
Emotion Recognition with Deep-Belief

Networks

Tom McLaughlin, Mai Le, Naran Bayanbat

Introduction

 For our CS229 project, we studied the problem of

reliable computerized emotion recognition in images of

human faces. First, we performed a preliminary

exploration using SVM classifiers, and then developed an

approach based on Deep Belief Nets. Deep Belief Nets, or

DBNs, are probabilistic generative models composed of

multiple layers of stochastic latent variables, where each

“building block” layer is a Restricted Boltzmann Machine

(RBM). DBNs have a greedy layer-wise unsupervised

learning algorithm as well as a discriminative fine-tuning

procedure for optimizing performance on classification

tasks. [1].

 We trained our classifier on three databases: the

Cohn-Kanade Extended Database (CK+) [2], the Japanese

Female Facial Expression Database (JAFFE) [3], and the

Yale Face Database (YALE) [4]. We tested several

different database configurations, image pre-processing

settings, and DBN parameters, and obtained test errors as

low as 20% on a limited subset of the emotion labels.

 Finally, we created a real-time system which takes

images of a single subject using a computer webcam and

classifies the emotion shown by the subject.

Part 1: Exploration of SVM-based approaches

 To set a baseline for comparison, we applied an

SVM classifier to the emotion images in the CK+

database, using the LIBLINEAR library and its MATLAB

interface [5]. This database contains 593 image sequences

across 123 human subjects, beginning with a “neutral

“expression and showing the progression to one of seven

“peak” emotions. When given both a neutral and an

expressive face to compare, the SVM obtained accuracy

as high as 90%. This section summarizes the

implementation of the SVM classifier. For additional

details on this stage of the project, please see our

Milestone document.

Part 1.1 Choice of labels (emotion numbers vs. FACS

features)

 The CK+ database offers two sets of emotion

features: “emotion numbers” and FACS features. Emotion

numbers are integer values representing the main emotion

shown in the “peak emotion” image. The emotions are

coded as follows: 1=anger, 2=contempt, 3=disgust,

4=fear, 5=happiness, 6=sadness, and 7=surprise.

 The other labeling option is called FACS, or the

Facial Action Coding System. FACS decomposes every

facial emotion into a set of Action Units (AUs), which

describe the specific muscle groups involved in forming

the emotion. We chose not to use FACS because accurate

labeling currently requires trained human experts [8], and

we are interesting in creating an automated system.

Part 1.2 Features

Part 1.2.1 Norm of differences between neutral face

and full emotion

 Each of the CK+ images has been hand-labeled with

68 standard Active Appearance Models (AAM) face

landmarks that describe the X and Y position of these

landmarks on the image (Figure 1).

Figure 1. AAM Facial Landmarks

We initially trained the SVM on the norm of the

vector differences in landmark positions between the

neutral and peak expressions. With this approach, the

training error was approximately 35% for hold out cross

validation (see Figure 2).

Figure 2. Accuracy of

SVM with norm-

displacement features.

Figure 3. Accuracy of

SVM with separate X, Y

displacement features.

Part 1.2.2 Separate X and Y differences between

neutral face and full emotion

 Because the initial approach did not differentiate

between displacements of landmarks in different

directions, we also provided the differences in the X and

Y components of each landmark separately. This doubled

the size of our feature vector, and resulting in a significant

(about 20%) improvement in accuracy (Figure 3).

Part 1.2.3 Feature Selection

Finally, we visualized which features were the most

important for classifying each emotion; the results can be

seen in Figure 4. The figure shows the X and Y

displacements for each emotion compared to the average

values over all emotions, with average features colored in

green and both extremes colored red and blue,

respectively. One interesting result is that the Y features

are in general more important—there are fewer side-to-

side motions of facial features during the formation of

expressions. Also, “surprise” showed by far the most

extreme displacements for many features. This exercise

helped us understand which aspects of our images contain

the most information about emotion, and so was valuable

for designing our approach to the DBN.

Figure 4. Visualization of relative feature importance.

