Emerging Trenchless Renewal Technologies for

Pressure Pipe

Brad Conder, P.E. – Regional Sales Manager

Stronger. Safer. Infrastructure.

AWWA Structural Classifications

Emerging Pressure Pipe Renewal Applications
 InsituMain[®] Cured-In-Place Pipe (CIPP)
 Mechanical end fittings
 Mechanical service connections
 Thermopipe[®] Liner

Selecting appropriate pressure pipe renewal technology

Pressure Pipe Renewal Applications

Common Trenchless Technologies

Slip lining

Installation of a smaller "carrier pipe" into a larger host pipe

Coatings

Utilizing spray applied materials to renew the surface of the existing pipe

Pipe bursting

A method of fracturing the host pipe and pulling in a new pipe that is equal to or greater in size

Directional Drilling

Installation of new pipe through a bored hole under an obstacle

Emerging Trenchless Technologies

Slip lining Installation of a smaller "carrier pipe" into a larger host pipe

Coatings

Utilizing spray applied materials to renew the surface of the existing pipe

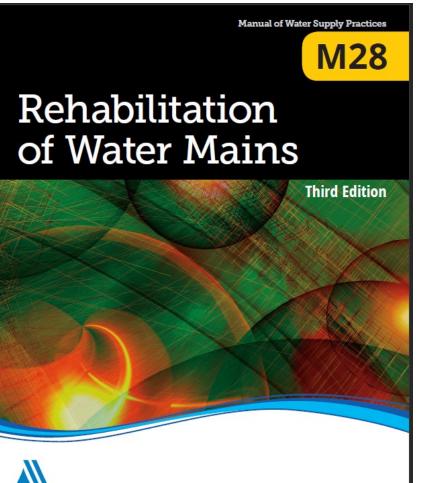
Cured-in-place Pipe (CIPP)

A jointless, seamless resin saturated tube that is installed in the existing host pipe and cured

Pipe bursting

A method of fracturing the host pipe and pulling in a new pipe that is equal to or greater in size

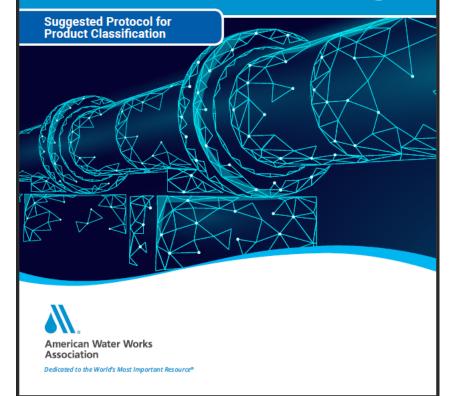
Directional Drilling Installation of new pipe through a bored hole under an obstacle

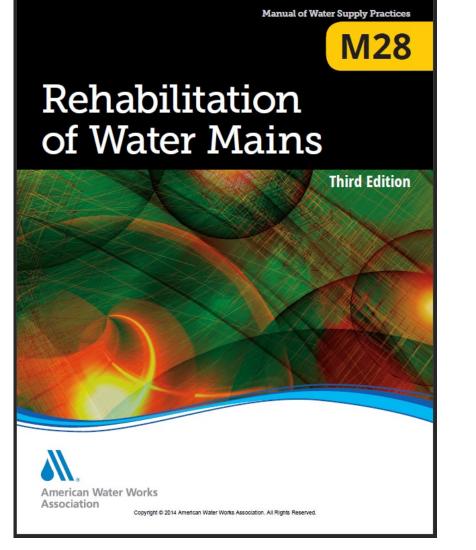


Hose Lining

A modified type of sliplining that involves installing a high-pressure hose product inside a larger host pipe

AWWA Structural Classification of Pressure Pipe Linings


AWWA Publications


American Water Works

Copyright © 2014 American Water Works Association. All Rights Reserved.

Structural Classifications of Pressure Pipe Linings

M28 – Rehabilitation of Water Mains

What does this publication provide?

