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Introduction 

 

 For our CS229 project, we studied the problem of 

reliable computerized emotion recognition in images of 

human faces. First, we performed a preliminary 

exploration using SVM classifiers, and then developed an 

approach based on Deep Belief Nets. Deep Belief Nets, or 

DBNs, are probabilistic generative models composed of 

multiple layers of stochastic latent variables, where each 

“building block” layer is a Restricted Boltzmann Machine 

(RBM). DBNs have a greedy layer-wise unsupervised 

learning algorithm as well as a discriminative fine-tuning 

procedure for optimizing performance on classification 

tasks. [1]. 

 We trained our classifier on three databases: the 

Cohn-Kanade Extended Database (CK+) [2], the Japanese 

Female Facial Expression Database (JAFFE) [3], and the 

Yale Face Database (YALE) [4]. We tested several 

different database configurations, image pre-processing 

settings, and DBN parameters, and obtained test errors as 

low as 20% on a limited subset of the emotion labels. 

 Finally, we created a real-time system which takes 

images of a single subject using a computer webcam and 

classifies the emotion shown by the subject. 

 

Part 1: Exploration of SVM-based approaches 

 

 To set a baseline for comparison, we applied an 

SVM classifier to the emotion images in the CK+ 

database, using the LIBLINEAR library and its MATLAB 

interface [5]. This database contains 593 image sequences 

across 123 human subjects, beginning with a “neutral 

“expression and showing the progression to one of seven 

“peak” emotions. When given both a neutral and an 

expressive face to compare, the SVM obtained accuracy 

as high as 90%. This section summarizes the 

implementation of the SVM classifier. For additional 

details on this stage of the project, please see our 

Milestone document. 

 

Part 1.1 Choice of labels (emotion numbers vs. FACS 

features) 

 

 The CK+ database offers two sets of emotion 

features: “emotion numbers” and FACS features. Emotion 

numbers are integer values representing the main emotion 

shown in the “peak emotion” image. The emotions are 

coded as follows: 1=anger, 2=contempt, 3=disgust, 

4=fear, 5=happiness, 6=sadness, and 7=surprise. 

 The other labeling option is called FACS, or the 

Facial Action Coding System. FACS decomposes every 

facial emotion into a set of Action Units (AUs), which 

describe the specific muscle groups involved in forming 

the emotion. We chose not to use FACS because accurate 

labeling currently requires trained human experts [8], and 

we are interesting in creating an automated system. 

  

Part 1.2 Features 

Part 1.2.1 Norm of differences between neutral face 

and full emotion 

 

 Each of the CK+ images has been hand-labeled with 

68 standard Active Appearance Models (AAM) face 

landmarks that describe the X and Y position of these 

landmarks on the image (Figure 1).  

 
Figure 1. AAM Facial Landmarks 

 

We initially trained the SVM on the norm of the 

vector differences in landmark positions between the 

neutral and peak expressions. With this approach, the 

training error was approximately 35% for hold out cross 

validation (see Figure 2). 

 

 
Figure 2. Accuracy of 

SVM with norm-

displacement features. 

 
Figure 3. Accuracy of 

SVM with separate X, Y 

displacement features. 

 

Part 1.2.2 Separate X and Y differences between 

neutral face and full emotion 

 

 Because the initial approach did not differentiate 

between displacements of landmarks in different 

directions, we also provided the differences in the X and 

Y components of each landmark separately. This doubled 

the size of our feature vector, and resulting in a significant 

(about 20%) improvement in accuracy (Figure 3). 

 

Part 1.2.3 Feature Selection 

 

Finally, we visualized which features were the most 

important for classifying each emotion; the results can be 

seen in Figure 4. The figure shows the X and Y 



displacements for each emotion compared to the average 

values over all emotions, with average features colored in 

green and both extremes colored red and blue, 

respectively. One interesting result is that the Y features 

are in general more important—there are fewer side-to-

side motions of facial features during the formation of 

expressions. Also, “surprise” showed by far the most 

extreme displacements for many features. This exercise 

helped us understand which aspects of our images contain 

the most information about emotion, and so was valuable 

for designing our approach to the DBN. 

 

 
Figure 4. Visualization of relative feature importance. 

 

Part 1.2.5 Limitations of AAM landmarks 

 

 While the SVM trained on AAM facial landmark 

provided promising results, it has a fatal flaw: there is not 

yet an accurate, automated method for identifying the 

landmarks on a human face. Because we want to make a 

fully automated emotion classifier, we had to abandon 

AAM landmarks. Fortunately, DBNs can be trained on 

raw images (and actually performed better with these 

inputs than if they were given the AAM features.) 

 

Part 2: Deep Belief Nets 

 

DBNs are probabilistic generative models composed 

of hidden stochastic variables and are similar in structure 

to neural nets. However, unlike other neural nets, DBNs 

perform learning one layer at a time, computing 

generative weight matrices that define connections 

between the nodes of every two adjacent layers. Once the 

weighted matrices are calculated, the hidden variables at 

each layer can be inferred from the visible input by 

reversing the matrices. 

