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1 Introduction

The presence of a freely moving fluid in a porous rock modifies its mechanical response. Two

mechanisms play a key role in this interaction between the interstitial fluid and the porous rock:

(i) an increase of pore pressure induces a dilation of the rock, and (ii) compression of the rock

causes a rise of pore pressure, if the fluid is prevented from escaping the pore network. These

coupled mechanisms bestow an apparent time-dependent character to the mechanical properties

of the rock. Indeed, if excess pore pressure induced by compression of the rock is allowed to

dissipate through diffusive fluid mass transport, further deformation of the rock progressively

takes place. It also appears that the rock is more compliant under drained conditions (when

excess pore pressure is completely dissipated) than undrained ones (when the fluid cannot

escape the porous rock)

Interest in the role of these coupled diffusion-deformation mechanisms was initially moti-

vated by the problem of “consolidation”–the progressive settlement of a soil under surface

surcharge.1—4 However, the role of pore fluid has since been explored in scores of geomechanical

processes: subsidence due to fluid withdrawal,5, 6 tensile failure induced by pressurization of

a borehole,7, 8 propagation of shear and tensile fractures in fluid-infiltrated rock with applica-

tion to earthquake mechanics,8—10 in situ stress determination,7, 11 sea bottom instability under

water wave loading,12—14 and hydraulic fracturing,15—17 to cite a few.

The earliest theory to account for the influence of pore fluid on the quasi-static deformation

of soils was developed in 1923 by Terzaghi1 who proposed a model of one-dimensional consol-

idation. This theory was generalized to three-dimensions by Rendulic2 in 1936. However, it

is Biot who in 19353 and 19414 first developed a linear theory of poroelasticity that is con-

sistent with the two basic mechanisms outlined above. Essentially the same theory has been

reformulated several times by Biot himself,18—21 by Verruijt5 in a specialized version for soil

mechanics, and also by Rice and Cleary8 who linked the poroelastic parameters to concepts

that are well understood in rock and soil mechanics. In particular, the presentation of Rice and

Cleary8 emphasizes the two limiting behaviors, drained and undrained, of a fluid-filled porous

material; this formulation considerably simplifies the interpretation of asymptotic poroelastic

phenomena. Alternative theories have also been developed using the formalism of mixtures

theory,22—26 but in practice they do not offer any advantage over the Biot theory.8, 26

This chapter is concerned with the formulation and analysis of coupled deformation-diffusion

processes, within the framework of the Biot theory of poroelasticity. Four major sections cover

the following topics: (i) the constitutive equations, presented in an effort to unify and to relate

various approaches proposed in the literature; (ii) the linear quasi-static theory of poroelasticity,
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using a formulation inspired partially by Rice and Cleary’s work;8 (iii) analytical and numerical

methods for solving initial/boundary value problems, and (iv) solution and discussion of some

fundamental problems. Other issues such as anisotropy, nonlinearity, and in particular, aspects

of the role of pore fluid on rock strength and failure mechanism,9, 27 are only briefly addressed

in the context of this presentation.
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2 Mechanical Description of a Poroelastic Material

As a necessary preliminary to a presentation of the constitutive equations, mass and momentum

balance laws, we briefly introduce here the basic kinematic and dynamic quantities that are

used in the mechanical description of a fluid-filled porous rock. Consistent with the classical

continuum approach, any quantity that appears in this description is taken to be averaged over

a certain length scale `. This length scale `, which underpins the continuum model, is assumed

to be large (at least by a factor 100) with respect to the length scale of the microstructure (i.e.

the typical dimension of the pores or rock grains), yet small enough to allow the introduction

of genuine macroscopic scale material heterogeneity.

The Biot model of a fluid-filled porous material is constructed on the conceptual model of a

coherent solid skeleton and a freely moving pore fluid (in other words both solid and fluid phases

are fully connected). This conceptual picture dictates the choice of the kinematic quantities:

a solid displacement vector ui which tracks the movement of the porous solid with respect to

a reference configuration, and a specific discharge vector qi which describes the motion of the

fluid relative to the solid. The specific discharge qi is formally defined as the rate of fluid volume

crossing a unit area of porous solid whose normal is in the xi direction. Two “strain” quantities

are also introduced to follow the deformation and the change of fluid content of the porous

solid with respect to an initial state: the usual small strain tensor εij and the variation of fluid

content ζ, defined as the variation of fluid volume per unit volume of porous material: εij is

positive for extension, while a positive ζ corresponds to a “gain” of fluid by the porous solid.

The strain quantities are related to the original kinematic variables ui and qi according to a

compatibility expression

εij =
1

2
(ui,j + uj,i) (1)

and the fluid mass balance relation (see Section 4.1.3)

∂ζ

∂t
= −qi,i (2)

where t represents time. The following conventions have been adopted in writing these two

equations: a comma followed by subscripts denotes differentiation with respect to spatial co-

ordinates and repeated indices in the same monomial imply summation over the range of the

indices (generally 1—3, unless otherwise indicated).

Consider now the basic dynamic variables: the total stress tensor σij , and the pore pressure

p, which is a scalar. The stress is defined in the usual way: σij is the total force in the

xj direction per unit area whose normal is in the xi direction. (Consistent with the strain

convention, a positive normal stress implies tension.) The pore pressure in a material element
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is defined as the pressure in an hypothetical reservoir which is in equilibrium with this element

(i.e. no fluid exchange takes place between the reservoir and the material element).8 Note that

the stress and pore pressure are the conjugate quantities of the strain and the variation of fluid

content, respectively; in other words the work increment associated with the strain increment

dεij and dζ, in the presence of the stress σij and p, is

dW = σij dεij + p dζ (3)

In the Biot model, description of stress and strain in the fluid is thus limited to their isotropic

component. The shear stress at the contact between fluid and solid, associated with a local

velocity gradient in the fluid is not considered in this formulation. Furthermore, the definition

of the pore pressure places some restrictions on the time scale at which coupled diffusion-

deformation processes can be analyzed, since the pore pressure must first be locally equilibrated

between neighboring pores, over the length scale ` (time scale and length scale are linked through

a diffusivity coefficient, which depends among other things on the viscosity of the interstitial

fluid). It is therefore in the modeling of quasi-static processes that the Biot model finds its full

justification, even though it has been extended to the dynamic range.28
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3 Constitutive Equations

This section deals principally with the volumetric response of a linear isotropic poroelastic

material. The description of this seemingly simple material has been the object of many dif-

ferent formulations. Here we relate some of these approaches, considering first a “continuum”

formulation where the fluid-filled material is treated as a whole, then a “micromechanical for-

mulation” where the individual contributions of the solid and fluid constituents are explicitly

taken into account. Many material constants are introduced in this presentation of the volu-

metric response, but only three of these parameters are actually independent. The three basic

material constants that have been selected to constitute the reference set are: the drained bulk

modulus K, the undrained bulk modulus Ku, and the Biot coefficient α. (Correspondences be-

tween the basic material constants K, Ku, and α and the coefficients appearing in the various

formulations proposed by Biot can be found in Appendix A.)

3.1 Continuum Formulation

3.1.1 Poroelastic Constitutive Equations

The Biot formulation of the constitutive equations for a fluid-filled porous material is based on

the assumptions of linearity between the stress (σij , p) and the strain (εij , ζ), and reversibility

of the deformation process (meaning that no energy is dissipated during a closed loading cycle).

With the respective addition of the scalar quantities p and ζ to the stress and strain group,

the linear constitutive relations can be obtained by extending the known elastic expressions. In

particular, the most general form for isotropic material response is

εij =
σij
2G
−
µ
1

6G
− 1

9K

¶
δijσkk +

1

3H 0 δijp (4a)

ζ =
σkk
3H 00 +

p

R0
(4b)

Without the pore pressure, equation (4a) degenerates to the classical elastic relation. The

parameters K and G are thus identified as the bulk and the shear modulus of the drained

elastic solid. The additional constitutive constants H 0, H 00 and R0 characterize the coupling
between the solid and fluid stress and strain. One of these constants can however be eliminated.

Indeed, the assumption of reversibility implies that the work increment

dW = σij dεij + p dζ = εij dσij + ζ dp (5)

is an exact differential;4 the Euler conditions

∂εij
∂p

=
∂ζ

∂σij
(6)
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combined with (4) lead to the equality H 00 = H 0. The isotropic constitutive law therefore

involves only four constitutive constants G, K, H 0 and R0†

The constitutive equations of an isotropic poroelastic material (4) can actually be separated

into a deviatoric response

eij =
1

2G
sij (7)

and a volumetric one

ε = −
µ
P

K
− p

H 0

¶
(8a)

ζ = −
µ
P

H 0 −
p

R0

¶
(8b)

where sij and eij denote the deviatoric stress and strain, P the mean or total pressure (isotropic

compressive stress), and ε the volumetric strain:

sij = σij + P δij (9a)

eij = εij − ε

3
δij (9b)

P = −σkk
3

(9c)

ε = εkk (9d)

It is apparent from (7) that for an isotropic poroelastic material, the deviatoric response is purely

elastic. The coupled effects which involve constants H 0 and R0 appear only in the volumetric
stress-strain relationship (8). This is however a particularity of isotropic materials (further

information on the constitutive equations of anisotropic material can be found in18, 27, 29). The

remainder of this section will be exclusively devoted to an analysis of the volumetric response

of a linear isotropic poroelastic material.

3.1.2 Volumetric Response

Drained and undrained response A key feature of the response of fluid-infiltrated porous

material is the difference between undrained and drained deformation. These two modes of

response represent limiting behaviors of the material: the undrained response characterizes the

condition where the fluid is trapped in the porous solid such that ζ = 0, while the drained

response corresponds to zero pore pressure p = 0‡.
†H0 and R0 were originally denoted as H and R in Biot’s 1941 paper.4 Since the same symbols were later

redefined,18 the prime superscripts have been added here to avoid any confusion; see Appendix A.
‡For the time being, the drained conditions will be assumed to correspond to p = 0; this can however be

relaxed to include any initial pore pressure field that is in equilibrium.
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From (8b), it is apparent that a pore pressure p proportional to the total pressure P is

induced under the undrained condition ζ = 0:

p = BP (10)

where the coefficient B = R0/H 0 is known as the Skempton pore pressure coefficient.30 Substi-
tuting p in (8a) by the value given in (10) indicates that the volumetric strain is proportional

to the total pressure P under the undrained condition (ζ = 0):

ε = − P
Ku

(11)

where

Ku = K

µ
1 +

KR0

H 02 −KR0
¶

(12)

is the undrained bulk modulus of the material.

Under the drained condition p = 0, the volumetric strain is also proportional to the total

pressure, see (8a):

ε = −P
K

(13)

So under both drained and undrained conditions, the poroelastic material behaves as an elastic

one, the undrained material being however stiffer (in its volumetric response) than the drained

one. Substituting (13) in (8b), with p = 0, leads to

ζ = αε (14)

where α = K/H 0. This equation gives a meaning to the constant α as the ratio of the fluid
volume gained (or lost) in a material element to the volume change of that element, when the

pore pressure is allowed to return to its initial state. Equation (14) also points out to the fact

that α cannot be larger than 1, since the volume of fluid gained (or lost) by an element cannot

be greater than the total volume change of that element (under the linearized approximation).

The three volumetric constitutive constants, K, Ku and α, which will be chosen in place of

K, H 0 and R0 as the basic set, have thus physical meaning that are associated with the drained
and undrained responses of the material. The range of variation of α is [0,1] and Ku is [K,∞].

Fast and slow loading The undrained and drained responses also characterize the instan-

taneous and long-term behaviors of the poroelastic material under the particular conditions of

a suddenly applied constant loading. Consider the “instantaneous” response of the poroelastic

material to such a step loading. Just after imposition of a load, pore fluid has not had the time

to move between neighboring material element, other than within some local pore scale, hence
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ζ = 0. After a long time, the pore pressure will equilibrate with the pore pressure imposed at

the boundary. Assuming this pore pressure to be zero, the long-term response of the material

will be characterized by the disappearance of the pore pressure everywhere, i.e. p = 0. Because

of the stiffness contrast between undrained and drained response, the volumetric deformation

will evolve from the short-term value (11) to the long-term one (13).

In the most general manner, undrained response denotes conditions where the time scale

characteristic of the loading is too short to allow fluid movement to take place between material

elements by diffusive mass transport, while drained response characterizes conditions where the

pore pressure has returned to its original value.

Alternative expressions for the volumetric response For further reference, it is useful

to write the volumetric relations (8) using the basic set of constants α, K and Ku:

ε = − 1
K
(P − αp) (15a)

ζ = − α

K

³
P − p

B

´
(15b)

where

B =
Ku −K
αKu

(16)

The volumetric relations can inversely be written as

P = αMζ −Kuε (17a)

p = M(ζ − αε) (17b)

where

M =
Ku −K

α2
=

H 02R0

H 02 −KR0 (18)

The constant M is sometimes called the Biot modulus; it is the inverse of a storage coeffi-

cient,31, 32 defined as the increase of the amount of fluid (per unit volume of rock) as a result

of a unit increase of pore pressure, under constant volumetric strain,

1

M
=

∂ζ

∂p

¯̄̄̄
ε

(19)

3.2 Micromechanical Approach

The constitutive model presented in the previous section describes the response of a porous

material as a whole, without explicitly taking into account the individual contribution of its

solid and fluid constituents. In other words, the “lumped” continuum model relates the bulk
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response to the bulk material properties. The shortcomings of this approach are that the bulk

material constants are tied to a specific solid-pore-fluid system. It is for example not known

how these bulk constants are influenced by change in the compressibility of the fluid or in the

porosity of the rock.

It is thus desirable to look into the “micromechanics” of the solid-pore-fluid system to elicit

the dependence of the bulk material coefficients to the micromechanical ones. At the cost of

more measurements, one can gain additional insight to the interaction among the constituents.

This approach leads also to the establishment of the limiting behaviors and it can provide

guidelines to extend the theory in the non-linear range.

The emphasis below is restricted to the poroelastic coupling of the material response. Hence

only the volumetric response of the poroelastic material, subject to a total pressure P and a pore

pressure p are examined (assuming that prior to loading, there is zero stress and pore pressure).

This loading will be designated by the notation {P, p}, to emphasize the independence of the two

load components. An alternative to the loading decomposition {P, p} will be also considered

here. The loading {P, p} can be recombined into two components: (i) a Terzaghi effective

pressure P 0 = P − p and (ii) a “Π-pressure” p0 = p which corresponds to a confining pressure
and a pore pressure of same magnitude p; this particular loading will henceforth be denoted as

“Π-loading”. This alternative loading decomposition will be denoted as [P 0, p0].

3.2.1 Volumetric Response of Fluid-Infiltrated Porous Solids

Porous solid and pore volume Let us consider a “sample” of porous material of volume

V , containing an interconnected pore space of volume Vp. The combined volume of the solid

phase and isolated pores is denoted by Vs, with V = Vp + Vs. Assuming full saturation, the

volume of fluid which can freely circulate in the sample is thus Vf = Vp. The porosity φ is

defined as the ratio Vp/V .

The volumetric response of the porous material to the loading {P, p} can be described in

terms of ∆V/V and ∆Vp/Vp, the volumetric strain of the bulk material, and of the pore space

respectively. Simply by invoking linearity between stress and strain, the following relations can

be written:

∆V

V
= − 1

K
(P − αp) (20a)

∆Vp
Vp

= − 1

Kp
(P − βp) (20b)

where Kp is the bulk modulus for the pore volumetric strain and β a dimensionless effective

stress coefficient. A comparison of (20a) with (15a) reveals that the coefficients of K and α
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are those defined before. The coefficients appearing in (20) are however not all independent.

By invoking the Betti-Maxwell reciprocal theorem, it can indeed be proven that the increase in

total volume ∆V due to the application of a pore pressure p is the same (to a minus sign) as

the decrease in the pore volume ∆Vp due to the application of a confining pressure P of equal

magnitude,33, 34
∂V

∂p

¯̄̄̄
P

= − ∂Vp
∂P

¯̄̄̄
p

(21)

Substituting (20) into (21), we obtain

Kp =
φ

α
K (22)

The constitutive relations (20) can alternatively be expressed in terms of the two loading com-

ponents P 0 and p0:

∆V

V
= −P

0

K
− p0

K 0
s

(23a)

∆Vp
Vp

= − P
0

Kp
− p0

K 00
s

(23b)

Comparison with (20) shows that

α = 1− K

K 0
s

(24a)

β = 1− Kp
K 00
s

(24b)

The coefficients K 0
s and K

00
s are two bulk moduli, which under certain circumstances can be

both identified with the bulk modulus Ks of the solid constituent, see Section ??.

Solid constituent and porosity The load decomposition [P 0, p0] suggests an alternative
description of the volumetric response of the porous solid in terms of ∆Vs/Vs and ∆φ/(1− φ),

two quantities that measure respectively the volumetric deformation of the solid phase, and the

relative deformation of the pore space and the porous solid.35 Using the definition V = Vp+Vs
and φ = Vp/V , it is easily deduced that

∆V

V
=
∆Vs
Vs

+
∆φ

1− φ
(25a)

∆Vp
Vp

=
∆Vs
Vs

+
∆φ

φ(1− φ)
(25b)
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The constitutive relations for the solid phase and the porosity can then be established using

the above decomposition and (23),

∆Vs
Vs

= − P 0

(1− φ)K 0
s

− 1

1− φ

µ
1

K 0
s

− φ

K 00
s

¶
p0 (26a)

∆φ

1− φ
= − P

0

Kφ
+

φ

1− φ

µ
1

K 0
s

− 1

K 00
s

¶
p0 (26b)

where we have introduced the notation

1

Kφ
=
1

K
− 1

1− φ

1

K 0
s

(27)

The advantage of writing the volumetric constitutive response of the porous material in the

above form becomes obvious for the particular case K 0
s = K

00
s , discussed in Section ??.