- Problem definitions
- Trenchless technology overviews
- Planning and delivery considerations
- Common approaches to pipe preparation for lining technologies
- Matching problems to technology
- <u>No</u> standards for design
- <u>Qualitative</u> not <u>Quantitative</u> overview of structural lining

Qualitative Classification

Table 1: General Structural Classifications Objectives

	Non-Structural	Semi-Structur	al (Interactive)	Fully Structural
Lining System Characteristic	Internal coating	Hole span	Hole span + ring stiffness	Structural resistance for all specified loads (internal & external)
	Class I	Class II	Class III	Class IV
Internal corrosion protection	✓	\checkmark	\checkmark	✓
Long-term adhesion to the host pipe	See Note 1 Below	\checkmark	See Note 2 Below	See Note 2 Below
Hole span at MAOP		\checkmark	\checkmark	~
Inherent ring stiffness (hydrostatic pressure or vacuum loads only)	See Note 1 Below	See Note 1 Below	~	~
Water tightness (positive connection to service taps and sealed at termination points or other discontinuities)		\checkmark	~	~
Inherent ring stiffness (all static and dynamic external, hydrostatic, and vacuum loads)				~
Pressure rating of lining ≥ MAOP of host pipe				~
Lining survives anticipated host pipe failures				~
1 The owner/engineer must specify whet to the host pipe, which is a characteristi 2 For Class III and IV linings, adhesion is necessary to achieve a watertight seal (f also situations where adhesion is not de and in Class IV linings where the host pip	c of all Class II and so not required to deve for example, at servic sirable, such as appl	ome Class I linings, lop ring stiffness. H es and lining termin ications with broad	or inherent ring stifi lowever, it may be ations). There are temperature swings	fness.

Qualitative concept is based on:

- Intended function of the lining technology
- Degree of interaction of lining technology with the host pipe
- Type of loads the lining was intended to resist

Structural Classification of Pressure Pipe Linings

Structural Classifications of Pressure Pipe Linings

What does this publication provide?

- Takes qualitative concepts to a quantitative format
- Guidance on design and product selection for all lining products.
- Aligns product considerations to design objectives
- Initial thoughts on recommended quality assurance processes during construction
- Discussion on necessary evolution of design for technologies with a proven track record
- Provides illustrative examples of sound engineering judgement to go beyond current design code

Quantitative Classification - Type Testing

Table 2: Type Testing

Note: In order for a lining technology to be categorized under a specific Structural Classification, one or more test methods listed for each property must be documented and all applicable acceptance criteria met.

	Property	Technology	Test Method(s)	Acceptance Criteria
	Potable Water Certification	All	NSF/ANSI 61 (potable water)	PASS
	Material Properties	CML	ASTM C143 (slump test)	ANSI/AWWA C602, Section 4.4.3, Figures 1 & 2
Class I	Lining Thickness	All		Per manufacturer's guidelines
	System Hydraulics	All		Minimum C value
	Adhesion	Some Class I	ASTM D4541 (metal substrate) ASTM D7234 (concrete substrate)	Demonstration test: Pull strength ≥ negative pressures + thermal stresses + shear stresses where relevant (as established by the owner/engineer)
	All Class I attr	ibutes PLUS:		
	Adhesion	All Class II	Per Class I	Per Class I
	Hole Span @ MAOP	All Class II	Any or all of: ASTM D790; ISO 178; ISO 11296-4, Annex B (initial flexural properties, 3-pt bending)	Test values = short-term flexural properties For anisotropic materials, flexural properties should be obtained in the hoop and axial directions
Class II	-		Any or all of: ASTM D2990; ISO 899-2; ISO 11296-4, Annex C & D (flexural creep)	Test values = long-term flexural properties
	Water Tightness	All Class II	Supporting test data from end seal and fittings manufacturers, as applicable	End seals, service connections, hot taps and fittings: Pressure Rating ≥ MAOP Demonstration test(s) by the manufacturer as directed by the owner/engineer
	Hydrostatic Integrity at Services	All Class II		Demonstration test(s) by the manufacturer as directed by the owner/engineer

	Property	Technology	Test Method(s)	Acceptance Criteria
	All Class I & II	attributes PLUS	S:	
	Adhesion	Some Class III	Per Class I, as required	Per Class I, as required
Class III			Any or all of: ASTM D2412; DIN EN 1228; ISO 7685 (initial ring stiffness)	Per owner/engineer requirements
	Ring Stiffness	All Class III-IV	Any or all of: ASTM D2990 (flexural creep, hoop direction); DIN EN 761; ISO 7684 with ISO 10468 (flexural creep, full ring)	For full ring tests, samples must be round, reflect the finished quality and geometry of the installed product, and tested independently of the host pipe