Our DBN implementation is based upon a 

modification of Geoff Hinton’s code for classifying the 

MNIST handwritten digit database [7]. The two problems 

are actually very similar, since both involve training a 

DBN on a raw image and sorting the training examples 

into 5-10 classes. We hoped that, as in the digit 

recognition case, the DBN algorithm’s ability to identify 

complex patterns in the input would yield high accuracy 

in our classification task. 

This section describes the steps we took in setting up 

and configuring our DBN-based system, and concludes 

with test results.  

 

Part 2.1 Face detection and image preprocessing 

 

 We used OpenCV’s Haar feature detection 

algorithms to create an image preprocessing program to 

prepare the images in our databases. There are 3 key steps 

in the processing chain: 1) identify and crop a face in the 

image, 2) identify the eyes, and use their location to 

“letterbox” the left and right sides of the face, and 3) 

perform histogram equalization. The letterboxing serves 

to hide areas of the image that don’t correlate with 

emotion, such as the ears and hair. Equalization serves to 

sparsify the image matrix and emphasize the features of 

interest, as well as ensure that all our input data has the 

same contrast.  

 

 
Figure 5. Image pre-processing steps 

 

As it turned out, equalizing the data was extremely 

important, but the letterboxing technique actually 

degraded performance (see Results). 

An important image preprocessing question is the 

size to which the input images should be scaled. The 

Hinton paper on digit recognition used 28 by 28 pixel 

inputs. However, human faces are much more complex 

than handwritten digits, so higher resolution is required to 

avoid losing important details. Excessively high 

resolution, on the other hand, would greatly increase the 

running time of the algorithm and could actually degrade 

accuracy, due to the decreased proportion of “relevant” 

data in the image. With this in mind, we chose to scale 

our input images to 100 by 100 pixels.  

 

Part 2.1: Parameter selection 

 

 The two most important parameters of a DBN are a) 

the number of layers and b) the number of hidden 

variables in each layer. The default settings in the Hinton 

code are to use 4 layers, containing 500, 500, and 2000 

latent variables, with the final hidden layer variables 

corresponding directly to our classes. 

 In general, the more layers present in the DBN, the 

better performance will be. Networks with insufficient 

depth can require more computational elements than 

architectures whose depth is well-matched to the task, 

because deeper networks with fewer hidden variables can 

provide a simpler, more descriptive model [6]. The 

problem with deep nets is that they are often harder to 

optimize, and the best performance is often determined 

empirically. 



 While it is agreed that adding more layers to the 

network will enhance performance, beyond a certain 

threshold the payoff of adding more layers is no longer 

worth the additional time and computing resources needed 

to run the DBN. In addition to the standard 4 layers in the 

Hinton code, we also tested the DBN with 5 and 6 layers. 

Since human faces are much more complex than 

handwritten digit images, we decided not to try decreasing 

the number of layers. 

 There are many “rules of thumb” for determining the 

optimal number of hidden variables per layer. In general, 

the number of hidden variables required depends in a 

complex way on the size of the input and output layers, 

the number of training examples, the amount of noise in 

the data, and other factors. Increasing the number of 

hidden units too much would make the network prone to 

over-fitting, while not enough hidden units could mean 

under-fitting and the network maybe unable to capture 

necessary higher order features. We chose to try several 

settings and determine the best performance empirically. 

 

Part 2.2: Results 

 

Part 2.2.1 Determining convergence/over-fitting 

 

Increasing back-propagation duration may result in 

over-fitting. When allowed to run for a sufficiently long 

time, the training error decreases steadily while the test 

error remains constant or increases (Figure 6). For this 

reason, it is important to be careful how about when we 

terminate the back-propagation phase. We initially ran our 

tests for a constant 200 epochs, but later found that the 

time at which over-fitting begins is dependent on the 

specific settings of the test run. In all the results reported 

in this paper, we allowed each test run to proceed until 

over-fitting was observed. The number of testing epochs 

this required was recorded, and repeated runs with the 

same settings were run for the same number of epochs. In 

many cases this took as many as 500 epochs. 

 

 
Figure 6. DBN over-fitting. 

 

Part 2.2.1 Testing histogram equalization, 

letterboxing, limited emotion sets 

 

 We began with a series of tests to determine the best 

way to pre-process our input images. The results show 

that equalization creates dramatic improvements in 

performance (up to 20% less training error). See Figure 7 

for a comparison of learning curves obtained by training 

on all three databases together, with equalization both on 

and off. 

 

 
Figure 7. Effect of equalization on test error. 

