
 

 

Empirical Estimation of COCOMO I and COCOMO II 

Using a Case Study 

 

Muhammad M. Albakri
1
  

M. Rizwan Jameel Qureshi
2 

1-2
Department of Information Technology, King Abdul-Aziz University, P.O. BOX 80221 Jeddah 21589, Saudi 

Arabia  

 

Abstract- There are several software estimation models 

such as Line of Code, Function Point and COnstructive 

COst MOdel (COCOMO). The original COCOMO model 

is one of the most widely practiced and popular among the 

software development community because of its flexible 

usage. It is a suite of models i.e., COnstructive COst 

MOdel I and COnstructive COst MOdel II. In this paper, 

we are evaluating the both models, to find out the level of 

efficiency they present and how they can be tailored to the 

needs of modern software development projects. We are 

applying COCOMO models on a case study of an E-

Commerce application, that is built using HTML and 

JavaScript. We will also shed light on the different 

components of each model, and how their Cost Drivers 

effect on the accuracy of cost estimations for software 

development projects.  

Keywords- COCOMO I; COCOMO II; Software Cost 

Estimation; Software Cost Drivers' Assessment; Trade-off 

Analysis; Component Composition. 

1    Introduction 

The main stimulus for the COCOMO I model is to 

help people understand the cost consequences of the 

decisions they will make in developing and supporting a 

software product. COCOMO II not only offers a cost 

estimation tool, but also provides a great amount of 

parameters which explain what the model is estimating, 

and why it produces the estimates it does. COCOMO I is 

actually a hierarchy of three sub-models and each sub-

model is progressively more detailed than the other. This 

paper will present our results and findings after applying 

two of COCOMO's sub-models. The First sub-model is 

'Basic COCOMO'. It is a single-valued model and 

calculates the software development cost and effort of a 

program by measuring lines of code (LOC). Basic 

COCOMO itself is divided into three modes based on the 

nature of the software project. First is 'Organic Basic 

COCOMO', it is used in small-sized simple software 

projects developed by small teams with good application 

experience. Second is 'Semidetached Basic COCOMO', it 

is used in medium-size software projects developed by 

teams with diversified levels of experience. Third is 

'Embedded Basic COCOMO', that is used in massive 

software projects with strict resource constraints developed 

by multiple teams acquiring immense levels of experience, 

and sophistication. The second sub-model is 'Intermediate 

COCOMO’; it is simply 'Basic COCOMO' plus a set of 

subjective 'Cost Drivers'. Those drivers are used to assess 

product, computer, personnel, and project attributes of a 

software project. The evaluator uses a six-level scale to 

decide where each attribute fall. When an attribute is 

assessed, it produces what is called an Adjustment Factor. 

After all adjustment factors are multiplied together, they 

give an Effort Adjustment Factor (EAF) that is usually 

equal to a value between 0.9 and 1.4. The EAF is then 

mathematically applied on all Basic COCOMO's formulas. 

Third sub-model is Detailed COCOMO, as the name 

indicates, it produces the most accurate estimation of all 

three sub-models of COCOMO I. It combines Basic and 

Intermediate COCOMO together, boosted by an 

assessment of every Cost Driver's impact on each stage of 

‘Barry Boehm’s software engineering process'. COCOMO 

II model on the other hand, is divided into four sub-

models. Each sub-model is based on different inputs and 

estimates the effort of different activities of a software 

project. 'Application Composition' is the first sub-model. It 

estimates the effort of prototype systems developed using 

scripts, database programming, etc. And it uses application 

points as an input. Second sub-model is 'Early Design', it 

calculates initial effort based on system requirements and 

design options, and uses function points as an input. Third 

sub-model is 'Reuse', it estimates the effort of integrating 

reusable automatically generated components and uses 

generated line of code as an input. Fourth sub-model is 

'Post Architectural', it estimates the development effort of 

system design specifications and uses lines of source code 

as an input. 

The paper is further organized as: section 2 covers 

related work. Section 3 defines the research problem. 

Section 4 describes the brief case study design. Section 5 

illustrates the evaluation. Section 6 covers the discussion.  