	Property	Technology	Test Method(s)	Acceptance Criteria
	All Class I, II &	III at tributes PL	.US:	
	Adhesion	Some Class IV	Per Class I, as required	Per Class I, as required
				Test values = short-term tensile properties
			Any or all of: ASTM D638; ASTM D3039; ASTM D2290; ISO	For anisotropic materials, tensile properties should be obtained in the hoop and axial directions
		All Class IV	8521; ISO 8513 (initial tensile properties)	For full ring tests, test samples must be round, reflect the finished quality and geometry of the installed product, and tested independently of the host pipe
			ASTM D2990 and/or ISO 899-1 (tensile creep)	Determination of long-term (50-yr) retention of tensile properties
				Test samples must be round, reflect the geometry of the installed product, and tested independently of the host pipe
Class IV	Resists all internal and	All Class IV	ASTM D1599 (short- term burst testing)	Test value/PRF = estimated pressure rating (straight alignment). Generally, PRF 2 4 but lower PRF values are permissible when documented testing, as outlined herein, has established the acceptability of a lower short-term to long-term strength ratio. Further product specific de-rating may be recommended when geometric anomalies compromise hoop integrity, or when lining through bends and offsets
	external pressures	CIPP	ASTM F2994, ASTM F1216 or ASTM F1743 (CIPP impregnation)	Demonstration test: Insure proper resin mixing ratio and CIPP saturation rate; vacuum impregnation under controlled conditions; data logging of impregnation process
		CFRP ³	ASTM D6641	Compressive strength; AWWA C305, Sec. 3
			ASTM D7616	Shear strength; AWWA C305, Sec. 3
		SL (FRP)	ASTM D2992 or ISO 7509 with	HDB or ISO test results may be used as a comparative measure vs short-term
		CIPP ⁴	ISO 10928 (regression analysis)	burst and long-term tensile creep results
			ASTM D2837 or PPI TR-3	HDB
			ASTM D3350	Material cell classification
		SL (HDPE)	ANSI/AWWA C906	Dimensions and tolerances, bend back or elongation at break, ring tensile or short- term burst, carbon black/UV inhibitor, melt flow index, density, thermal stability
			ASTM D2837	HDB from multiple stress-rupture tests from <1 hour to >10,000 hours
		SL (PVC)	ANSI/AWWA C900 or PPI TR-2	HDB + 1000-hour pressure test; burst test; flattening test
impleme	nted at the discre	etion of the owner		of PCCP. Alternative test methods may be wolving different host pipe materials. of a product's
long-terr	n performance. If	f available, HDB t	est results may be used as a	

measure vs short-term burst and long-term tensile creep results.

Type Testing:

 How we measure that products meet quantifiable measures of short and long term mechanical/chemical resistance properties

Quantitative Classification - Acceptance Testing

Table 3: Acceptance Testing

Note: In order for a lining technology to be categorized under a specific Structural Classification, one or more test methods listed for each property must be documented and all applicable acceptance criteria met

	Property	Technology	Test Method(s)	Acceptance Criteria
	Drinking Water System Components - Health Effects	All	Bacteriological testing	AWWA C651
	Material Properties	CML, PL	Compressive strength	CML: AWWA C602, Section 5.1.2 PL: ASTM F3182, Section 6
	Lining Thickness	CML, PL	Physical measurements	CML: ANSI/AWWA C602, Table 1 PL: ASTM F3182, Section 8.2
Class I			Surface preparation and dryness	Surface preparation methods shall be confirmed by the owner/ engineer before proceeding with the lining installation process. PL: ASTM F3182, Section 8.3
	Adhesion	Some Class I	Visual and CCTV inspection	No visual leaks at ends or at services ISO 11297-1:2013, Section 9.8 PL: ASTM F3182, Section 7.9
			ASTM D4541 (metal substrate)	Test values ≥ design value PL: ASTM F3182, Section 8.3
			ASTM D7234 (concrete substrate)	Test values ≥ design value
	All Class I attri	ibutes PLUS:		
	Adhesion	All Class II	Per Class I	Per Class I
Class	Hole Span @ MAOP	All Class II	ASTM D790 and/ or ISO 11296-4, Annex B (initial flexural properties, axial direction)	Test values ≥ design submittal If these criteria are not met, design compliance shall be verified using actual test values
II	Water Tightness	All Class II	ASTM F1216, Section 8.3 (pressure test): 2 times MAOP or MAOP + 50 psi (3.4 bar), whichever is less,	Minimum 1-hour duration once system is stabilized; leakage allowance = 20 gal/inch diameter/mile/day (1.86 L/mm diameter/km/day)
			or ISO 11297-4, Table 7 (pressure test): 1.5 times MAOP	15 minute test duration with no leakage per ISO 7432 or ISO 8533, as applicable
	All Class I & II	attributes PLUS	:	
Class III	Adhesion	Some Class III	Per Class I, as required	Per Class I, as required CIPP: ASTM F1216, Section 8.7; tight fit, full saturation CFRP: AWWA C305, Section 4.5 ⁵
	Ring Stiffness	All Class III	ASTM D790 and/ or ISO 11296-4, Annex B (initial flexural properties, hoop direction)	For anisotropic materials, flexural properties should be obtained in the hoop direction Test values ≥ design submittal