Part 1.2.5 Limitations of AAM landmarks

 While the SVM trained on AAM facial landmark

provided promising results, it has a fatal flaw: there is not

yet an accurate, automated method for identifying the

landmarks on a human face. Because we want to make a

fully automated emotion classifier, we had to abandon

AAM landmarks. Fortunately, DBNs can be trained on

raw images (and actually performed better with these

inputs than if they were given the AAM features.)

Part 2: Deep Belief Nets

DBNs are probabilistic generative models composed

of hidden stochastic variables and are similar in structure

to neural nets. However, unlike other neural nets, DBNs

perform learning one layer at a time, computing

generative weight matrices that define connections

between the nodes of every two adjacent layers. Once the

weighted matrices are calculated, the hidden variables at

each layer can be inferred from the visible input by

reversing the matrices.

Our DBN implementation is based upon a

modification of Geoff Hinton’s code for classifying the

MNIST handwritten digit database [7]. The two problems

are actually very similar, since both involve training a

DBN on a raw image and sorting the training examples

into 5-10 classes. We hoped that, as in the digit

recognition case, the DBN algorithm’s ability to identify

complex patterns in the input would yield high accuracy

in our classification task.

This section describes the steps we took in setting up

and configuring our DBN-based system, and concludes

with test results.

Part 2.1 Face detection and image preprocessing

 We used OpenCV’s Haar feature detection

algorithms to create an image preprocessing program to

prepare the images in our databases. There are 3 key steps

in the processing chain: 1) identify and crop a face in the

image, 2) identify the eyes, and use their location to

“letterbox” the left and right sides of the face, and 3)

perform histogram equalization. The letterboxing serves

to hide areas of the image that don’t correlate with

emotion, such as the ears and hair. Equalization serves to

sparsify the image matrix and emphasize the features of

interest, as well as ensure that all our input data has the

same contrast.

Figure 5. Image pre-processing steps

As it turned out, equalizing the data was extremely

important, but the letterboxing technique actually

degraded performance (see Results).

An important image preprocessing question is the

size to which the input images should be scaled. The

Hinton paper on digit recognition used 28 by 28 pixel

inputs. However, human faces are much more complex

than handwritten digits, so higher resolution is required to

avoid losing important details. Excessively high

resolution, on the other hand, would greatly increase the

running time of the algorithm and could actually degrade

accuracy, due to the decreased proportion of “relevant”

data in the image. With this in mind, we chose to scale

our input images to 100 by 100 pixels.

Part 2.1: Parameter selection

 The two most important parameters of a DBN are a)

the number of layers and b) the number of hidden

variables in each layer. The default settings in the Hinton

code are to use 4 layers, containing 500, 500, and 2000

latent variables, with the final hidden layer variables

corresponding directly to our classes.

 In general, the more layers present in the DBN, the

better performance will be. Networks with insufficient

depth can require more computational elements than

architectures whose depth is well-matched to the task,

because deeper networks with fewer hidden variables can

provide a simpler, more descriptive model [6]. The

problem with deep nets is that they are often harder to

optimize, and the best performance is often determined

empirically.

 While it is agreed that adding more layers to the

network will enhance performance, beyond a certain

threshold the payoff of adding more layers is no longer

worth the additional time and computing resources needed

to run the DBN. In addition to the standard 4 layers in the

Hinton code, we also tested the DBN with 5 and 6 layers.

Since human faces are much more complex than

handwritten digit images, we decided not to try decreasing

the number of layers.

 There are many “rules of thumb” for determining the

optimal number of hidden variables per layer. In general,

the number of hidden variables required depends in a

complex way on the size of the input and output layers,

the number of training examples, the amount of noise in

the data, and other factors. Increasing the number of

hidden units too much would make the network prone to

over-fitting, while not enough hidden units could mean

under-fitting and the network maybe unable to capture

necessary higher order features. We chose to try several

settings and determine the best performance empirically.