Fluid volumetric response On the assumption that the pore space of the porous material

is completely filled by a fluid, the pore volume change is equal to the variation of fluid volume

trapped in the pore space, i.e. ∆Vp = ∆Vf . The variation of fluid volume ∆Vf can actually be

decomposed into two parts:

∆Vf = ∆V
(1)
f +∆V

(2)
f (28)

where ∆V (1)f is the component associated to the compression or dilation of the interstitial fluid

and ∆V (2)f the component due to fluid exchange between the sample of porous material and

the outside. Introducing the bulk modulus of the fluid Kf , ∆V
(1)
f can be expressed in terms of

the pore pressure as
∆V

(1)
f

Vf
= − p

Kf
(29)

The second component ∆V (2)f is actually related to the variation of fluid content ζ introduced

earlier, i.e,

ζ =
∆V

(2)
f

V
=

φ∆V
(2)
f

Vf
(30)

Using (23b), (29) and (30), a constitutive relation can be derived for ζ:

ζ = − φ

Kp
(P − p

B
) (31)

where
1

B
= 1− Kp

K 00
s

+
Kp
Kf

(32)

The original equation for ζ, (15b), has thus been reconstructed from a different viewpoint.
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α = 1− K

K 0
s

= 1− Kp
φK 0

s +Kp

Ku = K

1 +
³
1− K

K0
s

´2
K
K0
s

³
1− K

K0
s

´
+ φ

³
K
Kf
− K

K00
s

´


B = 1−
φ
³
K
Kf
− K
K00
s

´
³
1− K

K0
s

´
+ φ

³
K
Kf
− K
K00
s

´
= 1−

Kp

Kf
− Kp

K00
s

1 +
Kp

Kf
− Kp

K00
s

K = K 0
s

µ
1− φK 0

s

φK 0
s +Kp

¶
=

Kp
φ

µ
1− Kp

Kp + φK 0
s

¶
= Kφ

·
1− Kφ

(1− φ)K 0
s +Kφ

¸
1

M
=

K

K 0
s

µ
1

K
− 1

K 0
s

¶
+ φ

µ
1

Kf
− 1

K 00
s

¶

Table 1: Relation among bulk continuum and micromechanical coefficients.

Parameter correspondences and limiting cases The previous construction has provided

an alternative meaning to the poroelastic constants. Table 1 summarizes the correspondence

between continuum and micromechanical quantities. These equations can be used to evaluate

the dependence of the bulk continuum constants α, B, K and Ku on the porosity and the

compressibilities of the fluid, solid and pores. In particular, simplified expressions for the

poroelastic parameters can be extracted for limiting cases:

• Incompressible solid constituent (K/K 0
s ¿ 1 and K/K 00

s ¿ 1). The compressibility of the

solid phase is negligible compared to that of the drained bulk material. The simplified
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expressions for α, B, Ku, and M are

α = 1 (33a)

Ku = K

µ
1 +

Kf
φK

¶
(33b)

B = 1− 1

1 +
Kf

φK

(33c)

M =
Kf
φ

(33d)

The resultant model is equivalent to Verruijt’s,5 where the ratio Kf/φ is the only relevant

poroelastic constant. We also note the following relation which links the bulk modulus of

the porous solid K to Kφ and Kp:

K = Kφ =
Kp
φ

(34)

• Incompressible fluid and solid constituents (K/K 0
s ¿ 1, K/K 00

s ¿ 1 and K/Kf ¿ 1).

The expressions for the incompressible solid constituent case (33) reveal that if the com-

pressibility of the fluid can further be neglected, then B = 1, Ku →∞, andM →∞. For
this limiting situation all the poroelastic parameters assume their upper bound values.

• Highly compressible fluid constituent (Kf/K ¿ 1). The approximated expressions for B,

Ku, and M are:

Ku = K

µ
1 +

α2Kf
φK

¶
(35a)

B =
αKf
φK

=
Kf
Kp

(35b)

M =
Kf
φ

(35c)

In the limit Kf → 0, the parameter B → 0, Ku → K, and M → 0; in other words, the

porous material behaves as an elastic material without fluid.

3.2.2 Invariance of Porosity Under Π-Loading

We now consider an ideal porous material characterized by a fully connected pore space and

by a microscopically homogeneous and isotropic matrix material. If a Π-loading is applied to

this material, the resulting stress corresponds to a uniform pressure p everywhere in the solid

constituent. In other words, this material deforms under Π-loading as if all the pores were filled
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with solid material.33, 36 Hence, the solid component and the skeleton experience a uniform

volumetric strain without any shape change, and

∆Vs
Vs

=
∆Vp
Vp

=
∆V

V
(36)

The above relation implies that there is no change in porosity under Π-loading in this ideal

material. Applying the equality (36) to (23) with P 0 = 0, we clearly observe the identity

between the two solid moduli

K 0
s = K

00
s = Ks (37)

where Ks is now identified as the modulus of solid material. The above equivalence between

the K 0
s and K

00
s actually serves as the definition of this ideal porous material, which appears to

have been first discussed by Gassmann.37

With the identity (37), the constitutive equations (26) simplify to

∆Vs
Vs

= − Ps
Ks

(38a)

∆φ

1− φ
= − P

0

Kφ
(38b)

where

Ps =
1

1− φ
(P − φp) (39)

These are the constitutive laws derived by Carroll.35, 38 Equation (38a) shows that the volu-

metric strain of the solid phase is proportional to the solid pressure Ps, defined as the isotropic

component of the compressive stress averaged over the solid phase. The second equation (38b)

reveals that the porosity variation be controlled by the Terzaghi effective pressure P 0 = P − p.
In particular, for a sample under Π-loading, there is no porosity variation ∆φ = 0, since P 0 = 0.

The identity (37) brings some simplification of the relation between the bulk continuum

and micromechanical parameters. The specialization of results in Table 1 is now summarized

in Table 2, where the ratio Ks/K has been replaced by (1− α). Generalization of this theory

to deviatoric loading and anisotropic elastic material can be found in the work of Katsube and

Carroll.38, 39

It is instructive to consider the case of an elastic isotropic material with spherical pores.35, 38

Using the expression for the effective bulk modulus derived by Mackenzie,40 it can be shown

that

Kφ =
4Gs(1− φ)

3φ
(40)

where Gs is the shear modulus of the solid phase. Hill41, 42 proved that the expression (40)

gives an upper bound for the effective bulk modulus of a porous solid, irrespective of the
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α = 1− K

Ks

Ku = K

·
1 +

α2Kf
(1− α)(α− φ)Kf + φK

¸
B =

αKf
[α− φ(1− α)]Kf + φK

1

M
=

φ

Kf
+

α− φ

Ks

Table 2: Expressions for α, Ku, B, and M for the particular case where φ is invariant under

Π-loading

pore configuration. Equation (40) shows that the modulus Kφ depends only on the solid

shear modulus Gs (and not on Ks), implying that porosity variation in an elastic material with

spherical pores is due entirely to the shear stresses induced in the solid phase by the application

of an effective pressure P 0. These shear stresses, which have zero volume average, are associated
to the stress concentration around the pores.35

How good is the approximation introduced by assuming that K 0
s = K

00
s ? The bulk moduli of

the major mineralogical components of most rocks do not differ by large amount, and thus any

significant difference between these two moduli is likely to be the consequence of the existence

of a non-connected pore space. The little experimental evidence available does not contradict

however the validity of this assumption. Nur and Byerlee36 report tests on a low porosity

Westerly granite (φ ' 1%) indicating that the bulk modulus K 0
s is identical to the grain

modulus. Experiments performed by Zimmerman et al.43 on various sandstones also support

this hypothesis. In closing, it is noted that the assumption K 0
s = K

00
s is certainly a convenient

one. The error linked to the assumption is modest, especially in view of the nonlinear effects

which are discussed next.

3.2.3 Non-Linear Volumetric Deformation of Porous Rocks

Many experimental results suggest that the volumetric response of porous rocks to the change

of total pressure and pore pressure is actually non-linear.43—45 The linear relations considered so

far are merely approximations, applicable to “small” stress variations. The non-linear behavior

is generally associated with the closing/opening of crack-like pores (characterized by the small
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aspect ratio of the minor to major axis of the pore), but in very porous and weak rocks, it

is caused by progressive pore collapse. The main concern here is to establish whether or not

the dependence of the compressibilities on the total pressure P and the pore pressure p can be

reduced to an “effective” pressure instead (i.e. a quantity depending linearly on P and p) and

to establish bounds on the variation of the compressibilities with porosity.

Investigations of the non-linear deformation of porous rocks have been motivated by the

need to quantify the effect of pore pressure decline during depletion of an oil or gas reservoir on

pore volume and the volume of the rock (the latter in relation with the study of the mechanism

of subsidence). We also adopt here a notation in terms of compressibility instead of stiffness

that is consistent with the one used in these studies.

Under increasing confining pressure and/or decreasing pore pressure, crack-like pores close

progressively (those with the smallest aspect ratio first) and once closed do not contribute any

more to the compressibility of the rock. Pores that are approximately equi-dimensional do not

close however, provided that the solid material remains elastic. To accommodate this non-linear

deformation, the volumetric response of the porous material is now written in incremental form,

for an infinitesimal transition of the loading from {P, p} to {P + dP, p+ dp}.

dV

V o
= −Cbc(P, p) dP + Cbp(P, p) dp (41a)

dVp
V op

= −Cpc(P, p) dP + Cpp(P, p) dp (41b)

where the superscript o for the bulk and pore volumes refers to stress-free conditions (to ensure

a “small strain” formulation). The compliance coefficients Cbc and Cbp are the bulk compress-

ibilities while Cpc and Cpp are pore compressibilities. The compressibilities are related to the

previously defined parameters by

Cbc =
1

K
Cbp =

α

K
Cpc =

1

Kp
Cpp =

β

Kp
(42)

If the deformation induced by the infinitesimal load {dP, dp} is reversible and independent of
the manner it is applied, then the relation (22) between two of the poroelastic constants still

holds, i.e. in the present notation

Cbp = φCpc (43)

As implied by the notation used in (41), all the coefficients depend on the confining pressure

and pore pressure. With some weak assumptions, it is however possible to demonstrate that

the compressibilities are actually only function of the Terzaghi effective pressure P 0.43 This can
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be established by writing (41) in a different form (compare (20) and (23)):

dV

V o
= −Cbc(P 0, p0) dP 0 −C 0s(P 0, p0) dp0 (44a)

dVp
V op

= −Cpc(P 0, p0) dP 0 − C 00s (P 0, p0) dp0 (44b)

It is clear that

C 0s = Cbc − Cbp (45a)

C 00s = Cpc − Cpp (45b)

Consider the following assumptions:

1. There is no porosity variation under Π-loading.

2. The compressibility of the solid phase is constant (independent of stress).

3. The volume variations dV and dVp induced by the loading {dP, dp} do not depend on the
stress path followed. In other words, dV and dVp are exact differentials.

Assumption 1 leads to the conditions of dP 0 = 0, and dV/V o = dVp/V op , hence

C 0s = C
00
s = Cs =

1

Ks
. (46)

In the above Cs is the compressibility of the solid phase. Assumption 3 implies that Euler condi-

tions ∂Cbc/∂p0 = ∂Cs/∂P
0 and ∂Cpc/∂p

0 = ∂Cs/∂P
0 exist. Since Cs is a constant (assumption

2), we find
∂Cbc
∂p0

=
∂Cpc
∂p0

= 0 (47)

It is finally concluded that the bulk and pore compressibilities depend only on the Terzaghi

effective pressure P 0. This conclusion is supported by many experimental results obtained by
Zimmerman et al.43 and others. Also, the above relations (43), (45), and (46) show that once φ

and Cs are known, it is enough to measure only one compressibility (the other compressibilities

being then directly determined).

Equation (45a) shows Cbc = Cs + φCpc, suggesting that the bulk compressibility Cbc is

always larger than the solid phase compressibility Cs. The pore compressibility Cpc, and thus

the bulk compressibility, decrease with increasing confining pressure until all the crack-like pores

are closed. The compressibilities then approach constant values. Experiments on consolidated

sandstones43 indicate that this effect takes place at a confining pressure of about 50 MPa. For
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a rock like the Westerly granite, which is made up almost exclusively of crack-like pores, all the

cracks are closed at a confining pressure of about 200 MPa and the bulk compressibility of the

rock is then virtually identical to the compressibility of the mineral constituents, Cs.

Although it is generally known that Cbc ≥ Cs (Ks ≥ K), one can establish more precise
bounds for the bulk modulus K. Hashin and Shtrikman46 considered a material which is both

microscopically and macroscopically isotropic, and constructed the upper bound

K

Ks
≤ 1− 3φ

2 + φ
(48)

The lower bound for K is clearly zero as one can have a connected network of long and thin

cracks embedded in the media such that it can be closed without resistance. From (48), bounds

for the following quantities can also be derived:43

Kp
Ks

≤ 2

3
− 2φ
3

(49a)

α ≥ 3φ

2 + φ
(49b)

β ≥ 1

3
+
2φ

3
(49c)

3.3 Laboratory Measurements

The principle of measuring the poroelastic coefficients that characterize the volumetric response

of an isotropic porous rock is now discussed. In view of the non-linear response of rocks, the

poroelastic constants must be understood as incremental or tangent parameters. They are thus

determined by measuring the response to a small load increment of a rock sample, initially

subject to a confining pressure Po and a pore pressure po. It practice, it can generally be

assumed that the incremental (or tangent) coefficients depend only on the Terzaghi effective

pressure Po − po, implying that all the measurements can actually be done at zero reference
pore pressure, po = 0.

Three types of tests are commonly used to determine the poroelastic parameters: (i) the

drained test where the load increment is {∆P, 0}, (ii) the unjacketed test characterized by an
equal increase of the confining pressure and pore pressure, [0,∆p0], and (iii) the undrained test
where a confining pressure ∆P is applied on the rock, but no fluid is allowed to enter or leave

the core sample.

All these tests can be carried out in an apparatus that can be schematically described as

follow. A jacketed core of rock set between two endcaps is placed in a pressure vessel where a

confining pressure can be applied hydraulically. Endcaps can be designed either with drainage

holes to enable control of the pore pressure through fluid mass exchange with the sample for the
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Test Boundary Conditions Measurements Poroelastic Parameters

Drained P = P o +∆P ∆V/V K

p = po ∆Vf/V α

Undrained P = P o +∆P ∆V/V Ku

ζ = 0 p B

Unjacketed P = P o +∆p0 ∆V/V K 0
s

p = po +∆p0 ∆Vf/V γ

Table 3: Test description

drained test, or solid for the undrained test (possibly mounted with a pressure transducer). See

Zimmerman et al.47 for a description of such an apparatus with control of both the confining

pressure and pore pressure, and Green and Wang48 for aspects pertaining to the undrained

experiment. Note that the increments of pressure used in these experiments are typically of

order of a few MPa.

Table ?? summarizes the tests, testing conditions, and parameters determined. Details are

discussed next.

3.3.1 Drained Test

In the drained test, the confining pressure is increased by ∆P , but the pore pressure p is

maintained at the initial value po on the boundary (or at least part of the boundary) of the

rock core. As a result of the loading, an incremental pore pressure ∆p is initially induced

in the rock (equal to B∆P , assuming “undrained” during application of the load), and is

then progressively dissipated as the pore pressure comes into equilibrium with the boundary

condition. If the cylindrical sample is drained at both ends, the drainage path is approximately

one-dimensional and the characteristic time for dissipation of the induced pore pressure is of

order L2/4c, where c is the diffusivity coefficient (see section 4.3) and L the length of the core.

Depending on the permeability of the rock, the diffusivity coefficient can be as high as 104

cm2/s for a very permeable sandstone and as low as 10−4 cm2/s for a low porosity shale. For
a core length of 5 cm, the time required for the pore pressure to reach equilibrium could thus

vary from less than one second for a sandstone to the order of days for a shale.

Once the pore pressure is in equilibrium, two measurements can be made: ∆V , the volume

change of the sample, and ∆Vf the volume of fluid expelled from the rock. Since the fluid

pressure before loading and after equilibrium is identical, no calibration of the measurement
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system for∆Vf to compensate for pressure change is needed; furthermore∆Vf should accurately

represent the change of pore volume caused by the incremental loading {∆P, 0}. The volumetric
change of the sample ∆V can be estimated using strain gages mounted on the core in transverse

and longitudinal directions, or from the oil volume change in the cell (this latter method requires

however calibration to account for the compressibility of the confining fluid volume and the cell).

From the two measurements ∆V and ∆Vf (= ∆Vp), the drained bulk modulus K and the

α coefficient can be determined according to K = V∆P/∆V and α = ∆Vf/∆V , respectively

(see equations (20) and (22)).

3.3.2 Undrained Test

In this test, an incremental confining pressure ∆P is applied to the rock sample, without any

fluid allowed to leave the sample. Two measurements can be made directly after application of

the load: the volumetric change ∆V for the determination of Ku (Ku = V∆P/∆V ) and the

pore pressure change ∆p for B (B = ∆p/∆P ). Accurate determination of B requires that the

“dead” fluid volume, i.e. the volume of fluid exterior to the sample, be kept to a minimum,

as the existence of this volume permits fluid to escape the core. According to Wissa,49 who

conducted an experimental study of the pore measurement system, the ratio of dead fluid

volume over the pore fluid volume should be less than 0.003.