	Property	Technology	Test Method(s)	Acceptance Criteria
	All Class I, II &	III at tributes PL	.US:	
	Adhesion	Some Class IV	Per Class I, as required	Per Class I-III, as required
			ASTM F2994 or ASTM F1216 (CIPP impregnation)	Verify compliance during CIPP impregnation process
			Visual and CCTV inspection	Confirm fit and finish. Geometric anomalies compromising the lining system's hoop integrity shall be verified through type testing and reflected in design. Isolated circumferential fins or imperfections from lining through vertical or horizontal misalignment, offset(s) or directional change(s) shall be documented and reviewed with the owner/engineer for design compliance
			Any or all of: ASTM D638; ASTM D3039; ASTM D2290; ISO 8513: ISO 8521	For anisotropic materials, tensile properties should be obtained in the hoop direction
			(tensile properties, hoop direction)	Test values ≥ design submittal
Class IV	Resists all internal and external pressures	CIPP	Wall thickness measurements: Restrained samples: ASTM F1216, Section 8.6; Measurements per ASTM D3567	Average of eight (8) measurements around circumference; not less than 87.5% of design thickness at any point (excluding coating). Although hoop tensile strength (force/unit area) is an important parameter for reinforced CIPP laminates, hoop load capacity (force/unit width) is equally or even more important. Laminate thickness can vary without changing the amount of reinforcing fibers used. As an example, the thickness may increase by adding felt material to increase the external load-resisting capacity. In this example, as the thickness increases, the tensile strength (psi) decreases. However, the hoop load capacity (1b/ in.) remains the same or may slightly increase. Thus, although the hoop tensile strength decreases, the internal pressure load capacity of the CIPP remains the same or slightly increase. In this context, hoop load capacity, not wall thickness or resulting tensile strength, is a measure of pressure pipe structural performance. Flat plate sampling methods per ASTM F1216, Section 8.1.2 may be used in lieu of restrained samples in accordance with manufacturer's recommendations and as directed by the owner and/or engineer.
		SL (HDPE) SL (FRP)	AWWA M55 or ASTM F2164 AWWA M45	Hydrostatic leak test Hydrostatic leak test
		SL (PVC)	AWWA C605	Hydrostatic leak test
		CFRP used for the	renewal and strengthening	of PCCP. Alternative acceptance criteria may involving different host pipe materials.

Acceptance Testing:

 How we measure in the field that the product meets the design objectives Emerging Trenchless Renewal Technologies for Pressure Pipe

Aegion Corporation – Stronger. Safer. Infrastructure.[®]

