

Emissions and Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus

DOE Annual Merit Review

PI: Jeffrey D. Gonder Presenter: Robb A. Barnitt Organization: NREL

June 8, 2010

Project ID: VSS007

This presentation does not contain any proprietary, confidential or otherwise restricted information

Project Overview

Timeline

Project funded late in FY08
Project conducted in FY09

July 2009 testing
August 2009 data post processing

Project is 100% complete

Budget

Total project funding
DOE: \$59k
In-kind support received from project partners

Barriers Addressed

- •Users and OEMs need 3rd party dynamometer data to benchmark technologies
- •Selection of representative drive cycles
- Test cycle-specific PHEV benefit via petroleum reduction

Project Partners

- •Enova
- •Adams County School District
- •Navistar, IC Corp

Project Relevance

Chassis testing is important for electric drive vehicles

- HEVs add a disconnect between engine and vehicle operation
- PHEVs add two more complexities
 - Fuel and electricity consumption
 - Performance dependence on distance

Project Objective

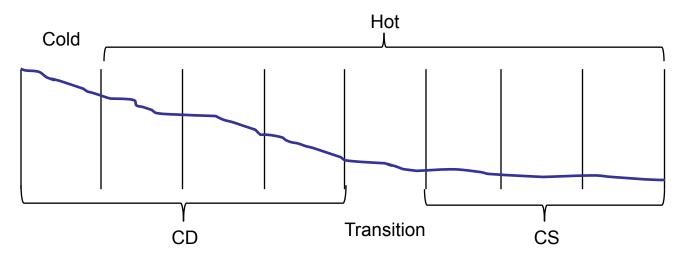
- Measure energy consumption and emissions of PHEV and diesel baseline school buses on relevant drive cycles
 - Benchmark technology
 - Data for dynamic model validation
- Supports the VTP Programs Strategic Goal of: Support the laboratory and field evaluations of large-scale demonstration fleets of advanced commercial and passenger PHEVs and EVs.

Test Vehicles

	PHEV School Bus	Diesel School Bus
Chassis / Integrator	2007 IC Corp / Enova	2008 Bluebird
Engine	6.4L MAXXFORCE 149 kW (200 hp)	7.2L Caterpillar 261 kW (350 hp)
Electric Motor	25/80 kW (cont./peak)	NA
Traction Battery	Valence U24-12XP 370 V, 100 Ah, 35.8 kWh	NA
Test mass (lbs)	27,850	24,550
Passenger Capacity	72	72
DPF-equipped	Yes	Yes

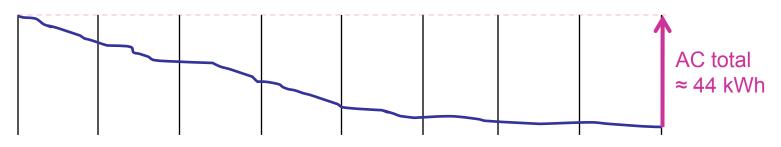
Test Cycle Selection

Drive Cycle Characteristic	Data Avg. (stdev)	UDDSHDV	RUCSBC	ΟΟΤΑ
Average Driving Speed (mph)	25.56 (3.93)	28.23	26.59	15.67
Stops per Mile	1.17 (0.46)	2.52	1.44	4.74
Avg. Acceleration (ft/s ²)	1.71 (0.22)	1.58	2.10	1.49
Avg. Deceleration (ft/s ²)	-1.95 (0.24)	-1.89	-2.44	-2.09
Accelerations per Mile	15.20 (4.57)	17.29	10.62	11.47
Decelerations per Mile	14.96 (4.54)	13.87	10.62	11.47
Kinetic Intensity (km ⁻¹)	0.83 (0.49)	0.38	1.05	2.23

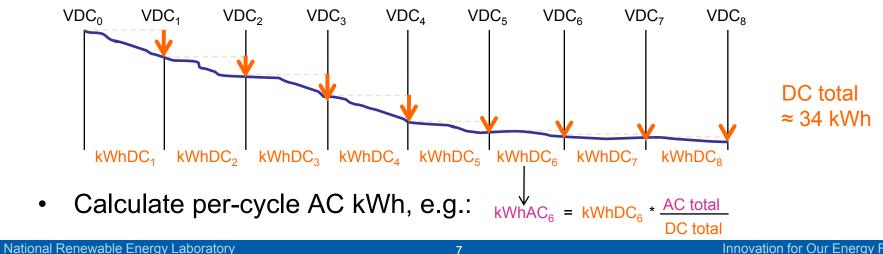

Test Plan

- Three drive cycles: UDDSHDV, RUCSBC, OC Bus
- Baseline (plus PHEV with hybrid system off for UDDSHDV & OC Bus)
 - Hot-start replicates