3.3.3 Unjacketed Test

In the original unjacketed test proposed by Biot and Willis,31 the core without a jacket is loaded

by a fluid in a pressure vessel. The test can however be carried out with a jacketed core, as

in the two other tests, simply by imposing equal increment ∆p0 to the confining pressure and
the pore pressure. As in the case of the drained test, two measurements can be made: ∆V and

∆V
(2)
f , the amount of fluid injected. (The pore pressure field in the core has to be in equilibrium

before these measurements become meaningful). This time, however, because the pore pressure

is changing, a calibration of the measuring system is needed to determine the variation of

fluid volume inside the sample. From these measurements, two parameters can be determined:

the unjacketed compressibility δ = 1/K 0
s = ∆V/V∆p

0 and a storage coefficient defined under
condition of Π-loading, γ = ∆V (2)f /V∆p0. The constant γ, denoted as the coefficient of fluid
content by Biot and Willis,31 can be expressed in terms of the other poroelastic constants as

(see equations (30)—(32))

γ = φ

µ
1

Kf
− 1

K 00
s

¶
=
1

M
− α(1− α)

K
(50)
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(Recall that M is the inverse of a storage coefficient defined under zero volumetric strain). It

has been pointed out by Biot and Willis31 that if independent measurements of Kf and φ are

made, the comparison between the two coefficients δ and γ serves as a check for the microscopic

homogeneous condition (K 0
s = K

00
s ).

3.3.4 Table of Poroelastic Constants

In Table 4, we list the micromechanical as well as the bulk continuum constants for several

rocks, compiled from.8, 50—52 The parameters Ku, νu, B and c are dependent on the fluid; for

that purpose, water with Kf = 3.3 × 103 MPa is assumed. A note of caution however about
the use this table–the table is only intended to establish some basic idea about the range of

realistic poroelastic constants. As discussed earlier, the poroelastic parameters are generally

sensitive to the stress conditions under which they are measured. Measurement with static or

dynamic techniques may also yield different result.51, 52 These factors are not considered in the

compilation of Table 4.
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Ruhr Tennessee Charcoal Berea Westerly

sandstone marble granite sandstone granite

G (N/m2) 1.3× 1010 2.4× 1010 1.9× 1010 6.0× 109 1.5× 1010
ν 0.12 0.25 0.27 0.20 0.25

νu 0.31 0.27 0.30 0.33 0.34

K (N/m2) 1.3× 1010 4.0× 1010 3.5× 1010 8.0× 109 2.5× 1010
Ku (N/m2) 3.0× 1010 4.4× 1010 4.1× 1010 1.6× 1010 4.2× 1010
B 0.88 0.51 0.55 0.62 0.85

c (m2/s) 5.3× 10−3 1.3× 10−5 7.0× 10−6 1.6× 100 2.2× 10−5
η 0.28 0.08 0.08 0.30 0.16

α 0.65 0.19 0.27 0.79 0.47

Ks (N/m2) 3.6× 1010 5.0× 1010 4.5× 1010 3.6× 1010 4.5× 1010
φ 0.02 0.02 0.02 0.19 0.01

k (md) 2.0× 10−1 1.0× 10−4 1.0× 10−4 1.9× 102 4.0× 10−4
Weber Ohio Pecos Boise

sandstone sandstone sandstone sandstone

G (N/m2) 1.2× 1010 6.8× 109 5.9× 109 4.2× 109
ν 0.15 0.18 0.16 0.15

νu 0.29 0.28 0.31 0.31

K (N/m2) 1.3× 1010 8.4× 109 6.7× 109 4.6× 109
Ku (N/m2) 2.5× 1010 1.3× 1010 1.4× 1010 8.3× 109
B 0.73 0.50 0.61 0.50

c (m2/s) 2.1× 10−2 3.9× 10−2 5.4× 10−3 4.0× 10−1
η 0.26 0.29 0.34 0.35

α 0.64 0.74 0.83 0.85

Ks (N/m2) 3.6× 1010 3.1× 1010 3.9× 1010 4.2× 1010
φ 0.06 0.19 0.20 0.26

k (md) 1.0× 100 5.6× 100 8.0× 10−1 8.0× 102

Table 4: Poroelastic constants for various materials

25



4 Linear Isotropic Theory of Poroelasticity

The focus of the preceding section was on the constitutive laws of poroelasticity. To construct

a well-posed mathematical system for the description of the stress, pore pressure, flux, and

displacement in the medium, additional equations based on mass and momentum conservation

principles need to be introduced. Together with the constitutive laws, these equations constitute

the governing equations of the theory of poroelasticity. These equations are then reduced

through substitution and elimination of variables to produce systems amenable for mathematical

treatment, which are discussed below as field equations.

4.1 Governing Equations

4.1.1 Constitutive Law

Constitutive constants In the preceding section on constitutive equations, the emphasis

was placed on the volumetric response. This was reflected in the choice of bulk moduli K and

Ku as part of the fundamental set of material constants. For the presentation of the linear

theory, we introduce the drained and undrained Poisson ratios ν and νu and adopt instead {G,

α, ν, νu} as the fundamental set†. The drained and undrained Poisson ratios, ν and νu, are

related to the moduli G, K, and Ku according to

ν =
3K − 2G
2(3K +G)

(51a)

νu =
3Ku − 2G
2(3Ku +G)

(51b)

The magnitude of the poroelastic effects is controlled by the values of the two constants α and

νu (the range of variation for α is [0, 1], and for νu [ν, 0.5]) . Two limiting cases have previously

been defined: (i) the “incompressible constituents” model, α = 1 and νu = 0.5, characterized

by the strongest poroelastic effects, and (ii) the “uncoupled” model, νu ' ν, for which some of

the poroelastic effects, such as the sensitivity of the volumetric response to the rate of loading,

and the Skempton effect, disappear.

Three others parameters also play pivotal roles in the poroelastic equations: the Skempton

pore pressure coefficient B, the Biot modulus M , and the poroelastic stress coefficient η. They
†Only four constants can be independently selected: one constant for the deviatoric response, three for the

volumetric ones.
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can be expressed in terms of the fundamental constants as

B =
3(νu − ν)

α(1− 2ν)(1 + νu)
(52a)

M =
2G(νu − ν)

α2(1− 2νu)(1− 2ν) (52b)

η =
α(1− 2ν)
2(1− ν)

(52c)

The ranges of these constants are [0, 1] for B, [0, ∞] for M , and [0, 0.5] for η. It also useful to
introduce a storage coefficient S, which is related to M according to

S =
(1− νu)(1− 2ν)
M(1− ν)(1− 2νu) (53)

While M is defined under constant volumetric strain, S represents a storage coefficient defined

under the particular conditions of uniaxial strain and constant normal stress in the direction of

the strain.32 Note that in the degenerate case νu ' ν, S = 1/M .

Constitutive equations The constitutive equations (4) are now rewritten in terms of {G,

α, ν, νu}. For the sake of completeness, the various forms that these equations can take are

recorded.

Consider first the constitutive response for the porous solid (4a). Selecting the pore pressure

p as the coupling term yields the strain-stress relation

2Gεij = σij − ν

1 + ν
σkkδij +

α(1− 2ν)
1 + ν

pδij (54)

and the stress-strain equation

σij + αpδij = 2Gεij +
2Gν

1− 2ν εδij (55)

These relations are similar to those for a drained elastic solid with (σij+αpδij) playing the role

of an “effective stress” (the coefficient α is hence sometimes interpreted as an effective stress

coefficient). Furthermore, (54) and (55) reduce to the drained elastic constitutive equations

for vanishing p. On the other hand, if ζ is adopted as the coupling term, the constitutive

expressions become

2G

µ
εij − B

3
ζδij

¶
= σij − νu

1 + νu
σkkδij (56)

σij = 2Gεij +
2Gνu
1− 2νu εδij − αMζδij (57)

This time, the equations are like those for an undrained elastic solid, if εij is replaced by the

“effective strain” (εij − Bζδij/3). The dual form of these equations clearly shows the elastic
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character of the poroelastic material in its two limiting behaviors, drained (p = 0) and undrained

(ζ = 0).

Now we list two different forms of the response equation for the pore fluid (4b), depending

on whether the mean stress or the volumetric strain is used as the coupling term

2Gζ =
α(1− 2ν)
1 + ν

µ
σkk +

3

B
p

¶
(58)

p =M(ζ − αε) (59)

Plane strain expressions The above constitutive equations (54)—(59) can be reduced to the

case of plane strain ε33 = ε13 = ε23 = 0. Now the subscripts i, j, and k take only the values 1,

2. From (54) the out-of-plane normal stress σ33 is given by

σ33 = νσkk − α(1− 2ν)p, k = 1, 2 (60)

Equations (55), (57), (59) remain the same (the range of the subscripts changes however).

Equations (54), (56) and (58) becomes

2Gεij = σij − νσkkδij + α(1− 2ν)pδij (61)

2G

·
εij − (1 + νu)B

3
ζδij

¸
= σij − νuσkkδij (62)

2Gζ = α(1− 2ν)
·
σkk +

3

B(1 + νu)
p

¸
(63)

Limiting cases Of the two limiting parameter cases discussed earlier, it is of interest to

examine the implications on the fluid response equation.

• The incompressible constituents model (α = 1 and νu = 0.5): Examination of the expres-
sion (52b) for M suggests that M →∞ and (59) reduces to

ζ = ε (64)

The change of volume of the porous solid is thus equal to the volume of fluid exchanged.

• The uncoupled model (νu ≈ ν): Here M → 0. In order to have a non-trivial equation

for the fluid response, we introduce the small parameter ² = Kf/φK and look at the

asymptotic behavior. In view of the previous results (35c), we have that B ' α², Ku '
K+α2K²,M ' 1/S ' K² and νu ' ν+(1+ν)(1−2ν)α2²/3. There is thus a vanishingly
small pore pressure induced by change of the mean stress during undrained response, when
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²→ 0. However, examination of (58) and (59) shows that |ζ| À |ε| under conditions where
the mean stress is of the same order of magnitude as p. Then equation (58) and (59) both

reduce to the linearized equation of state of the pore fluid:

ζ =
φp

Kf
= Sp (65)

Note that for these two limiting cases, the solid response equations (54) and (55) remain

well-posed as they are expressed in terms of material constants that are independent of the

compressibility of the fluid.

4.1.2 Transport Law

The fluid transport in the interstitial space can be described by the well-known Darcy’s law

which is an empirical equation for seepage flow in non-deformable porous media. It can also

be derived from Navier-Stokes equations by dropping the inertial terms.53 Consistent with

the current small deformation assumptions and by ignoring the fluid density variation effect

(Hubert’s Potential54), Darcy’s law can be adopted here without modification:

qi = −κ(p,i−fi) (66)

In this equation, fi = ρfgi is the body force per unit volume of fluid (with ρf the fluid density,

and gi the gravity component in the i-direction), and κ = k/µ the permeability coefficient or

mobility coefficient (with k the intrinsic permeability having dimension of length squared, and

µ the fluid viscosity).

The intrinsic permeability k is generally a function of the pore geometry. In particular, it

is strongly dependent on porosity φ. According to the Carman-Kozeny law55 which is based

on the conceptual model of packing of spheres, a power law relation of k ∼ φ3/(1− φ)2 exists.

Other models based on different pore geometry gives similar power laws (see56 for a review).

Actual measurements on rocks, however, often yield power law relations with exponents for φ

significantly larger than 3.

It is also of interest to investigate the relation between the permeability and the stress to

which the rock is subjected to. For a material which is porosity invariant under Π-loading, the

following incremental constitutive equation applies (cf. (38b) and (27) in Section ??)

dφ

1− φ
= −Cφ(P

0) dP 0 (67)

where Cφ is the compliance for the porosity “strain”, given by

Cφ(P
0) = Cbc(P 0)− Cs

1− φ
(68)
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Equation (67) can be integrated if the form of Cbc(P 0) is explicitly known. Taking for example
the Mackenzie model of an elastic material with spherical pores (cf. (40)) gives

Cφ =
3φ

4Gs(1− φ)
(69)

Integrating (67) from a stress-free state then yields

φ

φo
= e−3P

0/4Gs (70)

in which φo is the porosity at the un-stressed state and the shear modulus of the solid phase

Gs is assumed to be constant. Considering a relation k ∼ φa, we obtain

k = koe
−3aP 0/4Gs = koe−bP

0
(71)

where ko is the permeability under stress-free state, and b should generally be regarded as

an experimental constant. Equation (71) shows that k is a function of the effective confining

pressure P 0 only. This type of exponential relationship, or some slight variation of it, has been
quite successfully applied for fitting laboratory data.

Despite the above discussion on nonlinearity, the permeability is henceforth regarded as a

stress-independent constant within the framework of linear theory.

4.1.3 Balance Laws

Equilibrium equations Standard considerations of static equilibrium lead to the local stress

balance equation

σij,j = −Fi (72)

where Fi = ρgi is the body force per unit volume of the bulk material, ρ = (1− φ)ρs + φρf is

the bulk density, ρs and ρf are the densities of the solid and the fluid phase, respectively.

Continuity equation for the fluid phase Considerations of mass conservation of a com-

pressible fluid yields the local continuity equation

∂ζ

∂t
+ qi,i = γ (73)

where γ is the source density (the rate of injected fluid volume per unit volume of the porous

solid). It should be noted that (73) is in a linearized form as the fluid density variation effect

has been ignored.
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4.2 Compatibility Equations

The strain field εij defined in (1) must satisfy some compatibility requirements to ensure a

single valued continuous displacement solution ui. These compatibility relations are identical

to those derived in elasticity57

εij,kl + εkl,ij − εik,jl − εjl,ik = 0 (74)

From the above, the constitutive (54), and the equilibrium (72) equations, the corresponding

Beltrami-Michell compatibility equations for poroelasticity can be derived:

∇2σij + 1

1 + ν
σkk,ij + 2η

µ
δij∇2p+ 1− ν

1 + ν
p,ij

¶
= − ν

1− ν
δijFk,k − (Fi,j + Fj,i) (75)

Linked to these compatibility equations, there are some very useful relations that satisfy the

Laplace/Poisson equation. First, we can contract (75) to obtain:

∇2(σkk + 4ηp) = −1 + ν

1− ν
Fk,k (76)

For plane strain, this equation reduces to

∇2(σkk + 2ηp) = − 1

1− ν
Fk,k; (k = 1, 2) (77)

Next, we seek the harmonic relation between p and ε. Substituting the constitutive expression

(55) for σij into the equilibrium equation (72), and taking the divergence yields

∇2
µ
p− G

η
ε

¶
=
Fk,k
α

(78)

Using (59) to eliminate ε we obtain

∇2(Sp− ζ) =
η

G
Fk,k (79)

Finally, the pore pressure p can be eliminated between (78) and (79) to derive an expression

between ε and ζ:

∇2
µ
ζ − GS

η
ε

¶
=

1

αM
Fk,k (80)

Note that the right-hand member of (76)—(80) vanishes if the body force Fi derives from a

harmonic potential (conservative loading). All these relations should actually be seen as one of

the strain compatibility expressions (only one independent relation exists in plane strain).
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4.3 Field Equations

Linear isotropic poroelastic processes are therefore described by:

1. the constitutive equations for the porous solid (one of the various forms (54)—(57)),

2. that for the fluid, either (58) or (59),

3. Darcy’s law (66),

4. the equilibrium equations (72), and

5. the continuity equation (73).

A set of five material constants, G, ν, νu, α and κ are needed to fully characterize a linear

isotropic poroelastic system.

In this section, these governing equations are combined into field equations with a reduced

number of variables. Only field equations that lead to a useful solution algorithm are investi-

gated. Two fairly similar schemes are actually examined. In the first approach, the reduced

variables are ui and p and the field equations consist of a Navier type equation for ui and a

diffusion equation for p (both containing a coupling term). The other approach is based on

using ui and ζ as reduced variables with a Navier type equation for ui and a diffusion equation

for ζ. In the second approach the diffusion equation is uncoupled.

4.3.1 Navier Equations

A Navier-type equation for the displacement ui is obtained by substituting into the equilibrium

equations (72), the constitutive relations, (55) or (57), with εij expressed in terms of the

displacement gradient using (1) . Two forms of the Navier equation exist depending on which

constitutive relation, (55) or (57), is used:

G∇2ui + G

1− 2νuk,ki = αp,i − Fi (81a)

G∇2ui + G

1− 2νuuk,ki = αMζ ,i − Fi (81b)

The coupling term may be viewed as a “body force” proportional either to the gradient of the

pore pressure or the gradient of the variation of fluid content.
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4.3.2 Diffusion Equations

Two diffusion equations are derived, one for p, and the other for ζ. Consider first the diffu-

sion equation for p. Combination of Darcy’s law (66), the continuity equation (73), and the

constitutive relation (59) yields

∂p

∂t
− κM∇2p = −αM ∂ε

∂t
+M(γ − κfi,i) (82)

The diffusion of pore pressure is thus coupled with the rate of change of the volumetric strain.

Under steady-state conditions, (82) certainly uncouples and becomes a Poisson equation. But

there are other circumstances, discussed in Section 4.3.4, where the diffusion equation uncouples

at all time.

The diffusion equation for ζ is deduced from (66) and (73), by taking into account the

relationship (79). It has the form:

∂ζ

∂t
− c∇2ζ = ηc

G
Fi,i + γ − κfi,i (83)

where the diffusivity coefficient c is given by8, 32

c =
κ

S
=
2κG(1− ν)(νu − ν)

α2(1− 2ν)2(1− νu)
(84)

The coefficient c is also sometimes called the generalized consolidation coefficient8 because it

is identical to the Terzaghi consolidation coefficient under one-dimensional consolidation (see

Section 6.1). The diffusion equation for ζ is thus uncoupled at all times, contrary to the diffusion

equation for p.

It is of interest to note that the diffusivity coefficient for the pore pressure equation and

the variation of fluid content can both be expressed as the ratio of the mobility coefficient κ to

a storage coefficient, S or 1/M . The storage coefficient is defined under the constraint of zero

volumetric strain for p, and of uniaxial strain for ζ.

