactive tasks such
as recognizing another agent’s behavior and imitating the task or generating
helpful/competing responses often involves high unpredictability due to the
caprice and complexity of human behavior and the mutual dependency be-
tween the agents’ behavior. Even at the level of physical motion control, the
situation can be highly complex and unpredictable with a complex body such
as a humanoid and the characteristics of the dynamics such as non-linearity,
under-actuation, contact states, and rough terrain.

Various adaptive methods have been developed in the past with successful
robotic experiments. However, they are either too slow to converge or too nar-
row in terms of the adaptation range. For example, the most popular learning
methods such as reinforcement learning and genetic algorithm both require
vast number of trials to converge, and when the bodily or environmental con-
dition changes, they need thousands of trials again to adapt. Moreover, these
methods require careful design of the state representation which is not always
straightforward unless the characteristics of the body and the environment is
well understood.

This paper proposes a novel alternative method for motor behavior emer-
gence. Our model assumes no predefined motion primitives nor state repre-
sentation. It discovers and exploits the natural dynamics of body-environment
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interaction. It adapts to the dynamic change of the bodily or environmental
structures very quickly, in a few seconds. It has biological correlates such as
spine/medulla circuit and general movements (GM) that play an important
role in very early motor development of human babies.

In the following sections, we first review the issue of exploiting natural
body-environment dynamics. Then we present our model which facilitates
the emergence of behavior exploiting such dynamics, with some experimental
results. In the final part we present our ongoing effort on simulating early
human motor development based on the model.

2 Exploiting Embodied Dynamical Structures

In dynamic motion control, exploiting the property of natural body-environment
dynamics is very important in order to achieve robustness and efficiency. A
well-known example of a meaningful behavior based on pure body-environment
dynamics is the passive dynamic walker [5]. And one way to successfully ex-
ploit and extend the natural dynamics is to combine it with neural oscilla-
tors [10]. These and related issues are gaining more and more interests with
quickly accumulating knowledge.

Another related example is juggling. It is also a rhythmic and cyclic motion
but somewhat simpler than biped walking. Its dynamics is well understood
and effective control methods are proposed [8, 1].

Recently, we presented an example of exploiting acyclic dynamics of whole-
body humanoid motion called ”roll-and-rise” [3]. Our adult-size humanoid
robot first lies flat on the floor, then swings up and down both of the legs,
rolling on the back and achieving a crouching posture very quickly. The task
requires exploitation and switching of multiple body-environment dynamics
with different constraints.

The above and other related examples show that very simple controllers
can realize very robust and efficient motion if they properly exploit the natural
body-environment dynamics. An outstanding question is how to automatically
discover the dynamics and exploit it. This can be a very difficult problem if
we assume a body with many degrees of freedom and changing constraints.

3 Emergent Coordination of Multiple Degrees of
Freedom

We propose a novel model in which a distributed set of chaotic elements are
coupled with the multi-element musculo-skeletal system. Consistent motor be-
havior patterns emerge from embodied interactions. The same principle gives
rise to immediate adaptation capability to changing constraints and switch-
ing to different/novel motion patterns. It requires no training or evaluation
function. The system autonomously explores, discovers, and exploits possible
motion patterns.
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3.1 Coupled chaotic system

Coupled Map Lattice(CML) and Globally Coupled Map(GCM)[2] have been
investigated in complex systems science for their rich dynamics properties.
They follow (1)-(2). CML is a coupled chaotic system with local interaction
(1). GCM is one with global interaction (2).
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Where, xi
n denotes the internal state of ith element at time n, N the total

number of elements, and ε the connection weight between elements. f(x)
can be any chaos function. In this paper, we adopt a standard logistic map
represented as the following.

f (x) = 1− ax2 (3)

With no interaction between the elements, all of them behave chaotically.
But with interaction, depending on the parameters (a, ε), a rich variety of dy-
namical structures emerge such as ordered phases (with clusters of resonating
elements) and partially ordered phases (configuration of the clusters changes
with time).

This phenomenon is essentially caused by a competition of two tendencies;
(1) A tendency to synchronize each other by the effect of the mean-field, and
(2) a tendency to take arbitrarily different values due to the nature of chaos
dynamics.

3.2 Body and environment as an interaction field of chaotic
elements

Figure 1 shows our model of chaos coupling through robotic embodiment.
N chaotic elements are connected with actuators and sensors of the robot

body. Each element drives a corresponding actuator based on its current in-
ternal state. The effect of N actuators collectively change the physical state
of the body which is constrained by and interacting with the environment.
In other words, the output of N chaotic elements are mixed together and
transformed by the embodied dynamics. The result is then sensed at each
site of the actuator, e.g. in terms of joint angle or muscle length. Each sensor
value is then input to the corresponding chaotic element. Then each element
updates, by chaotic mapping, its internal state from the new sensor value and
the previous internal state.