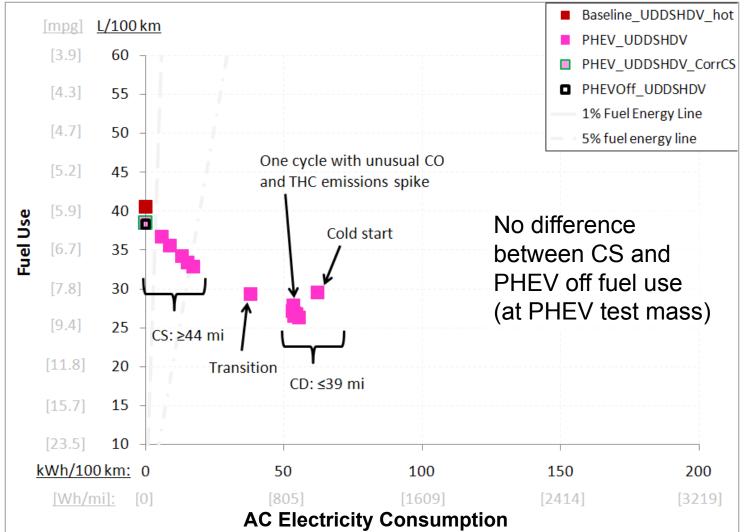
Cold	Hot	Hot	Hot
------	-----	-----	-----

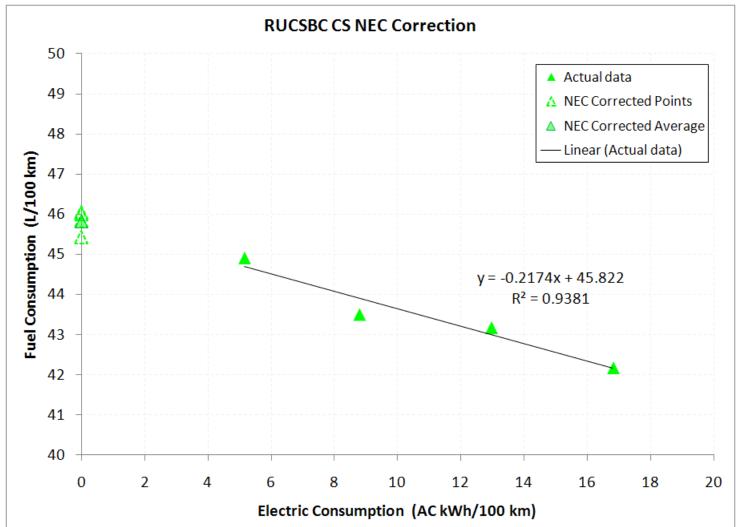

• PHEV

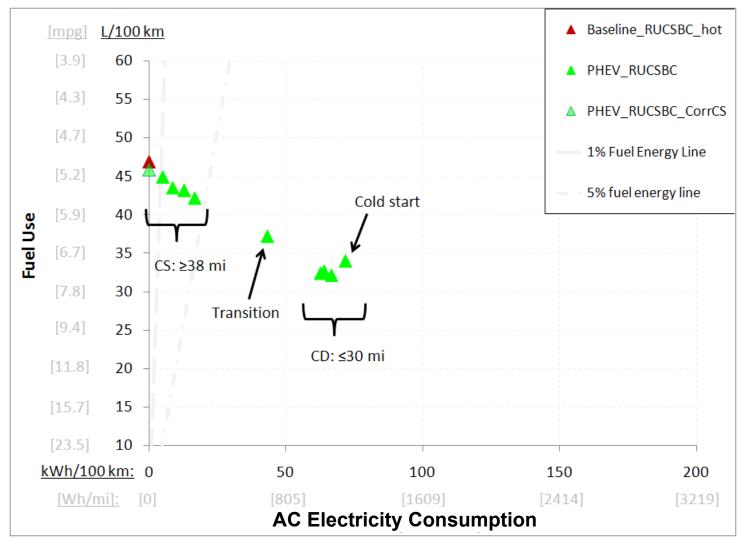
- Hot-start charge-depleting (CD) and hot-start charge-sustaining (CS) replicates



