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Magnets: a tale of order and disorder

Fluctuations _
Order ee—————) Disorder

® Ferromagnetic Ising model [1]

H=-J) S;S7| J>0,5 =+l

(1,7)

® Mean-field solution Z S7S7 — Nzm? + zmz S7 +

(2,9) 4 ﬁj
. eBJzm _ ,—BJzm
E Sz PHLST] 7o o Biem — tanh 8Jzm
ersEM + e
Sz—:lzl

Phase transition from paramagnetic to ferromagnetic state
- at finite temperature T,. = z.J

5 [1] E. Ising, Z. PhyS. 31, 253 (1925). School of Physics and Astronomy

University of Minnesota



Exact solution of 1D Ising model

® Ising model in 1D can be solved exactly [1]

Partition function Z = Tr(T") with transfer matrix T = (

1 OF

‘ Magnetization m = —— ——

—

N OH

m(T > 0,B =0) =0

m(T = 0,B = 0%) = +1

oBI+B) =B

sinh B

- \/sinh2(ﬁB) + e—48J

Paramagnetic at finite temperatures.

Ferromagnetic at T=0.

Transition temperature Tc = 0.

[1] E. Ising, Z. Phys. 31, 253 (1925).
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Energy-entropy competition

® Pelerls’ energy-entropy argument

wesgss ses A

Calculate free energy F = E - TS cost of a defect (= domain wall)

E=2J
mm) | F~ 2] — kgTlogN —— —
S~ kplog N B >

N — o0

Free energy reduced by generating defects

[ m==) No long-range discrete order in d=1 at finite T. J
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Discrete order in two dimensions ? Tff—fﬁ

® Peierls’ argument in two dimensions T

H=-J) 88; ,8 ==l ¢L

E~JL
S =~ kglog(z — 1)L )| [~ L|J - kpTlog(z —1)]

Paramagnetic 1" > Ferromagnetic T' <

kglog(z — 1) kglog(z — 1)

Phase transition to long-range ordered state at finite Tc.
=) Lower critical dimension for discrete degrees of freedom d. = 1.

Exact solution of 2D Ising model on square lattice [1] gives Tc = 2.27 J.

8 [1] L. Onsager Phys Reuv. Il 85, 808 (1944) School of Physics and Astronomy

University of Minnesota



Order of continuous spins in two dimensions

® Continuous spins with two or three components (XY or Heisenberg)

Pelerls’ argument: no domain wall, instead continuous gradient energy V¢ ~ 27r/L

E ~ / d*x(Ve)? ~ O(1)
1,2
S ~ kglog(z — 1)*

mm) | F ~ O(1) — kgTLlog(z — 1)

~ |
T T T T T TT {No continuous long-range order in d=2 at T>0. ]

T Thermal fluctuations destroy order.
Formal proof provided by Hohenberg-
Mermin-Wagner theorem.

‘ Lower critical dimension for continuous degrees of freedom is d,. = 2.
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Geometric frustration in antiferromagnets

® Element of frustration: triangle

J >0 ?
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Geometric frustration

® Element of frustration: triangle

® Edge sharing: Triangular lattice (2D) J >0 ?
® Corner sharing: Kagome lattice (2D) I -

Triangular lattice

/ LY — yi

/" o Ising model [1]

o Ground state degeneracy with extensive entropy
S =0.323 N kg

o Disordered at T>0

o Algebraic order at T=0

o Ising model [2, 3]:
o Even larger ground state degeneracy
S =0.502 N kg
o Disordered at T>0 and T=0

11 [1] G. H. Wannier, Phys. Rev. 79, 357 (1950); [2] K. Kano, S. Naya, School of Physics and Astronomy
Prog. Theor. Phys. 10, 158 (1953); R. Moessner, S. Sondhi, PRB 63, 224401 (2001).  university of Minnesota



Geometric frustration

® Element of frustration: triangle
® Edge sharing: Triangular lattice (2D) J >0 ?
® Corner sharing: Kagome lattice (2D) |