 



 

2    Related Work 

 Boehm et al. [1] proposed evaluation criteria for the 

validity of the process models and they provided effective 

results. This article also explained the strengths and 

weaknesses of various cost estimation techniques for the 

period of 1965 to 2005 (40 years). COCOMO-II [2] was an 

excellent model up to 2005 but it did not enfold the new 

requirement and development styles for the reuseness or 

estimation of cost. COCOMO-II directed the software 

experts to create and designed new models such as the 

Chinese government version of COCOMO (COGOMO) 

and the Constructive Commercial-off-the-Shelf Cost 

Model (COCOTS) etc. Different future challenges were 

discussed for the invention of new model/methods and 

tools.  

 The author discussed different software cost 

estimation techniques and highlighted various hot areas 

and challenges of research in the field of software cost 

estimation. In [3], it is  emphasized that there should be a 

need to research more in this field to open the new 

horizons for novice researchers. Nasir [4] discussed the 

strengths and weaknesses of various software estimation 

techniques to provide the basis for the exactness of 

software cost estimation. Basic Project Estimation Process 

also presented in a wonderful style. This paper clearly 

elaborated the different types of models those were derived 

from COCOMO (I&II). 

 Reusability of components in Component Based 

Development (CBD) is illustrated in [5]. The research in 

[5] also discussed and compared different architectures of 

CBD. It may be mentioned that a detail explanation of 

advantages and disadvantages of CBD elaborated very 

nicely. A comparison, of component based development 

(CBD) with other traditional software development 

practices, is also provided.  

 Succi and Baruchelli [6] highlighted the importance of 

standardization of components for the software reusability. 

The discussion of this research paper was to find how total 

development cost of a software system affected on the 

basis of component-based software engineering. The main 

two factors those were affecting the standardization cost of 

a component have been explained. According to them, the 

cost of the standardization of component(s) must be 

included during the cost-benefit analysis of a software 

system. 

 Gill [7] highlighted the pertinent issues of software 

reusability for component based development on the basis 

of CBSE, considered the important issues of software 

reusability and high level reusability guidelines. He 

mentioned that how much reusability resulted to improve 

product reliability and to reduce overall software 

development cost. 

 The problem of crosscutting which is produced during 

component development is elaborated in [8]. They solved 

this problem by the extension with Aspect oriented 

methodology. It was mentioned by an example that how 

new business rules resulted in the more adaptable and 

reusable components. Aspect Component Based Software 

Engineering has been developed with success in the 

CORBA Component Model domain [9]. 

 Dolado [10] wrote a report for the validation of the 

component-based method (CBM) for software size 

estimation by the analysis of 46 projects. Then the 

complete process of this analysis and different techniques 

of analysis was mentioned. Relationship of LOC (Line of 

Code) and NOC (No. of Component) was carried out with 

suitable examples. Comparison of CBM and a Global 

Method (Mark II) was also provided [10]. 

 

3    Research Problem 

A number of discussions are reported in the literature 

for the effectiveness of COCOMO models. This paper is 

written to find out the accuracy of cost estimation of both 

models when applied on a specific project. Further, what is 

the impact of cost drivers during the system development 

life cycle phases.  

 We want to validate the accuracy of the cost 

estimations of COCOMO models for projects that are built 

using HTML and JavaScript. Hence, we will not only find 

out how accurate and reliable they are, but also whether 

they are suitable for estimating HTML and JavaScript 

Code. 

 

4    Case Study Design 

The case study is for a project completed by author 

Mr. Albakri in a course called ‘Human Computer 

Interaction’. The objective of the project is to follow the 

principles of HCI in creating an E-Commerce web 

application of an online bookstore. The application 

consists of forteen webpages written in HTML and 

JavaScript. All forteen pages were fully designed to have 

different content and perform different web tasks. Then, 

they were coded and connected together according to their 

design. The pages are a demo experience of how a real user 

would buy a book online. Detailes of the pages are 

mentioned in the next section. 

 

5    Evaluation 

The sub section 5.1 covers the COCOMO I whereas 

COCOMO II is covered in the sub section 5.2 

subsequently. 