4.3.3 Irrotational Displacement Field

We consider now the particular case where the displacement field is irrotational, in the absence

of body forces. According to the Helmholtz decomposition of a vector field, the displacement

can then be expressed as the gradient of a scalar potential Φ

ui = Φ,i (85)

The Navier equations (81a) then reduce to

Φ,ikk =
η

G
p,i (86)
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Integration of this equation yields

ui,i =
η

G
p+ g(t) (87)

where g(t) is generally an unknown function of time. After insertion of (87), the contracted

volumetric constitutive equation (55) becomes

σkk + 4ηp =
2G(1 + ν)

1− 2ν g(t) (88)

For plane strain, this relation gives

σkk + 2ηp =
2G

1− 2ν g(t); (k = 1, 2) (89)

Expressions similar to (87)—(89) can also be derived from (76)—(78) without the irrotationality

condition. In this case, the function g is a function of both space and time variables (it satisfies

the Laplace equation, ∇2g = 0).
Alternative formulations of the pore pressure diffusion equation (82) can now be written for

the particular case of an irrotational displacement field. Taking into account (87) and recalling

that body forces are ignored here, (82) becomes

∂p

∂t
− c∇2p = −α

S

dg

dt
+

γ

S
(90)

or in view of (88)
∂p

∂t
− c∇2p = − η

(1 + ν)GS

d

dt
(σkk + 4ηp) +

γ

S
(91)

For the particular case of plane strain, (91) reduces to

∂p

∂t
− c∇2p = − η

GS

d

dt
(σkk + 2ηp) +

γ

S
; (k = 1, 2) (92)

4.3.4 Uncoupling of Pore Pressure Diffusion Equation

Here, we examine the cases where the solid coupling term disappears from the governing equa-

tion (82) for the pore pressure.

Irrotational displacement in infinite or semi-infinite domain Under these conditions,

the function g(t) in (87) is identically zero since both ε and p must vanish at infinity; thus

equation (90) uncouples to become

∂p

∂t
− c∇2p = γ

S
(93)

An important example for which the above conditions apply is the case of a fluid injection point

source located in an infinite medium.
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Note that under conditions where the function g(t) vanishes, a one to one dependence exists

between the various volumetric stress and strain quantities:

ε =
η

G
p (94)

Also, according to (88),

σkk = −4ηp (95)

and according to (59) and (94),

ζ = Sp (96)

Limit of very compressible pore fluid As discussed in Section 4.1.1, M ' 1/S, and the
fluid equation of state (65) has the same form as (96). In (82), the term ∂ε/∂t is of the order

² as compared to S∂p/∂t. Or we can directly show from (65), (66) and (73) that the diffusion

equation for p becomes
∂p

∂t
− c∇2p = 1

S
(γ − κfi,i) (97)

Steady-state conditions Finally, under steady-state conditions, the equation governing the

pore pressure field also uncouples:

κ∇2p = κfi,i − γ (98)

4.4 Solution of Boundary-Value Problems

4.4.1 Initial/Boundary Conditions

Given the system of partial differential equations describing the response of a poroelastic ma-

terial, a set of “well-posed” initial and boundary conditions is needed to ensure the existence

and the uniqueness of the mathematical solution.

The boundary condition generally consists of two types: a Dirichlet (potential) and a Neu-

mann (gradient) type. For a poroelastic medium, boundary conditions are required for both

the porous solid and the fluid. Dirichlet type conditions consist in prescribing the solid dis-

placement ui and the pore pressure p, while Neumann type conditions correspond to imposing

the traction ti = σijnj and the normal flux q = qini. These conditions can also be alternated

to form a mixed boundary value problem. Note however that a finite domain problem with

exclusively Neumann conditions, namely tractions and fluid flux, is ill-posed. The solution is

then defined only within some arbitrary rigid body motions and constant fluid pressure.

For the initial conditions, we need either an initial stress field or displacement field, and a

pressure field or a flux field. The conditions specified must themselves satisfy some constraints,
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such as the equilibrium equation and the compatibility equation. If the initial conditions are

in an equilibrated state, namely satisfying the governing equations in steady state, they can

simply be ignored as we need only to solve the perturbed state.

4.4.2 Convolutional Technique

The boundary conditions are generally functions of position and time. In one particular case,

corresponding to proportional loading, we can utilize the convolutional technique to simplify

the solution process. By proportional loading, we mean here a loading where the time variation

of the boundary conditions is uniformly characterized by the same evolutional function; it is

symbolically written as

B(x, t) = Bo(x)λ(t) (99)

where B(x, t) denotes the boundary condition, Bo(x) and λ(t) are respectively the spatial and

time dependent portion. The convolutional technique is based on the Duhamel principle of

superposition. It requires first the solution of the “influence function” F∗(x, t), which is obtained
by solving the presumably simpler problem corresponding to the sudden application of constant

boundary condition (step function):

B∗(x, t) = Bo(x)H(t) (100)

where H(t) is the Heaviside unit step function. The system response to an arbitrary time

variation λ(t) can then be evaluated by the following convolutional integral

F(x, t) = λ(0)F∗(x, t) +
Z t

0

dλ(τ)

dτ
F∗(x, t− τ) dτ (101)
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5 Methods of Solution

Due to the complexity of the poroelastic governing equations, it is generally difficult to de-

rive closed form solution of initial/boundary value problems, except for cases involving simple

geometries (some of which are demonstrated in section 6). Despite this difficulty, there are

indeed some systematic analytical solution techniques, most notably the displacement function

method proposed by McNamee and Gibson.58—60 Otherwise, the solution relies on numerical

techniques such as the finite element or the boundary element methods.

5.1 Method of Potentials

Several attempts have been made at expressing the equations of poroelasticity in terms of

certain “potentials”, namely quantities satisfying Laplace or the diffusion equation.8, 19, 20, 58

Three such formulations are examined here.

5.1.1 Biot’s decomposition

Biot19 suggested a decomposition of the displacement field which allows to some extent uncou-

pling of the Navier equation (81b). According to Darcy’s law (66), the flux field qi is irrotational,

since it is expressible in terms of the gradient of a continuous field. It then follows, from the

continuity equation (73), that ζ can be written as

ζ =

Z t

0

£
κ
¡∇2p− fi,i¢+ γ

¤
dt (102)

If the fluid body force and source introduced can be expressed as the Laplacian of a potential

(this is certainly satisfied if they are of the form of Dirac delta function), the same can be

concluded for ζ:

ζ = ∇2Φ (103)

Biot19 proposed to write the displacement into two parts:

ui = u
o
i + u

i
i (104)

where

uii =
η

GS
Φ,i (105)

is an irrotational displacement and Φ, the displacement potential. On the other hand, uoi looks

like an undrained elastic displacement since substitution of (104) and (105) into (81b) reveals

that uoi satisfies the Navier equation with undrained Poisson ratio

G∇2uoi +
G

1− 2νuu
o
k,ki = −Fi (106)
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Consider first the irrotational component uii. Using (103) in (83) produces

∂∇2Φ
∂t

− c∇4Φ = ηc

G
Fi,i + γ − κfi,i (107)

Relaxation of a Laplacian in (107) yields a simple diffusion equation for Φ

∂Φ

∂t
− c∇2Φ = g1 + g2 + g3 (108)

in which the gi functions are the body forces or source potentials satisfying the Poisson equations

∇2g1 =
ηc

G
Fi,i (109a)

∇2g2 = −κfi,i (109b)

∇2g3 = γ (109c)

Equations (106) and (108) represent a system of field equations which is apparently uncoupled.

After solving for uoi and Φ, the displacement ui is determined from (104) and (105). The stress

and pore pressure also consist of two parts. They are calculated from the following formulae:

σoij = 2Gεoij +
2Gνu
1− 2νu ε

oδij (110a)

po = −αMεo, (110b)

σiij =
2η

S
(Φ,ij − δij∇2Φ) (110c)

pi =
1

S
∇2Φ (110d)

This approach is however not suitable for the solution of general initial/boundary value prob-

lems. Indeed, as a matter of facts, the uncoupling of the new field equations is only apparent;

coupling of the field quantities actually persists via the boundary conditions. As a consequence,

uoi is generally time-dependent, even in the particular case where the boundary conditions re-

main constant for t > 0 (in this case, however, uoi corresponds to the undrained solution at

t = 0).

Nonetheless, this technique is extremely powerful for finding free-space Green’s functions,

such as the fundamental solution of a point force or a point source which correspond respectively

to the replacement of the body force and source terms by the Dirac delta function. Since the

domain is then without boundary, uncoupling of the system of equations (106) and (108) is

truly achieved. This technique has been successfully applied to find various singular solutions

in closed form.61—64
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5.1.2 Biot functions

Another approach due to Biot20 leads to the definition of potentials that are analogous to the

Papkovitch-Neuber functions in elasticity:

ui = (ϕ+ xjψj),i − 4(1− νu)ψi (111a)

ζ =
GS

η
∇2ϕ (111b)

where ϕ, ψi are usually referred to as the Biot functions. In the absence of body forces and

sources, the components of the vector function ψi are harmonic

∇2ψi = 0 (112)

while ϕ satisfies the “biharmonic diffusion equation”

∂

∂t
(∇2ϕ)− c∇4ϕ = 0 (113)

The completeness of the solution has been proven by Verruijt.65

5.1.3 Displacement functions

The most successful analytical solution technique is the displacement function method devel-

oped by McNamee and Gibson.58 It has been applied to the solution of constant loads exerted

normally or horizontally over strip, circular or rectangular areas on top of semi-infinite, finite,

single or multiple soil layer systems.59, 60, 66—69 The original theory was derived for the incom-

pressible constituents model, but the incompressible fluid assumption was later removed by

Verruijt.70 The theory is further extended below to the general case.

It has been pointed out by Verruijt70 that the McNamee-Gibson displacement functions58

can be deduced from the Biot functions. For plane strain, we use

ϕ = −E(x, z, t) (114a)

ψz = S(x, z, t) (114b)

ψx = ψy = 0 (114c)

where E and S are displacement functions satisfying

∇2S = 0 (115a)
∂

∂t
(∇2E)− c∇4E = 0 (115b)
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The displacements, stresses, etc. are related to these functions as

ux = −∂E
∂x

+ z
∂S
∂x

(116a)

uz = −∂E
∂z
+ z

∂S
∂z
− (3− 4νu)S (116b)

ζ = −GS
η
∇2E (116c)

σxx = 2G

·
∇2E − ∂2E

∂x2
+ z

∂2S
∂x2
− 2νu∂S

∂z

¸
(116d)

σzz = 2G

·
∇2E − ∂2E

∂z2
+ z

∂2S
∂z2
− 2(1− νu)

∂S
∂z

¸
(116e)

σxz = 2G

·
− ∂2E
∂x∂z

+ z
∂2S
∂x∂z

− (1− 2νu)∂S
∂x

¸
(116f)

p = −G
η

·
∇2E − 2(νu − ν)

1− ν

∂2S
∂z2

¸
(116g)

For incompressible constituent model (νu = 1/2 and GS/η = 1), the above expressions de-

generate into McNamee-Gibson’s.58 The axial-symmetric displacement functions are obtained

by assuming E = E(r, z, t) and S = S(r, z, t) with the Laplacian operator taking the form, in
cylindrical coordinates

∇2 = ∂2

∂r2
+
1

r

∂

∂r
+

∂2

∂z2
(117)

The displacement and stress expressions are formally equivalent to those in (116g) with the

symbol x replaced by r.

The system of equations (115b) is typically solved by Laplace transform in time and Fourier

transform in space. The resultant is a set of linear algebraic equations in terms of the trans-

formed parameters, S and E , whose solution can easily be found. The difficulty resides in the
inversion of the transformation. The inversion is quite often done numerically.

5.2 Finite Element Method

The finite element techniques for poroelasticity were pioneered by Sandhu and Wilson71 and

Christian.72 Later contributions include.73—76 Most of the formulations use as basic nodal

unknowns the displacement and the pore pressure. An alternative formulation77 is based on

the stress and the pore pressure. In the following, we briefly describe the finite element ideas

following Zienkiewicz.76

The similarity of the field equations (81a) and (82) to the conventional Navier and diffu-

sion equations allows the direct application of the Galerkin weighted residual procedure. The
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discretized finite element equations, in matrix form, are then:

[K]{u}+ [L]{p} = {f} (118a)

[S]{ṗ}+ [L]T{u̇}+ [H]{p} = {q} (118b)

where {u} is the column matrix of the nodal displacements, {p} the nodal pressure, {f} the
body force, and {q} takes into account the fluid body force and source terms. The dot on top
of a symbol denotes the time derivative. The square matrices are “stiffness” matrices with their

elements defined as

K =

Z
Ω
BTDB dx (119a)

L =

Z
Ω
αDN dx (119b)

H =

Z
Ω
∇TNκ∇N dx (119c)

S =

Z
Ω
NTκMN dx (119d)

where Ω denotes the domain of solution, D the elasticity coefficient matrix with drained para-

meters, α, κ and M are material matrices corresponding to the same names, N is the shape

function, B the strain differential operator matrix, and ∇ the gradient operator matrix (see

Zienkiewicz75 for detail of finite element notation). The system of equations (118b) can be

solved using a regular time stepping procedure. See refs.78—80 for some typical applications.

5.3 Boundary Element Method

The boundary element method is a powerful numerical technique for solving systems governed

by linear partial differential equations.81, 82 Its formulation rests on the integral equation repre-

sentation of the differential equation system. The boundary element technique has been widely

applied to elasticity, potential and diffusion problems. This method has been implemented in

poroelasticity using the Laplace transform,61, 83, 84 and the time stepping technique.85—88

It is common in the boundary element literature to differentiate between a “direct” and an

“indirect method”. The direct methods are from integral equations based on the generalized

Green’s theorem, which are sometimes expressed in the form of an energy reciprocity theorem.

All the quantities appearing in the direct formulation are field variables such as potential, flux,

displacement, stress, etc. On the other hand, the indirect methods are based on the distribution

of influence functions such as source, dipole, point force, etc., with “fictitious densities”. A

unification of the two formulations is presented below.
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5.3.1 Direct method

The cornerstone of the direct formulation is the principle of reciprocity of work. Since the

constitutive equations (4) are constructed under the assumption of reversible thermodynamic

process (5), a reciprocal theorem similar to Betti’s theorem in elasticity exists:64, 89, 90

σ
(1)
ij ε

(2)
ij + p

(1)ζ(2) = σ
(2)
ij ε

(1)
ij + p

(2)ζ(1) (120)

where superscripts (1) and (2) denote quantities under two independent stress and strain states.

The first system has also to satisfy the governing equations, (66), (72) and (73). The second

system is governed by the adjoint set, which corresponds to a change of sign in the time

derivative term in the continuity equation (73).91 Integrating (120) over the domain of solution

and time, and performing an integration by parts, we arrive at the reciprocal integral equationZ
S
(σ
(1)
ij nju

(2)
i − σ

(2)
ij nju

(1)
i ) dx

0 dτ −
Z
S
(p(1)v

(2)
i ni − p(2)v(1)i ni) dx0 dτ

+

Z
V
(F

(1)
i u

(2)
i − F (2)i u

(1)
i ) dx

0 dτ +
Z
V
(p(1)θ(2) − p(2)θ(1)) dx0 dτ = 0 (121)

where θ =
R t
0 γ dt is the volume of source injection, and Ω the domain of solution with boundary

Γ. For simplicity, we have ignored in (121) the fluid body force and the initial conditions. To

obtain singular integral equations equivalent to the Somigliana equations in elasticity, the states

corresponding to an instantaneous point force in the xk-direction, and an instantaneous fluid

volume dilatation located at point x and time t

F
(2)
ik = δikδ(x

0 − x)δ(τ − t) (122a)

θ(2) = δ(x0 − x)δ(τ − t) (122b)

are successively substituted for the second system in (121). The substitution yields the following

expressions for the displacement uk(x, t) and pore pressure p(x, t):

buk(x, t) =

Z
S

h
ufiik(x

0, t;x, τ)σij(x0, τ)nj(x0)− σfiijk(x
0, t;x, τ)nj(x0)ui(x0, τ)

i
dx0 dτ

−
Z
S

h
qfcik (x

0, t;x, τ)ni(x0)p(x0, τ)− pfck (x0, t;x, τ)qi(x0, τ)ni(x0)
i
dx0 dτ (123a)

−bp(x, t) =
Z
S

h
ulii (x

0, t;x, τ)σij(x0, τ)nj(x0)− σliij(x
0, t;x, τ)nj(x0)ui(x0, τ)

i
dx0 dτ

−
Z
S

£
qsii (x

0, t;x, τ)ni(x0)p(x0, τ)− psi(x0, t;x, τ)qi(x0, τ)ni(x0)
¤
dx0 dτ (123b)

In the above equations, the presence of body force and fluid source has been ignored, and b is a

constant equal to 0, 1 or 1/2 depending on whether the base point x is located outside, inside
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of the domain, or on the boundary Γ (assumed here to be smooth). The quantities denoted by

superscript are the free-space poroelastic Green’s functions, for which the following notational

convention is adopted. The first superscript indicates the nature of the singularity: f for force,

l fluid dilatation, s for fluid source; the second characterizes the variation of the singularity

strength with time: i refers to instantaneous (Dirac delta function), c to continuous (Heaviside

step function). These Green’s functions are listed in Cheng, et al.90

In an initial/boundary value problem for poroelasticity, either the boundary traction ti =

σijnj or the displacement ui, and either the fluid pressure p or the normal flux q = qini, are

prescribed on a given part of the boundary. Equations (123b) are applied at a set of boundary

nodes, and a collocation procedure is performed. Due to the transient nature of the integral

equations, the discretization takes place both in time and in space. The missing boundary data

can be directly solved in terms of the physical quantities of traction, displacement, pressure or

flux, through a time-stepping or convolutional integral process.