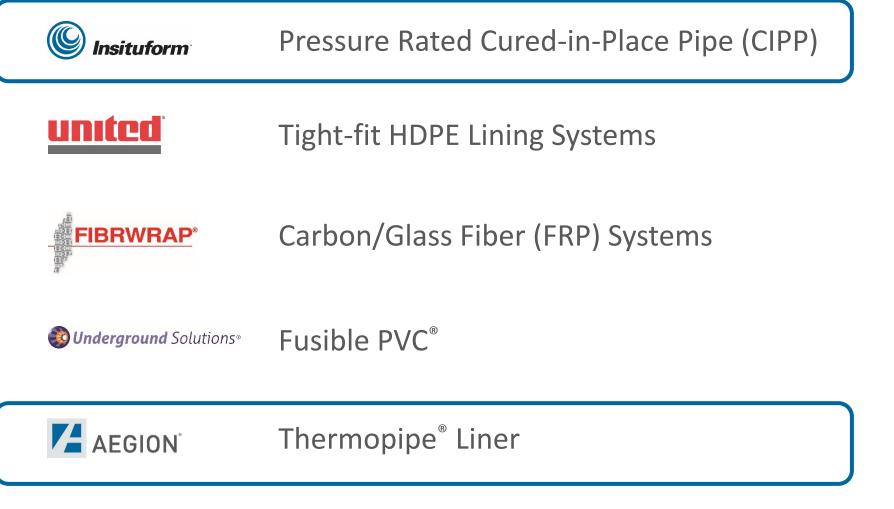
Infrastructure Solutions

Infrastructure Solutions

- Water & wastewater pipeline rehabilitation
- Structural strengthening

Corrosion Protection

- Pipeline corrosion prevention
- Oil, gas and mining



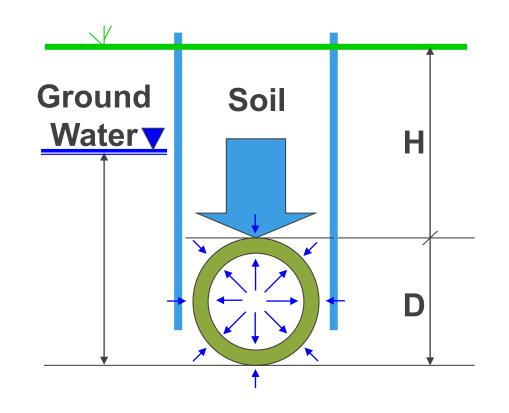
Energy Services

Facility maintenance services

Aegion's Pressure Pipe Products

InsituMain[®] Cured-In-Place Pipe (CIPP)

What is Cured-in-Place Pipe (CIPP)?


- Resin impregnated tube with:
- Glass reinforced felt
- Inversion or Pull-in installation methods
- Hot water, steam, or UV curing methods
- Tight fitting = greater flow maximization
- Joint less, pipe-within-a-pipe that protects against corrosion, build-up, and leakage

Diameter Range	6" to 96"
Effluent Temperature	Up to 130°F
Internal Pressure Capability	Up to 250 psi (safety factor of 4)
Bends	Up to 45°
Host Pipe Material	All materials
Mechanical Properties	Exceeds ASTM F1216 & ASTM F1743
Typical Install Lengths	500 to 1,000 feet

CIPP Design Parameters

- ASTM F1216 / AWWA M28
- Internal design:
 - Operating, transient and vacuum pressures
- External design:
 - Soil, groundwater, traffic, and other live loads
- Other factors:
 - Ovality, end fittings, bends and services
- Unrestrained burst testing
 - Validates safety factors

InsituMain[®] Glass Composite Structure

1/polvester felt lav

Epoxy/polyester felt structure

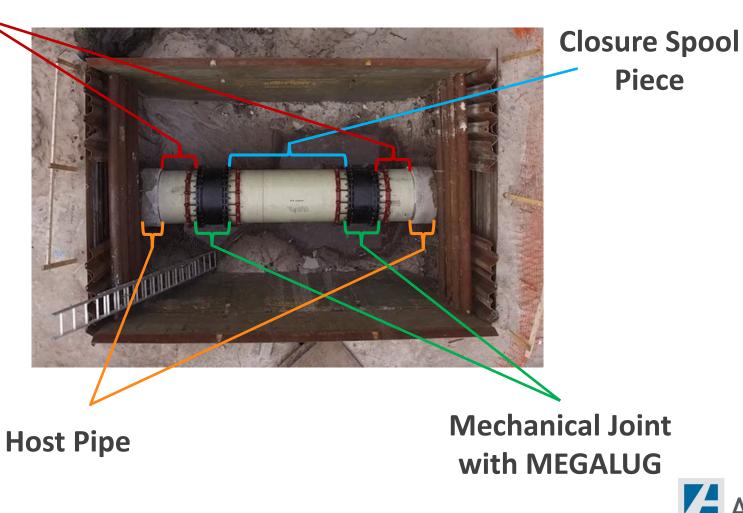
- Provides for external load capacity
- Layer thickness can be varied depending on loading conditions
- Utilizes epoxy resin system instead of polyester resin (drinking water safe)