The important points of our model are as follows :

• A chaotic element connect each sensor and actuator.
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Fig. 1. Outline of our model

• Each actuator is coupled to the body via a spring, simulating a muscle.
Each sensor measures the deformation of the spring. Thus, the actuators
collectively affect the dynamic state of the body. And the sensors get the
mixed effects of the corresponding actuator and the global state of the
body.

• The body and the environment interacts. Together, they serve as the in-
teraction field of the chaotic elements.

In our model, body-environment interaction dynamics, or embodiment, serves
as the chaos coupling field, which is non-linear and time-varying. Theoreti-
cally very little is known about such cases, but since the coupling field directly
reflects the current body-environment dynamics, we believe that the emergent
ordered patterns correspond to useful motor coordination patterns which im-
mediately get reorganized in response to dynamically changing environmental
situation.

We devised 3 types of formula to update the internal state of an element
: (4), (5), and (6). Where, u denotes the internal state, s the sensor value,
and s̄ the mean of sensor values. The 2nd and the 3rd terms in f of (4) and
(6) are intended to be GCM-like connection and CML-like connection. ε1, ε2

are the weight of each connection. We used logistic map (3) for f(x)1. Initial
condition of u is a random value within (0, 1).

Table 1 shows the interpretation of each formula 2.

1 In implementation, to avoid divergence, x is constrained as follows : if(x > 1) x =
1, if(x < −1) x = −1

2 In order to understand the “adjustment” effect, the GCM/CML equations should
be transformed by applying f on both sides and re-arranged to match (4)-(6)
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Table 1. Interpretation of the update rules of the coupled chaotic systems

GCM Each element follows its own pure chaos
dynamics with some adjustment to ap-
proach the global mean value of all the
other pure chaos elements.

CML Each element follows its own pure chaos
dynamics with some adjustment to ap-
proach the local mean value of the adjacent
pure chaos elements.

Type-A Each element follows its own pure chaos
dynamics with some adjustment to reduce
the difference of the corresponding sensor
value from the global and the local means
of other sensor values.

Type-B Each element is updated by a chaos map
of its sensor value. The sensor value con-
tains the effects of the self and the other
elements mixed together through the em-
bodiment. The mixing function does not
appear explicitly in the equation. It is a
non-linear and time-varying function, re-
flecting the physical dynamics of the body-
environment interaction.

Type-C In addition to the Type-B, some adjust-
ment is applied in order to reduce the de-
viation of the corresponding sensor value
from the global and the local means of
other sensor values.
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4 Experiments

Our model of behavior emergence is quite simple. However, its behavior is
extremely complex. Even theoretically, a behavior of coupled chaotic systems
with time-varying non-linear coupling is very poorly understood. Moreover,
there has been no attempt so far to exploit this phenomena for robotic be-
havior generation. Therefore, we carried out a series of experiments in order
to investigate the following points.

1. How to design the connection between the body and the chaotic elements?
2. How does the system behave in case the structure of body dynamics

changes?
3. How does the system behave in case the structure of environment changes?
4. How can we impose “goal-directedness” onto the behavior while maintain-

ing the emergent property?

In the following, we present some results from our preliminary experiments.
Further details should be found in another paper [4].

We use dynamics simulation library ODE[9] to simulate the dynamics of
a robot and environment. The time step size of ODE was 0.01 and that of
couple chaotic system was Tc. In implementation, u and s in section 3.2 were
associated with sraw and m ((7), (8), (9), (10)), where sraw denotes the raw
value of a sensor and m the motor output of an actuator. Note that the
gains gu, guout , gs, gsin and the offsets ou, ouout , os, osin are independent of the
element index i. They are constant parameters.

uout = gu · u + ou (7)
m = guout · uout + ouout (8)

sin = gsin · sraw + osin (9)
s = gs · sin + os (10)

4.1 Experiments with a muscle-joint model

Configuration

Firstly, we experiment with a muscle-joint model shown in Fig. 2 which con-
sists of two cylindrical rigid bodies and 12 muscle fibers. The base link is fixed
to the ground, and the upper link is connected by a ball-joint to the base link.
It can be bent in any direction within the limit of 0.5 [rad]. The 12 muscle
fibers are attached between the two links isotropically.