Triangular lattice

(—x—=—F AN 7 o Heisenberg model:

o 120° order at T=0 (both classical and quantum
spin model [1])

o Disordered at T>0 (Mermin-Wagner theorem)

o Heisenberg model:
o Classical model is disordered at T=0
o Quantum model seems to be a Quantum
Spin Liquid for Spin-1/2: Herbertsmithite [2]

12 [1] S R Wh|te, A L ChernySheV, PRL 99, 127004 (2007, School of Physics and Astronomy
[2] T.-H. Han et al., Nature 492, 406 (2012). University of Minnesota



J,-J,-model on square lattice

® Fluctuations also induce order: order from disorder [1, 2]
® J,-J,-Heisenberg model on square lattice [3, 4]

H=J1) Si-Sj+J2 ) Si-8;
(i.4) (i)

® Finite spin correlation length (Mermin-
Wagner)
S(T) -~ CLOGZWJ.S’ /T

® Neel orders on both sublattices for J5 > .J;
® Coupled only by fluctuations

[1] J. Villain, J. Phys. Fr 38, 385 (1977); [2] C. L. Henley, PRL 62, 2056 (1989); [3] P. Chandra, P. Coleman,
A. I. Larkin, PRL 64, 88 (1990); [4] C. Weber et al., PRL 91, 177202 (2003);
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Order from disorder

® Fluctuation free energy [1] due to “order from disorder”

OF = —E(T)[1 + cos* 6] minimized for § = 0, 7

NSt 1 T
E(T) =57, (7Q§+7TJ252)

Spins tend to align the fluctuating Weiss' field
of the neighbors to their easy plane [3].

Emergent discrete Ising Z, order parameter

marvSl- = +1

14 [1] P. Chandra et al., PRL 64, 88 (1990); [2] J. Villain, J. Phys. Fr 38, 385 (1977);  school of Physics and Astronomy
[3] C. L. Henley, PRL 62, 2056 (1989) University of Minnesota



Ising phase transition in J;-J,-model

Finite temperature Ising phase transition

Phase diagram:
AT

SRR AR RARE Free
20 L=160 (a)
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415 —— L=80 _
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I I i it sublattices
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15 [1] P. Chandra, P. Coleman, A. I. Larkin, PRL 64, 88 (1990); [2] C. Weber et al.,  school of Physics and Astronomy
PRL 91, 177202 (2003), [3] R. M. Fernandes et al., PRL 105, 157003 (2010); University of Minnesota



Z, order drives structural transition

Phase diagram: Applications in iron-based

superconductors [1, 2, 3]
J1-J2 square AT

lattice model Free Discrete spin ordering
y moments iInduces structural transition.
el Js 15() e Tt
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- sublattices
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16 [1] R. M. Fernandes et al., PRL 105, 157003 (2010); [2] H. Luetkens, et al., School of Physics and Astronomy

Nat. Mat. 8, 305 (2009); [3] S. Nandi et al., PRL 104, 057006 (2010) University of Minnesota



Critical phase in 2D Heisenberg model

4 Can we find A
o a critical phase with algebraic order
o Berezinskii-Konsterlitz-Thouless (BKT) phase transitions
in an isotropic 2D Heisenberg model ?

Such physics usually occurs for planar XY spins only.

Strategy:

® Generalize Z,to Z, withp > 4
W p-state clock model exhibits critical phase [1,2,3]

[1] J. V. Jose et al., PRB 16, 1217 (1977); [2] M. S. S. Challa and D. P. Landau, PRB 33, 437 (1986);
[3] G. Ortiz et al., Nucl. Phys. B 854, 780 (2012).
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2D Heisenberg windmill antiferromagnet

® Honeycomb + triangular lattice sites

® Heisenberg spins S¢(7;), Sa(r;), Sp(r;)

® Antiferromagnetic nearest-neighbor
coupling

H=Hy+Hap+ Hia+ Hip

H.,, = Jup Z Z Sa(rj) - Sp(r; + dap) windmill in Strangnaes (Sweden)
=1 dab a,be {t,A, B}

School of Physics and Astronomy

University of Minnesota



Ground state of classical spins at small J,

Weak inter-sublattice coupling
Jin < Jit, Jhn

Neel order on honeycomb lattice
mmm) O(3)/O(2) order parameter n(x)