Hazen-Williams Coefficient

• C=140

Epoxy/fiberglass structure

- Provides high tensile/hoop strength
- Number of layers varies depending on diameter and internal pressure



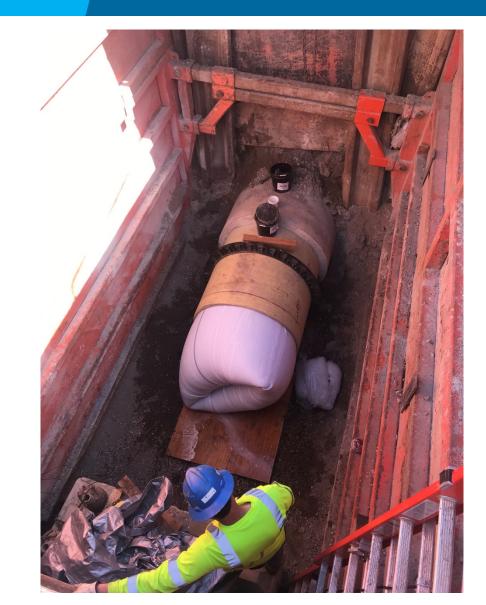
PP/TPU coating /

- Water contact surface
- Coating also provides water barrier for installation processes & handling

Fiber Reinforced Polymer (FRP) Coupling Piece

- Eliminates need to connect back to the host pipe
- Promotes the use of standard mechanical joint fittings

EGION



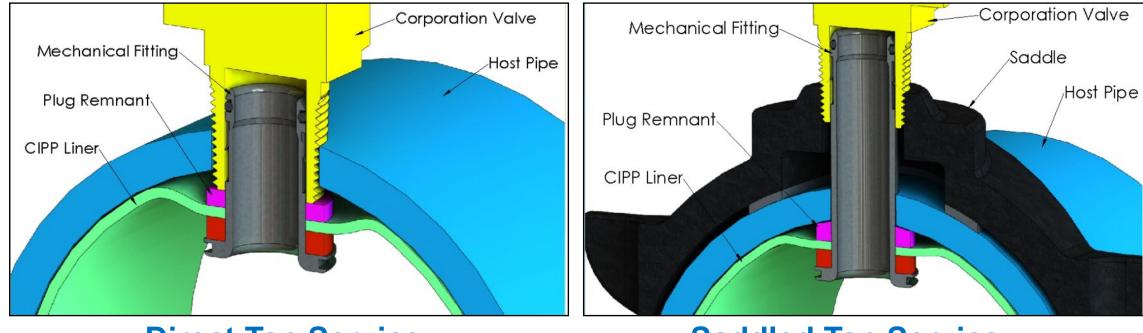
Service Connections – Adhesive vs. Mechanical

- Step 1 Cleaning to prepare pipe surface for resin
- Step 2 Plugging of existing service connection (prior to lining)
- Step 3 Locating of the existing service (after lining)
- Step 4 Drilling of the existing service (most CIPP product manufacturers/contractors stop at this step – plug and drill)
- Step 5 Reinstatement of the existing service (via installation of the mechanical fitting)

* The mechanical reinstatement process <u>does not</u> rely on the integrity of the host pipe (long term) in order to maintain water tightness

Direct Tap Mechanical Reinstatement Equipment

- Measurement of service connection diameters
- Guidance using axial and hoop direction lasers
- Installation of service plugs
- Autonomous options for service plug location and drilling using magnetic sensors and cameras
- Installation of service reconnection hardware



Mechanical Fitting Installation

Installed Mechanical Fitting

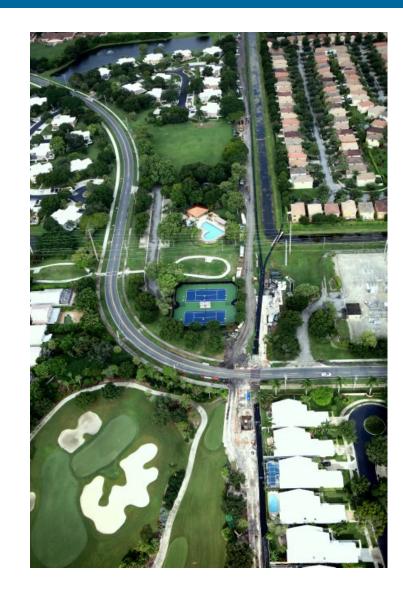
Direct Tap Service

Saddled Tap Service

- Reduces or eliminates need for costly excavations
- \succ $\frac{1}{2}$ ", $\frac{3}{4}$ " and 1" diameter reinstatement options
- > Pipe diameters from 6" to 12"