Part 2.2: Results

Part 2.2.1 Determining convergence/over-fitting

Increasing back-propagation duration may result in

over-fitting. When allowed to run for a sufficiently long

time, the training error decreases steadily while the test

error remains constant or increases (Figure 6). For this

reason, it is important to be careful how about when we

terminate the back-propagation phase. We initially ran our

tests for a constant 200 epochs, but later found that the

time at which over-fitting begins is dependent on the

specific settings of the test run. In all the results reported

in this paper, we allowed each test run to proceed until

over-fitting was observed. The number of testing epochs

this required was recorded, and repeated runs with the

same settings were run for the same number of epochs. In

many cases this took as many as 500 epochs.

Figure 6. DBN over-fitting.

Part 2.2.1 Testing histogram equalization,

letterboxing, limited emotion sets

 We began with a series of tests to determine the best

way to pre-process our input images. The results show

that equalization creates dramatic improvements in

performance (up to 20% less training error). See Figure 7

for a comparison of learning curves obtained by training

on all three databases together, with equalization both on

and off.

Figure 7. Effect of equalization on test error.

Table 1. Effect of histogram equalization and

letterboxing on test accuracy

Databases

included

Non-

equalized

Equalized Equalized,

letterboxed

CK+ 0.39 0.33 0.34

CK+, Yale 0.49 0.30 0.31

CK+, Yale,

JAFFE

0.55 0.27 0.28

On the other hand, our “letterboxing” technique of

isolating only the main part of the face actually degraded

performance somewhat. It’s possible that this is because

the parts of the face which it excluded (such as the outline

of the cheek and cheekbone) were more important than

we had thought for classification, although further study is

necessary to be sure.

Part 2.2.2 Limited emotion and training sets

 We observed both in our SVM explorations and in

our early tests of DBNs that certain emotions in our

databases, especially contempt and disgust, were a) very

difficult for the algorithm to tell apart (difficult for

humans as well, in some cases) and b) presented

themselves differently in different subjects. We

hypothesized that excluding one or more of these

emotions would improve our test accuracy. We trained

and tested on two different subsets of the emotion labels:

the full 7-emotion set, and a limited 4-emotion set

containing only the emotions happy, sad, surprised, and

angry.

Table 2. Effect of test error when training on a

limited emotion set

 7 Emotions 4 Emotions

CK+ 0.57 0.22

CK+, Yale 0.29 0.22

CK+, Yale,

JAFFE

0.41 0.20

 As expected, using the limited emotion set produced

improved results. (See Figure 8 for sample learning

curves.)

Figure 8. Learning curves when training on limited

emotion set.

Part 2.2.3 Varying DBN depth and number of hidden

variables

 We also experimented with varying the number of

hidden layers and latent variables. Figure 9 shows a

comparison of the learning curves for a 4-layer, 5-layer,

and 6-layer DBNs.

Figure 9. Learning curves with varied DBN depth.

Adding more depth generally improved the

performance, with the 6 layer DBN outperforming all

other configurations. In particular, the deeper DBN

converged much faster to a good solution. However, the 5

and 6 layer configurations took a much longer time to

train, so they do have their drawbacks. For this reason, we

did not test numbers of layers greater than 6.

 Finally, we explored what happens when you vary

the number of latent variables in the model. While it is

difficult to determine what the optimal configuration is

for a given total number of hidden units, it seems clear

that increasing the number of latent variables beyond a

certain amount decreases performance significantly. This

is reasonable, because an excess of hidden variables

makes the model more prone to over-fitting. Figure 10

shows the effect of varying the number of hidden

variables on a 4-layer DBN.

Figure 10. Learning curves with varied number of

hidden variables (4-layer DBN)

 As might be expected, this over-fitting phenomenon

was even more pronounced in a 5- or 6-layer DBN with a

large number of hidden variables (Figure 11).

Figure 11. Effect of varying number of hidden

variables on a 6-layer DBN.