120 degree state on triangular lattice tq
mmm) SO(3) order parameter ¢(x) = (t1, o, t3)

[ Classically at T=0 decoupled even for J,;, > 0 ]

19 [1] B. Jeevanesan, PPO, PRB 90, 144435 (2014). School of Physics and Astronomy

University of Minnesota



Fluctuation coupling “order from disorder”

{th — O4J_
J = v Jdnn
T=1S8=1

® Fluctuations (quantum and thermal) couple spins on different sublattices
® Spins tend to align perpendicular to fluctuation Weiss field [1]

1 Ly
Se = 5 /dQ:r: (v cos® B)
coplanar: ¥ = (Jin/J)* Ay (Jet/ Iun, J/T) t
2

[1] C. L. Henley, PRL 62, 2056 (1989)

20 School of Physics and Astronomy
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Fluctuation coupling “order from disorder”

{th =0.4J
J = Jidhn
T=15=1
® Fluctuations couple spins on different sublattices
® Spins tend to align perpendicular to fluctuation Weiss field [1] .
3
1

S. = 5 /de (”y cos” B)

Coplanar: v o< (Jyp, /J)?

21

[1] C. L. Henley, PRL 62, 2056 (1989)
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Fluctuation coupling “order from disorder”
x10~°

IS

{th:O-4j
J = v Jdnn
T=1,5=1

~»

o MO~ O

® Fluctuations couple spins on different sublattices
® Spins tend to align perpendicular to fluctuation Weiss field [1]

1
S, = > /de (vcos® B+ A sin® /3 sin” (3a))

Coplanar: ¥ (Jen/J)? Zg: Ao (Jy /)"

22 [l] C. L. Henley, PRL 62, 2056 (1989) School of Physics and Astronomy

University of Minnesota




Phase diagram of J1-J2 and Windmill antiferromagnets

J1-J2 square
lattice model

Collinearity

Ising 7.5 order

/ \><
N

-

23

AT

Free moments
Jo=Jit, Inn
Ji1=Jn

Uncoupled sublattices

=T,

AT windmill model

Coplanarity

G,

Power-law corre-
lated XY order

Do

o-state clock order
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Detection of emergent order via coupling to lattice

® Long-range relative spin order induces lattice distortion

W Algebraic relative spin correlations induce lattice softening:
elastic modulus vanishes in critical phase

\‘ % 8% ‘vl
R

Windmills in lowa.
24 School of Physics and Astronomy

University of Minnesota



Detection of emergent order via coupling to lattice

® Long-range relative spin order induces lattice distortion

W Algebraic relative spin correlations induce lattice softening:
elastic modulus vanishes in critical phase

NI R BBy

25 School of Physics and Astronomy

University of Minnesota



Materials and experimental realization

® Honeycomb antiferromagnet Na, ,NiSbO, when replacing Sb by
magnetic atom [1, 2] is a candidate

® Single layer Cr on Pd 111 surface. Spin polarized STM [3]

Bilayer possible candidate for windmill model realization

26 [1] J. H Roudebush, R. J. Cava, J. Solid State Chem. 204, 178 (2013); Schaol of Physics and Astronomy
[2]1 K. Ross (private communication): [3] M. Waisnhiowska et al., PRB 82. 012402 (2010). University of Minnesota
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Long-wavelength renormalization group approach
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RG of long-wavelength action

Action of O(3)/0O(2) x SO(3) Non-Linear Sigma Model (NLSM) plus potential

[A

_ 2
o= / ( un) i Z ) B S disordered
K:%aKl,zzﬁaK?)—O T 1 ~J
uncoupled
Renormalization group: integration | | -
over short-wavelength fluctuations 0 | ‘ 4 T, ~ —L
coplanar ln(fz)
Spin stiffnesses are reduced at longer lengthscales
dK 1 dK 1+ n)?
KL K (P
dl 21 dl 8
28 School of Physics and Astronomy