Each muscle fiber is modelled with Hill’s characteristic equation [7]. m
in (8) corresponds to the activation level of a muscle fiber in this model.
The sensor value sraw is provided by either a “length-sensor” measuring the
normalized length of the muscle fiber or a “tension sensor”3 measuring the
3 In case of tension sensor, before the process of (10), sin is constrained as follows:

if(sin > 1) sin = 1, if(sin < −1) sin = −1
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Fig. 2. Appearance of the muscle-joint model

normalized tension of the muscle fiber. In all experiments, (guout
, ouout

) was
set to (0.5, 0.5) respectively. In case of tension sensor, (gsin

, osin
) was set to

(−2.5, 3.0). In case of length sensor, (gsin , osin) was set to (1.0, 0.0).

Experiments with/without sensor feedback

Firstly, when there is no sensor feedback (Fig. 3), the motion of the joint was
chaotic and no cluster structure was observed.

Fig. 3. Experiment with no sensor feedback. Trajectory of the center of mass of the
upper link projected on x−y plane (left graph). Cluster plot of the chaotic elements
(right). For each element with index i, its motor output uout is plotted superposedly
for n = 10, 11, 12, . . . . The points of all the elements are connected with a line for
each time step. (Type-A, a = 1.6, ε1 = 0.0, ε2 = 0.0, Tc = 0.21, gu = 1.7, gs =
2.0, ou = −0.65, os = −1.0)

Secondly, in case of an experiment with tension sensor feedback, the mo-
tion was chaotic for the initial several steps. But after a time, it changed
to the ordered rhythmical motion. Fig. 4 is the graph while the motion was
rhythmical. Cluster structure is observed.

In case of an experiment with length sensor feedback, the motion was or-
dered and rhythmical from the beginning (Fig. 5). In the same experiment
with a different parameter set, the motion was rhythmical in the beginning,
then after a while, the direction of oscillation changed and it began another
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Fig. 4. Experiment with feedback of tension sensor (Type-A, tension sensor, a =
1.55, ε1 = 0.3, ε2 = 0.3, Tc = 0.21, gu = 1.7, gs = 2.0, ou = −0.65, os = −1.0)

Fig. 5. Experiment with feedback of length sensor (Type-B, length sensor, a =
1.6, Tc = 0.21, gu = 1.7, gs = 1.0, ou = −0.65, os = 0.0)

rhythmical motion (Fig. 6). The change of oscillating direction occurred ape-
riodically.

Experiments with a dynamic change of the environmental
structure

The environment makes a part of the interaction field for the chaotic elements.
In this experiment, we observed the system’s behavior when the structure of
the environment is dynamically changed by bringing in an obstacle disturbing
the oscillation of the muscle-joint system (Fig. 7).

The obstacle was brought in at t = 3. Fig. 8 shows the result : beginning
at the top, from t = 0.42 to t = 3.15, from t = 3.15 to t = 6.93, and from
t = 6.93 to t = 12.6. A little while after colliding against the obstacle, the joint
made a complex motion that it repeated colliding in a short period of time
and the motor commands were chaotic. But soon after that, within about 3
seconds, it began to oscillate orderly in a new collision-free direction.
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Fig. 6. Experiment when dynamic transitions could be seen. The upper graph shows
the behavior before transition and the lower one shows that after transition. (Type-
A, length sensor, a = 1.6, Tc = 0.21, gu = 0.52, gs = 1.0, ou = −0.107, os = 0.0)

Fig. 7. The muscle joint model and obstacle

4.2 Experiments with an insect-like multi-legged robot

Configuration

In order to investigate the effects of our model in a more meaningful be-
havior with more complex interactions with the environment, we defined an
insect-like multi-legged robot. The robot has a disc-shaped body with 12 legs
attached on its fringe with regular spacing (Fig. 9). Each leg is connected to
the body by a rotational joint and 2 springs whose spring constant is K. Each
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Fig. 8. Experiment with obstacle (Type-B, length sensor, a = 1.6, Tc = 0.21, gu =
0.82, gs = 1.0, ou = −0.3, os = 0.0)

leg can swing only in the direction shown in the middle of Fig. 9, and its joint
angle is constrained to be less than ±θlim. The environment has a standard
gravity and a constant friction (with the static friction coefficient µ). m in
(8) corresponds to the torque τ of each joint. sraw in (9) corresponds to the
angle θ. Table 2 shows the parameters common to all the experiments using
the above robot model.

Table 2. Parameters for the insect-like robot

Tc K θlim guout gs gsin ouout os osin

0.17 1.0 0.8 1.0 0.5 1.25 0.0 0.5 0.0
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KK

Fig. 9. Appearance of the insect-like robot (left), direction of leg motion(middle),
and the mechanism of a leg (right).

Experiments with sensor feedback

With no sensor feedback, no order was observed in the motion of the robot.
It just kept on randomly struggling around the same spot on the ground.