5.3.2 Indirect methods

Let Ω0 denote the complement of the domain Ω, also bounded by the contour Γ. For the domain
Ω0, equations (123b) become

0 =

Z
S
(ufiikσ

0
ijn

0
j − σfiijkn

0
ju
0
i) dx

0 dτ −
Z
S
(qfcik n

0
ip
0 − pfck q0in0i) dx0 dτ (124a)

0 =

Z
S
(ulii σ

0
ijn

0
j − σliijn

0
ju
0
i) dx

0 dτ −
Z
S
(qsii n

0
ip
0 − psiq0in0i) dx0 dτ (124b)

where a prime is used to denote quantities associated with Ω0. The left hand sides of (124b)
are zero because the base point is located in Ω. Summing (124b) with (123b) and taking into

account that n0i = −ni, we obtain:

buk =

Z
S

h
ufiik(σij − σ0ij)nj − σfiijknj(ui − u0i)

i
dx0 dτ

−
Z
S

h
qfcik ni(p− p0)− pfck (qi − q0i)ni

i
dx0 dτ (125a)

−bp =

Z
S

h
ulii (σij − σ0ij)nj − σliijnj(ui − u0i)

i
dx0 dτ

−
Z
S

£
qsii ni(p− p0)− psi(qi − q0i)ni

¤
dx0 dτ (125b)

Two indirect methods can be devised from these equations: the single and double layer method.

Consider the single layer method first. For a problem defined in Ω, we can impose a

complementary problem in Ω0 with the displacement and pore pressure along the boundary

43



identical to that of the primary problem. Equations (125b) therefore reduce to

buk(x, t) =

Z
S

h
ufiki(x, t;x

0, τ)si(x0, τ) + pfck (x, t;x
0, τ)d(x0, τ)

i
dx0 dτ (126a)

bp(x, t) =

Z
S

h
ulii (x, t;x

0, τ)si(x0, τ) + psi(x, t;x0, τ)d(x0, τ)
i
dx0 dτ (126b)

The quantities si and d in (126b) represent the traction and normal flux jumps across the

boundary Γ as follows

si = (σij − σ0ij)nj (127a)

d = −(qi − q0i)ni (127b)

Equations (126b) can be written in the physically more meaningful form

buk(x, t) =

Z
S

h
ufiki(x, t; x

0, τ)si(x0, τ) + usik (x, t; x
0, τ)d(x0, τ)

i
dx0 dτ (128a)

bp(x, t) =

Z
S

h
pfii (x, t; x

0, τ)si(x0, τ) + psi(x, t; x0, τ)d(x0, τ)
i
dx0 dτ (128b)

where use has been made of certain relations among Green’s functions.90 These equations

show that the displacement and pore pressure at a point x and time t can be evaluated by

distributing along the boundary Γ poroelastic instantaneous point force and source solutions

with “fictitious densities” (which correspond to the traction and normal flux jumps). The above

pair of equations are equivalent to the “single-layer” method in the potential theory92 in which

singularities of order ln r for 2-D and 1/r for 3-D are distributed.

In contrast to the single layer method, we now consider the case where the boundary traction

and the normal flux for the interior and exterior domain problems are set equal. The following

set of integral equations are then deduced from (124b):

buk(x, t) =
Z
S

·
σfiijk(x, t; x

0, τ)nj(x0)di(x0, τ) +
1

κ
qfcki (x, t; x

0, τ)ni(x0)s(x0, τ)
¸
dx0dτ (129a)

bp(x, t) =
Z
S

·
σliij(x, t; x

0, τ)nj(x0)di(x0, τ) +
1

κ
qsii (x, t; x

0, τ)ni(x0)s(x0, τ)
¸
dx0dτ (129b)

In the above

di = ui − u0i (130a)

s = −κ(p− p0) (130b)

correspond respectively to displacement and pore pressure discontinuities. The alternative form
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of (129b) is

buk(x, t) =
Z
S

h
udikji(x, t; x

0, τ)nj(x0)di(x0, τ) + upiki(x, t; x
0, τ)ni(x0)s(x0, τ)

i
dx0 dτ (131a)

bp(x, t) =
Z
S

h
pdiji(x, t; x

0, τ)nj(x0)di(x0, τ) + ppii (x, t; x
0, τ)ni(x0)s(x0, τ)

i
dx0 dτ , (131b)

where the superscript d refers to displacement discontinuity and the superscript p to a fluid

dipole. The above formulae thus define another indirect method in which the influence functions

are now displacement discontinuity and fluid dipole singularities are distributed. It may be

viewed as the equivalent of the double-layer method in potential theory, or the displacement

discontinuity method93 in elasticity.

5.4 Method of Singularities

Problems involving infinite or semi-infinite domains can sometimes elegantly be solved using

superposition of singularities that captures the essential aspect of the problem at stake. In

contrast to the indirect integral method, the strength of the singularity is here always a physi-

cally meaningful quantity. Examples of such an approach are the use of the source solution to

model subsidence problem due to pumping, and the displacement discontinuity to create frac-

ture opening. A brief presentation of the application of this method, for solving consolidation,

subsidence, and fracture propagation problems, is given below.

5.4.1 Modeling Consolidation and Subsidence

In this class of problems, the basic interest is to compute the progressive settlement of the

ground surface caused either by the application of surface surcharge (consolidation) or by the

withdrawal of pore fluid (subsidence). For a homogeneous half-space, this calculation can be

achieved by the superposition of the fundamental solution of an impulsive point surface force for

the consolidation problem and impulsive point source for the subsidence problem (respectively

line force and line source for plane strain problems). The same approach has also been extended

to the analysis of consolidation in layered soil.69

The singular solutions have been derived using the displacement function formalism of

McNamee and Gibson for boundary conditions corresponding to a traction-free surface under

either zero pore pressure or zero flux.59, 66, 94, 95 Note that these solutions are obtained by

applying a double integral transformation to the field equations (Laplace-Hankel or Laplace-

Fourier) and that at least one of the inversion is performed numerically; thus none of these

solutions are presented in closed form.

45



5.4.2 Modelling Fracture

Fracture model A fracture in a poroelastic medium is a surface across which the solid dis-

placement and the normal fluid flux are generally discontinuous. Such a discontinuity surface

can mathematically be simulated by a distribution over time and space of impulse point dis-

placement discontinuities (DD) and sources. If the density of these singularities is known,

integral representations of the field quantities, such as displacement, flux, stress, and pore pres-

sure, can be evaluated using the principle of superposition. As an example consider a linear

hydraulic fracture which is pressurized by the injection of a fluid. The integral representations

of the normal stress and pore pressure on the crack surface are63, 88

σn(x, t) =

Z t

0

Z +L

−L
dn(χ, τ)σ

di
nn(x−χ, t−τ) + d(χ, τ)σsin (x−χ, t−τ) dχ dτ (132a)

p(x, t) =

Z t

0

Z +L

−L
dn(χ, τ)p

di
n (x−χ, t−τ) + d(χ, τ)psi(x−χ, t−τ) dχ dτ (132b)

where σn denotes the normal stress on the fracture, dn is the normal displacement disconti-

nuity density, and d the flux discontinuity density (source density, or the rate of fluid leakoff

per unit fracture length). The quantities marked with a ‘di’ and a ‘si’ superscript are the

influence functions of an instantaneous point displacement discontinuity, and an instantaneous

source, respectively: σdinn is the normal stress and p
di
n the pressure generated by a unit normal

displacement discontinuity; σsin and p
si are those caused by a unit fluid source. The singular

integral equations (132b) can be exploited directly to solve for the discontinuity densities dn
and d, as a function of both space and time, from the known fluid pressure in the fracture.87

However, the kernel function σdinn contains a “hyper-singularity”, 1/(x−χ)2, which needs to be

interpreted in the Hadamard sense.96 It is more convenient to reduce the level of singularity in

the kernels to Cauchy singular. By performing an integration by parts on the terms containing

the displacement discontinuity, we obtain the “edge dislocation” formulation:

σn(x, t) =

Z t

0

Z +L

−L
d0n(χ, τ)σ

ei
nn(x−χ, t−τ) + d(χ, τ)σsin (x−χ, t−τ) dχ dτ (133a)

p(x, t) =

Z t

0

Z +L

−L
d0n(χ, τ)p

ei
n (x−χ, t−τ) + d(χ, τ)psi(x−χ, t−τ) dχ dτ (133b)

where d0n = ∂dn/∂χ is the slope of the fracture profile, and σeinn is the influence function of

normal stress due to an instantaneous opening edge dislocation (a semi-infinite discontinuity

line with constant displacement jump), with the kernel pein as the pressure influence function.

Note that an auxiliary condition of fracture closure needs to be introduced to determine the
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free term resulting from the integration by parts,Z +L

−L
d0n(χ, t) dχ = 0 (134)

Numerical solution of (133b) and (134) has been accomplished with the aid of the Laplace

transform for a non-propagating fracture.17

For the same problem of a pressurized fracture but with impermeable surfaces, the integral

equation to be solved reduces to

σn(x, t) =

Z t

0

Z +L

−L
dn(χ, τ)σ

di
nn(x−χ, t−τ) dχ dτ (135)

Indeed the normal displacement discontinuity (and likewise the opening edge dislocation) nat-

urally satisfies the condition of zero flux across the x-axis (the dislocation line). This “natural”

boundary condition for the fluid (in the case of shear dislocation, it corresponds to a zero pore

pressure) emerges from the requirement of symmetry across the dislocation line (anti-symmetry

for the shear mode) for a solution constrained to have the pore pressure and its gradient con-

tinuous across the x-axis. Fundamental solutions of the continuous edge dislocation have been

obtained by Rice and Cleary8 and Detournay and Cheng63 for the natural fluid boundary condi-

tion and by Rudnicki97 for conditions corresponding to a zero pore pressure along the x-axis for

the opening mode and a zero flux across the x-axis for the shear mode. It is interesting to note

that the poroelastic solution of an edge dislocation with the natural fluid boundary condition is

simply the superposition of the elastic solution with undrained Poisson’s ratio and a fluid dipole

oriented perpendicular to the Burger’s vector, i.e. respectively parallel and perpendicular to

the x-axis for the opening and shear mode.

Propagating Fractures The steady-state propagation of a fracture can be modeled using

steadily moving singularities in an infinite poroelastic medium.16 For this class of problems,

time does not enter into consideration if a moving coordinate system is used and if the problem

remains self-similar in that system. With these assumptions, the fluid mass balance equation

(73), which is the only governing equation that contains a time derivative, transforms into

−v ∂ζ
∂x
+ qi,i = γ (136)

in a moving-coordinates system with x-axis in the same direction as the velocity v.

The solution of a moving singularity can be deduced from the corresponding impulsive

solution through superposition (integration), or alternatively by direct solution of the singular

differential equations in the moving coordinates system. The pore pressure field induced by a
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moving source is given by Carslaw and Jaeger,98 while moving edge dislocation solutions have

been obtained by Rudnicki and Roeloffs.99 Moving dislocation solutions have been used to

analyze pore pressure changes and stabilizing effects associated with the propagation of slip on

permeable and impermeable faults,10, 99—102 and the mechanism of retardation of a propagating

hydraulic tensile fracture with impermeable16 or permeable walls.103
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6 Some Fundamental Problems

In this section we study a few fundamental problems: one-dimensional loading of a layer,

pressurization of a cylinder, far-field loading of a borehole, and hydraulic fracturing. These

problems involve simple geometries but are instructive for understanding the role of poroelastic

effects.

In all these problems at least one of the boundaries is subject to a particular condition: a

prescribed constant normal stress and/or pore pressure suddenly applied at t = 0+. In such

cases, it is actually convenient to consider two fundamental loading modes:

• Mode 1 with σ
(1)
n = −p∗H(t) and p(1) = 0

• Mode 2 with σ
(2)
n = 0 and p(2) = p∗H(t)

where, as a convention, the superscripts (1) and (2) are used to designate the corresponding

mode. These two loadings can later on be superposed to match any boundary conditions where

pore pressure and normal stress are arbitrarily imposed.

6.1 Uniaxial Strain Problems

Here we consider a particular class of “one-dimensional” problems, characterized by only one

non-zero normal strain and by field quantities varying only in that direction. Let this privileged

orientation coincide with the x-direction (εxx being thus the non-zero strain). First we examine

how some of the governing and field equations transform under uniaxial strain conditions.

6.1.1 Governing equations

Under uniaxial strain condition, the constitutive equations (54)—(57) become

σxx =
2G(1− ν)

1− 2ν εxx − αp (137a)

σyy = σzz =
ν

1− ν
σxx − 2ηp (137b)

or

σxx =
2G(1− νu)

1− 2νu εxx − αMζ (138a)

σyy = σzz =
νu

1− νu
σxx − 2ηMζ (138b)
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depending on whether p or ζ is chosen as the coupling term. Under undrained conditions, the

pore pressure is proportional to σxx:

p = −B(1 + νu)

3(1− νu)
σxx = − η

GS
σxx (139)

There is only one non-trivial equilibrium equations (72), which shows that, in the absence of

body force, σxx is independent of x (although it can still be a function of time). The differential

equation for ux (the Navier equation) is simply deduced from (137a) or (138a), by expressing

εxx as ∂ux/∂x, i.e.
2G(1− ν)

1− 2ν
∂2ux
∂x2

− α
∂p

∂x
= 0 (140)

By expressing εxx in terms of p and σxx using (137a), the diffusion equation for the pore pressure

(82) simplifies to
∂p

∂t
− c∂

2p

∂x2
= − η

GS

dσxx
dt

(141)

This equation could have been alternatively deduced from the particular pore pressure diffusion

equation (90)–applicable for irrotational displacement field–by noting that g = ησxx/αG, in

uniaxial deformation.

For problems with specified stress condition, (141) is an inhomogeneous diffusion equation

with known right-hand side. The pore pressure can therefore be solved independently of the

displacement in this particular class of problems.

6.1.2 Terzaghi’s One-Dimensional Consolidation

First we analyze the classical one-dimensional consolidation problem of Terzaghi1 in light of

the Biot theory. Consider a soil layer of thickness L, resting on a rigid impermeable base. A

constant load is applied on the surface of the layer under drained conditions. The boundary

conditions are therefore σxx = −p∗H(t) and p = 0 at x = 0 and ux = 0 and ∂p/∂x = 0 at

x = L. The surface loading clearly corresponds to what has been identified to mode 1 loading.

Since the stress is a constant, the right hand side of (141) drops out to give a homogeneous

diffusion equation
∂p

∂t
− c∂

2p

∂x2
= 0 (142)

This equation is identical to that found in the Terzaghi’s consolidation theory. The two theories

are therefore consistent for this particular geometry and loading condition. In the literature,

the homogeneous diffusion equation for p has often been extended to other situations. This

however cannot be done as, in general, a term proportional to the rate of change of the mean
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stress needs to be included in the pore pressure diffusion equation. This term corresponds to the

“Skempton” pore pressure generation mechanism, that continues to feed the diffusion process.

The solution of the consolidation problem now involves solving (142) with boundary condi-

tions p(1) = 0 at x = 0 and ∂p(1)/∂x = 0 at x = L†. The initial pore pressure field pu, induced
upon loading of the layer, is given by pu = ηp∗/GS, cf. (139). Note that in the limiting case of
incompressible fluid and solid constituents (which is a good approximation for water-saturated

soils), pu = p∗ which is also consistent with Terzaghi’s solution.
The two fields p(1) and u(1)x can be expressed in terms of the dimensionless coordinate

χ = x/L and the dimensionless time τ = ct/4L2. Solving (142) with the above initial and

boundary conditions yields

p(1) =
ηp∗

GS
[1− F1(χ, τ)] (143)

where

F1(χ, τ) = 1−
∞X

m=1,3,···

4

mπ
sin
³mπχ

2

´
exp

¡−m2π2τ
¢

(144)

Note that F1(χ, 0+) = 0 and F1(χ,∞) = 1
The displacement u(1)x is found by integrating (140) and substituting the resulting expression

in the boundary conditions. It can be expressed as u(1)x = uux +∆u
(1)
x where uux is the initial

undrained elastic displacement and ∆u(1)x a time-dependent incremental component:

uux =
p∗L(1− 2νu)
2G(1− νu)

(1− χ) (145a)

∆u(1)x =
p∗L(νu − ν)

2G(1− ν)(1− νu)
F2(χ, τ) (145b)

where

F2(χ, τ) =
∞X

m=1,3,···

8

m2π2
cos
³mπχ

2

´ £
1− exp ¡−m2π2τ¢¤ (146)

We note that F2(χ, 0) = 0 and F2(χ,∞) = (1 − χ), hence the large-time asymptotic solution

of the displacement field is indeed the drained elastic solution. The layer thus deforms in-

stantaneously with an elastic response characterized by the undrained Poisson ratio νu, and

progressively consolidates into another elastic state, characterized by a displacement field sim-

ilar to uu, but for νu replaced by ν. The pore pressure field, initially equal to pu, dissipates

continuously to vanish at t =∞.
†The superscript (1) and (2) is from now on used to associate the solution with the corresponding loading

mode.
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Figure 1: Response function for the surface displacement.

At the top of the layer, the settlement u∗(τ) = ux(0, τ) is

u∗(1) =
p∗L(1− 2νu)
2G(1− νu)

·
1 +

νu − ν

(1− ν)(1− 2νu)f(τ)
¸

(147)

where f(τ) = F2(0, τ), i.e.

f(τ) =
∞X

m=1,3,···

8

m2π2
£
1− exp ¡−m2π2τ¢¤ (148)

The function f(τ), which varies between 0 and 1 as τ increases to ∞, is plotted in Figure 1.

6.1.3 Loading by a Fluid

We consider next a similar problem, where the upper surface of the layer is now in contact with

a fluid at pressure p∗. In this case, the boundary conditions at x = 0 are σxx = −p∗H(t) and
p = p∗H(t). These boundary conditions correspond therefore to the superposition of mode 1
(the Terzaghi’s consolidation problem) and mode 2. Only mode 2 needs to be solved.

The initial pore pressure field for mode 2 loading is everywhere zero. The solution of p(2) is

thus given by

p(2) = p∗F1(χ, τ) (149)

The pore pressure in the layer increases with time until it reaches the constant value p∗ at
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τ =∞. The displacement field is again found by integrating (140):

u(2)x = −ηp
∗L
G

F2(χ, τ) (150)

with the surface displacement given by

u∗(2) = −ηp
∗L
G

f(τ) (151)

We observe that the surface displacement is zero at τ = 0+, and gradually rebounds (instead of

consolidating) to the long-term value of u∗(2)(∞) = −ηp∗L/G. The rebound is a consequence
of the dilation of the porous solid induced by an increase of the pore pressure.