University of Minnesota



RG of long-wavelength action

Action of O(3)/0O(2) x SO(3) Non-Linear Sigma Model (NLSM) plus potential

S = / ( (0um)* + Z ) + 5 disordered

K:%;Km:%jf{s—o

Renormalization group: integration | |
over short-wavelength fluctuations 0 A| ‘A k

b
Spin stiffnesses are reduced at longer lengthscales coplanar
= : S S S ) =
d 27 dl sr 0 o) = aoe
: . d dA
Potential terms grow: 47 _ o — 9)\
a - la
mm) Coplanar crossover at temperature: v(l,) =1, agelr ~ &(T)
J

Tep ~

In(J2/J3,)

[A

| uncoupled
>

29 School of Physics and Astronomy

University of Minnesota



Coplanar regime

® Dynamics is intimately connected n 1 t5
h=(n, hs, hs)eSO(3)
t=(t1, ta, t3) € SO(3)

® Order parameter symmetry SO(3) x Z,4

t = hU = hexp(iaTs)

At
m 3 Euler angles and relative phase X = (¢, 0,1, a) 3
S_l ](91)2+I(Qz)2—|—1(ﬂs)2 /6
- 2 1 v’ 2 v 3 M
77 O{J)'_ t >
+ I,(0,0)° + ﬁ:(@ua)ﬂz) n 2
t
Angular velocity: Q, = h=1(d,h)
SO(3) stiffnesses (moments of inertia) U(1) stiffness and SO(3)-U(1) coupling
IIZK2+K3,IQZK—I—K1—|—K3 Ia:K1+K2

I = K+ K| + Ky k= 2(K1 + K»)

30 School of Physics and Astronomy

University of Minnesota



Covariant action

® Action of 2D spin system takes form of (Euclidean) string theory [1]

3 Euler angles and relative phase o (7
X(1,2)=(0,0,9, ) @ X(7,x)

Magnetization X = displacement of string in D dimensions S3XS;
B Spin stiffnesses define metric tensor [1] D. Friedan, PRL 45, 1057 (1980)
s=1[g 0, X" ()0, X’ A [ Posin?
=5 r g X (2)]0,X" ()0, X’ (x) + 5 z sin“(3q)
SO(3) T
— (9 I, I, I
q K Ia 1,142,143
U(1) phase is coupled to non-Abelian sector U(1) stiffness

[ Does U(1) sector decouple from SO(3) sector with finite XY stiffness [, > 0 ? ]

31 School of Physics and Astronomy

University of Minnesota



RG flow = Ricci flow

® Action is covariant with stiffness metric tensor
B Covariance is preserved during RG scaling [1]
® RG flow of the metric is given by the Ricci flow [1,2] (two loops)

= ——Rij — =5 R""™ Rjjim
dl 27?7, T 82 Ikt
/ /

Ricci and Riemann tensor determined by g;

[1] D. Friedan, PRL 45, 1057 (1980); [2] R. S. Hamilton, J. Differential Geom. 17, 255 (1982)

32 School of Physics and Astronomy
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Phase decoupling RG flow

1.0 b TTeTeTeeer T e T @
0.8
0.6F

04}

el

0.2} B ~
(IQ — Il)/f — 0

0.0L

10 20 30 40 50

[ =1n(Ag/A)
Decoupling of U(1) phase a emerges rapidly

Renormalization of XY stiffness then stops
at finite value

School of Physics and Astronomy
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Decoupling as toy model for compactification

® One-dimensionsal U(1) part of manifold

decouples from 3D non-Abelian SO(3) part U(1) x SO(3) ‘5

® Ricci scalar grows like

1
R = RSO(3) . N
// 2ml], 6\\
(Il — 12)27"2
SO(3 T p—
R ( ) ™~ 1/I Boz 4’/’(‘]1]2
SO(3) part curles up: U(1) becomes flat

Toy model for compactification [1,2]

32 [1] M. Gell-Mann and B. Zwiebach, Phys. Lett. B 141, 333 (1984);
[2] L. Randall and R. Sundrum, PRL 83, 4690 (1999)
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Simulation of exact Ricci flow

® Singularities in two-loop Ricci flow are false Landau poles
B Use classical magnet to simulate exact Ricci flow
® Protocol:

Suitable magnet realizes given metric

Cool system

Measure spin correlation functions at various temperatures
Extract metric tensor

Obtain “surgery-free” generalized Ricci flow of manifold

® Connection to proof of the Poincare conjecture by Perelman (2006):
“Every simply connected, closed 3-manifold is homeomorphic to a 3-

sphere”