5.1 Applying COCOMO I 

Sub-model Used: Basic COCOMO I 

         Mode Used: Organic 

         Formulas Used: 

      (         )      (    )            (1) 

         (      )               (2) 

Calculating Total LOC: 

Table 1: HTML Pages, 14 pages in total: 



 

Webpage Name Number of Lines of Code 

abousUs 101 LOC 

bookDetails 119 LOC 

categories 376 LOC 

congrats 91   LOC 

contactUs 144 LOC 

feedBack 267 LOC 

index 276 LOC 

myAccount 114 LOC 

payment 245 LOC 

searchResults 327 LOC 

shoppingCart 157 LOC 

signIn 118 LOC 

signUp 190 LOC 

verification 146 LOC 

 
Total = 2918 LOC, 2.918 

KLOC 

 

Estimating Effort: 

           (     )     

                

Estimating Time:  

         (     )     

                 

 

Sub-model Used: Intermediate COCOMO I 

         Mode Used: Organic 

        Formulas Used: 

      (         )          (    )             (3) 

         (      )              (4) 

Cost Drivers: 

 Product Attributes: 

1. RELY- Required Software Reliability. 

2. DATA – Database Size. 

3. CPLX – Product Complexity. 

 Computer Attributes: 

4. TIME – Execution Time. 

5. STOR – Main Storage. 

6. VIRT – Virtual Machine Volatility. 

7. TURN – Computer Turnaround Time. 

 

 Personal Attributes: 

 

8. ACAP – Analyst Capability. 

9. AEXP – Applications Experience. 

10. PCAP – Programmers Capability. 

11. VEXP – Virtual Machine Experience. 

12. LEXP – Programming Language Experience. 

 

 Project Attributes: 

13. MODP – Use of Modern Programming 

Practices. 

14. TOOL – Use of Software Tool. 

15. SCED – Required Development Schedule.  

 

Table 2: Estimating Cost Drivers Values: 

 
Very 

Low 
Low Normal High 

Very 

High 

RELY    1.15  

DATA     1.16  

CPLX     1.30 

TIME  0.85    

STOR    1.21  

VIRT    1.30  

TURN    1.15  

ACAP    0.86  

AEXP  0.80    

DCAP   1.0   

VEXP    0.90  

LEXP    0.95  

MODP   1.0   

TOOL     0.83 

SCED  0.85    
 

Calculating Effort Adjustment Factor(EAF): 

Here all assessment values are multiplied together to 

determine the EAF: 

                                  
                                      
                   (5) 

        

The equation further substitutes as follows. 

      (         )          (     )     

                 

         (      )     

                 

 

Sub-model: Organic Detailed COCOMO I 

This sub-model was not used this model based upon 

two reasons. First, is that this E-Commerce application 

does not require to go through the detailed project phases 

of 'Barry's software engineering process. Second, it is a 



 

small scale project. Though, the findings will be stated in 

section 6.  

5.2 Applying COCOMO II 

Sub-model Used: Application Composition 

         Formulas Used: 

            (  )  
                (  )                    (  ) (6) 

                (   )      
(          )

   
        (7) 

      (         )   
   

            
           (8) 

         
          

            
⁄             (9) 

                    
    

   
                          

(10) 

 

Table 3: Project Parameters: 

 CF 

 EC Simple Average Complex 

Screens 14 1 2 3 

Reports 6 2 5 8 

Components 10 1 1 10 

Environment 

Maturity 
25 

 

After Substitution: 

            (  )  (    )  (   )  (    )     
(11) 

         

This e-commerce application reuses 90% of previous 

common e-commerce applications. 

                (   )      
(      )

   
  

              

      (         )   
   

  
 

                         

Assumed, the average labor rate is 1500 USD. 

         
    

  
⁄  

           ⁄  

                           

                        

 

Sub-model Used: Early Design 

Formula Used:                                 (12) 

Where: 

            A is 2.94, a coefficient proposed by Boehm, 

            Size, is in KLOC, 

            B, reflects the increased effort required as the size 

of the project increases, ranges from 1.1 to 1.24. 

            M, is a multiplier which is based on a simplified set 

of seven project characteristics that influence the 

estimation. 