The solution of this problem is then obtained by superposition of the solutions of the two

modes. For example, the surface displacement is given by the sum of (147) and (151). At the

instant of loading, the layer immediately consolidates to u∗ = p∗L(1− 2νu)/2G(1− νu). Two

opposing processes then follows: one consolidates to the maximum value p∗L(νu − ν)/2G(1−
ν)(1− νu), and the other rebounds to the asymptotic value of −p∗Lη/G. It can be shown that
the second process is always greater in magnitude than the first, but that it is never able to

overcome the initial settlement. Hence the layer ends up with a positive settlement which is

smaller than the initial one.

6.1.4 Early Time Solution

Considering the above equations, it is obvious that the time-dependent component of mode 1

and 2 loading corresponds to the same generic process: one-dimensional diffusion triggered by

a step difference between the boundary condition of the pore pressure and its initial value. A

simpler expression of the early time solution for these two modes can be derived.

At early time, the pore pressure perturbation (with respect to the initial conditions) is

virtually confined to a region (growing with time) adjacent to the boundary; in other words,

the layer appears semi-infinite from the point of view of the pore pressure perturbation near

the boundary. The early time solution corresponds therefore to the half-space solution.

The pore pressure field induced in a semi-infinite domain by the application of a constant

pore pressure p∗ at time t = 0+ on the surface of a half-space is well-known;98 it is a self-similar
solution, function only of the coordinate x scaled by the characteristic length

√
ct:

p = p∗erfc
µ

x

2
√
ct

¶
(152)

Although the pore pressure is instantly perturbed everywhere at time t = 0+ (due to the

infinite propagation velocity of the pressure wave), the decay property of the complementary
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error function is such that beyond the distance 4
√
ct, the pore pressure is less than 5% of the

boundary value p∗. It is thus convenient to speak of a “pressure front” located at δ = 4
√
ct,

progressively moving inside the domain. We expect the half-space solution to be applicable

to the finite domain problem, as long as the pressure front has not reached the bottom of the

layer, i.e. when 4
√
ct < L, or equivalently, when the dimensionless time τ (defined earlier as

ct/4L2) is less than about 2 · 10−2.
The displacement field is found through integration of the Navier equation (140), using

the pore pressure solution (152) and σxx = 0. In particular, we find that the dimensionless

function f(τ), appearing in equations (147) and (151) for the surface displacement u∗, takes
the simplified form

f(τ) ' 4
r

τ

π
for τ < 2 · 10−2 (153)

A plot of the early time approximation (153) of f(τ) is shown in Figure (1), where it can be

compared to the full solution (148). This plot clearly shows the divergence between the two

solutions at about τ ' 5 · 10−2

6.1.5 Harmonic Excitation

As demonstrated in (141), the one-dimensional pressure diffusion equation based on the poroelas-

tic theory differs from that of the ad hoc consolidation theory by a term proportional to the

rate of stress variation. While this effect is non-existent for constant loading, a departure from

the consolidation theory is expected for transient loading. In particular, we will examine the

one-dimensional harmonic loading of a layer. Considering here only mode 1 loading, the top

boundary conditions are (using complex variable notation): at x = 0, σxx = −p∗eiωt and p = 0,
where i =

√−1 and ω is the frequency. The governing equation for the steady-state periodic

solution is

iωp̃− cd
2p̃

dx2
=
iωηp∗

GS
(154)

in which p̃ denotes the complex amplitude of the periodic pressure response. Now the solution

can be expressed in terms of the the coordinate χ = x/L and the dimensionless frequency

ω∗ = ωL2/c.

With the same bottom boundary conditions as in the Terzaghi’s problem, the pore pressure

solution is

p̃(1) =
ηp∗

GS
(1 + tanhλ sinhλχ− coshλχ) (155)

where λ =
√
iω∗. To draw a parallel with the early-time solution discussed in Section 6.1.4, it

is interesting to compare (155) with the solution obtained for a half-space subject to the same

54



surface harmonic loading. This solution

p̃ =
ηp∗

GS

"
1− exp

Ã
−
r
iω

c
x

!#
(156)

indicates that beyond the distance δ = 3
p
c/ω from the surface, the pore pressure is virtually

in phase and proportional by a factor η/GS to the surface loading. In other words, departure

of the pore pressure fluctuations from the trivial undrained solution is virtually confined to a

boundary layer of thickness δ. We expect therefore the half-plane solution to be applicable to

the finite domain problem provided δ < L, or equivalently |λ| > 3 (i.e. ω∗ > 9). Refer to104—108
for more discussion on the concept of boundary layer and its application.

Note that the right hand side of (154) vanishes in the consolidation theory, thus yielding

the trivial zero solution. The consolidation theory therefore predicts that there is no pressure

response generated in the formation other than some initial transients that will dissipate in

time.

For the poroelastic theory, the displacement u∗(1) at x = 0 is given by

ũ∗(1) =
p∗L(1− 2νu)
2G(1− νu)

·
1 +

(νu − ν)

(1− ν)(1− 2νu)
tanhλ

λ

¸
(157)

while in the consolidation case, we find

ũ∗(1) =
p∗L(1− 2ν)
2G(1− ν)

(158)

The consolidation theory predicts a purely elastic settlement with a stiffness characterized by the

drained Poisson ratio. That settlement is also completely in phase with the applied load. For the

poroelasticity case, the apparent stiffness of the formation is a function of the loading frequency.

As ω →∞‡, the material behaves as an undrained one, i.e., ũ∗(1)(∞) = p∗L(1−2νu)/2G(1−νu);
as ω → 0, its behavior evolves to that of drained material, ũ∗(1)(0) = p∗L(1 − 2ν)/2G(1 − ν);

this last relation being identical to (158). It should also be pointed out that the settlement is

generally not in phase with the loading. Figure 2 illustrate the normalized maximum settlement

|ũ∗(1)| versus the dimensionless frequency ω∗ for the particular case ν = 0.15 and νu = 0.31.

6.2 Cylinder Problem

6.2.1 Problem definition and solution methodology

We consider now the problem of a cylinder with radius a deforming, under plane strain condi-

tions, after sudden application of a constant fluid pressure p∗ on the boundary r = a. Under
‡It should be remarked that as the frequency becomes large, the dynamic (inertia) effect will manifest it-

self,28, 109 a topic however which is beyond the scope of this presentation.
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Figure 2: Maximum settlement as function of loading frequency.

conditions of planar deformation and axisymmetry, the displacement field is obviously irrota-

tional, and characterized by the only non-zero component, ur(r, t). It then follows from (92)

that the pore pressure diffusion equation takes the particular form

∂p

∂t
− c

µ
1

r

∂p

∂r
+

∂2p

∂r2

¶
= −η(1− ν)

GS

d

dt
(σrr + σθθ + 2ηp) (159)

where the quantity σrr + σθθ + 2ηp on the right hand side is a function of time only (see

Section 4.3.3). However, in contrast to the uniaxial deformation problems discussed previously,

the inhomogeneous term in the diffusion equation is here unknown; equation (159) is thus not

really suitable to be used for solving this boundary value problem.

In an alternative approach, we start with the uncoupled diffusion equation (83) for the vari-

ation of fluid content ζ. If the general solution ζ can be obtained for the particular symmetries

involved, the volumetric strain ε can then be readily determined up to a constant (function of

time). Indeed, ε and ζ are related according to

∂ε

∂r
=

η

GS

∂ζ

∂r
(160)

which is simply a reduced form of the Navier equation (81b). In turn, the displacement ur is

found by an integration of ε, from the relation

ε =
1

r

∂

∂r
(rur) (161)
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The stress and pressure solutions follows from the constitutive equations. The various constants

appearing in the solution are eliminated using the boundary conditions.

The solution can be obtained explicitly for the Laplace transform of the various quantities.

The solution in time is then calculated using a numerical inversion technique. Application of

the Laplace transformation to the diffusion equation for ζ (to eliminate the time derivative

operator) yields, taking the symmetry conditions into account

d2ζ̃

dr2
+
1

r

dζ̃

dr
− s
c
ζ̃ = 0 (162)

where the tilde overbar denotes the Laplace transform and s is the transform parameter. The

solution will depend on two dimensionless variables: ρ = r/a and β = a
p
s/c. The general

solution of (162) is

ζ̃ = D1I0(ξ) (163)

where ξ = βρ, I0 is the modified Bessel function of first kind of order 0, and D1 is a constant

to be determined. The volumetric strain is obtained by integrating (160):

ε̃ =
η

GS
D1I0(ξ) +D2 (164)

Finally, integrating (161) using (164) yields the general solution for the radial displacement ũr

ũr =
ηa

βGS
D1I1(ξ) +

D2
2
r (165)

All the elements are now in place to solve the cylinder problem for mode 1 and 2 loading.

6.2.2 Mode 1 Loading

The boundary conditions for mode 1 loading are σ(1)rr = −p∗ and p(1) = 0, at r = a. After

fulfillment of these boundary conditions, (165) becomes

2G

ap∗
sũ(1)r = −ρ (1− 2νu)(1− ν)I0(β) + 2(νu − ν)ξ−1I1(ξ)

(1− ν)I0(β)− 2(νu − ν)β−1I1(β)
(166)

The asymptotic behavior of the solution can easily be checked: as t→∞, s→ 0, hence

2G

ap∗
u(1)r (r,∞) = −(1− 2ν)ρ (167)

which is identical to the drained elastic solution. As t→ 0, s→∞, and we obtain an expression
similar to (167) but with ν replaced by νu.

Consider now the pore pressure field. As t = 0+, there is a uniform pressure rise due to the

Skempton effect

p(1)(r, 0+) = pu (168)
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where

pu =
2

3
(1 + νu)B p

∗ (169)

As t → ∞, the pressure is fully dissipated, i.e., p(1)(r,∞) = 0. The transform solution of the

pore pressure field is given by

sp̃(1)

pu
=

(1− ν)[I0(β)− I0(ξ)]
(1− ν)I0(β)− 2(νu − ν)β−1I1(β)

(170)

It is of interest to compare the poroelastic solution with the solution based on the simple

diffusion equation which ignores the right hand side of (159). With the same initial condition

(168), the pore pressure solution based on the homogeneous diffusion equation is given by

sp̃

pu
=

·
1− I0(ξ)

I0(β)

¸
(171)

Figure 3 presents plots of the pressure history at the center of the cylinder (r = 0) for the

case ν = 0.15, νu = 0.31 following the two theories. (The time domain solution presented

in these figures were calculated using a simple inversion scheme devised by Stehfest;110 this

technique relies only on real values of the Laplace parameter s.) The diffusion solution is

characterized by a monotonic decline of the pore pressure while the poroelastic theory predicts

that a rise of pressure above its initial value before its dissipation. This phenomenon, known as

the Mandel-Cryer effect111, 112 in the soil mechanics literature, can be explained as follows. At

the instant of loading, a uniform pore pressure is generated in the cylinder due to the Skempton

effect. As the pressure starts to dissipate near the surface, the outer layer effectively softens.

Due to the compatibility requirement, there is a load transfer to the inner and effectively

harder material, which causes an additional pore pressure rise. This pore pressure generation

mechanism, accomplished by the right hand side of (159), is lacking in the consolidation theory.

6.2.3 Mode 2 Loading

For the boundary conditions p(2) = p∗ and σ
(2)
rr = 0, at r = a, the solution for the radial

displacement in mode 2 loading is

2G

ap∗
sũ(2)r = α(1− 2ν)ρ ξ−1I1(ξ) + (1− 2νu)β−1I1(β)

(1− ν)I0(β)− 2(νu − ν)β−1I1(β)
(172)

and the pressure
sp̃(2)

p∗
=
(1− ν)I0(ξ)− 2(νu − ν)β−1I1(β)
(1− ν)I0(β)− 2(νu − ν)β−1I1(β)

(173)

We notice that as t→∞, p(2) = p∗ and
2G

ap∗
u(2)r (r,∞) = α(1− 2ν) ρ (174)

58



Figure 3: asisymmetric stress load.

6.2.4 Applications

The complete solution for the cylinder, in contact with a fluid at pressure p∗, is given by the
superposition of the two fundamental modes. The cylinder will initially deform inward and

then rebound to recover a portion of the initial volume loss. In particular, for materials with

incompressible constituents, α = 1 and νu = 0.5, it can be shown that changes in confining

fluid pressure cause no deformation in the sample at any time (i.e. ur(r, t) = 0).

As an application of this solution, we investigate the evolution of the tangential stress σθθ
in an “instantaneously” retrieved cylindrical core. The core, initially under a uniform confining

stress σrr = −Po and a pore pressure p = po, is instantly exposed to the atmosphere. The

sudden removal of the load causes a non-monotonic evolution of stresses and displacement. In

particular, the tangential stress is given by

sσ̃θθ(r, s) = Po

(
−1 + (1− ν)I0(β)− 2(νu − ν)

£
I0(ξ)− ξ−1I1(ξ)

¤
(1− ν)I0(β)− 2(νu − ν)β−1I1(β)

)

−poα(1− 2ν) ξ−1I1(ξ) + β−1I1(β)− I0(ξ)
(1− ν)I0(β)− 2(νu − ν)β−1I1(β)

(175)

The normalized tangential stress profile in the cylinder at various times is plotted in Figure 4,

for the case ν = 0.18, νu = 0.28 and po = 0.5Po. At the instant of unloading, the cylinder is

stress free σθθ(r, 0+) = 0, except at the wall, r = a, where a tensile stress immediately develops
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Figure 4: Evolution of tangential stress in an instantly retrived cylindrical core.

due to the effective softening of material by pressure diffusion:

σθθ(a, 0) = −2(νu − ν)

1− ν
Po + 2ηpo (176)

The stress then goes through a non-monotonic evolution and finally settles down to the stress

free state again. Of interest to failure analysis is the Terzaghi effective stress σ0θθ = σθθ + p.

Figure 5 shows its history: it is entirely in the tensile range with a maximum value reached at

t = 0+,

σ0θθ(r, 0
+) = −2

3
B(1 + νu)Po + po (177)

6.3 Borehole Problem

6.3.1 Problem Definition

Now we consider the problem of a vertical borehole drilled in a porous rock layer subjected to

a non-hydrostatic horizontal in situ stress field:

σxx = −(Po − So) (178a)

σyy = −(Po + So) (178b)

σxy = 0 (178c)

p = po (178d)

60



Figure 5: Evolution of Terzaghi effective tangential stress in an instantly retrived cylindrical

core.

In the above Po and So are the far-field mean stress and stress deviator, respectively, and po
is the virgin pore pressure. This problem is analyzed by assuming plane strain conditions and

“instantaneous” drilling of the borehole, simulated by removing at t = 0+ the stresses and pore

pressure that were initially acting on the borehole boundary.

To facilitate the physical interpretation of this problem, the loading is decomposed into

three fundamental modes: (i) a far-field isotropic stress; (ii) a virgin pore pressure; and (iii) a

far-field stress deviator. Denoting by the superscript (i), the stress induced by loading mode i,

the boundary conditions at the borehole wall for each of the loading modes can be written as

follows.

• mode 1:
σ(1)rr = Po σ

(1)
rθ = 0 p(1) = 0 (178)

mode 2:

σ(2)rr = 0 σ
(2)
rθ = 0 p(2) = −po (178)

mode 3:

σ(3)rr = −So cos 2θ σ
(3)
rθ = So sin 2θ p(3) = 0 (178)

Both the induced stress and pore pressure vanish at infinity. Solutions for the induced

stress, pore pressure, and displacement are derived below for each of the fundamental loading
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modes.

6.3.2 Mode 1 loading

For loading mode 1, the solution corresponds to the classical Lamé solution in elasticity

2Gu
(1)
r

Poa
= −1

ρ
(182a)

σ
(1)
rr

Po
=

1

ρ2
(182b)

σ
(1)
θθ

Po
= − 1

ρ2
(182c)

where ρ is the dimensionless radial coordinate r/a. Since the displacement field is characterized

by zero volumetric strain, there is no mechanism for pore pressure generation and its subsequent

diffusion. The displacement and stress fields are therefore independent of time.

6.3.3 Mode 2 loading

In the case of mode 2, the pressure field is governed by a homogeneous diffusion equation (the

right hand side of (159) drops out because of the vanishing stress condition at infinity):

∂2p

∂r2
+
1

r

∂p

∂r
=
1

c

∂p

∂t
(183)

The pressure, stress and displacement fields are again solved by taking the Laplace transform:

sp̃(2)

po
= −K0(ξ)

K0(β)
(184a)

2Gsũ
(2)
r

poa
= 2η

·
K1(ξ)

βK0(β)
− K1(β)

ξK0(β)

¸
(184b)

sσ̃
(2)
rr

po
= −2η

·
K1(ξ)

ξK0(β)
− K1(β)

ξρK0(β)

¸
(184c)

sσ̃
(2)
θθ

po
= 2η

·
K1(ξ)

ξK0(β)
− K1(β)

ξρK0(β)
+
K0(ξ)

K0(β)

¸
(184d)

where Kν is the modified Bessel function of second kind of order ν, β is the dimensionless

parameter a
p
s/c, and ξ = βρ.