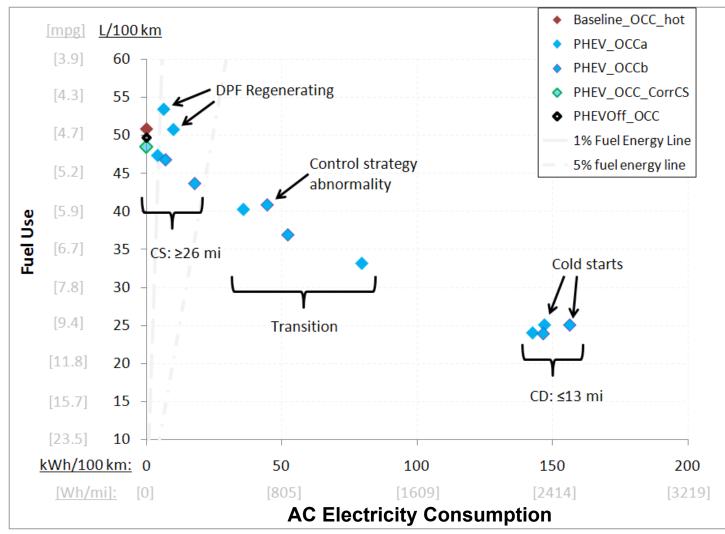
Electrical Charging test methods and charge accounting