Project Characteristics: 

1. RCPX – Product Reliability and Complexity 

2. RUSE  – Reuse Required 

3. PDIF   – Platform Difficulty 

4. PERS  – Personnel Capability 

5. PREX  – Personnel Experience 

6. SCED – Schedule 

7. FCIL   – Support Facilities  

Table 4: Estimated Project Characteristics: 

 
Very 

Low 
Low Normal High 

Very 

High 

RCPX    1.5  

RUSE     1.40 

PDIF    1.20  

PERS   1   

PREX   1   

SCED  0.85    

FCIL   1   

 

Calculating multiplier M: 

                           

      

B value is medium (equal to 1.15), because the size of this 

e-commerce application is predicted to require medium 

expansion effort. 

      (         )                      

                        

 



 

Sub-model Used: Reuse 

Formula:        (         )      
      

  

   

      
 

(13) 

This formula estimates generated code. Where: 

'Auto', indicates that 'Effort' is of generated code, 

ASLOC, is the number of adaptive LOC of 

reusable components, 

AT, is the percentage of adapted generated code, 

ATPROD, productivity of engineers integrating 

the code, usually approximates to 2400 

LOC/Month. 

Here, it is assumed that the HTML and JavaScript code of 

reusable components is generated using design models 

inserted into a code generator. 

       (         )      
      

   
   

    
 

                              

 

Sub-model Used: Post-Architectural 

Formula:                               (14) 

As the name indicates, this model is used when more 

project parameters become identified.  

Detailed Project Cost Drivers: 

1. RELY – Required Reliability. 

2. CPLX – Complexity of Modules. 

3. DOCU – Extent of Documentation. 

4. DATA – Database Size. 

5. RUSE – Required percentage of Reusable 

Components. 

6. TIME – Execution Time Constraint. 

7. PVOL – Platform Volatility. 

8. STOR – Memory Constraints. 

9. ACAP – Analysts Capability. 

10. PCON – Personal Continuity. 

11. PCAP – Programmer Capability. 

12. PEXP – Programmer Experience. 

13. AEXP - Analyst Experience. 

14. LTEX – Language and Tool Experience. 

15. TOOL – Use of Software Tools. 

16. SCED – Development Schedule Compression. 

17. SITE – Extent of Multisite Working and Quality 

of Inter-Site Communication.  

The last cost driver 'SITE' was excluded because the work 

site is not relevant to the nature of this application. 

Table 5: Estimated Cost Drivers: 

 
Very 

Low 
Low Normal High 

Very 

High 

RELY    1.15  

CPLX     1.30 

DOCU    1.1  

DATA     1.16 

RUSE     1.40 

TIME  0.85    

PVOL  0.70    

STOR    1.21  

ACAP    0.86  

PCON    0.90  

PCAP   1   

PEXP   1   

AEXP  0.80    

LTEX   1   

TOOL     0.83 

SCED 0.85     

 

                                   
                        
             

       

       (         )                      

                       

 

6    Discussion 

As mentioned above in Table 2, the estimated fifteen 

cost drivers provide more information about different areas 

of the application that were not obtainable at the beginning 

of the project to enhance cost and effort estimations. In the 

basic stage, the effort and time to develop the application 

was 9.851 MM and 5.963 Months respectively, but when 

intermediate stage was reached, 0.985 more effort and 

0.219 more time was needed to complete the project.  

At the beginning of the project, 'Organic Basic 

COCOMO' envisions the system as a single unit, whereas 

'Organic Intermediate COCOMO' divides the system into 

subsystems or components. The intermediate cost drivers 

allow estimating particular components not the entire 

system, therefore enabling the development team to choose 

the best course of action regarding project's plan. 

In 'Detailed COCOMO' the estimator's understanding 

does not only cover different project parameters, it also 

considers the project as a sequence of phases and each 

phase is estimated in a different way. That is the most 

major difference between it and previous sub-models. The 

'Detailed COCOMO' assigns different cost drivers for each 



 

of phase of the project. These phase-dependant cost drivers 

are the reason behind producing much more accurate 

estimations. For example if we consider the 'ACAP' cost 

driver, it is assigned a value of 1.00 for Coding and Unit 

Testing phase, which has no influence on the 

multiplication operation, but a value of 1.40 for 

Requirements phase. This intelligent manipulation of cost 

drivers can save up analysts' energy and time for phases 

that need them. They do not have an impact on coding and 

testing phases, because they are not involved.  

COCOMO I only uses number of thousands lines of 

code (KLOC) as an input, and so it is best used in projects 

built using structured programming languages. 