[1] P. Coleman, A. Tsvelik (private communication) School of Physics and Astronomy

University of Minnesota



Emergent six-state clock model 8
- Th .~ % ¢
® Action of the decoupled U(1) degree of freedom A t
1 disordered
Sy, = 5 /de[(I;(BMa)Q + Acos(6a)] . i
1ty ~J
® 7/ renormalizes only due to vortices (BKT-RG)  uncoupled|
d(I’)! d - Tep ~ —
L — 473y2, @y _ (2 —nl')y 2 lanar Pom(L
dl dl > "
BKT  _
critical ~ n]
2—!—‘1’“ir2 e~ T
> &
d Relevantfor I, <27 < T > n.J/2 |
mmmm) proliferation of free vortices BKT
Zg broken
I~ J/T
®| -
q=26
2 [1] J.V. Jose et al., PRB 16, 1217 (1977)
36 School of Physics and Astronomy
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Emergent six-state clock model 8
- Th .~ ¢
® Action of the decoupled U(1) degree of freedom A t
1 disordered
Sz, = = /de[(I;(a,,,a)Q + Acos(6a)] . S
2 Pl ~ T
® 7/ renormalizes only due to vortices (BKT-RG)  uncoupled|
d II —1 d 1F TC ~ —');2
Ma) _ gz, W o rry coplanar | | (5
di dl .
2 BKT _
@ — (2 _ q ))\ critical ~— ‘;J —
dl dn I’ @ -
Q Relevantfor I, < 2m < T > xw.J/2 e
mmmm) projfferation of free vortices BRT
Zg broken '~ J)T

—S./T
Yyr~e
Q Relevant for I, >q2/87r<:>T<87rJ/q2/® g =6

‘ pinning into one of six minima
[1] J.V. Jose et al., PRB 16, 1217 (1977)
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Emergent six-state clock model 8
. t
® Action of the decoupled U(1) degree of freedom Ti : no
1 disordered
Sz, = = /de[(I;(BMa)Q + Acos(6a)] .
2 b~
® 7/ renormalizes only due to vortices (BKT-RG)  uncoupled|
d(I)~* d U T ~ — 2
L — 47.(.3y2’ _y — (2 — WI;)y coplanar P ln(a
dl dl >
2 BKT _
dA — (9 q A\ critical ~ T
o =) @ T
Q Relevant for I, < 2m < T > w.J/2 e
mmmm) proliferation of free vortices BRT
P / Ze broken ,
Power-law correlations expli(a(z) — a(z’)] Io ~ J/T/
—S./T
y~e e
Q Relevant for I/, > ¢° /87 < T < 8nJ/q¢* @ g=6

‘ pinning into one of six minima
[1] J.V. Jose et al., PRB 16, 1217 (1977)

38 School of Physics and Astronomy
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Monte-Carlo simulations
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Monte-Carlo simulation of classical model

® Simulate microscopic model of Heisenberg spins on windmill lattice [1]

® Use combination of Monte-Carlo moves
W parallel-tempering
® heat-bath step
® global rotation of honeycomb spins

Define emergent XY spins on each plaquette

(S5 t1,;,87 ta)
[(85 - 15,87 - ta)]]

m; = = (cos ozj,sinaj) :

Measure magnetization

ij lm|(cos a, sin ) .

And susceptlblllty
N

40 ° [1] B Jeevanesan, P Chandra, P C0|eman, PPO, PRL 115, 177201 (2015) School of Physics and Astronomy

University of Minnesota




Coplanar crossover

® Estimator for coplanarity

g N 1/3, for random relative configuration
=1-= Z (cos 63 {0 uncorrelated local 120° and Néel order
g=1 1, for coplanar configuration.