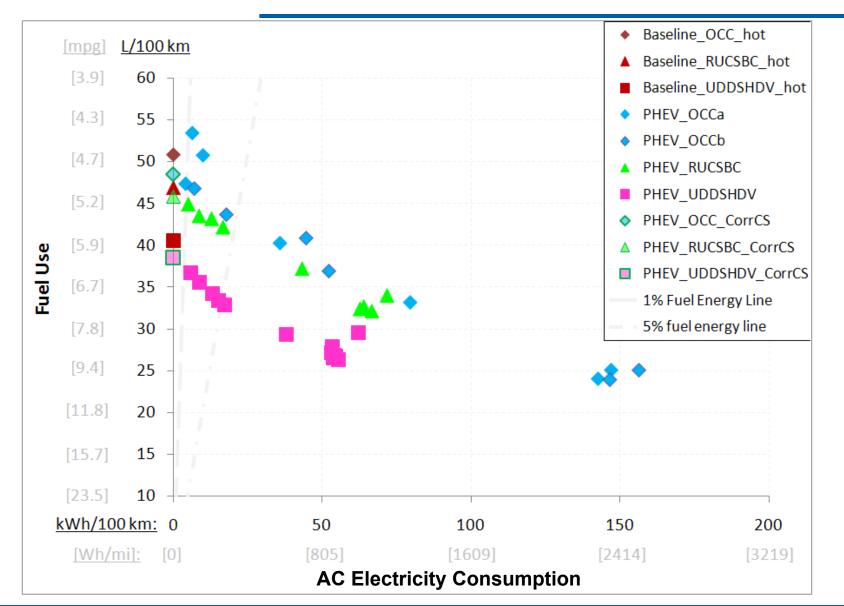

Measure AC recharge kWh at end of each complete test

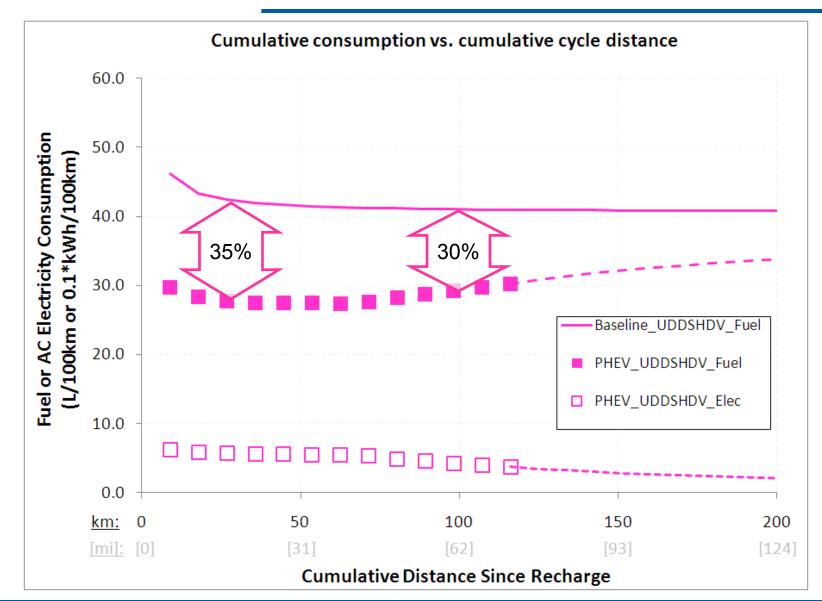

- Determine per-cycle and total DC kWh ۲
 - DC Ah during, CAN-reported voltage before and after each cycle

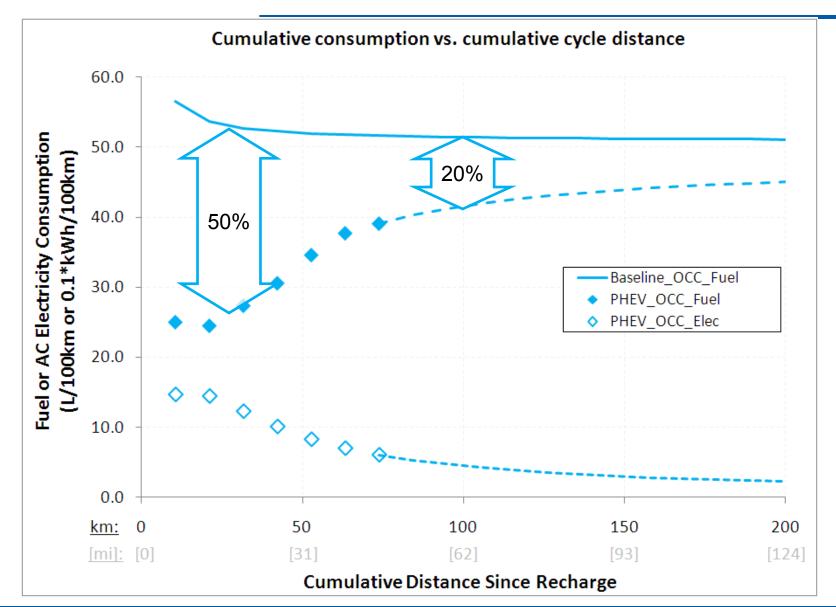

UDDSHDV Test Results

CS Net Energy Change (NEC) Correction Procedure




RUCSBC Test Results




National Renewable Energy Laboratory

OC Bus Test Results

Vehicle, Cycle	Operating	Fuel Consumption		<u>%</u>	Electric Consumption		NOx		<u>%</u>	Cyc Energy/Dist	
		L/100 km Avg, Stdev		<u>Change</u>	AC kWh	n/100 km	almi Aug Stelau		Change	bhp-h/	% Chg.
Mode		(mpg Avg)		vs. Base	Avg, Stdev		g/mi Avg , Stdev		vs. Base	<u>mi Avg</u>	vs. Base
Baseline, UDDSHDV	N/A	40.5 (5.3	0.4 8)	N/A	0	0	4.3	0.05	N/A	1.30	N/A
PHEV, UDDSHDV	CD (<39 mi)	26.8 (8.3	0.3 8)	-34%	53.9	0.6	5.0	0.15	17%	1.62	25%
PHEV, UDDSHDV	CS (>44 mi)	38.6 (6.3	0.1 1)	-5%	0.0	0.0	5.7	0.08	32%	1.58	21%
Baseline, RUCSBC	N/A	46.9 (5.0	0.6 0)	N/A	0.0	0.0	5.0	0.07	N/A	2.03	N/A
PHEV, RUCSBC	CD (<30 mi)	32.4 (7.3	0.3 3)	-31%	64.5	2.0	4.8	0.01	-4%	2.41	19%
PHEV, RUCSBC	CS (>38 mi)	45.8 (5.1	0.3 1)	-2%	0.0	0.0	5.6	0.12	12%	2.33	15%
Baseline, OCC	N/A	50.8 (4.4	0.2	N/A	0.0	0.0	4.2	0.05	N/A	1.67	N/A
PHEV, OCC	CD (<13 mi)	24.0 (9.3	0.1 8)	-53%	144.6	2.6	5.9	0.02	39%	2.02	21%
PHEV, OCC	CS (>26 mi)	48.6 (4.3	0.1 8)	-4%	0.0	0.0	9.6	0.17	128%	1.94	16%