 

Table 1. Effect of histogram equalization and 

letterboxing on test accuracy 

Databases 

included 

Non-

equalized 

Equalized Equalized, 

letterboxed 

CK+ 0.39 0.33 0.34 

CK+, Yale 0.49 0.30 0.31 

CK+, Yale, 

JAFFE 

0.55 0.27 0.28 

 

On the other hand, our “letterboxing” technique of 

isolating only the main part of the face actually degraded 

performance somewhat. It’s possible that this is because 

the parts of the face which it excluded (such as the outline 

of the cheek and cheekbone) were more important than 

we had thought for classification, although further study is 

necessary to be sure.  

 

Part 2.2.2 Limited emotion and training sets 

 

 We observed both in our SVM explorations and in 

our early tests of DBNs that certain emotions in our 

databases, especially contempt and disgust, were a) very 

difficult for the algorithm to tell apart (difficult for 

humans as well, in some cases) and b) presented 

themselves differently in different subjects. We 

hypothesized that excluding one or more of these 

emotions would improve our test accuracy. We trained 

and tested on two different subsets of the emotion labels: 

the full 7-emotion set, and a limited 4-emotion set 

containing only the emotions happy, sad, surprised, and 

angry. 

 

 



Table 2. Effect of test error when training on a 

limited emotion set 

 7 Emotions 4 Emotions 

CK+ 0.57 0.22 

CK+, Yale 0.29 0.22 

CK+, Yale, 

JAFFE 

0.41 0.20 

 

 As expected, using the limited emotion set produced 

improved results. (See Figure 8 for sample learning 

curves.) 

 

 
Figure 8. Learning curves when training on limited 

emotion set. 

 

Part 2.2.3 Varying DBN depth and number of hidden 

variables 

 

 We also experimented with varying the number of 

hidden layers and latent variables. Figure 9 shows a 

comparison of the learning curves for a 4-layer, 5-layer, 

and 6-layer DBNs. 

 

 
Figure 9. Learning curves with varied DBN depth. 

 

Adding more depth generally improved the 

performance, with the 6 layer DBN outperforming all 

other configurations. In particular, the deeper DBN 

converged much faster to a good solution. However, the 5 

and 6 layer configurations took a much longer time to 

train, so they do have their drawbacks. For this reason, we 

did not test numbers of layers greater than 6. 

 Finally, we explored what happens when you vary 

the number of latent variables in the model. While it is 

difficult to determine what the optimal configuration is 

for a given total number of hidden units, it seems clear 

that increasing the number of latent variables beyond a 

certain amount decreases performance significantly. This 

is reasonable, because an excess of hidden variables 

makes the model more prone to over-fitting. Figure 10 

shows the effect of varying the number of hidden 

variables on a 4-layer DBN. 

 

 
Figure 10. Learning curves with varied number of 

hidden variables (4-layer DBN) 

 

 As might be expected, this over-fitting phenomenon 

was even more pronounced in a 5- or 6-layer DBN with a 

large number of hidden variables (Figure 11).  

 

 
Figure 11. Effect of varying number of hidden 

variables on a 6-layer DBN. 

 

Part 3 Application: our real-time classifier 

 



 To conclude our project, we created a real-time 

demo system which enables the user to look into a 

webcam, push a button, and have their picture taken and 

their emotion classified (See Figure 12). This system used 

the classifier trained on the 4-emotion dataset, using all 

three databases. When used in proper lighting conditions, 

it was surprisingly accurate. (Even in our poorly-lit area 

of the CS229 poster session, several volunteers had their 

emotions classified correctly every time.) 

 This system is a “proof of concept,” and 

improvements of it could lead to applications such as 

those discussed in our initial project proposal: emotion-

aware software, point-and-shoot cameras with “happiness 

detection,” or helping train autistic individuals in 

recognizing and producing emotional cues. 

 

 
Figure 12. Real-time demo system. 

 

Part 4: Conclusion and future directions 

 

 In conclusion, histogram equalization during the 

image preprocessing step produced a clear improvement 

in test accuracy. The “letterboxing” technique we 

attempted, however, did not produce improved results, 

suggesting that it may be best to give the DBN as much 

data as possible and not try to guess which parts of the 

image are most important. 

 As expected, our accuracy was best (around 20%) 

when testing on the limited set of 4 emotion classes, 

where the more ambiguous emotions were eliminated. 

(We would note that a classifier working with only these 

4 emotion classes covers the most common emotions, and 

would still be useful for many practical applications.) 

 Increasing the number of DBN layers caused the 

algorithm to perform better; in particular, it converged to 

good training error much faster than DBNs with smaller 

layers. Using more hidden variables, on the other hand, 

resulted in generally worse performance due to over-

fitting. The effect was especially prominent when there 

were both many layers and many hidden variables. 

 The learning curves from our data show that 

combining our different databases results in the best 

performance. We suspect that further performance gains 

could probably be realized by increasing the size of our 

training database. Indeed, the MNIST handwritten digit 

database contains 60,000 images and 10,000 test images, 

or 7,000 images (on average) for each of the 10 digit 

classes. Due to the difficulty of obtaining good emotion 

images, we had only 525 training examples, or 75 

examples per emotion, when using all three databases. 
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