On the other hand, when the sensor feedback is introduced, after the initial
chaotic period (a few seconds), the robot started to move in a certain direction,
and then finally showed a stable locomotive behavior with a constant speed
in a stable direction. The locomotive behavior was realized by synchronizing
the 3 or 4 hind legs and kicking the ground with them. Fig. 10 is the graph
while the locomotive behavior was observed.

Fig. 10. Experiment with sensor feedback (Type-C, a = 1.47, ε1 = 0.1, ε2 =
0.1, gu = 0.4, ou = −0.28, µ = 0.1)

4.3 Summary

The proposed model exhibited a capability to quickly discover various mo-
tion patterns in accordance with the body-environment dynamics. It can cope
with dynamically changing constraints. In other experiments [4], we confirmed
that the model can adapt to changes of the muscle arrangements, the ca-
pability persists over a range of parameters, and a possibility of imposing
goal-directedness on the emergent behavior.
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5 Simulated Baby

The above model correlates with the essential structure of vertebrates, i.e.
the spine/medulla circuit and the musculo-skeletal body. It is well established
that parts of spine/medulla circuit acts as non-linear oscillators, called CPG
(central pattern generator). Under certain conditions, a coupled system of
non-linear oscillators act as a coupled chaotic system. Therefore, it is quite
plausible that vertebrates exploit the similar principle as our model for acqui-
sition and adaptation of motor behavior.

Since our model explores and discovers motion patterns that fit the natural
property of the body, it may be a good candidate for simulating the initial
mechanism of motor development. It may be able to start with very little pre-
defined knowledge and autonomously acquire appropriate motor primitives.

A human body is so complex, and a systematic search for all possible
motion patterns is virtually impossible. However, our model should be able to
discover appropriate motions very quickly. Moreover, the cluster emergence in
pure CML and GCM are known to scale to thousands of elements. This is a
good reason to expect that our model can handle the musculo-skeletal system
of a human body.

Fig. 11. Simulated baby.

Figure 11 shows the view of our simulated baby. The outlook is crude as
we invest little effort on the quality of graphics. However, the musculo-skeletal
system is modeled at a highly detailed level. Our model has 198 muscles. We
omitted the wrist, ankle, fingers, toes, neck and face. But the body stem and
the limbs are quite faithfully modeled. The dimensions, mass, and inertial
parameters of all the body parts are defined according to the measurements
of real babies. The proprioceptive sensing organs, i.e. the muscle spindles and
Golgi tendon organs, are also modeled as precisely as possible. The muscles
are also modeled to match the performance of real babies. All the physical
body parameters are modeled as functions of week age after gestation (in the
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uterus). So the body can simulate physical growth of the fetal and neonatal
periods.

As the first step of neural modeling, we adopted the same coupled chaos
model (in section 4) for the spinal circuit. In addition, we added self-organizing
maps to simulate sensory and motor areas of the cerebral cortex. All the
connections are continuously updated by Hebbian learning while the neural
system drives the body.

The simulated baby body is placed in two types of simulated environments;
The “fetus” is placed in a simulated uterus with a pushable wall, filled with
liquid. The “neonate” is placed on a flat floor surrounded by flat walls (like
a playpen). We are starting to observe emergence of patterned motions and
stable clustering of cortical neurons.

6 Summary and Discussions

We proposed a novel framework for highly (quick) adaptive motor behavior.
The core mechanism is based on coupled chaotic system, which autonomously
explores and generates various coordination patterns of multiple degrees of
freedom. The emergent motion patterns exploit and resonate with the body-
environment dynamics. Therefore our model is a very good candidate as the
initial core mechanism to simulate very early motor development of human
babies. It should be important for human babies to acquire motor primitives
exploiting the characteristics of body-environment dynamics.

The above model correlates with real human babies because the CPG in
spine/medulla can generate high dimensional chaos under certain conditions,
and the resulting whole body movement has the similar property as the general
movement (GM) which appears in early motor development of human babies.

We are now constructing and experimenting with a simulated baby. It is
designed to be very close to real human babies in terms of musculo-skeletal
system. The coupled chaotic system model is adopted as the basic mechanism
of behavior emergence. When an emergent motion pattern persists for certain
time duration, the learning in the cortex model and other neural connections
fixates it in the neural connections. This way the system should be able to
explore, discover and learn various motor primitives which fully exploit the
natural body-environment dynamics. It is still an open question how to design
a mechanism that appropriately integrate the learning and emergence.

The above approach may provide a solution to avoid the frame problem,
as the system does not rely on static (or very slowly adapting) internal rep-
resentations, and can immediately adapt to changing situations.
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