From hot start replicates; cycles with DPF regeneration or abnormal behavior have been excluded PM ≤0.01 g/mi for all cycles

PHEV bus power capability in CS mode was reduced, resulting in some trace miss

Summary

- Comparison testing of two school buses
 - Baseline: 7.2 L engine, ≈25k lb test mass
 - PHEV: 6.4 L engine, \approx 28k lb test mass
- PHEV technology can save a significant amount of fuel
 - Savings magnitude depends on both driving type and distance between charging
- Improvement opportunities for tested PHEV school bus for fuel and emissions benefit
 - Implement a lower-NOx engine calibration (at Denver's altitude)
 - Improve CS (HEV) mode implementation (further reduce NOx and fuel use)

Collaborations

 Hybrid system specifications, data acquisition support

- Engine and drivetrain specifications
- Chassis specifications
- Drive cycle data
 - Adams County School District
 - Austin Independent School District
 - North Carolina school districts

17

Future Work

While this project is complete, related work continues and will leverage results:

- NREL's Advanced Vehicle Test Activity (AVTA) is supporting Navistar 'Next Gen' PHEV School Bus development
 - Drive cycle data collection
- NREL's Vehicle Systems Analysis group will utilize measured fuel consumption and SOC data to validate dynamic model of school bus
- Assess design tradeoffs with varied architectures, component sizes
- Leverage real world drive cycle data to optimize design for performance (intensity and range), fuel consumption and cost

Special thanks to:

• Lee Slezak, DOE Vehicle Technologies Program

NREL contacts:

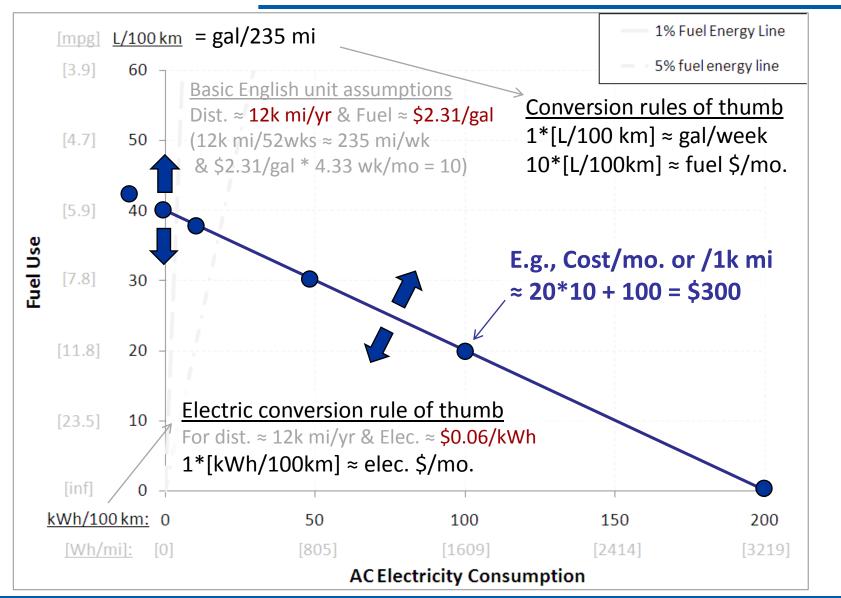
- Jeff Gonder jeff.gonder@nrel.gov
- Robb Barnitt <u>robb.barnitt@nrel.gov</u>

Questions?

Extra slides

Test Facility: Heavy-duty vehicle (chassis) and two engine dynamometers with emissions measurement capability

- Chassis test range: Class 3 8
 - 8,000 80,000 lb vehicle testing through combination of mechanical (flywheels) and electrical (DC motor) inertia
 - Twin 40" rolls (adjustable wheelbase)
- Regulated emissions measurement for 2010 heavy-duty on-road engine technology (2007 CFR)
 - Emissions equipment includes Horiba Mexa bench with additional NOx analyzers, FTIR, PEMS, Particulate mass and size (using FMPS)
- High accuracy (+/- 0.5% reading) fuel metering
 - Used for fuel consumption reporting
- Variable altitude testing capability (sea level to mile high)
 - School bus tests conducted at local (Denver) altitude



Relationship between PHEV fuel and electricity consumption

National Renewable Energy Laboratory