6.3.4 Mode 3 loading

The solution for mode 3 is somewhat more involved (the details of the solution procedure

– similar to the technique used for the cylinder problem – can be found in ref.113). Using
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symmetry considerations, it can be shown that the dependence of the displacement and stress

upon the polar angle θ is of the following form

{ũ(3)r , σ̃(3)rr , σ̃(3)θθ , p̃
(3)} = {Ũr, S̃rr, S̃θθ, P̃} cos 2θ (185a)

{ũ(3)θ , σ̃
(3)
rθ } = {Ũθ, S̃rθ} sin 2θ (185b)

where Ũr, Ũθ, S̃rr, S̃rθ, S̃θθ, and P̃ are solely functions of r and s (or ρ and β). The solution is

given by

2GsŨr
Soa

= − 1
β
C1

·
K1(ξ) +

2

ξ
K2(ξ)

¸
+
C2
ρ
+
C3
ρ3

(186a)

2GsŨθ

Soa
= −2C1

βξ
K2(ξ)− 1− 2νu

2(1− νu)

C2
ρ
+
C3
ρ3

(186b)

sP̃

So
=

2C1
η
K2(ξ) +

η

GS

C2
ρ2

(186c)

sS̃rr
So

= C1

·
1

ξ
K1(ξ) +

6

ξ2
K2(ξ)

¸
− 1

1− νu

C2
ρ2
− 3C3

ρ4
(186d)

sS̃θθ
So

= −C1
·
1

ξ
K1(ξ) + (1 +

6

ξ2
)K2(ξ)

¸
+
3C3
ρ4

(186e)

sS̃rθ
So

= 2C1

·
1

ξ
K1(ξ) +

3

ξ2
K2(ξ)

¸
− 1

2(1− νu)

C2
ρ2
− 3C3

ρ4
(186f)

in which

C1 = −4β(νu − ν)

D2 −D1 (187a)

C2 =
4(1− νu)D2
D2 −D1 , (187b)

C3 = −β(D2 +D1) + 8(νu − ν)K2(β)

β(D2 −D1) (187c)

and

D1 = 2(νu − ν)K1(β) (188a)

D2 = β(1− ν)K2(β) (188b)

6.3.5 Applications

With the above basic solutions, various borehole excavation, pressurization and production

problems can be examined.

We first examine the stress concentration at the wall of a borehole, “instantaneously” drilled

at t = 0 to become stress and pressure free. Upon unloading, a compressive tangential stress
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concentration is immediately induced on the borehole wall. As indicated by (182c), (184d) and

(186e), the contribution of the stress concentration from mode 1 and 2 are time independent,

while that from mode 3 is transient and function of the polar angle θ. The largest compressive

stress concentration takes place at θ = 0,π, i.e. at points connected by a diameter orthogonal

to the direction of the most compressive far-field stress. Initially, the stress concentration at

θ = 0,π is given by

σθθ(a, 0
+) = −2Po + 2ηpo − 41− νu

1− ν
So (189)

As time elapses, the tangential stress become more compressive and eventually reaches the large

time asymptotic value

σθθ(a,∞) = −2Po + 2ηpo − 4So (190)

This increase of stress concentration with time following drilling may account for delayed bore-

hole failure.

We will now investigate the conditions leading to shear failure around the borehole. The

stress evolution in the medium can be represented, in relation to a failure criterion, by plotting,

along a given radial direction and at selected times, the maximum planar shear stress S, defined

by

S =
1

2

q
(σθθ − σrr)2 + 4σ2rθ (191)

as a function of the mean planar Terzaghi effective compressive stress P 00

P 00 = −1
2
(σθθ + σrr)− p (192)

Figure 6 presents such a plot for the following values of the stress parameters Po = 7So,

po = p∗ = 4So (p∗ is the pressure in the borehole), and the material constants, ν = 0.2,

νu = 0.4 and B = 0.8. The solid curves indicate the stress profile at a given dimensionless time

τ = ct/a2 for the whole range of dimensionless radial distance 1 ≤ ρ <∞. The left end of the
curves corresponds to ρ = ∞, where P 00 = 3So and S = So. The curves terminate at ρ = 1

where P 00 = S. The lower envelop corresponds to τ →∞; it coincides with the elastic solution
with undrained coefficient. Also in the same diagram are dashed curves, representing the stress

history at fixed ρ, for 0 < τ <∞.
In a simple failure analysis based on the Mohr-Coulomb criterion, the failure condition can

be expressed as

S =
Kp − 1
Kp + 1

µ
P 00 +

q

Kp − 1
¶

(193)

where q is the uniaxial compressive strength, and Kp the coefficient of passive stress, given in

terms of the friction angle ϕ by

Kp =
1 + sinϕ

1− sinϕ (194)
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Figure 6: Isochrone of stress profile in the radial direction θ = 0, π and stress history at selected

points.

The straight line in Figure 6 represents a Mohr-Coulomb criterion characterized by a friction

angle ϕ = 30◦ and a uniaxial strength q = 10So. A stress state above this line implies failure.
As indicated on the figure, the parameters have been chosen in such a way that a state of

impending failure exists at the borehole wall (at θ = 0) according to the elastic solution (i.e.,

the Mohr-Coulomb line intersects with the right end of the elastic stress profile). The figure

clearly indicates that failure can indeed initiate at some distance away from the borehole,

and not right at the borehole wall as predicted on the basis of the elastic stress distribution.

According to the stress history curves (dashed lines), failure occurs away from the wall at a

distance ranging from 5% to 10% of the borehole radius. The poroelastic effects associated

with mode 3 thus provide a potential mechanism for the formation of borehole breakouts, a

pervasive feature of deep wells.

6.4 Early Time Evolution of Stress near a Permeable Boundary

Short-time asymptotic expressions have been previously derived for the stress concentration at

the outer boundary of a cylinder and at the borehole wall. Both cases are actually particular

expressions of a generic process taking place near the permeable boundary of a poroelastic do-

main. An analysis of this near-boundary process is outlined below; it is followed by a discussion

of the problem of rate-effects in the tensile failure of fluid-pressurized cavities.
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6.4.1 Early Time Stress Concentration

We will now investigate the early time evolution of the stress concentration in that part of a

poroelastic domain adjacent to a segment of boundary Γ. For simplicity, the domain is assumed

to be under condition of plane strain and initially stress and pore pressure free. Let ρ denote

the local radius of curvature of the boundary and let (`, n) refer to a local orthogonal curvilinear

system of coordinates with the n-axis in the same direction as the outward normal to Γ. At

time t = 0+, the boundary of the poroelastic domain is suddenly put in contact with a fluid,

maintained at a constant pressure p∗ for t ≥ 0. As done earlier, this loading is decomposed in
mode 1 and 2 loading.

Consider first mode 2 loading. At early time, the depth of penetration δ of the “diffusion

front” is very small compared to the radius of curvature ρ (and any other relevant length

characterizing the problem); i.e. δ/ρ¿ 1 and all other dimensions then appear infinite at the

lengthscale δ. Therefore a one-dimensional solution of the poroelastic equations is expected in

the neighborhood of the boundary. The early time evolution of the stress near the boundary

can be deduced directly from the results obtained in Section 6.1. In particular, the following

local relationship between the tangential stress and the pore pressure applies at early time:

σ`` = −2ηp − δ < n < 0 (195)

In mode 1 loading, we generally have to take into account the existence of a pore pressure

induced by application of a mechanical loading on the poroelastic solid. This induced pore

pressure, denoted as pu, is proportional to the mean stress σukk computed from an “undrained”

elastic analysis, see (63). At the boundary, the “undrained” pore pressure is given by

pu = −B(1 + νu)

3
(σu`` − p∗) (196)

Since pu is a harmonic function§ (see (79) with ζ = 0), the induced pore pressure field is

internally equilibrated. However, pu does not generally satisfy the boundary condition p = 0

and pore pressure adjustment will therefore take place at t > 0. Again, we expect a one-

dimensional solution for the incremental field quantities near the boundary, during the initial

phase of the pore pressure change; hence, in mode 1, at early time

σ`` − σu`` = −2η(p− pu) (197)

At the boundary, the readjustment of the pore pressure to the boundary condition takes

place “instantaneously”, for either loading mode. The instantaneously adjusted value of the
§The only case for which the condition ∇2pu = 0 is not met, is when the mechanical loading includes a body

force which does not derive from an harmonic potential.
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boundary tangential stress, σ0
+

`` , can thus be deduced from (197) (where p = 0 and pu has been

eliminated using (196)) for mode 1 and from (195) (with p = p∗) for mode 2. Finally, the two
expressions for the early time stress concentration are given by

• Mode 1
σ0

+

`` =
1− νu
1− ν

σu`` +
νu − ν

1− ν
p∗ (198)

• Mode 2
σ0

+

`` = −2ηp∗ (199)

As an example, the stress concentration at the boundary of a poroelastic cylinder, (176), is

immediately recovered from (198) and (199).

For mode 2, the early-time stress concentration is thus the result of a purely local phe-

nomenon (its magnitude depends only on the local pressure p∗). For mode 1, there is a global
influence on σ0

+

`` due to the presence of σ
u
`` in (199) (σ

u
`` is an “elastic” contribution).

6.4.2 Strain Compatibility Argument

The two expressions (199) and (198) can actually be derived from a somewhat different point

of view. In Section 4.3.3, it was mentioned that integration of the plane strain compatibility

equation (78) yields the expression

σ`` + σnn + 2ηp = f (200)

where the harmonic function f generally depends on position and time (only on time if the

displacement field is irrotational). Using the constitutive relations (62), (200) can alternatively

be written along the boundary as

2Gε`` + σnn = (1− ν)f (201)

Let us now focus on the situation arising when under constant normal stress on the boundary

there is an “instantaneous” adjustment of the pore pressure, as that occurring during the

transition “u” to “0+” in mode 1 loading or at t = 0+ in mode 2 loading. During the sudden

transition of the pore pressure along the boundary of the domain, f remains unchanged (indeed

f is an harmonic and thus a smooth function) and so does the tangential strain ε`` since σnn
is constant. The two expressions (198) and (200) can then be derived from (201), noting that

along the boundary at t = 0+, f = σu`` + σunn for mode 1 and f = 0 for mode 2.

Simply stated, the sudden variation of the tangential stress along the boundary takes place

in order to preserve the tangential strain during the “instantaneous” equilibration of the pore

pressure to the imposed boundary value.
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6.4.3 Application to Tensile Failure

General Considerations Elastic stress concentrations are often used in conjunction with

a failure criterion to predict the elastic limit of the system. This is done on the ground that

the critical conditions are usually reached on the boundary of the domain. There is however a

hidden assumption in this approach, namely that the stress concentration is representative of

the stress “averaged” over the lengthscale λ that underpins the failure process (e.g. the length

of a microcrack for tensile failure). This condition is met in elastic boundary value problems,

provided that λ is small compared to the radius of curvature ρ of the boundary. An example

of this approach is the condition of propagation of a small “edge” crack of length λ¿ ρ which

can be written as114

σ`` = T (202)

where the “tensile strength” T is given by

T ' KIc

1.12
√
πλ

(203)

with KIc denoting the material toughness.

In elasticity, this approach is therefore justified provided λ¿ ρ. In poroelasticity, however,

we need to take into account an additional lengthscale, δ, the distance of propagation of the

pore pressure perturbation from the boundary. When the diffusion length δ (which at early

time is proportional to
√
ct) is smaller or of the same order than the lengthscale λ, significant

variation of the stress over the distance λ is expected, implying that the stress concentration

does not properly reflect the stress controlling the tensile failure process.

It is possible to acknowledge in simple terms the existence of this lengthscale λ by considering

a tangential stress σ̄``, averaged in a boundary layer of thickness λ:115

σ̄`` =
1

λ

Z −λ

o
σ`` dn (204)

As an illustration, we consider the case where mode 2 loading introduces the only significant

poroelastic (time-dependent) contribution. On account that the induced stress in this boundary

layer is given at early time by the one-dimensional solution (195), the average Terzaghi effective

stress σ̄0`` (the relevant stress for tensile failure) is given by

σ̄0`` = σe`` +
1− 2η
λ

Z −λ

o
p dn (205)

In the above, σe`` is the elastic stress concentration, corresponding to mode 1 loading (no

averaging on a boundary layer is necessary, if λ ¿ ρ). As an example, σe`` = −Po + p∗ for
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Figure 7: Response function for average tangential stress in the boundary layer.

the problem of a pressurized borehole with a far-field isotropic stress. Using (152) for the pore

pressure solution, the expression (205) for σ̄0`` becomes

σ̄0`` = σe`` + (1− 2η)p∗g(τ) (206)

where τ is the dimensionless time 4ct/λ2 and the dimensionless response function g(τ) is defined

as

g(τ) =

r
τ

π

·
1− exp

µ−1
τ

¶¸
+

·
1− erf

µ
1√
τ

¶¸
(207)

This function, which varies between 0 and 1 as τ increases from 0 to ∞, is plotted in Figure
7. From this figure, it is seen that g(τ) reaches about 60% of its asymptotic value at τ = 1.

At τ ' 100, σ̄0`` is virtually equal to the boundary value which was attained “instantaneously”.
Thus by introducing a lengthscale λ, it has become possible to introduce a time lag between

the boundary pressure and the tangential stress.

This simple analysis suggests that rate effects that are sometimes observed in the tensile

failure following pressurization of a hole – “breakdown” – are actually linked to a mechanism

of fluid diffusion and are the consequence of the interaction of two lengthscales: the diffusion

length δ and the “microstructural” length λ. In essence, the mere existence of a rate effect can

be seen as evidence of the existence of a certain lengthscale λ in the failure mechanism. Only

when the pressurization rate is “slow” enough, is the underlying lengthscale λ concealed; this

asymptotic behavior corresponds to the case when the stress, averaged in the boundary layer
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Figure 8: Plot of h(γ) versus γ for θ = 0. 0.25, 0.5.

of thickness λ, is at all time proportional to the boundary fluid pressure.

Breakdown criterion Using this approach, Detournay and Cheng116 have investigated the

influence of the pressurization rate on the magnitude of the breakdown pressure pb (the critical

pressure at which “breakdown” takes place during pressurization of a borehole). An expression

for pb was derived which depends explicitly of a dimensionless pressurization rate γ,

γ =
Aλ2

4cS
(208)

where A is the rate of increase of the borehole pressure and S a stress quantity defined as

S = 2Po − 4So − 2po + T (209)

(Po, So, and po have the meaning defined in Section 6.3). The breakdown criterion can then be

written as follows116

pb − po = S

1 + (1− 2η)h(γ) (210)

where the dimensionless function h(γ) decreases from 1 to 0 as γ varies from 0 to∞. The form
of h(γ) depends only on η, see Figure 8, where h(γ) is plotted for η = 0, 0.25, 0.5.

On the basis of the characteristics of the function h(γ), three different pressurization regimes

can be identified: slow, transient, and fast.
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• Slow regime (γ < γl). The slow asymptotic regime corresponds to the limit γ → 0. In

practice, this regime is approximately reached for γ < γl(η) (γl ' 0.001 for η = 0.25,

corresponding to h(γl) ' 0.95). The slow pressurization limit yields a lower bound value
of the breakdown pressure pbl, given by

pbl − po = S

2(1− η)
(211)

This expression is equivalent to the Haimson-Fairhurst (H-F) breakdown equation.7

• Fast regime (γ > γu). The fast asymptotic regime corresponds to the limit γ → ∞
and thus to h(γ) → 0. In practice, this regime is approximately reached for γ > γu(η)

(γu ' 100 for η = 0.25, corresponding to h(γu) ' 0.05). The fast pressurization limit

yields an upper bound value of the breakdown pressure pbu, given by

pbu − po = S (212)

This expression is identical to the Hubbert-Willis (H-W) breakdown equation.117

• Transient regime (γl < γ < γu). In this regime, pb depends on the pressurization rate

A. The breakdown pressure varies between the H-F and the H-W limit as γ increases

between γl to γu.

The H-F and H-W expression for the breakdown pressure correspond therefore to the as-

ymptotically slow and fast pressurization regimes, respectively. It can be shown116 that the

H-F limit is actually the appropriate breakdown criterion for “permeable” rocks, as hydraulic

fracturing experiments in these rocks are practically always in the slow regime. However, rate

effects are potentially significant in low permeability/low porosity rocks. Furthermore, it is in

these rocks that the difference between the H-F and the H-W value is the largest (since α and

thus η → 0 when φ→ 0). In this case, both the H-F and the H-W expressions are practically

reachable limits, depending on the pressurization rate.

6.5 Hydraulic Fracture

6.5.1 Preamble

To conclude this overview of poroelastic mechanisms, we now study their roles in the context of

a hydraulic fracture. Hydraulic fracturing involves several strongly coupled processes: fracture

opening, viscous fluid flow in the fracture, diffusion of fracturing fluid in the porous formation,

and propagation of the fracture. Only one of the mechanisms involved in the modelling of the
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complete process will be addressed here; namely the relationship between the fracture width

and the fluid pressure in the fracture. First, we study the fundamental response of a stationary

fracture embedded in an infinite, two-dimensional, poroelastic medium. The response of a

vertical hydraulic fracture bounded by impermeable elastic layers will be analyzed next.

6.5.2 Griffith Crack

As an introduction to this analysis of poroelastic effects in hydraulic fracturing, we begin with

the problem of a Griffith crack with length L, internally loaded by a fluid at pressure p∗.17 Our
main objective is to calculate the time evolution of the average fracture width w.

As before, the fluid pressure loading is decomposed into mode 1 and 2; the poroelastic

response of the fracture to a step loading is expressed in terms of two functions of the dimen-

sionless time τ = 4ct/L2, w(1)(τ) and w(2)(τ).

Mode 1 Loading The instantaneous average fracture aperture at t = 0+ is given by Sned-

don’s solution118 with undrained elastic constants,

w(1)(0+) = πL(1− νu)p
∗/4G (213)

while the long-term value w(1)(∞) is given by the same expression with νu replaced by ν. The

final fracture aperture is greater than the initial one (this is expected since the poroelastic

material is softer when drained). The maximum time-dependent width increase, ∆w(1)(∞),
experienced by the fracture is thus given by

∆w(1)(∞) = πL(νu − ν)p∗/4G (214)

It is convenient to introduce the dimensionless width response function f (1)(τ), which varies

between 0 and 1 as τ increases from 0 to ∞

w(1)(τ) = w(1)(0+) +∆w(1)(∞)f (1)(τ) (215)

The response function can be computed by modelling the fracture using a distribution of singu-

larities to account for the discontinuity of flux and displacement that characterize the crack17

(see also Section 5.4.2). The function f (1)(τ) depends on the value of ν, νu and α; it is plotted

in Figure (9) for two limiting cases: (i) the “soil mechanics” case (νu = 0.5, α = 1) and (ii) the

uncoupled case(νu ' ν).¶

¶In the limit νu → ν (the uncoupled case), ∆w(1)(∞)→ 0, but the response function f (1)(τ) remains defined.
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Figure 9: Griffith crack problem.