Part 3 Application: our real-time classifier

 To conclude our project, we created a real-time

demo system which enables the user to look into a

webcam, push a button, and have their picture taken and

their emotion classified (See Figure 12). This system used

the classifier trained on the 4-emotion dataset, using all

three databases. When used in proper lighting conditions,

it was surprisingly accurate. (Even in our poorly-lit area

of the CS229 poster session, several volunteers had their

emotions classified correctly every time.)

 This system is a “proof of concept,” and

improvements of it could lead to applications such as

those discussed in our initial project proposal: emotion-

aware software, point-and-shoot cameras with “happiness

detection,” or helping train autistic individuals in

recognizing and producing emotional cues.

Figure 12. Real-time demo system.

Part 4: Conclusion and future directions

 In conclusion, histogram equalization during the

image preprocessing step produced a clear improvement

in test accuracy. The “letterboxing” technique we

attempted, however, did not produce improved results,

suggesting that it may be best to give the DBN as much

data as possible and not try to guess which parts of the

image are most important.

 As expected, our accuracy was best (around 20%)

when testing on the limited set of 4 emotion classes,

where the more ambiguous emotions were eliminated.

(We would note that a classifier working with only these

4 emotion classes covers the most common emotions, and

would still be useful for many practical applications.)

 Increasing the number of DBN layers caused the

algorithm to perform better; in particular, it converged to

good training error much faster than DBNs with smaller

layers. Using more hidden variables, on the other hand,

resulted in generally worse performance due to over-

fitting. The effect was especially prominent when there

were both many layers and many hidden variables.

 The learning curves from our data show that

combining our different databases results in the best

performance. We suspect that further performance gains

could probably be realized by increasing the size of our

training database. Indeed, the MNIST handwritten digit

database contains 60,000 images and 10,000 test images,

or 7,000 images (on average) for each of the 10 digit

classes. Due to the difficulty of obtaining good emotion

images, we had only 525 training examples, or 75

examples per emotion, when using all three databases.

References

[1] Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A

fast learning algorithm for deep belief nets. Neural

Computation, 18(1527-1554).

[2] Lucey, P.; Cohn, J.F.; Kanade, T.; Saragih, J.;

Ambadar, Z.; Matthews, I.; , "The Extended Cohn-

Kanade Dataset (CK+): A complete dataset for action unit

and emotion-specified expression," Computer Vision and

Pattern Recognition Workshops (CVPRW), 2010 IEEE

Computer Society Conference on , vol., no., pp.94-101,

13-18 June 2010. doi: 10.1109/CVPRW.2010.5543262.

[3] Michael J. Lyons, Shigeru Akamatsu, Miyuki

Kamachi, Jiro Gyoba. Coding Facial Expressions with

Gabor Wavelet. Proceedings, Third IEEE International

Conference on Automatic Face and GesturRecognition,

April 14-16 1998, Nara Japan, IEEE Computer Society,

pp. 200-205.

[4] Georghiades, A., Belhumeur, P., Kriegman, D.: From

Few to Many: Illumination Cone Models for Face

Recognition under Variable Lighting and Pose. IEEE

Trans. Pattern Anal. Mach. Intelligence 23(6), 643-660

(2001)

[5] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and

C.-J. Lin. LIBLINEAR: A Library for Large Linear

Classification, Journal of Machine Learning Research

9(2008), 1871-1874. Software available at

http://www.csie.ntu.edu.tw/~cjlin/liblinear

[6] S. Lee, R. Xiang, S. Cetintas, Y. Fang. Deep Belief

Nets: CS590M Paper Presentation. Fall 2008. Department

of Computer Science, Purdue University.

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.

"Gradient-based learning applied to document

recognition." Proceedings of the IEEE, 86(11):2278-2324,

November 1998.

[8] Michael J. Lyons, Shigeru Akamatsu, Miyuki

Kamachi, Jiro Gyoba. Coding Facial Expressions with

Gabor Wavelet. Proceedings, Third IEEE International

Conference on Automatic Face and Gesture Recognition,

April 14-16 1998, Nara Japan, IEEE Computer Society,

pp. 200-205.

http://www.csie.ntu.edu.tw/~cjlin/liblinear