CIPP Lining – West Palm Beach, FL

Project Description


- Owner: West Palm Beach, FL
- Pipe Material: PCCP
- Diameter: 48-inch
- Length: 5,700 LF
- Pressure: 25 psi
- Type: Sewer Force Main
- Project Value: \$1,418,373

Problem Statement

- Located near canal, county club and high-end residential homes
- High social costs
- Difficult site access
- Deteriorated pipe with pre-stressed wire breaks

WEST PALM BEACH

CIPP Lining – West Palm Beach, FL

Renewal Technology Selection

- Fully Structural (AWWA Class IV)
- Full sewer bypass
- Long installation lengths (Averaged 1,000 LF)
- Minimal internal diameter loss

INSITUMAIN® CIPP LINING

CIPP Lining – Scenic Drive Upper Conduit, UT

Project Description

- Owner: Salt Lake City, UT
- Pipe Material: PCCP
- Diameter: 48-inch
- Length: 560 LF
- Pressure: 60 psi
- Type: Potable water
- Project Value: \$810,000

Problem Statement

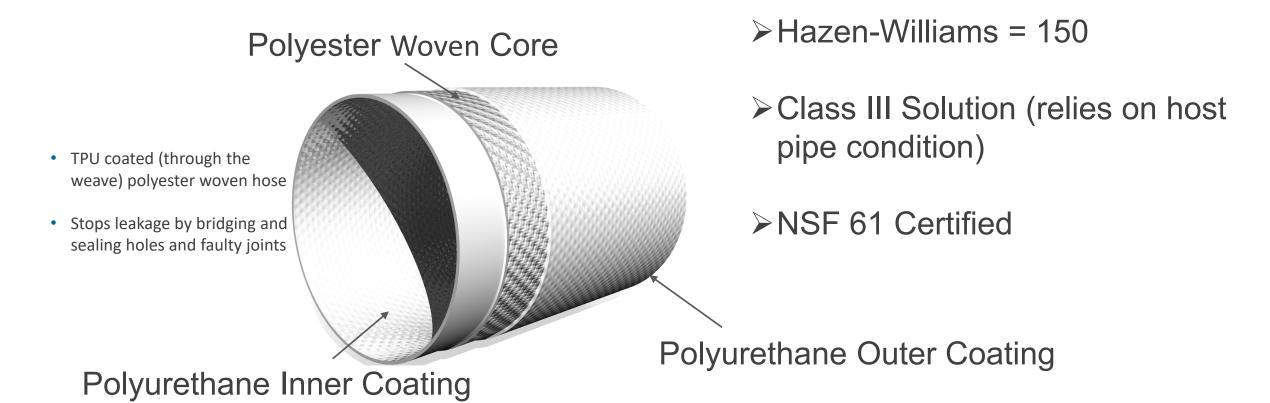
- Gravity pipe required jointless, pressure-rated rehabilitation product
- Leakage at intermediate manhole
- High social costs to open cut pipe
- Short construction window

CIPP Lining – Scenic Drive Upper Conduit, UT

Renewal Technology Selection

- Fully Structural (AWWA Class IV)
- Span holes/joints in host pipe
- Minimal internal diameter loss
- NSF/ANSI 61 Standard
- Minimal site footprint

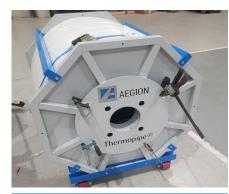
INSITUMAIN® CIPP LINING



Thermopipe[®] Liner

Stronger. Safer. Infrastructure.[®]

Thermopipe[®] Hose construction


End Connection

- Epoxy Coated Steel
- Ease of Reconnection
- Plain End Connection

Installation steps

Step 1 Set up Reel on site for unwinding.

Step 2 Attach pull head, connect to cable and use winch for pull in.

Step 3 Inflate liner with compressed air to expand hose and break tape.

Step 4

Simple mechanical end connections and reconnect with standard waterworks fittings.