Coplanar crossover at
J

T.., ~ _
Y 1+1In(J2/J2)

Relatively independent
of Jth/J

System size
L =60 x 60

41 School of Physics and Astronomy

University of Minnesota



Magnetization versus system size N

1

= ij lm|(cos a, sin ) .
(Im/)

Tr ! ! : — —t ' —
0.8

0.6

04 |

0.2 -

0.21 —o—

12 24 36 48L60 72 96 120 144 180

® Vanishes faster than algebraic for large temperatures
® Vanishes algebraically for lower temperatures (|m/|) oc L="1)/2
@ Temperature dependent exponent 0 < n(7T) < 0.3

42 School of Physics and Astronomy
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Scaling of susceptibility of emergent order

B Finite size scaling of susceptibility at upper transition temperature [1]

Magnetization

1 , :
mr = 73 Z(cosai,smai) 1|

Susceptibility

XL = (m%) 0.1 ¢

Scaling for T' > T5 jerr

¢ ~exp(a/VAT), x ~ 271 o0ty

0.01

X(T. L)1

IR * "SR,

?/m +
+

(- Wol Mo

©

*
1 | 1

L
36
48 -
60 1
72
84 1
96 1
108
120 1
132 1
144
156 1
168 |
180 1

= | XL ~ LYs(exp(a/V/AT), c=2—1n

10 100 1000

&-(T)/L

® Confirms BKT nature of upper transition

® Transition temperature
® Exponent n~ = 0.25(1),a~ = 1.9(3)

43

>
iI}BP(Zﬂ __

0.200(4).J

1000
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Scaling of magnetization of emergent order

® Finite size scaling of magnetization at lower transition temperature

Magnetization (Im(T, L)[)/L""</2 | . .
1 . s T T T 1 I 1 I ]
mr = 73 Z(cos i, sin ;) ¥ gg X igg
Susceptibility * 1.2 o 72 156
2 o % . 180
XL = {my) » e 108 i
Scaling for 57 < T < T3 st
¢ ~ exp(a/VAT), my ~ €2 1| B ‘]
I1 | 1 I00 | 1 OIOOO | 1 e1|-06 1 e-I|-08
., . §<(T)/L
== |my ~ LY (L™ exp(a/VAT), b=n/2
® Confirms BKT nature of upper transition
® Transition temperature Ts g = 0.18(1)J
® Exponent n< = 0.11(1), a< = 5.0(5)
44 School of Physics and Astronomy

University of Minnesota



Phase diagram
0.30p - - ;

0.20f

TIIb i

0.10} i/

0.2 0.4

0.01 0

. - 041
05 T/JO

0.00° 'V'Vi'nar'm'”' ' " — 1% | Collinear | ' System falls into one of the six minima
T=0"" ohase M order; phase A Long-range discrete order occurs.
H .

00 02 04 06 08 10 1.2 Jen/J

® Direct detection of algebraic and long-range order of emergent XY
spins in Heisenberg model.

45 School of Physics and Astronomy
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Phase diagram

Monte-Carlo phase diagram

0.30f

0.20f

0.10f

0.00%

Windmill 1st 1 Collinear
r phase orderi phase
] L \ 4 . Jl . . —4 .
0.0 0.2 0.4 . 0.8 1.0 1.2 Jth/j

® Monte-Carlo simulations provide unbiased

verification of long-wavelength picture.

46

RG phase diagram

[A

disordered

uncoupled

coplanar

critical

Zg broken

B

R

+ Ty~ J

J
J

“th

—t— 1>
TB KT

wJ
)

2
24 —2—4;J e
th

wJ
T

<
TBKT
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Summary and outlook

® Critical phase in frustrated 2D Heisenberg antiferromagnet

® Algebraic correlations in relative orientation of spins

® Design windmill material

® Implement numerical program to measure spin stiffnesses and Ricci flow
a

Apply analysis to other (layered) materials
® Triangular bilayer, Kagome-Honeycomb, etc...

® Planar XY version 0.30p
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Classical ground state phase diagram

® Complete phase diagram hosts 8 different phases [1]

Jtt 14

'v' Windmill Phase (1) 1 of
‘ ﬁro-
J, 0.8}

0.6}

0.4}
® Windmill phase stable for non-zero J, 0o
® First order phase transition between |

0.0k

(1) and (2a) and (4b) is analogous to
J;-J,-model

Windmill
Phase

(1)

[Interested In finite temperature phase diagram above phase (1)}

48 1] B. Jeevanesan, PPO, PRB 90, 144435 (2014).
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