'Application Composition' is intended for prototype 

projects, where the project is built by composing 

components called 'Object Points'. It not only considers 

cost drivers but also project environment's characteristics 

like developer's experience and capability, CASE tool's 

maturity and capability, number of screens, and number of 

system generated reports.  So, each component (object) is 

customized and then attached to whole body of the project 

in a different way and with a different level of challenge. 

As mentioned in previous section, 90% of the project is 

reused components from existing e-commerce 

applications. The relation between '%reuse' and 'Effort' is 

disproportional; the more components are reused (90% out 

of 100%), the less effort (1 Man Month) is required. 

'Early Design' model is similar to 'Organic 

Intermediate COCOMO'. In each model more information 

is uncovered as initial stages of the project are concluded 

and design stages are initiated. However, only a rough 

system design is required to make early estimations. A 

very important element in the formula is 'B' as mentioned 

in section 5.2.2, which has a great influence on the effort 

estimation. While comparing the value of effort estimated 

by 'Application Composition' and the value of effort 

estimated by 'Early Design', the impact of 'B' is definitely 

obvious. More 15.118 man effort is needed to meet the 

increasing size of the project.  

When 'Reuse' model is used HTML code can be 

generated using various code generators. It may appear that 

'Early Design' model and 'Reuse' model are similar, 

because they both estimate reusable components, but that 

is not the case. In fact, the estimator using 'Early Design' 

needs neither to understand the reusable components nor to 

modify it. The estimator simply just uses them. Each time 

the generated code is studied and then refined, the cost of 

the component will decrease. 

'Post-Architectural' model is used once an initial 

architectural design of the system is available. The model 

uses the same formula as 'Reuse' model uses. However, the 

estimation is the most accurate and realistic among others, 

because ten more cost drivers are uncovered and used in 

the formula. In section 5.2.2, 16.118 man effort is needed 

to develop the e-commerce application. This estimation 

was found to be unrealistic, because conventionally such a 

small scale application (2918 LOC) does not need that 

amount of man effort to be completed. Thanks to the 

detailed cost drivers, effort is reduced to 8.462 Man 

Month. 

 

Acknowledgements 

The author Muhammad Albakri would like to thank 

Dr. M. Rizwan Jameel Qureshi for his continuous and 

valuable support. It would never been possible to complete 

the work without his guidance throughout the making of 

this paper. 

7    References 

[1] Boehm, B. W. and R. Valerdi. Achievements and 

Challenges in Cocomo-Based Software Resource 

Estimation published by IEEE Computer Society. 74-83 

(2008). 

[2] Boehm, B. W. An Overview of the COCOMO 2.0 

Software Cost Model (1999). 

[3] Zaid, A., M. H. Selamat, A. A. A. Ghani, R. Atan and 

K. T. Wei. Issues in Software Cost Estimation, IJCSNS Int 

J of Computer Science and Network Security, 8(11): 350-

356 (2008). 

[4] Nasir, M. A Survey of Software Estimation Techniques 

and Project Planning Practices, Proceedings of the Seventh 

ACIS Int. Conf. on Software Engineering, Artificial 

Intelligence, Networking, and Parallel/Distributed 

Computing (SNPD’06), (2006). 

[5] Qureshi, M. R. J. and S. A. Hussain. A Reusable 

Software Component-Based Development Process Model 

Int. J of Advances in Engineering Software, 39(2): 88-94 

(2008). 

[6] Succi, G. and F. Baruchelli. The Cost of Standardizing 

Components for Software Reuse, Standard View 5(2) 

(1997). 

[7] Gill, N. S. Reusability Issues in Component-Based 

Development, ACM SIGSOFT Software Engineering 

Notes, 28(4): 4 – 4 (2003). 

[8] Clemente, P. J. and J. Hernández. Aspect Component 

Based Software Engineering, University Extremadura. 1-4 

Spain (2001). 

[9] Frakes, W. B. and K. Kang. Software Reuse Research: 

Status and Future, IEEE Transactions on Software 

Engineering, 31(7): 529-536 (2005). 

[10] Dolado, J. J. A Validation of the Component-Based 

Method for Software Size Estimation, IEEE Transactions 

on Software Engineering, 26(10): 1006-1021 (2000). 