- Diameter Range 4-12"
- Pressure Rating 200 psi
- Maximum Install Lengths 3,000'+
- Maximum Temperature Rating 150F

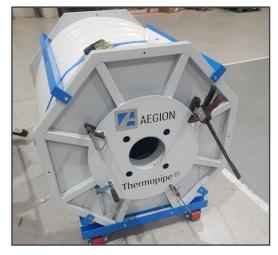
Hose Lining – Vancouver, WA

Project Description

- Owner: Fairway Village
- Pipe Material: PVC
- Diameter: 6-inch
- Length: 300 LF
- Pressure: 140 psi
- Type: Irrigation water
- Project Value: >\$80,000

Problem Statement

- Fully structural host pipe
- Leaking pipeline
- Difficult site access
- High social costs

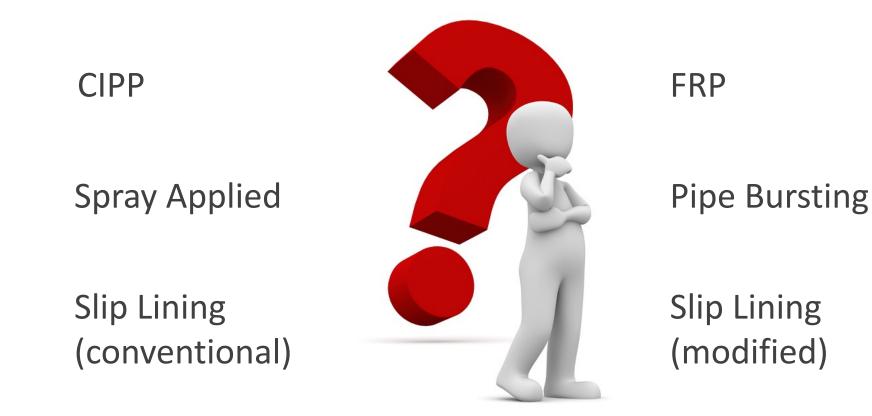


Hose Lining – Vancouver, WA

Renewal Technology Selection

- Semi-Structural (Class III)
- Water tightness
- Small construction footprint

THERMOPIPE® HOSE LINING



Selecting Appropriate Pressure Pipe Renewal Technology

Which Technology Should I Consider?

Hose Lining

We Have to Ask the Proper Questions

- What type of problems is the pipeline system experiencing?
 - Structural or non-structural?
- How much longer do I need this asset?
 - Product/Process type as well as designs can be modified accordingly
- Do I need additional capacity in this pipeline?
 - Future commercial or residential expansion
 - Originally under designed
- Can I accept less capacity in this pipeline?
- Are there multiple services and/or bends present in the pipeline?
- Can pipeline access be created easily and cost effectively?
- What is the size of the existing pipeline?

Project Name:	
Project Owner:	Email:
Location:	Phone:
(City) (State) (Countr	y)
Status: Emergency Non-emergency	
Project Type:	Pipe Type:
Water Industrial	Cast iron Steel
O Potable	Ductile iron PVC
O Non-potable	RCP ACP
Sanitary force main Other	PCCP Other:
System Info:	Other Information:
1. Diameter(s):	Bypass required: Yes No
2. Length(s):	Approx. footage of bypass:
3. Operating pressure:	Elevation change: If greater than 10 feet
4. Surge pressure:	Pressure Testing: Yes No
5. Depth(s):	○ ASTM ○ AWWA ○ Other:
6. Water table:	Pipe location:
7. Bends: Yes (if yes, how many?) No	Pipe tocation: Railway crossing Roadway
 ○ 11-1/4 ○ 22-1/2 	River crossing Green area
○ 45	Bridge crossing Other:
0 90	Building
8. Valves: Yes No	ACES ID:
9. Hydrants: Yes No	
10. Service connections:	Egnyte link:
Size:	Plans O Yes O No
Type: Direct tap:	Specifications O Yes O No
Saddle tap:	🗌 Video 🔿 Yes 🔿 No
Saddle tap:	☐ Video O Yes O No

So What Now?

- Not a one-size fits all
- Comparative analysis: scope, schedule, and budget across different technologies
 - As compared to traditional dig & replace
- Each technology will have its pros & cons

Next Steps...

- Initial Project Review Feasible Options
- Plan & Spec Reviews
- Preliminary Pricing* (aka ROM)
- Budgetary Pricing* (Program Level Funding)

*Includes schedule information

Any Questions?

Thank you!

Brad Conder, P.E. <u>bconder@aegion.com</u>

801-472-8472