Mode 2 Loading When a constant pore pressure p∗ is applied on the fracture faces, the
crack width decreases from 0 to the asymptotic value

w(2)(∞) = −π(1− ν)Lηp∗/4G (216)

The crack thus closes under mode 2 loading as a result of the dilation of the the porous solid

around the fracture, caused by an increase of the pore pressure (of course it is assumed that

the crack remains open under combined mode 1 and 2 loading).

The asymptotic value (216) can be obtained using the following line of argumentation. In

doing so, we first pretend that the fracture is closed or does not exist (while retaining the

“boundary” condition p = p∗) and calculate the stress induced across the fracture path at
t =∞. In a second stage, we calculate the fracture width induced by the removal of this stress
along the fracture, as in a simple superposition problem.

At large time, the pore pressure diffusion equation (82) uncouples from the volumetric strain

rate (to eventually degenerate into the Laplace equation) and, as a consequence, the induced

displacement field becomes irrotational. It has been shown earlier (see Sections 4.3.3 and 4.3.4)

that in these circumstances the relationship between the stress and the pore pressure is given

by

σxx + σyy = −2ηp (217)

As t → ∞, the pore pressure p in the region around the fracture approaches the asymptotic
value of p∗ and induces, by symmetry, a uniform confining stress σxx = σyy. It then follows
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Figure 10: Mode 2 response function for average fracture width in the Griffith crack problem.

from (217) that

σxx = σyy = −ηp∗ as t→∞ (218)

A compressive stress of magnitude ηp∗ (sometimes called “back-stress”119) is thus generated
across the fracture path at τ →∞ by mode 2 loading. To obtain the solution of a fracture with

zero stresses on the surface, we must superpose the solution of a Griffith fracture in a drained

medium with a tensile stress σn = ηp∗ applied on the fracture faces. The asymptotic value of
the fracture width is hence given by (216), or equivalently by

w(2)(∞) = −ηw(1)(∞) (219)

The dimensionless response function f (2)(τ) = w(2)(τ)/w(2)(∞) can be calculated in the
same manner as f (1)(τ);17 it is plotted in Figure 10 for the two limiting cases described above.

Discussion Figure 10 shows little difference in the response function f (2) computed for the

two limiting poroelastic cases. This implies that the elastic coupling in the pore pressure diffu-

sion equation is weak. (Note that the elastic coupling vanishes as t→∞, with the consequence
that the uncoupled solution is asymptotically the correct solution for the coupled case, as time

becomes large). Furthermore, in taking into account the existence of a far-field compressive

stress σo perpendicular to the fracture plane, and a far-field pore pressure po with p∗ > σo > po,

we observe that the time-dependent part associated with mode 1 loading is generally overshad-

owed by mode 2.17 Indeed the term (νu−ν)(p∗−σo) is typically much smaller than η(p∗−po).
Hence we can conclude that the influence of the coupling “solid to fluid” (as embodied in the
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Figure 11: Vertical hydraulic fracture bounded by semi-infinite impermeable elastic layers.

difference between νu and ν or by the departure of the Skempton B coefficient from 0) does

not generally play an important role for this class of problems; in other words, these problems

can satisfactorily be solved within the framework of “uncoupled” poroelasticity (i.e. only with

a coupling “fluid to solid”).

6.5.3 Vertical Hydraulic Fracture Bounded by Impermeable Layers

We now turn toward the somewhat more realistic geometry of a vertical hydraulic fracture, of

height H, confined within a horizontal permeable layer bounded by impermeable semi-infinite

strata, see Figure 11. (In practice this type of geometry can occur when a permeable sandstone,

saturated with oil, is bounded by quasi-impermeable shales.) If a sufficiently high contrast in

horizontal stress exists between the permeable and impermeable layers, the hydraulic fracture

remains confined to the reservoir layer, and propagates laterally with a constant height.

In these conditions, provided the length of the fracture is much larger than its height,

propagation of the hydraulic fracture can be simulated using the ‘one-dimensional’ model,

developed by Perkins and Kern,120 and Nordgren,121 and known as the PKN model. The PKN

model can be used to predict the transient evolution of the fracture length and the “fracturing

pressure” (the pressure at the fracture inlet). One of the ingredients needed for the PKN

model is the relation between the average fracture width and the fluid pressure in a plane cross-
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section perpendicular to the fracture direction (such as shown in Figure 11). This relation,

which incorporates poroelastic effects, is calculated below.

We assume the existence of a far-field compressive stress σo and pore pressure po (< σo) in

the poroelastic layer, see Figure 11. Starting at time t = 0, a fluid of the same compressibility

and viscosity as the pore fluid is injected into the fracture at a pressure p∗ > σo. As for the

Griffith fracture, the analysis of the poroelastic response is here restricted to the determination

of the evolution in time of the average fracture width w.

The loading provided by the fluid in the fracture is again decomposed into two modes; and

the modal response functions are calculated for conditions where the far-field stress and pore

pressure are both zero. Details on the solution of this problem can be found elsewhere.122

Here we analyze this problem within the restricted framework of uncoupled poroelasticity, and

under the particular conditions where the bounding layers have the same elastic properties as

the permeable layer (as in the case of the Griffith crack problem, the elastic coupling in the

diffusion equation governing the pore pressure can be shown to be weak122).

Mode 1 loading Under the approximation νu ' ν, the response of the fracture to mode 1

loading is simply elastic. Hence

w(1) = π(1− ν)Hp∗/4G (220)

Mode 2 loading A special form of the reciprocal theorem for the uncoupled quasi-static

theory of poroelasticity leads to the following form of the average fracture width w(2) (see

Timoshenko and Goodier123 for derivation of this theorem for the mathematically equivalent

theory of Thermal Stress):

w(2) =
2α

H

Z ∞

0

Z H/2

−H/2
p(2)(x, t)ε∗(x, y) dxdy (221)

where ε∗ is the elastic volumetric deformation induced by a unit normal stress in the fracture,
and p(2)(x, t) is the pore pressure field corresponding to mode 2 loading. Note that the volume

integral extends only over the permeable layer, because the pore pressure is zero everywhere

else.

Since p is here governed by an homogeneous diffusion equation and given the boundary

conditions controlling the diffusion problem, the pore pressure field in the permeable layer is

actually given by the one-dimensional solution (152). Also, using a distribution of dislocations

to model the fracture, ε∗ can be expressed in the following integral form

ε∗(x, y) =
1− 2ν
πG

Z +H/2

−H/2
2ξ(y − ξ) dξp

H2 − 4ξ2[(y − ξ)2 + x2]
(222)
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As before, we can express the response function w(2) as

w(2) = w(2)(∞)f(τ) (223)

where w(2)(∞) is the long-term asymptotic fracture width and f(τ) a dimensionless response

function (varying between 0 and 1) of the normalized time τ = 4ct/H2 . The asymptotic value

of w(2) can be obtained by setting the pore pressure field equal to p∗ in (221). The integration
yields

w(2)(∞) = −2ηw(1) (224)

In a situation similar to the Griffith crack, the diffusion of pore pressure acts therefore to close

the fracture, by inducing a volumetric expansion of the rock in the permeable layer. It is

interesting to note, however, that the asymptotic value given by (224) is exactly twice the limit

derived for the poroelastic Griffith crack problem. The reasons are elaborated below, using

heuristic arguments.

The influence function f(τ) can be expressed as follow, using (221), (152) and (222),

f(τ) =
4

π

Z ∞

0
erfc

µ
χ

2
√
τ

¶
g(χ)dχ (225)

where χ = 2x/H and g(χ) is a “spatial” influence functionk

g(χ) = 1−
r

χ

2

qp
4 + χ2 − χ (226)

The function g(χ) decays monotonically from the value of 1 at χ = 0 to 0 at χ =∞ (see Figure

12). This figure clearly indicates that beyond a distance 4H from the fracture, there is hardly

any contribution from the rock volumetric deformation (due to pore pressure change) to the

fracture volume.

Figure 13 presents a plot of the response function f(τ). Comparison with Figure 10 clearly

indicates an increase of the characteristic time (which can loosely be defined as the time required

to reach about 70% of the asymptotic effect) for the fracture bounded by impermeable barriers

with respect to the Griffith crack. This difference is directly attributable to the presence of

impermeable interfaces which are responsible for a one-dimensional diffusion process, in contrast

to the two-dimensional one characterizing the poroelastic Griffith crack problem.

Heuristic arguments for the mode 2 asymptotic limit A simple mechanical model is

now developed to calculate the asymptotic value w(2)(∞). We use the same artifice as before;
kNote that χ = 2x/H is introduced to allow interpretation g as a spatial influence function.
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Figure 12: Spatial influence function giving the contribution to the fracture width change caused

by a unit change of the pore pressure at distance χ = 2x/H.

Figure 13: Mode 2 response function for average fracture width in the problem of a vertical

hydraulic fracture bounded by impermeable elastic layers.
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first we calculate the stress induced across the fracture by pretending that the fracture is closed,

then we determine the change in fracture width induced by the removal of this stress.

We now contend that at large time (assuming the fracture closed), mode 2 loading induces

a uniaxial strain state in the poroelastic layer such that

²∞xx = ²
∞
xy = σ∞yy = 0 (227)

where the superscript ∞ indicates that this state of deformation applies only at t = ∞. As
a consequence of the infinite horizontal extent of the permeable layer and of the uniform pore

pressure rise taking place throughout that layer at t =∞, only a vertical strain can exist in the
permeable layer at large time. The vanishing of the vertical stress at t =∞ can be argued using

the model of a one-dimensional column. The vertical stress σyy induced in the permeable layer

is proportional to H²yy/Hb, where Hb is the height of the impermeable layer; since Hb = ∞,
σ∞yy = 0.

From the results of Section 6.1, we can immediately conclude that an increase of the pore

pressure to p∗ under conditions of uniaxial strain and constant axial stress induces in the
poroelastic layer a compressive horizontal stress of magnitude 2ηp∗ . Employing the principle
of superposition, it is then deduced that

w(2)(∞) = −2ηw(1) (228)

The asymptotic fracture closure for the three layer system (with uniform elastic properties) is

thus twice as much as for the infinite homogeneous system. Note that the argument embedded

in equation (228) is quite general, in so far as it also applies in the case were the bounding

layers are characterized by different elastic properties; in other words, the effect of a contrast in

elastic properties on the asymptotic value of w(2) is taken into account by the term w(1), which

can be evaluated from an elastic analysis∗∗.122

In closing, it is worthwhile to point out that contrast in value of elastic constants between

the permeable and impermeable layers appears to have a large effect on the response function

f(τ).122 Impermeable layers that are stiffer than the permeable one cause an acceleration of

fracture closure at early time, while softer impermeable layers have the opposite effect.

6.5.4 Applications

Taking into account the existence of a far-field stress σo and a far-field pore pressure po in the

permeable layer, the expression for the average fracture width corresponding to a step loading
∗∗In the context of a fully coupled poroelastic analysis w(1) should be understood as w(1)(∞), i.e. the elastic

analysis must be carried out using the drained constant.
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of the internal fluid pressure p∗ becomes

w =
π(1− ν)H

4G
[(p∗ − σo)− 2η(p∗ − po)f(τ)] (229)

This equation can be substituted to the elastic fracture compliance equation in a PKN model

of a hydraulic fracture.124 Such a model has been used to investigate the impact of poroelastic

effects on the time evolution of the fracture length and the fracturing pressure.

Note that the asymptotic fracture closure w(2)(∞) for the cases of the fracture in an infinite
medium and the fracture bounded by impermeable layers were derived on the assumption that

the fracture surface is directly exposed to a fracturing fluid of same viscosity and compressibility

as the reservoir fluid. This restriction can actually be overcome by interpreting (p∗−po) in (229)
as the difference between the pressure at the fracturing/reservoir fluid interface and the far-field

pore pressure po.124 This approximation is acceptable as long as the penetration distance of

the fracturing fluid in the rock remains small compared to the fracture height, which is the

characteristic length controlling the poroelastic process.

An evaluation of the impact of poroelastic effects in hydraulic fracturing must address the

issues of both magnitude and time-scale. Poroelastic mechanisms will play a significant role,

only if (i) its maximum potential effect is of the same order of magnitude as the elastic effect

and (ii) its characteristic time is not small compared to the injection time. Here we have focused

attention on the fracture closure induced by pore pressure diffusion in the permeable medium

(rock)††. It has been shown that the long-term closure (the “magnitude”) and the characteristic
time (the “timescale”) depend on the geometry of the fracture-rock system.

Under conditions where the poroelastic effects are important, it can be shown124, 125 that

they lead to an increase of the injection pressure and the closure pressure. (The closure pressure

is the pressure at which the fracture close after the pumping is stopped and the well shut-in).

This last point is of particular importance, since the closure pressure is generally interpreted as

the far-field stress σo; neglect of poroelastic effects then leads to a systematic overestimation of

far-field stress perpendicular to the fracture plane.

††There are other issues that need to be considered, such as the impact of poroelastic effects on the magnitude

of the stress intensity factor.
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Appendix A: Equivalence between Poroelastic Constants

In his landmark 1941 paper on poroelasticity,4 Biot introduced the following bulk dynamic and

kinematic variables (in the current notation): the total stress tensor σij , the fluid pressure p, the

solid strain tensor εij , and the variation of fluid volume content ζ. This theory was reformulated

in 195518 using the concept of partial stresses. In that formulation, the constitutive variables

are: the solid partial stress tensor τ ij , the fluid partial stress τ , the solid strain tensor εij , and

the fluid dilatation ² = Ui,i, where Ui is the fluid displacement vector. The relations between

the two sets of variables are

σij = τ ij + δijτ (230a)

p = −τ
φ

(230b)

ζ = φ(ε− ²) (230c)

In this paper, we have followed the Biot 1941 formulation in terms of total stress, which was

also adopted by Rice and Cleary.8 There are however a large number of papers that follow the

Biot 1955 convention (see also Biot,19 and Biot and Willis31). It is therefore necessary to clarify

the equivalence between the constitutive constants introduced in the various formulations.

Biot 1941 The constitutive constants H, R and Q (two of them are independent) introduced

by Biot in 19414 are here denoted as H 0, R0 and Q0 to avoid confusion, as these same symbols
were redefined by Biot in 1955.18 The equivalence between {H 0, R0, Q0} and the present set
{α,K,Ku} is

B =
R0

H 0 , (231a)

Ku =
KQ0

R0
, (231b)

α =
K

H 0 . (231c)

Note that Q0 =M , where M is defined in Biot and Willis.31

Biot 1955 The Biot 195518 constants Q, R, M were discussed in detail by Biot and Willis.31

The conversion to and from the present set follows the formulas below:

R =
φ2B2K2

u

Ku −K =
φ2(Ku −K)

α2
(232a)

Q = φBKu

µ
1− φBKu

Ku −K
¶
=

φ(α− φ)(Ku −K)
α2

(232b)
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and

B =
Q+R

φ
h
(Q+R)2

R +K
i = αM

K + α2M
(233a)

Ku =
(Q+R)2

R
+K = K + α2M (233b)

α =
φ(Q+R)

R
(233c)

where M = R/φ2.

Biot and Willis 1957 Biot and Willis31 also introduced the following micromechanical para-

meters: κ0 = jacketed compressibility (prime is added to avoid confusion with the permeability
coefficient), δ = unjacketed compressibility, and γ = coefficient of fluid content. They are

related to the current micromechanical constants as

κ =
1

K
, (234a)

δ =
1

K 0
s

, (234b)

γ = φ

µ
1

Kf
− 1

K 00
s

¶
(234c)
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Appendix B: Notations

c diffusivity coefficient

d flux discontinuity

di displacement discontinuity

eij deviatoric strain tensor

fi fluid body force component

k intrinsic permeability

ni unit outward normal vector

p pore pressure

p0 Π-pressure

q normal flux

qi specific discharge

s pressure discontinuity

si stress discontinuity

sij deviatoric stress tensor

ti traction vector

ui solid displacement vector

B Skempton pore pressure coefficient

Cbc, Cbp bulk compressibilities

Cpc, Cpp pore compressibilities

Cs, C
0
s, C

00
s solid phase compressibilities

Fi bulk body force component

G shear modulus

Gs shear modulus of the solid phase

H 0,H 00 poroelastic constants, see (4)

K drained bulk modulus of elasticity

Kf bulk modulus of fluid

Kp bulk modulus of pores

Ks,K
0
s,K

00
s bulk modulus of solid phase, see (23) and (37)

Ku undrained bulk modulus of elasticity

Kφ bulk modulus of porosity

M Biot modulus
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P total pressure (isotropic compressive stress)

Ps pressure on the solid phase

P 0 Terzaghi effective pressure

R poroelastic constant

R0 poroelastic constant, see (4)

S storage coefficient

V total volume

Vf volume of fluid

Vp volume of interconnected pores

Vs volume of solid phase

α Biot coefficient of effective stress

β effective stress coefficient for pore volume strain

γ fluid source density

δ Dirac delta function

δij Kronecker delta

ε solid volumetric strain

εij solid strain tensor

ζ variation of fluid content per unit volume of porous media

η poroelastic stress coefficient

θ volume of source injection

κ mobility coefficient

µ fluid viscosity

ν drained Poisson ratio

νu undrained Poisson ratio

σij total stress tensor

σ0ij Terzaghi effective stress tensor

φ porosity

ω frequency

ω∗ dimensionless frequency

τ dimensionless time
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